revista robotica edição -100

3
ARTIGO CIENTÍFICO · Skill memory in biped locomotion (2 .ª Parte) · A robotic platform for edutainment activities in a pediatric hospital AUTOMAÇÃO E CONTROLO · Automatização de sistemas de bombagem DOSSIER SOBRE INDÚSTRIA QUÍMICA · Química, a indústria com boa exportação · Reduzir o risco de transbordo ESPECIAL SOBRE IMPRESSÃO 3D · “  A primeira impressora 3D Made in Portugal · Imprima-Se em 3D · Utilização das tecnologias de fabrico aditivo no desenvolvimento de sapatos para pessoas com paralisia cerebral · Contribuição para o desenvolvimento da Impressão 3D CASE STUDY · Lubrigupo: Signum Oil Analysis: o poder de prev er · WEGeuro: Gama de mot ores WEG W22 Super Premium reduz perdas em 40% · Schaeffler: Guias lineares 4.0 · Weidmüller: Blocos de equalização potencial JB 25–50 e EBB 25–50/16 · RUTRONIK:  A Indústria 4.0 tem de provar que vale o investimentoENTREVISTA · “a nossa recente Cer tificação Ambiental é um fator impor tante para a nossa competitividade no mercado, Sónia Silva, WEGeuro · “fornecedor líder em soluções e produtos vocacionados  para a produtividade, Armando Mainsel, Europneumaq · Roadshow  da Endress+Hauser em Portugal, Paulo Loureiro · “O mercado, devido à crise, ficou muito mais exigente, José Meireles, M&M Engenharia 100 ISSN 0874-9019 9 770874 901000 número 100 | 3.º trimestre de 2015 | Portugal 9.50€ PUB

Upload: antonio-carlos-freitas-junior

Post on 20-Feb-2018

278 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/24/2019 Revista Robotica Edio -100

    1/148

    ARTIGO CIENTFICO

    Skill memory in biped locomotion (2. Parte)

    A robotic platform for edutainment activities

    in a pediatric hospital

    AUTOMAO E CONTROLO

    Automatizao de sistemas de bombagem

    DOSSIER SOBRE INDSTRIA QUMICA

    Qumica, a indstria com boa exportao

    Reduzir o risco de transbordo

    ESPECIAL SOBRE IMPRESSO 3D A primeira impressora 3D Made in Portugal

    Imprima-Se em 3D

    Utilizao das tecnologias de fabrico aditivo

    no desenvolvimento de sapatos para pessoas

    com paralisia cerebral

    Contribuio para o desenvolvimento da Impresso 3D

    CASE STUDY

    Lubrigupo: Signum Oil Analysis: o poder de prever

    WEGeuro: Gama de motores WEG W22 Super

    Premium reduz perdas em 40%

    Schaeffler: Guias lineares 4.0

    Weidmller: Blocos de equalizao potencial JB 2550

    e EBB 2550/16

    RUTRONIK: A Indstria 4.0 tem de provar que vale

    o investimento

    ENTREVISTA

    a nossa recente Cer tificao Ambiental

    um fator impor tante para a nossa competitividade

    no mercado, Snia Silva, WEGeuro

    fornecedor lder em solues e produtos vocacionados

    para a produtividade, Armando Mainsel, Europneumaq

    Roadshowda Endress+Hauser em Portugal,

    Paulo Loureiro

    O mercado, devido crise, ficou muito mais exigente,

    Jos Meireles, M&M Engenharia

    100

    ISSN 0874-9019

    9 770874 901000

    nmero 100 | 3. trimestre de 2015 | Portugal 9.50

    PUB

  • 7/24/2019 Revista Robotica Edio -100

    2/148

  • 7/24/2019 Revista Robotica Edio -100

    3/148

    FICHATCNICA.SUMRIO

    1

    robtica

    FICHA TCNICA

    robtica 100

    3.oTrimestre de 2015

    Diretor

    J. Norberto Pires, Departamento de Engenharia Mecnica,

    Universidade de Coimbra [email protected]

    Diretor-Adjunto

    Adriano A. Santos, Departamento de Engenharia Mecnica,

    Instituto Politcnico do Porto [email protected]

    Conselho Editorial

    A. Loureiro, DEM UC; A. Traa de Almeida, DEE ISR UC;

    C. Couto, DEI U. Minho; J. Dias, DEE ISR UC;

    J.M. Rosrio, UNICAMP; J. S da Costa, DEM IST;

    J. Tenreiro Machado, DEE ISEP; L. Baptista, E. Natica, Lisboa;

    L. Camarinha Matos, CRI UNINOVA; M. Crisstomo, DEE ISR UC;

    P. Lima, DEE ISR IST; V. Santos, DEM U. Aveiro

    Corpo Editorial

    Coordenador Editorial:Ricardo S e Silva

    Tel.: +351 225 899 628 [email protected]

    Diretor Comercial:Jlio Almeida

    Tel.: +351 225 899 626 [email protected]

    Chefe de Redao:Helena Paulino

    Tel.: +351 220 933 964 [email protected]

    Design

    Luciano Carvalho [email protected]

    Webdesign

    Ana Pereira [email protected]

    Assinaturas

    Tel.: +351 220 104 872

    [email protected] www.engebook.com

    Colaborao Redatorial

    J. Norberto Pires, Adriano A. Santos, J. Andre, C. Santos,

    L. Costa, Joo Messias, Rodrigo Ventura, Pedro Lima,

    Joo Sequeira, Paulo Alvito, Carlos Marques, Paulo Carrio,

    Frederico Lucas, Paula Domingues, Miguel Malheiro,

    Lus Arajo, Francisco Mendes, Amrico Costa,

    Jorge Lino Alves, Lgia Lopes, Ana Dulce Meneses,

    Carlos Alberto Costa, Rosrio Machado,

    Ricardo S e Silva e Helena Paulino

    Redao, Edio e Administrao

    CIE - Comunicao e Imprensa Especializada, Lda.

    Grupo Publindstria

    Tel.: +351 225 899 626/8 Fax: +351 225 899 629

    [email protected] www.cie-comunicacao.pt

    Propriedade

    Publindstria - Produo de Comunicao Lda.

    Empresa Jornalstica Reg. n. 213 163

    NIPC: 501777288

    Praa da Corujeira, 38 Apartado 3825

    4300-144 Porto

    Tel.: +351 225 899 620 Fax: +351 225 899 629

    [email protected] www.publindustria.pt

    Publicao Peridica

    Registo n. 113164

    Depsito Legal n.o372907/14

    ISSN: 0874-9019 ISSN: 1647-9831

    Periodicidade: trimestral

    Tiragem: 5000 exemplares

    INPI: 365794

    Impresso e Acabamento

    Grficas Anduria

    Avda. de San Xon, 32

    36995 POIO (Pontevedra)

    Os trabalhos assinados so da

    exclusiva responsabilidade dos seus autores.

    SUMRIO

    da mesa do diretor

    2 O mundo virado do avesso

    artigo cientfico

    4 Skill memory in biped locomotion (2. Parte)

    10 A robotic platorm or edutainment activities in a pediatric hospital

    empreender e inovar

    16 Sentido da vida

    automao e controlo

    18 Automatizacao de sistemas de bombagem

    eletrnica industrial

    22 Fabrico de circuitos em PCI

    instrumentao

    28 Vlvulas de segurana e alvio

    30 notcias da indstria

    48 dossier sobre indstria qumica

    49 Qumica, a indstria com boa exportao

    52 Reduzir o risco de transbordo

    56 especial sobre impresso 3D

    57 A primeira impressora 3D Made in Portugal60 Imprima-Se em 3D

    62 Utilizao das tecnologias de abrico aditivo no desenvolvimento de sapatos para pessoas com paralisia cerebral

    66 Contribuio para o desenvolvimento da Impresso 3D

    informao tcnico-comercial

    68 igus: Transerncia de dados mais segura para aplicaes mveis na Indstria 4.0

    70 Bucim Ex da Weidmller

    72 Omron: Aranow Packaging Machinery

    74 Zeben: DataloggersMSR: pequenos ormatos multiuncionais

    76 Schaeffler Iberia: 7,6 milhes de euros de indemnizao pela distribuio de rolamentos FAG alsificados

    78 Rittal apresenta nova gerao de ar-condicionados Blue e+

    80 LusoMatrix: Unictron antenas CHIP

    82 WEGeuro: Eficincia energtica em silos de armazenagem de gros

    84 M&M Engenharia Industrial: Esquemas em metade do tempo

    86 EGITRON/MECMESIN Controle a qualidade dos materiais da sua embalagem

    88 JABA-TRANSLATIONS: criao e traduo de documentao tcnica

    case study

    90 Lubrigrupo: Signum Oil Analysis: o poder de prever

    94 WEGeuro: Gama de motores WEG W22 Super Premium reduz perdas em 40%

    96 Schaeffler Iberia: Guias lineares 4.0

    98 Weidmller: Blocos de equalizao potencial JB 2550 e EBB 2550/16

    100 RUTRONIK: A Indstria 4.0 tem de provar que vale o investimento

    entrevista

    102 a nossa recente Certificao Ambiental um fator importante para a nossa competitividade no mercado,Snia Silva, WEGeuro

    104 fornecedor lder em solues e produtos vocacionados para a produtividade, Armando Mainsel, Europneumaq

    106 Roadshowda Endress+Hauser em Portugal

    110 o mercado, devido crise, ficou muito mais exigente, Jos Meireles, M&M Engenharia

    reportagem

    112 SEW-EURODRIVE PORTUGAL comemora 25 anos

    114 bibliografia

    116 produtos e tecnologias

    138 calendrio de eventos

    140 eventos e formao

    144 links

    www.robotica.pt

    Aceda ao linkatravsdeste QR code.

    /revistarobotica

    Apoio capaMore Perormance

    Simplified.u-remote.

    Weidmller Sistemas de Interface, S.A.Tel.: +351 214 459 191 Fax: +351 214 455 [email protected] www.weidmuller.pt

  • 7/24/2019 Revista Robotica Edio -100

    4/148

    obtca

    AMESA

    E

    O mundo virado do avesso

    J. Norberto Pires

    Pro. da Universidade de Coimbra

    Olho para a imagem daquele beb e

    digo peremptrio que poderia ser meu

    filho; alis, mesmo. Nele tudo me to

    prximo. Os sapatos, penso que a minhafilha mais nova tem uns iguais, as calas,

    o ormato da cabea... a maneira como

    est deitado, como que a dormir mais

    uma vez, a minha filha dorme assim, co-

    loca os braos nesta posio e aunda a

    cabea no travesseiro numa imagem

    que tem tudo para ser serena. E , na ver-

    dade, terrivelmente serena. Nunca vou

    esquecer esta imagem.

    Olho para os comboios de Budapes-

    te cheios de gente desesperada, marca-da como se osse dierente, que nasceu

    do lado "errado" do mundo, cheia de vida

    e sem esperana, a correr reneticamente

    procura de um osis de paz e de espe-

    rana. Leio que so interrompidos na sua

    viagem para a Alemanha e para a ustria

    para serem levados a campos desenha-

    dos para pessoas "diferentes" como eles.

    S os iguais seguem a sua vida a cami-

    nho de casa, e de um destino que para

    os outros seria uma oportunidade de

    sobrevivncia. Imagino outros comboios,noutros tempos que, em sentido inver-

    so, traziam gente considerada "diferente"

    para stios sem esperana, sem vida e

    onde o destino era a morte.

    Olho para os dirigentes europeus e

    no vejo urgncia. Quando estava em

    causa o dinheiro as reunies eram mar-

    cadas em menos de 14 horas, mas neste

    caso estando em causa vidas a urgncia

    relativa e mede-se em semanas. Ouo

    as suas palavras e pasmo de vergonha.Estamos perante uma "praga" de gen-

    te dierente que no problema nosso,

    mas antes da Alemanha. Ouo e leio isto

    de pessoas que dirigem pases e no tm

    a mnima vergonha, nem sobressalto hu-

    mano e cvico, de o dizerem alto e em

    pblico.No deixa de ser curioso ouvir a chan-

    celer alem, com toda a razo, a apelar a

    uma resposta coordenada da Europa,

    unida em torno de valores superiores, de-

    pois da campanha de desunio e desin-

    teresse que promoveu para o problema

    grego. Agora percebe as consequncias

    de to mesquinha e irrefletida atuao. A

    Europa escolheu a autodestruio e deu

    voz aos nacionalismos mais primrios.

    Agora com a crise dos reugiados pura esimplesmente no tem resposta, porque

    no existe como UNIO.

    No tenho nenhuma esperana que

    o beb que podia ser meu filho, os com-

    boios de Budapeste ou a vergonha das

    declaraes de certos lderes europeus

    alterem seja l o que or. O mundo est

    numa encruzilhada terrvel. Desaparece-

    ram os valores e tudo mais importante

    do que as pessoas, os seus sonhos e as

    suas vidas. A prova que na Europa, antes

    uma esperana de um mundo melhor, selevantam muros, se acicatam antasmas

    e se adiam respostas. No importante,

    pois no tem a ver, aparentemente, com

    dinheiro. Lamento que tenhamos, de

    novo, chegado aqui.

    Nota final: observo os muitos mi-

    lhes de euros que estamos disponveis

    para gastar em pesquisa espacial, por

    exemplo, para observar e compreender

    novos mundos, e fico a pensar como no

    sabemos nada do que se passa no nossoplaneta, nomeadamente com as pessoas

    que c vivem. E fico a pensar na razo de

    tudo isso.

    "O mundo est numaencruzilhada terrvel.

    Desapareceram os valorese tudo mais importante

    do que as pessoas, os seussonhos e as suas vidas. A

    prova que na Europa,antes uma esperana de um

    mundo melhor, se levantammuros, se acicatamfantasmas e se adiam

    respostas (...) observo osmuitos milhes de euros que

    estamos disponveis paragastar em pesquisa espacial,por exemplo, para observar

    e compreender novosmundos, e fico a pensar

    como no sabemos nadado que se passa no nossoplaneta, nomeadamente

    com as pessoas que cvivem. E fico a pensar na

    razo de tudo isso."

  • 7/24/2019 Revista Robotica Edio -100

    5/148

  • 7/24/2019 Revista Robotica Edio -100

    6/148

    a

    g

    en

    f

    4

    obtca

    J.Andre1,C.Santos2,L.Costa3

    1DepartmentofIndustrialElectronics,UniversityofMinho,[email protected]

    2DepartmentofIndustrialElectronics,UniversityofMinho,[email protected]

    3DepartmentofProductionandSystem,UniversityofMinho,[email protected]

    Abstract Robots must be able to adapt their motor behavior to

    unexpected situations in order to saely move among humans.

    A necessary step is to be able to predict ailures, which result in

    behavior abnormalities and may cause irrecoverable damage to

    the robot and its surroundings, i.e. humans. In this paper we build

    a predictive model o sensor traces that enables early ailure de-

    tection by means o a skill memory. Specifically, we propose an

    architecture based on a biped locomotion solution with impro-

    ved robustness due to sensory eedback, and extend the concepto Associative Skill Memories (ASM) to periodic movements by

    introducing several mechanisms into the training workflow, such

    as linear interpolation and regression into a Dynamical Motion

    Primitive (DMP) system such that representation becomes time

    invariant and easily parameterizable. The ailure detection mecha-

    nism applies statistical tests to determine the optimal operating

    conditions. Both training and ailure testing were conducted on

    a DARwIn-OP inside a simulation environment to assess and va-

    lidate the ailure detection system proposed. Results show that

    the system perormance in terms o the compromise between

    sensitivity and specificity is similar with and without the proposed

    mechanism, while achieving a significant data size reduction dueto the periodic approach taken.

    Keywords Reinorcement learning Bio-inspired Skill Memory

    6. FAILURE DETECTION

    In order to properly take advantage o the inormation stored

    into the ASM, we propose a system that monitors continuously

    the execution o a motor skill (in this case biped locomotion)

    and looks or deviations that could evolve into movement ailu-

    res. The ailure detection protocol we introduce in this work was

    inspired by Pastor et al. [20], but utilizes a more refined statisti-cal analysis in order to achieve the best results possible. Once

    again we anchor the whole process on the phase values at any

    given time. At each instant n o the simulation, and

    , reconstructed rom the trained DMPs, provide the

    ASM values or the correspondent phase (n), upon which a

    statistical z-test is perormed. Thus, a tolerance interval is esta-

    blished or each sensor according to:

    (16)

    where ytrial

    (n) is the sensor data o the current simulation; (n)

    is the phase at the current instant n in this trial,z =2.57 or a

    confidence level o 99%, and and represent the

    mean and standard deviation values stored into the ASM. I the

    condition in equation (16) is satisfied, then the null hypothesis

    o being a successul trial is not rejected and the sensor data is

    assumed to be in conormity with the expected values - there

    are no signs o ailure conditions. I, on the other hand, ytrial

    (n)

    is out o the confidence bounds established in (16), then the-

    re is a high probability o ailure occurring, or that movement

    objective is not achieved at the end o the trial. Whether or not

    the current trial is flagged as ailure depends on the thresholds

    or ailure detection: the minimum number o sensors M andthe minimum number o consecutive instants ailingN. Simply

    put, i the system detects at leastMsensors ailing orNinstants

    consecutively, then it is predicted that, based on the previous

    experiences stored into the ASM, task execution will ail.

    6.1. Detection Accuracy

    Failure detection was interpreted as a simple two-class

    classification problem, characterized by the sensitivity, conside-

    red to be the probability o detecting a ailure on unsuccess-

    ul trials and, similarly, by a specificityvalue, the probability o

    rejecting ailures on successul trials. Conclusions about the per-

    ormance o the ailure detection algorithm were based on adetection scorecomputed rom sensitivity and specificity values:

    (17)

    which can be interpreted as inversely proportional to the distan-

    ce to the optimal operation point o maximal (100%) sensitivity

    and specificity - a higher detection score implies better peror-

    mance when detecting ailure conditions.

    Figure 4.ROBOTIS DARwIn-OP humanoid robot in Webots.

    6.2. Optimal Parameterization

    MandN, thresholds or the number o sensors and number o

    consecutive time steps, respectively, have a significant impact

    on the perormance o the ailure detection system. With no a

    prioriknowledge or practical know-how about how the sensor

    readings vary, it is hard to estimate the optimal values or these

    Skill memory in biped locomotionUsing perceptual informationto predict task outcome2. Parte

    robtica100,3.oT

    rimestred

    e2015

  • 7/24/2019 Revista Robotica Edio -100

    7/148

    artigocientfico

    5

    robtica

    parameters. They have opposite impact on detection sensitivityand specificity, and as such optimal parametrization oMandN

    values was achieved by plotting the ROC curve.

    7. RESULTS AND DI SCUSSION

    The robot used in the simulations is the DARwIn-OP by ROBOTIS

    [14, 26], a small open-platorm humanoid with 20 DoF (6+6 in

    both legs), using digital position controlled servos, measuring

    45.5 cm and weighting 2.9 kg. The robots body is equipped with

    a 3-axis gyro, a 3-axis accelerometer and each oot is equipped

    with our orce sensing resistors (FSR) distributed through the

    our corners. A simulated model o the robot is used in the 7.1

    Webots simulation sotware, using the ODE physics simulator,

    and can be seen in Figure 4.The system is integrated conside-

    ring the Euler method with 8 ms fixed integration step, resulting

    in a sampling rate o 125Hz. At each sensorial cycle, sensory in-

    ormation is acquired. In order to replicate real world behavior in

    the simulation sotware, noise magnitude was set at 5% in all ro-

    bot sensors (oot orce sensors, gyroscope and accelerometer).

    On the other hand, white Gaussian noise with an amplitude o

    1.5% was generated and added to the joint positions computed

    through the CPG dynamics

    7.1. Feedback Mechanism

    Locomotion is achieved in flat ground, with and without the

    proposed eedback mechanism. However, an increase in loco-

    motion quality is observed when compared to open-loop dy-

    namics o CPG locomotion. In act, there is a 54.9% decrease in

    the standard deviation in stride duration, as seen in Table 3. Inaddition, when comparing both types o locomotion, there is a

    decrease in the average trial cost and in the number o ailure

    trials. There is also a decrease in swing time when compared to

    stance duration on a gait cycle, rom 42.85% to 34.44%.

    Results o locomotion with and without eedback are sho-

    wn in Figure 5, regarding right leg movement. Specifically, top

    panel shows GRFright

    , middle panel the phase right

    , and bottom

    panel the ankle pitch motion right,j

    . Stance and swing phase

    are highlighted in all panels. Oscillator phase is mainly modified

    by the local sensory eedback during the stance phase, resulting

    in steady walking. At the end o the stance phase the leg conti-

    nues to bear a load, thus a phase delay is introduced which pro-vides enough time or the opposite leg to enter the stance pha-

    se. As soon as the opposite leg begins to support the body, the

    load on the right leg decreases accordingly. Meanwhile right leg

    oscillator phase advances and the eedback effect decreases.

    Thus, the right leg enters the swing phase. This illustrates the

    behavior o the eedback loop implemented: the stance-swing

    transition is delayed while the oot sensors are measuring non-

    zero values. Besides, as discussed in [17], adaptation o the gait

    depends on the body properties in a quantitative manner.

    Figure 6 depicts the Centre o Mass (CoM) trajectory or

    several noise magnitudes. It is notorious that open-loop CPGlocomotion is much less stable and more prone to deviation

    rom the desired path. Besides, CPGs with sensory eedback

    always travel more distance. Even when considering unrealistic

    noiseless locomotion in a simulation environment, open-loop

    CPGs have a tendency to deviate to the let. This deviation is

    Figure 5.Simulation results o locomotion in the right leg movement with () and without () eedback, during the first 4 seconds o simulation. Top panel: gait dia-

    gram (right and let leg), GRFright

    and GRFleft

    , respectively. Middle panel: phase right

    . Bottom panel: ankle pitch motionright,AnklePitch

    . The stance (grey areas) and swing

    phase are highlighted in all panels.

    Figure 6.Centre o Mass (CoM) trajectory with (-) and without (-) sensory eedback, or noise magnitude o 0, 0.5, 1.0 and 1.5% respectively. The noise seed used was the

    same in all o these situations, in order to keep comparisons as realistic as possible.

  • 7/24/2019 Revista Robotica Edio -100

    8/148

    a

    g

    en

    f

    obtca

    significantly attenuated with the implemented sensory eedba-

    ck. With noise levels o 1.5%, open-loop CPG dynamics are no

    longer able to achieve stable orward movement, instead devia-

    ting rom the path as soon as the simulation starts.

    Table 3.Mean and standard deviation o Step duration, during T = 1000 trials with

    1.5% random noise at joint-level.

    In this situation, eedback locomotion eventually alls as well,

    however is able to cover more ground distance than open-loop

    CPGs. Under the assumption that more regular and stable loco-

    motion leads to less variance in step duration, we conclude that

    the inclusion o eedback has improved locomotion quality by

    providing a more regular gait. Additionally, as described in this

    work, this type o phase eedback is useul as an anchoring pointo the data normalization process, and can be used as reerence

    when perorming ailure check.

    7.2. Failure Detection Parameterization

    The ASM prediction model proposed implements a strai-

    ghtorward ailure detection system by treating detection as

    a two-class classification problem, in terms o sensitivity and

    specificity. M and N, thresholds or the number o sensors

    and number o consecutive time steps, respectively, have a

    significant impact on the overall perormance o this ailure

    detection system. However, there is no a priori knowledge or

    practical know-how about how the sensor readings vary, andthus it is hard to estimate the optimal values or these parame-

    ters. In order to find out the best possible parameter values, the

    optimal operating conditions are achieved by assessing system

    perormance o the system using ROC analysis.

    SeveralM/Ncombinations were tested in both cases (with

    and without data normalization) ,which resulted in the ROC cur-

    ves presented in Figure 7.

    The minimal Euclidean distance to the optimal operating

    point (0,1), associated with maximal (100%) sensitivity and

    specificity values, was used as evaluation criterion - the para-

    meter pairing closest to this point achieves best perormanceand was used throughout this paper. Best perormance is thus

    accomplished with (M,N) = (12, 2) beore normalization and

    (M,N) = (22, 7) with normalization. It is noteworthy to observe

    that ater normalization, a larger number o sensors ailing or a

    greater number o consecutive instants is necessary to achieve

    detection reliability. This may be caused by the act that ater

    normalization ASM reerence values become a more generic

    representation o the movement, and local deviations rom the

    nominal values occur more requently.

    7.3. ASM training and testing

    Figure 8 depicts a subset o the 32 recorded signals used in the

    ASM training phase. Unsuccessul trials (a total o 436 in 500) are

    depicted in red and success ul ones (64 in 500) in green. The

    weighted mean (black dashed line) and the weighted stan-

    dard deviation (black solid line), beore normalization, are com-

    puted rom the successul trials. On the remaining training runs,

    56;60 successul trials and 444;440 unsuccessul trials composed

    the training set. As previously explained, in the testing phase the

    other 500 trials containing 55;63;59 successul and 445;437;441

    unsuccessul trials were used.During the testing phase, sensor data is being monitored

    online. DMP reconstruction o the memory data occurs at the

    beginning o the trial, or each sensor. At each simulation time

    step, the oscillator phase is used as reerence in order to pin-

    point the current stage o the movement (i), and the corres-

    pondent and or phaseivalue is extracted

    rom the reconstructed DMP. Then the ailure detection z-test is

    perormed using and .

    This process is illustrated in Figure 9, where the data rom 3

    different sensors (gyroscope CoM angle xx

    , Let Foot Back Let

    orce sensor GRFLFBLand the CPG oscillator phase i) is plot-ted or a successul and unsuccessul trial, during a small part

    o the simulation and including two complete gait cycles. The

    Figure 7.ROC curves or ailure detection beore (let) and ater (right) data nor-

    malization (plotted values:N2{1, 2, 3, 4, 5} andM2{6, 8, 10, 12, 14, 16} beore

    normalization andN2{3, 4, 5, 6, 7} andM2{16, 18, 20, 22, 24} ater normalization);

    the optimal operation point in each case is the closest to (0,1).

    Figure 8. Sensor traces recorded during 1000 simulation trials, or sensors #1-3 (gyroscope readings o CoM angle ), #11 (Let Foot Front Let Force sensor),

    #28 (right,KneePitch), during the first 1.6s o the simulation trials. Unsuccessul trials are depicted in red and successul ones in green, with the weighted mean drawn as a

    black dashed line and the weighted standard deviation as a black solid line.

  • 7/24/2019 Revista Robotica Edio -100

    9/148

    artigocientfico

    7

    robtica

    boundaries between movement periods are identifiable by

    the values o right

    . The light green shaded areas represent the

    confidence intervals provided by the ASM trained with the train

    subset. Deviation rom these intervals are easily perceptible in

    the case o the unsuccessul trial (which resulted in a cost o

    -0.2434 - no all occurred) but only occur momentarily in the

    successul case (with a cost o -0.4295). Failure was only detec-

    ted in the unsuccessul trial, as expected.

    Table 4. Statistical detection results averaged over 3 training and testing runs,

    beore and ater data normalization.

    7.4. Detection Accuracy

    A detection scorecomputed rom sensitivity and specificity va-

    lues as given by (17) was computed to draw conclusions aboutthe perormance o the ailure detection algorithm. Similarly to

    ASM training, ailure detection was conducted three times on

    different Gtest

    trial subsets.

    From the results presented in Table 4, it is possible to veriy

    that ASM normalization had little to no impact on ailure detec-

    tion perormance, which is in line with the delineated objectives

    or this work. Theoretically, normalization should provide no in-

    crease in algorithm perormance, as its advantages are mainly

    related to data representation and flexibility. Even so, detection

    results improved slightly ater data normalization (higher de-

    tection score). Despite achieving high sensitivity and specificity

    values in both cases, the presence o alse positive and alse ne-

    gative detections might be explained by ailure trials that have

    cost values close to the threshold - a greater distinction betwe-

    en success and ailure might be needed. Alternative reasons

    might also include a deficient selection o sensor data. A useulmetric in these situations is the alse negative and alse positive

    rates, which are computed as 1 sensitivy and 1 specificity

    respectively, and quantiy the probability o occurrence o a al-

    se negative/positive.

    7.5. Prediction Interval

    One o the main eatures o a properly trained ASM is allow

    ailure detection ahead o time during uture task executions.

    Detection o ailure conditions while executing a task occurs

    the moment several perceived sensor signals deviate rom the

    predicted ones. The prediction advance in the specific case orobot all during a trial is here quantified.

    Figure 10 presents the whisker diagram drawn rom the pre-

    diction interval tadvance

    = tfailure

    tdetection

    values. Failures were

    detected on average 3.63 seconds in advance without norma-

    lization, although a decrease to 1.90 seconds was observed a-

    ter normalization. This can partly be explained by two actors:

    firstly, the value o N increased significantly with normalization

    - deviation rom nominal values must occur or a larger interval

    beore a ailure is detected, which leads to small deviations that

    cause ailures without normalization being ignored; secondly,

    as previously mentioned, the normalized ASM also takes into

    account inter-step/period variations and thus leads to broaderconfidence intervals, and consequently a less specific sensor

    memory. An example o a sensor trace in a successul trial is pre-

    sented in Figure 9. The one-tailed t-test shows that we can con-

    clude that the average prediction interval ater normalization

    is significantly inerior to average interval beore normalization

    (T=7.58, d=658, p-value

  • 7/24/2019 Revista Robotica Edio -100

    10/148

    a

    g

    en

    f

    obtca

    The corresponding plots or the horizontal CoM angle xx

    (top panel), Let Foot Back Let (LFBL) orce sensor (middle pa-

    nel) and right leg phase right

    (bottom panel) are depicted in

    Figure 9 in orange. The robot reaches the start o the ramp at

    t 30.6 s (C, blue dotted vertical marker), where the inclination

    is still very sot. The inclination continues to get stronger and

    more notorious, as can be seen by the large GRFLFBL

    peak near

    C. The robot eventually alls at t 31.2 s (indicated byD, solid

    red vertical marker), with an increasing deviation in the valueo

    xx.

    On the other hand, ailure detection happens ahead o time.

    When data normalization is not considered ailure prediction

    occurs at t= 28.7 s (A, dotted-dashed grey vertical marker), and

    at t= 29.04 s with data normalization (B, black dashed verti-

    cal marker). This is not considered to be a relevant difference

    - a window o 2.5 and 2.16 seconds beore alling, respectively,

    is reasonable or corrective actions, although it will ultimately

    always depend on the specific context. Even so, we consider the

    benefits acquired with data normalization largely outweigh the

    limitations encountered.

    7.7. Size of Stored Data

    With conventional ASMs, sensor data enclosing theP= 10 lo-

    comotion periods corresponds to around 1600 data points

    per sample or each sensor, and or both the means and

    standard deviations have to be computed. This leads to

    2 32 1600 = 102400 values to be stored (627 kB raw data).

    Ater normalization, considering Kphase

    = 200, each mean

    and standard deviation are represented by 200 values (0.5%

    intervals), which leads to 232200 = 12800, a decrease o

    about 87.5% rom the initial data size.

    Additionally, ater DMP regression, both and

    are represented by the sets o D = 100 DMP parameters ound

    through DMP regression. This leads to 2 32 100 = 6400 va-

    lues, to which are added 3 DMP additional parameters o dam-

    ping constantsx

    , yand

    yand the 64 starting values or each

    DMP, which in all entails 6467 values (approx. 47 kB o raw data

    - a 93.7% decrease to 6.3% o the original amount). It is notewor-

    thy that this decrease ends up being dependent on the original

    number o data periods recorded, and is even greater when

    more than 10 periods are part o the original ASM. Besides, we

    intend to make the ASM continuously or regularly updated by

    the robot.

    8. CONCLUSION AND FUTURE WORK

    This work introduces systematic and automated guidelines

    to build a skill memory rom sensor data, with periodic, time

    consuming movements in mind, leading to a simplified and

    phase-indexed representation. This allows to continuously

    and periodically monitor the execution o a specific skill in

    real time and predict nonconormity (such as robot alls),

    allowing proper corrections to the robots behavior and mi-

    nimization o unwanted consequences associated with mo-

    vement ailure.

    Conclusions are inerred rom simulations on the DARwIn-

    OP robot. It is shown the potential in building a normalized ASM

    and use it in ailure detection without significant losses in detec-

    tion sensitivity and specificity - in act, i properly tuned, norma-

    lized data can be as precise, albeit with a decreased advance in

    detection. However, the authors consider the advantages brou-

    ght by data normalization to largely outweigh the small decre-

    ase in detection interval, as it adds flexibility and compactness

    to the ASMs.

    In the uture, it would be valuable to, instead o building

    reerence performance confidence intervals, the procedure

    would be inverted to arrive at reerence failure sensor oot-

    prints, in order to properly identiy specific ailure conditions,that could be useul when identiying the cause o ailure.

    These failure ASMs could be used either independently or in

    conjunction with a library o skill ASMs. On a parallel line o

    work, we have modified the CPG locomotion dynamics o our

    locomotion system [14] to be easily modulated by a small set

    o DMP systems, which are then parameterized by RL algori-

    thms with the goal o adapting locomotion to different en-

    vironments without changing the core dynamics. Ideally, we

    expect to be able to use an ASM library to properly identiy the

    current circumstances the robot is in and/or causes o ailure,

    and appropriately load the correspondent DMP to cope withthe situation.

    9. ACKNOWLEDGMENTS

    This work is unded by FEDER Funding supported by the Ope-

    rational Program Competitive Factors - COMPETE and National

    Funding supported by the FCT - Portuguese Science Founda-

    tion through project PTDC/EEACRO/100655/2008 and Project:

    FCOMP-01-FEDER-0124-022674.

    REFERENCES1. Andr, J., Santos, C., Costa, L.: Path Integral Learning o Multidimensional

    Movement Trajectories. In: Proceedings o the International Conerence o

    Numerical Analysis and Applied Mathematics 2013 (ICNAAM 2013). Rhodes,

    Greece (2013);

    2. Aoi, S., Ogihara, N., Funato, T., Sugimoto, Y., Tsuchiya, K.: Evaluating unctional

    roles o phase resetting in generation o adaptive human bipedal walking

    with a physiologically-based model o the spinal pattern generator. Biological

    Cybernetics 102(5), 373387 (2010);

    3. Chen, M., Zheng, A., Lloyd, J., Jordan, M., Brewer, E.: Failure diagnosis using

    decision trees. In: Proceedings o the 1st International Conerence on Auto-

    nomic Computing (ICAC 2004) (IEEE, 2004), pp. 3643 (2004);4. Christensen, A.L.: Fault Detection in Autonomous Robots. Phd, Universit Li-

    bre de Bruxelles (2008);

    5. Dev Anand, M., Selvaraj, T., Kumanan, S.: Fault detection and ault tolerance

    methods or industrial robot manipulators based on hybrid intelligent appro-

    ach. Advances in Production Engineering Management 7(4), 225236 (2012)

    6. Hobbelen, D., Wisse, M.: A disturbance rejection measure or limit cycle walk-

    ers: The gait sensitivity norm. IEEE Transactions on Robotics and Automation

    23(6), 12131224 (2007);

    7. Hohn, O., Gerth, W.: Probabilistic balance monitoring or bipedal robots. Inter-

    national Journal o Robotics Research 28(2), 245256 (2009);

    8. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical Mo-

    vement Primitives: Learning Attractor Models or Motor Behaviors. Neural

    Computation 25(2), 32873 (2013);

    9. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning Attractor Landscapes or Lear-

    ning Motor Primitives. Advances in Neural Inormation Processing Sys tems

    (15), 15231530 (2003);

  • 7/24/2019 Revista Robotica Edio -100

    11/148

    PUB

    10. Kalyanakrishnan, S., Goswami, A.: Learning to predict humanoid all. Inter-

    national Journal o Humanoid Robots 8(2), 245273 (2011);

    11. Karssen, J.G.D., Wisse, M.: Fall detection o two-legged walking robots using

    multi-way principal components analysis. International Journal o Huma-

    noid Robots 7(1), 7393 (2010);

    12. Kim, J., Kim, Y., Lee, J.: A Machine Learning Approach to Falling Detection

    and Avoidance or Biped Robots. In: SICE Annual Conerence, pp. 562567

    (2011);

    13. Kunihiro, O., Koji, T., , Yasuo, K.: Falling motion control or humanoid robots

    while walking. In: 7th IEEE-RAS International Conerence on Humanoid Ro-

    botics (Humanoids 2007), pp. 306311 (2007);

    14. Matos, V., Santos, C.P.: Central Pattern Generators with Phase Regulation or

    the Control o Humanoid Locomotion. In: IEEE-RAS International Coneren-

    ce on Humanoid Robots. Osaka, Japan (2012);

    15. Ogata, K., Terada, K., , Kuniyoshi, Y.: Real-time selection and generation o

    all damage reduction actions or humanoid robots. In: 7th IEEE-RAS Inter-

    national Conerence on Humanoid Robotics (Humanoids 2008), pp. 233

    238 (2008);

    16. Olson, D., Delen, D.: Advanced Data Mining Techniques. In: Springer-Verlag

    (2008);17. Owaki, D., Morikawa, L., Ishiguro, A.: Listen to bodys message: Quadruped

    robot that ully exploits physical interaction between legs. In: 2012 IEEE/

    RSJ International Conerence on Intelligent Robots and Systems, pp. 1950

    1955. Ieee, Vilamoura, Portugal (2012);

    18. P.-B.Wieber: Viability and predictive control or sae locomotion. In: 2008

    IEEE/RSJ International Conerence on Intelligent Robots and Systems

    (IROS), pp. 11031108 (2008);

    19. Pastor, P., Hoffmann, H., Asour, T., Schaal, S.: Learning and generalization o

    motor skills by learning rom demonstration. 2009 IEEE International Con-

    erence on Robotics and Automation pp. 763768 (2009);

    20. Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.: Skill learn-

    ing and task outcome prediction or manipulation. 2011 IEEE International

    Conerence on Robotics and Automation pp. 38283834 (2011);

    21. Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal,

    S.: From dynamic movement primitives to associative skill memories. Ro-

    botics and Autonomous Systems 61(4), 351361 (2013);

    22. Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.: Towards Associative Skill

    Memories. In: 12th IEEE-RAS International Conerence on Humanoid Robo-

    tics (Humanoids), pp. 309315. Osaka, Japan (2012);

    23. Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.: Online movement

    adaptation based on previous sensor experiences. In: 2011 IEEE/RSJ

    International Conerence on Intelligent Robots and Systems (IROS)

    (2011);24. Plagemann, C., Stachniss, C., Burgard, W.: Efficient ailure detection or mo-

    bile robots using mixed-abstraction particle filters. In: European Robotics

    Symposium 2006, pp. 93107 (2006);

    25. Renner, R., Behnke, S.: Instability detection and all avoidance or a huma-

    noid using attitude sensors and reflexes. In: 2006 IEEE/RSJ International

    Conerence on Intelligent Robots and Systems (IROS), pp. 29672973

    (2006);

    26. ROBOTIS: ROBOTIS DARWIN-OP e-Manual v1.23.00. http://support.robotis.

    com/en/product/darwin-op.htm (Aug. 2014);

    27. Santos, C.P., Matos, V.: CPG modulation or navigation and omnidirectional

    quadruped locomotion. Robotics and Autonomous Systems 60(6), 912

    927 (2012);

    28. Ruiz-del Solar, J., Moya, J., Parra-Tsunekawa, I.: Fall detection and man-

    agement in biped humanoid robots. Proceedings o the IEEE Inter-

    national Conerence on Robotics and Automation (ICRA 2007) 2,

    3323 3328 (2010).

  • 7/24/2019 Revista Robotica Edio -100

    12/148

    a

    g

    en

    f

    obtca

    JooMessias1,RodrigoVentura1,Pedro

    Lima1,JooSequeira1,PauloAlvito2,CarlosMarques2,Pa

    uloCarrio2

    1InstituteforSystemsandRobotics,Instituto

    SuperiorTcnico,UniversidadedeLisboa,{

    jmessias,rodrigo.ventura,pal,jseq}@isr.ist.utl.pt

    2IdMindEngenhariadeSistemas,Lda.,

    {palvito,cmarques,pcarrico}@idmind.pt

    Abstract Social Robotics is a rapidly expanding field o resear-

    ch, but long-term results in real-world environments have been

    limited. The MOnarCH project has the goal o studying the long-

    term social dynamics o networked robot systems in human

    environments. In this paper, we present the MOnarCH robotic

    platorm to the research community. We discuss the constraints

    involved in the design and operation o our social robots, and

    describe in detail the platorm that has been built to accomo-

    date the project goals while satisying those restrictions. We alsopresent some preliminary results o the navigation methodolo-

    gies that are used to control the MOnarCH robotic platorms.

    I. INTRODUCTION

    Designing robots or social purposes has been a trendy topic

    or the last decades. The literature in this area is huge and has

    yielded valuable lessons [1], [2]. However, experiments where

    robots and people coexisted or long periods o time, outside

    lab environments, meaning periods longer than the transient

    in the dynamics o human expectations, have seldom been

    reported.MOnarCH1 (Multi-Robot Cognitive Systems Operating in

    Hospitals, [3]) is an ongoing FP7 project with the goal o intro-

    ducing (social) robots in real human social environments with

    people and studying the establishment o relationships betwe-

    en them.

    The environment that acts as a case-study or the project is

    the pediatric ward o an oncological hospital (IPOL). We intend

    to introduce a team o robots in that environment, that coope-

    ratively engage in activities aiming at improving the quality o

    lie o inpatient children.

    Key scientific hypotheses underlying the MOnarCH projectresearch are that (i) current technologies enable the acceptance

    o robots by humans as peers, and (ii) interesting relationships

    between robots and humans may emerge rom their interac-

    tion. These hypotheses are supported by extensive existing

    work on (i) autonomous and networked robotics, enabling

    sophisticated perception and autonomous navigation, and (ii)

    interaces or human-robot interaction and expressive robots.

    MOnarCH addresses the link between these two areas, having

    robots playing specific social roles, interacting with humans un-

    der tight constraints and coping with the uncertainty common

    in social environments.

    The constraints o the social environment partially translate

    into physical constraints on the robot platorms, such as its ma-

    ximum allowable dimensions and velocities, and also behavio-

    1 Reerence: FP7-ICT-2011-9-601033. Website: http://monarch-p7.eu/

    ral constraints that can reflect on the methods that are used to

    control those platorms, such as its navigation algorithms.

    In this paper we present the MOnarCH robot platorm to the

    research community. The platorm is well-suited to a wide range

    o applications that extend beyond the MOnarCH case-study:

    combining different high-level actuators and sensors, the base

    can be used in the ofice, domestic or industrial environments

    that are considered in the RoboCup@Home or @Work compe-

    titions, or example.This document is organized as ollows. We will first provide

    an overview o the constraints that were taken into account in

    the design o this platorm (Section II). We will then describe the

    robot hardware (Section III); and also o the methods that were

    used to carry out its navigation (Section IV).

    II. CONSTRAINTS ON ROBOT DESIGN & CONTROL

    The MOnarCH project has a significant component o human-

    robot interaction (HRI) to be carried out in a very specialized

    social environment, namely that o IPOL pediatr ic ward. The na-

    ture o this environment implies concerns and constraints onthe type o robots to be used, namely,

    The range o allowable linear and angular velocities;

    The volumetry o the ull robot;

    Aesthetics;

    Maximum height o the platorm;

    Payload;

    Power supply autonomy;

    Sel-saety eatures;

    Human-oriented saety eatures.

    Moving naturally is an essential capability or a robot to be ableto survive in a social environment. In a sense, i a robot mo-

    ves naturally, with velocities in the same order as those used

    by humans moving, then other HRI interaces can be ocused

    A robotic platformfor edutainment activitiesin a pediatric hospital

    robtica100,3.oT

    rimestred

    e2015

    Figure 1. A comparative study o linear velocities or common off-the-shel

    platorms, and also or the MOnarCH robot platorm.

  • 7/24/2019 Revista Robotica Edio -100

    13/148

    artigocientfico

    11

    robtica

    and their behaviour does not need to depend on the motion

    o the robot. Motion in 2D (as is the case in MOnarCH) is com-

    pletely described by linear and angular velocities and hence the

    ability to combine these two velocities determines the baseline

    expressivity o the movement. This is a key aspect when desig-

    ning a mobile platorm or socially embedded HRI purposes, as

    in MOnarCH.

    For example, in what concerns linear velocity, i a social ro-

    bot playing with a child needs to ask him/her to wait becauseit cannot move as ast as the child then there is a significant

    risk that the child looses interest in playing with the robot.

    Moreover, uture interactions may be compromised because

    the child may eel that the robot can not do a simple thing

    such as moving the way he/she does. As or angular velocity,

    its combination with the linear velocity determines i the robot

    ollows the child graceully, i.e., with appropriate expressivity.

    Motion capabilities are thus a basic eature that potentiates

    the effect o all the other HRI interaces, namely voice, vision,

    grasping, etc.

    Differential drive mobile platorms can be ound off-theshelin a wide variety o ormats. Figure 1 shows the maximum va-

    lues or the linear velocity o common robots. An adult moving

    normally in an indoor environment reaches requently velocities

    in the range o 2 to 2.5 m/s. Under teens children move slower

    than adults when walking but may reach similar speeds when

    running.

    The physical presence o the robot has a large influence in

    the way bystanders perceive the robot and its intentions. The

    physical dimensions o the robot must not be perceived by chil-

    dren neither as a menace nor as a physically diminished social

    entity.

    The average height o an under teen (11 year) is around1450mm and hence this determines the maximum height o

    a MOnarCH robot. The volumetry is selected in order to be so-

    cially acceptable and dynamically stable (not tilting under high

    accelerations/decelerations). The ability to carry a large number

    o sensors and interaces i a key eature in a social robot, this

    meaning that payload is an important eature. Moreover, such

    payload has to comply with the volumetry/height/aesthetics

    concerns above.

    Power supply autonomy severely constraints HRI capabili-

    ties i the robot requires too much time to recharge batteries or

    recharging occurs at an inadequate time. An HRI aware batterymanagement system limits the situations in which children may

    perceive the robot as a flawed social entity.

    O extreme importance are the saety eatures in the plat-

    orm. In addition to basic physical saety o the people handling

    the robots, saety concerns are directly related to Ethics issues

    and o paramount importance when in social environments

    such as that at IPOL.

    Saety measures are embedded at both hardware and sot-

    ware levels. Unexpected collisions trigger can be detected at

    hardware level and bypass all decisions levels to stop the robot.

    Each o the sotware layers has their own saety measures.

    III. ROBOT DESCRIPTIONThe kinematics o a robotic platorm can greatly impact the type

    o social interactions that it can be expected to perorm. As the

    user case scenarios or the MOnarCH were being defined and

    the constraints posed by the environment o operation were

    being discussed, it became evident that the mobility capability

    o the robots could be a critical issue to the achievement o pro-

    ject goals. Based on this evidence, we have opted to develop an

    omnidirectional robot platorm based on our Mecanum whe-

    els, actuated by our independent motors. The use o this kind

    o kinematics substantially increases the maneuverability and

    perormance o the platorm. The development and assemblyo MOnarCH robots has been divided in two phases. The first

    phase includes the platorm base mechanics with the motors,

    batteries and low-level electronics. The resulting platorm can

    be adapted to serve different applications. A second phase, whi-

    ch specifically targets the MOnarCH scenario at IPOL, includes

    the installation o high-level devices mounted over an upper

    structure and the design o an outer shell. For this purpose, two

    types o robots are being developed. Perception Oriented (PO)

    robots will have as primary goal to act as active sensors. Social

    interaction Oriented (SO) robots will target social interactions. As

    aorementioned, the SO and PO robots are built over the same

    platorm base, differing in the onboard equipment and externalappearance. An assembled platorm is shown in Figure 2. At this

    time, the first phase o robot development has been concluded.

    A. MOnarCH Robot Platform Base Main Features

    All the robot platorms include the same basic configuration

    which can be described through the ollowing design eatures:

    Body: Polyacetal -POM (PolyOxyMethylene) 10 mm thick

    plates; rigid PVC 4 and 6 mm; and transparent polycarbona-

    te 2mm;

    Robot kinematics: Omnidirectional 4 Mecanum wheels;

    Robot weight: 24 Kg (with batteries); Payload capacity: 30 Kg;

    Maximum Linear Speed: 2.5 m/s;

    Maximum Angular Speed: 600 o/s;

    Acceleration: 1 m/s2 (low-level programmed);

    Emergency Stop Acceleration: -3.3 m/s2 (low-level pro-

    grammed);

    Mini-ITX computer Board with CPU, RAM and SSD;

    Batteries:

    Supports up to 4 batteries at the same time,

    Capacity: (12v) 17-20 Ah 5.5 kg each,

    Chemistry: lead acid or LiFePO4 block 12V batteries with

    PCM,

    Autonomy: 4 to 6 hours,

    Actuators: 4 DC motors or locomotion;

    Sensors:

    Battery level,Figure 2. Assembled MOnarCH robot platorm.

  • 7/24/2019 Revista Robotica Edio -100

    14/148

    a

    g

    en

    f

    obtca

    Motor encoders,

    Omnidirectional bumper,

    4 ground sensors,

    12 sonars,

    Laser Range Finder (5m range),

    Temperature sensors to measure the motors and drivers

    temperature,

    Temperature and humidity sensor to measure the envi-

    ronment conditions, Installed Electronics Boards:

    Sensor & Management Board,

    Motor Control Board,

    Sonars Board,

    Ground Sensor Board,

    IMU Board.

    B. MOnarCH Robot Upper Body

    The upper body o the platorm will include different high-le-

    vel devices. Some o these devices are still being defined and

    need urther experiments to validate their use in the MOnarCHrobots.

    Two depth cameras with microphone (Kinect type);

    Three servo motors to actuate two robot arms and a head

    (only SO robots);

    One 10 touch-screen (only SO robots);

    One pico-projector (only SO robots);

    One RFID reader;

    One Hagisonic StarGazer localization sensor;

    Audio amplifier with speakers;

    LEDs on the robot body;

    Capacitive cells on the robot body;

    C. Sensors

    The robot is equipped with perception, navigation, interaction,

    environment and low-level saety sensors. For locomotion the

    robot uses encoders to control the velocity o the motors, and

    or navigation it uses an inertial sensor to determine the angular

    speed and a laser range finder to detect obstacles and the ge-

    ometry o the environment. For perception and interaction, the

    robot will use a depth camera or people tracking, ace analysis

    and body gesture recognition, and also microphones. For envi-

    ronmental sensing the robot will be equipped with temperatu-

    re and humidity sensors. Finally, the bumpers and sonar sensorsprovide low-level saety sensing. To increase the robustness o

    localization, some other sensors/solutions are also being evalu-

    ated, e.g., RFID, IR and UWB.

    We now list the sensors that are used onboard.

    1) Navigation Sensors:The robot will navigate in the environ-

    ment while making a usion o measures provided by different

    sensors. The robot will be able to use a depth camera, a laser

    range finder, encoders odometry and the IMU sensor to estima-

    te its position and orientation. For obstacle avoidance, mapping

    and localization it can use the laser and sonar sensors.

    Inertial Sensor IMU: MPU6050;

    Function: Orientation estimation;

    Position: In the robots kinematic center;

    Front 2D laser range-finder: Hokuyo URG-04LX-UG01;

    Function: Mapping, localization and obstacle avoidance;

    Position: Frontal and horizontal;

    Sonar Sensors: Maxbotix EZ4;

    Function: Obstacle detection (e.g.: glass wall or objects);

    Position: Ring o 12 sonars around the robot;

    Depth camera: Asus Xtion;

    Function: Obstacle detection, space geometry analysis;

    Position: Top o the robot pointing to the floor;

    Sensors being evaluated: RFID, UWB, and ToF 3D cameras.

    2) Perception and Interaction Sensors:The robot will make use o

    a depth camera or people detection and sense visual user ee-dback or natural user interaction. It can also be used to detect

    changes in the surrounding environment. The perception sen-

    sors are the ollowing.

    Depth camera: Asus Xtion;

    Function: Interaction, people and gesture recognition;

    Position: Top and looking ahead;

    Microphone array: Asus Xtion;

    Function: Sound eedback or natural user interaction;

    Position: Turned to the users;

    10 Touchscreen (or tablet);

    Function: User eedback on specific contents;Position: Turned to the user;

    Capacitive sensors;

    Function: User eedback on specific points;

    Position: Under the shell;

    Other sensors still being evaluated: RFID and UWB.

    3) Environment Sensors:The environment sensors are used to

    detect environment variations that can affect the normal ope-

    ration o the robot. These sensors are: temperature sensor and

    humidity sensors.

    4) Low-level Safety Sensors:The undamental sensors or low-

    level saety are the sonar sensors, internal temperature sensors,

    motor current sensing and the bumper ring switches.

    D. Actuators

    For actuation, the robot is equipped with locomotion and inte-

    raction devices.

    1) Locomotion Actuators: For locomotion, this omnidirec-

    tional platorm uses our motors to drive its Mecanum wheels.

    Four Maxon RE 35 90W 15V motor with a Maxon GP 32

    HP 14:1 Gearbox and encoder HEDS 5540 with 500 pulses;

    Function: Provide a omnidirectional locomotion sys-

    tem to the robot;

    Position: In the platorm, connected to the drive system.2) Interaction Actuators: Here ollows the list o interaction

    devices. The robot is able to display the contents on the interac-

    tion monitor or project them over a surace.

    10 Monitor with Touchscreen (or tablet);

    Function: Interaction with displayed contents (e.g., AR

    contents);

    Position: Front o the robot;

    Video Projector (pico type);

    Function: Projection o contents;

    Position: Projecting to the ront o the robot;

    Arms and head servo motors;

    Function: Human robot interaction;

    Position: Mounted on the robot body;

    Body LED lights;

    Function: Show robot expressions;

    Position: Mounted on the robot body;

  • 7/24/2019 Revista Robotica Edio -100

    15/148

    artigocientfico

    13

    robtica

    Stereo Speakers;

    Function: Content playback; robot communication;

    Position: Turned to the user.

    E. Electronic Power Architecture

    The robot can be powered by several 12V 17-20AH batteries. It

    uses one 12V battery to deliver power to the motor drivers. Up

    to 3 other batteries to provide energy to all the other compu-

    ters and electronic components. An individual charging unit isused inside the robot to charge each battery. The batteries and

    the power in the robot is managed by the Sensor &Managment

    Board that measures the battery levels, battery charge, and also

    controls the units (motors, sensors, actuators and inverters)

    powered by the batteries. All onboard electronic systems can

    be powered by the battery system. The ATX computer power

    supply provides regulated voltages (rom 5V to 12V). Figure 3

    depicts the onboard power architecture. Several DC-DC conver-

    ters are also be used to provide the necessary regulated power

    or other DC-DC powered devices.

    F. Low-level Communication Architecture

    The onboard robot navigation computer communicates with

    the two boards (Sensor& Management Board and the Motor

    Controller Board) using 2 USB ports. In each board there are

    USB-to-RS232 converters that convert the USB data packages

    to serial RS232 packages or the board controllers. Each board

    controller communicates with the other allowing the exchan-

    ge o inormation between them. This communication chan-

    nel allows the execution o low-level behaviours, or example,

    react against an imminent collision, enter into charging mode

    with motors shut down, reduce the motors velocity when the

    batteries are low, or react to changes that can affect the robotsoperation, which is undamental to the improvement o the

    overall system dependability. The main controller rom the

    Sensor&Management Board communicates with other micro-

    controllers using Inter-Integrated Circuit (I2C) communication

    ports. The main controller acts as the master and the other

    microcontrollers behave like slaves. The Sensor&Management

    Board controls the battery management and charge, sensor

    acquisition, devices actuators and sonar acquisition boards. The

    Motor Controller Board connects to the PI Motor controllers and

    also to temperature sensors. Each controller has a low-level ault

    diagnosis that will check the operation state o each microcon-troller and also monitor all the communication between the

    devices. The low-level communication architecture is depicted

    in Figure 4.

    G. High-level Communication Architecture

    The MOnarCH robot connects to a local network. A wireless

    Ethernet router provides the IP address to the onboard comput-

    ers and allows the exchange o messages between them. The

    Navigation Computer is connected to the navigation sensors

    and to the platorm board controllers using USB ports. The In-

    teraction Computer connects to the Projector using a HDMI

    output and to the Sound System using the audio line out, and

    will use USB connections to connect to the Interaction Board

    that will control the body LEDs, the capacitive sensors and the

    upper moving parts o the shell (arms and head). The high-level

    communication architecture is depicted in Figure 5.

    IV. NAVIGATION

    For navigation we use a standard occupancy grid map [4], obtai-

    ned rom off-the-shel SLAM sotware2This map is used both or

    motion planning, using Fast Marching Method (FMM) [5], and

    localization, using off-the-shel sotware3

    .Motion planning is based on a FMM approach [5]. Unlike

    other methods based on explicit path planning, e.g., RRT [6],

    ollowed by path tracking, we adopt here a potential field ap-

    proach. Given a map constraining the workspace o the robot,

    together with a easible goal point, a (scalar) potential field u(x),

    orx2R2, is constructed such that, given a current robot location

    x(t), the path towards the goal results rom solving the ordinary

    differential equation x(t)= u(x). In other words, given an arbi-

    trary current location o the robotx, the robot should ollow a

    gradient descent o the field u(x). Using potential fields or mo-

    tion planning was proposed in the 80s [7] but they were ound

    to be prone to local minima [8]. This problem can be solved by

    the use o harmonic potential fields [9], however it does not gua-

    2 GMapping (http://wiki.ros.org/gmapping, retrieved 16-Oct-2013).

    3 AMCL, (http://wiki.ros.org/amcl, retrieved 16-Oct-2013).

    Figure 3. MOnarCH robot power architecture.

    Figure 4. Low-level communication architecture.

    Figure 5. High-level communication architecture.

  • 7/24/2019 Revista Robotica Edio -100

    16/148

    a

    g

    en

    f

    4

    obtca

    rantee absence o local minima at the rontier. Thus, we decided

    to employ a more recent approach [10]. The use o FMM provi-

    des: (1) local minima ree path to goal across the gradient, (2)

    allows the specification o a spatial cost unction, that introduces

    a sot clearance to the environment obstacles, and (3) does not

    require explicit path planning and trajectory tracking.

    The FMM is based on the Level Set theory, that is, the re-

    presentation o hypersuraces as the solution o an equationu(x)= C. The solution o the Eikonal equation

    (1)

    wherex2 is a domain, the initial hypersurace, andF (x)

    is a cost unction, yields a field u(x) [5]. The level sets o this

    field define hypersuraces u(x)=Co points that can be reached

    with a minimal cost o C. The path that minimizes the integral

    o the cost along the trajectory can be shown to correspond to

    the solution o x(t)= u(x) with the initial condition ox(0)

    set to the initial position and the initial condition u() = 0 set atthe goal4. Intuitively it corresponds to the propagation o a wave

    ront, starting rom the initial hypersurace, and propagating

    with speed 1/F(x). This path minimization is usually considered

    a continuous space version o the Dijkstras algorithm. FMM is a

    numerically eficient method to solve the Eikonal equation or

    a domain discretized as a grid. Its computational complexity is

    O(NlogN), whereNis the total amount o grid cells, which is

    comparable to Dijkstras algorithm or sparse graphs.

    Since FMM employs a grid discretization o space, it can be

    directly applied to the occupancy grid map, where domain

    corresponds to the ree space in the map. As cost unction we use

    (2)

    4 is set to the boundary o an arbitrarily small ball around the goal.

    whereD(x) is the distance to the nearest occupied cell in the map

    andDmax

    is a threshold to clip the cost unction. This cost unction

    induces a slower wave propagation near the obstacles, and thus

    making the optimal path to display some clearance rom them.

    The clipping atDmax

    prevents the robot to navigate in the midd-

    le o ree areas, regardless o their size. TheD(x) unction can be

    directly obtained using an Euclidean Distance Transorm (EDT) al-

    gorithm taking the occupied cells as boundary. Figure 6 illustratesthe results o this approach: the cost unction or the given map,

    allowing a certain clearance rom mapped obstacles, is shown in

    (a), rom which, given a goal location, a field u(x), shown in (b)

    is obtained (the goal corresponds to the minimum value o the

    field), and in (c) the real path taken by the robot is shown.

    Using FMM on a previously constructed map does not ac-

    count or unmapped or moving obstacles. Thus, the fieldv(x)

    used to control the robot in real-time results rom combining

    the field u(x) obtained rom FMM with a repulsive potential field

    r(x) o obstacles sensed by the LRF. This repulsive field is obtained

    rom running EDT on a small window around the robot, such thatthe value o r(x) corresponds to the minimum distance between

    any obstacle and pointx. The fields are combined using

    (3)

    where is a parameters speciying the strength o the repulsive

    field (higher values o tend to increase the clearance rom per-

    ceived obstacles). Note that (3) destroys the property o a single

    local minima o the field. We acknowledge the need to comple-

    ment our navigation approach with a mechanism or detecting

    and coping with stuck robot situations, such as replanning or

    asking or help.

    The method described above have proven to be very effec-

    tive, even in cluttered environments ull o people crowded

    around the robot. We have demoed this method on a public

    event the European Researchers Night (September 27th,

    (a) F(x) (b) u(x) (c) real path

    Figure 6. Motion planning using FMM: (a) the cost unction F(x) (darker means a higher cost), (b) the solution field u(x) (level curves) together with the gradient descent

    x(t)= u(x) solution (rom the right to the let), and (c) the real path traveled by the robot.

    Figure 7.Trajectory o ISR-CoBot autonomously navigating along the IPOL premises. The task consisted in a sequence o waypoints.

  • 7/24/2019 Revista Robotica Edio -100

    17/148

    PUB

    2013, in the Pavilion o Knowledge science museum, Lisbon) where

    people rom all ages crowded around the robot.

    We have also tested this method at IPOL, where we run exten sive

    autonomous navigation tasks during several hours (Figure 7). These tests

    were perormed on a previous platorm [11]. Even though that previous

    platorm is differential, minor modifications on the guidance method

    were required to adapt it to the MOnarCH platorm. A video showcasing

    the application o these methods to the autonomous navigation o the

    MOnarCH platorm can be ound at: http://tinyurl.com/olounbn.

    V. CONCLUSIONS AND FUTURE WORK

    In this work, we have introduced the robotic platorm that was develo-

    ped in the context o the MOnarCH project. This development explicitly

    took into account a set o constraints that are induced by the social na-

    ture o the projects case-study environment, namely, the pediatric ward

    at IPOL. We described these constraints; detailed the hardware that was

    (and is being) included in the robotic platorm; and presented prelimi-

    nary results regarding the methods that were developed or reliable ro-

    bot navigation.The qualities o the MOnarCH platorm make it a good choice or

    other applications beyond the projects case-study, such as the Robo-

    Cup@Home or @Work scenarios.

    As immediate uture work, we will integrate the high-level sensors

    and devices discussed in Section III, as part o the second phase o robot

    development. This will endow the robot platorm with HRI capabilities,

    establishing a basis or the uture development o the socially-aware in-

    teraction methods that are crucial to the outcome o the project.

    ACKNOWLEDGMENTS

    Work supported by FCT projects PEst-OE/EEI/LA0009/2013 and FP7-ICT-9-2011-601033 (MOnarCH).

    REFERENCES

    [1] C. Breazeal, Designing sociable robots. The MIT Press, 2002;

    [2] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, The iCub humanoid robot: an open

    platorm or research in embodied cognition, in Procs. of the 8th Workshop on Performan-

    ce Metrics for Intelligent Systems, PerMIS 08, 2008, pp. 5056;

    [3] J. Sequeira, P. Lima, A. Safiotti, V. Gonzalez-Pacheco, and M. A. Salichs, MOnarCH: Multi-

    robot cognitive systems operating in hospitals, in ICRA 2013 Workshop on Many Robot

    Systems, 2013;

    [4] A. Eles, Using occupancy grids or mobile robot perception and navigation, IEEE Com-

    puter, vol. 22, no. 6, pp. 4657, 1989;

    [5] J. A. Sethian, Fast marching methods,SIAM review, vol. 41, no. 2, pp. 199235, 1999;

    [6] S. LaValle and J. Kuffner Jr, Randomized kinodynamic planning,The International Journal

    of Robotics Research, vol. 20, no. 5, pp. 378400, 2001;

    [7] J. Borenstein and Y. Koren, Real-time obstacle avoidance or ast mobile robots, IEEE

    Transactions on Systems, Man and Cybernetics , vol. 19, no. 5, pp. 11791187, 1989;

    [8] Y. Koren and J. Borenstein, Potential field methods and their inherent limitations ormobile robot navigation, in Proceedings of the IEEE International Conference on Robotics

    and Automation (ICRA-91), 1991, pp. 13981404;

    [9] J. Kim and P. Khosla, Real-time obstacle avoidance using harmonic potential unctions,

    IEEE Transactions on Robotics and Automation, vol. 8, no. 3, pp. 338349, 1992;

    [10] S. Garrido, L. Moreno, D. Blanco, and M. L. Munoz, Sensor-based global planning or

    mobile robot navigation, Robotica, vol. 25, no. 2, pp. 189199, 2007M

    [11] R. Ventura, New Trends on Medical and Service Robots: Challenges and Solutions, ser. MMS.

    Springer, 2014, ch. Two Faces o Human-robot Interaction: Field and Service robots.

  • 7/24/2019 Revista Robotica Edio -100

    18/148

    obtca

    empeende

    e

    n

    a

    Frederico Lucas o empreendedor responsvel pelo projeto Novos

    Povoadores, que presta apoio a empresrios que pretendammigrar com as suas amlias para territrio rural. Nascido

    em Lisboa, em 1972, o autor dos conceitos territoriais desoftwareterritorial e economia DNS. Territorial Developer

    em projetos de dinamizao territorial em www.inoex.pt e considerado como um visionrio de um uturo com grandes

    mudanas e criao de novos paradigmas.

    Sentido da vida

    A robotizao das bricas tem sido ob-

    servada com grande reserva por uma

    parte significativa da populao mundial.

    O filme Os tempos modernos de CharlieChaplin no compreendido por todos.

    A histria do mundo no se az com

    recordistas de linhas de montagem. So

    tareas banais e repetitivas, que algum

    equipamento ter a capacidade de

    executar.

    Complexas so as atividades que exi-

    gem cultura, sensibilidade e conscincia.

    Valores que uma mquina no saber in-

    terpretar, e que dierenciam cada um de

    ns, consequncia dos nossos percursose contextos.

    A robotizao um aliado do Ser Hu-

    mano, porque o liberta de tareas manu-

    ais. Conduz a Humanidade para as tareas

    inteletuais, a sua vocao.

    Na Europa, este processo decorre h

    vrias dcadas, e os elevados nveis de

    desemprego espalham algum receio na

    sociedade. Estamos a alhar no essencial:

    legtimo e natural, que a gerao dos

    nossos filhos venha a trabalhar quatro

    horas por dia. E que essas horas sejamtempo de criao, em oposio a tareas

    burocrticas ou repetitivas, mas sempre

    mal pagas.

    O poder de compra descer em con-

    traciclo com o poder da mente.

    As fbricas retiraram milhes

    de chineses dos campos,os robots esto a entrarnas fbricas e os operrios

    no querem voltar a seragricultores.

    Joo Vale de Almeida,

    Diplomata

    Complexas so as atividadesque exigem cultura, sensibilidade

    e conscincia. Valores que uma

    mquina no saber interpretar,e que diferenciam cada um de ns,consequncia dos nossos percursos

    e contextos. A robotizao umaliado do Ser Humano, porque

    o liberta de tarefas manuais.Conduz a Humanidade para

    as tarefas inteletuais, sua vocao."

    As bricas que outrora poluram rios,

    estaro no uturo a azer o processo in-verso: a recolher resduos nesses rios e a

    produzir capas para iPhones com esses

    detritos, num modelo conhecido por

    upcycling.

    Esses rios regressaro sua uno:

    espao de lazer para o reino animal, in-

    cluindo Seres Humanos, que deixaram

    de os requentar por falta de tempo.

    Pelo exposto, sou um deensor da

    robotizao das indstrias. Estejam os

    robotsao servio da pigmentao de car-

    roarias ou a filtrar mensagens de spam

    nas nossas caixas de correio.

    Acredito que a Europa, antes da

    China, saber trilhar este caminho, re-

    centrando a Humanidade no Sentido da

    Vida.

  • 7/24/2019 Revista Robotica Edio -100

    19/148

  • 7/24/2019 Revista Robotica Edio -100

    20/148

    obtca

    A

    MA

    E

    N

    AdrianoA.Santos

    DepartamentodeEngenhariaMecnica

    InstitutoPolitcnicodoPorto

    Automatizao de sistemasde bombagem

    INTRODUOA automatizao de uma rede de rega

    ou distribuio de gua pode, em geral,

    ser realizada em escalas distintas. Se nos

    sistemas de rega a mxima automatiza-

    o se consegue atravs da programa-

    o das regas, da ertilizao e outros

    aspetos relacionados com a recolha de

    dados agrometeorolgicos e de cultivo,

    nos sistemas de distribuio a mxima

    automatizao consegue-se atravs do

    controlo e monitorizao dos ativos re-motos como as estaes de bombagem,

    de elevao e das estaes de tratamen-

    to. A um nvel mais baixo, o controlo po-

    der ser realizado localmente atravs de

    um programador que, ao nvel da rega,

    controla cada um dos hidratantes e o

    conjunto de vlvulas e eletrovlvulas. Ou

    seja, pode-se automatizar uma rede de

    distribuio de gua, quer seja de rega

    quer seja domstica, recorrendo a um

    computador central que, com base, por

    exemplo, num sistema SCADA (Supervi-sory Control and Data Acquisition), contro-

    la os hidratantes, as vlvulas e os sistemas

    remotos.

    Por ltimo, e no menos importante,

    as estaes de bombagem que tambm

    podem e devem ser reguladas e contro-

    tizao completa da estao de bomba-gem, mediante a variao de velocidade

    das bombas, sensores de presso e cau-

    dalmetros controlados por um autma-

    to programvel, PLC (Programmable Logic

    Controller).

    AUTMATO PROGRAMVEL

    Um controlador lgico programvel, nor-

    malmente conhecido como PLC, um

    equipamento idealizado para o controlode processo tendo como base instru-

    es lgicas programadas atravs de um

    software especfico. So equipamentos

    de reduzidas dimenses que, instalados

    no quadro de comando, permitem con-

    trolar o processo e a comunicao com

    o exterior e receber ordens atravs dos

    canais de comunicao o que permite

    a configurao de sistemas de teleco-

    mando e de telemedida, dando lugar

    ao comando centralizado. Estes, embora

    possam possuir capacidades muito supe-riores s exigidas para este tipo de con-

    trolo, apresentam uma elevada capaci-

    dade de processamento, uncionamento

    em modo local, inteligncia distribuda e

    comunicao via rdio ou por cablagem

    (concentrador ou hub).

    Estes elementos, praticamente indis-

    pensveis nos processos de automatiza-

    o, so caraterizados por uma estrutura

    modular que permite o crescimento de

    acordo com as necessidades do proces-so, so robustos, possuem elevada capa-

    cidade para a implementao de progra-

    mas complexos, acilidade de correo

    e modificao dos programas e baixo

    custo (Figura 1). Os PLCs podem ser, per-

    ladas, adaptando-se s variaes de cau-dal e de presso da rede. Estas so cons-

    titudas, normalmente, por uma ou mais

    bombas encarregadas de transormar a

    energia mecnica recebida dos sistemas

    de acionamento em energia hidrulica.

    A energia hidrulica ser, ento, utiliza-

    da para aspirar gua subterrnea de um

    poo, elevar gua de uma cota inerior

    para uma cota superior ou injetar uma

    presso adicional na instalao. Assim,

    e pelo que oi anteriormente exposto,pode-se dizer que a automatizao mais

    bsica de um sistema de bombagem

    consiste no arranque e paragem auto-

    mtica segundo uma regulao horria.

    A automatizao mais completa consis-

    tir no controlo automtico do arranque

    e paragem da bomba, monitorizao da

    abertura e echo das vlvulas, tempos de

    abertura e echo das mesmas, nvel de

    gua, entre outros.

    Por outro lado h que considerar

    que a aspirao e a elevao de cotas,do ponto de vista uncional, trabalha

    com parmetros fixos, altura e caudal, e

    com pequenas oscilaes devido va-

    riao do nvel de gua e, como tal, no

    necessitam de um sistema de regulao

    de caudal, trabalhando sempre perto da

    seu rendimento mximo. Ao contrrio do

    que se passa nos sistemas descritos ante-

    riormente, as redes de distribuio sobre

    presso esto sujeitas a variaes de cau-

    dal ao longo da sua utilizao, pelo queestas necessitaro dum sistema de regu-

    lao de caudal que adeque a presso e

    o caudal, impulsionado pelas bombas,

    procura instantnea da rede. Neste caso,

    uma boa regulao requer uma automa-

    Figura 1. Autmato programvel (PLC), mdulo de comunicao, CPU e mdulo digital de I/O (Siemens).

    "A automatizao de uma

    rede de rega ou distribuio degua pode, em geral, ser realizadaem escalas distintas.

    Se nos sistemas de regaa mxima automatizao

    se consegue atravsda programao das regas,

    da fertilizao e outros aspetosrelacionados com a recolha

    de dados agrometeorolgicose de cultivo, nos sistemas de

    distribuio a mxima automatizaconsegue-se atravs do controlo

    e monitorizao dos ativosremotos como sejam as estaes

    de bombagem, de elevao e dasestaes de tratamento."

  • 7/24/2019 Revista Robotica Edio -100

    21/148

    AUTOMAOECONTROLO

    19

    robtica

    eitamente, utilizados nas estaes de

    bombagem no controlo do arranque e

    paragem das bombas, na abertura e e-

    cho das eletrovlvulas, no nvel de aspi-

    rao e nvel dos depsitos de armazena-

    mento, na regulao do caudal, presso,

    entre outros.No que se reere ao uncionamento

    dos autmatos programveis este rela-

    tivamente simples. As entradas e sadas

    do sistema so fisicamente ligadas aos

    dispositivos de campo das mquinas,

    aquisio de sinais, e aos processos a

    controlar, envio de sinais.

    As entradas transerem para a uni-

    dade central do autmato inormaes

    sobre o uncionamento do processo que

    podem ser sinais discretos ou analgicos

    (pressstatos, sondas de nvel, transduto-res de presso, e outros). O CPU, por sua

    vez, em uno do programa lgico car-

    regado, envia para as sadas inormaes,

    tambm elas discretas ou analgicas,

    para eetuar o controlo dos dispositivos

    (rels das bombas, solenides, aciona-

    mento de vlvulas, variao de veloci-

    dade das bombas, entre outros). Assim,

    e durante o tempo de uncionamento

    deste, o ciclo de trabalho do autmato

    executar trs aes cclicas, preponde-rantes para o controlo do processo como

    a leitura das variveis de entrada, a exe-

    cuo do programa lgico de controlo e

    a escrita das variveis de sada, como se

    depreende do esquema representado na

    Figura 2.

    Esta leitura sequencial das entradas,

    execuo do programa e atualizao das

    sadas conhecida como ciclo de varri-

    mento (Scan) onde as entradas digitais

    do tipo On/Off, permitem ler o estado

    dos pressstatos, contactores, botes

    de presso, comutadores, entre outros,

    ou seja, o estado dos equipamentos li-

    gados (On) ou desligados (Off). Por sua

    vez, as entradas analgicas permitem

    conhecer, em modo contnuo, quer em

    mA (miliAmperes) quer em V (Voltes), o

    valor dos sinais emitidos pelo controlo

    de presso, caudal, volume, temperatura,

    entre outros, ou seja, receber sinais do

    tipo analgico.As sadas digitais so utilizadas em

    manobras de abertura e echo de eletro-

    vlvulas, arranque e paragem de bom-

    bas, vlvulas motorizadas bem como de

    sistemas de sinalizao e de piloto. As

    sadas analgicas so utlizadas na atua-

    o de variadores de requncia, variao

    da velocidade das bombas, e posio de

    abertura de vlvulas motorizadas, servo-

    -vlvulas, entre outros.

    VARIADORES DE FREQUNCIA

    Os variadores de requncia so utiliza-

    dos para variar a velocidade de uncio-

    namento dos motores assncronos de

    Corrente Alternada (CA) utilizados no

    acionamento das bombas hidrulicas.

    O princpio de uncionamento des-

    tes equipamentos baseia-se no controlo

    da velocidade e binrio do motor, por

    intermdio de um sistema de comando

    eletrnico. Quando um motor de indu-

    o colocado em marcha, o seu ponto

    de operao ajusta-se ao fim de algumtempo de uncionamento. Este ajuste

    depende da voltagem (V) e da requn-

    cia () aplicada ao motor. O ajuste pode

    ser obtido atravs da curva caraterstica

    do motor, ou seja, da relao V/ (V/Hz)

    (Figura 3).

    Note-se que a relao V/ linear

    entre =0 e a requncia de base (50 Hz).

    A tenso aplicada ao motor aumenta

    linearmente at aos 50 Hz, situao em

    que o motor atinge a sua tenso nominal(tenso da rede). At aos 50 Hz o bin-

    rio desenvolvido pelo motor constante

    com uma potncia crescente. Acima de

    50 Hz, a tenso mantm-se constante e

    igual ao valor nominal com binrio de-

    crescente (zona a tracejado). O aumento

    da requncia implica o aumento da ve-

    locidade, o que se traduz na diminuio

    do binrio.

    O retificador gera uma Corrente Con-

    tnua (DC) que posteriormente filtrada

    e introduzida no inversor. A unidade decontrolo , normalmente, constituda por

    um modulador PWM, limitador de cor-

    rente e um controlador de velocidade do

    tipo (PI) (Figura 4). O modo de operao

    pode ser manual ou automtico segun-

    do as necessidades do processo pelo

    que estes podem ser operados por com-

    putadores, PLC, atravs de sinais digitais e

    analgicos ou de orma manual.

    A utilizao de variadores de re-

    quncia nos mais diversos processos ,hoje em dia, uma prtica corrente devi-

    do, essencialmente, ao seu baixo custo,

    melhoria energtica resultante da sua

    utilizao e acilidade de se poderem

    instalar com qualquer motor assncrono

    Figura 2. Esquema geral de uncionamento de um autmato.

    PROCESSO(Dispositivos de atuao)

    ENTRADA

    (Sensores, sinaisdigitais e analgicos)

    AUTMATO

    (Lgica programada)

    SADA

    (Atuadores, sinaisdigitais e analgicos)

    Figura 4.Diagrama de blocos de um variador de requncia do tipo V/.

    Barramento DC

    FiltroRetificador

    Redede

    alimentao

    Tensode

    frequnciafixas

    Alimen

    taomotor

    Tensoefrequnciavarivel

    Inversor

    Unidade de controlo microprocessada

    0

    V

    M

    10 20 30 40 50 60 70 Hz

    Figura 3.Curva V/ e binrio para um motor

    de induo.

  • 7/24/2019 Revista Robotica Edio -100

    22/148

    A

    MA

    E

    N

    obtca

    no interior dos quadros de controlo dos

    processos (Figura 5).

    No entanto, a variao de velocidade

    de rotao do motor produz uma modi-

    ficao da curva caraterstica da bomba

    dando lugar a curvas paralelas curva davelocidade nominal, como se pode ver

    na Figura 6, diminuindo o rendimento

    da bomba que , claramente, mais baixo

    do que o rendimento terico. A perda

    de rendimento deriva principalmente

    do rendimento do prprio variador de

    requncia e, esta perda ser tanto maior

    quanto mais baixa or a velocidade de ro-

    tao da bomba.

    AUTOMATIZAO DE SISTEMAS

    DE BOMBAGEM

    Como j oi reerido a automatizao dos

    sistemas de bombagem pode ser realiza-

    da com dierentes graus de automatiza-

    o. Em geral, o grau de automatizaoser tanto maior, quanto maior or a pro-

    undidade do poo e o caudal da bomba,

    a cota de elevao e a presso de injeo

    na rede de distribuio.

    Por outro lado, e em qualquer um

    destes processos, o arranque e a para-

    gem, totalmente automatizada, podero

    ser controlados por um autmato tendo

    em considerao que a abertura e o e-

    cho das vlvulas devem ser temporiza-

    dos de modo a proteger o binmio mo-

    tor-bomba, a tubagem e evitar golpes deariete (martelo ou choque hidrulico) na

    ase de paragem dos processos.

    No obstante, este tipo de automati-

    zao com abertura e echo temporiza-

    do de vlvulas, tem sido substitudo por

    sistemas de variao de requncia. Os

    variadores permitem o arranque e a para-

    gem suave dos motores protegendo-os

    de sobreintensidades e dos golpes de

    ariete. Esta proteo conseguida com

    o arranque e a paragem progressiva do

    motor da bomba acionado pelo variador

    segundo o programa de arranque e de

    paragem estabelecido.

    Outros pontos devem ser considera-

    dos no processo de automatizao dos

    sistemas de bombagem como, e no

    menos importantes, os reservatrios,as vlvulas, os sensores (nvel, presso,

    caudal, e outros) bem como as aes

    de segurana e emergncia. Assim, e

    no que se reere s aes de segurana

    e de emergncia programadas no PLC,

    estas passaro pela paragem de emer-

    gncia por alta de comprovao da

    abertura e echo das vlvulas, sinal de

    retorno da posio, por valor de presso

    do pressstato superior ao mximo ou

    mnimo predefinido incluindo os nveisde gua nos poos e nos reservatrios,

    isto , alha dos sinais das sondas de n-

    vel mnimo e mximo de gua respon-

    sveis pela paragem da bomba, perante

    o nvel mnimo de gua e, no caso de

    enchimento, evitar que a gua transbor-

    de no reservatrio.

    No que se reere s unes de con-

    trolo e regulao estas devem incidir

    no s sobre a regulao do caudal que

    deve ser realizada em situaes em que

    o ornecimento da gua inerior s ne-cessidades dos consumidores, nas horas

    de ponta, aumentando o ornecimento e

    diminuindo-o nas horas de menor con-

    sumo, preservao dos nveis de gua,

    mas tambm sobre o ator energtico e

    na sua respetiva regulao que passar

    pelo uncionamento dos sistemas, sem-

    pre que possvel, durante as horas de

    energia mais barata, ou seja, nos pero-

    Figura 7.Esquema geral de um sistema de bombagem de injeo direta na rede.

    Figura 5.Variadores de requncia (Siemens).

    Figura 6.Curvas caratersticas de uma bomba

    a dierentes velocidades de acionamento.

    H (m)

    P (kW)

    Q (l/min)

    1100 rpm

    1150 rpm

    1400 rpm

    1400rpm

    1450 rpm

    1450rpm

    0'70'75 0'8

    0'80'75

    0'81

    500 1000

    100

    100200300400

    75

    50

    1100rpm

    Sonda de nvel mnimoSonda de

    nvel de guaSonda de nvel