comprimento de onda cor (nm) -...

130
LISTA DE EXERCÍCIOS 1 FUVEST/UNICAMP 3ª SÉRIE Página 1 de 130 1. (Fuvest 2013) A tabela traz os comprimentos de onda no espectro de radiação eletromagnética, na faixa da luz visível, associados ao espectro de cores mais frequentemente percebidas pelos olhos humanos. O gráfico representa a intensidade de absorção de luz pelas clorofilas a e b, os tipos mais frequentes nos vegetais terrestres. Comprimento de onda (nm) Cor 380 450 Violeta 450 490 Azul 490 520 Ciano 520 570 Verde 570 590 Amarelo 590 620 Alaranjado 620 740 Vermelho Responda às questões abaixo, com base nas informações fornecidas na tabela e no gráfico. a) Em um experimento, dois vasos com plantas de crescimento rápido e da mesma espécie foram submetidos às seguintes condições: vaso 1: exposição à luz solar;

Upload: builien

Post on 08-Nov-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 1 de 130

1. (Fuvest 2013) A tabela traz os comprimentos de onda no espectro de radiação

eletromagnética, na faixa da luz visível, associados ao espectro de cores mais

frequentemente percebidas pelos olhos humanos. O gráfico representa a intensidade de

absorção de luz pelas clorofilas a e b, os tipos mais frequentes nos vegetais terrestres.

Comprimento de onda

(nm) Cor

380 – 450 Violeta

450 – 490 Azul

490 – 520 Ciano

520 – 570 Verde

570 – 590 Amarelo

590 – 620 Alaranjado

620 – 740 Vermelho

Responda às questões abaixo, com base nas informações fornecidas na tabela e no

gráfico.

a) Em um experimento, dois vasos com plantas de crescimento rápido e da mesma

espécie foram submetidos às seguintes condições:

vaso 1: exposição à luz solar;

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 2 de 130

vaso 2: exposição à luz verde.

A temperatura e a disponibilidade hídrica foram as mesmas para os dois vasos. Depois

de algumas semanas, verificou-se que o crescimento das plantas diferiu entre os vasos.

Qual a razão dessa diferença?

b) Por que as pessoas, com visão normal para cores, enxergam como verdes, as folhas

da maioria das plantas?

2. (Fuvest 2012) Num ambiente iluminado, ao focalizar um objeto distante, o olho

humano se ajusta a essa situação. Se a pessoa passa, em seguida, para um ambiente de

penumbra, ao focalizar um objeto próximo, a íris

a) aumenta, diminuindo a abertura da pupila, e os músculos ciliares se contraem,

aumentando o poder refrativo do cristalino.

b) diminui, aumentando a abertura da pupila, e os músculos ciliares se contraem,

aumentando o poder refrativo do cristalino.

c) diminui, aumentando a abertura da pupila, e os músculos ciliares se relaxam,

aumentando o poder refrativo do cristalino.

d) aumenta, diminuindo a abertura da pupila, e os músculos ciliares se relaxam,

diminuindo o poder refrativo do cristalino.

e) diminui, aumentando a abertura da pupila, e os músculos ciliares se relaxam,

diminuindo o poder refrativo do cristalino.

3. (Unicamp 2015) Movimento browniano é o deslocamento aleatório de partículas

microscópicas suspensas em um fluido, devido às colisões com moléculas do fluido em

agitação térmica.

a) A figura abaixo mostra a trajetória de uma partícula em movimento browniano em

um líquido após várias colisões. Sabendo-se que os pontos negros correspondem a

posições da partícula a cada 30s, qual é o módulo da velocidade média desta partícula

entre as posições A e B?

b) Em um de seus famosos trabalhos, Einstein propôs uma teoria microscópica para

explicar o movimento de partículas sujeitas ao movimento browniano. Segundo essa

teoria, o valor eficaz do deslocamento de uma partícula em uma dimensão é dado por

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 3 de 130

I 2 D t, onde t é o tempo em segundos e D kT r é o coeficiente de difusão de uma

partícula em um determinado fluido, em que 18 3k 3 10 m sK, T é a temperatura

absoluta e r é o raio da partícula em suspensão. Qual é o deslocamento eficaz de uma

partícula de raio r 3 mμ neste fluido a T 300K após 10 minutos?

4. (Unicamp 2015) Os astrônomos estimam que a estrela estaria situada a uma distância

18d 9,0 10 m da Terra. Considerando um foguete que se desloca a uma velocidade

4v 1,5 10 m/ s, o tempo de viagem do foguete da Terra até essa estrela seria de

7(1ano 3,0 10 s)

a) 2.000 anos.

b) 300.000 anos.

c) 6.000.000 anos.

d) 20.000.000 anos.

5. (Unicamp 2015) A Agência Espacial Brasileira está desenvolvendo um veículo

lançador de satélites (VLS) com a finalidade de colocar satélites em órbita ao redor da

Terra. A agência pretende lançar o VLS em 2016, a partir do Centro de Lançamento de

Alcântara, no Maranhão.

a) Considere que, durante um lançamento, o VLS percorre uma distância de 1200km em

800s. Qual é a velocidade média do VLS nesse trecho?

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 4 de 130

b) Suponha que no primeiro estágio do lançamento o VLS suba a partir do repouso com

aceleração resultante constante de módulo Ra . Considerando que o primeiro estágio

dura 80s, e que o VLS percorre uma distância de 32km, calcule Ra .

6. (Fuvest 2015) O sistema de airbag de um carro é formado por um sensor que detecta

rápidas diminuições de velocidade, uma bolsa inflável e um dispositivo contendo azida

de sódio 3(NaN ) e outras substâncias secundárias. O sensor, ao detectar uma grande

desaceleração, produz uma descarga elétrica que provoca o aquecimento e a

decomposição da azida de sódio. O nitrogênio 2(N ) liberado na reação infla rapidamente

a bolsa, que, então, protege o motorista. Considere a situação em que o carro,

inicialmente a 36 km / h (10 m / s), dirigido por um motorista de 60 kg, para devido a

uma colisão frontal.

a) Nessa colisão, qual é a variação EΔ da energia cinética do motorista?

b) Durante o 0,2 s da interação do motorista com a bolsa, qual é o módulo α da

aceleração média desse motorista?

c) Escreva a reação química de decomposição da azida de sódio formando sódio

metálico e nitrogênio gasoso.

d) Sob pressão atmosférica de 1atm e temperatura de 27 C, qual é o volume V de gás

nitrogênio formado pela decomposição de 65 g de azida de sódio?

Note e adote:

Desconsidere o intervalo de tempo para a bolsa inflar;

Ao término da interação com a bolsa do airbag, o motorista está em repouso;

Considere o nitrogênio como um gás ideal;

Constante universal dos gases: R 0,08 atm / (mol K);

0 C 273 K.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 5 de 130

Elemento Massa atômica

(g / mol)

sódio 23

nitrogênio 14

7. (Unicamp 2015) Considerando que a massa e as dimensões dessa estrela são

comparáveis às da Terra, espera-se que a aceleração da gravidade que atua em corpos

próximos à superfície de ambos os astros seja constante e de valor não muito diferente.

Suponha que um corpo abandonado, a partir do repouso, de uma altura h 54 m da

superfície da estrela, apresente um tempo de queda t 3,0 s. Desta forma, pode-se

afirmar que a aceleração da gravidade na estrela é de

a) 28,0 m/ s .

b) 210 m / s .

c) 212 m / s .

d) 218 m / s .

8. (Fuvest 2015) Uma criança com uma bola nas mãos está sentada em um “gira‐gira”

que roda com velocidade angular constante e frequência f 0,25 Hz.

a) Considerando que a distância da bola ao centro do “gira‐gira” é 2 m, determine os

módulos da velocidade TV e da aceleração a da bola, em relação ao chão.

Num certo instante, a criança arremessa a bola horizontalmente em direção ao centro do

“gira‐gira”, com velocidade RV de módulo 4 m / s, em relação a si.

Determine, para um instante imediatamente após o lançamento,

b) o módulo da velocidade U da bola em relação ao chão;

c) o ângulo θ entre as direções das velocidades U e RV da bola.

Note e adote:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 6 de 130

9. (Unicamp 2015) Considere um computador que armazena informações em um disco

rígido que gira a uma frequência de 120 Hz. Cada unidade de informação ocupa um

comprimento físico de 0,2 mμ na direção do movimento de rotação do disco. Quantas

informações magnéticas passam, por segundo, pela cabeça de leitura, se ela estiver

posicionada a 3 cm do centro de seu eixo, como mostra o esquema simplificado

apresentado abaixo?

(Considere 3.)π

a) 61,62 10 .

b) 61,8 10 .

c) 864,8 10 .

d) 81,08 10 .

10. (Fuvest 2015) Uma criança de 30 kg está em repouso no topo de um escorregador

plano de 2,5 m 2,5 m de altura, inclinado 30 em relação ao chão horizontal. Num certo

instante, ela começa a deslizar e percorre todo o escorregador.

Determine

a) a energia cinética E e o módulo Q da quantidade de movimento da criança, na

metade do percurso;

b) o módulo F da força de contato entre a criança e o escorregador;

c) o módulo a da aceleração da criança.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 7 de 130

Note e adote:

Forças dissipativas devem ser ignoradas.

A aceleração local da gravidade é 210 m / s .

sen 30 cos 60 0,5

sen 60 cos 30 0,9

11. (Unicamp 2015) O primeiro trecho do monotrilho de São Paulo, entre as estações

Vila Prudente e Oratório, foi inaugurado em agosto de 2014. Uma das vantagens do

trem utilizado em São Paulo é que cada carro é feito de ligas de alumínio, mais leve que

o aço, o que, ao lado de um motor mais eficiente, permite ao trem atingir uma

velocidade de oitenta quilômetros por hora.

a) A densidade do aço PE 3açod 7,9g / cm e a do alumínio é 3

Ald 2,7g / cm . Obtenha a

razão aço

Al

τ

τ

entre os trabalhos realizados pelas forças resultantes que aceleram dois

trens de dimensões idênticas, um feito de aço e outro feito de alumínio, com a mesma

aceleração constante de módulo a, por uma mesma distância I.

b) Outra vantagem do monotrilho de São Paulo em relação a outros tipos de transporte

urbano é o menor nível de ruído que ele produz. Considere que o trem emite ondas

esféricas como uma fonte pontual. Se a potência sonora emitida pelo trem é igual a

P 1,2mW, qual é o nível sonoro S em dB, a uma distância R 10m do trem? O nível

sonoro S em dB é dado pela expressão 0

IS 10dB log ,

I em que I é a intensidade da inda

sonora e 12 20I 10 W / m é a intensidade de referência padrão correspondente ao limiar

da audição do ouvido humano.

12. (Fuvest 2015) A energia necessária para o funcionamento adequado do corpo

humano é obtida a partir de reações químicas de oxidação de substâncias provenientes

da alimentação, que produzem aproximadamente 5 kcal por litro de 2O consumido.

Durante uma corrida, um atleta consumiu 3 litros de 2O por minuto.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 8 de 130

Determine

a) a potência P gerada pelo consumo de oxigênio durante a corrida;

b) a quantidade de energia E gerada pelo consumo de oxigênio durante 20 minutos da

corrida;

c) o volume V de oxigênio consumido por minuto se o atleta estivesse em repouso,

considerando que a sua taxa de metabolismo basal é 100 W.

Note e adote:

1cal 4 J.

13. (Fuvest 2015) O espelho principal de um dos maiores telescópios refletores do

mundo, localizado nas Ilhas Canárias, tem 10 m de diâmetro e distância focal de 15 m.

Supondo que, inadvertidamente, o espelho seja apontado diretamente para o Sol,

determine:

a) o diâmetro D da imagem do Sol;

b) a densidade S de potência no plano da imagem, em 2W / m ;

c) a variação TΔ da temperatura de um disco de alumínio de massa 0,6 kg colocado no

plano da imagem, considerando que ele tenha absorvido toda a energia incidente

durante 4 s.

Note e adote:

O espelho deve ser considerado esférico.

11Distância Terra Sol 1,5 10 m.

9Diâmetro do Sol 1,5 10 m.

Calor específico do Al 1J / (g K). Calor específico do Al = 1 J/(g K).

Densidade de potência solar incidindo sobre o espelho principal do telescópio

21kW / m .

O diâmetro do disco de alumínio é igual ao da imagem do Sol.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 9 de 130

Desconsidere perdas de calor pelo disco de alumínio.

14. (Fuvest 2015) No desenvolvimento do sistema amortecedor de queda de um

elevador de massa m, o engenheiro projetista impõe que a mola deve se contrair de um

valor máximo d, quando o elevador cai, a partir do repouso, de uma altura h, como

ilustrado na figura abaixo. Para que a exigência do projetista seja satisfeita, a mola a ser

empregada deve ter constante elástica dada por

Note e adote:

- forças dissipativas devem ser ignoradas;

- a aceleração local da gravidade é g.

a) 22 m g h d / d

b) 22 m g h d / d

c) 22 m g h / d

d) m g h / d

e) m g / d

15. (Fuvest 2015) A figura abaixo mostra o gráfico da energia potencial gravitacional

U de uma esfera em uma pista, em função da componente horizontal x da posição da

esfera na pista.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 10 de 130

A esfera é colocada em repouso na pista, na posição de abscissa 1x x , tendo energia

mecânica E 0. A partir dessa condição, sua energia cinética tem valor

Note e adote:

- desconsidere efeitos dissipativos.

a) máximo igual a 0U .

b) igual a E quando 3x x .

c) mínimo quando 2x x .

d) máximo quando 3x x .

e) máximo quando 2x x .

16. (Unicamp 2015) Jetlev é um equipamento de diversão movido a água. Consiste em

um colete conectado a uma mangueira que, por sua vez, está conectada a uma bomba de

água que permanece submersa. O aparelho retira água do mar e a transforma em jatos

para a propulsão do piloto, que pode ser elevado a até 10 metros de altura (ver figura

abaixo).

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 11 de 130

a) Qual é a energia potencial gravitacional, em relação à superfície da água, de um

piloto de 60km, quando elevado a 10 metros de altura?

b) Considere que o volume de água por unidade de tempo que entra na mangueira na

superfície da água é o mesmo que sai nos jatos do colete, e que a bomba retira água do

mar a uma taxa de 30 litros / s. Lembre-se que o Impulso I de uma força constante F,

dado pelo produto desta força pelo intervalo de tempo tΔ de sua aplicação I F t,Δ é

igual, em módulo, à variação da quantidade de movimento QΔ do objeto submetido a

esta força. Calcule a diferença de velocidade entre a água que passa pela mangueira e a

que sai nos jatos quando o colete propulsor estiver mantendo o piloto de m 60kg em

repouso acima da superfície da água. Considere somente a massa do piloto e use a

densidade da água 1kg / litro.ρ

17. (Fuvest 2015) Para impedir que a pressão interna de uma panela de pressão

ultrapasse um certo valor, em sua tampa há um dispositivo formado por um pino

acoplado a um tubo cilíndrico, como esquematizado na figura abaixo. Enquanto a força

resultante sobre o pino for dirigida para baixo, a panela está perfeitamente vedada.

Considere o diâmetro interno do tubo cilíndrico igual a 4 mm e a massa do pino igual a

48 g. Na situação em que apenas a força gravitacional, a pressão atmosférica e a

exercida pelos gases na panela atuam no pino, a pressão absoluta máxima no interior da

panela é

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 12 de 130

Note e adote:

- 3π

- 5 21atm 10 N/ m

- 2aceleração local da gravidade 10 m/ s

a) 1,1atm

b) 1,2 atm

c) 1,4 atm

d) 1,8 atm

e) 2,2 atm

18. (Unicamp 2015) Alguns experimentos muito importantes em física, tais como os

realizados em grandes aceleradores de partículas, necessitam de um ambiente com uma

atmosfera extremamente rarefeita, comumente denominada de ultra-alto-vácuo. Em tais

ambientes a pressão é menor ou igual a 610 Pa.

a) Supondo que as moléculas que compõem uma atmosfera de ultra-alto-vácuo estão

distribuídas uniformemente no espaço e se comportam como um gás ideal, qual é o

número de moléculas por unidade de volume em uma atmosfera cuja pressão seja

8P 3,2 10 Pa, à temperatura ambiente T 300K? Se necessário, use: Número de

Avogrado 23AN 6 10 e a Constante universal dos gases ideais R 8J/ molK.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 13 de 130

b) Sabe-se que a pressão atmosférica diminui com a altitude, de tal forma que, a

centenas de quilômetros de altitude, ela se aproxima do vácuo absoluto. Por outro lado,

pressões acima da encontrada na superfície terrestre podem ser atingidas facilmente em

uma submersão aquática. Calcule a razão sub naveP P entre as pressões que devem

suportar a carcaça de uma nave espacial nave(P ) a centenas de quilômetros de altitude e

a de um submarino sub(P ) a 100m de profundidade, supondo que o interior de ambos os

veículos se encontra à pressão de 1atm. Considere a densidade da água como

31000kg / m .ρ

19. (Fuvest 2015) Um trabalhador de massa m está em pé, em repouso, sobre uma

plataforma de massa M. O conjunto se move, sem atrito, sobre trilhos horizontais e

retilíneos, com velocidade de módulo constante v. Num certo instante, o trabalhador

começa a caminhar sobre a plataforma e permanece com velocidade de módulo v, em

relação a ela, e com sentido oposto ao do movimento dela em relação aos trilhos. Nessa

situação, o módulo da velocidade da plataforma em relação aos trilhos é

a) 2 m M v / m M

b) 2 m M v / M

c) 2 m M v / m

d) M m v / M

e) m M v / M m

20. (Fuvest 2015)

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 14 de 130

O guindaste da figura acima pesa 50.000 N sem carga e os pontos de apoio de suas rodas

no solo horizontal estão em x 0 e x 5 m. O centro de massa (CM) do guindaste sem

carga está localizado na posição (x 3 m, y 2 m). Na situação mostrada na figura, a

maior carga P que esse guindaste pode levantar pesa

a) 7.000 N

b) 50.000 N

c) 75.000 N

d) 100.000 N

e) 150.000 N

21. (Unicamp 2015) A primeira lei de Kepler demonstrou que os planetas se movem

em órbitas elípticas e não circulares. A segunda lei mostrou que os planetas não se

movem a uma velocidade constante.

PERRY, Marvin. Civilização Ocidental: uma história concisa. São Paulo: Martins

Fontes, 1999, p. 289. (Adaptado)

É correto afirmar que as leis de Kepler

a) confirmaram as teorias definidas por Copérnico e são exemplos do modelo científico

que passou a vigorar a partir da Alta Idade Média.

b) confirmaram as teorias defendidas por Ptolomeu e permitiram a produção das cartas

náuticas usadas no período do descobrimento da América.

c) são a base do modelo planetário geocêntrico e se tornaram as premissas cientificas

que vigoram até hoje.

d) forneceram subsídios para demonstrar o modelo planetário heliocêntrico e criticar as

posições defendidas pela Igreja naquela época.

22. (Fuvest 2015) A notícia “Satélite brasileiro cai na Terra após lançamento falhar”,

veiculada pelo jornal O Estado de S. Paulo de 10/12/2013, relata que o satélite CBERS-

3, desenvolvido em parceria entre Brasil e China, foi lançado no espaço a uma altitude

de 720 km (menor do que a planejada) e com uma velocidade abaixo da necessária para

colocá-lo em órbita em torno da Terra. Para que o satélite pudesse ser colocado em

órbita circular na altitude de 720 km, o módulo de sua velocidade (com direção tangente

à órbita) deveria ser de, aproximadamente,

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 15 de 130

Note e adote:

- 3raio da Terra 6 10 km

- 24massa da Terra 6 10 kg

- constante da gravitação universal 11 3 2G 6,7 10 m / s kg

a) 61km / s

b) 25 km / s

c) 11km / s

d) 7,7 km / s

e) 3,3 km / s

23. (Fuvest 2015) Certa quantidade de gás sofre três transformações sucessivas, A B,

B C e C A, conforme o diagrama p V apresentado na figura abaixo.

A respeito dessas transformações, afirmou-se o seguinte:

I. O trabalho total realizado no ciclo ABCA é nulo.

II. A energia interna do gás no estado C é maior que no estado A.

III. Durante a transformação A B, o gás recebe calor e realiza trabalho.

Está correto o que se afirma em:

a) I.

b) II.

c) III.

d) I e II.

e) II e III.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 16 de 130

24. (Fuvest 2015) O desenvolvimento de teorias científicas, geralmente, tem forte

relação com contextos políticos, econômicos, sociais e culturais mais amplos. A

evolução dos conceitos básicos da Termodinâmica ocorre, principalmente, no contexto

a) da Idade Média.

b) das grandes navegações.

c) da Revolução Industrial.

d) do período entre as duas grandes guerras mundiais.

e) da Segunda Guerra Mundial.

25. (Fuvest 2015) Um recipiente hermeticamente fechado e termicamente isolado, com

volume de 750 , contém ar inicialmente à pressão atmosférica de 1atm 1 atm e à

temperatura de 27 C. No interior do recipiente, foi colocada uma pequena vela acesa, de

2,5 g. Sabendo‐se que a massa da vela é consumida a uma taxa de 0,1g / min e que a

queima da vela produz energia à razão de 43,6 10 J / g, determine

a) a potência W da vela acesa;

b) a quantidade de energia E produzida pela queima completa da vela;

c) o aumento TΔ da temperatura do ar no interior do recipiente, durante a queima da

vela;

d) a pressão P do ar no interior do recipiente, logo após a queima da vela.

Note e adote:

O ar deve ser tratado como gás ideal.

O volume de 1mol de gás ideal à pressão atmosférica de 1atm e à temperatura de 27 C

é 25 .

Calor molar do ar a volume constante: vC 30 J / mol K .

Constante universal dos gases: R 1,08 atm / mol K .

0 C 273 K. 0 °C = 273 K.

Devem ser desconsideradas a capacidade térmica do recipiente e a variação da massa de

gás no seu interior devido à queima da vela.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 17 de 130

26. (Unicamp 2015) Espelhos esféricos côncavos são comumente utilizados por

dentistas porque, dependendo da posição relativa entre objeto e imagem, eles permitem

visualizar detalhes precisos dos dentes do paciente. Na figura abaixo, pode-se observar

esquematicamente a imagem formada por um espelho côncavo. Fazendo uso de raios

notáveis, podemos dizer que a flecha que representa o objeto

a) se encontra entre F e V e aponta na direção da imagem.

b) se encontra entre F e C e aponta na direção da imagem.

c) se encontra entre F e V e aponta na direção oposta à imagem.

d) se encontra entre F e C e aponta na direção oposta à imagem.

27. (Fuvest 2015) Em uma aula de laboratório de Física, para estudar propriedades de

cargas elétricas, foi realizado um experimento em que pequenas esferas eletrizadas são

injetadas na parte superior de uma câmara, em vácuo, onde há um campo elétrico

uniforme na mesma direção e sentido da aceleração local da gravidade. Observou-se

que, com campo elétrico de módulo igual a 32 10 V / m, uma das esferas, de massa

153,2 10 kg, permanecia com velocidade constante no interior da câmara. Essa esfera

tem

Note e adote:

- 19carga do elétron 1,6 10 C

- 19carga do próton 1,6 10 C

- 2aceleração local da gravidade 10 m/ s

a) o mesmo número de elétrons e de prótons.

b) 100 elétrons a mais que prótons.

c) 100 elétrons a menos que prótons.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 18 de 130

d) 2000 elétrons a mais que prótons.

e) 2000 elétrons a menos que prótons.

28. (Fuvest 2015) A região entre duas placas metálicas, planas e paralelas está

esquematizada na figura abaixo. As linhas tracejadas representam o campo elétrico

uniforme existente entre as placas. A distância entre as placas é 5 mm e a diferença de

potencial entre elas é 300 V. As coordenadas dos pontos A, B e C são mostradas na

figura. Determine

a) os módulos AE , BE e CE do campo elétrico nos pontos A, B e C, respectivamente;

b) as diferenças de potencial ABV e BCV entre os pontos A e B e entre os pontos B e C,

respectivamente;

c) o trabalho τ realizado pela força elétrica sobre um elétron que se desloca do ponto C

ao ponto A.

Note e adote:

O sistema está em vácuo.

19Carga do elétron 1,6 10 C.

29. (Unicamp 2015) Quando as fontes de tensão contínua que alimentam os aparelhos

elétricos e eletrônicos são desligadas, elas levam normalmente certo tempo para atingir

a tensão de U 0 V. Um estudante interessado em estudar tal fenômeno usa um

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 19 de 130

amperímetro e um relógio para acompanhar o decréscimo da corrente que circula pelo

circuito a seguir em função do tempo, após a fonte ser desligada em t 0 s. Usando os

valores de corrente e tempo medidos pelo estudante, pode-se dizer que a diferença de

potencial sobre o resistor R 0,5 kΩ para t 400 ms é igual a

a) 6 V.

b) 12 V.

c) 20 V.

d) 40 V.

30. (Unicamp 2015) Por sua baixa eficiência energética, as lâmpadas incandescentes

deixarão de ser comercializadas para uso doméstico comum no Brasil. Nessas lâmpadas,

apenas 5% da energia elétrica consumida é convertida em luz visível, sendo o restante

transformado em calor. Considerando uma lâmpada incandescente que consome 60 W

de potência elétrica, qual a energia perdida em forma de calor em uma hora de

operação?

a) 10.800 J.

b) 34.200 J.

c) 205.200 J.

d) 216.000 J.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 20 de 130

31. (Fuvest 2015) O aquecimento de um forno elétrico é baseado na conversão de

energia elétrica em energia térmica em um resistor. A resistência R do resistor desse

forno, submetido a uma diferença de potencial V constante, varia com a sua

temperatura T. Na a seguir é mostrado o gráfico da função 0 0R(T) R (T T ),α sendo

0R o valor da resistência na temperatura 0T e α uma constante.

Ao se ligar o forno, com o resistor a 20 C, a corrente é 10 A. Ao atingir a temperatura

MT , a corrente é 5 A.

Determine a

a) constante ;α

b) diferença de potencial V;

c) temperatura MT ;

d) potência P dissipada no resistor na temperatura MT .

32. (Unicamp 2015) Um desafio tecnológico atual é a produção de baterias

biocompatíveis e biodegradáveis que possam ser usadas para alimentar dispositivos

inteligentes com funções médicas. Um parâmetro importante de uma bateria

biocompatível é sua capacidade específica (C), definida como a sua carga por unidade

massa, geralmente dada em mAh / g. O gráfico abaixo mostra de maneira simplificada a

diferença de potencial de uma bateria à base de melanina em função de C.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 21 de 130

a) Para uma diferença de potencial de 0,4V, que corrente média a bateria de massa

m 5,0g fornece, supondo que ela se descarregue completamente em um tempo t 4h?

b) Suponha que uma bateria preparada com C 10mAh / g esteja fornecendo uma

corrente constante total i 2mA a um dispositivo. Qual é a potência elétrica fornecida ao

dispositivo nessa situação?

33. (Unicamp 2015) A figura 1 apresentada a seguir representa a potência elétrica

dissipada pelo filamento de tungstênio de uma lâmpada incandescente em função da sua

resistência elétrica. Já a figura 2 apresenta a temperatura de operação do filamento em

função de sua resistência elétrica. Se uma lâmpada em funcionamento dissipa 150 W de

potência elétrica, a temperatura do filamento da lâmpada é mais próxima de:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 22 de 130

a) 325 C.

b) 1.250 C.

c) 3.000 C.

d) 3.750 C.

34. (Fuvest 2015) Dispõe se de várias lâmpadas incandescentes de diferentes potências,

projetadas para serem utilizadas em 110 V de tensão. Elas foram acopladas, como nas

figuras I, II e III abaixo, e ligadas em 220 V.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 23 de 130

Em quais desses circuitos, as lâmpadas funcionarão como se estivessem

individualmente ligadas a uma fonte de tensão de 110 V?

a) Somente em I.

b) Somente em II.

c) Somente em III.

d) Em I e III.

e) Em II e III.

35. (Fuvest 2015)

A figura acima mostra parte do teclado de um piano. Os valores das frequências das

notas sucessivas, incluindo os sustenidos, representados pelo símbolo #, obedecem a

uma progressão geométrica crescente da esquerda para a direita; a razão entre as

frequências de duas notas Dó consecutivas vale 2; a frequência da nota Lá do teclado da

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 24 de 130

figura é 440 Hz. O comprimento de onda, no ar, da nota Sol indicada na figura é

próximo de

Note e adote:

- 1122 1,059

- 2

1,059 1,12

- velocidade do som no ar 340 m / s

a) 0,56 m

b) 0,86 m

c) 1,06 m

d) 1,12 m

e) 1,45 m

TEXTO PARA AS PRÓXIMAS 2 QUESTÕES:

A figura abaixo mostra, de forma simplificada, o sistema de freios a disco de um

automóvel. Ao se pressionar o pedal do freio, este empurra o êmbolo de um primeiro

pistão que, por sua vez, através do óleo do circuito hidráulico, empurra um segundo

pistão. O segundo pistão pressiona uma pastilha de freio contra um disco metálico preso

à roda, fazendo com que ela diminua sua velocidade angular.

36. (Unicamp 2015) Qual o trabalho executado pela força de atrito entre o pneu e o solo

para parar um carro de massa m 1.000 kg, inicialmente a v 72 km / h, sabendo que os

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 25 de 130

pneus travam no instante da frenagem, deixando de girar, e o carro desliza durante todo

o tempo de frenagem?

a) 43,6 10 J.

b) 52,0 10 J.

c) 54,0 10 J.

d) 62,6 10 J.

37. (Unicamp 2015) Considerando o diâmetro 2d do segundo pistão duas vezes maior

que o diâmetro 1d do primeiro, qual a razão entre a força aplicada ao pedal de freio pelo

pé do motorista e a força aplicada à pastilha de freio?

a) 1 4.

b) 1 2.

c) 2.

d) 4.

38. (Fuvest 2014) A primeira medida da velocidade da luz, sem o uso de métodos

astronômicos, foi realizada por Hippolyte Fizeau, em 1849. A figura abaixo mostra um

esquema simplificado da montagem experimental por ele utilizada.

Um feixe fino de luz, emitido pela fonte F, incide no espelho plano semitransparente E1.

A luz refletida por E1 passa entre dois dentes da roda dentada R, incide

perpendicularmente no espelho plano E2 que está a uma distância L da roda, é refletida e

chega ao olho do observador. A roda é então colocada a girar em uma velocidade

angular tal que a luz que atravessa o espaço entre dois dentes da roda e é refletida pelo

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 26 de 130

espelho E2, não alcance o olho do observador, por atingir o dente seguinte da roda.

Nesta condição, a roda, com N dentes, gira com velocidade angular constante e dá V

voltas por segundo.

a) Escreva a expressão literal para o intervalo de tempo tΔ em que a luz se desloca da

roda até E2 e retorna à roda, em função de L e da velocidade da luz c.

b) Considerando o movimento de rotação da roda, escreva, em função de N e V, a

expressão literal para o intervalo de tempo tΔ decorrido entre o instante em que a luz

passa pelo ponto central entre os dentes A e B da roda e o instante em que, depois de

refletida por E2, é bloqueada no centro do dente B.

c) Determine o valor numérico da velocidade da luz, utilizando os dados abaixo.

Note e adote:

No experimento de Fizeau, os dentes da roda estão igualmente espaçados e têm a

mesma largura dos espaços vazios;

L = 8600 m;

N = 750;

V = 12 voltas por segundo.

39. (Unicamp 2014) O encontro das águas do Rio Negro e do Solimões, nas

proximidades de Manaus, é um dos maiores espetáculos da natureza local. As águas dos

dois rios, que formam o Rio Amazonas, correm lado a lado por vários quilômetros sem

se misturarem.

a) Um dos fatores que explicam esse fenômeno é a diferença da velocidade da água nos

dois rios, cerca de nv 2 km / h para o Negro e SV 6 km / h para o Solimões. Se uma

embarcação, navegando no Rio Negro, demora Nt 2 h para fazer um percurso entre

duas cidades distantes cidadesd 48 km, quanto tempo levará para percorrer a mesma

distância no Rio Solimões, também rio acima, supondo que sua velocidade com relação

à água seja a mesma nos dois rios?

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 27 de 130

b) Considere um ponto no Rio Negro e outro no Solimões, ambos à profundidade de 5

m e em águas calmas, de forma que as águas nesses dois pontos estejam em repouso. Se

a densidade da água do Rio Negro é 3N 996 kg/ mρ e a do Rio Solimões é

3S 998 kg/ m ,ρ qual a diferença de pressão entre os dois pontos?

40. (Unicamp 2014) Correr uma maratona requer preparo físico e determinação. A uma

pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte

sequência: correr a distância de 1 km à velocidade de 10,8 km/h e, posteriormente,

andar rápido a 7,2 km/h durante dois minutos.

a) Qual será a distância total percorrida pelo atleta ao terminar o treino?

b) Para atingir a velocidade de 10,8 km/h, partindo do repouso, o atleta percorre 3 m

com aceleração constante. Calcule o módulo da aceleração a do corredor neste trecho.

41. (Fuvest 2014) Arnaldo e Batista disputam uma corrida de longa distância. O gráfico

das velocidades dos dois atletas, no primeiro minuto da corrida, é mostrado na figura.

Determine

a) a aceleração Ba de Batista em t = 10 s;

b) as distâncias Ad e Bd percorridas por Arnaldo e Batista, respectivamente, até t = 50

s;

c) a velocidade média Av de Arnaldo no intervalo de tempo entre 0 e 50 s.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 28 de 130

42. (Unicamp 2014) As máquinas cortadeiras e colheitadeiras de cana-de-açúcar podem

substituir dezenas de trabalhadores rurais, o que pode alterar de forma significativa a

relação de trabalho nas lavouras de cana-de-açúcar. A pá cortadeira da máquina

ilustrada na figura abaixo gira em movimento circular uniforme a uma frequência de

300 rpm. A velocidade de um ponto extremo P da pá vale

(Considere 3.π )

a) 9 m/s.

b) 15 m/s.

c) 18 m/s.

d) 60 m/s.

43. (Fuvest 2014) Para passar de uma margem a outra de um rio, uma pessoa se

pendura na extremidade de um cipó esticado, formando um ângulo de 30° com a

vertical, e inicia, com velocidade nula, um movimento pendular. Do outro lado do rio, a

pessoa se solta do cipó no instante em que sua velocidade fica novamente igual a zero.

Imediatamente antes de se soltar, sua aceleração tem

Note e adote:

Forças dissipativas e o tamanho da pessoa devem ser ignorados.

A aceleração da gravidade local é g = 10 m/s2.

sen 30 cos 60 0,5

cos 30 sen 60 0,9

a) valor nulo.

b) direção que forma um ângulo de 30° com a vertical e módulo 9 m/s2.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 29 de 130

c) direção que forma um ângulo de 30° com a vertical e módulo 5 m/s2.

d) direção que forma um ângulo de 60° com a vertical e módulo 9 m/s2.

e) direção que forma um ângulo de 60° com a vertical e módulo 5 m/s2.

44. (Fuvest 2014) Duas pequenas esferas, cada uma com massa de 0,2 kg, estão presas

nas extremidades de uma haste rígida, de 10 cm de comprimento, cujo ponto médio está

fixo no eixo de um motor que fornece 4 W de potência mecânica. A figura abaixo

ilustra o sistema.

No instante t = 0, o motor é ligado e o sistema, inicialmente em repouso, passa a girar

em torno do eixo. Determine

a) a energia cinética total E das esferas em t = 5 s;

b) a velocidade angular ω de cada esfera em t = 5 s;

c) a intensidade F da força entre cada esfera e a haste, em t = 5 s;

d) a aceleração angular média α de cada esfera, entre t = 0 e t = 5 s.

Note e adote:

As massas da haste e do eixo do motor devem ser

ignoradas.

Não atuam forças dissipativas no sistema.

45. (Fuvest 2014) Uma estação espacial foi projetada com formato cilíndrico, de raio R

igual a 100 m, como ilustra a figura abaixo.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 30 de 130

Para simular o efeito gravitacional e permitir que as pessoas caminhem na parte interna

da casca cilíndrica, a estação gira em torno de seu eixo, com velocidade angular

constante .ω As pessoas terão sensação de peso, como se estivessem na Terra, se a

velocidade ω for de, aproximadamente,

Note e adote:

A aceleração gravitacional na superfície da Terra é g = 10 m/s2.

a) 0,1 rad/s

b) 0,3 rad/s

c) 1 rad/s

d) 3 rad/s

e) 10 rad/s

46. (Fuvest 2014) Há um ponto no segmento de reta unindo o Sol à Terra, denominado

“Ponto de Lagrange L1”. Um satélite artificial colocado nesse ponto, em órbita ao redor

do Sol, permanecerá sempre na mesma posição relativa entre o Sol e a Terra.

Nessa situação, ilustrada na figura acima, a velocidade angular orbital Aω do satélite em

torno do Sol será igual à da Terra, T.ω Para essa condição, determine

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 31 de 130

a) Tω em função da constante gravitacional G, da massa MS do Sol e da distância R

entre a Terra e o Sol;

b) o valor de Aω em rad/s;

c) a expressão do módulo Fr da força gravitacional resultante que age sobre o satélite,

em função de G, MS ,MT, m, R e d, sendo MT e m, respectivamente, as massas da Terra

e do satélite e d a distância entre a Terra e o satélite.

Note e adote:

71ano 3,14 10 s.

O módulo da força gravitacional F entre dois corpos de massas M1 e M2, sendo r a

distância entre eles, é dado por F = G M1 M2/r2.

Considere as órbitas circulares.

47. (Fuvest 2014) Um contêiner com equipamentos científicos é mantido em uma

estação de pesquisa na Antártida. Ele é feito com material de boa isolação térmica e é

possível, com um pequeno aquecedor elétrico, manter sua temperatura interna

constante, Ti 20 C, quando a temperatura externa é eT 40 C. As paredes, o piso e o

teto do contêiner têm a mesma espessura, 26 cm,ε e são de um mesmo material, de

condutividade térmica k 0,05 J / (s m C). Suas dimensões internas são 32 3 4 m .

Para essas condições, determine

a) a área A da superfície interna total do contêiner;

b) a potência P do aquecedor, considerando ser ele a única fonte de calor;

c) a energia E, em kWh, consumida pelo aquecedor em um dia.

Note e adote:

A quantidade de calor por unidade de tempo ( )Φ que flui através de um material de

área A, espessura ε e condutividade térmica k, com diferença de temperatura TΔ

entre as faces do material, é dada por: kA T / .Φ Δ ε

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 32 de 130

48. (Fuvest 2014) No sistema cardiovascular de um ser humano, o coração funciona

como uma bomba, com potência média de 10 W, responsável pela circulação sanguínea.

Se uma pessoa fizer uma dieta alimentar de 2500 kcal diárias, a porcentagem dessa

energia utilizada para manter sua circulação sanguínea será, aproximadamente, igual a

Note e adote:

1 cal = 4 J.

a) 1%

b) 4%

c) 9%

d) 20%

e) 25%

49. (Fuvest 2014) Um corpo de massa M desliza sem atrito, sujeito a uma força

gravitacional vertical uniforme, sobre um “escorregador logarítmico”: suas coordenadas

(x, y) no plano cartesiano, que representam distâncias medidas em metros, pertencem ao

gráfico da função

12

f(x) log x 4.

O corpo começa sua trajetória, em repouso, no ponto A, de abscissa x 1, e atinge o

chão no ponto B, de ordenada y 0, conforme figura abaixo.

Não levando em conta as dimensões do corpo e adotando 10m/s2 como o valor da

aceleração da gravidade,

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 33 de 130

a) encontre a abscissa do ponto B;

b) escreva uma expressão para a energia mecânica do corpo em termos de sua massa M,

de sua altura y e de sua velocidade escalar v;

c) obtenha a velocidade escalar v como função da abscissa do ponto ocupado pelo

corpo;

d) encontre a abscissa do ponto a partir do qual v é maior do que 60 m / s.

50. (Unicamp 2014) a) O ar atmosférico oferece uma resistência significativa ao

movimento dos automóveis. Suponha que um determinado automóvel movido a

gasolina, trafegando em linha reta a uma velocidade constante de v 72 km / h com

relação ao ar, seja submetido a uma força de atrito de arF 380 N. Em uma viagem de

uma hora, aproximadamente quantos litros de gasolina serão consumidos somente para

“vencer” o atrito imposto pelo ar?

Dados: calor de combustão da gasolina: 35 MJ/l. Rendimento do motor a gasolina:

30%.

b) A má calibração dos pneus é outro fator que gera gasto extra de combustível. Isso

porque o rolamento é real e a baixa pressão aumenta a superfície de contato entre o solo

e o pneu. Como consequência, o ponto efetivo da aplicação da força normal de módulo

N não está verticalmente abaixo do eixo de rotação da roda (ponto O) e sim ligeiramente

deslocado para a frente a uma distância d , como indica a figura abaixo.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 34 de 130

As forças que atuam sobre a roda não tracionada são: força F, que leva a roda para a

frente, força peso P, força de atrito estático atF e força normal N. Para uma velocidade

de translação V constante, o torque em relação ao ponto O, resultante das forças de

atrito estático atF e normal N, deve ser nulo. Sendo R = 30 cm, d = 0,3 cm e N = 2.500

N, calcule o módulo da força de atrito estático atF .

51. (Fuvest 2014) Em uma competição de salto em distância, um atleta de 70 kg tem,

imediatamente antes do salto, uma velocidade na direção horizontal de módulo 10 m/s.

Ao saltar, o atleta usa seus músculos para empurrar o chão na direção vertical,

produzindo uma energia de 500 J, sendo 70% desse valor na forma de energia cinética.

Imediatamente após se separar do chão, o módulo da velocidade do atleta é mais

próximo de

a) 10,0 m/s

b) 10,5 m/s

c) 12,2 m/s

d) 13,2 m/s

e) 13,8 m/s

52. (Fuvest 2014) Uma pessoa faz, diariamente, uma caminhada de 6 km em uma pista

horizontal, consumindo 80 cal a cada metro. Num certo dia, ela fez sua caminhada

habitual e, além disso, subiu um morro de 300 m de altura. Essa pessoa faz uma

alimentação diária de 2000 kcal, com a qual manteria seu peso, se não fizesse

exercícios.

Com base nessas informações, determine

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 35 de 130

a) a percentagem P da energia química proveniente dos alimentos ingeridos em um dia

por essa pessoa, equivalente à energia consumida na caminhada de 6 km;

b) a quantidade C de calorias equivalente à variação de energia potencial dessa pessoa

entre a base e o topo do morro, se sua massa for 80 kg;

c) o número N de caminhadas de 6 km que essa pessoa precisa fazer para perder 2,4 kg

de gordura, se mantiver a dieta diária de 2000 kcal.

Note e adote:

A aceleração da gravidade local é igual a 10 m/s2.

1 cal = 4 J.

9 kcal são produzidas com a queima de 1 g de

gordura.

53. (Unicamp 2014) A figura abaixo exibe, em porcentagem, a previsão da oferta de

energia no Brasil em 2030, segundo o Plano Nacional de Energia.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 36 de 130

Segundo o plano, em 2030, a oferta total de energia do país irá atingir 557 milhões de

tep (toneladas equivalentes de petróleo). Nesse caso, podemos prever que a parcela

oriunda de fontes renováveis, indicada em cinza na figura, equivalerá a

a) 178,240 milhões de tep.

b) 297,995 milhões de tep.

c) 353,138 milhões de tep.

d) 259,562 milhões de tep.

54. (Unicamp 2014) Uma boia de sinalização marítima muito simples pode ser

construída unindo-se dois cilindros de mesmas dimensões e de densidades diferentes,

sendo um de densidade menor e outro de densidade maior que a da água, tal como

esquematizado na figura abaixo. Submergindo-se totalmente esta boia de sinalização na

água, quais serão os pontos efetivos mais prováveis de aplicação das forças Peso e

Empuxo?

a) Peso em C e Empuxo em B.

b) Peso em B e Empuxo em B.

c) Peso em C e Empuxo em A.

d) Peso em B e Empuxo em C.

55. (Fuvest 2014)

Um bloco de madeira impermeável, de massa M e dimensões 32 3 3 cm , é inserido

muito lentamente na água de um balde, até a condição de equilíbrio, com metade de seu

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 37 de 130

volume submersa. A água que vaza do balde é coletada em um copo e tem massa m. A

figura ilustra as situações inicial e final; em ambos os casos, o balde encontra-se cheio

de água até sua capacidade máxima. A relação entre as massas m e M é tal que

a) m = M/3

b) m = M/2

c) m = M

d) m = 2M

e) m = 3M

56. (Unicamp 2014) Existem inúmeros tipos de extintores de incêndio que devem ser

utilizados de acordo com a classe do fogo a se extinguir. No caso de incêndio

envolvendo líquidos inflamáveis, classe B, os extintores à base de pó químico ou de

dióxido de carbono (CO2) são recomendados, enquanto extintores de água devem ser

evitados, pois podem espalhar o fogo.

a) Considere um extintor de CO2 cilíndrico de volume interno V = 1800 cm3 que contém

uma massa de CO2 m = 6 kg. Tratando o CO2 como um gás ideal, calcule a pressão no

interior do extintor para uma temperatura T = 300 K.

Dados: R = 8,3 J/mol K e a massa molar do CO2 M = 44 g/mol.

b) Suponha que um extintor de CO2 (similar ao do item a), completamente carregado,

isolado e inicialmente em repouso, lance um jato de CO2 de massa m = 50 g com

velocidade v = 20 m/s. Estime a massa total do extintor EXTm e calcule a sua

velocidade de recuo provocada pelo lançamento do gás.

Despreze a variação da massa total do cilindro decorrente do lançamento do jato.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 38 de 130

57. (Fuvest 2014) Um núcleo de polônio-204 (204

Po), em repouso, transmuta-se em um

núcleo de chumbo-200 (200

Pb), emitindo uma partícula alfa ( )α com energia cinética

E .α Nesta reação, a energia cinética do núcleo de chumbo é igual a

Note e adote:

Núcleo Massa (u)

204Po 204

200Pb 200

α 4

1 u = 1 unidade de massa

atômica.

a) E .α

b) E / 4α

c) E / 50α

d) E / 200α

e) E / 204α

58. (Unicamp 2014) “As denúncias de violação de telefonemas e transmissão de dados

de empresas e cidadãos brasileiros serviram para reforçar a tese das Forças Armadas da

necessidade de o Brasil dispor de seu próprio satélite geoestacionário de comunicação

militar” (O Estado de São Paulo, 15/07/2013). Uma órbita geoestacionária é

caracterizada por estar no plano equatorial terrestre, sendo que o satélite que a executa

está sempre acima do mesmo ponto no equador da superfície terrestre. Considere que a

órbita geoestacionária tem um raio r 42000 km.

a) Calcule a aceleração centrípeta de um satélite em órbita circular geoestacionária.

b) A energia mecânica de um satélite de massa m em órbita circular em torno da terra é

dada por GMm

E ,2r

em que r é o raio da órbita, 24M 6 10 kg é a massa da Terra e

211

2

NmG 6,7 10 .

kg

O raio de órbita de satélites comuns de observação (não

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 39 de 130

geoestacionários) é tipicamente de 7000 km. Calcule a energia adicional necessária para

colocar um satélite de 200 kg de massa em uma órbita geoestacionária, em comparação

a colocá-lo em uma órbita comum de observação.

59. (Fuvest 2014) Uma lâmina bimetálica de bronze e ferro, na temperatura ambiente, é

fixada por uma de suas extremidades, como visto na figura abaixo.

Nessa situação, a lâmina está plana e horizontal. A seguir, ela é aquecida por uma

chama de gás. Após algum tempo de aquecimento, a forma assumida pela lâmina será

mais adequadamente representada pela figura:

Note e adote:

O coeficiente de dilatação térmica linear do ferro é 5 11,2 10 C .

O coeficiente de dilatação térmica linear do bronze é 5 11,8 10 C .

Após o aquecimento, a temperatura da lâmina é uniforme.

a)

b)

c)

d)

e)

60. (Unicamp 2014) a) Segundo as especificações de um fabricante, um forno de

micro-ondas necessita, para funcionar, de uma potência de entrada de P = 1400 W, dos

quais 50% são totalmente utilizados no aquecimento dos alimentos. Calcule o tempo

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 40 de 130

necessário para elevar em 20 CΔθ a temperatura de m = 100 g de água. O calor

específico da água é ac 4,2 J / g C.

b) A figura abaixo mostra o esquema de um forno de micro-ondas, com 30 cm de

distância entre duas de suas paredes internas paralelas, assim como uma representação

simplificada de certo padrão de ondas estacionárias em seu interior. Considere a

velocidade das ondas no interior do forno como 8c 3 10 m/ s e calcule a frequência f

das ondas que formam o padrão representado na figura.

61. (Unicamp 2014) O sistema de imagens street view disponível na internet permite a

visualização de vários lugares do mundo através de fotografias de alta definição,

tomadas em 360 graus, no nível da rua.

a) Em uma câmera fotográfica tradicional, como a representada na figura abaixo, a

imagem é gravada em um filme fotográfico para posterior revelação. A posição da lente

é ajustada de modo a produzir a imagem no filme colocado na parte posterior da

câmera. Considere uma câmera para a qual um objeto muito distante fornece uma

imagem pontual no filme em uma posição p’ = 5 cm. O objeto é então colocado mais

perto da câmera, em uma posição p = 100 cm, e a distância entre a lente e o filme é

ajustada até que uma imagem nítida real invertida se forme no filme, conforme mostra a

figura. Obtenha a variação da posição da imagem p’ decorrente da troca de posição do

objeto.

b) Nas câmeras fotográficas modernas, a captação da imagem é feita normalmente por

um sensor tipo CCD (Charge Couple Devide). Esse tipo de dispositivo possui trilhas de

capacitores que acumulam cargas elétricas proporcionalmente à intensidade da luz

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 41 de 130

incidente em cada parte da trilha. Considere um conjunto de 3 capacitores de mesma

capacitância C = 0,6 pF, ligados em série conforme a figura ao lado. Se o conjunto de

capacitores é submetido a uma diferença de potencial V = 5,0 V, qual é a carga elétrica

total acumulada no conjunto?

62. (Fuvest 2014) Um estudante construiu um microscópio ótico digital usando uma

webcam, da qual ele removeu a lente original. Ele preparou um tubo adaptador e fixou

uma lente convergente, de distância focal f = 50 mm, a uma distância d = 175 mm do

sensor de imagem da webcam, como visto na figura abaixo.

No manual da webcam, ele descobriu que seu sensor de imagem tem dimensão total útil

de 26 6 mm , com 500 500 pixels. Com estas informações, determine

a) as dimensões do espaço ocupado por cada pixel;

b) a distância L entre a lente e um objeto, para que este fique focalizado no sensor;

c) o diâmetro máximo D que uma pequena esfera pode ter, para que esteja integralmente

dentro do campo visual do microscópio, quando focalizada.

Note e adote:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 42 de 130

Pixel é a menor componente de uma imagem digital.

Para todos os cálculos, desconsidere a espessura da

lente.

63. (Unicamp 2014) A atração e a repulsão entre partículas carregadas têm inúmeras

aplicações industriais, tal como a pintura eletrostática. As figuras abaixo mostram um

mesmo conjunto de partículas carregadas, nos vértices de um quadrado de lado a, que

exercem forças eletrostáticas sobre a carga A no centro desse quadrado. Na situação

apresentada, o vetor que melhor representa a força resultante agindo sobre a carga A se

encontra na figura

a)

b)

c)

d)

64. (Fuvest 2014) Dois fios metálicos, F1 e F2, cilíndricos, do mesmo material de

resistividade ,ρ de seções transversais de áreas, respectivamente, A1 e A2 = 2A1, têm

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 43 de 130

comprimento L e são emendados, como ilustra a figura abaixo. O sistema formado pelos

fios é conectado a uma bateria de tensão V.

Nessas condições, a diferença de potencial V1, entre as extremidades de F1, e V2, entre

as de F2, são tais que

a) V1 = V2/4

b) V1 = V2/2

c) V1 = V2

d) V1 = 2V2

e) V1 = 4V2

65. (Unicamp 2014) No fenômeno de “Magneto impedância gigante”, a resistência

elétrica de determinado material pelo qual circula uma corrente alternada de frequência f

varia com a aplicação de um campo magnético H . O gráfico da figura 1 mostra a

resistência elétrica de determinado fio de resistividade elétrica

864,8 10 mρ Ω em função da frequência f da corrente elétrica alternada que circula

por esse fio, para diferentes valores de H .

a) Como podemos ver na figura 1, o valor da resistência elétrica do fio para f 0 Hz é

R 1,5 .Ω Calcule o comprimento L desse fio, cuja área de seção transversal vale

82A 1,296 10 m .

b) Para altas frequências, a corrente elétrica alternada não está uniformemente

distribuída na seção reta do fio, mas sim confinada em uma região próxima a sua

superfície. Esta região é determinada pelo comprimento de penetração, que é dado por

r

k ,f

ρδ

μ em que ρ é a resistividade do fio, f é a frequência da corrente elétrica

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 44 de 130

alternada, rμ é a permeabilidade magnética relativa do fio e mHz

k 500 .Ω

Sabendo

que rμ varia com o campo magnético aplicado H , como mostra a figura 2, e que, para

o particular valor de f 8 MHz temos R 4 ,Ω calcule o valor de δ para essa situação.

66. (Fuvest 2014) A curva característica de uma lâmpada do tipo led (diodo emissor de

luz) é mostrada no gráfico.

Essa lâmpada e um resistor de resistência R estão ligados em série a uma bateria de 4,5

V, como representado na figura abaixo.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 45 de 130

Nessa condição, a tensão na lâmpada é 2,5 V.

a) Qual é o valor da corrente iR no resistor?

b) Determine o valor da resistência R.

c) A bateria de 4,5 V é substituída por outra de 3 V, que fornece 60 mW de potência ao

circuito, sem que sejam trocados a lâmpada e o resistor. Nessas condições, qual é a

potência PR dissipada no resistor?

Note e adote:

As resistências internas das baterias devem ser

ignoradas.

67. (Fuvest 2014) Partículas com carga elétrica positiva penetram em uma câmara em

vácuo, onde há, em todo seu interior, um campo elétrico de módulo E e um campo

magnético de módulo B, ambos uniformes e constantes, perpendiculares entre si, nas

direções e sentidos indicados na figura. As partículas entram na câmara com

velocidades perpendiculares aos campos e de módulos v1 (grupo 1), v2 (grupo 2) e v3

(grupo 3). As partículas do grupo 1 têm sua trajetória encurvada em um sentido, as do

grupo 2, em sentido oposto, e as do grupo 3 não têm sua trajetória desviada. A situação

está ilustrada na figura abaixo.

Considere as seguintes afirmações sobre as velocidades das partículas de cada grupo:

I. v1 > v2 e v1 > E/B

II. v1 < v2 e v1 < E/B

III. v3 = E/B

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 46 de 130

Está correto apenas o que se afirma em

Note e adote:

Os módulos das forças elétrica (FE) e magnética (FM) são:

FE = qE

FM = qvB

a) I.

b) II.

c) III.

d) I e III.

e) II e III.

68. (Fuvest 2014) O resultado do exame de audiometria de uma pessoa é mostrado nas

figuras abaixo. Os gráficos representam o nível de intensidade sonora mínima I, em

decibéis (dB), audível por suas orelhas direita e esquerda, em função da frequência f do

som, em kHz. A comparação desse resultado com o de exames anteriores mostrou que,

com o passar dos anos, ela teve perda auditiva. Com base nessas informações, foram

feitas as seguintes afirmações sobre a audição dessa pessoa:

I. Ela ouve sons de frequência de 6 kHz e intensidade de 20 dB com a orelha direita,

mas não com a esquerda.

II. Um sussurro de 15 dB e frequência de 0,25 kHz é ouvido por ambas as orelhas.

III. A diminuição de sua sensibilidade auditiva, com o passar do tempo, pode ser

atribuída a degenerações dos ossos martelo, bigorna e estribo, da orelha externa, onde

ocorre a conversão do som em impulsos elétricos.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 47 de 130

É correto apenas o que se afirma em

a) I.

b) II.

c) III.

d) I e III.

e) II e III.

69. (Unicamp 2014) A tecnologia de telefonia celular 4G passou a ser utilizada no

Brasil em 2013, como parte da iniciativa de melhoria geral dos serviços no Brasil, em

preparação para a Copa do Mundo de 2014. Algumas operadoras inauguraram serviços

com ondas eletromagnéticas na frequência de 40 MHz. Sendo a velocidade da luz no

vácuo 8c 3,0 10 m/ s, o comprimento de onda dessas ondas eletromagnéticas é

a) 1,2 m.

b) 7,5 m.

c) 5,0 m.

d) 12,0 m.

70. (Fuvest 2014) O Sr. Rubinato, um músico aposentado, gosta de ouvir seus velhos

discos sentado em uma poltrona. Está ouvindo um conhecido solo de violino quando

sua esposa Matilde afasta a caixa acústica da direita (Cd) de uma distância l, como visto

na figura abaixo.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 48 de 130

Em seguida, Sr. Rubinato reclama: _ Não consigo mais ouvir o Lá do violino, que antes

soava bastante forte! Dentre as alternativas abaixo para a distância l, a única compatível

com a reclamação do Sr. Rubinato é

Note e adote:

O mesmo sinal elétrico do amplificador é ligado aos dois alto-falantes, cujos cones se

movimentam em fase.

A frequência da nota Lá é 440 Hz.

A velocidade do som no ar é 330 m/s.

A distância entre as orelhas do Sr. Rubinato deve ser ignorada.

a) 38 cm

b) 44 cm

c) 60 cm

d) 75 cm

e) 150 cm

TEXTO PARA AS PRÓXIMAS 2 QUESTÕES:

Leia o texto:

Andar de bondinho no complexo do Pão de Açúcar no Rio de Janeiro é um dos passeios

aéreos urbanos mais famosos do mundo. Marca registrada da cidade, o Morro do Pão de

Açúcar é constituído de um único bloco de granito, despido de vegetação em sua quase

totalidade e tem mais de 600 milhões de anos.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 49 de 130

71. (Unicamp 2014) O passeio completo no complexo do Pão de Açúcar inclui um

trecho de bondinho de aproximadamente 540 m, da Praia Vermelha ao Morro da Urca,

uma caminhada até a segunda estação no Morro da Urca, e um segundo trecho de

bondinho de cerca de 720 m, do Morro da Urca ao Pão de Açúcar. A velocidade escalar

média do bondinho no primeiro trecho é 1v 10,8 km / h e, no segundo, é

2v 14,4 km / h. Supondo que, em certo dia, o tempo gasto na caminhada no Morro da

Urca somado ao tempo de espera nas estações é de 30 minutos, o tempo total do passeio

completo da Praia Vermelha até o Pão de Açúcar será igual a

a) 33 min.

b) 36 min.

c) 42 min.

d) 50 min.

72. (Unicamp 2014) A altura do Morro da Urca é de 220 m e a altura do Pão de Açúcar

é de cerca de 400 m, ambas em relação ao solo. A variação da energia potencial

gravitacional do bondinho com passageiros de massa total M = 5000 kg, no segundo

trecho do passeio, é

(Use 2g 10 m/ s . )

a) 611 10 J.

b) 620 10 J.

c) 631 10 J.

d) 69 10 J.

73. (Fuvest 2013) Antes do início dos Jogos Olímpicos de 2012, que aconteceram em

Londres, a chama olímpica percorreu todo o Reino Unido, pelas mãos de cerca de 8000

pessoas, que se revezaram nessa tarefa. Cada pessoa correu durante um determinado

tempo e transferiu a chama de sua tocha para a do próximo participante.

Suponha que

(i) cada pessoa tenha recebido uma tocha contendo cerca de 1,02 g de uma mistura de

butano e propano, em igual proporção, em mols;

(ii) a vazão de gás de cada tocha fosse de 48 mL/minuto.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 50 de 130

Calcule:

a) a quantidade de matéria, em mols, da mistura butano+propano contida em cada tocha;

b) o tempo durante o qual a chama de cada tocha podia ficar acesa.

Um determinado participante P do revezamento correu a uma velocidade média de 2,5

m/s. Sua tocha se apagou no exato instante em que a chama foi transferida para a tocha

do participante que o sucedeu.

c) Calcule a distância, em metros, percorrida pelo participante P enquanto a chama de

sua tocha permaneceu acesa.

Dados: Massa molar (g/mol): butano = 58, propano = 44; Volume molar nas condições

ambientes: 24 L/mol.

74. (Unicamp 2013) O prêmio Nobel de Física de 2011 foi concedido a três astrônomos

que verificaram a expansão acelerada do universo a partir da observação de supernovas

distantes. A velocidade da luz é c = 3 108 m/s.

a) Observações anteriores sobre a expansão do universo mostraram uma relação direta

entre a velocidade v de afastamento de uma galáxia e a distância r em que ela se

encontra da Terra, dada por v = H r, em que H = 2,3 10–18

s–1

é a constante de Hubble.

Em muitos casos, a velocidade v da galáxia pode ser obtida pela expressão 0

λ

cv em

que 0λ é o comprimento de onda da luz emitida e λ é o deslocamento Doppler da luz.

Considerando ambas as expressões acima, calcule a que distância da Terra se encontra

uma galáxia, se 00,092 .λ λ

b) Uma supernova, ao explodir, libera para o espaço massa em forma de energia, de

acordo com a expressão E = mc2. Numa explosão de supernova foram liberados 3,24

1048

J, de forma que sua massa foi reduzida para mfinal = 4,0 1030

kg. Qual era a massa

da estrela antes da explosão?

75. (Unicamp 2013) Alguns tênis esportivos modernos possuem um sensor na sola que

permite o monitoramento do desempenho do usuário durante as corridas. O

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 51 de 130

monitoramento pode ser feito através de relógios ou telefones celulares que recebem as

informações do sensor durante os exercícios. Considere um atleta de massa m = 70 kg

que usa um tênis com sensor durante uma série de três corridas.

a) O gráfico 1) abaixo mostra a distância percorrida pelo atleta e a duração em horas das

três corridas realizadas em velocidades constantes distintas. Considere que, para essa

série de corridas, o consumo de energia do corredor pode ser aproximado por

MET ,E C m t onde m é a massa do corredor, t é a duração da corrida e CMET é uma

constante que depende da velocidade do corredor e é expressa em unidade de kJ

.kg h

Usando o gráfico 2) abaixo, que expressa CMET em função da velocidade do corredor,

calcule a quantidade de energia que o atleta gastou na terceira corrida.

b) O sensor detecta o contato da sola do tênis com o solo pela variação da pressão.

Estime a área de contato entre o tênis e o solo e calcule a pressão aplicada no solo

quando o atleta está em repouso e apoiado sobre um único pé.

76. (Unicamp 2013) Em 2012 foi comemorado o centenário da descoberta dos raios

cósmicos, que são partículas provenientes do espaço.

a) Os neutrinos são partículas que atingem a Terra, provenientes em sua maioria do Sol.

Sabendo-se que a distância do Sol à Terra é igual a 1,5 1011

m , e considerando a

velocidade dos neutrinos igual a 3,0 108 m/s , calcule o tempo de viagem de um

neutrino solar até a Terra.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 52 de 130

b) As partículas ionizam o ar e um instrumento usado para medir esta ionização é o

eletroscópio. Ele consiste em duas hastes metálicas que se repelem quando carregadas.

De forma simplificada, as hastes podem ser tratadas como dois pêndulos simples de

mesma massa m e mesma carga q localizadas nas suas extremidades. O módulo da força

elétrica entre as cargas é dado por 2

2,e

qF k

d sendo k = 9 10

9 N m

2/C

2. Para a situação

ilustrada na figura abaixo, qual é a carga q, se m = 0,004 g?

77. (Unicamp 2013) Para fins de registros de recordes mundiais, nas provas de 100

metros rasos não são consideradas as marcas em competições em que houver vento

favorável (mesmo sentido do corredor) com velocidade superior a 2 m s. Sabe-se que,

com vento favorável de 2 m s, o tempo necessário para a conclusão da prova é reduzido

em 0,1s. Se um velocista realiza a prova em 10 s sem vento, qual seria sua velocidade

se o vento fosse favorável com velocidade de 2 m s?

a) 8,0 m/s.

b) 9,9 m/s.

c) 10,1 m/s.

d) 12,0 m/s.

78. (Fuvest 2013) Um DJ, ao preparar seu equipamento, esquece uma caixa de fósforos

sobre o disco de vinil, em um toca-discos desligado. A caixa se encontra a 10 cm do

centro do disco. Quando o toca-discos é ligado, no instante t 0, ele passa a girar com

aceleração angular constante 21,1rad/s ,α até que o disco atinja a frequência final

f 33 rpm que permanece constante. O coeficiente de atrito estático entre a caixa de

fósforos e o disco é e 0,09.μ Determine

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 53 de 130

a) a velocidade angular final do disco, f ,ω em rad/s;

b) o instante tf em que o disco atinge a velocidade angular f ;ω

c) a velocidade angular cω do disco no instante tc em que a caixa de fósforos passa a se

deslocar em relação ao mesmo;

d) o ângulo total θ percorrido pela caixa de fósforos desde o instante t 0 até o

instante ct t .

Note e adote: Aceleração da gravidade local 2g 10 m/s ; 3.π

79. (Unicamp 2013) Em agosto de 2012, a NASA anunciou o pouso da sonda Curiosity

na superfície de Marte. A sonda, de massa m = 1000 kg, entrou na atmosfera marciana a

uma velocidade v0 = 6000 m/s.

a) A sonda atingiu o repouso, na superfície de Marte, 7 minutos após a sua entrada na

atmosfera. Calcule o módulo da força resultante média de desaceleração da sonda

durante sua descida.

b) Considere que, após a entrada na atmosfera a uma altitude h0 = 125 km, a força de

atrito reduziu a velocidade da sonda para v = 4000 m/s quando a altitude atingiu h =100

km. A partir da variação da energia mecânica, calcule o trabalho realizado pela força de

atrito neste trecho. Considere a aceleração da gravidade de Marte, neste trecho,

constante e igual a gMarte = 4 m/s2.

80. (Unicamp 2013) As nuvens são formadas por gotículas de água que são facilmente

arrastadas pelo vento. Em determinadas situações, várias gotículas se juntam para

formar uma gota maior, que cai, produzindo a chuva. De forma simplificada, a queda da

gota ocorre quando a força gravitacional que age sobre ela fica maior que a força do

vento ascendente. A densidade da água é 3 3água 1,0 10 kg/m .ρ

a) O módulo da força, que é vertical e para cima, que certo vento aplica sobre uma gota

esférica de raio r pode ser aproximado por 3vento , com 1,6 10 N/m. F b r b Calcule o

raio mínimo da gota para que ela comece a cair.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 54 de 130

b) O volume de chuva e a velocidade com que as gotas atingem o solo são fatores

importantes na erosão. O volume é usualmente expresso pelo índice pluviométrico, que

corresponde à altura do nível da água da chuva acumulada em um recipiente aberto e

disposto horizontalmente. Calcule o impulso transferido pelas gotas da chuva para cada

metro quadrado de solo horizontal, se a velocidade média das gotas ao chegar ao solo é

de 2,5 m/s e o índice pluviométrico é igual a 20 mm. Considere a colisão como

perfeitamente inelástica.

81. (Fuvest 2013) O pêndulo de um relógio é constituído por uma haste rígida com um

disco de metal preso em uma de suas extremidades. O disco oscila entre as posições A e

C, enquanto a outra extremidade da haste permanece imóvel no ponto P. A figura

abaixo ilustra o sistema. A força resultante que atua no disco quando ele passa por B,

com a haste na direção vertical, é

(Note e adote: g é a aceleração local da gravidade.)

a) nula.

b) vertical, com sentido para cima.

c) vertical, com sentido para baixo.

d) horizontal, com sentido para a direita.

e) horizontal, com sentido para a esquerda.

82. (Fuvest 2013) A potência elétrica instalada no Brasil é 100 GW. Considerando que

o equivalente energético do petróleo seja igual a 74 10 J/L, que a potência média de

radiação solar por unidade de área incidente na superfície terrestre seja igual a 250

W/m2 e que a relação de equivalência entre massa m e energia E é expressa por 2E mc ,

determine

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 55 de 130

a) a área A de superfície terrestre, na qual incide uma potência média de radiação solar

equivalente à potência elétrica instalada no Brasil;

b) a energia elétrica EB consumida no Brasil em um ano, supondo que, em média, 80%

da potência instalada seja utilizada;

c) o volume V de petróleo equivalente à energia elétrica consumida no Brasil em um

ano;

d) a massa m equivalente à energia elétrica consumida no Brasil em um ano.

Note e adote: 91GW 10 W; 8c 3 10 m/s; 1 ano = 73 10 s.

83. (Unicamp 2013) Um aerogerador, que converte energia eólica em elétrica, tem uma

hélice como a representada na figura abaixo. A massa do sistema que gira é M 50

toneladas, e a distância do eixo ao ponto P, chamada de raio de giração, é R 10 m. A

energia cinética do gerador com a hélice em movimento é dada por 2P

1E MV ,

2 sendo

PV o módulo da velocidade do ponto P. Se o período de rotação da hélice é igual a 2 s,

qual é a energia cinética do gerador? Considere 3.π

a) 56,250 10 J.

b) 72,250 10 J.

c) 75,625 10 J.

d) 79,000 10 J.

84. (Unicamp 2013) Muitos carros possuem um sistema de segurança para os

passageiros chamado airbag. Este sistema consiste em uma bolsa de plástico que é

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 56 de 130

rapidamente inflada quando o carro sofre uma desaceleração brusca, interpondo-se entre

o passageiro e o painel do veículo. Em uma colisão, a função do airbag é

a) aumentar o intervalo de tempo de colisão entre o passageiro e o carro, reduzindo

assim a força recebida pelo passageiro.

b) aumentar a variação de momento linear do passageiro durante a colisão, reduzindo

assim a força recebida pelo passageiro.

c) diminuir o intervalo de tempo de colisão entre o passageiro e o carro, reduzindo

assim a força recebida pelo passageiro.

d) diminuir o impulso recebido pelo passageiro devido ao choque, reduzindo assim a

força recebida pelo passageiro.

85. (Fuvest 2013) Compare as colisões de uma bola de vôlei e de uma bola de golfe

com o tórax de uma pessoa, parada e em pé. A bola de vôlei, com massa de 270 g, tem

velocidade de 30 m/s quando atinge a pessoa, e a de golfe, com 45 g, tem velocidade de

60 m/s ao atingir a mesma pessoa, nas mesmas condições. Considere ambas as colisões

totalmente inelásticas. É correto apenas o que se afirma em:

(Note e adote: a massa da pessoa é muito maior que a massa das bolas; as colisões são

frontais; o tempo de interação da bola de vôlei com o tórax da pessoa é o dobro do

tempo de interação da bola de golfe; a área média de contato da bola de vôlei com o

tórax é 10 vezes maior que a área média de contato da bola de golfe.)

a) Antes das colisões, a quantidade de movimento da bola de golfe é maior que a da

bola de vôlei.

b) Antes das colisões, a energia cinética da bola de golfe é maior que a da bola de vôlei.

c) Após as colisões, a velocidade da bola de golfe é maior que a da bola de vôlei.

d) Durante as colisões, a força média exercida pela bola de golfe sobre o tórax da pessoa

é maior que a exercida pela bola de vôlei.

e) Durante as colisões, a pressão média exercida pela bola de golfe sobre o tórax da

pessoa é maior que a exercida pela bola de vôlei.

86. (Fuvest 2013) Um fóton, com quantidade de movimento na direção e sentido do

eixo x, colide com um elétron em repouso. Depois da colisão, o elétron passa a se mover

com quantidade de movimento ep , no plano xy, como ilustra a figura abaixo.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 57 de 130

Dos vetores fp abaixo, o único que poderia representar a direção e sentido da

quantidade de movimento do fóton, após a colisão, é

(Note e adote: O princípio da conservação da quantidade de movimento é válido

também para a interação entre fótons e elétrons.)

a)

b)

c)

d)

e)

87. (Fuvest 2013) Uma das hipóteses para explicar a extinção dos dinossauros, ocorrida

há cerca de 60 milhões de anos, foi a colisão de um grande meteoro com a Terra.

Estimativas indicam que o meteoro tinha massa igual a 1016

kg e velocidade de 30 km/s,

imediatamente antes da colisão. Supondo que esse meteoro estivesse se aproximando da

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 58 de 130

Terra, numa direção radial em relação à orbita desse planeta em torno do Sol, para uma

colisão frontal, determine

a) a quantidade de movimento Pi do meteoro imediatamente antes da colisão;

b) a energia cinética Ec do meteoro imediatamente antes da colisão;

c) a componente radial da velocidade da Terra, Vr, pouco depois da colisão;

d) a energia Ed, em megatons, dissipada na colisão.

Note e adote: A órbita da Terra é circular; Massa da Terra = 246 10 kg; 1 megaton =

154 10 J é a energia liberada pela explosão de um milhão de toneladas de

trinitrotolueno.

88. (Unicamp 2013) A boa ventilação em ambientes fechados é um fator importante

para o conforto térmico em regiões de clima quente. Uma chaminé solar pode ser usada

para aumentar a ventilação de um edifício. Ela faz uso da energia solar para aquecer o ar

de sua parte superior, tornando-o menos denso e fazendo com que ele suba, aspirando

assim o ar dos ambientes e substituindo-o por ar vindo do exterior.

a) A intensidade da radiação solar absorvida por uma placa usada para aquecer o ar é

igual a 400 W/m2. A energia absorvida durante 1,0 min por uma placa de 2 m

2 é usada

para aquecer 6,0 kg de ar. O calor específico do ar é J

1000 .kg C

c Qual é a variação de

temperatura do ar nesse período?

b) A densidade do ar a 290 K é 31,2 kg/m .ρ Adotando-se um número fixo de moles de

ar mantido a pressão constante, calcule a sua densidade para a temperatura de 300 K.

Considere o ar como um gás ideal.

89. (Unicamp 2013) Pressão parcial é a pressão que um gás pertencente a uma mistura

teria se o mesmo gás ocupasse sozinho todo o volume disponível. Na temperatura

ambiente, quando a umidade relativa do ar é de 100%, a pressão parcial de vapor de

água vale 33,0 10 Pa. Nesta situação, qual seria a porcentagem de moléculas de água no

ar?

Dados: a pressão atmosférica vale 51,0 10 Pa; considere que o ar se comporta como um

gás ideal.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 59 de 130

a) 100%.

b) 97%.

c) 33%.

d) 3%.

90. (Fuvest 2013) Em um recipiente termicamente isolado e mantido a pressão

constante, são colocados 138 g de etanol líquido. A seguir, o etanol é aquecido e sua

temperatura T é medida como função da quantidade de calor Q a ele transferida. A partir

do gráfico de TxQ, apresentado na figura abaixo, pode-se determinar o calor específico

molar para o estado líquido e o calor latente molar de vaporização do etanol como

sendo, respectivamente, próximos de

Dados: Fórmula do etanol = C2H5OH; Massas molares = C(12g/mol), H(1g/mol),

O(16g/mol).

a) 0,12 kJ/(mol°C) e 36 kJ/mol.

b) 0,12 kJ/(mol°C) e 48 kJ/mol.

c) 0,21 kJ/(mol°C) e 36 kJ/mol.

d) 0,21 kJ/(mol°C) e 48 kJ/mol.

e) 0,35 kJ/(mol°C) e 110 kJ/mol.

91. (Fuvest 2013) O telêmetro de superposição é um instrumento ótico, de concepção

simples, que no passado foi muito utilizado em câmeras fotográficas e em aparelhos de

medição de distâncias. Uma representação esquemática de um desses instrumentos está

abaixo. O espelho semitransparente E1 está posicionado a 45° em relação à linha de

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 60 de 130

visão, horizontal, AB. O espelho E2 pode ser girado, com precisão, em torno de um eixo

perpendicular à figura, passando por C, variando-se assim o ângulo β entre o plano de

E2 e a linha horizontal. Deseja-se determinar a distância AB do objeto que está no ponto

B ao instrumento.

a) Desenhe na figura abaixo, com linhas cheias, os raios de luz que, partindo do objeto

que está em B, atingem o olho do observador – um atravessa o espelho E1 e o outro é

refletido por E2 no ponto C. Suponha que ambos cheguem ao olho do observador

paralelos e superpostos.

b) Desenhe, com linhas tracejadas, o trajeto aproximado de um raio de luz que parte

do objeto em B’, incide em C e é refletido por E2.

Com o objeto em um ponto B específico, o ângulo β foi ajustado em 44°, para que os

raios cheguem ao olho do observador paralelos e superpostos. Nessa condição,

c) determine o valor do ângulo γ entre as linhas AB e BC;

d) com AC 10 cm, determine o valor de AB.

Note e adote: sen(22°)=0,37; cos(22°)=0,93; sen(44°)=0,70; cos(44°)=0,72;

sen(88°)=0,99; cos(88°)=0,03; As direções AB e AC são perpendiculares entre si.

92. (Unicamp 2013) O efeito de imagem tridimensional no cinema e nos televisores 3D

é obtido quando se expõe cada olho a uma mesma imagem em duas posições

ligeiramente diferentes. Um modo de se conseguir imagens distintas em cada olho é

através do uso de óculos com filtros polarizadores.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 61 de 130

a) Quando a luz é polarizada, as direções dos campos elétricos e magnéticos são bem

definidas. A intensidade da luz polarizada que atravessa um filtro polarizador é dada por

20cos ,θI I onde 0I é a intensidade da luz incidente e θ é o ângulo entre o campo

elétrico E e a direção de polarização do filtro. A intensidade luminosa, a uma distância

d de uma fonte que emite luz polarizada, é dada por 00 2

,4π

P

Id

em que 0P é a potência

da fonte. Sendo 0P = 24 W, calcule a intensidade luminosa que atravessa um polarizador

que se encontra a d = 2 m da fonte e para o qual 60 .θ

b) Uma maneira de polarizar a luz é por reflexão. Quando uma luz não polarizada incide

na interface entre dois meios de índices de refração diferentes com o ângulo de

incidência B,θ conhecido como ângulo de Brewster, a luz refletida é polarizada, como

mostra a figura abaixo. Nessas condições, B r 90 ,θ θ em que rθ é o ângulo do raio

refratado. Sendo n1 = 1,0 o índice de refração do meio 1 e B 60 ,θ calcule o índice de

refração do meio 2.

93. (Unicamp 2013) Um objeto é disposto em frente a uma lente convergente,

conforme a figura abaixo. Os focos principais da lente são indicados com a letra F.

Pode-se afirmar que a imagem formada pela lente

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 62 de 130

a) é real, invertida e mede 4 cm.

b) é virtual, direta e fica a 6 cm da lente.

c) é real, direta e mede 2 cm.

d) é real, invertida e fica a 3 cm da lente.

94. (Fuvest 2013) A extremidade de uma fibra ótica adquire o formato arredondado de

uma microlente ao ser aquecida por um laser, acima da temperatura de fusão. A figura

abaixo ilustra o formato da microlente para tempos de aquecimento crescentes

(t1<t2<t3).

Considere as afirmações:

I. O raio de curvatura da microlente aumenta com tempos crescentes de aquecimento.

II. A distância focal da microlente diminui com tempos crescentes de aquecimento.

III. Para os tempos de aquecimento apresentados na figura, a microlente é convergente.

Está correto apenas o que se afirma em

(Note e adote: a luz se propaga no interior da fibra ótica, da esquerda para a direita,

paralelamente ao seu eixo; a fibra está imersa no ar e o índice de refração do seu

material é 1,5.)

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 63 de 130

a) I.

b) II.

c) III.

d) I e III.

e) II e III.

95. (Fuvest 2013) A energia potencial elétrica U de duas partículas em função da

distância r que as separa está representada no gráfico da figura abaixo.

Uma das partículas está fixa em uma posição, enquanto a outra se move apenas devido à

força elétrica de interação entre elas. Quando a distância entre as partículas varia de

10ir 3 10 m a 10

fr 9 10 m, a energia cinética da partícula em movimento

a) diminui 181 10 J.

b) aumenta 181 10 J.

c) diminui 182 10 J.

d) aumenta 182 10 J.

e) não se altera.

96. (Unicamp 2013) O carro elétrico é uma alternativa aos veículos com motor a

combustão interna. Qual é a autonomia de um carro elétrico que se desloca a 60 km h,

se a corrente elétrica empregada nesta velocidade é igual a 50 A e a carga máxima

armazenada em suas baterias é q 75 Ah?

a) 40,0 km.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 64 de 130

b) 62,5 km.

c) 90,0 km.

d) 160,0 km.

97. (Fuvest 2013) No circuito da figura abaixo, a diferença de potencial, em módulo,

entre os pontos A e B é de

a) 5 V.

b) 4 V.

c) 3 V.

d) 1 V.

e) 0 V.

98. (Fuvest 2013) Em uma aula de laboratório, os alunos determinaram a força

eletromotriz هe a resistência interna r de uma bateria. Para realizar a tarefa, montaram

o circuito representado na figura abaixo e, utilizando o voltímetro, mediram a diferença

de potencial V para diferentes valores da resistência R do reostato. A partir dos

resultados obtidos, calcularam a corrente I no reostato e construíram a tabela

apresentada logo abaixo.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 65 de 130

a) Complete a tabela abaixo com os valores da corrente I.

V(V) R( ) I(A)

1,14 7,55 0,15

1,10 4,40

1,05 2,62 0,40

0,96 1,60

0,85 0,94 0,90

b) Utilizando os eixos abaixo, faça o gráfico de V em função de I.

c) Determine a força eletromotriz ε e a resistência interna r da bateria.

Note e adote: Um reostato é um resistor de resistência variável; Ignore efeitos resistivos

dos fios de ligação do circuito.

99. (Unicamp 2013) Uma forma alternativa de transmissão de energia elétrica a grandes

distâncias (das unidades geradoras até os centros urbanos) consiste na utilização de

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 66 de 130

linhas de transmissão de extensão aproximadamente igual a meio comprimento de onda

da corrente alternada transmitida. Este comprimento de onda é muito próximo do

comprimento de uma onda eletromagnética que viaja no ar com a mesma frequência da

corrente alternada.

a) Qual é o comprimento de onda de uma onda eletromagnética que viaja no ar com

uma frequência igual a 60 Hz? A velocidade da luz no ar é c = 3 108 m/s.

b) Se a tensão na linha é de 500 kV e a potência transmitida é de 400 MW, qual é a

corrente na linha?

100. (Fuvest 2013) Um raio proveniente de uma nuvem transportou para o solo uma

carga de 10 C sob uma diferença de potencial de 100 milhões de volts. A energia

liberada por esse raio é

(Note e adote: 71J 3 10 kWh. )

a) 30 MWh.

b) 3 MWh.

c) 300 kWh.

d) 30 kWh.

e) 3 kWh.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 67 de 130

Gabarito:

Resposta da questão 1:

[Resposta do ponto de vista da disciplina de Biologia]

a) No vaso 1, a planta cresce normalmente, pois consegue absorver os comprimentos de

onda equivalentes ao azul e ao vermelho. Esses comprimentos de onda tornam a taxa de

fotossíntese mais eficiente. A planta do vaso 2 reflete a radiação verde e não consegue

crescer devido à ineficiência de sua taxa fotossintética.

[Resposta do ponto de vista da disciplina de Física]

b) A cor de um objeto é a mesma cor da radiação que ele mais difunde (reflete).

Portanto, se as pessoas com visão normal enxergam as folhas como verdes, é porque

elas refletem com maior intensidade a radiação correspondente à luz verde.

Resposta da questão 2:

[B]

Resposta de Biologia: Em um ambiente de penumbra, ao focalizar um objeto próximo,

a íris do olho relaxa, aumentando o diâmetro da pupila. Os músculos ciliares que

prendem o cristalino se contraem, causando o aumento do poder refrativo da lente do

olho.

Resposta de Física: Da maneira como a questão está, não tem resposta. Do ponto de

vista físico, a segunda afirmativa está errada em todas as opções.

Quando o indivíduo passa para um ambiente de penumbra, a íris diminui, aumentando a

abertura da pupila para que os olhos recebam maior luminosidade. Correto. Porém, para

focalizar um objeto mais próximo, os músculos ciliares se contraem, aumentando a

curvatura do cristalino, diminuindo a sua distância focal para que a imagem caia na

retina. Não ocorre variação alguma no poder refrativo do cristalino. Para mudar o

poder refrativo de um sistema óptico é necessário que se mude a substância ou

material que o constitui.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 68 de 130

Resposta da questão 3:

a) Como não foi especificado velocidade escalar média, trata-se de velocidade vetorial

média, pois velocidade é uma grandeza vetorial.

A figura mostra o deslocamento vetorial (d) entre os pontos A e B.

O módulo (d) desse deslocamento é:

2 2 2 6d 40 30 d 50 m 50 10 m.μ

Na figura dada, contamos 10 deslocamentos sucessivos entre A e B. Assim:

t 10 30 t 300 s.Δ Δ

Então:

67

m md 50 10

v v 1,67 10 m/s.t 300Δ

b) Dados: I 2 D t; D kT r; 18 3k 3 10 m sK; 6r 3 m 3 10 m;μ T 300 K;

t 10 min 600 s.Δ

Combinando as expressões dadas e substituindo os valores, vem:

184

6

k T 3 10 300I 2 t I 2 600 I 6 10 m.

r 3 10

Resposta da questão 4:

[D]

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 69 de 130

8 1414 7

4 7

d 9 10 6 10 st 6 10 s 2 10 anos

v 1,5 10 3 10 s/ano

t 20.000.000 anos.

Δ

Δ

Resposta da questão 5:

a) Dados: 3S 1.200 km 1.200 10 m; t 800 s.Δ Δ

3

m mS 1.200 10

v v 1.500 m/s.t 800

Δ

Δ

b) Dados: 0 0S 32 km 32.000 m; S 0; v 0; t 80 s.

R R2 2 20 0 R

a aS S v t t 32.000 80 a 10 m/s .

2 2

Resposta da questão 6:

[Resposta do ponto de vista da disciplina de Física]

Dados: 0m 60 kg; v 0; v 10 m/s; t 0,2 s.Δ

a) A variação da energia cinética ( E)Δ é:

2 2 2 20 0

m 60E E E v v 0 10 E 3.000 J.

2 2Δ Δ

b) Calculando o módulo da aceleração:

2v 0 10a a 50 m/s .

t 0,2

Δ

Δ

[Resposta do ponto de vista da disciplina de Química]

c) Reação química de decomposição da azida de sódio formando sódio metálico e

nitrogênio gasoso: 3 22NaN (s) 2Na(s) 3N (g).

d) Cálculo do volume V de gás nitrogênio formado pela decomposição de 65 g de

azida de sódio sob pressão atmosférica de 1atm e temperatura de 27 C :

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 70 de 130

3

3 2

NaN 65

2NaN (s) 2Na(s) 3N (g)

2 65 g

3 mols

65 g

2

1 1

N

1,5 mol

T 27 273 300 K

R 0,08 atm. .mol .K

P V n R T

1 V 1,5 0,08 300

V 36 L

Resposta da questão 7:

[C]

2 2

2 2

2 hg 2 54h t g g 12 m/s .

2 t 3

Resposta da questão 8:

Dados: Rf 0,25 Hz; r 2 m; V 4 m/s; 3.π

a) Como se trata de movimento circular uniforme, somente há a componente centrípeta

da aceleração.

T T

22

T 2

V 2 f r 2 3 0,25 2 V 3 m/s.

V 3a a 4,5 m/s .

r 2

π

b) A figura mostra a velocidade resultante U da bola num ponto qualquer da trajetória.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 71 de 130

2 2 2 2 2T RU V V 3 4 U 5 m/s.

c) RV 4cos 0,8 arccos0,8.

U 5θ θ

Resposta da questão 9:

[D]

- Espaço ocupado por cada informação:

7L 0,2 m 2 10 m.μ

- Comprimento de uma volta:

3 3C 2 r 2 3 3 10 18 10 m.π

- Número de informações armazenadas em cada volta:

34

7

C 18 10n 9 10 .

L 2 10

- Como são 120 voltas por segundo, o número de informações armazenadas a cada

segundo é:

4 8N n f 9 10 120 N 1,08 10 .

Resposta da questão 10:

a) Dados: 2m 30 kg; g 10 m/s ; H 2,5 m.

Analisemos a figura a seguir:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 72 de 130

Por semelhança de triângulos:

dh H 2,52 h h 1,25 m.H d 2 2

O sistema é conservativo. Com referencial na base do plano, vem:

A B A A B B BMec Mec Cin Pot Cin Pot Cin

BCin

E E E E E E 0 m gH E mgh

E E mg H h 30 10 1,25 E 375 J.

Calculando a velocidade e a quantidade de movimento (Q) no ponto B:

22BB B

B

m v 2 E 2 375E v 25 v 5 m/s.

2 m 30

Q m v 30 5 Q 150 kg m/s.

b) Dados: 2m 30 kg; g 10 m/s ; cos30 0,9.

Como não há atritos a considerar, a força de contato entre o escorregador e a criança é a

força normal, de intensidade F.

yF P Pcos m g cos30 30 10 0,9 F 270 N.θ

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 73 de 130

c) Dados: 2m 30 kg; g 10 m/s ; sen30 0,5.

A força resultante sobre a criança é a componente tangencial do peso, Px.

2res xF P m gsen m a m gsen30 10 0,5 a 5 m/s .θ

Resposta da questão 11:

a) res res resF S cos ma S cos d Va S cosτ Δ α Δ α τ Δ α

Como os volumes, as acelerações e as distâncias são iguais para os dois trens e

cos = 1,α vem:

aço Va Saço aço aço aço

Al Al Va S Al Al Al

d d 7,9 2,93.

d d 2,7

Δ

Δ

τ τ τ

τ τ τ

b) Dados: 3P 1,2 mW 1,2 10 W; R 10 m; 3.π

A intensidade da onda é a razão entre a potência da fonte (P) e a área abrangida (A).

Como são ondas esféricas:

36 2

2 2

6

120

P P 1,2 10I I 10 W/m

A 4 R 4 3 10

I 10S 10 log 10 log 10 6 S 60 dB.

I 10

π

Resposta da questão 12:

a) 5 kcal 3 LE VDados : ; ; 1 cal 4 J.

V tL minΔ

15 4 kJE V 5 kcal 3 L kcalP 15 P 1 kW 1.000 W.

V t L min min 60 sΔ

b) Dados: t 20 min 1.200 s.Δ

6E P t 1.000 1.200 E 1,2 10 J. Δ

c) b5 kcal EDados : P 100 W; ; t 1 min 60 s; 1 cal 4 J.

V LΔ

A energia basal consumida em 1 min é:

b bE P t 100 60 6.000 J 1.500 cal 1,5 kcal.Δ

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 74 de 130

O volume consumido de O2 pode ser obtido por proporção direta:

5 kcal 1 L 1,5 V V 0,3 L.

51,5 kcal V

Resposta da questão 13:

Dados: 9 11f 15 m; D 1,5 10 m; L 1 ,5 10 m.

a) O Sol comporta-se como objeto impróprio para o espelho, portanto a imagem forma-

se no foco principal. Assim, p' = 15 m, conforme ilustra a figura.

Sendo D o diâmetro da imagem, por semelhança de triângulos:

9 11 2Sol

D f D 15 15 D

D L 1,5 10 1,5 10 10

D 0,15 m.

b) Dados: 2E 1D 10 m; S 1 . kW/m

A densidade de potência (S) é a razão entre a potência recebida e a área de captação (A).

Pela conservação da energia:

221 1 1 E

12 2

21E

2 2

6 2

P A S DDPS P A S S S

P A SA 4 4

D S 100 1.000S

D 0,15

S 4,44 10 W/m .

ππ

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 75 de 130

c) Dados: m 0,6 kg 600 g; t 4 s; c 1 J / g K.Δ

Como todo calor recebido é usado no aquecimento do disco de alumínio, temos:

1 11 1

2

A S tQ P t m c T A S t T

m c

103 1.000 4

4 T 600 1

T 500 K.

ΔΔ Δ Δ Δ

Δ

Δ

Resposta da questão 14:

[A]

No ponto de compressão máxima, a velocidade é nula. Adotando esse ponto como

referencial de altura, nele, a energia potencial gravitacional também é nula. Assim,

aplicando a conservação da energia mecânica.

2

i fMec Mec 2

2 m g h dk dE E m g h d k .

2 d

Resposta da questão 15:

[E]

A energia cinética é máxima no ponto onde a energia potencial é mínima. Isso ocorre no

ponto de abscissa 2x x .

Resposta da questão 16:

a) Dados: 2m 60 kg; g 10 m/s ; h 10 m.

pot potE m gh 60 10 10 E 6.000 J.

b) 2amV L kg30 30 ; m 60 kg; g 10 m/s .

t s t sΔ Δ

O piloto está em equilíbrio: a aF P m g 60 10 F 600 N.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 76 de 130

aa a a a

mQ= F t m v F t v F 30 v 600

t

v 20 m/s.

Δ Δ Δ Δ Δ ΔΔ

Δ

Resposta da questão 17:

[C]

Dados: 3 32m 48 g 48 10 kg; g 10 m/s ; d 4 mm 4 10 m; 3.π

Na situação proposta, a força de pressão exercida pelos gases equilibra a força peso do

tubo cilíndrico e a força exercida pela pressão atmosférica sobre ele. Assim:

gas atm gas atm gas atm2

35 5 5 5 2

gas 23

gas

m gPF P F p p p p

A d

4

48 10 10 4 p 1 10 0,4 10 1 10 1,4 10 N/m

3 4 10

p 1,4 atm.

π

Resposta da questão 18:

a) Dados: 23 8 AN 6 10 ; P 3,2 10 Pa; T 300 K; R 8 J/mol K.

Sendo n o número de mols, o número de partículas (N) é:

AA

NN nN n .

N

Aplicando a equação de Clapeyron:

23 8A

A

123

N PN N 6 10 3,2 10n RT P V R T P V

N V R T 8 300

N moléculas8 10 .V m

b) Dados: 3 3 2int 0p p 1 atm; 10 kg/m ; h 100 m; g 10 m/s .ρ

A pressão suportada pela carcaça é o módulo da diferença entre as pressões externa e

interna. Assim:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 77 de 130

3sub ext int 0 0 sub

5sub

5nave int ext 0 nave nave

5sub sub

5nave nave

P P P P g h P P g h 10 10 100

P 10 10 Pa.

P P P P 0 P 1 atm P 10 Pa.

P P10 10 10.

P P10

ρ ρ

Resposta da questão 19:

[A]

A figura ilustra a situação, mostrando as velocidades do trabalhador e da plataforma, em

relação ao referencial fixo no solo nas situações (I) e (II).

Pela conservação da Quantidade de Movimento:

(I) (II)Q Q m M v M v' m v' v m v M v M v' m v' m v

2 m v M v M m v' 2 m M v M m v'

2 m M vv' .

M m

Resposta da questão 20:

[C]

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 78 de 130

Dados:

G G PP 50.000 N; d 3 m; d 2 m.

Na condição de carga máxima, há iminência de tombamento, sendo nula a normal em

cada uma das rodas traseiras.

O momento resultante em relação às rodas dianteiras é nulo.

PG PM M 50.000 3 P 2 P 75.000 N.

Resposta da questão 21:

[D]

[Resposta do ponto de vista da disciplina de Física]

As leis de Kepler forneceram subsídios para o modelo heliocêntrico (Sol no centro)

contrapondo-se ao sistema geocêntrico (Terra no centro) até, então, defendido pela

igreja naquela época.

[Resposta do ponto de vista da disciplina de História]

Somente a alternativa [D] está correta. A questão remete ao Renascimento Científico

vinculado ao Renascimento Cultural dos séculos XIV, XV e XVI. O espírito

Renascentista é pautado pela investigação, a busca do conhecimento, seja pelo método

indutivo vinculado ao Empirismo ou ao pelo método dedutivo associado ao

Racionalismo. Questionava-se qualquer tipo de autoridade, sobretudo o poder da Igreja

que era ancorada na filosofia grega de Aristóteles. Este pensador defendia uma visão

geocêntrica de mundo e teve apoiou de outros estudiosos antigos como Ptolomeu. A

Igreja católica no medievo baseou-se no pensamento aristotélico-ptolomaico antigo e

também defendeu o geocentrismo. No entanto, alguns estudiosos do Renascimento

Científico começaram a questionar esta pseudo-visão. Entre eles estão Copérnico, 1473-

1543, que escreveu o livro “Da Revolução Das Esferas Celestes”, em que combateu a

tese geocêntrica e defendeu o heliocentrismo e Johannes Kepler, 1571-1630, pensador

alemão que formulou três leis importantes para a Revolução Cientifica do século XVII

que consolidou o heliocentrismo. Primeira Lei: das órbitas, os planetas giram em

órbitas elípticas ao redor do sol. Segunda Lei: das áreas, um planeta girará com maior

velocidade quanto mais próximo estiver do sol. Terceira Lei: a relação do cubo da

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 79 de 130

distância média de um planeta ao sol e o quadrado do período da revolução do planeta é

uma constante sendo a mesma para todos os planetas.

Resposta da questão 22:

[D]

Dados:

3 6 6 24

11 3 2

R 6 10 km 6 10 m; h 720 km 0,72 10 m; M 6 10 kg;

G 6,7 10 m /kg s .

Como a órbita é circular, a gravidade tem a função de aceleração centrípeta.

2 11 24

c 2 6 6

11 246 3

6

G M G Mv 6,7 10 6 10a g v

R h R h 6 10 0,72 10R h

6,7 10 6 10 v 60 10 7,7 10 m/s

6,72 10

v 7,7 km/s.

Resposta da questão 23:

[E]

[I] Incorreta. Como o ciclo é anti-horário, o trabalho é negativo e seu módulo é

numericamente igual a área do ciclo.

[II] Correta. A energia interna (U) é diretamente proporcional ao produto pressão

volume. Assim: C C A A C Ap V p V U U .

[III] Correta. Na transformação A B, ocorre expansão, indicando que o gás realiza

trabalho (W 0). Como há também aumento da energia interna ( U 0).Δ

Pela 1ª Lei da Termodinâmica:

Q U W Q 0Δ o gás recebe calor.

Resposta da questão 24:

[C]

[Resposta do ponto de vista da disciplina de Física]

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 80 de 130

Os conceitos básicos da Termodinâmica foram alavancados a partir de 1698 com a

invenção da primeira térmica, uma bomba d'água que funcionava com vapor, criada por

Thomas Severy para retirar água das minas de carvão, na Inglaterra. A partir daí, essa

máquina foi sendo cada vez mais aprimorada com a contribuição de vários engenheiros,

inventores e construtores de instrumentos, como James Watt. Por volta de 1760, a

máquina térmica já era um sucesso, tendo importante contribuição na Revolução

Industrial.

[Resposta do ponto de vista da disciplina de História]

A Primeira Revolução Industrial revolucionou a maneira como se produziam as

mercadorias, em especial com a criação de maquinários movidos a vapor. Na Inglaterra

da década de 1770, o mercado de tecidos, os transportes (como trens e navios) e as

comunicações funcionavam a partir de máquina a vapor. Logo, a termodinâmica está

relacionada à Revolução Industrial.

Resposta da questão 25:

a) Dados: 4E 3,6 10 J/g;m

Δ m 0,1g/min.tΔ

Usando análise dimensional:

4 gE E m J J 3.600 JW P 3,6 10 0,1 3.600

t m t g min min 60 s

W 60 W.

Δ Δ

Δ Δ

b) Dado: m = 2,5 g.

Usando os dados e resultados do item anterior e análise dimensional, vem:

43.600 J 2,5 gE E 9 10 J.

gmin0,1

min

c) Dados:

0 0 v

0

atmJ Jp 1 atm; V 750 ; C 30 ; R 0,08 8 ;

mol K mol K mol K

T 27 C 300 K; 1 mol 25 .

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 81 de 130

O excesso de dados com valores aproximados e inconsistentes permite duas resoluções

que chegam a diferentes resultados.

Calculando o número de mols:

- Pela equação de Clapeyron:

00 0

p V 1 750p V n RT n n 31,25 mol.

R T 0,08 300

- Por proporção direta:

25 1 mol 750 n n 30 mol.

25750 n

Nota: por comodidade, será usado nos cálculos a seguir o segundo resultado: n = 30

mol.

- A energia liberada pela queima da vela é absorvida pelo ar na forma de calor,

aquecendo o ar do recipiente.

4

vv

Q 9 10E Q n C T T T 100 K 100 C.

n C 30 30Δ Δ Δ

- A queima da vela ocorre a volume constante, portanto toda a energia liberada é usada

para aumentar a energia interna do gás. Como o ar deve ser tratado como gás perfeito,

usando a expressão da variação da energia interna para um gás diatômico, vem:

42 U5 9 10E U n R T T T 75 K 75 C.

2 5 n R 5 30 8

ΔΔ Δ Δ Δ

Nota: por comodidade, será usado nos cálculos a seguir o primeiro resultado:

T 100K.Δ

d) Aplicando a equação geral dos gases ideais:

0

0 0

p V p V 1 p 4 p atm p 1,33 atm.

T T T 300 300 100 3Δ

Resposta da questão 26:

[A]

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 82 de 130

A figura mostra o traçado dos raios, determinando a posição do objeto.

Resposta da questão 27:

[B]

Dados:

19 2 3 15q e 1,6 10 C; g 10 m/s ; E 2 10 N/m; m 3,2 10 kg.

Como a velocidade é constante, a resultante das forças que agem sobre essa esfera é

nula. Isso significa que o peso e a força elétrica têm mesma intensidade e sentidos

opostos. Assim, a força elétrica tem sentido oposto ao do campo elétrico, indicando que

a carga dessa esfera é negativa. Portanto, a esfera tem mais elétrons que prótons.

A figura ilustra a situação.

Sendo n o número de elétrons a mais, temos:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 83 de 130

15

19 3

m g 3,2 10 10F P q E m g n eE m g n n

e E 1,6 10 2 10

n 100.

Resposta da questão 28:

a) Dados: 3V 300 V; d 5 mm 5 1 0 m. 

A figura ilustra os dados.

Como se trata de campo elétrico uniforme, EA = EB = EC = E.

3 4

3

V 300E d V E 60 10 E 6 10 V/m.

d 5 10

b) Da figura: xA = 1 mm e xB = 4 mm.

4 3AB AB B A ABV E d E x x 6 10 4 1 10 V 180 V.

Como os pontos B e C estão na mesma superfície equipotencial:

BCV 0 V.

c) Dado: 19q 1,6 1 .0 C

Analisando a figura dada: CA BA ABV V V 180V.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 84 de 130

19CA

17

q V 1,6 10 180

2,8 10 J

8 .

τ

τ

Resposta da questão 29:

[A]

Dado: 3 3R 0,5 k 0,5 10 ; i 12 mA 12 10 A.Ω Ω

Aplicando a 1ª Lei de Ohm:

3 3U R i 0,5 10 12 10 U 6 V.

Resposta da questão 30:

[C]

perd cons cons perd

perd

E 95% E 0,95 P t E 0,95 60 3.600

E 205.200 J.

Δ

Resposta da questão 31:

a) A constante α é dada pela declividade da reta.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 85 de 130

18 12 6tg 0,06 .

120 20 100 C

Ωα θ α

b) Dados: 0 0T 20 C R 12 do gráfico i 10 A; .Ω

A 20 °C:

V R i 12 10 V 120 V.

c) À temperatura TM:

V R i 120 R 5 R 24 .Ω

Do gráfico: MR 24 T 220 °C.Ω

Resposta da questão 32:

A figura ilustra os pontos destacados no gráfico que são relevantes para as resoluções

dos dois itens.

a) Dados: V 0,4 V; m 5 g; t 4 h.Δ

Do gráfico:

m

V 0,4 V C 20 mAh/g.

Q m C 5 20 Q 100 mAh.

Q 100i Q 25 mA.

t 4Δ

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 86 de 130

b) Dados: i 2 mA.

Do gráfico:

C 10 mAh/g V 0,2 V .

P i V 2 0,2 P 0,4 mW.

Resposta da questão 33:

[C]

Basta seguir a seta em cada um dos gráficos.

No gráfico da figura 1, para a potência de 150 W obtemos que a resistência é de 325 .Ω

No gráfico da figura 2, para a resistência de 325 ,Ω obtemos a temperatura de 3.000 C.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 87 de 130

Resposta da questão 34:

[D]

Considerações:

1ª) A expressão que relaciona tensão, potência e resistência é 2U

P .R

Com base nessa

expressão, se definirmos como R a resistência das lâmpadas de 120 W, as lâmpadas de

60 W e 40 W têm resistências iguais a 2 R e 3 R, respectivamente;

2ª) Na associação em série, lâmpadas de mesma resistência estão sob mesma tensão. Se

as resistências são diferentes, as tensões são divididas em proporção direta aos valores

das resistências.

3ª) Na associação em paralelo, a tensão é a mesma em todas as lâmpadas;

4ª) A tensão em cada lâmpada deve ser 110 V.

As figuras abaixo mostram as simplificações de cada um dos arranjos, destacando as

tensões nas lâmpadas em cada um dos ramos.

Arranjo (I): todas as lâmpadas estão sob tensão de 110 V.

Arranjo (II): somente uma das lâmpadas está sob tensão de 110 V.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 88 de 130

Arranjo (III): todas as lâmpadas estão sob tensão de 110 V.

Resposta da questão 35:

[B]

A figura mostra as frequências das sucessivas notas com os respectivos índices de 1 a

14.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 89 de 130

Usando a expressão do termo geral de uma progressão geométrica de razão q, temos:

112 12 12 12

13 1 1 1

9 9 910 1 1 2n 1 210 10n 1 10 8 87 77

8 818 1

8 8

8 8 88

8

f f q 2 f f q q 2 q 2 q 1,059.

f f q f qf f qf f q f f q 440 f 1,059

f ff q qf f q

440440 f 1,12 f 393 Hz.

1,12

v 340v f

f 393λ λ

λ

0,86 m.

Comentário: as duas notas Dó consecutivas a que se refere o enunciado não podem ser

um Dó normal e um Dó sustenido (1ª e 2ª notas). Caso uma má interpretação levasse a

esse equacionamento, a razão da P.G. seria 2 e teríamos:

910 1 1

440f f 2 f 0,86 Hz

512

Absurdo! Um som com essa frequência não é audível para o ser humano!

Resposta da questão 36:

[B]

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 90 de 130

Como a força de atrito é a resultante das forças, podemos aplicar o teorema da energia

cinética.

2 2final inicial 5cin cinFat

5Fat

m v 1.000 20W E E 0 0 2 10 J

2 2

W 2 10 J.

Resposta da questão 37:

[A]

Pelo Teorema de Pascal:

2 21 2 1 1 1 1 12 1

2 2 2 1 21 2

F F F d F d F 1 .

F d F 2 d F 4d d

Resposta da questão 38:

a) Da expressão da distância percorrida no movimento uniforme:

d v t 2 L c t

2 Lt .

c

Δ Δ

Δ

b) Considerações:

- como a largura de um dente é igual à largura de um espaço vazio, o comprimento da

circunferência envolvente da roda corresponde à largura de 2 N dentes;

- assim, a distância entre um ponto central entre dentes e o dente seguinte é igual à

largura de um dente.

- a frequência da roda dentada é V voltas por segundo. Então o período (T) é:

1T .

V

Estabelecendo proporção direta:

12 N dentes T T V 2 N t T t 2 N 2 N 1 dente t

1t .

2 N V

Δ ΔΔ

Δ

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 91 de 130

c) Dados: L = 8600 m; N = 750; V = 12 voltas por segundo.

Os intervalos de tempo calculados nos itens anteriores são iguais.

Então:

8

2 L 1 c 4 L N V 4 8.600 750 12 309.600.000

c 2 N V

c 3,1 10 m/s.

Resposta da questão 39:

a) Dados: vN = 2 km/h; vS = 6 km/h; tN = 2 h; cidadesS d 48km.Δ

Sendo vemb a velocidade da embarcação em relação às águas, a velocidade da

embarcação (v) em relação às margens é:

emb águav v v .

Para o Rio Negro:

1 emb N emb N embN N

emb

S S S 48v v v v v v 2

t t t 2

v 26 km/h.

Δ Δ Δ

Δ

Para o Rio Solimões:

2 emb S SS S S

S

S S 48 48 48v v v 26 6 20 t

t t t t 20

t 2,4 h 2 h e 24 min.

Δ Δ

Δ

b) Dados: 3 3N S996 kg/ m ; 998 kg/ m .ρ ρ

Pelo Teorema de Stevin:

N at N

S N S NS at S

2

p p d g h p p p d d g h 998 996 10 5

p p d g h

p 100 N/m .

Δ

Δ

Resposta da questão 40:

a) Dados: d1 = 1 km = 1.000 m; v2 = 7,2 km/h = 2 m/s; 2t 2min 120s.Δ

A distância total (d) percorrida nas 8 vezes é:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 92 de 130

1 2 1 2 2d 8 d d 8 d v t 8 1.000 2 120 8 1.240

d 9.920 m.

Δ

b) Dados: v0 = 0; v1 = 10,8 km/h = 3 m/s; S 3m.Δ

Aplicando a equação de Torricelli:

2 2 22 2 1 01 0

2

v v 3 0 9v v 2 a S a

2 s 2 3 6

a 1,5 m/s .

ΔΔ

Resposta da questão 41:

a) No gráfico, nota-se que o movimento de Batista é uniformemente variado.

Entendendo como aceleração o módulo da componente tangencial da aceleração ou a

aceleração escalar, tem-se:

2BB B

B

v 4 0 4 1a a 0,2 m/s .

t 20 0 20 5

Δ

Δ

b) No gráfico velocidade x tempo, a distância percorrida é numericamente igual à

“área” entre a linha do gráfico e o eixo dos tempos.

Assim:

A A

B B

50 5d d 125 m.

2

50 30d 4 d 160 m.

2

c) A velocidade escalar média de Arnaldo no intervalo pedido é:

AA A

A

d 125v v 2,5 m/s.

t 50Δ

Resposta da questão 42:

[C]

Dados: f = 300 rpm = 5 Hz; π = 3; R = 60 cm = 0,6 m.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 93 de 130

A velocidade linear do ponto P é:

v R 2 f R 2 3 5 0,6

v 18 m/s.

ω

Resposta da questão 43:

[E]

Se a velocidade é nula, a aceleração (a) tem direção tangencial, formando com a

vertical ângulo de 60°, como indicado na figura.

A resultante é a componente tangencial do peso. Aplicando o Princípio Fundamental da

Dinâmica:

x

2

1P m a m gcos60 m a a 10

2

a 5 m/s .

Resposta da questão 44:

a) Dados: P = 4 W; t 5 s.Δ

E P t 4 5 E 20 J.Δ

b) Dados: m = 0,2 kg; 2R 5 cm 5 10 m.

A energia cinética das duas esferas é:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 94 de 130

2

2 2 2

2

m vE 2 m R E m R

2

1 E 1 20 100100

R m 0,2 55 10

200 rad/s.

ω ω

ω

ω

c) A aceleração (a) da esfera tem duas componentes: tangencial T(a ) e centrípeta C(a ).

- Componente tangencial:

22

T T T TR 200 5 10

v a t R a t a a 0,2 m/s .t 5

ωω

- Componente centrípeta:

2

2 32 2 4 2 2C Ca R 2 10 5 10 4 10 5 10 a 2 10 m/s .ω

Comparando os valores obtidos, a componente tangencial tem intensidade desprezível.

Então a intensidade da resultante é igual à da componente centrípeta.

3 2T C Ca a a a 2 10 m/ s .

Aplicando o Princípio Fundamental da Dinâmica:

3 3res

res

F m a 0,2 2 10 0,4 10

F 400 N.

d) 2 2T2

a 20,4 10 40 rad/s .

R 5 10α α

Resposta da questão 45:

[B]

A normal, que age como resultante centrípeta, no pé de uma pessoa tem a mesma

intensidade de seu peso na Terra.

2cent

g 10 1N R P m R m g

r 100 10

0,3 rad/s.

ω ω

ω

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 95 de 130

Resposta da questão 46:

Nota: o termo órbita em torno do Sol é redundante, pois a órbita já é em torno de

algo.

a) a força que o satélite exerce sobre a Terra é desprezível. Então, a resultante centrípeta

sobre a Terra é a força gravitacional que o Sol exerce sobre ela, conforme indica a

figura.

S T S2 2cent ST T T T2 3

S

T 3

G M M G MR F M R

R R

G M.

R

ω ω

ω

b) O período de translação do satélite é igual ao período de translação da Terra:

7A TT T 1ano 3,14 10 s.

7A A7

A

2 2 3,14 2 10 rad/s.

T 3,14 10

πω ω

c) A força resultante gravitacional sobre o satélite é a soma vetorial das forças

gravitacionais que o satélite recebe do Sol e da Terra, conforme ilustra a figura.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 96 de 130

S Tres S T 2 2

S Tres 2 2

G M m G M mF F F

dR d

M MF G m .

dR d

Resposta da questão 47:

a) A área total é igual à soma das áreas das seis faces.

2A 2 2 3 2 4 3 4 A 52 m .

b) Dados: 2 2i ek 5 10 J(s m C); 26cm 26 10 m; T 20 C; T 40 C.ε

Para manter a temperatura constante, a potência do aquecedor deve compensar o fluxo

de calor para o meio.

Assim:

22

2

5 10 52 20 -40k A TP 6 10 W

26 10

P 0,6 kW.

ΔΦ

ε

c) Da expressão da energia consumida:

E P t 0,6 24 E 14,4 kWh.Δ

Resposta da questão 48:

[C]

Dados: Pco = 10 W; ET = 2.500 kcal = 62,5 10 cal; 1 cal = 4 J.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 97 de 130

Calculando a potência total:

6T

TE 2,5 10 4

P 115,74 W 116 W.t 24 3600

116 W 100% x 8,62%

10 W x%

x 9%.

Δ

Resposta da questão 49:

a) Quando B Bx x y 0.

Assim:

44

1 1

2 2

1log x 4 0 log x 4 x x 2

2

x 16 unidades de comprimento.

b) Usando a expressão da Energia Mecânica:

2 2

mec cin pot mec mec

2

mec

M v vE E E E M g y E M g y

2 2

vE M 10 y unidades de energia.

2

c) Como o corpo parte do repouso em x = 1, temos v0 = 0.

Na expressão dada, para x = 1, temos:

1

2

y log 1 4 0 4 y 4.

Aplicando esses dados na expressão obtida no anterior:

2 2

mec mec

mec

v 0E M 10 y E M 10 4

2 2

E 40 M.

Pela conservação da Energia Mecânica:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 98 de 130

2 2 2

1 1 1

2 2 2

1

2

v v vM 10 log x 4 40 M 40 10 log x 40 -10 log x

2 2 2

v -20 log x .

Caso queiramos eliminar o sinal (–) do radicando, podemos mudar o logaritmo para a

base 2:

2 21 1 2

2 22

log x log xlog x log x log x.

1 1log

2

Assim:

2v 20 log x unidades de velocidade.

Resposta da questão 50:

a) Dados: v = 72 km/h = 20 m/s; C = 35 MJ/L = 35 106 J/L;

30% 0,3; t 1h 3.600s.η Δ

Como a velocidade é constante, a força motriz tem a mesma intensidade da força de

resistência do ar. Assim, a energia útil (EU) é igual ao trabalho realizado pela força

motriz.

7U F U UE F S F v t E 380 20 3.600 E 2,74 10 J.τ Δ Δ

Calculando a energia total (ET):

67U U

T TT

E E 2,74 10 E E 9,12 10 J.

E 0,3η

η

Por proporção direta, calculamos o consumo de gasolina:

6 7

67

35 10 J 1 L 9,12 10 V V 2,6 L.

35 109,12 10 J V

b) Dados: N = 2.500 N; R = 30 cm; d = 0,3 cm.

O torque total em relação ao ponto O deve ser nulo. Então, em relação a esse ponto, o

somatório dos momentos horários é igual ao somatório dos momentos anti-horários.

Assim:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 99 de 130

at at

at

2.500 0,3N d 2.500F R N d F

R 30 100

F 25 N.

Resposta da questão 51:

[B]

Dados: m = 70 kg; v0 = 10 m/s; CE 0,7(500) 350J.Δ

A energia cinética depois do salto é igual à energia cinética inicial somada à variação

adquirida no salto.

222 2f i 0C C C C

2 2

70 10m vm v 70 vE E E E 350

2 2 2 2

35 v 35 100 350 v 100 10 v 110

v 10,5 m/s.

Δ Δ

Resposta da questão 52:

a) Dados: D = 60 km = 6.000 m; C = 80 cal/m; ET = 2.000 kcal.

Calculando a energia consumida (E1) em uma caminhada:

1 11

1 m 80 cal E 6.000 80 480.000 cal E 480 kcal.

6.000 m E

Para a percentagem P temos:

100% 2.000 kcal 100 480 P P 24%.

P% 480 kcal 2.000

b) Dados: M = 80 kg; g = 10 m/s2; h = 300 m.

Da expressão da energia potencial:

44

4

24 10 J C m g h 80 10 300 C 2,4 10 J

4 J/cal

C 6 10 cal.

c) Dados: m = 2,4 kg = 2400 g.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 100 de 130

Do Note e adote, para perder 2400 g de gordura terá que queimar a quantidade de

energia:

E 2400 9 21600 kcal.

Estabelecendo proporção direta:

1 caminhada 480 kcal 21600 N

N caminhadas 21600 kcal 480

N 45.

Resposta da questão 53:

[D]

Somando os percentuais indicados em cinza:

9,1% + 13,5% + 18,5% + 5,5% = 46,6%.

557 milhões 100% 557 46,6 x

x milhões 46,6% 100

x 259,562 milhões.

Resposta da questão 54:

[A]

Lembrando as expressões das forças mencionadas:

corpo

líq im

P m g P d V g

E d V g

Considerando os cilindros homogêneos, o Peso e o Empuxo são aplicados no centro de

gravidade de cada um. O empuxo tem a mesma densidade nos dois casos, pois os

volumes imersos são iguais, mas o Peso do cilindro mais denso é maior. Assim, o

Empuxo no conjunto é aplicado no ponto médio (B) e o Peso do conjunto fica deslocado

para direita. As figuras ilustram a situação.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 101 de 130

Comentário: Essa posição horizontal não é a de equilíbrio do conjunto. Assim que

abandonado, ele sofrerá um giro no sentido horário, ficando em equilíbrio estável na

vertical, com o cilindro mais denso totalmente imerso e o menos denso parcialmente

imerso, pois, para que o conjunto funcione como boia, sua densidade deve ser menor

que a da água.

Resposta da questão 55:

[C]

No equilíbrio, o empuxo sobre o bloco tem a mesma intensidade do peso do bloco.

A água que extravasa cai no copo, portanto o volume deslocado de água é igual ao

volume que está no copo.

água desloc

água desloc água desloc água desloc

m d V

E d V g E P d V g M g d V M

P M g

m M.

Resposta da questão 56:

a) Dados:

3 3 3 3V 1.800 cm 1,8 10 m ; m 6 kg 6 10 g;M 44 g / mol;R 8,3 J / mol K; T 300 K.

Da equação de Clapeyron:

3

3

8 2

m R Tm 6 10 8,3 300p V R T p

M V M 1,8 10 44

p 1,89 10 N/m .

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 102 de 130

b) Dados: m = 50 g; v = 20 m/s.

Estimando a massa do extintor: Mext = 10 kg = 10.000 g.

Como se trata de um sistema mecanicamente isolado ocorre conservação do momento

linear. Assim, em módulo:

extext

m v 50 20M V m v V V 0,1 m/s.

M 10.000

Resposta da questão 57:

[C]

A energia cinética da partícula vale E .α

Então:

2 2m v 4 v EE E v .

2 2 2

α α α αα α α

Como o sistema é mecanicamente isolado, temos:

Pb Pb Pb Pb

2Pb

E E1m v m v 4 200 v v

2 50 2

Ev .

5000

α αα α

α

Assim:

2Pb Pb

Pb Pb Pb

m v E E200E E E .

2 2 5000 50α α

Resposta da questão 58:

a) Dados: re = 42.000 km; 3.π

Como o satélite é geoestacionário, seu período orbital é igual ao período de rotação da

Terra:

T = 24 h.

Calculando a intensidade da aceleração centrípeta:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 103 de 130

2 2 22

c e e c 2

2c c 2

2c

2 4 4 3a r r a 42.000 42.000

T 57624

1.000 ma 2.625 km/h a 2.625

3.600 s

a 0,2 m/s .

π πω

b) Dados:

6 24 11 2e

2 6c42 10 m;M 6 10 kg; G 6,7 10 kg m / kgr 4 ; r 7.000 km 7 102.000 m m.k

ad e c ade c e c

11 24 2

ad 6 6

1715

ad ad6 6

9ad

G M m G M m G M m 1 1E E E E

2 r 2 r 2 r r

6,7 10 6 10 2 10 1 1E

2 42 10 7 10

1 6 2 10E 40,2 10 E

42 10 42 10

E 4,8 10 J.

Resposta da questão 59:

[D]

Coeficiente de dilatação linear do bronze é maior que o do ferro, portanto a lâmina de

bronze fica com comprimento maior, vergando como mostrado na alternativa [D].

Resposta da questão 60:

a) Dados: aP 1.400W; 50% 0,5; 20 C; m 100g; c 4,2J / g C.η Δθ

Calculando a potência útil:

U T UP P 0,5 1.400 P 700 W.η

Da expressão da potência térmica:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 104 de 130

aU

U U

m cQ Q 100 4,2 20P t t

t P P 700

t 12 s.

ΔθΔ Δ

Δ

Δ

b) Dados: L = 30 cm; 8v c 3 10 m/ s

Observando a figura dada, concluímos que entre as paredes cabem 2,5 comprimentos de

onda. Assim:

2302,5 L 12 cm 12 10 m.

2,5λ λ λ

Da equação fundamental da ondulatória:

810 9

2

v 3 10v f f 0,25 10 Hz 2,5 10 Hz

12 10

f 2,5 GHz.

λλ

Resposta da questão 61:

a) Sendo a lente convergente e o objeto muito distante (impróprio), a imagem forma-se

no foco imagem. Assim:

f p' 5 cm.

Para a nova situação, a imagem é p’’. Aplicando a equação dos pontos conjugados:

1 1 1 1 1 1 1 20 1 19 100 p'' cm.

f p p'' 5 100 p'' p'' 100 100 19

A variação na posição da imagem é:

100 100 95 5p'' p' 5 p'' p' cm.

19 19 19

b) Dados: n = 3; C = 0,6 pF; V = 5 V.

Para uma associação de n capacitores de mesma capacitância C, a capacitância

equivalente é:

eq eqC 0,6

C C 0,2 pF.n 3

Calculando a carga armazenada:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 105 de 130

12eqQ C V 0,2 5 Q 1 pC 1 10 C.

Resposta da questão 62:

a) A área do sensor é 2A 6 6 36 mm , e o número de pixels é 4N 500 500 25 10 .

Assim, a área (A1) de cada pixel é:

4 21 14

A 36A A 1,44 10 mm .

N 25 10

b) Dados: f = 50 mm; p’ = d = 175 mm.

Da equação dos pontos conjugados:

d f1 1 1 1 1 1 p' f 175 50 p L

f p p' p f p' p' f d f 125

L 70 mm.

c) Da equação do aumento linear transversal, em módulo:

y' p' D' d 6 175 420 D

y p D L D 70 175

D 2,4 mm.

Resposta da questão 63:

[D]

A figura mostra as forças atrativas e repulsivas agindo sobre a carga A, bem como a

resultante dessas forças.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 106 de 130

Resposta da questão 64:

[D]

Dado: A2 = 2 A1.

Combinando a primeira e a segunda lei de Ohm:

1 1 11 1 1 1

2 1 22 2 2

1

1 2

LV R i V i

A V L i 2 A V 2

L V A L i ViV R i V

2 A

V 2 V .

ρ

ρ

ρ ρ

Resposta da questão 65:

a) Dados: 8 8 2R 1,5 ; 64,8 10 m; A 1,296 10 m .Ω ρ Ω

Da segunda lei de Ohm:

8

8

L R A 1,5 1,296 10R L 1,5 0,02 0,03 m

A 64,8 10

L 3 cm.

ρ

ρ

b) Do gráfico da Figura 1, conforme ponto assinalado:

f = 8 MHz e R 4 H 35Oe.Ω

Do gráfico da Figura 2, conforme ponto assinalado:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 107 de 130

rH 35Oe 1.000μ

Substituindo os valores obtidos na expressão fornecida:

818 9 6

3 6r

64,8 10 500 500 81 10 500 9 10 4,5 10 m

10 8 10

4,5 m.

kf

δ δ

δ μ

ρδ

μ

Resposta da questão 66:

O gráfico destaca os valores relevantes para a resolução da questão.

a) Como o resistor e a lâmpada estão em série, a corrente é a mesma nos dois.

Do gráfico:

RV 2,5 V i i 0,04 A.

b) A força eletromotriz da bateria é E = 4,5 V. A tensão no resistor é VR.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 108 de 130

E R RV E V 4,5 2,5 V 2,0 V.

Aplicando a 1ª lei de Ohm:

R R2

V R i 2 R 0,04 R 0,04

R 50 .Ω

c) Com a nova bateria (E’ = 3 V), para a potência total PT = 60 mW, a corrente na

lâmpada é i ' .

2RP E' i' 60 3 i' i' i' 20 mA 0,02 A 2 10 A.

A potência PR dissipada no resistor é:

2

2 2 4 3R R

R

P R i' 50 2 10 50 4 10 20 10 W

P 20 mW.

Resposta da questão 67:

[E]

Como as partículas estão eletrizadas positivamente, a força elétrica EF tem o mesmo

sentido do vetor campo elétrico. A força magnética MF , pela regra prática da mão

direita nº 2 (regra do “tapa”) é em sentido oposto ao da força elétrica, como mostra a

figura.

Nas partículas do grupo 3, a força magnética é equilibrada pela força elétrica, ou seja:

3 3E

q v B q E v .B

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 109 de 130

Nas partículas do grupo 1, a força magnética é menos intensa que a força elétrica.

1 1 1 3E

q v B q E v v v .B

Nas partículas do grupo 2, a força magnética é mais intensa que a força elétrica.

2 2 2 3 3 2E E

q v B q E v v v v v .B B

Conclusão: 1 3 2E

v v v .B

Resposta da questão 68:

[B]

Notemos que a escala de nível sonoro cresce de cima para baixo. A área em cinza

representa a região de audição de cada uma das orelhas.

[I] Falsa. Analisando os gráficos, concluímos que sons de frequência 6 kHz e nível

sonoro de 20 dB não são ouvidos pela orelha direita, mas o são para o orelha esquerda.

[II] Verdadeira. Os gráficos mostram que sussurros de frequência 0,25 Hz e nível de

15 dB são ouvidos pelas duas orelhas.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 110 de 130

[III] Falsa. A diminuição da capacidade auditiva não ocorre pela degeneração dos ossos

descritos acima, assim como estes não estão na orelha externa e sim no ouvido médio.

Resposta da questão 69:

[B]

Dados: c = 83 10 m/s; f = 40 MHz = 74 10 Hz.

Da equação fundamental da ondulatória:

8

7

v 3 10 7,5 m.

f 4 10λ λ

Resposta da questão 70:

[A]

Dados: v = 330 m/s; f = 440 Hz.

Se o Sr. Rubinato não está mais ouvindo o Lá é porque está ocorrendo interferência

destrutiva. Para que ocorra tal fenômeno é necessário que a diferença de percurso entre

o ouvinte e as duas fontes ( no caso, ) seja um número ímpar (i) de meios

comprimentos de onda. O menor valor de é para i = 1.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 111 de 130

v330f 0,375 m

2 2 2 400

38 cm.

Resposta da questão 71:

[B]

Dados: D1 = 540 m; v1 = 10,8 km/h = 3 m/s; D2 = 720 m; v2 = 14,4 km/h = 4 m/s; ctΔ =

30 min.

Calculando o tempo total:

11

1

22 1 2 c

2

c

D 540t 180 s 3min.

v 3

D 720t 180 s 3min. t t t t 3 3 30

v 4

t 30min.

t 36min.

Δ

Δ Δ Δ Δ Δ

Δ

Δ

Resposta da questão 72:

[D]

Dados: M = 500 kb; h1 = 220 m; h2 = 400 m; g = 10 m/s2.

A variação da energia potencial é:

P 2 1 2 1 P

6P

E M g h M g h M g h h E 5 000 10 400 220

E 9 10 J.

Δ Δ

Δ

Resposta da questão 73:

[Resposta do ponto de vista da disciplina de Química]

a) Teremos:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 112 de 130

Para n mols de butano:

4 101mol C H 58 g

n4 10

4 10

C H

C H

m

m 58n g

Para n mols de propano:

3 81mol C H 44 g

n3 8

3 8

C H

C H

m

m 44n g

4 10 3 8C H C H

total

m m 1,02 g

58ng 44ng 1,02g

n 0,01mol

n 2n 2 0,01 0,02 mol

b) Para a mistura de propano e butano, teremos:

24 L 1mol

V 0,02 mol

V 0,48 L 480 mL

1

V(volume)Vazão do gás

t (tempo)

480 mL48 mL.min

t

t 10 min

c) Teremos:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 113 de 130

1

3

t 10 min 10 60 s 600 s

SVelocidade

t

S2,5m.s

600s

S 1500 m

ou

S 1,5 10 m

[Resposta do ponto de vista da disciplina de Física]

a) Química.

b) Química.

c) Dado: mv 2,5 m/s.

Do item anterior: t 10 min 600 s.

mD v t 2,5 600 D 1.500 m.Δ

Resposta da questão 74:

a) Dados: c = 3 108 m/s; H = 2,3 10

–18 s

-1; 0 0,092 .λΔλ

Combinando as duas expressões dadas:

80

80 0 0

0

25

v H r3 10 0,092c c

H r r cv H 2,3 10

r 1,2 10 m.

λΔλ ΔλΔλ

λ λ λλ

b) Dados: E = 3,24 1048

J; mfinal = 4 1030

kg.

Calculando a massa consumida para produzir essa energia:

48 48312

2 2 168

30 31 30 30inicial final inicial

31inicial

E 3,24 10 3,24 10E mc m m 3,6 10 kg.

c 9 103 10

m m m m 4 10 3,6 10 4 10 36 10

m 4 10 kg.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 114 de 130

Resposta da questão 75:

a) Analisando o gráfico 1, referente à terceira corrida, teremos:

S 7,5km

t 0,5h

S 7,5km kmV V 15ht 0,5h

Δ

Δ

Δ

Δ

Com a velocidade do atleta, teremos a constante CMET do gráfico 2:

METkm kJ

V 15 C 60h kg.h

MET. E C m.t = 60.70.0,5 E = 2100kJ

Resposta: 3kJE = 2,1x10

b) Considerando que o pé de um adulto possui aproximadamente 0,1m x 0,25m,

podemos estimar sua área: 2 2A 0,1x0,25 2,5x10 m .

Cálculo da pressão:

422

FP

A

F Peso m.g

m.g 70.10 NP 2,8x10A m2,5x10

Resposta: 4P 2,8x10 Pa

Resposta da questão 76:

a) Como S

Vt

Δ

Δ , teremos:

118 3S 1,5x10

V 3,0x10 t 0,5x10 st t

ΔΔ

Δ Δ

Resposta: 2t 5,0x10 sΔ

b) eT mg F 0

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 115 de 130

e ee

F FTg45 1 F mg

mg mg

Como 2

2e

qF k

d:

2

e 2F mg mg

qk

d

De acordo com o enunciado:

k = 9 109 N m

2/C

2

d = 3 cm = 3x10-2

m

m = 0,004 g = 4x10-6

kg

g = 10 m/s2

Substituindo os valores:

2 9 26 2 18

2 2 2

9x10 .qmg 4x10 .10 q 4x10

(3x10 )

qk

d

Resposta: 9| q | 2,0x10 C

Resposta da questão 77:

[C]

Velocidade média do atleta com a ajuda do vento:

s 100mv

t 9.9s

v 10.1m s

Δ

Δ

Resposta da questão 78:

a) Dado: f = 33 rpm.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 116 de 130

33 rot 33 rotf f 0,55 Hz.

min 60 s

f f f2 f 2 3 0,55 3,3 rad / s.ω π ω ω

b) Dados: α = 1,1 rad/s2; 0ω = 0.

Da equação da velocidade angular para o movimento circular uniformemente variado:

ff 0 f f f

3,3t t t 3 s.

1,1

ωω ω α

α

c) Dados: eμ = 0,09; g = 10 m/s2; r = 10 cm = 0,1 m.

A componente de atrito da força que o disco aplica na caixa de fósforos exerce a função

de resultante centrípeta. A caixa começa a se deslocar em relação ao disco no instante

em que a força de atrito atinge intensidade máxima.

Da figura:

máx cent2 2at r es

e c e c

ec c

c

F F N m r m g m r

N P m g

g 0,09 10 9

r 0,1

3 rad / s.

μ ω μ ω

μω ω

ω

d) Aplicando os resultados obtidos nos itens anteriores na equação de Torricelli para o

movimento circular uniformemente variado:

2 22 2 cc 0

32

2 2 1,1

4,1 rad.

ωω ω α Δθ Δθ

α

Δθ

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 117 de 130

Resposta da questão 79:

a) Dados: m = 1000 kg; v0 = 6000 m/s; v = 0; Δt = 7 min = 420 s.

Da segunda lei de Newton, para a força resultante tangencial:

6

res res 2

4res

v 0 6000 6 10F m a F m 1000

t 420 4,2 10

F 1,43 10 N.

b) Dados: m = 1000 kg; h0 = 125 km = 125 103 m; h = 100 km = 100 10

3 m; v =

4000 m/s; v0 = 6000 m/s; gMarte = 4 m/s2.

Sendo WFat o trabalho da força de atrito, aplicando o Teorema da Energia Mecânica:

22final inicial 0Mec Mec Marte Marte 0Fat Fat

2 20 Marte 0Fat

2 2Fat

7 6 10Fat

m vm vW E E W m g h m g h

2 2

mW v v m g h h

2

1000W 4000 6000 1000 4 100 125 1000

2

W 500 2 10 4 10 25 1 10 1 10

8

10Fat

W 1,01 10 J.

Resposta da questão 80:

a) Dados: 3;π g = 10 m/s2; águaρ = 1,0 10

3 kg/m

3; b = 1,6 10

-3 N.m.

Na iminência de começar a cair, a força exercida pelo vento ascendente tem mesma

intensidade que o peso. Lembrando que o volume de uma esfera de raio r é

34V r

3π , vem:

3vento água água

38

3água

4

4P F m g b r V g b r r b r

3

b 1,6 10 r 4 10

4 4g 10 3 10

3 3

r 2 10 m.

ρ ρ π

ρ π

b) Dados: A = 1 m2; h = 20 mm = 20 10

–3 m; águaρ = 1,0 10

3 kg/m

3; v0 = 2,5 m/s; v =

0.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 118 de 130

O volume de água despejado nessa área é:

3 3V A h 1 20 10 m .

Calculando a massa correspondente:

3 3

águam V 10 20 10 m 20 kg.ρ

Pelo Teorema do Impulso:

0I Q I m v v 20 0 2,5

I 50 N s.

Δ

Resposta da questão 81:

[B]

No ponto considerado (B), a componente tangencial da resultante é nula, restando

apenas a componente centrípeta, radial e apontando para o centro da curva (P). Portanto,

a força resultante tem direção vertical, com sentido para cima.

Resposta da questão 82:

a) Dados: PT = 100 GW = 100 109 W; I = 250 W/m

2.

9T T

8 2

P P 100 10I A

A I 250

A 4 10 m .

b) Dados: P = 0,8 PT; 1 ano = 3 107 s.

9 7B B T

18B

E P t E 0,8 P t 0,8 100 10 3 10

E 2,4 10 J.

c) Dado: equivalente energético do petróleo igual a 4 107 J/L.

7 18

718

10

4 10 J 1 L 2,4 10 V

4 102,4 10 J V

V 6 10 L.

d) Dado: c = 3 108 m/s.

18 182 B

B 2 2 168

E 2,4 10 2,4 10E m c m

c 9 103 10

m 26,7 kg.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 119 de 130

Resposta da questão 83:

[B]

21 2 R

E M2 T

21 2.3.10 50000 45000000

E 50000 9002 2 2

E 22500000J

7E 2,25 10 J

1 2E MVP2

2

π

Resposta da questão 84:

[A]

Utilizando o teorema do impulso temos:

I F t m VΔ Δ

De forma escalar temos:

I F t m v

m vF

t

Δ Δ

Δ

Δ

Analisando esta última expressão, podemos concluir que para a frenagem do veículo a

força é inversamente proporcional ao tempo da colisão. A colisão direta da cabeça do

motorista no volante ocorre em um intervalo de tempo muito pequeno, o que resulta em

uma grande força de impacto. Entretanto, o airbag aumenta o tempo de colisão

(frenagem da cabeça do motorista), o que diminui a força do impacto.

Resposta da questão 85:

[E]

Pelo Teorema do Impulso, a intensidade da força média (Fm) é dada pela razão entre o

módulo da variação da quantidade de movimento (|v|) e o tempo de interação (t). A

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 120 de 130

pressão média (pm) é dada pela razão entre intensidade da força média e a área de

contato (A). Assim:

m

mm

m

m vF I m vt I em II : p .

t AFp II

A

ΔΔΔ

Δ

Dados: mV = 270 g; mG = 45 g; v0V = 30 m/s; vV = 0; v0G = 60 m/s; vG = 0; tV = 2 tG;

AV = 10 AG.

Então, fazendo a razão entre as pressões exercidas pela bola de golfe (pmG) e pela bola

de vôlei (pmV):

V V G GG GmG mG mG

mV G G v V mV G G mV

mG mV mG mV

t A 2 t 10 Am v 45 0 60p p p 20

p t A m v p t A 270 0 30 p 3

p 6,7 p p p .

Δ ΔΔ

Δ Δ Δ

Resposta da questão 86:

[A]

Pela conservação da quantidade de movimento:

e f e ffinal inicial.p p p p

Mas, antes da colisão, apenas o fóton apresenta quantidade de movimento, que tem

direção e sentido do eixo x. Então:

e f f inicial.finalp p p

A figura mostra três possibilidades.

Nota-se que a figura (II) está de acordo com a opção [A].

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 121 de 130

Resposta da questão 87:

Dados: M = 6 1024

kg; m = 1016

kg; v0 = 30 km/s = 3 104 m/s; 1 megaton = 4

1015

J.

a) 2016 4i 0 iP m v 10 3 10 P 3 10 kg m/ s.

b)

216 42

240c c

10 3 10m vE E 4,5 10 J.

2 2

c) Trata-se de um choque inelástico. A massa do meteoro é desprezível em relação à

massa da Terra, por isso, depois do choque, a massa do sistema é apenas a massa da

Terra, pois:

24 16 24 246 10 10 6,00000001 10 6 10 .

Pela Conservação da Quantidade de movimento:

20

DepoisAntes 50Sist oSist 24

m v 3 10Q Q m v M m v v 5 10 m / s

M 6 10

v 0.

O choque do meteoro com a Terra praticamente não altera a velocidade da Terra.

d) Pela resposta do item anterior, conclui-se que toda energia cinética do meteoro é

dissipada na colisão. Passando para megaton:

15 24

dissip 1524dissip

9dissip

4 10 J 1 megaton 4,5 10 E

4 104,5 10 E

E 1,125 10 megaton.

Resposta da questão 88:

a) Dados: I = 400 W/m2; A = 2 m

2; Δt = 1 min = 60 s.

Calculando a quantidade de calor absorvida e aplicando na equação do calor sensível:

Q I A t Q 400 2 60 48.000 J.

Q 48000Q m c

m c 6 1000

8 C.

Δ

Δθ Δθ

Δθ

b) Dados: T1 = 290 K; T2 = 300 K; 1ρ = 1,2 kg/m3.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 122 de 130

Sendo a pressão constante, da equação geral dos gases:

1 11 22

1 2 1 1 2 2 2

32

TV V m m 1,2 290

T T T T T 300

1,16 kg / m .

ρρ

ρ ρ

ρ

Resposta da questão 89:

[D]

3

T3

PP 3.10 3r

P 100100.10

r 3%

Resposta da questão 90:

[A]

Dados: Fórmula do etanol = C2H5OH; Massas molares = C(12g/mol), H(1g/mol),

O(16g/mol); m = 138 g

Calculando a massa molar do etanol:

M = 2(12) + 5(1) + 16 + 1 = 46 g.

O número de mols contido nessa amostra é:

m 148n n 3.

M 36

Analisando o gráfico, notamos que durante o aquecimento a energia absorvida na forma

de calor sensível (QS) e a correspondente variação de temperatura () são,

respectivamente:

SQ 35 kcal; 78 ( 18) 96 C.

Aplicando a equação do calor sensível na forma molar:

S L L LQ 35

Q n c c c 0,12 kJ / mol C.n 3 96

Ainda do gráfico, a quantidade de calor absorvida durante a vaporização (QV) é:

V

Q 145 35 110 kJ.

Aplicando a equação do calor latente, também na forma molar:

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 123 de 130

vV V V V

Q 110Q n L L L 36,7 kJ / mol.

n 3

Resposta da questão 91:

a)

b) Embora o examinador quisesse os traçados numa mesma figura, para melhor

visualização, foi construída uma segunda figura.

c) Dado: 44 . β

Na figura acima, cada lado de α é perpendicular a cada lado de .β Então:

44 .α β

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 124 de 130

O triângulo ABC é retângulo. Então:

2 90 180 2 44 90 180 180 90 88

2 .

γ α γ γ

γ

d) Dado: AC = 10 cm; sen (22°) = 0,37; cos (22°) = 0,93; sen (44°) = 0,70; cos (44°) =

0,72;

sen (88°) = 0,99; cos (88°) = 0,03.

Do item anterior, 2 .γ Da trigonometria:

sen 2° = cos 88° = 0,03; cos 2° = sen 88° = 0,99.

No triângulo ABC:

sen 2AC 10 0,03 10 1 10tg

AB cos2 AB 0,99 AB 33 AB

AB 330 cm.

γ

Resposta da questão 92:

a) Dados: P0 = 24 W; d = 2 m; 3; 60 .π θ

Combinando as expressões dadas:

20 2

2 200 2 2

0 2

2

I I cosP 24 1 1 1

P I cos cos 60 2 2 8I 4 d 4 3 2

4 d

I 0,125 W / m .

θ

θπ

π

b) Dados: B B r 1 60 ; 90 ; n 1.θ θ θ

B r r r90 60 90 30 .θ θ θ θ

Na lei de Snell:

1 B 2 r 1 2 2

2

3 1n sen n sen n sen 60 n sen 30 1 n

2 2

n 3.

θ θ

Resposta da questão 93:

[A]

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 125 de 130

Utilizando a equação de Gauss temos:

f P

1 1 1

P'

Observando a ilustração temos:

P 3 cm e f 2 cm

1 1 1 1 1 1 3 2

P' ' 2 3 6

1 1P' 6 cm

P' 6

2 3 P

Sabendo que P' é positivo, concluímos que a imagem é REAL. Vejamos agora se a

imagem é direita ou invertida.

P' 6 cmA

P 3 cm

A 2

Logo, a imagem é duas vezes maior (fator 2) que o tamanho do objeto, porém é

invertida (sinal negativo).

Observando a imagem apresentada, podemos observar que o objeto tem 2 cm de altura,

logo sua imagem será invertida e de tamanho igual a 4 cm.

Assim concluímos que a imagem será é REAL, INVERTIDA e de tamanho igual a 4

cm.

Resposta da questão 94:

[E]

Analisando cada uma das afirmativas.

I. Incorreta. A figura ilustra os perfis adquiridos pela microlente com os tempos

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 126 de 130

crescentes de aquecimento.

Nota-se nela que R3 < R2 < R1. Assim, o raio de curvatura da microlente diminui com

os tempos crescentes de aquecimento.

II. Correta. De acordo com a equação do fabricante de lentes (I), a vergência (V) de

uma lente plano convexa é dada pela expressão:

lente

meio

n 1V 1 (I)

n R

1f (II)

V

Ela nos mostra que à medida que o raio de curvatura diminui a vergência aumenta. A

expressão (II) mostra que a distância focal é o inverso da vergência. Portanto, a

distância focal da microlente diminui com os tempos crescentes de aquecimento.

III. Correta. Como são lentes plano-convexas imersas no ar, e o índice de refração do

material da fibra (nlente = 1,5) é maior que o do meio (nar = 1), a microlente tem

vergência positiva. Logo, a microlente é convergente.

Resposta da questão 95:

[D]

Dados obtidos a partir da leitura do gráfico:

ri = 3 10–10

m Ui = 3 10–18

J;

rf = 9 10–10

m Uf = 1 10–18

J.

Como a força elétrica (força conservativa), nesse caso, é a própria força resultante,

podemos combinar os Teoremas da Energia Potencial (TEP) e da Energia Cinética

(TEC).

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 127 de 130

Fconservativa 18cin cin f i

cinFresultante

18cin

U E U E U U 1 3 10

E

E 2 10 J.

τ ΔΔ Δ Δ

τ Δ

Δ

Ecin > 0 a energia cinética aumenta.

Resposta da questão 96:

[C]

A quantidade de carga elétrica contida na bateria é dada por:

q i t

75Ah 50A t

75t h

50

t 1,5h

Δ

Δ

Δ

Δ

Sabendo que a autonomia (em horas) da bateria é 1,5 horas temos:

s v t

s 60 1,5

s 90 km

Δ Δ

Δ

Δ

Resposta da questão 97:

[B]

Como o circuito está aberto entre os pontos A e B, a corrente elétrica entre esses pontos

é nula, sendo, portanto, também nula a corrente pelo resistor de R2 = 4 , ligado ao

ponto A; ou seja, esse resistor não tem função, não entrando no cálculo da resistência

equivalente. O circuito da figura 2 é uma simplificação do circuito da figura 1.

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 128 de 130

Calculando a resistência equivalente:

eq2

R 4 5 .2

A ddp no trecho é U = 5 V, e a ddp entre os pontos A e B (UAB) é a própria ddp no

resistor R1. Assim:

eqeq

AB 1 AB

U 5U R I I 1 A.

R 5

U R i 4 1 U 4 V.

Resposta da questão 98:

a) Aplicando a 1ª Lei de Ohm na 2ª e 4ª linhas:

2

4

1,1 I 0,25 A.

4,4VV R I I

0,96RI 0,60 A.

1,6

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 129 de 130

V(V) R( ) I(A)

1,14 7,55 0,15

1,10 4,40 0,25

1,05 2,62 0,40

0,96 1,60 0,60

0,85 0,94 0,90

b) Substituindo os valores da tabela do item anterior:

Obs.: no eixo das tensões, os valores começam a partir de V = 0,7 V, por isso a reta não

cruza o eixo das correntes no valor da corrente de curto circuito.

c) Substituindo os dois primeiros valores de V e de I da tabela na equação do gerador e

subtraindo membro a membro as duas equações:

1,14 r 0,150,04

V r I r r 0,4 .r 0,251,100,1

0,04 0 0,10 r

1,14 0,4 0,15 1,14 0,06 1,2 V.

ε

ε Ωε

ε ε ε

Obs.: A equação dessa bateria é:

V 1,2 0,4 I.

Para V = 0,7 V:

1,2 0,70,7 1,2 0,4 I I i 1,25 A.

0,4

LISTA DE EXERCÍCIOS 1 – FUVEST/UNICAMP – 3ª SÉRIE

Página 130 de 130

Esse é o valor em que a linha do gráfico corta o eixo das correntes, como assinalado no

gráfico do item anterior.

Resposta da questão 99:

a) Dados: c = 3 108 m/s; f = 60 Hz.

Da equação fundamental da ondulatória:

86c 3 10

c f 5 10 m.f 60

λ λ λ

b) Dados: P = 400 MW = 400 106 W; U = 500 kV = 500 10

3 V.

Da expressão da potência elétrica:

6

3

P 400 10P U i i i 800 A.

U 500 10

Resposta da questão 100:

[C]

Dados: U = 100 106 V; Q = 10 C; 1 J = 3 10

-7 kWh.

6 9 9 7 kW hE U Q 100 10 10 10 J E 10 J 3 10 .

J

E 300 kW h.

Δ Δ

Δ