© 2013 pearson. todos os direitos reservados.slide 1 capítulo 15 noções de trigonometria e...

36
© 2013 Pearson. Todos os direitos reservados. slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

Upload: internet

Post on 18-Apr-2015

107 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 1

Capítulo 15 Noções de trigonometria e funções trigonométricas

Page 2: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 2

Objetivos de aprendizagem Graus e radianos. Comprimento de arco. Algumas medidas trigonométricas. O círculo trigonométrico. Algumas funções trigonométricas. Arcos trigonométricos inversos. Identidades fundamentais.

Page 3: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 3

Graus e radianos O grau é representado pelo símbolo “°” e é o ângulo cuja medida é igual a de um ângulo raso. O radiano é o ângulo central formado quando um arco de comprimento s tem a mesma medida do raio r do círculo, no qual está inserido.

Page 4: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 4

Comprimento de arcoFórmula do comprimento do arco (medida em radianos) Se q é um ângulo central em um círculo de raio r, e se q é medido em radianos, então o comprimento s do arco interceptado é dado por : s = rqFórmula do comprimento do arco (medida em graus) Se q é um ângulo central em um círculo de raio r, e se q é medido em graus, então o comprimento s do arco interceptado é dado por:

Page 5: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 5

Algumas medidas trigonométricas Triângulo de vértices ABC e medidas trigonométricas do ângulo q .

Page 6: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 6

Algumas medidas trigonométricas A posição inicial do raio, o lado inicial, é girado em torno de sua extremidade, chamada de vértice. A posição final é chamada de lado terminal. Ângulos positivos são gerados por rotações no sentido anti-horário, e ângulos negativos são gerados por rotações no sentido horário. Um ângulo com medida positiva a.

Page 7: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 7

Algumas medidas trigonométricas Dois ângulos na posição padrão. Em (a) a rotação anti-horária gera um ângulo com medida positiva. Em (b) a rotação horária gera um ângulo com medida negativa.

Page 8: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 8

Algumas medidas trigonométricas Ângulos equivalentes. Em (a) um ângulo positivo e um ângulo negativo são equivalentes, enquanto em (b) ambos os ângulos equivalentes são positivos.

Page 9: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 9

O círculo trigonométricoTemos ao lado o círculo de raio 1; o eixo horizontal x fornece a medida do cosseno do ângulo formado, partindo do 0 no sentido anti-horário, e o eixo vertical y fornece a medida do seno do mesmo ângulo.

Page 10: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 10

Funções trigonométricasA função seno: f (x) = sen x ou f(x) = sen (x) Domínio: conjunto de todos os números reais. Imagem: [-1, 1]. A função é contínua. É alternadamente crescente e decrescente. É periódica de período 2p. É simétrica com relação à origem (é uma função ímpar). É limitada. O máximo absoluto é 1. O mínimo absoluto é -1. Não tem assíntotas horizontais. Não tem assíntotas verticais.

Page 11: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 11

Funções trigonométricasA função seno: Comportamento nos extremos do domínio: não existem. Os valores da função oscilam de -1 até 1.

Page 12: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 12

Funções trigonométricasA função cosseno: f(x) = cos x ou f(x) = cos (x) Domínio: conjunto de todos os números reais. Imagem: [-1, 1]. A função é contínua. É alternadamente crescente e decrescente. É periódica de período 2p. É simétrica com relação ao eixo vertical y (é uma função par). É limitada. O máximo absoluto é 1. O mínimo absoluto é -1. Não tem assíntotas horizontais.

Page 13: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 13

Funções trigonométricasA função cosseno: Não tem assíntotas verticais. Comportamento nos extremos do domínio: não existem. Os valores da função oscilam de -1 até 1.

Page 14: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 14

Funções trigonométricasA função tangente: Domínio: conjunto dos números reais sem os múltiplos ímpares de Imagem: conjunto de todos os números reais. A função é contínua sobre o seu domínio. É crescente em cada intervalo do domínio. É simétrica com relação à origem (é uma função ímpar). Não é limitada superior nem inferiormente. Não tem extremos locais.

Page 15: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 15

Funções trigonométricasA função tangente: Não tem assíntotas horizontais. As assíntotas verticais são da forma para todo k ímpar. Comportamento nos extremos do domínio não existem. Os valores da função oscilam no intervalo ]–∞, + ∞[.

Page 16: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 16

Função cotangente A função cotangente é a recíproca da função tangente. Então: A cotangente tem assíntotas nos zeros da função seno e zeros nos zeros da função cosseno.

Page 17: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 17

Função secante As características da função secante são concluídas a partir do fato de ela ser a recíproca da função cosseno.

Page 18: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 18

Função cossecante Características da função cossecante são concluídas a partir do fato de ela ser a recíproca da função seno.

Page 19: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 19

Arcos trigonométricos inversos Se você restringir o domínio de y = sen x ao intervalo como mostrado na figura abaixo (a), a função restrita é injetora. A inversa da função seno, y = sen−1 x, é a inversa dessa porção restrita da função seno, vista na figura abaixo (b).

Page 20: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 20

Arcos trigonométricos inversosFunção seno inverso (função arco-seno) O único ângulo y no intervalo tal que sen y = x é o seno inverso (ou arco-seno) de x, denotado sen−1 x ou arc sen x. O domínio de y = sen−1 x é [–1, 1], e a imagem é Figura a seguir: (a) A restrição de y = cos x é injetora e (b) tem uma inversa, y = cos-1 x.

Page 21: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 21

Arcos trigonométricos inversos

Page 22: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 22

Arcos trigonométricos inversosFunção cosseno inverso (função arco-cosseno) O único ângulo y no intervalo [0,p], tal que cos y = x, é a inversa do cosseno (ou arco-cosseno) de x, denotada cos-1 x ou arc cos x. O domínio de y = cos-1 x é [–1, 1], e a imagem é [0, p].

Figura a seguir: A (a) restrição de y = tg x é injetora e (b) tem uma inversa, y = tg-1 x.

Page 23: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 23

Arcos trigonométricos inversos

Page 24: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 24

Arcos trigonométricos inversosFunção tangente inversa (função arco-tangente) O único ângulo y no intervalo tal que tg y = x, é a tangente inversa (ou arco-tangente) de x, denotado tg-1 x ou arc tg x. O domínio de y = tg-1 x é (−∞, ∞), e a imagem é

Page 25: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 25

Identidades fundamentaisIdentidades trigonométricas básicas Identidades recíprocas:

Identidades de quociente:

Page 26: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 26

Identidades pitagóricas A identidade fundamental da trigonometria: A partir dessa identidade, podemos deduzir as identidades pitagóricas. Se dividirmos cada termo da identidade por (cos x)2, obtemos uma identidade que envolve tangente e secante:

Page 27: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 27

Identidades pitagóricas Se dividirmos cada termo da identidade por (sen x)2, obtemos uma identidade que envolve cotangente e cossecante:

Identidades pitagóricas

Page 28: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 28

Outras identidades úteis Identidades de cofunções

Identidades de cofunções 2 paridade e imparidade

Page 29: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 29

Soma e diferença de arcosSeno de uma soma ou diferença sen (u v) = sen u cos v cos u sen v Note que o sinal não troca em nenhum dos casos.Cosseno de uma soma ou diferença cos (u v) = cos u cos v sen u sen v Note a mudança de sinal nos dois casos.

Page 30: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 30

Soma e diferença de arcosTangente de uma soma ou diferença

Existe também uma fórmula para tg (u v), que é escrita inteiramente em termos de funções tangente.

Page 31: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 31

Arcos múltiplosIdentidades de ângulo duplo

Page 32: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 32

Arcos múltiplosIdentidades de redução de potência

Page 33: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 33

Arcos múltiplosIdentidades de metade de ângulo

Page 34: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 34

Lei dos senos Em qualquer ABC com ângulos A, B e C e lados opostos a, b e c, respectivamente, a equação a seguir é verdadeira:Resolução de triângulos (AAL, ALA) Dois ângulos e um lado de um triângulo, em qualquer ordem, determinam o tamanho e a forma de um triângulo. É claro, dois ângulos de um triângulo determinam o terceiro, assim, obtemos uma das três partes faltantes de graça. Resolvemos as duas partes restantes com a lei dos senos.

Page 35: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 35

O caso ambíguo (LLA) Se o ângulo estiver incluído entre os dois lados (o caso LAL), então o triângulo será unicamente determinado a menos de congruência. Se o ângulo for oposto a um dos lados (o caso LLA), então poderão existir um, dois ou zero triângulos determinados.Lei dos cossenos Seja ABC qualquer triângulo com lados e ângulos indicados de modo usual. Então:

Page 36: © 2013 Pearson. Todos os direitos reservados.slide 1 Capítulo 15 Noções de trigonometria e funções trigonométricas

© 2013 Pearson. Todos os direitos reservados.slide 36

Área do triângulo

TEOREMA Fórmula de Herão Sejam a, b e c os lados do ABC, e seja s o semiperímetro: então, a área de ABC é dada por