universidade estadual de campinas faculdade de engenharia de...

56
UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentos FLÁVIA REGINA DE FARIA Degradação de polifenóis e formação de compostos de sabor no processamento de chocolate a partir de amêndoas de cacau fermentadas e não fermentadas CAMPINAS 2019

Upload: others

Post on 10-Nov-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia de Alimentos

FLÁVIA REGINA DE FARIA

Degradação de polifenóis e formação de compostos de sabor no processamento

de chocolate a partir de amêndoas de cacau fermentadas e não fermentadas

CAMPINAS

2019

Page 2: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

FLÁVIA REGINA DE FARIA

Degradação de polifenóis e formação de compostos de sabor no processamento

de chocolate a partir de amêndoas de cacau fermentadas e não fermentadas

Dissertação apresentada à

Faculdade de Engenharia de

Alimentos da Universidade Estadual

de Campinas como parte dos

requisitos exigidos para a obtenção

do título de Mestra em Tecnologia de

Alimentos

Orientadora: PROFA. DRA. PRISCILLA EFRAIM

ESTE TRABALHO CORRESPONDE À

VERSÃO FINAL DA DISSERTAÇÃO

DEFENDIDA PELA ALUNA FLÁVIA

REGINA DE FARIA E ORIENTADA PELA

PROFA. DRA. PRISCILLA EFRAIM

CAMPINAS

2019

Page 3: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

FICHA CATALOGRÁFICA

Page 4: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

COMISSÃO EXAMINADORA

Profa. Dra. Priscilla Efraim (Orientadora)

Universidade Estadual de Campinas

Dra. Adriana Barreto Alves (Membro Titular)

Laboratório Federal de Defesa Agropecuária (LFDA – SP)

Dra. Juliana Campos Hashimoto (Membro Titular)

Universidade Estadual de Campinas

A ata da defesa com as respectivas assinaturas dos membros encontra-se no SIGA/Sistema de

Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Page 5: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

DEDICATÓRIA

Dedico este trabalho aos meus pais, por todo amor, apoio e incentivo que sempre

demonstraram.

Page 6: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

AGRADECIMENTOS

Agradeço à Deus, pela vida.

À minha família, em especial aos meus pais, pelo apoio e incentivo e ao Santiago, pelo

companheirismo e apoio durante a realização do projeto.

À Profa. Dra. Priscilla Efraim, pela orientação, dedicação e compreensão.

À Universidade Estadual de Campinas, pelas oportunidades de formação desde o Curso

Técnico, a Graduação e o Mestrado.

À Faculdade de Tecnologia SENAI Horácio Augusto da Silveira pela disponibilização de

instalações e recursos para a realização do projeto e aos meus colegas da Instituição pelo

apoio.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) – Código de Financiamento 001

A todos que contribuíram para a realização deste trabalho, obrigada!

Page 7: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

RESUMO

O chocolate é um alimento mundialmente consumido e apreciado por seu sabor inigualável. Além

da questão sensorial, o chocolate é visto, em muitos países, como um alimento que pode

propiciar benefícios à saúde, se consumido de forma balanceada na dieta. Tais propriedades são

observadas em função da presença de compostos fenólicos nas sementes de cacau, porém seus

teores são diminuídos durante o processamento do fruto. A degradação dos flavanóis nas etapas

de processo tem sido objeto de estudo para sustentar o desenvolvimento de chocolates com

maiores teores de polifenóis, porém, a formação de sabor é complexa e envolve diversas

transformações químicas e bioquímicas que ocorrem durante o processamento. Enquanto a

etapa de fermentação é apontada como uma das principais responsáveis pela perda de

polifenóis, é também considerada como fundamental para a formação de precursores de sabor,

assim, o objetivo deste estudo foi analisar a degradação de flavanóis e a formação de compostos

voláteis durante o processamento de amêndoas fermentadas e não fermentadas de cacau,

obtidas da mesma fonte, até a obtenção de chocolates, variando as condições de conchagem.

Os teores de epicatequina, catequina e procianidina B2 foram determinados empregando

cromatografia líquida de alta eficiência (CLAE). A extração dos compostos voláteis foi realizada

pela técnica de micro extração em fase sólida e o perfil foi analisado por cromatografia gasosa

com detecção por espectrometria de massas. Os chocolates foram submetidos à análise

sensorial para avaliação da aceitação dos produtos. As amêndoas não fermentadas

apresentaram teores de flavanóis cinco vezes maiores que as amêndoas fermentadas e a etapa

de torração ocasionou diminuição expressiva no teor de epicatequina e de procianidina B2. Os

perfis inicias de compostos voláteis obtidos nas amêndoas apresentaram diferenças

significativas e os principais compostos reconhecidos como típicos na composição de sabor de

chocolates foram formados durante a torração das amêndoas fermentadas. O emprego de maior

tempo de conchagem não resultou em alteração significativa nos teores dos compostos fenólicos

analisados, porém impactou na redução de compostos voláteis, que foi percebida na análise

sensorial dos chocolates. Os chocolates produzidos a partir de amêndoas não fermentadas não

foram bem aceitos, principalmente em decorrência do amargor e adstringência pronunciados

devido ao alto teor de polifenóis e da falta de sabor de típico nos produtos.

Palavras chave: cacau, chocolate, polifenóis, sabor e aroma.

Page 8: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

ABSTRACT

Worldwide, chocolate is appreciated for its unique and complex flavor. Beyond the sensory

appeal, chocolate consumption, in many countries, has been associated to health benefits when

composing a balanced diet. Phenolic compounds found on cocoa beans are responsible for

antioxidant properties, but its contents decrease during processing stages. At the same time that

degradation of flavanols has been studied to optimize process conditions and support the

development of chocolates with higher contents of polyphenols, flavor formation is complex and

involves chemical and biochemical transformations that occur during process. Since extensive

degradation of polyphenols is reported on fermentation whilst the formation of flavor precursors

is relevant on this step, the aim of this study was to analyze flavanols degradation and volatile

compounds formation during the processing of fermented and non-fermented cocoa beans from

the same source up to chocolate varying conching times. Epicatechin, catechin and procyanidin

B2 were quantified by HPLC and volatile compounds were extracted by SPME and analyzed by

GC-MS. Sensory evaluation of chocolates was employed to assess the acceptance of the

products. The quantity of flavanols was initially five-fold higher on non-fermented beans compared

to fermented ones and results showed an important loss of epicatechin and procyanidin B2 during

the roasting process. Volatile composition profile from fermented and non-fermented samples

were significantly different and the main flavor-active compounds were formed during the roasting

of fermented beans. Longer conching period at the same temperature did not cause a significant

variation on the flavanols contents but reduction on volatiles were observed and noticed on the

sensory evaluation. Chocolates produced from unfermented beans were not well accepted mainly

because of the astringency and bitterness caused, probably by the high content of flavanols and

the lack of chocolate flavor.

Keywords: cocoa, chocolate, polyphenols, flavor

Page 9: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

SUMÁRIO

1. INTRODUÇÃO .................................................................................................................................. 10

2. OBJETIVO ......................................................................................................................................... 12

2.1. Objetivo geral ............................................................................................................................ 12

2.2. Objetivos específicos ............................................................................................................... 12

3. REVISÃO BIBLIOGRÁFICA ........................................................................................................... 13

3.1. Processamento de cacau........................................................................................................ 13

3.2. Compostos fenólicos no cacau .............................................................................................. 14

3.3. Formação de sabor no processamento de cacau ............................................................... 15

4. ARTIGO - Flavanols degradation and volatile flavor compounds formation during the

processing of fermented and non-fermented cocoa beans ............................................................... 18

Abstract .................................................................................................................................................. 18

Highlights ............................................................................................................................................... 18

4.1. Introduction ................................................................................................................................ 19

4.2. Material and methods .............................................................................................................. 20

4.2.1. Cocoa samples and post harvesting process .............................................................. 20

4.2.2. Cut test ............................................................................................................................... 20

4.2.3. Processing ......................................................................................................................... 21

4.2.4. Catechin, Epicatechin and Procyanidin B2 quantification - HPLC............................ 21

4.2.5. Volatile aroma profiles – HS-SPME-GC-MS ................................................................ 22

4.2.6. Sensory analysis .............................................................................................................. 22

4.3. Results and discussion ............................................................................................................ 23

4.4. Conclusions ............................................................................................................................... 35

Acknowledgments ................................................................................................................................ 36

References ............................................................................................................................................ 37

5. CONCLUSÃO GERAL ..................................................................................................................... 43

REFERÊNCIAS GERAIS ........................................................................................................................ 44

ANEXO I – Parecer substanciado do comitê de ética em pesquisa da UNICAMP ....................... 50

ANEXO II – Declaração de cadastro no Sistema Nacional de Gestão do Patrimônio Genético . 56

Page 10: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

10

1. INTRODUÇÃO

O cacau é reconhecido como um dos alimentos com maior teor de compostos

fenólicos e o consumo de seus derivados tem despertado interesse em relação aos

benefícios à saúde associados (COOPER et al., 2008; MCSHEA et al., 2008).

A demanda global por cacau vem aumentando impulsionada por diversos fatores

como o crescimento do mercado asiático e a grande presença de derivados de cacau em

diversos alimentos. Além disso, observa-se uma maior procura por chocolates amargos

e até o emprego de derivados em cosméticos e pela indústria farmacêutica, que tem

interesse nas suas propriedades antioxidantes (BEG et al., 2017).

O chocolate, produtos com chocolate ou com pó de cacau são as principais formas

de consumo de derivados de cacau. Dados indicam maior crescimento na demanda de

cacau em relação ao aumento no consumo de chocolate, o que possivelmente é reflexo

do aumento de procura por produtos com maiores teores de cacau (ICCO, 2012).

O chocolate apresenta sabor único e complexo, derivado da combinação de

compostos resultantes de transformações químicas e bioquímicas durante o

processamento, que são influenciadas pelas características do fruto, do cultivo e das

condições de processo empregadas (APROTOSOAIE; LUCA; MIRON, 2016).

Durante o pré-processamento das sementes de cacau, que inclui as etapas de

fermentação e secagem para obtenção das amêndoas, ocorrem perdas significativas nos

compostos fenólicos, sendo apontadas reduções de 75% no teor de epicatequinas

(ALBERTINI et al., 2015). Porém, nessas etapas também são formados precursores de

sabor, como aminoácidos livres e açúcares redutores, que darão origem aos produtos da

reação de Maillard e degradação de Strecker, principais responsáveis pelo perfil de sabor,

através de aquecimento na etapa de torração durante o processamento das amêndoas

para a obtenção de liquor de cacau (AFOAKWA et al., 2008).

Na fabricação do chocolate, que emprega o liquor de cacau como principal

ingrediente, a conchagem é uma etapa com reconhecida importância na melhoria de

sabor e textura do produto, na qual ocorrem eliminação de voláteis como ácido acético,

redução da umidade e interação de componentes. Porém, também ocorre perda e

alteração no perfil de compostos fenólicos, com estudo menos explorado (DI MATTIA et

al., 2014; BORDIGA et al., 2015).

Reconhecendo que o processamento de chocolate a partir de amêndoas não

fermentadas pode impactar negativamente no perfil de sabor do chocolate, porém

Page 11: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

11

positivamente em uma maior retenção de compostos fenólicos de interesse em relação

aos benefícios à saúde e ainda que o número de trabalhos que combinam a avaliação da

degradação de compostos fenólicos com a formação de sabor no produto é escasso, o

presente projeto propõe estudar conjuntamente os dois efeitos.

Page 12: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

12

2. OBJETIVO

2.1. Objetivo geral

Avaliar a degradação de compostos fenólicos e a formação de compostos voláteis

relacionados com o sabor de chocolates produzidos a partir de amêndoas de cacau

fermentadas e não fermentadas, variando o tempo de conchagem no processo.

2.2. Objetivos específicos

• Obter liquor de cacau a partir de amêndoas de cacau fermentadas e não

fermentadas e utilizá-los para a produção de chocolates.

• Empregar duas condições de tempo de conchagem durante o processamento de

chocolates produzidos a partir de amêndoas de cacau fermentadas e não

fermentadas.

• Quantificar a perda dos principais compostos fenólicos presentes no cacau

durante o processamento das amêndoas até os chocolates.

• Avaliar os perfis de compostos voláteis nas amêndoas de cacau fermentadas e

não fermentadas, nos derivados intermediários e nos chocolates obtidos.

• Avaliar a aceitação sensorial dos chocolates obtidos.

Page 13: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

13

3. REVISÃO BIBLIOGRÁFICA

3.1. Processamento de cacau

O método tradicional de processamento de cacau (Figura 1) compreende as

etapas de pré-processamento das sementes (fermentação e secagem); processamento

das amêndoas de cacau, que envolve torração para obtenção de nibs de cacau, moagem,

que originará o liquor de cacau, prensagem do liquor para a obtenção de manteiga de

cacau e pó de cacau, sendo que os primeiros são os ingredientes normalmente

empregados na fabricação de chocolate. Já a fabricação de chocolate compreende as

etapas de formulação, com os seguintes ingredientes: liquor e manteiga de cacau, açúcar

e, opcionalmente, leite em pó ou outros derivados de leite, mistura dos ingredientes,

refino, conchagem, temperagem, moldagem, resfriamento, desmoldagem e embalagem,

de forma que cada etapa tem papel importante no desenvolvimento do sabor e da textura

que caracterizam o produto (BECKETT, 2009).

Figura 1 – Diagrama esquemático do processamento de cacau até a obtenção de chocolate

Fonte: Adaptado de BECKETT (2009)

Page 14: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

14

3.2. Compostos fenólicos no cacau

A presença de polifenóis em alimentos de origem vegetal está associada com a

cor e o sabor desses produtos, com destaque para as notas de amargor e adstringência

conferidas por componentes do grupo; porém atualmente os estudos têm focado nos

potenciais efeitos benéficos à saúde atribuídos ao consumo desses alimentos (SOTO-

VACA et al., 2012)

As amêndoas de cacau fermentadas e secas possuem cerca de 6% (base seca)

de compostos fenólicos em sua composição, sendo que os principais componentes do

grupo encontrados nas amêndoas são os flavanóis, que representam cerca de 37% do

total de compostos fenólicos principalmente representados pelas epicatequinas (35%),

procianidinas (58%) e antocianinas (4%) (WOLLGAST; ANKLAM, 2000).

Variações no teor de polifenóis em cacau são atribuídas a diferentes condições de

cultivo (NIEMENAK et al., 2006), região geográfica (CARRILLO; LONDOÑO-LONDOÑO;

GIL, 2014), variações genéticas e diferentes metodologias de determinação

(WOLLGAST; ANKLAM, 2000).

São elencados na literatura diversos efeitos benéficos à saúde humana

associados ao consumo dos compostos fenólicos presentes no cacau e em seus

derivados. Entre eles, destacam-se principalmente aqueles relacionados à saúde

cardiovascular e danos inflamatórios, devido à capacidade antioxidante desses

compostos, com efeito potencial no aumento da resistência do organismo ao estresse

oxidativo (ANDÚJAR et al., 2012). Além disso, estudos indicam que os produtos de cacau

ricos em flavanóis melhoram a função endotelial e a sensibilidade à insulina e estariam

relacionados com a prevenção de doenças (SOTO-VACA et al., 2012).

O processamento do cacau afeta de forma qualitativa e quantitativa o perfil de

polifenóis, e diversos estudos apresentam o efeito das condições de processo na

degradação desses componentes.

As etapas de pré-processamento do cacau para obtenção de amêndoas

fermentadas e secas ocasionam perdas significativas nos compostos fenólicos originais

do fruto. Durante a fermentação do cacau, são relatadas perdas de mais de 70% no teor

de epicatequinas (CAMU et al., 2008), cuja degradação segue a tendência de degradação

dos compostos fenólicos totais (ALBERTINI et al., 2015).

Estudos indicam diferentes alterações no teor de polifenóis quando são

empregados métodos de secagem natural ou artificial nas amêndoas de cacau, sendo

que em alguns casos a secagem natural mostrou maior retenção de compostos fenólicos

Page 15: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

15

(EFRAIM et al., 2010; DI MATTIA et al., 2013) enquanto a secagem artificial mostrou

maior percentual de retenção em outras condições estudadas, de forma que a cinética de

degradação durante a etapa foi descrita como de primeira ordem (TEH et al., 2015).

No processamento das amêndoas de cacau para a produção de liquor, são

observadas perdas de até 30% dos polifenóis, principalmente atribuídas à exposição ao

calor e oxigênio na etapa de torração (BORDIGA et al., 2015). A etapa de torração é

apontada como de grande influência no perfil de polifenóis presentes, sendo que o tipo

de fermentação preliminar (AFOAKWA et al., 2015) e as condições de processo

influenciam na extensão das alterações (ŻYŻELEWICZ et al., 2016). Diferentes

temperaturas de torração resultam em diferentes perfis de flavanóis nos produtos obtidos

devido à diferentes extensões de epimerização (KOTHE; ZIMMERMANN; GALENSA,

2013).

Poucos estudos relatam o efeito da conchagem nos compostos fenólicos durante

o processamento de chocolate. A variação de temperatura na faixa de 60 a 80ºC foi

relatada como não significativa na alteração do perfil de compostos fenólicos (GÜLTEKIN-

ÖZGÜVEN; BERKTAŞ; ÖZÇELIK, 2016). Em estudo comparativo entre duas diferentes

condições de conchagem – longa (60ºC por 12 h) e curta (6 h a 90ºC mais 1 h a 60ºC) –

os autores não encontraram diferença significativa no teor total de polifenóis, porém a

avalição dos perfis finais desses compostos nas duas amostras obtidas sugeriu que

ocorreu polimerização durante a etapa (DI MATTIA et al., 2014).

Em estudo para otimização do processamento das amêndoas de cacau, incluindo

a etapa de alcalinização para a obtenção de chocolate, foi observado que o emprego da

temperatura mínima testada (115ºC) durante a torração do material em pH mínimo (7,0 –

correspondente ao menor pH alvo na alcalinização testado) resultaram na maior retenção

de compostos fenólicos e maior capacidade antioxidante no produto dentre as condições

testadas (GÜLTEKIN-ÖZGÜVEN; BERKTAŞ; ÖZÇELIK, 2016), confirmando que as

etapas de torração e alcalinização (quando realizada) são as mais impactantes no perfil

de polifenóis durante o processamento das amêndoas de cacau fermentadas e secas

para a produção de liquor de cacau (MAZOR JOLIĆ et al., 2011)

3.3. Formação de sabor no processamento de cacau

O chocolate apresenta sabor único e complexo e o perfil sensorial é resultado da

combinação de componentes voláteis e não voláteis (APROTOSOAIE; LUCA; MIRON,

2016).

Page 16: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

16

O perfil de compostos de sabor presentes nos derivados de cacau é influenciado

pela origem e variedade do cacau e pelas condições de processamento (TRAN et al.,

2015), sendo que as etapas de fermentação, torração e conchagem têm impacto

relevante no sabor do chocolate (OWUSU; PETERSEN; HEIMDAL, 2012)

Dentre os componentes não voláteis que influenciam no sabor do cacau e seus

derivados, os de maior destaque são as metilxantinas (teobromina e cafeína) e os

polifenóis, que conferem notas de amargor e adstringência, além das proteínas e

açúcares, diretamente envolvidos na formação de compostos voláteis que caracterizam

o sabor do produto (APROTOSOAIE; LUCA; MIRON, 2016).

Já foram identificados cerca de 600 compostos voláteis componentes do aroma

do cacau, sendo que a maior parte dos compostos voláteis responsáveis pelas

características de sabor do chocolate são derivados dos precursores de aroma gerados

durante o pré-processamento do fruto (fermentação e secagem) e os principais

compostos de sabor são resultantes da reação de Maillard e degradação de Strecker, que

ocorrem principalmente durante a torração das amêndoas (AFOAKWA et al., 2008).

Dentre as classes de compostos voláteis desejáveis e indesejáveis encontradas,

destacam-se as pirazinas, ésteres, aldeídos, cetonas, álcoois e fenóis (APROTOSOAIE;

LUCA; MIRON, 2016).

Durante a fermentação, a microbiota mista de leveduras, bactérias lácticas e

acéticas tem papel fundamental na formação de precursores e dos compostos voláteis

em si. Pelo menos 39 diferentes compostos identificados e relacionados com notas de

sabor específicas estão relacionados com alterações ocasionadas pela fermentação,

como por exemplo alterações de pH que ocorrem principalmente devido à degradação de

ácido cítrico e geração de ácidos láctico e acético (RODRIGUEZ-CAMPOS et al., 2011).

Importantes transformações bioquímicas ocorrem durante as etapas de

fermentação e secagem, como a formação de açúcares redutores e a hidrólise de

proteínas. Ainda durante o pré-processamento, ocorre a oxidação enzimática de

compostos fenólicos a quinonas, que leva à diminuição do amargor e da adstringência.

Os valores de pH e temperatura alcançados devido à atividade microbiana são fatores

determinantes para obtenção de condições ótimas para a atuação das enzimas

responsáveis pelas reações descritas (APROTOSOAIE; LUCA; MIRON, 2016).

Na torração, a exposição de aminoácidos livres e açúcares redutores formados

durante a fermentação a altas temperaturas, induz à reação de Maillard e à degradação

de Strecker, que dão origem aos principais componentes da fração volátil responsáveis

Page 17: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

17

pelo sabor do produto, como as pirazinas – responsáveis por mais de 27% dos

componentes identificados e com reconhecida importância sensorial (OWUSU;

PETERSEN; HEIMDAL, 2012).

Durante a conchagem são observados importantes aumentos nos teores de

alguns componentes como pirazinas e diminuição de outros voláteis, como alguns

aldeídos resultantes da degradação de Strecker (COUNET et al., 2002). Além disso, a

conchagem é reconhecida pela contribuição na melhoria do sabor do chocolate em função

da eliminação de compostos responsáveis por sabores residuais não apreciados, como

ácidos livres (AFOAKWA et al., 2008).

Page 18: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

18

4. ARTIGO - Flavanols degradation and volatile flavor compounds formation during

the processing of fermented and non-fermented cocoa beans

(O artigo será submetido à revista “Food Research International”)

Authors: FARIA, Flávia Regina de; EFRAIM, Priscilla

Abstract

At the same time that degradation of flavanols has been studied to optimize process conditions

and support the development of chocolates with higher contents of polyphenols, flavor formation

is complex and involves chemical and biochemical transformations that occur during process.

Since extensive degradation of polyphenols is reported on fermentation whilst the formation of

flavor precursors is relevant on this step, the aim of this study was to analyze flavanols

degradation and volatile compounds formation during the processing of fermented and non-

fermented cocoa beans from the same source up to chocolate varying conching times.

Epicatechin, catechin and procyanidin B2 were quantified by HPLC and volatile compounds were

extracted by SPME and analyzed by GC-MS. Sensory evaluation of chocolates was employed to

assess the acceptance of the products. The quantity of flavanols was initially five-fold higher on

non-fermented beans compared to fermented ones and results showed an important loss of

epicatechin and procyanidin B2 during the roasting process. Volatile composition profile from

fermented and non-fermented samples were significantly different and the main flavor-active

compounds were formed during the roasting of fermented beans. Longer conching period at the

same temperature did not cause a significant variation on the flavanols contents but reduction on

volatiles were observed and noticed on the sensory evaluation. Chocolates produced from

unfermented beans were not well accepted mainly because of the astringency and bitterness

caused, probably by the high content of flavanols and the lack of chocolate flavor.

Highlights

• Chocolates from non-fermented and fermented cocoa beans were processed in parallel

and analyzed

• Evolution of epicatechin, procyanidin B2 and catechin contents and volatile compounds

profile during process stages from beans to chocolates were tracked

• Longer conching did not impact flavanols contents but products were different on aroma

profile and sensory perception

Keywords: Unfermented cocoa, epicatechin, conching, chocolate flavor, pyrazines

Page 19: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

19

4.1. Introduction

Cocoa is recognized as a relevant source of phenolic compounds and the consumption

of cocoa products has called attention to positive health benefits associated to dietary

flavonoid intake (Cooper, Donovan, Waterhouse, & Williamson, 2008; McShea et al.,

2008), especially regarding to cardiovascular and inflammatory diseases, metabolic

disorders and cancer prevention due to their antioxidant properties (Andújar, Recio, Giner,

& Ríos, 2012). Nevertheless, during cocoa processing and chocolate manufacturing,

important losses and changes are reported on the polyphenols profile (Di Mattia et al.,

2013; Bordiga et al., 2015).

Worldwide, chocolate is appreciated for its unique and complex flavor derived from

various compounds formed from biochemical and chemical reactions during its

processing, which are influenced by cocoa genotype, farming practices, post-harvesting

conditions and manufacturing stages (Aprotosoaie, Luca, & Miron, 2016).

Fermentation is crucial for flavor formation as it provides some volatile compounds

and some precursors for further Maillard reaction (free amino acids and reducing sugars)

in roasting (Afoakwa, Paterson, Fowler, Ryan, & Afoakwa, 2008). However, there is a

relevant reduction of polyphenol content, up to 80 – 90% in the first 48 h of fermentation

(Albertini et al., 2015). During cocoa drying, degradation of phenolic compounds and the

influence of process conditions have been studied (Efraim et al., 2010; Di Mattia et al.,

2013; Teh et al., 2015; Alean, Chejne, & Rojano, 2016).

Heat exposure of cocoa beans during roasting is important for flavor formation as

pyrazines and aldehydes formed by Maillard reaction are reported as the main flavor-

active components on chocolate (Afoakwa et al., 2008). On the other hand, roasting is

responsible for significant loss of total polyphenols, as oxidative processes are

accelerated (Bordiga et al., 2015).

During chocolate manufacturing, conching process also influences the final flavor as

volatile compounds responsible for some off flavors, such as acetic acid, are reduced

(Afoakwa et al., 2008; Owusu, Petersen, & Heimdal, 2012) but some losses on key

components like pyrazines were also previously reported (Albak & Tekin, 2016).

Regarding to the effect on phenolic compounds, previous results show no or little

impact of conching process on polyphenols contents (Di Mattia et al., 2014; Gültekin-

Özgüven, Berktaş, & Özçelik, 2016).

Page 20: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

20

Recognizing that chocolate processing from non-fermented cocoa beans could have

a negative impact on the final flavor as the same time that a higher level of phenolic

compounds on the product could be achieved, and that there are few studies that measure

both impacts in parallel, the aim of this study was to analyze flavanols degradation and

volatile flavor compounds formation during processing stages from fermented and non-

fermented cocoa beans to chocolate, varying conching times.

4.2. Material and methods

4.2.1. Cocoa samples and post harvesting process

Samples of fermented and non-fermented cocoa beans were acquired from

Agricola Cantagalo (Bahia, Brazil). A spontaneous fermentation of a 240 kg batch was

carried on the traditional procedure for the region – inside wooden boxes – for a period of

six days. The cocoa mass (seeds with pulp) under fermentation was revolved according

to the variation of its temperature after 46, 70 and 94 hours for oxygenation and mixing.

After the fermentation period, cocoa beans were sun-dried under movable roofs during six

days in a temperature range from 25 to 40°C to a final moisture content of 6%. Apart from

that, non-fermented pulped cocoa seeds from the same harvesting batch were directly

sun-dried under the same conditions until they reached the same moisture content of the

fermented batch (11 days). Temperature evolution of batches on fermentation and drying

stages were recorded.

4.2.2. Cut test

Cocoa beans were visually assessed using the cut test (Wood & Lass, 1985). A

total of 300 beans were cut lengthwise through the middle to expose the maximum cut

surface of the cotyledons. Both halves were examined under artificial light and placed in

one of the following categories: fully brown (fermented); partly brown, partly purple (partly

fermented); purple (under-fermented) or slaty (not fermented). The compartmentation

degree was also evaluated. Results were expressed as a percentage and all analyses

were done triplicate.

Page 21: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

21

4.2.3. Processing

Fermented and non-fermented cocoa beans were roasted in a pilot scale rotatory

roaster (JAF Inox, Tambaú, Brazil) for 70min at 120°C and broken into nibs on a knife mill

(ICMA, Campinas, Brazil) with sieves with holes of 6 mm in diameter. Nibs were separated

from shells and germs by a winnower machine (Capco, Ipswich, UK) and ground in a ball

mill (CAO B5, Caotech, Wormerveer, The Netherlands) to produce cocoa liquor.

Two different chocolates were produced from each liquor one made from the

fermented and the other from the non-fermented beans, with the same recipe varying

conching duration (4 h or 16 h). Ingredients (65% liquor, 34.6% sugar and 0.4% soy

lecithin) were mixed and refined on a ball mill (CAO B5, Caotech) up to particle size bellow

25 µm. The conching step was carried out at 70°C on a laboratory conche (CWC 5,

Caotech, Wormerveer, The Netherlands) for 4 or 16 h. Afterwards, chocolate masses

were tempered on a laboratory temperer (Tabletop Temperer, ACMC Chocolate

Tempering Machine) by cooling the mass from 45°C to 27°C under agitation and slightly

heating them until 31°C. Temper index was verified using a temperimeter (ChocoMeter,

Aasted) and values from 4.0 to 6.0 were accepted. The pre-crystalized chocolate mass

was molded into bars, refrigerated for crystallization, removed from molds and stored at

20°C for sensory analysis, and at -18°C for flavanols and volatile compounds

determinations.

4.2.4. Catechin, Epicatechin and Procyanidin B2 quantification - HPLC

Catechin, epicatechin and procyanidin B2 were determined using a High Pressure

Liquid Chromatograph (Shimadzu LC-10, Shimadzu Scientific Instruments, Columbia,

USA) with degasser, quaternary pump (LC-10AT VP), column oven (CTO-10AS VP),

manual injector (Rheodyne model 7725i, with a 20 μL loop), diode array detector SPD-

M20A VP and an interface SCL-10A, operated with the software Class VP Workstation

version 6.14. Samples were defatted using hexane and flavanols extraction was

performed with aqueous methanol as proposed by Machonis, Jones, Schaneberg, Kwik-

Uribe and Dowell (2014). The extract supernatant was filtered through PTFE 0.45 µm

syringe filter (Millipore Corporation, Bedford, USA), diluted on mobile phase (1:1) and

immediately injected into the chromatograph. The separation was performed on Nova-Pak

C18 column (3.9 mm x 150 mm, 4 µm) (Waters, Milford, USA) at a temperature of 35°C,

with isocratic elution of the mobile phase, composed by a 20 mmol L-1 ammonium acetate

Page 22: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

22

buffer (pH 4.00 adjusted with glacial acetic acid) and methanol (85:15, v/v) with a flow rate

of 0.8mL min-1. The analytes were quantified by external standard calibration with the peak

areas calculated at 279 nm. All determinations were carried out in triplicate, average

values and standard deviations were calculated and analyses of variation (one-way

ANOVA) followed by Tukey´s test were applied to verify which samples differed from

others (p<0.05).

4.2.5. Volatile aroma profiles – HS-SPME-GC-MS

Volatile compounds of cocoa beans and derivates were extracted by headspace

solid phase microextraction (HS-SPME) as proposed by Ducki, Miralles-Garcia, Zumbé,

Tornero & Storey (2008): sample (2 g) was placed in a 20 mL hermetically sealed vial and

incubated for 10 min at extraction temperature of 60 °C for conditioning, after that, a

divinylbenzene/ carboxen on polydimethylsiloxane on a StableFlex fibre (DVB/CAR/

PDMS SPME) (Supelco, Sigma-Aldrich) was exposed to the headspace for 15 min at 60

°C and desorbed for 5 min at 250 °C in the gas chromatographer liner.

The volatiles extracted were analyzed on a Shimadzu GCMS-QP2010S gas

chromatographer using splitless injection, helium as a carrier gas (2 mL min-1), and a 100m

capillary column with a 0.25 mm (i.d.) and 0.25 µm film thickness (Model CP7420, Agilent

Technologies). The following temperature program was used: start at 40 °C for 5 min,

followed by an increase at 10 °C min-1 to 250 °C and held at 250 °C for 15 min. Injector

and transfer lines were maintained at 250 °C, electron ionization energy was −70 eV and

with a 1200V in the detector. One mass spectra scan every 0.5 s was acquired.

Identification of volatile organic compounds in the headspace was done using US National

Institute of Standards and Technology Mass Spectral Library (NIST08). Three identical

samples were prepared for each analysis and the average results followed by standard

deviation of peak areas for each compound were reported.

4.2.6. Sensory analysis

Four different chocolates produced were submitted to sensory evaluation by an

untrained panel of 70 chocolate consumers, aged between 18 to 52, who were asked

about aroma, chocolate flavor, bitterness, acidity and overall acceptability by giving scores

in a nine-point hedonic scale corresponding to their liking of each attribute evaluated. They

were also asked about buying intention in a five-point scale. ANOVA and Tukey´s test

Page 23: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

23

were employed to analyze tabulated results and determine if there was significant

difference (p<0.05) between samples for each attribute. The procedure of sensory

evaluation was previously approved by a Human Research Ethics Committee for human

surveys (CAAE: 76190517.2.0000.5404).

4.3. Results and discussion

The mass (seeds with pulp) temperature data during the fermentation step (batch that

was fermented) is presented in Figure 1.

Fig. 1. Evolution of temperature (●) during fermentation period. Vertical lines indicate when cocoa

mass was revolved

Records of temperature showed a typical behavior during spontaneous cocoa mass

fermentation (Figure 1), according to traditional practices employed in Bahia (Brazil)

(Passos, Lopez, & Silvia, 1984; Papalexandratou, Vrancken, de Bruyne, Vandamme, &

de Vuyst, 2011), thus indicating the expected course of fermentation process. There was

a substantial increase of temperature during the first 40 h of fermentative process, some

decreases after mixing operations were observed and a maximum value of 46.8°C was

found at the end of process.

Cut test indicated that the cotyledons of the cocoa beans presented fermentation

degree in accordance with the expected for this study proposition. Fermented cocoa

sample presented more than 60% of fully brown beans, approximately 30% of partly

Page 24: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

24

fermented and less than 5% of purple or slaty (not fermented). These percentages were

similar to those reported by Afoakwa, Quao, Budu, Takrama, & Salia (2012) when

analyzing cocoa beans fermented for 6 days, depending on preconditioning time. The

authors have reported that reductions in the purple beans were noted between the 4th

and 6th days of fermentation at the same time that brown beans were noted to increase.

On the other hand, non-fermented sample was mainly composed by fully purple

beans, 20% showed some degree of fermentation (partly purple, partly brown) and only

6% of beans were fully brown (well-fermented), thus, some incomplete fermentative

process may have occurred during sun-drying period, mainly in the beginning of the step

while high moisture content was present.

Evolution of epicatechin, catechin and procyanidin B2 during processing stages

from cocoa beans to chocolate are presented in Figure 2, and detailed data is presented

in Tables 1 and 2.

(a) (b)

Fig. 2. Contents of catechin (■), epicatechin (■) and procyanidin B2 (■) from different process stages: (a)

non-fermented cocoa beans (NFB), non-fermented roasted cocoa nibs (NFN), cocoa liquor from non-

fermented nibs (NFL), chocolate with 4h of conching from non-fermented liquor (ChNF 4h) and chocolate

with 16h of conching from non-fermented liquor (ChNF 16h); (b) fermented cocoa beans (FB), fermented

roasted cocoa nibs (FN), cocoa liquor from fermented nibs (FL), chocolate with 4h of conching from

fermented liquor (ChF 4h) and chocolate with 16h of conching from fermented liquor (ChF 16h).

Quantifications of selected phenolic compounds showed a degradation tendency

during process stages, particularly for epicatechin content that has been used as an index

0

5

10

15

20

25

30

35

40

45

50

NFB NFN NFL ChNF 4h ChNF 16h

mg.

g-1

0

1

2

3

4

5

6

7

8

9

FB FN FL ChF 4h ChF 16h

mg.

g-1

Page 25: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

25

of the processing extent (Camu et al., 2008; Payne, Hurst, Miller, Rank, & Stuart, 2010;

Di Mattia et al., 2013).

Epicatechin and procyanidin B2, which have been previously reported as the main

flavan-3-ol on cocoa beans (Oracz, Nebesny, & Żyżelewicz, 2015; Quiroz-Reyes &

Fogliano, 2018), presented similar decreasing behavior from fermented and non-

fermented samples although contents were initially five-fold higher on non-fermented

sample and seven-fold higher on final chocolate in comparison to those produced from

fermented beans (Figure 2).

In a recent study, Dwijatmoko, Nurtama, Yuliana, & Misnawi (2018) analyzed

polyphenols from various cocoa clones during fermentation and found that unfermented

beans had higher total polyphenols, total flavonoids, epicatechin, and catechin content

than fermented ones; for the cocoa clone with the highest content of phenolic compounds,

they also observed a great decrease of epicatechin (52.5 mg/g for unfermented to 10.5

mg/g for fermented beans) and catechin (2.0 mg/g to 0.68 mg/g) during fermentation;

these epicatechin and catechin contents are similar to the values reached on this study

(Table 1). Although different initial contents of flavanols were found, probably due to

different clones (Dwijatmoko et al., 2018), epicatechin concentration was also reported to

reduce, with more than 70% loss after 144 h of fermentation (Camu et al., 2008).

Substantial decreases (>80%) in catechin and epicatechin levels were similarly observed

in fermented versus unfermented beans and the losses extents were dependent on the

length of fermentation (Payne et al., 2010).

From non-fermented cocoa beans to chocolate (Fig.2a and Table 1) there was a

substantial loss of epicatechin and procyanidin B2 with a major impact during roasting

process as epicatechin and procyanidin B2 levels decreased by 53% and 47%

respectively. On the other hand, catechin has increased by 395% following the results

related by Payne, Hurst, Miller, Rank, & Stuart (2010), who had also found that roasting

(120°C) caused the epicatechin content of unfermented cocoa beans to drop (82% loss)

whereas catechin raised (by 640-696%). This increasing trend of catechin level during

roasting has been associated to a probable epimerization of (-)-epicatechin (Kothe,

Zimmermann, & Galensa, 2013; Ioannone et al., 2015; Oracz et al., 2015; Żyżelewicz et

al., 2016; Quiroz-Reyes & Fogliano, 2018).

Results (Fig. 2b and Table 2) also showed a significant loss of epicatechin (74%)

and procyanidin B2 (69%) during roasting of fermented cocoa beans. Some available data

suggested that within flavanols, the greatest degradations during roasting occur on (-)-

Page 26: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

26

epicatechin and procyanidin B2 (Żyżelewicz et al., 2016) and even if the levels of (-)-

epicatechin are reported to decrease in a time and temperature-dependent manner

(Stanley et al., 2018), the extent of the epimerization reaction and the impact on flavanols

contents can vary strongly between different cocoa beans when the same roasting

conditions are employed (Kothe et al., 2013).

However, catechin content did not present the same behavior during fermented

beans processing as a decrease occurred during roasting followed by increase from nibs

to liquor. Żyżelewicz et al. (2016) monitored the contents of (-)-epicatechin, (+)-catechin

and procyanidin B2 before and after a combined grinding-conching process and found

that in most of the previous roasting condition applied, these compounds did not present

significant variation, but in some cases, monomers compounds presented increase or

decrease during grinding-conching stage that could be associated with procyanidins

degradation. In the present study, increase in catechin content during grinding also could

be due to epimerization, or procyanidins degradation as some temperature increase

occurred during grinding process as a result of intense friction in ball mill, but others

phenolic compounds, including epimers should be quantified to confirm that.

Table 1. Contents of flavanols (mg/g) during process stages from non-fermented cocoa beans

Catechin Epicatechin Procyanidin B2

Non-fermented cocoa beans 1.89 + 0.15d 43.45 + 0.94a 15.49 + 0.38a

Non-fermented roasted cocoa nibs 9.37 + 0.17a 20.35 + 0.55b 8.26 + 0.38b

Cocoa liquor from non-fermented nibs 8.17 + 0.18b 18.48 + 0.68c 8.62 + 0.86b

Chocolate with 4h of conching 4.47 + 0.59c 10.37 + 1.68d 4.54 + 0.41c

Chocolate with 16h of conching 4.17 + 0.20c 9.74 + 0.17d 4.19 + 0.26c

Values are expressed as mean ± standard deviation (n=3). Different letters within the same column indicate statistical differences (one-way ANOVA and Tukey’s test, p < 0.05)

Table 2. Contents of flavanols (mg/g) during process stages from fermented cocoa beans

Catechin Epicatechin Procyanidin B2

Fermented cocoa beans 0.63 + 0.08b 8.24 + 0.31ª 2.87 + 0.11ª

Fermented roasted cocoa nibs 0.32 + 0.03d 2.16 + 0.21b 0.90 + 0.08b

Cocoa liquor from fermented nibs 0.75 + 0.04a 2.29 + 0.03b 1.03 + 0.08b

Chocolate with 4h of conching 0.46 + 0.04c 1.50 + 0.12c 0.62 + 0.05c

Chocolate with 16h of conching 0.41 + 0.00c 1.40 + 0.03c 0.53 + 0.01c

Values are expressed as mean ± standard deviation (n=3). Different letters within the same column indicate statistical differences (one-way ANOVA and Tukey’s test, p < 0.05)

Page 27: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

27

From cocoa liquor to chocolate there was a decrease on the contents of the three

analyzed flavanols for both fermented and non-fermented resulting products (Tables 1

and 2), but the dilution effect should be taken into account with the addition of sugar

(Bordiga et al., 2015). Considering that chocolate formulation employed 65% of liquor,

there was an average loss of 15% of analyzed flavanols on chocolate manufacturing

stages for non-fermented liquor derivates and less than 10% loss for fermented beans

chocolates. Few studies have focused attention on the effect of conching on polyphenols;

Albak & Tekin (2016) reported 3% of total polyphenols loss during a three-phase conching

for dark chocolate (dry phase: 2h at 50°C, pasty phase: 4h at 80°C and final phase: 1h

with linear decrease in temperature from 80°C to 45°C), and a previous investigation on

procyanidin contents during conching has shown that depending on time-temperature

conditions, there was a little tendency to condensation reaction of procyanidins during

process (Di Mattia et al., 2014).

There was no significant difference between catechin, epicatechin and procyanidin

B2 contents for different conching times tested (4 h and 16 h) at the same temperature

either for chocolates produced from fermented and non-fermented cocoa beans (Tables

1 and 2). A former study reported no effect of conching on phenolic compounds and a

variation on conching temperature (60 °C to 80 °C) did not presented significative

difference on results (Gültekin-Özgüven et al., 2016). Since there is great variation on

conching process conditions and equipment, more studies should be carried out to fully

understand the role of sole conching on polyphenols profile of final chocolate.

Volatile compounds evolution during process from cocoa beans (fermented and

non-fermented) to chocolates were analyzed and results were expressed on peak areas

(Tables 3 and 4), which allows the comparison between samples. As expected, non-

fermented cocoa beans presented different volatile composition compared to fermented

ones. Different fermentation methods and further roasting and conching process

conditions impact volatile flavor compounds formation and levels (Owusu et al., 2012).

The volatile composition of raw cocoa beans is very simple and mainly comprises

alcohols, aldehydes and ketones, during fermentation the total concentration of volatiles

increases considerably (Gill, Macleod, & Moreau, 1984). Esters were previously reported

as one of the main groups of volatile compounds formed during fermentation (Koné et al.,

2016) and the comparison between cocoa beans volatile profiles showed a higher

presence of esters and acids on the fermented sample compared to the unfermented one.

Page 28: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

28

Acetic acid presented the highest peak area among volatile compounds from the

fermented cocoa beans and, although the amount of acetic acid decreased during the

processing stages, it also had the highest peak between volatiles found on chocolates

produced from fermented beans. Batista, Ramos, Dias, Pinheiro, & Schwan (2016) also

reported acetic acid as the main volatile acid detected in fermented beans from Bahia

(Brazil) and was also present in chocolate in a lower relative concentration.

The amount of acetic acid on unfermented beans account for only 15% of the

relative quantity presented by the fermented cocoa beans (Tables 3 and 4). Acetic acid is

produced during cocoa fermentation and is an important compound to flavor formation as

its diffusion into the cotyledons stimulates enzymatic reactions that generate flavor

precursors (Afoakwa et al., 2008). Rodriguez-Campos, Escalona-Buendía, Orozco-Avila,

Lugo-Cervantes, & Jaramillo-Flores (2011) reported that the amount of acetic acid

increased in the first two days of fermentation when the greatest amount was found and

then remained high during fermentation and even increased during drying process. As

acetic acid was not reported in unfermented nibs (Ho, Zhao, & Fleet, 2014) the fraction

detected on non-fermented beans could had been formed during drying stage, as long

time sun-drying process was applied. Acetic acid is considered an off-flavor in chocolate

and its reduction during processing is desirable (Ascrizzi, Flamini, Tessieri, & Pistelli,

2017). The roasting and conching steps resulted in important decrease of acetic acid

content on fermented beans process and longer conching period effectively lowered its

levels.

The compound 2,3-butanediol was found in both samples, but the fermented

beans presented a higher relative quantity in comparison to non-fermented ones. Its

derivate, 2,3-butanedione, was only detected on fermented cocoa beans. Volatile alcohols

produced during fermentation were reported as precursors to other compounds, i.e. 2,3-

butanediol to produce 2,3-butanedione (Rodriguez-Campos et al., 2011). The same

authors proposed that the oxidation of 3-methyl-1-butanol to 3-methyl-1-butanol acetate

could be used to evaluated the degree of fermentation. In accordance to that, on this study

it was observed that 3-methyl-butanol was only present on non-fermented cocoa beans

and 3-methyl-1-butanol acetate was present on both fermented and non-fermented

samples, but on higher relative content in the fermented beans and its derived products.

Page 29: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

29 Table 3. Volatile compounds found on different process stages from non-fermented cocoa beans to chocolate (peak area x 103)

Compounda NFB NFN NFL ChNF4h ChNF16h Flavor descriptionb

Alcohols

Ethanol 2741 + 161 1152 + 56 967 + 24 553 + 28 491 + 24

3-Buten-2-ol, 2-methyl- 1059 + 57 ND ND ND ND

1-Heptanol, 2-propyl- ND 351 + 4 319 + 10 ND ND 2-Pentanol 29523 + 1824 23209 + 1516 21421 + 1730 540 + 22 176 + 16 Green, mild green

2,6-Octadien-1-ol, 2,7-dimethyl- ND 175 + 10 184 + 17 ND ND

1-Butanol, 3-methyl- 1821 + 90 1409 + 42 1242 + 67 ND ND Malty

2-Pentanol, 4-methyl- 517 + 32 514 + 2 491 + 30 ND ND

1-Pentanol 145 + 12 168 + 11 151 + 13 57 + 2 56 + 2 Wizened

2-Heptanol 18317 + 1180 19681 + 394 18674 + 964 3797 + 11 202 + 8 Fruity

3-Ethyl-2-pentanol 1067 + 9 843 + 30 889 + 75 ND ND

2-Nonanol 1095 + 37 1461 + 97 1187 + 97 742 + 20 171 + 12

2,3-Butanediol 3000 + 158 1062 + 76 2383 + 57 495 + 40 ND Sweet chocolate

4-Nonanol ND 156 + 8 52 + 5 ND ND

alpha-Methylbenzyl alcohol 55 + 4 58 + 3 52 + 4 34 + 1 ND

Phenylethyl Alcohol 876 + 34 966 + 74 757 + 25 495 + 5 197 + 6 Honey, floral

Aldehydes

Butanal, 2-methyl- 227 + 8 1830 + 111 1339 + 133 ND ND Sweet chocolate

Butanal, 3-methyl- ND ND ND 115 + 8 112 + 2 Sweet chocolate

Pentanal ND ND ND 81 + 3 95 + 1

Hexanal ND ND ND 81 + 4 52 + 5

Ketones

Acetone 552 + 12 ND ND ND ND

2-Butanone 162 + 7 ND ND ND ND

2-Pentanone 17017 + 745 15046 + 1072 11347 + 1045 184 + 1 103 + 8 Fruity

2,3-Pentanedione ND 383 + 13 206 + 15 ND ND Bitter 2-Hexanone, 4-hydroxy-5-methyl-3-propyl- 241 + 6 218 + 12 219 + 4 ND ND

3-Penten-2-one ND 290 + 10 185 + 8 ND ND

2-Hexanone, 4-methyl- 139 + 13 154 + 6 152 + 6 41 + 2 ND

2,3-Octanedione ND 1197 + 102 608 + 50 ND ND

2-Nonanone 2611 + 150 3997 + 190 2977 + 238 1553 + 33 189 + 8

Acetophenone 217 + 6 265 + 20 222 + 14 113 + 3 ND Floral

3,6-Heptanedione 68 + 7 ND ND ND ND

Acids

Page 30: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

30

Acetic acid 15715 + 1091 18105 + 317 19931 + 769 4344 + 189 3373 + 249 Sour, vinegar-like

Esters

Acetic acid, methyl ester ND 1417 + 72 1430 + 86 ND ND

1-Propen-2-ol, acetate ND 684 + 24 745 + 22 ND ND

Ethyl Acetate 999 + 67 1025 + 74 715 + 57 ND ND Fruity, pineapple

1-Butanol, 3-methyl-, acetate 514 + 27 623 + 12 636 + 26 ND ND

Vinyl butyrate ND 779 + 39 810 + 50 ND ND

Butanedioic acid, 2,3-bis(acetyloxy)- ND 574 + 20 605 + 34 241 + 18 127 + 10

1-Butanol, 3-methyl-, benzoate 55 + 2 71 + 5 62 + 2 49 + 1 42 + 0 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate ND 509 + 21 440 + 14 244 + 14 203 + 14 1,2-Benzenedicarboxylic acid, diheptyl ester 550 + 16 344 + 13 339 + 12 200 + 9 149 + 6

Pyrazines

Pyrazine, 2,5-dimethyl- ND 523 + 26 343 + 28 ND ND Roasted, nutty

Furans, furanones, pyrans, pyrones

Furan, tetrahydro-2-methyl- ND 64 + 4 54 + 3 ND ND

3(2H)-Furanone, dihydro-2-methyl- ND 367 + 12 292 + 19 ND ND

Furfural ND 1078 + 74 609 + 19 ND ND Almond, nutty

2-Furanmethanol ND 133 + 3 140 + 5 37 + 1 32 v 1

2H-Pyran-2-one, tetrahydro- ND 35 + 3 23 + 2 ND ND 2(3H)-Furanone, dihydro-3-hydroxy-4,4-dimethyl-, ND 117 + 4 115 + 2 48 + 3 ND

Butyrolactone 1221 + 80 1538 + 116 1738 + 69 686 + 34 257 + 9

Pyrroles

Ethanone, 1-(1H-pyrrol-2-yl)- ND 50 + 4 37 + 1 23 + 0 ND

Amides

Methacrylamide ND 37 + 1 52 + 5 ND ND

3-Butenamide ND ND ND 35 + 2 37 + 2

Others

Dimethyl sulfide 47 + 2 341 + 17 181 + 5 ND ND

Ethanol, 2-(2-ethoxyethoxy)- 90 + 7 1125 + 100 1134 + 61 817 + 56 499 + 27 a Compounds tentatively identified by comparison of mass spectra to NIST08 library b Flavor description from literature matches (Rodriguez-Campos et al., 2011; Tran, et al., 2015; Aprotosoaie et al., 2016)

Values are expressed as mean ± standard deviation (n=3). Non-fermented cocoa beans (NFB), non-fermented roasted cocoa nibs (NFN), cocoa liquor from non-

fermented nibs (NFL), chocolate with 4h of conching from non-fermented liquor (ChNF 4h) and chocolate with 16h of conching from non-fermented liquor (ChNF

16h)

Page 31: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

31 Table 4. Volatile compounds found on different process stages from fermented cocoa beans to chocolate (peak area x 103)

Compounda FB FN FL ChF4h ChF16h Flavor descriptionb

Alcohols

Ethanol 399 + 39 372 + 33 372 + 40 191 + 13 171 + 14

2-Pentanol 817 + 36 ND ND ND ND Green, mild green

2-Heptanol 3023 + 103 5558 + 379 7562 + 530 2138 + 119 ND Fruity

2-Heptanol, 3-methyl- 446 + 19 ND ND ND ND

2-Nonanol ND 818 + 51 932 + 49 782 + 50 163 + 10

2,3-Butanediol 9181 + 354 5477 + 182 13866 + 338 4437 + 109 901 + 48 Sweet chocolate

alpha-Methylbenzyl alcohol ND 68 + 1 72 + 3 55 + 1 ND

Phenylethyl Alcohol 477 + 23 472 + 33 480 + 14 343 + 5 335 + 6 Honey, floral

Aldehydes

Propanal, 2-methyl- ND 487 + 23 490 + 25 ND ND Sweet chocolate

Butanal, 3-methyl- 273 + 7 4741 + 263 5183 + 159 286 + 10 287 + 12 Sweet chocolate

Ketones

Acetone 122 + 7 ND ND ND ND

2-Heptanone, 3-methyl- ND 200 + 17 201 + 17 ND ND

2,3-Butanedione 1095 + 75 586 + 56 549 + 38 171 + 8 148 + 10 Buttery

2-Pentanone ND 388 + 7 258 + 7 ND ND Fruity

2,3-Pentanedione ND 142 + 9 130 + 7 ND ND Bitter

2-Pentanone, 4-hydroxy- ND 1542 + 10 2215 + 120 ND ND

2-Butanone, 3-hydroxy- 15750 + 1060 6404 + 77 6420 + 95 962 + 56 583 + 32

2-Nonanone 965 + 58 2329 + 123 2416 + 145 1686 + 69 239 + 20

Acetophenone ND 174 + 1 182 + 10 115 + 5 ND Floral

Acids

Acetic acid 100546 + 4273 69214 + 3133 68512 + 3042 30659 + 1803 15520 + 981 Sour, vinegar-like

Propanoic acid, 2-methyl- 1026 + 33 ND ND ND ND Floral 2-Acetylamino-3-hydroxy-propionic acid 226 + 11 ND ND ND ND

Butanoic acid, 3-methyl- 770 + 23 435 + 29 462 + 23 ND ND

Esters

Acetic acid, methyl ester 694 + 27 914 + 89 932 + 50 ND ND

Ethyl Acetate 1711 + 22 1607 + 133 1589 + 41 ND ND Fruity, pineapple

Acetic acid, butyl ester 130 + 8 707 + 53 702 + 57 ND ND Fruity

2-Pentanol, acetate ND 2786 + 114 2581 + 94 181 + 17 ND

1-Butanol, 3-methyl-, acetate 871 + 42 4393 + 137 4253 + 198 379 + 21 ND

Butanedioic acid, 2,3-bis(acetyloxy)- ND 1137 + 22 1162 + 47 311 + 10 180 + 11

Page 32: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

32 Pentanoic acid, 2-hydroxy-4-methyl-, methyl ester ND 245 + 13 265 + 9 ND ND

3-Hydroxy-2-butanone, acetate 2392 + 96 2908 + 98 4181 + 111 ND ND

2-Furanmethanediol, dipropionate ND 161 + 14 160 + 13 ND ND

1-Methoxy-2-propyl acetate 8466 + 460 8960 + 142 12302 + 388 5445 + 237 281 + 18

Acetic acid, 2-phenylethyl ester 127 + 12 273 + 3 292 + 27 241 + 7 133 + 10 Honey, floral 1,2-Benzenedicarboxylic acid, diheptyl ester 478 + 20 554 + 19 435 + 24 359 + 22 248 + 9

Pyrazines

Pyrazine, 2,5-dimethyl- ND 826 + 34 780 + 48 168 + 4 ND Roasted, nutty

Pyrazine, 2,3-dimethyl- ND 396 + 1 406 + 3 117 + 2 ND Caramel, sweet chocolate

Pyrazine, trimethyl- ND 3466 + 49 3314 + 205 1541 + 109 74 + 3 Roasted, nutty

Pyrazine, tetramethyl- ND 1773 + 91 2106 + 74 1473 + 58 178 + 9 Sweet chocolate

2,3,5-Trimethyl-6-ethylpyrazine ND 250 + 4 243 + 23 194 + 4 45 + 3 Sweet chocolate

Furans, furanones, pyrans, pyrones

2-Furanmethanol ND 198 + 8 274 + 10 81 + 2 74 + 2 2,5-Dimethyl-4-hydroxy-3(2H)-furanone ND 182 + 1 186 + 12 104 + 2 ND Fruity, nutty

Butyrolactone 428 + 8 704 + 32 746 + 4 319 + 6 253 + 3 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- ND 528 + 23 501 + 43 292 + 15 ND 2(3H)-Furanone, dihydro-3-hydroxy-4,4-dimethyl-, ND 155 + 5 156 + 4 149 + 11 76 + 4 Coconut, nutty

Pyrroles

Ethanone, 1-(1H-pyrrol-2-yl)- ND 344 + 26 332 + 18 222 + 8 91 + 6

Amides

Methacrylamide ND 42 + 3 43 + 3 37 + 2 35 + 2

Others

Dimethyl sulfide 45 + 3 154 + 14 99 + 8 ND ND

Propanenitrile, 3-(1-methylethoxy)- ND 983 + 12 1063 + 51 556 + 17 ND

Ethanol, 2-(2-ethoxyethoxy) ND 644 + 58 683 + 43 550 + 44 467 + 44 1,3,4-Oxadiazole, 2-(acetyloxy)-2,5-dihydro-2,5,5-trimethyl- ND 465 + 9 557 + 42 434 + 29 74 + 3

a Compounds tentatively identified by comparison of mass spectra to NIST08 library b Flavor description from literature matches (Rodriguez-Campos et al., 2011; Tran, et al., 2015; Aprotosoaie et al., 2016)

Values are expressed as mean ± standard deviation (n=3). Fermented cocoa beans (FB), fermented roasted cocoa nibs (FN), cocoa liquor from fermented nibs

(FL), chocolate with 4h of conching from fermented liquor (ChF 4h) and chocolate with 16h of conching from fermented liquor (ChF 16h)

Page 33: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

33

A negative correlation between procyanidins content and volatile compounds

(some pyrazines) formation during roasting has been previously reported (Counet,

Ouwerx, Rosoux, & Collin, 2004) and the obtained results were in agreement to that, as

non-fermented beans with high contents of procyanidins showed a deficient formation of

pyrazines during roasting.

Roasting plays an important role as substantial changes on individual contents are

reported, some components are lost and others are formed, notably pyrazines (Gill et al.,

1984; Ho et al., 2014). Although some previous studies found formation of pyrazines

during fermentation (Puziah, Jinap, Sharifah, & Asbi, 1998), on the collected results they

were only detected after roasting, but in the unfermented and roasted beans it was just

observed 2,5 dimethyl pyrazine while there were four other pyrazines on the fermented

and roasted nibs (Figure 3).

Three Strecker aldehydes with strong chocolate notes previously reported, 2-

methylpropanal, 3-methylbutanal and 2-methylbutanal, respectively derived from valine,

leucine and isoleucine (Counet, Callemien, Ouwerx, & Collin, 2002) were detected on the

fractions of different step process analyzed; 2-methylbutanal was only present in

unfermented cocoa beans, increased during roasting and was lost during conching; 2-

methylpropanal emerged on roasting of fermented beans and was also lost during

conching, on the other hand 3-methylbutanal was present in all fractions during fermented

beans process to chocolates and was also found in a smaller relative quantity on

chocolates produced from unfermented cocoa. Although conched chocolate from

fermented cocoa had significant smaller peak area of 3-methylbutanal, longer conching

did not vary its content, therefore for this aldehyde, the first four hours of conching had

more impact on its amount than the continuing period.

Cocoa liquors presented almost the same volatile composition as the respective

roasted nibs, but the volatile composition of derived chocolates indicated that the

manufacturing stages from liquor to chocolate caused a decrease in number and relative

content of volatile compounds. When a longer conching was employed, a decreasing

tendency on volatiles was observed even for some flavor-active chocolate components

(Figure 3). Albak & Tekin (2016) also reported differences in number and levels of aroma

compounds during conching step and a decrease in pyrazines during the role process, but

some components increased and some were formed in the course of conching, which was

not observed in this study. Since there is an important variation on conching methods and

conditions, more studies regarding conching effect on volatile composition should be done

Page 34: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

34

to understand the role of conching conditions on volatile components on chocolate

manufacturing.

Fig. 3. Peak areas of pyrazines from different process stages: fermented cocoa beans (FB), fermented

roasted cocoa nibs (FN), cocoa liquor from fermented nibs (FL), chocolate with 4h of conching from

fermented liquor (ChF 4h) and chocolate with 16h of conching from fermented liquor (ChF 16h).

Sensory evaluation of chocolate produced from non-fermented cocoa showed low

acceptability and no statistical difference on liking between two conching extents analyzed

for all five attributes (Table 5), following that, buying intention was very low as around 90%

of respondents stated they would not buy those products.

Flavanols are recognized as bitter and astringent (Serra Bonvehí & Ventura Coll,

1997) and unfermented and partly fermented cocoa beans were previously associated

with excessively astringent and bitter taste due to the high polyphenol content (Misnawi,

Selamat, Bakar, & Saari, 2002). Misnawi, Jinap, Jamilah, & Nazamid (2004) found that a

high content of polyphenols prior to roasting significantly decreased the intensity of

perceived cocoa flavor of the resultant liquor, and they proposed a possible binding effect

of polyphenol on aroma precursors and aroma compounds formed during roasting, as a

result of lower contents of free amino acids and reducing sugars, with the increase in

polyphenol concentration and/ or sensory interference from its strong astringent and bitter

sensations.

0

500

1000

1500

2000

2500

3000

3500

4000

FB FN FL ChF 4h ChF 16h

Pea

k ar

ea x

10

3

Pyrazine, 2,5-dimethyl- Pyrazine, 2,3-dimethyl- Pyrazine, trimethyl-

Pyrazine, tetramethyl- 2,3,5-Trimethyl-6-ethylpyrazine

Page 35: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

35

Table 5. Results of sensory evaluation of chocolates by an untrained panel of 70 consumers

Attribute ChNF 4h ChNF 16h ChF 4h ChF 16h

Aroma 5.4 c 5.8 c 7.5 a 6.8 b

Chocolate flavor 3.0 b 3.1 b 6.2 a 6.1 a

Bitterness 2.7 b 3.0 b 6.0 a 6.4 a

Acidity 3.3 c 3.2 c 4.9 b 5.6 a

Overall acceptability 2.7 b 2.9 b 6.1 a 6.2 a Results are expressed in terms of mean values on nine-point liking score. Different letters within

the same line indicate statistical differences (p < 0.05). Chocolate from non-fermented cocoa with

4h of conching (ChNF 4h) and with 16h of conching (ChNF 16h); chocolate from fermented cocoa

with 4h of conching (ChF 4h) and with 16h of conching (ChF 16h).

In contrast, chocolates produced from fermented beans were better graded for the

same panel and differences on aroma and acidity were perceived when distinct conching

periods were employed. Acidity was better rated when longer conching was applied in

accordance to results previously discussed of volatile composition, as chocolate conched

for 16h showed a smaller relative content for acetic acid. For aroma evaluation, when a

shorter conching process was performed, acceptability increased, also in line with volatile

profile results that showed a more complex composition for this product.

4.4. Conclusions

Fermented and non-fermented sun-dried cocoa beans presented different

flavanols contents and volatile profile compositions, reaffirming the role of fermentation on

the degradation of polyphenols and the formation of volatile compounds.

Processing of fermented and non-fermented cocoa beans for chocolate resulted

on a similar negative percentual impact on the content of epicatechin and procyanidin B2;

during roasting the main decrease on those flavanols levels and the major changes on

volatile compounds profiles were detected. There was no difference on flavanols contents

when chocolates where conched for 4 or 16 h; nevertheless, volatile compounds showed

smaller relative quantities when a longer conching process was employed, which caused

a distinctive sensory perception of aroma and acidity on chocolates produced from

fermented cocoa.

Cocoa flavanols have called attention for their possible health benefits associated

to antioxidant properties, and even though chocolates produced from unfermented cocoa

beans had seven-fold higher content of epicatechin and procyanidin B2 when compared

Page 36: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

36

to their fermented cocoa beans counterpart, they were not well accepted on a sensory

evaluation due to their intense bitterness and astringency and lack of chocolate flavor

perception, which is consistent with high polyphenols contents and volatile composition

results.

Acknowledgments

The authors thank to Faculdade de Tecnologia SENAI “Horácio Augusto da Silveira”, where

part of experimental work was done and CAPES for the financial support. This study was

financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –

Brasil (CAPES) – Finance Code 001.

Page 37: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

37

References

Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2008). Flavor formation and character

in cocoa and chocolate: A critical review. Critical Reviews in Food Science and Nutrition,

48(9), 840–857. https://doi.org/10.1080/10408390701719272

Afoakwa, E. O., Quao, J., Budu, A. S., Takrama, J. F., & Salia, F. K. (2012). Influence of

pulp-preconditioning and fermentation on fermentative quality and appearance of Ghanaian

cocoa (Theobroma cacao) beans. International Food Research Journal, 19(1), 127–133.

Albak, F., & Tekin, A. R. (2016). Variation of total aroma and polyphenol content of dark

chocolate during three phase of conching. Journal of Food Science and Technology, 53(1),

848–855. https://doi.org/10.1007/s13197-015-2036-4

Albertini, B., Schoubben, A., Guarnaccia, D., Pinelli, F., Della Vecchia, M., Ricci, M., …

Blasi, P. (2015). Effect of Fermentation and Drying on Cocoa Polyphenols. Journal of

Agricultural and Food Chemistry, 63(45), 9948–9953.

https://doi.org/10.1021/acs.jafc.5b01062

Alean, J., Chejne, F., & Rojano, B. (2016). Degradation of polyphenols during the cocoa

drying process. Journal of Food Engineering, 189, 99–105.

https://doi.org/10.1016/j.jfoodeng.2016.05.026

Andújar, I., Recio, M. C., Giner, R. M., & Ríos, J. L. (2012). Cocoa polyphenols and their

potential benefits for human health. Oxidative Medicine and Cellular Longevity, 2012.

https://doi.org/10.1155/2012/906252

Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2016). Flavor Chemistry of Cocoa and Cocoa

Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1),

73–91. https://doi.org/10.1111/1541-4337.12180

Ascrizzi, R., Flamini, G., Tessieri, C., & Pistelli, L. (2017). From the raw seed to chocolate:

Volatile profile of Blanco de Criollo in different phases of the processing chain.

Microchemical Journal, 133, 474–479. https://doi.org/10.1016/j.microc.2017.04.024

Batista, N. N., Ramos, C. L., Dias, D. R., Pinheiro, A. C. M., & Schwan, R. F. (2016). The

impact of yeast starter cultures on the microbial communities and volatile compounds in

cocoa fermentation and the resulting sensory attributes of chocolate. Journal of Food

Science and Technology, 53(2), 1101–1110. https://doi.org/10.1007/s13197-015-2132-5

Page 38: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

38

Bordiga, M., Locatelli, M., Travaglia, F., Coïsson, J. D., Mazza, G., & Arlorio, M. (2015).

Evaluation of the effect of processing on cocoa polyphenols: Antiradical activity,

anthocyanins and procyanidins profiling from raw beans to chocolate. International Journal

of Food Science and Technology, 50(3), 840–848. https://doi.org/10.1111/ijfs.12760

Camu, N., De Winter, T., Addo, S. K., Takrama, J. S., Bernaert, H., & De Vuyst, L. (2008).

Fermentation of cocoa beans: influence of microbial activities and polyphenol concentrations

on the flavour of chocolate. Journal of the Science of Food and Agriculture, 88(13), 2288–

2297. https://doi.org/10.1002/jsfa.3349

Cooper, K. a, Donovan, J. L., Waterhouse, A. L., & Williamson, G. (2008). Cocoa and

health: a decade of research. The British Journal of Nutrition, 99(1), 1–11.

https://doi.org/10.1017/S0007114507795296

Counet, C., Callemien, D., Ouwerx, C., & Collin, S. (2002). Use of Gas

Chromatography−Olfactometry To Identify Key Odorant Compounds in Dark Chocolate.

Comparison of Samples before and after Conching. Journal of Agricultural and Food

Chemistry, 50(8), 2385–2391. https://doi.org/10.1021/jf0114177

Counet, C., Ouwerx, C., Rosoux, D., & Collin, S. (2004). Relationship between procyanidin

and flavor contents of cocoa liquors from different origins. Journal of Agricultural and Food

Chemistry, 52(20), 6243–6249. https://doi.org/10.1021/jf040105b

Di Mattia, C., Martuscelli, M., Sacchetti, G., Beheydt, B., Mastrocola, D., & Pittia, P. (2014).

Effect of different conching processes on procyanidin content and antioxidant properties of

chocolate. Food Research International, 63, 367–372.

https://doi.org/10.1016/j.foodres.2014.04.009

Di Mattia, C., Martuscelli, M., Sacchetti, G., Scheirlinck, I., Beheydt, B., Mastrocola, D., &

Pittia, P. (2013). Effect of Fermentation and Drying on Procyanidins, Antiradical Activity and

Reducing Properties of Cocoa Beans. Food and Bioprocess Technology, 6(12), 3420–3432.

https://doi.org/10.1007/s11947-012-1028-x

Ducki, S., Miralles-Garcia, J., Zumbé, A., Tornero, A., & Storey, D. M. (2008). Evaluation of

solid-phase micro-extraction coupled to gas chromatography-mass spectrometry for the

headspace analysis of volatile compounds in cocoa products. Talanta, 74(5), 1166–1174.

https://doi.org/10.1016/j.talanta.2007.08.034

Page 39: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

39

Dwijatmoko, M. I., Nurtama, B., Yuliana, N. D., & Misnawi. (2018). Characterization of

Polyphenols from Various Cocoa ( Theobroma cacao L .) Clones During Fermentation.

Pelita Perkebunan, 34(2), 104–112.

Efraim, P., Pezoa-García, N. H., Jardim, D. C. P., Nishikawa, A., Haddad, R., & Eberlin, M.

N. (2010). Influência da fermentação e secagem de amêndoas de cacau no teor de

compostos fenólicos e na aceitação sensorial. Ciência e Tecnologia de Alimentos, 30, 142–

150. https://doi.org/10.1590/S0101-20612010000500022

Gill, M. S., Macleod, A. J., & Moreau, M. (1984). Volatile components of cocoa with

particular reference to glucosinolate products. Phytochemistry, 23(9), 1937–1942.

https://doi.org/10.1016/S0031-9422(00)84945-6

Gültekin-Özgüven, M., Berktaş, İ., & Özçelik, B. (2016). Influence of processing conditions

on procyanidin profiles and antioxidant capacity of chocolates: Optimization of dark

chocolate manufacturing by response surface methodology. LWT - Food Science and

Technology, 66, 252–259. https://doi.org/10.1016/j.lwt.2015.10.047

Ho, V. T. T., Zhao, J., & Fleet, G. (2014). Yeasts are essential for cocoa bean fermentation.

International Journal of Food Microbiology, 174, 72–87.

https://doi.org/10.1016/j.ijfoodmicro.2013.12.014

Ioannone, F., Di Mattia, C. D., De Gregorio, M., Sergi, M., Serafini, M., & Sacchetti, G.

(2015). Flavanols, proanthocyanidins and antioxidant activity changes during cocoa

(Theobroma cacao L.) roasting as affected by temperature and time of processing. Food

Chemistry, 174, 256–262. https://doi.org/10.1016/j.foodchem.2014.11.019

Koné, M. K., Guéhi, S. T., Durand, N., Ban-Koffi, L., Berthiot, L., Tachon, A. F., … Montet,

D. (2016). Contribution of predominant yeasts to the occurrence of aroma compounds

during cocoa bean fermentation. Food Research International, 89, 910–917.

https://doi.org/10.1016/j.foodres.2016.04.010

Kothe, L., Zimmermann, B. F., & Galensa, R. (2013). Temperature influences epimerization

and composition of flavanol monomers, dimers and trimers during cocoa bean roasting.

Food Chemistry, 141(4), 3656–3663. https://doi.org/10.1016/j.foodchem.2013.06.049

Page 40: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

40

Machonis, P., Jones, M., Schaneberg, B., Kwik-Uribe, C., & Dowell, D. (2014). Method for

the Determination of Catechin and Epicatechin Enantiomers in Cocoa-Based Ingredients

and Products by High-Performance Liquid Chromatography: First Action 2013.04. Journal of

AOAC International, 97(2), 506–509. https://doi.org/https://doi.org/10.5740/jaoacint.13-351

McShea, A., Ramiro-Puig, E., Munro, S. B., Casadesus, G., Castell, M., & Smith, M. A.

(2008). Clinical benefit and preservation of flavonols in dark chocolate manufacturing.

Nutrition Reviews, 66(11), 630–641. https://doi.org/10.1111/j.1753-4887.2008.00114.x

Misnawi, A., Jinap, S., Jamilah, B., & Nazamid, S. (2004). Sensory properties of cocoa liquor

as affected by polyphenol concentration and duration of roasting. Food Quality and

Preference, 15(5), 403–409. https://doi.org/10.1016/S0950-3293(03)00097-1

Misnawi, Selamat, J., Bakar, J., & Saari, N. (2002). Oxidation of polyphenols in unfermented

and partly fermented cocoa beans by cocoa polyphenol oxidase and tyrosinase. Journal of

the Science of Food and Agriculture, 82(5), 559–566. https://doi.org/10.1002/jsfa.1075

Oracz, J., Nebesny, E., & Żyżelewicz, D. (2015). Changes in the flavan-3-ols, anthocyanins,

and flavanols composition of cocoa beans of different Theobroma cacao L. groups affected

by roasting conditions. European Food Research and Technology, 241(5), 663–681.

https://doi.org/10.1007/s00217-015-2494-y

Owusu, M., Petersen, M. A., & Heimdal, H. (2012). Effect of fermentation method, roasting

and conching conditions on the aroma volatiles of dark chocolate. Journal of Food

Processing and Preservation, 36(5), 446–456. https://doi.org/10.1111/j.1745-

4549.2011.00602.x

Papalexandratou, Z., Vrancken, G., de Bruyne, K., Vandamme, P., & de Vuyst, L. (2011).

Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a

restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food

Microbiology, 28(7), 1326–1338. https://doi.org/10.1016/j.fm.2011.06.003

Passos, F. M. L., Lopez, A. S., & Silvia, D. O. (1984). Aeration and its influence on the

microbial sequence in cacao fermentations in Bahia. Journal of Food Science, 49, 1470–

1474.

Page 41: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

41

Payne, M. J., Hurst, W. J., Miller, K. B., Rank, C., & Stuart, D. A. (2010). Impact of

Fermentation , Drying , Roasting , and Dutch Processing on Epicatechin and Catechin

Content of Cacao Beans and Cocoa Ingredients. Journal of Agricultural and Food

Chemistry, 58, 10518–10527. https://doi.org/10.1021/jf102391q

Puziah, H., Jinap, S., Sharifah, K., & Asbi, A. (1998). Changes in Free Amino Acid, Peptide-

N, Sugar and Pyrazine Concentration during Cocoa Fermentation. J Sci Food Agric, 78,

535–542.

Quiroz-Reyes, C. N., & Fogliano, V. (2018). Design cocoa processing towards healthy cocoa

products : The role of phenolics and melanoidins. Journal of Functional Foods, 45(January),

480–490. https://doi.org/10.1016/j.jff.2018.04.031

Rodriguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., &

Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa

(Theobroma cacao L.) during fermentation and drying processes using principal

components analysis. Food Research International, 44(1), 250–258.

https://doi.org/10.1016/j.foodres.2010.10.028

Serra Bonvehí, J., & Ventura Coll, F. (1997). Evaluation of bitterness and astringency of

polyphenolic compounds in cocoa powder. Food Chemistry, 60(3), 365–370.

https://doi.org/10.1016/S0308-8146(96)00353-6

Stanley, T. H., Buiten, C. B. Van, Baker, S. A., Elias, R. J., Anantheswaran, R. C., &

Lambert, J. D. (2018). Impact of roasting on the fl avan-3-ol composition , sensory-related

chemistry , and in vitro pancreatic lipase inhibitory activity of cocoa beans. Food Chemistry,

255, 414–420. https://doi.org/10.1016/j.foodchem.2018.02.036

Teh, Q. T. M., Tan, G. L. Y., Loo, S. M., Azhar, F. Z., Menon, A. S., & Hii, C. (2015). The

Drying Kinetics and Polyphenol Degradation of Cocoa Beans. Journal of Food Process

Engineering, 1–8. https://doi.org/10.1111/jfpe.12239

Tran, P. D., Van de Walle, D., De Clercq, N., De Winne, A., Kadow, D., Lieberei, R., … Van

Durme, J. (2015). Assessing cocoa aroma quality by multiple analytical approaches. Food

Research International, 77, 657–669. https://doi.org/10.1016/j.foodres.2015.09.019

Wood, G. A. R., & Lass, R. A. (1985). Cocoa. (G. A. R. Wood & R. A. Lass, Eds.) (Fourth).

Oxford, UK: Blackwell Science Ltd. https://doi.org/10.1002/9780470698983

Page 42: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

42

Żyżelewicz, D., Krysiak, W., Oracz, J., Sosnowska, D., Budryn, G., & Nebesny, E. (2016).

The influence of the roasting process conditions on the polyphenol content in cocoa beans ,

nibs and chocolates. Food Research International, 89(2), 918–929.

https://doi.org/https://doi.org/10.1016/j.foodres.2016.03.026

Page 43: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

43

5. CONCLUSÃO GERAL

As amêndoas de cacau não fermentadas e secas ao sol apresentaram uma

composição de voláteis e níveis de flavanóis distintos das amêndoas fermentadas obtidas

do mesmo lote de frutos e secas sob as mesmas condições, reafirmando a importância

da fermentação na formação de sabor e na degradação de polifenóis.

O processamento das amêndoas, fermentadas e não fermentadas, para a

produção de chocolate resultou em diminuição percentual similar nos teores de

epicatequina e procianidina B2, e, dentre as etapas, a torra foi responsável pelo maior

impacto tanto na degradação de flavanóis como na formação de compostos voláteis.

Não houve diferença significativa nos teores dos polifenóis analisados entre os

chocolates que foram submetidos à 4 ou 16 h de conchagem sob as mesmas condições;

porém foi observada menor quantidade relativa dos compostos voláteis quando a

conchagem prolongada foi empregada e essa diferença foi percebida na avaliação

sensorial dos chocolates produzidos a partir de amêndoas fermentadas.

A presença de flavanóis no cacau e seus derivados tem aumentado o interesse

em relação aos possíveis benefícios à saúde associados à sua capacidade antioxidante

e, apesar dos chocolates produzidos a partir de amêndoas não fermentadas terem

apresentado teores de epicatequina e de procianidina B2 sete vezes superiores àqueles

encontrados em chocolates produzidos em paralelo com amêndoas fermentadas, os

produtos não foram bem aceitos em avaliação sensorial, devido à alta percepção de

amargor e adstringência conferida pelos polifenóis e à falta de reconhecimento do sabor

de chocolate. Os resultados da análise sensorial foram condizentes com os perfis de

compostos voláteis obtidos.

Assim, sugere-se que condições intermediárias de processo sejam estudadas e

que os derivados do processamento de amêndoas não fermentadas de cacau, como o

liquor, poderiam ser empregados parcialmente em formulações de alimentos, com o

intuito de aumentar os teores de flavanóis sem comprometer totalmente a percepção

sensorial dos produtos.

Page 44: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

44

REFERÊNCIAS GERAIS

AFOAKWA, E. O. et al. Flavor formation and character in cocoa and chocolate: A critical review.

Critical Reviews in Food Science and Nutrition, v. 48, n. 9, p. 840–857, 2008.

AFOAKWA, E. O. et al. Influence of pulp-preconditioning and fermentation on fermentative

quality and appearance of Ghanaian cocoa (Theobroma cacao) beans. International Food

Research Journal, v. 19, n. 1, p. 127–133, 2012.

AFOAKWA, E. O. et al. Roasting effects on phenolic content and free-radical scavenging

activities of pulp preconditioned and fermented cocoa (Theobroma cacao) beans. African

Journal of Food, Agriculture, Nutrition and Development, v. 15, n. 1, p. 9635–9650, 2015.

ALBAK, F.; TEKIN, A. R. Variation of total aroma and polyphenol content of dark chocolate

during three phase of conching. Journal of Food Science and Technology, v. 53, n. 1, p.

848–855, 2016.

ALBERTINI, B. et al. Effect of Fermentation and Drying on Cocoa Polyphenols. Journal of

Agricultural and Food Chemistry, v. 63, n. 45, p. 9948–9953, 2015.

ALEAN, J.; CHEJNE, F.; ROJANO, B. Degradation of polyphenols during the cocoa drying

process. Journal of Food Engineering, v. 189, p. 99–105, 2016.

ANDÚJAR, I. et al. Cocoa polyphenols and their potential benefits for human health. Oxidative

Medicine and Cellular Longevity, v. 2012, 2012.

APROTOSOAIE, A. C.; LUCA, S. V.; MIRON, A. Flavor Chemistry of Cocoa and Cocoa

Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, v. 15, n.

1, p. 73–91, 2016.

ASCRIZZI, R. et al. From the raw seed to chocolate: Volatile profile of Blanco de Criollo in

different phases of the processing chain. Microchemical Journal, v. 133, p. 474–479, 2017.

ASUERO, A. G.; SAYAGO, A.; GONZÁLEZ, A. G. The Correlation Coefficient: An Overview.

Critical Reviews in Analytical Chemistry, v. 36, n. July, p. 41–59, 2006.

BATISTA, N. N. et al. The impact of yeast starter cultures on the microbial communities and

volatile compounds in cocoa fermentation and the resulting sensory attributes of chocolate.

Journal of Food Science and Technology, v. 53, n. 2, p. 1101–1110, 2016.

Page 45: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

45

BECKETT, S. T. Traditional Chocolate Making. In: BECKETT, S. T. (Ed.). . Industrial

Chocolate Manufacture and Use. 4. ed. Oxford, UK: Wiley-Blackwell, 2009. p. 1–9.

BEG, M. S. et al. Status, supply chain and processing of cocoa - A review. Trends in Food

Science & Technology, v. 66, p. 108–116, Aug. 2017.

BORDIGA, M. et al. Evaluation of the effect of processing on cocoa polyphenols: Antiradical

activity, anthocyanins and procyanidins profiling from raw beans to chocolate. International

Journal of Food Science and Technology, v. 50, n. 3, p. 840–848, 2015.

BRAGA, S. C. G. N. Avaliação dos perfis de sementes de cacau e derivados obtidos por

HS-SPME e cromatografia gasosa bidimensional abrangente utilizando ferramentas

quimiométricas. [s.l.] Universidade Estadual de Campinas, 2016.

CAMU, N. et al. Fermentation of cocoa beans: influence of microbial activities and polyphenol

concentrations on the flavour of chocolate. Journal of the Science of Food and Agriculture,

v. 88, n. 13, p. 2288–2297, Oct. 2008.

CARRILLO, L. C.; LONDOÑO-LONDOÑO, J.; GIL, A. Comparison of polyphenol,

methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-

growing areas in Colombia. Food Research International, v. 60, p. 273–280, 2014.

COOPER, K. A et al. Cocoa and health: a decade of research. The British journal of nutrition,

v. 99, n. 1, p. 1–11, 2008.

COUNET, C. et al. Use of Gas Chromatography−Olfactometry To Identify Key Odorant

Compounds in Dark Chocolate. Comparison of Samples before and after Conching. Journal of

Agricultural and Food Chemistry, v. 50, n. 8, p. 2385–2391, Apr. 2002.

COUNET, C. et al. Relationship between procyanidin and flavor contents of cocoa liquors from

different origins. Journal of Agricultural and Food Chemistry, v. 52, n. 20, p. 6243–6249,

2004.

DI MATTIA, C. et al. Effect of Fermentation and Drying on Procyanidins, Antiradical Activity and

Reducing Properties of Cocoa Beans. Food and Bioprocess Technology, v. 6, n. 12, p. 3420–

3432, 2013.

DI MATTIA, C. et al. Effect of different conching processes on procyanidin content and

antioxidant properties of chocolate. Food Research International, v. 63, p. 367–372, 2014.

Page 46: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

46

DUCKI, S. et al. Evaluation of solid-phase micro-extraction coupled to gas chromatography-

mass spectrometry for the headspace analysis of volatile compounds in cocoa products.

Talanta, v. 74, n. 5, p. 1166–1174, 2008.

DWIJATMOKO, M. I. et al. Characterization of Polyphenols from Various Cocoa ( Theobroma

cacao L .) Clones During Fermentation. Pelita Perkebunan, v. 34, n. 2, p. 104–112, 2018.

EFRAIM, P. et al. Influência da fermentação e secagem de amêndoas de cacau no teor de

compostos fenólicos e na aceitação sensorial. Ciência e Tecnologia de Alimentos, v. 30, p.

142–150, 2010.

GILL, M. S.; MACLEOD, A. J.; MOREAU, M. Volatile components of cocoa with particular

reference to glucosinolate products. Phytochemistry, v. 23, n. 9, p. 1937–1942, 1984.

GÜLTEKIN-ÖZGÜVEN, M.; BERKTAŞ, İ.; ÖZÇELIK, B. Influence of processing conditions on

procyanidin profiles and antioxidant capacity of chocolates: Optimization of dark chocolate

manufacturing by response surface methodology. LWT - Food Science and Technology, v.

66, p. 252–259, 2016.

HO, V. T. T.; ZHAO, J.; FLEET, G. Yeasts are essential for cocoa bean fermentation.

International Journal of Food Microbiology, v. 174, p. 72–87, 2014.

HU, S. J.; KIM, B. Y.; BAIK, M. Y. Physicochemical properties and antioxidant capacity of raw,

roasted and puffed cacao beans. Food Chemistry, v. 194, p. 1089–1094, 2016.

ICCO. International Cocoa Organization - The world cocoa economy: past and present.

Disponível em: <https://www.icco.org/about-us/international-cocoa-agreements/cat_view/30-

related-documents/45-statistics-other-statistics.html>. Acesso em: 20 oct. 2016.

IOANNONE, F. et al. Flavanols, proanthocyanidins and antioxidant activity changes during

cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food

Chemistry, v. 174, p. 256–262, 2015.

KONÉ, M. K. et al. Contribution of predominant yeasts to the occurrence of aroma compounds

during cocoa bean fermentation. Food Research International, 2016.

KOTHE, L.; ZIMMERMANN, B. F.; GALENSA, R. Temperature influences epimerization and

composition of flavanol monomers, dimers and trimers during cocoa bean roasting. Food

Chemistry, v. 141, n. 4, p. 3656–3663, 2013.

Page 47: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

47

MACHONIS, P. et al. Method for the Determination of Catechin and Epicatechin Enantiomers in

Cocoa-Based Ingredients and Products by High-Performance Liquid Chromatography: First

Action 2013.04. Journal of AOAC International, v. 97, n. 2, p. 506–509, 2014.

MAZOR JOLIĆ, S. et al. Changes of phenolic compounds and antioxidant capacity in cocoa

beans processing. International Journal of Food Science & Technology, v. 46, n. 9, p.

1793–1800, Sep. 2011.

MCSHEA, A. et al. Clinical benefit and preservation of flavonols in dark chocolate

manufacturing. Nutrition Reviews, v. 66, n. 11, p. 630–641, 2008.

MISNAWI et al. Oxidation of polyphenols in unfermented and partly fermented cocoa beans by

cocoa polyphenol oxidase and tyrosinase. Journal of the Science of Food and Agriculture, v.

82, n. 5, p. 559–566, 2002.

MISNAWI, A. et al. Sensory properties of cocoa liquor as affected by polyphenol concentration

and duration of roasting. Food Quality and Preference, v. 15, n. 5, p. 403–409, 2004.

NIEMENAK, N. et al. Comparative study of different cocoa (Theobroma cacao L.) clones in

terms of their phenolics and anthocyanins contents. Journal of Food Composition and

Analysis, v. 19, n. 6–7, p. 612–619, 2006.

ORACZ, J.; NEBESNY, E.; ŻYŻELEWICZ, D. Changes in the flavan-3-ols, anthocyanins, and

flavanols composition of cocoa beans of different Theobroma cacao L. groups affected by

roasting conditions. European Food Research and Technology, v. 241, n. 5, p. 663–681,

2015.

OWUSU, M.; PETERSEN, M. A.; HEIMDAL, H. Effect of fermentation method, roasting and

conching conditions on the aroma volatiles of dark chocolate. Journal of Food Processing

and Preservation, v. 36, n. 5, p. 446–456, 2012.

PAPALEXANDRATOU, Z. et al. Spontaneous organic cocoa bean box fermentations in Brazil

are characterized by a restricted species diversity of lactic acid bacteria and acetic acid

bacteria. Food Microbiology, v. 28, n. 7, p. 1326–1338, 2011.

PASSOS, F. M. L.; LOPEZ, A. S.; SILVIA, D. O. Aeration and its influence on the microbial

sequence in cacao fermentations in Bahia. Journal of Food Science, v. 49, p. 1470–1474,

1984.

Page 48: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

48

PAYNE, M. J. et al. Impact of Fermentation , Drying , Roasting , and Dutch Processing on

Epicatechin and Catechin Content of Cacao Beans and Cocoa Ingredients. Journal of

Agricultural and Food Chemistry, v. 58, p. 10518–10527, 2010.

PUZIAH, H. et al. Changes in Free Amino Acid, Peptide-N, Sugar and Pyrazine Concentration

during Cocoa Fermentation. J Sci Food Agric, v. 78, p. 535–542, 1998.

QUIROZ-REYES, C. N.; FOGLIANO, V. Design cocoa processing towards healthy cocoa

products : The role of phenolics and melanoidins. Journal of Functional Foods, v. 45, n.

January, p. 480–490, 2018.

RODRIGUEZ-CAMPOS, J. et al. Dynamics of volatile and non-volatile compounds in cocoa

(Theobroma cacao L.) during fermentation and drying processes using principal components

analysis. Food Research International, v. 44, n. 1, p. 250–258, 2011.

SERRA BONVEHÍ, J.; VENTURA COLL, F. Evaluation of bitterness and astringency of

polyphenolic compounds in cocoa powder. Food Chemistry, v. 60, n. 3, p. 365–370, 1997.

SOTO-VACA, A. et al. Evolution of good polyphenolics from color and flavor problems to health

benefits Evolution of Phenolic compounds from Color and Flavor Problems to Health Benefits.

Journal of Agricultural and Food Chemistry, v. 60, n. 2, p. 6658−6677, 2012.

STANLEY, T. H. et al. Impact of roasting on the fl avan-3-ol composition , sensory-related

chemistry , and in vitro pancreatic lipase inhibitory activity of cocoa beans. Food Chemistry, v.

255, p. 414–420, 2018.

STONE, H.; SIDEL, J. L. Sensory evaluation practices. [s.l.] Elsevier Academic Press, 2004.

TEH, Q. T. M. et al. The Drying Kinetics and Polyphenol Degradation of Cocoa Beans. Journal

of Food Process Engineering, p. 1–8, 2015.

TRAN, P. D. et al. Assessing cocoa aroma quality by multiple analytical approaches. Food

Research International, v. 77, p. 657–669, 2015.

WOLLGAST, J.; ANKLAM, E. Review on polyphenols in Theobroma cacao: Changes in

composition during the manufacture of chocolate and methodology for identification and

quantification. Food Research International, v. 33, n. 6, p. 423–447, 2000.

Page 49: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

49

WOOD, G. A. R.; LASS, R. A. Cocoa. Fourth ed. Oxford, UK: Blackwell Science Ltd, 1985.

ŻYŻELEWICZ, D. et al. The influence of the roasting process conditions on the polyphenol

content in cocoa beans , nibs and chocolates. Food Research International, v. 89, n. 2, p.

918–929, 2016.

Page 50: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

50

ANEXO I – Parecer substanciado do comitê de ética em pesquisa da UNICAMP

Page 51: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

51

Page 52: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

52

Page 53: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

53

Page 54: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

54

Page 55: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

55

Page 56: UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia de Alimentosrepositorio.unicamp.br/.../1/Faria_FlaviaReginaDe_M.pdf · 2019. 8. 21. · Processamento de cacau..... 13 3.2

56

ANEXO II – Declaração de cadastro no Sistema Nacional de Gestão do Patrimônio Genético