pathpath.web.ua.pt/publications/jmolliq2020114647_si.docx · web view3utfpr – departamento de...

54
Supporting Information Ionic liquids as Entrainers for Terpenes Fractionation and other Relevant Separation Problems Sérgio M. Vilas-Boas 1,2 , Gabriel Teixeira 1,3 , Sabrina Rosini 1,3 , Mónia A. R. Martins 2 , Priscilla S. Gaschi 3 , João A. P. Coutinho 2 , Olga Ferreira 1 and Simão P. Pinho 1* 1 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal 2 CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal 3 UTFPR – Departamento de Engenharia Química, Universidade Tecnológica Federal do Paraná, 84016-210 Ponta Grossa, Brazil *Corresponding author: Simão P. Pinho, E-mail address: [email protected] , Phone: +351 273303086, Fax: +351 273313051.

Upload: others

Post on 02-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Supporting Information

Ionic liquids as Entrainers for Terpenes Fractionation and other Relevant Separation Problems

Sérgio M. Vilas-Boas1,2, Gabriel Teixeira1,3, Sabrina Rosini1,3, Mónia A. R. Martins2, Priscilla S. Gaschi3, João A. P. Coutinho2, Olga Ferreira1 and Simão P. Pinho1*

1Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

2CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

3UTFPR – Departamento de Engenharia Química, Universidade Tecnológica Federal do Paraná, 84016-210 Ponta Grossa, Brazil

*Corresponding author: Simão P. Pinho, E-mail address: [email protected], Phone: +351 273303086, Fax: +351 273313051.

Section S1 – Experimental

Table S1. Chemical structure, supplier, normal boiling temperature (K) and purity (mass fraction) of the solutes.

Family

Compounds

Chemical structure

Supplier

Boiling temperature (K)

Purity (mass fraction)

water

-a

373.15b

-a

Alkanes

octane

Aldrich

398.77b

≥ 0.990

nonane

Aldrich

423.91b

≥ 0.990

decane

Aldrich

447.20b

≥ 0.990

Cycloalkanes

cyclohexane

Aldrich

353.90b

≥ 0.990

methylcyclohexane

Aldrich

374.00b

≥ 0.990

Ketones

propanone (acetone)

Aldrich

329.30b

≥ 0.999

2-butanone

Aldrich

353.00b

≥ 0.990

Ethers

ethoxyethane (diethyl ether)

Aldrich

307.70b

≥ 0.999

Cyclic Ethers

oxolane (THF)

Aldrich

339.00b

≥ 0.999

1,4-dioxane

Aldrich

374.30b

≥ 0.998

Aromatic Hydrocarbons

benzene

Aldrich

353.22b

≥ 0.998

toluene

Aldrich

383.75b

≥ 0.998

ethylbenzene

Aldrich

409.35b

≥ 0.998

p-xylene

Aldrich

411.51b

≥ 0.990

Esters

methyl acetate

Aldrich

330.00

≥ 0.998

vinyl acetate

Riedel-de-Häen

345.70

≥ 0.990

ethyl acetate

Aldrich

350.20

≥ 0.998

Alcohols

methanol

Aldrich

337.80b

≥ 0.999

ethanol

Aldrich

351.50b

≥ 0.998

1-propanol

Aldrich

370.30b

≥ 0.999

2-propanol

Fluka

355.50b

≥ 0.999

2-methyl-1-propanol (isobutanol)

Aldrich

380.80b

≥ 0.995

1-butanol

Aldrich

390.60b

≥ 0.998

2-butanol

Aldrich

372.00b

≥ 0.995

2-methyl-2-propanol (tert-butanol)

Aldrich

355.50b

≥ 0.997

acetonitrile

Fluka

355.15b

≥ 0.999

pyridine

Aldrich

388.15b

≥ 0.998

thiophene

Aldrich

357.15b

≥ 0.990

Terpenes

α-pinene

Aldrich

430.00b

≥ 0.980

β-pinene

Aldrich

439.20b

≥ 0.990

R(+)-limonene

Aldrich

449.65b

≥ 0.970

p-cymene

Aldrich

450.28b

≥ 0.990

Terpenoids

(−)-menthone

Fluka

490.79b

≥ 0.990

(1R)-(−)-fenchone

Aldrich

466.65c

≥ 0.980

α-pinene oxide

Aldrich

447.15c

≥ 0.970

eucalyptol

Aldrich

449.55c

≥ 0.990

Terpenoids

linalool

Aldrich

471.65c

≥ 0.970

geraniol

Aldrich

502.15c

≥ 0.980

DL-citronellol

Aldrich

497.65c

≈ 0.950

(1R)-(+)-camphor

Aldrich

480.55c

≥ 0.980

(S)-(+)-carvone

Merck

503.65c

≥ 0.980

L(-)-menthol

Acros

488.55c

≥ 0.997

(-)-isopulegol

SAFC

470.15c

≥ 0.980

(−)-borneol

Fluka

485.15c

≥ 0.990

aUltrapure water (resistivity of18.2MΩ·cm, free particles ≥ 0.22 μm and total organic carbon < 5 μg·dm−3) was used all the experiments involving this solute.

bThe boiling temperature was obtained from Yaws [1].

cThe boiling temperature was obtained from ChemSpider [2,3].

Table S2. Summary of all the parameters used in the calculations of the vapor pressures and density of the pure terpenes and terpenoids.

Solute

Vapor pressure (Pa)a,b

Density (kmol⸱m-3)c

A

B

C

References

A

B

C

References

α-pinene

9.482

1719.099

-41.920

[4,5]

-2.001E-06

-4.866E-03

7.905E+00

[6]

β-pinene

9.612

1824.816

-38.019

[4,5]

-1.446E-06

-5.050E-03

7.996E+00

[6]

R(+)-limonene

9.574

1825.747

-47.977

[7,8]

-8.224E-07

-5.293E-03

7.822E+00

[6]

p-cymene

14.380

3741.421

66.761

[9]d

7.333E-07

-6.876E-03

8.358E+00

[6,10]

(−)-menthone

6.710

3386.390

214.095

[11]

-4.033E-07

4.810E-03

7.240E+00

[6]

(1R)-(−)-fenchone

9.137

1891.303

-33.614

[11,12]

-5.096E-07

5.228E-03

7.784E+00

[6]

α-pinene oxide

7.758

975.321

-127.321

[13]

-9.571E-07

-4.906E-03

7.861E+00

[6]

eucalyptol

9.157

1618.031

-59.920

[7,8]

-9.128E-07

-5.033E-03

7.550E+00

[6]

linalool

9.288

1606.944

-95.404

[14,15]

-3.680E-06

-3.230E-03

6.852E+00

[6]

geraniol

10.985

2542.520

-60.792

[16]

-3.161E-06

-2.790E-03

6.796E+00

[6]

DL-citronellol

10.985

2487.039

-64.114

[16]

-3.210E-06

-2.545E-03

6.512E+00

[6]

(1R)-(+)-camphor

12.987

3944.412

43.689

[12]

0

-1.79E-02

1.389 E+01

[1]e

S(+)-carvone

9.192

1864.966

-69.488

[17]

-4.877E-07

-5.046E-03

7.922E+00

[6]

L-(-)-menthol

8.543

1279.023

-133.227

[8,18]

-5.486E-06

-1.239E-03

6.578E+00

[6]

(-)-isopulegol

10.196

2144.688

-55.388

f

-9.100E-07

-4.831E-03

7.393E+00

[6]

(−)-borneol

10.021

1971.530

-90.643

[16]

6.425E-07

-7.641E-04

6.455E+00

g

aThe vapor pressures were calculated using the Antoine equation: , ,

bThe constants of the Antoine equation were obtained by multilinear regression (Origin 8.5) of vapor pressure data available in the literature.

cThe literature density data were fit using following second order polynomial equation: , ρ,

dThe vapor pressures of p-cymene were calculated using the following modified form of Antoine equation: , ,

e For (1R)-(+)-camphor, the density data were calculated by the following equation: ρ, (n = 0.286).

f Unpublished data.

gThe density data were obtained by using COSMO-RS with BP_TZVP_C30_1701 parametrization. The input cosmo file was generated TmoleX 3.3 program package using the COSMO-BP-TZVP template.

Table S3. Summary of all the critical properties, acentric factor and dipole moments of the pure terpenes and terpenoids.

Solute

Critical properties (Pa)a

Acentric factor

Dipole moment

References

Tc (K)

pc (MPa)

Vc (cm-3⸱mol)

ω

μ (C⸱m-1)b

α-pinene

630.8

2.89

484.50

0.326

1.16E-30

[6,19]

β-pinene

646.0

2.88

482.50

0.320

4.02E-30

[6,19]

R(+)-limonene

658.9

2.76

496.50

0.318

2.23E-30

[6,19]

p-cymene

652.0

2.80

497.00c

0.374c

2.64E-31

[1]

(−)-menthone

689.7

2.60

528.50

0.412

1.45E-29

[6,19]

(1R)-(−)-fenchone

679.2

3.08

503.50

0.388

1.47E-29

[6,19]

α-pinene oxide

716.4

3.09

489.50

0.369

9.76E-30

[6,19]

eucalyptol

661.05

2.45

509.50

0.339

8.03E-30

[6,19]

linalool

633.3

2.58

565.40

0.755

9.67E-30

[6,19]

geraniol

671.7

2.57

576.50

0.820

1.18E-29

[6,19]

DL-citronellol

657.9

2.45

589.50

0.848

7.86E-30

[6,19]

(1R)-(+)-camphor

700.2

3.08

503.50

0.388

1.53E-29

[19]

S(+)-carvone

724.8

28.60

503.50

0.419

1.78E-29

[6,19]

L-(-)-menthol

661.6

2.66

539.50

0.716

7.84E-30

[6,19]

(-)-isopulegol

656.8

2.77

527.50

0.698

9.70E-30

[6,19]

(−)-borneol

670.2

3.17

514.50

0.698

7.21E-30

[19]

aFor all the terpenes and terpenoids, the critical properties were reported by Martins and co-authors [6,19] and were calculated using the Joback group contribution approach [20], excepting for p-cymene.

bThe dipole moments were estimated using TURBOMOLE 6.1 program package applying the BP-86 density functional theory level with a triple-zeta valence (TZVP) basis set.

cFor p-cymene, the critical properties and acentric factor used in this work were reported by Yaws [1].

Section S2 – Results and discussion

Activity coefficients at infinite dilution:

Temperature conditions selected for the GC experiments

The activity coefficients at infinite dilution measured in this work at different temperatures are listed in Table S4. For hydrocarbons (alkanes, cycloalkanes, and aromatic compounds), ethers, esters, ketones, acetonitrile, pyridine, and thiophene, the GC measurements were performed in the temperature interval (333.15 – 383.15) K. For alcohols, terpenes, terpenoids, and water, higher temperatures were selected due to the long retention times required to be performed the GC experiments. Even if values at lower temperatures are better for separation factor analysis, a fair compromise between the retention times and the column temperature was needed to make it possible to collect reliable data.

For alcohols and water, experiments were carried out between 383.15 K to 403.15 K in [C4mim][OAc], whereas the temperature range was larger (363.15 – 413.15) K for the less polar [P6,6,6,14]Cl and [P6,6,6,14][(C8H17)2PO2] ILs. No experiments could be performed for water in [C4mim][OAc], once no response was observed in the above-mentioned temperature interval (within 200 minutes timeframe).

For terpenes and terpenoids, different temperature intervals were chosen for each ionic liquid, depending on the solute volatility. Consequently, for less volatile terpenoids, high temperatures were selected to avoid long retention times and its precipitation inside the column. Even so, for some terpenoids in [P6,6,6,14][(C8H17)2PO2], the number of experimental data obtained is much less than in [P6,6,6,14]Cl. Excepting linalool, the major oxygenated terpene in many essential oils [21–24], in the [C4mim][OAc] IL, no attempt was made to measure at temperatures higher than 403.15 K, because of the low thermal stability of imidazolium-based ionic liquids containing the acetate anion [25].

In the case of (1R)-(+)-camphor, L-(-)-menthol and (−)-borneol, which are solid at room temperature, small amounts of solutes were dissolved in ethanol or 2-propanol (with known retention times) before the injections.

Table S4. Activity coefficients at infinite dilution () of water and organic solutes in [P6,6,6,14]Cl, [P6,6,6,14][(C8H17)2PO2] and [C4mim][OAc] at different temperatures.

Different organic solutes

[P6,6,6,14]Cl

[P6,6,6,14][(C8H17)2PO2]a

[C4mim][OAc]b

333.15

343.15

353.15

363.15

373.15

383.15

333.15

343.15

353.15

363.15

373.15

383.15

333.15

343.15

353.15

363.15

373.15

383.15

octane

1.755

1.733

1.698

1.670

1.658

1.649

0.851

0.851

0.855

0.853

0.867

0.858

85.54

79.37

71.61

68.35

65.10

58.27

nonane

1.891

1.857

1.825

1.773

1.770

1.764

0.914

0.918

0.919

0.921

0.923

0.910

108.56

102.38

96.27

90.83

86.71

82.85

decane

2.098

2.032

2.013

1.955

1.931

1.892

0.997

0.997

0.996

0.998

1.001

0.986

149.94

139.66

130.48

123.73

117.34

110.92

cyclohexane

1.087

1.048

1.032

0.977

0.992

0.943

0.542

0.544

0.537

0.536

0.542

0.536

20.27

19.56

18.27

17.48

16.79

15.16

methylcyclohexane

1.144

1.115

1.105

1.075

1.076

1.064

0.597

0.586

0.585

0.608

0.611

0.597

27.55

26.23

25.13

24.18

23.38

22.38

benzene

0.494

0.493

0.497

0.500

0.501

0.508

0.474

0.474

0.471

0.466

0.460

0.454

2.57

2.60

2.62

2.62

2.64

2.67

toluene

0.593

0.595

0.599

0.607

0.605

0.603

0.526

0.524

0.526

0.520

0.526

0.513

4.09

4.22

4.11

4.13

4.11

4.07

ethylbenzene

0.705

0.704

0.698

0.707

0.706

0.711

0.593

0.591

0.597

0.587

0.588

0.574

6.07

6.06

6.05

6.03

6.04

6.05

p-xylene

0.727

0.731

0.732

0.740

0.733

0.740

0.596

0.597

0.607

0.596

0.597

0.585

6.43

6.44

6.45

6.44

6.45

6.46

diethyl ether

1.283

1.254

1.235

1.145

1.076

1.091

0.671

0.670

0.671

0.682

0.689

0.691

10.12

9.91

9.86

9.67

9.58

9.66

THF

0.626

0.617

0.610

0.598

0.585

0.595

0.438

0.440

0.436

0.432

0.436

0.427

3.04

2.91

2.89

2.86

2.84

2.86

1,4-dioxane

0.794

0.782

0.769

0.757

0.736

0.738

0.810

0.787

0.765

0.745

0.732

0.702

2.25

2.28

2.28

2.28

2.26

2.16

methyl acetate

1.090

0.991

1.021

0.975

0.939

0.941

0.895

0.864

0.839

0.818

0.805

0.789

2.88

2.85

2.87

2.84

2.83

2.87

ethyl acetate

1.108

1.071

1.050

1.019

0.987

0.993

0.842

0.821

0.803

0.788

0.781

0.757

4.24

4.19

4.19

4.15

4.14

-

vinyl acetate

0.997

0.963

0.948

0.923

0.896

0.899

0.920

0.894

0.865

0.843

0.832

0.817

-

-

-

-

-

-

acetone

0.795

0.774

0.768

0.744

0.719

0.729

0.899

0.868

0.836

0.810

0.793

0.766

2.07

2.04

2.08

2.05

2.03

1.91

2-butanone

0.730

0.720

0.721

0.716

0.720

0.714

0.752

0.738

0.724

0.707

0.700

0.675

2.25

2.27

2.29

2.27

2.26

2.28

acetonitrile

0.563

0.556

0.556

0.554

0.550

0.553

1.046

1.018

0.985

0.954

0.934

0.901

0.91

0.95

0.94

0.95

0.94

0.96

pyridine

0.421

0.419

0.420

0.427

0.421

0.429

0.589

0.576

0.563

0.555

0.543

0.524

1.26

1.27

1.29

1.29

-

1.31

thiophene

0.356

0.362

0.369

0.378

0.381

0.390

0.526

0.524

0.526

0.520

0.526

0.513

1.23

1.29

1.33

1.36

1.40

1.45

Alcohols/water

363.15

373.15

383.15

393.15

403.15

413.15

363.15

373.15

383.15

393.15

403.15

413.15

363.15

373.15

383.15

393.15

403.15

413.15

methanol

0.033

0.036

0.039

0.042

0.046

0.050

0.023

0.025

0.028

0.032

0.034

-

-

-

0.04

0.05

0.05

-

ethanol

0.043

0.046

0.050

0.054

0.059

0.065

0.034

0.037

0.040

0.046

0.049

-

-

-

0.08

0.08

0.09

-

1-propanol

0.038

0.041

0.046

0.051

0.056

0.061

0.030

0.033

0.037

0.043

0.047

-

-

-

0.10

0.12

0.13

-

2-propanol

0.052

0.056

0.062

0.068

0.075

0.082

0.049

0.054

0.058

0.068

0.067

-

-

-

0.12

0.14

0.15

-

1-butanol

0.037

0.040

0.044

0.049

0.054

0.060

0.028

0.032

0.035

0.042

0.045

-

-

-

0.12

0.14

0.16

-

2-butanol

0.049

0.054

0.060

0.067

0.075

0.083

0.047

0.052

0.057

0.066

0.075

-

-

-

0.15

0.18

0.19

-

isobutanol

0.033

0.036

0.041

0.045

0.049

0.055

0.026

0.030

0.030

0.036

0.042

-

-

-

0.12

0.14

0.15

-

tert-butanol

0.066

0.074

0.081

0.092

0.102

0.113

0.080

0.089

0.089

0.102

0.126

-

-

-

0.23

0.28

0.31

-

water

0.204

0.205

0.199

0.203

0.202

0.200

0.141

0.141

0.124

0.134

0.127

-

-

-

-

-

-

-

Terpenes/terpenoids

383.15

393.15

403.15

413.15

423.15

433.15

363.15

373.15

383.15

393.15

403.15

413.15

353.15

363.15

373.15

383.15

393.15

403.15

α-pinene

1.162

1.167

1.153

1.130

1.132

1.124

0.690

0.689

0.677

0.672

0.673

33.643

33.248

32.013

26.680

24.844

23.696

β-pinene

1.046

1.035

1.012

1.013

0.990

1.004

0.653

0.648

0.636

0.622

0.631

0.630

25.006

23.893

23.505

19.845

18.816

17.781

R(+)-limonene

1.166

1.146

1.132

1.124

1.114

1.111

0.749

0.743

-

-

0.724

-

27.270

26.528

26.043

25.514

24.78

23.96

p-cymene

1.214

1.193

1.181

1.176

1.160

1.156

0.783

0.779

-

-

0.743

-

16.338

15.894

15.590

15.138

-

14.758

(−)-menthone

0.844

0.846

0.867

0.913

0.972

1.025

0.705

0.673

-

-

0.667

0.696

9.186

9.318

9.473

9.836

10.000

10.125

(1R)-(−)-fenchone

1.299

1.327

1.339

1.384

1.373

1.415

-

-

-

-

0.998

-

12.288

12.406

12.456

12.573

12.715

12.872

α-pinene oxide

0.832

0.894

0.905

0.963

1.009

1.054

0.316

0.336

-

0.401

0.431

-

21.103

20.733

20.425

-

-

16.333

eucalyptol

1.052

1.069

1.060

1.069

1.081

1.080

0.687

0.689

-

-

0.704

12.288

12.406

12.456

12.573

12.715

12.872

linalool

-c

0.095

0.111

0.127

0.145

0.165

-

-

-

-

0.122

-

-d

-

-

-

-

-

S(+)-carvone

-

-

-

-

-

-

-

-

-

-

0.898

0.882

-

-

-

-

4.533

4.452

Low volatile terpenoids

433.15

438.15

443.15

448.15

453.15

458.15

geraniol

0.086

0.091

0.094

0.096

0.099

0.101

DL-citronellol

0.072

0.076

0.079

0.082

0.083

0.086

(1R)-(+)-camphor

0.473

0.449

0.428

0.405

0.404

0.373

S(+)-carvone

1.009

1.044

1.055

1.063

1.049

1.098

L-(-)-menthol

0.132

0.143

0.154

0.163

0.171

0.185

(-)-isopulegol

0.164

0.170

0.177

0.185

0.185

0.196

(−)-borneol

0.089

0.094

0.096

0.100

0.103

0.107

aNo measurements of the activity coefficients the low volatile terpenoids (geraniol, DL-citronellol, (1R)-(+)-camphor, S(+)-carvone, L-(-)-menthol, (-)-isopulegol and (−)-borneol) in [P6,6,6,14][(C8H17)2PO2] could be performed due to long retention times of the solute in the IL.

bNo measurements of the activity coefficients the low volatile terpenoids (geraniol, DL-citronellol, (1R)-(+)-camphor, S(+)-carvone, L-(-)-menthol, (-)-isopulegol and (−)-borneol) in [C4mim][OAc] could be performed due to thermal instability of the IL.

cThe activity coefficients at infinite dilution of linalool in [P6,6,6,14]Cl could not be measured at 383.15 K due to the long retention time. Instead, was measured at 443.15 K, and 0.191 was the found value.

dThe activity coefficients of linalool in [C4mim][OAc] were measured between (413.15-438.15) K and the results are: = 0.791 (T = 413.15 K); = 0.857 (T = 418.15 K); = 0.979 (T = 428.15 K); = 1.056 (T = 433.15 K); = 0.791 (T = 438.15 K).

Comparison with literature data

In Figure S1, the infinite dilution activity coefficients obtained in this work were compared to the data reported in previous studies [26–28]. The data found in literature comprise mostly hydrocarbons (octane, decane, cyclohexane, and benzene) and alcohols (methanol, ethanol, and 1-butanol), and some studied in different temperature intervals. For all the systems, the measured here presented the same order of magnitude of the data found in the literature. In the case of [P6,6,6,14][(C8H17)2PO2], the values published by Letcher et al. [27] are in high consistency with the data obtained in this work. Regarding [C4mim][OAc], the values reported by Stark et al.[28] are always higher than those found in this work, being the deviations more pronounced for decane and 1-butanol. Although lower temperatures were investigated by Banerjee and Khanna [26] for [P6,6,6,14]Cl (between 308.15 K and 328.15 K), the activity coefficients follow similar trends with temperature, matching the results obtained in this work for hydrocarbons (octane, cyclohexane, and benzene). However, the measured for methanol and ethanol are considerably lower than the values found by Banerjee and Khanna [26] (Figure S1a), which very unexpectedly show higher in alcohols than in hydrocarbons. Globally this short comparison gives excellent indications about the consistency of the data measured in this work.

Figure S1. Comparison between the experimental activity coefficients at infinite dilution obtained in this work and reported in literature for: a) [P6,6,6,14]Cl [26]; b) [P6,6,6,14][(C8H17)2PO2] [27]; c) [C4mim][OAc] [28].

Densities

A complete overview of the density data found in literature is given in Table S5, while the density data measured in this work for [P6,6,6,14]Cl and [P6,6,6,14][(C8H17)2PO2] are presented in Table S6. As expected, for both ionic liquids, the density decreases as temperature increases. To the best of our knowledge, the density data of [P6,6,6,14]Cl and [P6,6,6,14][(C8H17)2PO2] at 368.15 K and 373.15 K are reported here for the first time. In addition, no density data at 278.15 K was found in literature for [P6,6,6,14][(C8H17)2PO2]. Whenever possible, the experimental data obtained in this work were compared with the data available in literature, and the results are presented in Figure S2.

The density generally agrees with the literature data, presenting ARD (calculated as the ratio between the absolute value of the difference between the density data obtained in this work and the average value from literature, with the average value from literature) inferior to 0.6% for [P6,6,6,14]Cl and inferior to 0.7% for [P6,6,6,14][(C8H17)2PO2] (relative to the average literature values). In fact, the literature values are generally close, with the exception of the density reported by Carrera et al. [29] at 298.15 K (0.918 ± 0.003 ), which is slightly higher than the literature average value (0.899 ± 0.010 ).

Figure S2. Comparison between the density data obtained in this work and available in literature for: a) [P6,6,6,14]Cl [29–36]; b) [P6,6,6,14][(C8H17)2PO2] [30,31,36–42].

Table S5. Overview of the density data of pure [P6,6,6,14]Cl and pure [P6,6,6,14][(C8H17)2PO2] available in literature.

Ionic Liquid

Temperature range (K)

Pressure range (MPa)

Density range at atmospheric pressure (g cm-3)

NP

Reference

[P666614]Cl

298.15

0.1

0.918 ± 0.003

1

[29]

298.15

0.1

0.89182

1

[30]

298.15

0.1

0.89182

1

[31]

273.15 – 318.15

0.1 – 25.0

0.90727 – 0.87892

72

[32]

298.15 – 343.15

0.1

0.8826 – 0.8644

8

[33]

290.15 – 323.15

0.1

0.8975 – 0.8780

9

[34]

283.15 – 333.15

0.1 - 45.0

0.894 – 0.8689

87

[35]

278.15 – 363.15

0.1

0.9016 – 0.8523

18

[36]

298.13 – 333.14

0.19 – 65.00

-

134

[43]

283.15 – 373.15

0.1

0.8997 – 0.8460

19

this work

[P66614][(C8H17)2PO2]

298.15

0.1

0.88643

1

[30]

298.15

0.1

0.88643

1

[31]

298.15 – 363.15

0.1

0.9073 – 0.8631

14

[36]

298.15

0.1

0.88643

1

[37]

288.15 – 363.15

0.1

0.89086 – 0.84656

16

[38]

298.15 – 308.15

0.1

0.88524 – 0.87329

3

[39]

298.15 – 363.15

0.1

0.8893 – 0.8508

14

[40]

293.15 – 363.15

0.1

0.8921 – 0.8525

8

[41]

293.15 – 328.15

0.1

0.8940 – 0.8723

8

[42]

278.15 – 373.15

0.050 – 0.183

0.903 – 0.8453

20

this work

Table S6. Experimental densities of pure [P6,6,6,6,14]Cl and pure [P6,6,6,14][(C8H17)2PO2] measured in this work.

[P6,6,6,14]Cl

[P6,6,6,14][(C8H17)2PO2]

278.15

-

0.9033

283.15

0.8997

0.9001

288.15

0.8967

0.8970

293.15

0.8936

0.8939

298.15

0.8906

0.8907

303.15

0.8876

0.8876

308.15

0.8845

0.8845

313.15

0.8815

0.8814

318.15

0.8785

0.8783

323.15

0.8755

0.8753

328.15

0.8725

0.8723

333.15

0.8696

0.8692

338.15

0.8666

0.8662

343.15

0.8636

0.8632

348.15

0.8607

0.8602

353.15

0.8577

0.8572

358.15

0.8548

0.8542

363.15

0.8518

0.8512

368.15

0.8489

0.8482

373.15

0.8460

0.8453

aStandard uncertainties, u, are u(ρ) = ± 5 ⸱ 10-4 g ⸱cm-3, u(T) = 0.02 K and ur(p) = 0.05.

Gas liquid partition coefficientsTable S7. Gas-liquid partition coefficients () of water and organic solutes in [P6,6,6,14]Cl, [P6,6,6,14][(C8H17)2PO2] and [C4mim][OAc] at different temperatures.

Different organic solutes

[P6,6,6,14]Cl

[P6,6,6,14][(C8H17)2PO2]

[C4mim][OAc]

333.15

343.15

353.15

363.15

373.15

383.15

333.15

343.15

353.15

363.15

373.15

383.15

333.15

343.15

353.15

363.15

373.15

383.15

octane

255.775

175.803

125.305

91.283

67.447

50.840

353.905

240.426

166.964

120.001

86.519

65.581

16.296

11.934

9.245

6.948

5.357

4.491

nonane

620.307

408.013

276.949

195.789

138.303

100.264

861.624

554.240

369.329

253.030

177.920

130.423

33.555

23.011

16.342

11.907

8.804

6.664

decane

1467.366

932.741

600.184

407.103

279.288

198.492

2073.545

1276.415

814.666

535.238

361.664

255.554

63.760

42.184

28.823

20.033

14.334

10.567

cyclohexane

84.601

64.617

49.425

40.133

30.946

25.891

113.969

83.548

63.751

49.070

38.001

30.563

14.086

10.767

8.691

6.987

5.701

5.029

methylcyclohexane

151.655

111.778

83.037

64.266

49.285

38.993

195.234

142.702

105.221

76.293

58.287

46.597

19.564

14.775

11.365

8.899

7.076

5.784

benzene

184.171

134.913

100.239

76.067

59.151

46.185

129.028

94.158

70.977

54.809

43.199

34.712

109.817

79.466

59.065

45.152

35.016

27.485

toluene

428.892

299.451

213.981

155.025

116.877

89.682

324.738

228.168

163.321

121.587

90.221

70.728

193.415

131.317

96.911

71.008

53.630

41.530

ethylbenzene

895.624

601.784

419.443

293.321

213.379

157.103

714.334

481.173

329.356

237.132

171.964

130.453

322.906

217.398

150.514

107.263

77.730

57.627

p-xylene

940.314

626.309

431.113

301.485

220.217

161.439

770.851

515.289

348.827

251.141

181.511

137.075

330.206

220.980

152.238

107.973

78.082

57.708

diethyl ether

16.931

13.559

10.978

9.606

8.421

6.940

21.733

17.032

13.564

10.822

8.822

7.352

6.669

5.335

4.278

3.544

2.948

2.447

THF

91.656

69.075

53.042

41.933

33.825

26.664

88.003

65.088

49.804

38.972

30.466

24.945

58.671

45.543

34.892

27.294

21.689

17.292

1,4-dioxane

246.448

175.824

128.678

96.335

74.368

56.804

162.150

117.268

86.817

65.696

50.205

40.050

270.357

187.372

134.915

99.746

75.545

60.470

methyl acetate

39.853

32.633

24.124

19.656

16.179

13.026

32.592

25.125

19.702

15.720

12.659

10.413

46.812

35.281

26.749

21.045

16.734

13.322

ethyl acetate

78.014

58.110

43.743

34.056

27.116

21.207

68.929

50.863

38.402

29.545

23.013

18.652

63.294

46.162

34.137

26.047

20.188

19.911

vinyl acetate

74.163

55.658

42.000

32.771

26.164

20.609

53.948

40.253

30.908

24.082

18.909

15.209

63.712

48.514

36.590

28.882

23.231

-

acetone

53.459

41.198

31.773

25.597

21.033

16.737

31.744

24.657

19.605

15.791

12.804

10.699

137.698

100.139

74.512

57.625

45.155

35.636

2-butanone

125.020

91.994

68.273

52.209

40.189

31.955

81.539

60.277

45.674

35.502

27.753

22.676

340.508

238.029

181.579

137.056

106.961

82.616

acetonitrile

177.345

131.306

98.350

75.188

58.750

46.131

64.059

48.174

37.217

29.308

23.225

19.007

780.476

529.848

369.103

265.029

0.000

144.950

pyridine

752.268

517.353

362.782

257.301

192.437

142.139

360.985

252.812

181.743

132.896

100.253

78.058

263.476

183.221

131.811

97.736

73.324

56.052

thiophene

294.094

209.295

152.599

112.934

86.733

66.756

166.742

120.592

89.586

68.624

52.284

41.707

16.296

11.934

9.245

6.948

5.357

4.491

Alcohols/water

363.15

373.15

383.15

393.15

403.15

413.15

363.15

373.15

383.15

393.15

403.15

413.15

363.15

373.15

383.15

393.15

403.15

413.15

methanol

625.990

430.887

298.479

213.651

155.319

114.444

609.282

411.219

284.108

188.768

142.282

-

-

-

852.638

624.257

427.127

-

ethanol

772.511

516.283

351.241

244.664

174.176

124.466

658.534

432.589

293.545

192.375

141.553

-

-

-

732.961

507.390

354.023

-

1-propanol

1777.415

1148.422

740.178

498.440

344.945

242.888

1522.768

965.394

620.675

394.105

273.354

-

-

-

1102.132

675.008

466.485

-

2-propanol

728.858

481.934

323.557

222.129

156.642

112.271

519.387

338.728

232.193

149.023

150.810

-

-

-

505.575

340.461

240.726

-

1-butanol

4029.385

2509.596

1577.907

1019.731

680.665

461.798

3533.389

2133.963

1345.223

811.363

544.493

-

-

-

1223.073

815.104

551.306

-

2-butanol

1502.101

956.014

619.899

411.998

282.044

197.003

1058.327

667.244

443.004

282.382

188.949

-

-

-

1825.511

1082.649

724.573

-

isobutanol

3056.291

1905.137

1202.985

790.284

534.953

367.147

2606.167

1566.344

1089.256

655.161

416.968

-

-

-

756.011

493.602

339.815

-

tert-butanol

588.883

380.768

256.844

174.610

122.771

88.611

324.193

210.300

158.017

105.497

66.408

-

-

-

287.739

180.376

126.939

-

water

350.869

246.547

183.738

133.149

100.493

77.742

339.592

240.365

197.400

135.142

106.965

-

-

-

-

-

-

-

Terpenes/terpenoids

383.15

393.15

403.15

413.15

423.15

433.15

363.15

373.15

383.15

393.15

403.15

413.15

353.15

363.15

373.15

383.15

393.15

403.15

α-pinene

162.912

119.535

90.755

70.683

54.762

43.398

361.510

255.506

187.527

139.267

104.284

49.757

34.750

25.514

22.401

17.513

12.927

β-pinene

286.743

176.673

134.113

101.295

79.703

61.358

518.979

364.768

264.663

197.076

144.277

109.235

92.196

65.742

46.633

39.437

30.325

22.273

R(+)-limonene

334.216

241.944

177.783

132.430

100.641

77.280

739.983

506.367

-

-

186.412

-

170.738

115.299

79.505

53.641

38.674

29.980

p-cymene

334.145

241.895

177.747

132.404

101.470

78.199

741.459

504.562

-

-

190.394

-

238.699

158.416

106.843

75.050

----

35.347

(−)-menthone

1307.088

901.470

633.976

448.811

323.631

241.784

2569.537

1671.143

-

-

552.741

394.451

610.160

403.690

275.679

189.963

136.865

102.016

(1R)-(−)-fenchone

751.841

531.120

387.145

280.077

214.495

160.388

-

-

-

-

348.083

-

1122.993

723.764

477.991

400.733

286.733

191.864

α-pinene oxide

719.652

491.948

365.204

263.349

196.650

149.918

1475.361

992.286

-

-

351.869

166.078

113.122

79.445

-

-

37.707

eucalyptol

350.691

249.737

186.012

138.741

105.078

81.743

741.195

507.483

-

-

187.800

144.802

718.310

478.691

326.400

228.764

162.759

121.721

linalool

-

7144.375

4199.595

2553.270

1603.682

1030.166

-

-

-

-

2548.345

-

-

-

-

-

-

-

S(+)-carvone

-

-

-

-

-

-

-

-

-

-

1004.078

716.651

-

-

-

-

928.319

663.404

Low volatile terpenoids

433.15

438.15

443.15

448.15

453.15

458.15

geraniol

4608.079

3577.977

2874.036

2318.031

1891.766

1544.214

DL-citronellol

4478.618

3513.168

2779.377

2236.575

1828.032

1496.280

(1R)-(+)-camphor

240.953

211.400

185.822

165.370

140.446

129.108

S(+)-carvone

488.331

405.922

346.981

298.596

263.565

220.220

L-(-)-menthol

2273.248

1810.977

1453.236

1191.775

989.642

802.808

(-)-isopulegol

1067.451

875.415

722.298

595.963

513.445

420.773

(−)-borneol

3476.988

2759.137

2256.677

1834.460

1501.934

1234.633

linalool

-

-

-

-

-

-

aThe gas-liquid partition coefficient of linalool in [P6,6,6,6,14]Cl could not be measured at 383.15 K due to the long retention time. Instead, was measured at 443.15 K, and 663.351 was the found value.

bThe (gas-liquid)-partition coefficients of linalool in [C4mim][OAc] were measured between (41315-438.15) K and the results are: = 1287.494 (T = 413.15 K); = 1002.506 (T = 418.15 K); 636.174 (T = 428.15 K); = 506.377 (T = 433.15 K); = 378.156 (T = 438.15 K).

Infinite dilution thermodynamic functions

In Figure S3 and Table S8, the calculated ,, and values are presented. For alkanes, cycloalkanes, aromatic hydrocarbons, esters, ethers, ketones, acetonitrile, pyridine, thiophene, alcohols, terpenes, and some terpenoids, the excess partial molar properties were calculated from the experimental data at 383.15 K. For some low volatile terpenoids, however, the activity coefficients at infinite dilution were measured at higher temperatures, and the thermodynamic functions, calculated at 433.15 K, are also included in Figure S3 and in Table S8. For polar protic solutes (alcohols and low volatile terpenoids), the three excess partial molar properties and the values were generally negative, which means these solutes fall into the region (IV) of Figure S3. For these cases, the affinity between the solute and the ionic liquid is strong, and the enthalpic effects dominate over the entropics, since the absolute values of the enthalpies are higher than the entropic values.

In the case of the less polar solutes such as aliphatic and aromatic hydrocarbons, terpenes, ethers, esters, and ketones, the partial molar properties in [P6,6,6,14]Cl or [P6,6,6,14][(C8H17)2PO2] present similar behavior, but different from [C4mim][OAc]. Excepting alcohols, most of the solutes in [P6,6,6,14][(C8H17)2PO2] present positive values for both and , whereas the is always negative. The low polar solutes are placed in region (I) of Figure S3 (b), where entropic effects are dominant. For [P6,6,6,14]Cl, a similar behavior is observed for ethers, esters and ketones and aromatic hydrocarbons, but since some aliphatic hydrocarbons and terpenes show positive deviations from ideality ( > 1), some are located in regions (II) and (III).

The highly polar nature of [C4mim][OAc] leads to larger values for low polar solutes in comparison with the phosphonium-based ionic liquids. For this imidazolium-based IL, apart from the alcohols, and of most organic solutes are located in region (II) and region (III) of Figure S3 (c), respectively. For those, is positive, meaning weak affinity between the solute and the ionic liquid, and eventually even phase segregation.

Figure S3. Excess partial molar properties as function of the activity coefficients at infinite dilution for water and organic solutes in: a) [P6,6,6,14]Cl; b) [P6,6,6,14][(C8H17)2PO2]; c) [C4mim][OAc]. is the solid line (at 383.15 K) and dashed line (at 433.15 K); is shown by ● (at 383.15 K) and ● (at 433.15 K); is represented by ■ (at 383.15 K) and ■ (at 433.15 K).

Table S8. Thermodynamic functions at infinite dilution, namely the partial molar excess Gibbs free energies (/ kJ·mol-1), partial molar excess enthalpies (/kJ·mol-1) and partial molar excess entropies (/kJ·mol-1) of water and organic solutes in [P6,6,6,14]Cl, [P6,6,6,14][(C8H17)2PO2] and [C4mim][OAc] obtained in this work.

Solutes

[P6,6,6,14]Cl

[P6,6,6,14][(C8H17)2PO2]

[C4mim][OAc]

TRef = 383.15 K

octane

1.59

1.41

-0.19

-0.49

-0.29

0.20

12.95

7.76

-5.19

nonane

1.81

1.59

-0.22

-0.30

0.00

0.30

14.07

5.80

-8.28

decane

2.03

2.12

0.09

-0.04

0.12

0.16

15.00

6.33

-8.67

cyclohexane

-0.19

2.82

3.01

-1.99

0.21

2.20

8.66

5.90

-2.76

methylcyclohexane

0.20

1.52

1.32

-1.64

-0.49

1.15

9.90

4.32

-5.58

benzene

-2.16

-0.58

1.58

-2.52

0.95

3.46

3.13

-0.72

-3.85

toluene

-1.61

-0.45

1.16

-2.13

0.37

2.50

4.47

0.29

-4.19

ethylbenzene

-1.09

-0.18

0.90

-1.77

0.58

2.34

5.73

0.09

-5.64

p-xylene

-0.96

-0.33

0.63

-1.71

0.32

2.03

5.94

-0.08

-6.02

diethyl ether

0.28

4.07

3.80

-1.18

-0.74

0.44

7.23

1.09

-6.14

THF

-1.65

1.33

2.98

-2.71

0.49

3.20

3.35

1.21

-2.14

1,4-dioxane

-0.97

1.71

2.68

-1.13

2.90

4.03

2.45

0.66

-1.79

methyl acetate

-0.19

2.88

3.08

-0.75

2.64

3.40

3.36

0.16

-3.20

ethyl acetate

-0.02

2.51

2.53

-0.89

2.13

3.01

4.51b

0.59

-3.91

vinyl acetate

-0.34

2.32

2.66

-0.64

2.55

3.19

-

-

-

acetone

-1.01

2.09

3.10

-0.85

3.35

4.20

2.06

1.27

-0.79

2-butanone

-1.07

0.36

1.44

-1.25

2.18

3.44

2.63

-0.14

-2.77

acetonitrile

-1.89

0.39

2.28

-0.33

3.14

3.47

-0.13

-0.76

-0.63

pyridine

-2.70

-0.37

2.32

-2.06

2.34

4.40

0.86

-0.82

-1.68

thiophene

-3.00

-1.92

1.08

-2.13

0.37

2.50

1.18

-3.31

-4.50

methanol

-10.33

-10.28

0.05

-11.39

-12.52

-1.13

-10.25

-14.45

-4.19

ethanol

-9.54

-10.27

-0.73

-10.25

-11.53

-1.28

-8.05

-7.50

0.55

1-propanol

-9.81

-12.13

-2.32

-10.50

-14.14

-3.63

-7.34

-16.90

-9.56

2-propanol

-8.86

-11.55

-2.70

-9.07

-10.46

-1.39

-6.75

-14.37

-7.62

1-butanol

-9.95

-12.18

-2.23

-10.68

-14.86

-4.18

-6.75

-18.48

-11.73

2-butanol

-8.96

-13.28

-4.32

-9.13

-14.24

-5.11

-6.04

-15.25

-9.20

isobutanol

-10.18

-12.73

-2.55

-11.17

-13.82

-2.65

-6.75

-14.37

-7.62

tert-butanol

-8.01

-13.46

-5.45

-7.71

-12.60

-4.90

-4.68

-19.22

-14.53

water

-5.14

0.44

5.59

-6.65

3.20

9.85

-

-

-

α-pinene

0.48

1.09

0.62

-1.18

1.01

2.20

10.46

9.45

-1.01

β-pinene

0.14

1.34

1.20

-1.36

1.13

2.49

9.52

8.73

-0.79

R(+)-limonene

0.49

1.33

0.84

-0.92

1.15

2.08

10.32

2.94

-7.38

p-cymene

0.62

1.32

0.70

-0.78

1.85

2.63

8.66

2.44

-6.21

(−)-menthone

-0.54

-5.62

-5.08

-1.11

0.41

1.52

7.28

-2.49

-9.77

(1R)-(−)-fenchone

0.83

-2.22

-3.05

-

-

-

8.06

-1.06

-9.13

α-pinene oxide

-0.59

-6.34

-5.75

-3.67

-10.74

-7.07

-

-

-

eucalyptol

0.16

-0.68

-0.85

-1.20

-0.86

0.34

8.06

-1.06

-9.13

linaloola

-7.98

-19.43

-11.44

-

-

-

-

-

-

Solute

Tref = 433.15 K

geraniol

-8.84

-10.19

-1.35

-

-

-

-

-

-

DL-citronellol

-9.48

-11.25

-1.77

-

-

-

-

-

-

(1R)-(+)-camphor

-2.70

14.71

17.41

-

-

-

-

-

-

S(+)-carvone

0.03

-4.20

-4.23

-

-

-

-

-

-

L-(-)-menthol

-7.29

-21.52

-14.23

-

-

-

-

-

-

(-)-isopulegol

-6.51

-11.22

-4.71

-

-

-

-

-

-

(−)-borneol

-8.71

-11.66

-2.95

-

-

-

-

-

-

linalool

-

-

-

-

-

-

0.20

-24.42

-24.62

aThe excess partial molar properties of linalool at 383.15 K were extrapolated using data obtained in the temperature interval between (393.15 – 443.15) K.

bThe excess partial molar properties of ethyl acetate at 383.15 K were extrapolated using data obtained in the temperature interval between (333.15 – 373.15) K.

Selectivities and capacities

Separation of aromatics from aliphatic hydrocarbons.

In addition to the cases addressed in the body of the article, the activity coefficients at infinite dilution obtained in this work can be used to evaluate the potential of the studied ionic liquids for the removal of benzene compounds from aliphatic hydrocarbons. Table S9 compares the selectivities and capacities of octane/benzene and cyclohexane/benzene mixtures in [P6,6,6,14]Cl, [P6,6,6,14][(C8H17)2PO2] and [C4mim][OAc] (at 333.15 K) obtained in this work (experimentally and predicted using COSMO-RS) and calculated from experimental found in literature [26,27].

Table S9. Overview of the experimental and predicted and of octane/benzene and octane/cyclohexane mixtures in [P6,6,6,14]Cl, [P6,6,6,14][(C8H17)2PO2] and [C4mim][OAc] (at 333.15 K) obtained in this work and calculated from literature data [26,27].

Ionic liquid

/

Reference

octane/benzene

cyclohexane/benzene

[P6,6,6,14]Cl

3.55 /2.02a

2.20 /2.02a

[26]

2.05/2.51

1.57/2.51

this workb

2.65/1.71

1.59/1.71

this workc

[P6,6,6,14][(C8H17)2PO2]

1.70/1.81

1.10/1.81

[27]

1.80/2.11

1.14/2.11

this workb

1.64/1.91

1.13/.1.91

this workc

[C4mim][OAc]

33.28/0.39

7.89/0.39

this workb

11.89/0.71

3.73/0.71

this workc

aExtrapolated using the data reported by the authors.

bExperimental data.

cPredicted using COSMO-RS.

The experimental selectivities and capacities obtained in this work are quite close to the literature data for [P6,6,6,14]Cl [26] and [P6,6,6,14][(C8H17)2PO2] [27], being the larger deviations observed for octane/benzene in [P6,6,6,14]Cl. No selectivity and capacity data were found in literature for octane/benzene and cyclohexane/benzene mixtures in [C4mim][OAc].

The predicted and values are in excellent agreement with the average experimental data for the phosphonium-based ionic liquids, presenting ARDs inferior to 25%. For [C4mim][OAc], COSMO-RS predictions presented larger deviations from the experimental values obtained in this work, which is similar to the results obtained for the desulfurization and denitrification problems. Once again, the presence of the high polar acetate anion can lead to the formation of strong hydrogen-bond interactions between the solvent molecules, which might not be properly described in the COSMO-RS calculations. Nevertheless, the model is still capable of predicting the correct order of magnitude of the and values for the studied ionic liquids without the necessity of any experimental data, being a powerful tool to do a preliminary screening of the potential candidates to be tested by experimental approaches.

From all the cases presented in Table S9, the highest selectivities were obtained for [C4mim][OAc], whereas [P6,6,6,14]Cl presents the highest capacity values for benzene. Although both selectivity and capacity play relevant roles in the selection of an entrainer for a separation process, the poor selectivities obtained for the phosphonium-based ILs limits their use in the removal of benzene from mixtures with aliphatic hydrocarbons, once no significant differences between the affinities of the aliphatic hydrocarbon/IL and aromatic hydrocarbon/IL are observed. On the other hand, the high selectivity values observed for [C4mim][OAc], in particular for the octane/benzene mixture, suggest this ionic liquid interacts more intensely with one of the solutes (benzene), but further investigations, such as liquid-liquid equilibrium studies, are required to evaluate whether the low capacity of benzene restricts the use of [C4mim][OAc] at industrial scale.

Fractionation of terpenic mixturesTable S10. Experimental selectivities () and capacities () of the of terpenic mixtures in [P6,6,6,14]Cl at 403.15 K.

Solute

(1R)-(−)-fenchone

p-cymene

α-pinene

R(+)-limonene

eucalyptol

α-pinene oxide

S(+)-carvone

β-pinene

(−)-menthone

(1R)-(+)-camphor

(-)-isopulegol

linalool

L-(-)-menthol

(−)-borneol

geraniol

DL-citronellol

(1R)-(−)-fenchone

0.75

1.00

p-cymene

0.85

1.13

1.00

α-pinene

0.87

1.16

1.02

1.00

R(+)-limonene

0.88

1.18

1.04

1.02

1.00

eucalyptol

0.94

1.26

1.11

1.09

1.07

1.00

α-pinene oxide

0.99

1.32

1.17

1.14

1.12

1.05

1.00

S(+)-carvone

1.07

1.43

1.26

1.23

1.21

1.13

1.08

1.00

β-pinene

1.10

1.48

1.30

1.27

1.25

1.17

1.12

1.03

1.00

(−)-menthone

1.15

1.54

1.36

1.33

1.31

1.22

1.17

1.08

1.04

1.00

(1R)-(+)-camphora

1.57

2.10

1.85

1.81

1.77

1.66

1.59

1.46

1.42

1.36

1.00

(-)-isopulegola

7.67

10.27

9.06

8.84

8.68

8.13

7.76

7.17

6.94

6.65

4.90

1.00

Linaloola

9.01

12.06

10.64

10.39

10.20

9.55

9.12

8.42

8.15

7.81

5.75

1.17

1.00

L-(-)-menthol

11.72

15.70

13.84

13.52

13.27

12.43

11.86

10.96

10.61

10.16

7.48

1.53

1.30

1.00

(−)-borneola

14.15

18.94

16.71

16.31

16.01

14.99

14.32

13.22

12.80

12.26

9.03

1.84

1.57

1.21

1.00

geraniola

14.20

19.02

16.77

16.38

16.08

15.06

14.37

13.27

12.85

12.31

9.07

1.85

1.58

1.21

1.00

1.00

DL-citronellola

17.30

23.16

20.43

19.94

19.58

18.33

17.50

16.16

15.65

15.00

11.04

2.25

1.92

1.48

1.22

1.22

1.00

aThe selectivity and capacity values were calculated using the extrapolated infinite dilution activity coefficients (at 403.15 K) using data obtained in the temperature interval between (433.15 – 458.15) K.

Table S11. Experimental selectivities and capacities of the of terpenic mixtures in [P6,6,6,14][(C8H17)2PO2] at 403.15 K.

Solute

(1R)-(−)-fenchone

S(+)-carvone

p-cymene

R(+)-limonene

eucalyptol

α-pinene

(−)-menthone

β-pinene

α-pinene oxide

linalool

(1R)-(−)-fenchone

1.00

1.00

S(+)-carvone

1.11

1.11

1.00

p-cymene

1.35

1.34

1.21

1.00

R(+)-limonene

1.38

1.38

1.24

1.03

1.00

eucalyptol

1.42

1.42

1.28

1.06

1.03

1.00

α-pinene

1.49

1.48

1.33

1.10

1.08

1.05

1.00

(−)-menthone

1.50

1.50

1.35

1.11

1.09

1.06

1.01

1.00

β-pinene

1.58

1.58

1.42

1.18

1.15

1.12

1.07

1.06

1.00

α-pinene oxide

2.32

2.32

2.08

1.72

1.68

1.63

1.56

1.55

1.46

1.00

linalool

8.20

8.18

7.36

6.09

5.93

5.77

5.52

5.47

5.17

3.53

1.00

Table S12. Experimental selectivities and capacities of terpenic mixtures in [C4mim][OAc] at 403.15K.

Solute

R(+)-limonene

α-pinene

β-pinene

α-pinene oxide

p-cymene

(1R)-(−)-fenchone

eucalyptol

(−)-menthone

S(+)-carvone

linalool

R(+)-limonene

0.04

1.00

 

α-pinene

0.04

1.01

1.00

 

β-pinene

0.06

1.35

1.33

1.00

 

α-pinene oxide

0.06

1.47

1.45

1.09

1.00

 

p-cymene

0.07

1.62

1.61

1.20

1.11

1.00

 

(1R)-(−)-fenchone

0.08

1.86

1.84

1.38

1.27

1.15

1.00

 

eucalyptol

0.08

1.86

1.84

1.38

1.27

1.15

1.00

1.00

 

(−)-menthone

0.10

2.37

2.34

1.76

1.61

1.46

1.27

1.27

1.00

 

S(+)-carvone

0.22

5.38

5.32

3.99

3.67

3.31

2.89

2.89

2.27

1.00

linalool

1.26

30.29

29.96

22.48

20.65

18.66

16.27

16.27

12.80

5.63

1.00

Table S13. Predicted selectivities and capacities of terpenic mixtures in [P6,6,6,14]Cl at 403.15 K obtained using COSMO-RS model.

SoluteS

α-pinene

β-pinene

R(-)-Limonene

p-cymene

eucalyptol

α-pinene oxide

(−)-menthone

(1R)-(−)-fenchone

(1R)-(+)-camphor

S(+)-carvone

L-(-)-menthol

(−)-borneol

(-)-isopulegol

linalool

geraniol

DL-citronellol

α-pinene

1.05

1.00

β-pinene

1.18

1.12

1.00

R(-)-Limonene

1.20

1.14

1.01

1.00

p-cymene

1.36

1.29

1.15

1.14

1.00

eucalyptol

1.38

1.31

1.17

1.15

1.01

1.00

α-pinene oxide

1.44

1.37

1.22

1.20

1.06

1.05

1.00

(−)-menthone

1.56

1.48

1.32

1.30

1.15

1.13

1.08

1.00

(1R)-(−)-fenchone

1.62

1.54

1.38

1.36

1.19

1.18

1.13

1.04

1.00

(1R)-(+)-camphor

1.63

1.55

1.38

1.36

1.20

1.19

1.13

1.05

1.00

1.00

S(+)-carvone

1.81

1.72

1.53

1.51

1.33

1.31

1.26

1.16

1.11

1.11

1.00

L-(-)-menthol

3.80

3.61

3.22

3.18

2.79

2.76

2.64

2.44

2.34

2.33

2.10

1.00

(−)-borneol

3.81

3.62

3.22

3.18

2.80

2.77

2.64

2.44

2.34

2.33

2.11

1.00

1.00

(-)-isopulegol

3.99

3.80

3.39

3.34

2.94

2.90

2.77

2.56

2.46

2.45

2.21

1.05

1.05

1.00

linalool

4.29

4.08

3.64

3.59

3.16

3.12

2.98

2.75

2.64

2.63

2.38

1.13

1.13

1.07

1.00

geraniol

5.09

4.84

4.31

4.25

3.74

3.70

3.53

3.26

3.13

3.12

2.81

1.34

1.34

1.27

1.18

1.00

DL-citronellol

5.50

5.23

4.66

4.60

4.04

4.00

3.82

3.53

3.39

3.37

3.04

1.45

1.44

1.38

1.28

1.08

1.00

Table S14. Predicted selectivities and capacities of the of terpenic mixtures in [P6,6,6,14][(C8H17)2PO2] at 403.15 K obtained using COSMO-RS model.

Solute

α-pinene

R(+)-limonene

β-pinene

p-cymene

eucalyptol

α-pinene oxide

S(+)-carvone

(−)-menthone

(1R)-(−)-fenchone

linalool

α-pinene

1.60

1.00

R(+)-limonene

1.73

1.08

1.00

β-pinene

1.74

1.08

1.00

1.00

p-cymene

1.81

1.13

1.05

1.04

1.00

eucalyptol

1.95

1.22

1.13

1.12

1.08

1.00

α-pinene oxide

1.97

1.23

1.14

1.13

1.09

1.01

1.00

S(+)-carvone

1.98

1.23

1.14

1.14

1.09

1.01

1.00

1.00

(−)-menthone

2.03

1.27

1.17

1.17

1.12

1.04

1.03

1.03

1.00

(1R)-(−)-fenchone

2.10

1.31

1.21

1.21

1.16

1.07

1.07

1.06

1.03

1.00

linalool

7.27

4.54

4.21

4.19

4.02

3.73

3.70

3.68

3.58

3.47

1.00

Table S15. Predicted selectivities and capacities of terpenic mixtures in [C4mim][OAc] at 403.15K obtained using COSMO-RS model.

Solute

α-pinene

β-pinene

R(+)-limonene

eucalyptol

p-cymene

α-pinene oxide

(−)-menthone

(1R)-(−)-fenchone

S(+)-carvone

linalool

α-pinene

0.13

1.00

β-pinene

0.16

1.22

1.00

R(+)-limonene

0.17

1.29

1.06

1.00

eucalyptol

0.20

1.50

1.23

1.16

1.00

p-cymene

0.23

1.76

1.44

1.37

1.18

1.00

α-pinene oxide

0.23

1.77

1.45

1.38

1.19

1.01

1.00

(−)-menthone

0.26

1.96

1.61

1.52

1.31

1.11

1.11

1.00

(1R)-(−)-fenchone

0.30

2.29

1.88

1.78

1.53

1.30

1.29

1.17

1.00

S(+)-carvone

0.47

3.58

2.94

2.78

2.40

2.03

2.02

1.83

1.56

1.00

linalool

1.99

15.28

12.52

11.85

10.21

8.67

8.61

7.79

6.66

4.26

1.00

References

[1]C.L. Yaws, Thermophysical properties of chemicals and hydrocarbons, 2nd ed., Elsevier Inc., 2014.

[2]H.E. Pence, A. Williams, Chemspider: An online chemical information resource, J. Chem. Educ. 87 (2010) 1123–1124.

[3]ChemSpider, (n.d.). https://www.chemspider.com/ (accessed August 30, 2019).

[4]V. Štejfa, M. Fulem, K. Růžička, C. Červinka, M.A.A. Rocha, L.M.N.B.F. Santos, B. Schröder, Thermodynamic study of selected monoterpenes, J. Chem. Thermodyn. 60 (2013) 117–125.

[5]J.E. Hawkins, G.T. Armstrong, Physical and thermodynamic properties of terpenes. III. The vapor pressures of α-pinene and β-pinene, J. Am. Chem. Soc. 76 (1954) 3756–3758.

[6]M.A.R. Martins, P.J. Carvalho, A.M. Palma, U. Domańska, J.A.P. Coutinho, S.P. Pinho, Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State, Ind. Eng. Chem. Res. 56 (2017) 9895–9905.

[7]V. Štejfa, M. Fulem, K. Růžička, C. Červinka, Thermodynamic study of selected monoterpenes III, J. Chem. Thermodyn. 79 (2014) 280–289.

[8]T. Guetachew, I. Mokbel, I. Batiu, Z. Cisse, J. Jose, Vapor pressures and sublimation pressures of eight constituets of essential oils at pressures in the range from 0.3 to 83,000 Pa, ELDATA Int. Eletronic J. Physico-Chemical Data. 5 (1999) 43–53.

[9]C.E.L. De Oliveira, M.A. Cremasco, Determination of the vapor pressure of Lippia gracilis Schum essential oil by thermogravimetric analysis, Thermochim. Acta. 577 (2014) 1–4.

[10]J. Ilić Pajić, G. Ivaniš, I. Radović, A. Grujić, J. Stajić-Trošić, M. Stijepović, M. Kijevčanin, Experimental densities and derived thermodynamic properties of pure p-cymene, α-pinene, limonene and citral under high pressure conditions, J. Chem. Thermodyn. 144 (2020) 1–12.

[11]I. Batiu, Vapor-liquid equilibria in the binary systems n-decane+(-)-menthone and n-decane+(+)-fenchone at temperatures between 344.45 and 390.75 K, Fluid Phase Equilib. 198 (2002) 111–121.

[12]V. Štejfa, M. Fulem, K. Růžička, C. Červinka, Thermodynamic study of selected monoterpenes II, J. Chem. Thermodyn. 79 (2014) 272–279.

[13]A. van Roon, J.R. Parsons, H.A.J. Govers, Gas chromatographic determination of vapour pressure and related thermodynamic properties of monoterpenes and biogenically related compounds, J. Chromatogr. A. 955 (2002) 105–115.

[14]R.A. Clará, A.C.G. Marigliano, H.N. Sólimo, Density, viscosity, and refractive index in the range (283.15 to 353.15) K and vapor pressure of α-pinene, d-limonene, (±)-linalool, and citral over the pressure range 1.0 kPa atmospheric pressure, J. Chem. Eng. Data. 54 (2009) 1087–1090.

[15]D.H. Zaitsau, S.P. Verevkin, A.Y. Sazonova, Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation, Fluid Phase Equilib. 386 (2015) 140–148.

[16]V. Štejfa, F. Dergal, I. Mokbel, M. Fulem, J. Jose, K. Růžička, Vapor pressures and thermophysical properties of selected monoterpenoids, Fluid Phase Equilib. 406 (2015) 124–133.

[17]S.M. Vilas-Boas, V. Pokorný, V. Štejfa, O. Ferreira, S.P. Pinho, K. Růžička, M. Fulem, Vapor pressure and thermophysical properties of eugenol and (+)-carvone, Fluid Phase Equilib. 499 (2019) 1–10.

[18]L. Keating, H.H. Harris, J.S. Chickos, Vapor pressures and vaporization enthalpy of (−) α-bisabolol and (dl) menthol by correlation gas chromatography, J. Chem. Thermodyn. 107 (2017) 18–25.

[19]M.A.R. Martins, U. Domańska, B. Schröder, J.A.P. Coutinho, S.P. Pinho, Selection of ionic liquids to be used as separation agents for terpenes and terpenoids, ACS Sustain. Chem. Eng. 4 (2016) 548–556.

[20]K.G. Joback, R.C. Reid, Estimation of pure-component properties from group-contributions, Chem. Eng. Commun. 57 (1987) 233–243.

[21]A. Arce, A. Soto, Citrus essential oils: Extraction and deterpenation, Tree For. Sci. Biotechnol. 2 (2008) 1–9.

[22]C.C. Koshima, K.T. Nakamoto, K.K. Aracava, A.L. Oliveira, C.E.C. Rodrigues, Fractionation of bergamot and lavandin crude essential oils by solvent extraction: Phase equilibrium at 298.2 K, J. Chem. Eng. Data. 60 (2015) 37–46.

[23]E. Reverchon, G. Della Porta, F. Senatore, Supercritical CO2 extraction and fractionation of lavender essential oil and waxes, J. Agric. Food Chem. 43 (1995) 1654–1658.

[24]A. Ben Hsouna, N. Ben Halima, S. Smaoui, N. Hamdi, Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat, Lipids Health Dis. 16 (2017) 1–11.

[25]Y. Cao, T. Mu, Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis, Ind. Eng. Chem. Res. 53 (2014) 8651–8664.

[26]T. Banerjee, A. Khanna, Infinite dilution activity coefficients for trihexyltetradecyl phosphonium ionic liquids: Measurements and COSMO-RS prediction, J. Chem. Eng. Data. 51 (2006) 2170–2177.

[27]T.M. Letcher, D. Ramjugernath, M. Laskowska, M. Królikowski, P. Naidoo, U. Domańska, Activity coefficients at infinite dilution measurements for organic solutes in the ionic liquid trihexyltetradecylphosphonium-bis-(2,4,4-trimethylpentyl)-phosphinate using g.l.c. at T = (303.15, 308.15, 313.15, and 318.15) K, J. Chem. Thermodyn. 40 (2008) 1243–1247.

[28]A. Stark, B. Ondruschka, D.H. Zaitsau, S.P. Verevkin, Biomass-derived platform chemicals: Thermodynamic studies on the extraction of 5-hydroxymethylfurfural from ionic liquids, J. Chem. Eng. Data. 57 (2012) 2985–2991.

[29]G.V.S.M. Carrera, C.A.M. Afonso, L.C. Branco, Interfacial properties, densities, and contact angles of task specific ionic liquids, J. Chem. Eng. Data. 55 (2010) 609–615.

[30]I.C. Hwang, S.J. Park, K.J. Han, Vapor-liquid equilibria at 333.15K and excess molar volumes and deviations in molar refractivity at 298.15K for mixtures of diisopropyl ether, ethanol and ionic liquids, Fluid Phase Equilib. 309 (2011) 145–150.

[31]Y.Y. Choi, I.C. Hwang, S.H. Shin, S.J. Park, Liquid-liquid equilibria, excess molar volume and deviations of the refractive indices at 298.15K for mixtures of solvents used in the molybdenum extraction process, Fluid Phase Equilib. 354 (2013) 59–65.

[32]F.A.M.M. Gonçalves, C.S.M.F. Costa, C.E. Ferreira, J.C.S. Bernardo, I. Johnson, I.M.A. Fonseca, A.G.M. Ferreira, Pressure-volume-temperature measurements of phosphonium-based ionic liquids and analysis with simple equations of state, J. Chem. Thermodyn. 43 (2011) 914–929.

[33]P. Kilaru, G.A. Baker, P. Scovazzo, Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: Data and correlations, J. Chem. Eng. Data. 52 (2007) 2306–2314.

[34]Z.P. McAtee, M.P. Heitz, Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system, J. Chem. Thermodyn. 93 (2016) 34–44.

[35]L.I.N. Tomé, R.L. Gardas, P.J. Carvalho, M.J. Pastoriza-Gallego, M.M. Piñeiro, J.A.P. Coutinho, Measurements and correlation of high-pressure densities of phosphonium based ionic liquids, J. Chem. Eng. Data. 56 (2011) 2205–2217.

[36]C.M.S.S. Neves, P.J. Carvalho, M.G. Freire, J.A.P. Coutinho, Thermophysical properties of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids, J. Chem. Thermodyn. 43 (2011) 948–957.

[37]J.Y. Lee, S.J. Park, Density, refractive index, excess molar volumes and deviations in molar refraction at 298.15K for binary and ternary mixtures of DIPE (OR TAME)+1-methanol (or 1-propanol)+trihexyltetra-decylphosphonium bis (2,4,4-trimethylpentyl) phosphinate, Can. J. Chem. Eng. 90 (2012) 396–402.

[38]M. Blahušiak, Š. Schlosser, Physical properties of phosphonium ionic liquid and its mixtures with dodecane and water, J. Chem. Thermodyn. 72 (2014) 54–64.

[39]J. Marták, Š. Schlosser, New mechanism and model of butyric acid extraction by phosphonium ionic liquid, J. Chem. Eng. Data. 61 (2016) 2979–2996.

[40]X. Liu, W. Afzal, G. Yu, M. He, J.M. Prausnitz, High solubilities of small hydrocarbons in trihexyl tetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate, J. Phys. Chem. B. 117 (2013) 10534–10539.

[41]M. Ramdin, T.Z. Olasagasti, T.J.H. Vlugt, T.W. De Loos, High pressure solubility of CO2 in non-fluorinated phosphonium-based ionic liquids, J. Supercrit. Fluids. 82 (2013) 41–49.

[42]D. Rabari, N. Patel, M. Joshipura, T. Banerjee, Densities of six commercial ionic liquids: Experiments and prediction using a cohesion based cubic equation of state, J. Chem. Eng. Data. 59 (2014) 571–578.

[43]J.M.S.S. Esperança, H.J.R. Guedes, M. Blesic, L.P.N. Rebelo, Densities and derived thermodynamic properties of ionic liquids. 3. Phosphonium-based ionic liquids over an extended pressure range, J. Chem. Eng. Data. 51 (2006) 237–242.

a

Octane - this work333.15343.15353.15363.15373.15383.151.75499999999999991.73300000000000011.6981.671.65799999999999991.649Octane - [34]308.14999999999998318.14999999999998328.150.846999999999999980.830999999999999960.82099999999999995Cyclohexane - this work333.15343.15353.15363.15373.15383.151.0871.0481.0320.976999999999999980.991999999999999990.94299999999999995Cyclohexane - [34]308.14999999999998318.14999999999998328.150.631000000000000010.6270.625Benzene - this work333.15343.15353.15363.15373.15383.150.493999999999999990.492999999999999990.4970.50.5010.50800000000000001Benzene - [34]308.14999999999998318.14999999999998328.150.407999999999999970.403000000000000020.4Methanol - this work363.15373.15383.15393.15403.15413.153.3000000000000002E-23.5999999999999997E-23.9E-24.2000000000000003E-24.5999999999999999E-20.05Methanol - [34]308.14999999999998318.14999999999998328.150.887000000000000010.8790.873Ethanol - this work363.15373.15383.15393.15403.15413.154.2999999999999997E-24.5999999999999999E-20.055.3999999999999999E-25.8999999999999997E-26.5000000000000002E-2Ethanol - [34]308.14999999999998318.14999999999998328.150.740.736999999999999990.73499999999999999

1/T

𝛾13∞

b

Octane - this work333.15343.15353.15363.15373.15383.150.850999999999999980.850999999999999980.854999999999999980.852999999999999980.866999999999999990.85799999999999998Octane - [35]298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.149999999999980.770.790.820.850.86Cyclohexane - this work333.15343.15353.15363.15373.15383.150.542000000000000040.544000000000000040.537000000000000030.536000000000000030.542000000000000040.53600000000000003Cyclohexane - [35]298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.149999999999980.490.510.520.540.56000000000000005Benzene - this work333.15343.15353.15363.15373.15383.150.473999999999999980.473999999999999980.470999999999999970.466000000000000030.460.45400000000000001Benzene - [35]298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.149999999999980.420.440.470.480.49

1/T

𝛾13∞

c

Decane - this work333.15343.15353.15363.15373.15383.1585.5479.3771.6168.34999999999999465.09999999999999458.27Decane - [36]313.14999999999998323.14999999999998333.15338.15343.152151971911851771,4 - dioxane - this work333.15343.15353.15363.15373.15383.152.252.27999999999999982.27999999999999982.27999999999999982.25999999999999982.161,4 - dioxane - [36]353.15358.15363.15368.15373.15378.15383.153.173.113.093.053.022.992.96toluene - this work333.15343.15353.15363.15373.15383.154.094.224.11000000000000034.134.11000000000000034.07toluene - [36]333.15338.15343.15353.15358.15363.15368.15373.155.65.65.65.65.61-butanol - this work 383.15393.15403.150.120.140000000000000010.161-butanol - [36]373.15378.15383.15393.15403.15413.150.228000000000000010.241999999999999990.2550.269000000000000020.28100000000000003

1/T

𝛾13∞

a

Carrera et al. [37]293.14999999999998298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.91800000000000004Hwang et al. [38]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.89181999999999995Choi et al. [39]283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.89181999999999995Goncalves et al. [40]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.907270000000000020.903750000000000050.900900000000000030.897449999999999970.894370.891150.884800000000000030.87892000000000003Kilaru et al. [41]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.882600000000000050.880099999999999990.877900000000000010.875399999999999960.873099999999999990.869399999999999950.86690.86439999999999995McAtee and Heitz [42]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.898399999999999980.892399999999999970.886499999999999950.880600000000000050.874800000000000020.86890000000000001Tomé et al. [43]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.898399999999999980.892399999999999970.886499999999999950.880600000000000050.874800000000000020.86890000000000001Neves et al. [44]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.901600000000000070.898600000000000070.895700000000000050.892799999999999930.889900000000000020.887000000000000010.884000000000000010.881099999999999990.878200000000000090.875299999999999970.872299999999999960.869500000000000050.866600000000000040.863700000000000020.860800000000000010.857999999999999980.855099999999999970.85229999999999995This work283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.899700000000000060.896700000000000050.893599999999999950.890599999999999950.887599999999999940.884499999999999950.881499999999999950.878499999999999950.875499999999999940.872500000000000050.869600000000000040.866600000000000040.863600000000000030.860700000000000020.857700000000000020.85480.85180.848899999999999990.84599999999999997

Temperature (K)

Density (g cm-3)

b

Hwang et al. [38]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998310.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.89181999999999995Choi et al. [39]283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998310.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.89181999999999995Neves et al. [44]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998310.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.885299999999999980.882299999999999970.879299999999999970.876299999999999970.873399999999999950.870399999999999950.867500000000000050.864600000000000040.861700000000000020.85890.855999999999999980.853200000000000070.850299999999999940.84750000000000003Lee and Park [45]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998310.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.88643000000000005Blahušiak and Schlosser [46]288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998310.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.150.890859999999999990.887720000000000060.884549999999999950.881539999999999990.878580000000000030.875619999999999950.872669999999999950.869720000000000050.866769999999999930.863870000000000030.860990000000000030.858099999999999970.855219999999999980.852330000000000030.849440000000000080.84655999999999998Marták and Schlosser [47]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998310.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.885240000000000030.878059999999999950.87329000000000001Liu et al. [48]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998310.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.889299999999999980.886299999999999980.883299999999999970.880299999999999970.877299999999999970.874299999999999970.871299999999999960.868399999999999950.865500000000000050.862600000000000030.859600000000000030.856700000000000020.85380.8508Ramdin et al. [49]273.14999999999998278.14999999999998283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998310.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.889299999999999980.886299999999999980.883299999999999970.880299999999999970.877299999999999970.874299999999999970.871299999999999960.868399999999999950.865500000000000050.862600000000000030.859600000000000030.856700000000000020.85380.8508Rabari et al. [50]293.14999999999998298.14999999999998303.14999999999998308.14999999999998310.14999999999998313.14999999999998318.14999999999998323.14999999999998328.150.894000000000000020.890800000000000040.887700000000000040.884600000000000050.881499999999999950.878399999999999960.875299999999999970.87229999999999996This work283.14999999999998288.14999999999998293.14999999999998298.14999999999998303.14999999999998308.14999999999998310.14999999999998313.14999999999998318.14999999999998323.14999999999998328.15333.15338.15343.15348.15353.15358.15363.15368.15373.150.900100000000000010.897000000000000020.893900000000000030.890700000000000050.887599999999999940.884499999999999950.881399999999999960.878299999999999970.875299999999999970.872299999999999960.869199999999999970.866199999999999970.863199999999999970.860199999999999960.857199999999999960.854199999999999960.851199999999999960.848199999999999950.84530000000000005

Temperature (K)

Density (g cm-3)

a

GE,∞ at 383.15 K0.500169043577461840.567583957584599560.63763447062968648-5.8688996348679613E-26.2035390919452697E-2-0.67727383140365516-0.50583808225495164-0.3410828491788962-0.301105092783921618.7094706850933734E-2-0.51919387343650736-0.30381145438166457-6.0812139396757475E-2-7.0246149369644663E-3-0.10647224451051676-0.31608154697347896-0.33687231664255274-0.5923972774598022-0.84629836005412007-0.94160853985844495-3.2441936328524905-2.9957322735539909-3.0791138824930422-2.7806208939370456-3.1235656450638758-2.8134107167600364-3.1941832122778293-2.5133061243096981-1.61445045425764460.150142658429719414.4973365642731196E-20.153579087928300580.19392069263730649-0.169602784386179980.26159473768846242-0.18392283816092855.0693114315518165E-21.59338349382529151.80814650764221652.0313057228181322-0.186964945655770540.19762552119790849-2.1575844359333423-1.611443293348191-1.0865842036551103-0.959227467012020330.27745673203451271-1.6539907030468333-0.9678490959463556-0.1937286211196505-2.2378245184828817E-2-0.33918755895038477-1.0069378065624039-1.0731707524834067-1.8871940513153822-2.6960441776177371-2.9996728592480753-10.33499504165075-9.5434741871652573-9.8091021405104026-8.8581960276772751-9.9507116736498471-8.962654236601832-10.175677347590812-8.0066140534442773-5.14313858173527190.478307957545383410.14327119880180930.489255356451900440.61777120101116012-0.540301885168341660.83335972598991781-0.585921136516193260.16149254464692939Enthalpies at 383.15 K0.500169043577461840.567583957584599560.63763447062968648-5.8688996348679613E-26.2035390919452697E-2-0.67727383140365516-0.50583808225495164-0.3410828491788962-0.301105092783921618.7094706850933734E-2-0.51919387343650736-0.30381145438166457-6.0812139396757475E-2-7.0246149369644663E-3-0.10647224451051676-0.31608154697347896-0.33687231664255274-0.5923972774598022-0.84629836005412007-0.94160853985844495-3.2441936328524905-2.9957322735539909-3.0791138824930422-2.7806208939370456-3.1235656450638758-2.8134107167600364-3.1941832122778293-2.5133061243096981-1.61445045425764460.150142658429719414.4973365642731196E-20.153579087928300580.19392069263730649-0.169602784386179980.26159473768846242-0.18392283816092855.0693114315518165E-21.40625410005630381.59218134840208592.12316195850965842.82435239867403311.5180653566029552-0.58172652053913243-0.45311180537823709-0.18490811521207498-0.329008090849625124.07486713172774981.32623195008694261.71151804595791492.88167383399893672.51024223827336272.31901165921175822.08974463995711360.362035296991989050.38794116524293354-0.37268979128876628-1.9213386066031723-10.280654226575859-10.27210990056291-12.132425834739587-11.55493193211993-12.182005670222289-13.283067713850119-12.728378335410047-13.4606092529516910.442575819389644851.0938265361817231.34428080788936221.32585121322881051.3200538033807196-5.619884599421292-2.2214695239832922-6.3356281434070771-0.68366711975471883-19.426665858364043Tref*S at 383.15 K0.500169043577461840.567583957584599560.63763447062968648-5.8688996348679613E-26.2035390919452697E-2-0.67727383140365516-0.50583808225495164-0.3410828491788962-0.301105092783921618.7094706850933734E-2-0.51919387343650736-0.30381145438166457-6.0812139396757475E-2-7.0246149369644663E-3-0.10647224451051676-0.31608154697347896-0.33687231664255274-0.5923972774598022-0.84629836005412007-0.94160853985844495-3.2441936328524905-2.9957322735539909-3.0791138824930422-2.7806208939370456-3.1235656450638758-2.8134107167600364-3.1941832122778293-2.5133061243096981-1.61445045425764460.150142658429719414.4973365642731196E-20.153579087928300580.19392069263730649-0.169602784386179980.26159473768846242-0.18392283816092855.0693114315518165E-2-0.18712939376898774-0.21596515924013069.1856235691526233E-23.01131734432980381.32043983540504661.57585791539420981.1583314879699540.901676088443035370.630219376162395213.79741039969323692.98022265313377592.67936714190427063.07540245511858722.53262048345819142.65819921816214323.09668244651951771.43520604947539582.27513521655831592.32335438632897071.07833425264490295.4340815074890969E-2-0.72863571339765265-2.3233236942291846-2.6967359044426544-2.2312939965724414-4.3204134772482874-2.5527009878192359-5.45399519950741415.58571440112491670.615518578636339521.20100960908755280.836595856776910060.70228260236955953-5.0795827142529504-3.0548292499732099-5.7497070068908842-0.84515966440164825-19.426665858364043Gibbs energies at 433.15 K-2.4534079827286295-2.6310891599660819-0.748659890490204098.9597413714718015E-3-2.0249533563957662-1.8078888511579385-2.4191189092499972-8.8357367448261463-9.4756401435404811-2.69623387155722543.2267733951042959E-2-7.2926944493618411-6.5109553996688883-8.7122476110929803Enthalpies at 433.15 K-2.4534079827286295-2.6310891599660819-0.748659890490204098.9597413714718015E-3-2.0249533563957662-1.8078888511579385-2.4191189092499972-10.186782211214025-11.24685655703570414.709753651408068-4.196615728848669-21.52013431527423-11.217838211775549-11.660125039827689Tref*S at 433.15 K-2.4534079827286295-2.6310891599660819-0.748659890490204098.9597413714718015E-3-2.0249533563957662-1.8078888511579385-2.4191189092499972-1.3510454663878786-1.7