química orgânica - combo - tradução da 7a ed. norte-americana

44
Química Orgânica John McMurry Combo Tradução da 7ª edição norte-americana

Upload: cengage-learning-brasil

Post on 27-Jul-2016

261 views

Category:

Documents


13 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Química Orgânica - Combo - tradução da 7a ed. norte-americana

9 788522 11 0 0 8 7

ISBN 10 – 85-221-1008-5ISBN 13 – 978-85-221-1008-7

Química Orgânica

John McMurryCom

boC

ombo

Tradução da 7ª edição

norte-americana

Este livro, editado em dois volumes e nesta versão combo, escrito de forma clara e legível, tem como preocupação básica mostrar a beleza e a lógica da química orgânica, tornando um assunto considerado complexo algo simples de ser entendido pelos leitores.

Para tanto, o autor privilegia, entre outras, as seguintes características:

• Organização e estratégia de ensino, aliando a abordagem tradicional dos grupos funcionais uma abordagem de mecanismo.

• Reação de abertura: adição de HBr aos alcenos, por considerar que os alunos dão grande importância à primeira reação que veem e a discutem de modo mais detalhado.

• Apresentação modular, o que facilita a coesão dos tópicos e permite ao professor a flexibilidade de ensinar em uma ordem diferente.

• Reforço dos principais conceitos por meio de diversos problemas; alguns incluem estratégias e soluções, outros oferecem aos alunos a oportunidade de estudar química de uma maneira diferente, observando as moléculas em vez de simplesmente interpretar as fórmulas estruturais.

• Resumo, palavras-chave e um pequeno glossário fecham a parte teórica de cada capítulo, oferecendo rápida revisão do conteúdo estudado.

AplicaçõesIndicado a disciplinas na área de química orgânica dos cursos de Química, Farmácia e Engenharia Química.

Química Orgânica – ComboTradução da 7ª edição norte-americana

ComboComboComboTradução da

7ª ediçãonorte-americana

Fundamentos da Química Analítica – tradução da 8ª edição norte-americanaSkoog, West, Holler, Crouch

Bioquímica – ComboMary K. Campbell e Shawn O. Farrell

Química Geral Aplicada à EngenhariaLawrence S. Brown e Thomas A. Holme

Química TecnológicaJorge Wilson Hilsdorf,Newton Deleo de Barros,Celso Aurélio Tassinari e Isolda Costa

Energia e Meio Ambiente – tradução da 5ª edição norte-americanaRoger A. Hinrichs,Merlin Kleinbach eLineu Belico dos Reis

Mecânica dos Materiais – tradução da 7ª edição norte-americanaJames M. Gere e Barry J. Goodno

Outras obras

Quím

ica Orgânica

John McM

urry

AF_quim_organ_combo_2014.pdf 1 22/07/2014 17:06:59

Page 2: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Química Orgânica

Tradução da 7a edição norte-americana

Volume 1

John McMurryCornell University

Tradução

All Tasks

Revisão Técnica

Robson Mendes Matos

Professor Associado 3 da Universidade Federal do Rio de Janeiro (Campus Macaé)D. Phil. em Química pela University of Sussex at Brighton (Inglaterra)

Austrália • Brasil • Japão • Coreia • México • Cingapura • Espanha • Reino Unido • Estados Unidos

Page 3: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Volume 1 1 Estrutura e Ligação 1

2 Ligações Covalentes Polares; Ácidos e Bases 32

3 Compostos Orgânicos: Alcanos e sua Estereoquímica 68

4 Compostos Orgânicos: Cicloalcanos e sua Estereoquímica 100

5 Uma Visão Geral de Reações Orgânicas 129

6 Alcenos: Estrutura e Reatividade 164

7 Alcenos: Reações e Síntese 202

8 Alcinos: uma Introdução à Síntese Orgânica 243

9 Estereoquímica 270

10 Organoaletos 310

11 Reações dos Haletos de Alquila: Substituições Nucleofílicas e Eliminações 336

12 Determinação de Estruturas: Espectrometria de Massas e Espectroscopia no Infravermelho 384

13 Determinação Estrutural: Espectroscopia de Ressonância Magnética Nuclear 415

14 Dienos Conjugados e a Espectroscopia no Ultravioleta 455

15 Benzeno e Aromaticidade 487

16 Química do Benzeno: Substituição Aromática Eletrofílica 517

17 Álcoois e Fenóis 566

Apêndices A-1

Índice Remissivo I-1

Volume 218 Éteres e Epóxidos; Tióis e Sulfetos 615

19 Aldeídos e Cetonas: Reações de Adição Nucleofílica 655

20 Ácidos Carboxílicos e Nitrilas 705

21 Derivados dos Ácidos Carboxílicos: Reações de Substituição Nucleofílica de Acila 737

22 Reações de Substituição Alfa à Carbonila 789

23 Reações de Condensação de Carbonila 820

24 Aminas e Heterocíclicos 855

25 Biomoléculas: Carboidratos 908

26 Biomoléculas: Aminoácidos, Peptídeos e Proteínas 948

27 Biomoléculas: Lipídeos 989

28 Biomoléculas: Ácidos Nucleicos 1026

29 A Química Orgânica das Rotas Metabólicas 1049

30 Orbitais e Química Orgânica: Reações Pericíclicas 1099

31 Polímeros sintéticos 1124

Apêndices A-1

Índice Remissivo I-1

Conteúdo Geral

Page 4: Química Orgânica - Combo - tradução da 7a ed. norte-americana
Page 5: Química Orgânica - Combo - tradução da 7a ed. norte-americana

1 Estrutura e Ligação 1

1.1 Estrutura atômica: o núcleo ................................................................................................................ 3

1.2 Estrutura atômica: orbitais .................................................................................................................. 4

1.3 Estrutura atômica: configurações eletrônicas .................................................................................... 6

1.4 Desenvolvimento da teoria de ligação química .................................................................................. 6

1.5 A natureza das ligações químicas: teoria da ligação de valência ...................................................... 10

1.6 Orbitais híbridos sp3 e a estrutura do metano .................................................................................. 11

1.7 Orbitais híbridos sp3 e a estrutura do etano ..................................................................................... 12

1.8 Orbitais híbridos sp2 e a estrutura do etileno ................................................................................... 14

1.9 Orbitais híbridos sp e a estrutura do acetileno ................................................................................. 16

1.10 Hibridização do nitrogênio, oxigênio, fósforo e enxofre ................................................................... 17

1.11 A natureza das ligações químicas: teoria do orbital molecular ......................................................... 19

1.12 Desenhando as estruturas químicas ................................................................................................ 21

Em Foco... Reagentes químicos, toxidade e risco 24Resumo e palavras-chave 25 Visualizando a química 26

Problemas adicionais 27

2 Ligações Covalentes Polares; Ácidos e Bases 32

2.1 Ligações covalentes polares: eletronegatividade ............................................................................. 32

2.2 Ligações covalentes polares: momentos dipolo .............................................................................. 35

2.3 Cargas formais ................................................................................................................................. 37

2.4 Ressonância ..................................................................................................................................... 39

2.5 Regras para as formas de ressonância ............................................................................................. 40

2.6 Representação gráfi ca das formas de ressonância .......................................................................... 42

2.7 Ácidos e bases: defi nição de Brønsted-Lowry ................................................................................. 45

2.8 Força ácida e básica ......................................................................................................................... 46

2.9 Prevendo reações ácido-base a partir dos valores de pKa ................................................................ 48

2.10 Ácidos e bases orgânicos ................................................................................................................. 50

2.11 Ácidos e bases: a defi nição de Lewis .............................................................................................. 53

2.12 Modelos moleculares ....................................................................................................................... 56

2.13 Interações não covalentes ................................................................................................................ 57

Em Foco... Alcaloides: bases naturais 59Resumo e palavras-chave 61 Visualizando a química 61

Problemas adicionais 63

Sumário

Volume 1

Page 6: Química Orgânica - Combo - tradução da 7a ed. norte-americana

viii Química Orgânica

3 Compostos Orgânicos: Alcanos e sua Estereoquímica 68

3.1 Grupos funcionais ............................................................................................................................. 68

3.2 Alcanos e seus isômeros ................................................................................................................. 74

3.3 Grupos alquila ................................................................................................................................... 78

3.4 Nomenclatura dos alcanos ............................................................................................................... 80

3.5 Propriedades dos alcanos ................................................................................................................. 86

3.6 Conformações do etano ................................................................................................................... 87

3.7 Conformação dos outros alcanos ..................................................................................................... 89

Em Foco... Gasolina 93Resumo e palavras-chave 94 Visualizando a química 95

Problemas adicionais 96

4 Compostos Orgânicos: Cicloalcanos e sua Estereoquímica 100

4.1 Dando nome aos cicloalcanos ........................................................................................................ 101

4.2 Isomerismo cis-trans nos cicloalcanos ........................................................................................... 103

4.3 Estabilidade de cicloalcanos: a tensão dos anéis ........................................................................... 106

4.4 Conformações dos cicloalcanos ..................................................................................................... 108

4.5 Conformações do cicloexano ......................................................................................................... 110

4.6 Ligações axiais e equatoriais no cicloexano ................................................................................... 112

4.7 Conformações de cicloexanos monossubstituídos ........................................................................ 115

4.8 Conformações dos cicloexanos dissubstituídos ............................................................................. 117

4.9 Conformações de moléculas policíclicas ........................................................................................ 120

Em Foco... Mecânica molecular 123Resumo e palavras-chave 124 Visualizando a química 124

Problemas adicionais 125

5 Uma Visão Geral de Reações Orgânicas 129

5.1 Tipos de reações orgânicas ............................................................................................................ 130

5.2 Como as reações orgânicas ocorrem: mecanismos ....................................................................... 131

5.3 Reações radicalares ........................................................................................................................ 132

5.4 Reações polares ............................................................................................................................. 134

5.5 Um exemplo de reação polar: adição do HBr ao etileno ................................................................ 139

5.6 Usando setas curvas em mecanismos de reações polares ........................................................... 141

5.7 Descrevendo uma reação: equilíbrio, velocidades e variações de energia ..................................... 144

5.8 Descrevendo uma reação: energias de dissociação das ligações .................................................. 147

5.9 Descrevendo uma reação: diagramas de energia e estados de transição ..................................... 149

5.10 Descrevendo uma reação: intermediários ...................................................................................... 151

5.11 Uma comparação entre as reações biológicas e as reações no laboratório ................................... 153

Em Foco... De onde vêm os medicamentos? 156Resumo e palavras-chave 157 Visualizando a química 158

Problemas adicionais 160

Page 7: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Sumário ix

6 Alcenos: Estrutura e Reatividade 164

6.1 Preparação industrial e uso de alcenos .......................................................................................... 165

6.2 Calculando o grau de insaturação ................................................................................................... 166

6.3 Nomenclatura dos alcenos ............................................................................................................. 168

6.4 Isomeria cis-trans em alcenos ........................................................................................................ 170

6.5 Regras de sequência: a designação E,Z ......................................................................................... 172

6.6 Estabilidade dos alcenos ................................................................................................................ 176

6.7 Reações de adição eletrofílica dos alcenos .................................................................................... 179

6.8 Orientação das adições eletrofílicas: regra de Markovnikov .......................................................... 182

6.9 Estrutura e estabilidade de um carbocátion ................................................................................... 185

6.10 O postulado de Hammond ............................................................................................................. 188

6.11 Evidências para o mecanismo de adição eletrofílica: rearranjos de carbocátions .......................... 190

Em Foco... Terpenos: alcenos naturais 193Resumo e palavras-chave 194 Visualizando a química 195

7 Alcenos: Reações e Síntese 202

7.1 Preparação de alcenos: uma prévia das reações de eliminação ..................................................... 203

7.2 Adição de halogênios aos alcenos .................................................................................................. 204

7.3 Adição de ácidos hipoalogênicos a alcenos: formação de haloidrinas ............................................ 207

7.4 Adição de água a alcenos: oximercuriação ..................................................................................... 208

7.5 Adição de água a alcenos: hidroboração ........................................................................................ 210

7.6 Adição de carbenos aos alcenos: síntese de ciclopropano ............................................................ 214

7.7 Redução de alcenos: hidrogenação ................................................................................................ 216

7.8 Oxidação de alcenos: epoxidação e hidroxilação ............................................................................ 220

7.9 Oxidação de alcenos: quebra em compostos carbonílicos ............................................................. 223

7.10 Adição radicalares a alcenos: polímeros ......................................................................................... 225

7.11 Adições radicalares biológicas aos alcenos .................................................................................... 229

Em Foco... Borracha natural 231Resumo e palavras-chave 232 Resumo das reações 233

Visualizando a química 235 Problemas adicionais 236

8 Alcinos: uma Introdução à Síntese Orgânica 243

8.1 Nomenclatura dos alcinos ............................................................................................................. 243

8.2 Preparação dos alcinos: reações de eliminação de dialetos ........................................................... 244

8.3 Reações dos alcinos: adição de HX e X2 ....................................................................................... 245

8.4 Hidratação de alcinos ..................................................................................................................... 247

8.5 Redução de alcinos ........................................................................................................................ 251

8.6 Quebra oxidativa de alcinos ............................................................................................................ 253

8.7 Acidez de alcinos: formação de ânions acetileto ............................................................................ 253

8.8 Alquilação de ânions acetileto ........................................................................................................ 255

8.9 Uma introdução à síntese orgânica ................................................................................................ 256

Em Foco... A arte da síntese orgânica 261

Page 8: Química Orgânica - Combo - tradução da 7a ed. norte-americana

x Química Orgânica

Resumo e palavras-chave 262 Resumo das reações 263

Visualizando a química 264 Problemas adicionais 265

9 Estereoquímica 270

9.1 Enantiômeros e o carbono tetraédrico ........................................................................................... 271

9.2 O motivo da quiralidade nas moléculas .......................................................................................... 272

9.3 Atividade óptica .............................................................................................................................. 275

9.4 A descoberta dos enantiômeros por Pasteur ................................................................................. 277

9.5 Regras de sequência para especificar a configuração .................................................................... 278

9.6 Diastereoisômeros ......................................................................................................................... 283

9.7 Compostos meso ........................................................................................................................... 285

9.8 Misturas racêmicas e a resolução de enantiômeros ...................................................................... 287

9.9 Uma revisão de isomerismo ........................................................................................................... 290

9.10 Estereoquímica das reações: adição de H2O aos alcenos .............................................................. 291

9.11 Estereoquímica das reações: adição de H2O a um alceno quiral ................................................... 292

9.12 Quiralidade no nitrogênio, fósforo e enxofre .................................................................................. 294

9.13 Proquiralidade ................................................................................................................................. 295

9.14 Quiralidade na natureza e em ambientes quirais ............................................................................ 297

Em Foco... Drogas quirais 300Resumo e palavras-chave 301 Visualizando a química 302

Problemas adicionais 303

10 Organoaletos 310

10.1 Nomenclatura dos haletos de alquila .............................................................................................. 311

10.2 Estrutura dos haletos de alquila ..................................................................................................... 312

10.3 Preparação dos haletos de alquila .................................................................................................. 313

10.4 Preparação de haletos de alquila a partir de alcenos: bromação alílica .......................................... 316

10.5 Estabilidade do radical alila: a ressonância revisitada ..................................................................... 318

10.6 Preparação de haletos de alquila a partir de álcoois ....................................................................... 321

10.7 Reações de haletos de alquila: reagentes de Grignard 322

10.8 Reações de acoplamento de organometálicos ............................................................................... 323

10.9 Oxidação e redução na química orgânica ....................................................................................... 325

Em Foco... Haletos de alquila naturais 328Resumo e palavras-chave 329 Resumo das reações 330

Visualizando a química 331 Problemas adicionais 332

11 Reações dos Haletos de Alquila: Substituições Nucleofílicas e Eliminações 336

11.1 A descoberta das reações de substituição nucleofílica .................................................................. 336

11.2 A reação SN2 .................................................................................................................................. 339

11.3 Características da reação SN2 ......................................................................................................... 342

11.4 A reação SN1 .................................................................................................................................. 349

11.5 Características da reação SN1 ......................................................................................................... 353

Page 9: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Sumário xi

11.6 Reações biológicas de substituição ................................................................................................ 358

11.7 Reações de eliminação de haletos de alquila: regra de Zaitsev ..................................................... 360

11.8 A reação E2 e o efeito do isótopo do deutério ............................................................................... 363

11.9 Reação E2 e a conformação do cicloexano .................................................................................... 366

11.10 As reações E1 e E1cB .................................................................................................................... 368

11.11 Reações biológicas de eliminação .................................................................................................. 370

11.12 Um resumo das reatividades: SN1, SN2, E1, E1cB e E2 ................................................................. 370

Em Foco... Química verde 372Resumo e palavras-chave 373 Resumo das reações 374

Visualizando a química 375 Problemas adicionais 376

12 Determinação de Estruturas: Espectrometria de Massas e Espectroscopia no Infravermelho 384

12.1 Espectrometria de massas de pequenas moléculas: instrumentos de setor magnético ............... 385

12.2 Interpretando o espectro de massas .............................................................................................. 387

12.3 Espectrometria de massas de alguns grupos funcionais comuns ................................................. 391

12.4 Espectrometria de massas na química biológica: instrumentos por tempo de voo (TOF)......................393

12.5 Espectroscopia e o espectro eletromagnético ............................................................................... 394

12.6 Espectroscopia do infravermelho ................................................................................................... 398

12.7 Interpretando espectros na região do infravermelho ..................................................................... 399

12.8 Espectros do infravermelho de alguns grupos funcionais comuns ................................................ 403

Em Foco... Cromatografia: purificando compostos orgânicos 407Resumo e palavras-chave 409 Visualizando a química 409

Problemas adicionais 410

13 Determinação Estrutural: Espectroscopia de Ressonância Magnética Nuclear 415

13.1 Espectroscopia de ressonância magnética nuclear ........................................................................ 416

13.2 A natureza das absorções de RMN ................................................................................................ 418

13.3 Deslocamento químico ................................................................................................................... 420

13.4 Espectroscopia de RMN de 13C: média de sinais e RMN-FT ......................................................... 422

13.5 Características da espectroscopia de RMN de 13C ........................................................................ 424

13.6 Espectroscopia de RMN de 13C-DEPT ........................................................................................... 426

13.7 Usos da espectroscopia de RMN de 13C ........................................................................................ 429

13.8 Espectroscopia de RMN de 1H e equivalência de hidrogênio ........................................................ 430

13.9 Deslocamentos químicos na espectroscopia de RMN de 1H ......................................................... 432

13.10 Integração das absorções de RMN de 1H: contagem dos hidrogênios .......................................... 434

13.11 Desdobramento spin-spin nos espectros de RMN de 1H .............................................................. 435

13.12 Padrões de desdobramento spin-spin mais complexos ................................................................. 440

13.13 Usos da espectroscopia de RMN de 1H ......................................................................................... 442

Em Foco... Ressonância magnética de imagem (MRI) 444Resumo e palavras-chave 445 Visualizando a química 445

Problemas adicionais 446

Page 10: Química Orgânica - Combo - tradução da 7a ed. norte-americana

xii Química Orgânica

14 Dienos Conjugados e a Espectroscopia no Ultravioleta 455

14.1 Estabilidade de dienos conjugados: teoria do orbital molecular ..................................................... 456

14.2 Adições eletrofílicas aos dienos conjugados: carbocátions alila ..................................................... 460

14.3 Controle cinético versus termodinâmico de reações ..................................................................... 463

14.4 Reação de cicloadição de Diels-Alder ............................................................................................. 465

14.5 Características da reação de Diels-Alder ........................................................................................ 466

14.6 Polímeros de dienos: borrachas naturais e sintéticas .................................................................... 470

14.7 Determinação de estruturas em sistemas conjugados: espectroscopia no ultravioleta ................................................................................................................................. 472

14.8 Interpretando espectros no ultravioleta: o efeito da conjugação .................................................... 474

14.9 Conjugação, cor e a química da visão ............................................................................................. 475

Em Foco... Fotolitografia 477Resumo e palavras-chave 479 Resumo das reações 479

Visualizando a química 480 Problemas adicionais 481

15 Benzeno e Aromaticidade 487

15.1 Fontes e nomes dos compostos aromáticos ................................................................................. 488

15.2 Estrutura e estabilidade do benzeno: teoria do orbital molecular ................................................... 491

15.3 Aromaticidade e a regra 4n + 2 de Hückel ..................................................................................... 494

15.4 Íons aromáticos .............................................................................................................................. 496

15.5 Heterocíclicos aromáticos: piridina e pirrol ..................................................................................... 498

15.6 Por que 4n 1 2? ............................................................................................................................. 501

15.7 Compostos aromáticos policíclicos ................................................................................................ 502

15.8 Espectroscopia de compostos aromáticos ..................................................................................... 504

Em Foco... Aspirina, NSAID e inibidores COX-2 508Resumo e palavras-chave 510 Visualizando a química 510

Problemas adicionais 512

16 Química do Benzeno: Substituição Aromática Eletrofílica 517

16.1 Reações de substituição aromática eletrofílica: bromação ............................................................. 518

16.2 Outras substituições aromáticas .................................................................................................... 520

16.3 Alquilação e acilação de anéis aromáticos: reação de Friedel-Crafts .............................................. 524

16.4 Efeitos do substituinte nos anéis aromáticos ................................................................................. 530

16.5 Uma explicação dos efeitos dos substituintes ............................................................................... 533

16.6 Benzenos trissubstituídos: adição de efeitos ................................................................................. 539

16.7 Substituição aromática nucleofílica ................................................................................................ 540

16.8 Benzino ........................................................................................................................................... 543

16.9 Oxidação dos compostos aromáticos ............................................................................................ 545

16.10 Redução de compostos aromáticos ............................................................................................... 548

16.11 Síntese de benzenos trissubstituídos ............................................................................................. 549

Química combinatória 554Resumo e palavras-chave 555 Resumo das reações 556

Visualizando a química 558 Problemas adicionais 559

Page 11: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Sumário xiii

17 Álcoois e Fenóis 566

17.1 Nomenclatura de álcoois e fenóis .................................................................................................. 567

17.2 Propriedades de álcoois e fenóis .................................................................................................... 569

17.3 Preparação de álcoois: uma revisão ............................................................................................... 574

17.4 Álcoois a partir da redução de compostos de carbonila ................................................................. 575

17.5 Álcoois a partir da reação de compostos de carbonila com reagentes de Grignard ....................... 579

17.6 Reações de álcoois ......................................................................................................................... 583

17.7 Oxidação de álcoois ........................................................................................................................ 589

17.8 Proteção de álcoois ........................................................................................................................ 591

17.9 Fenóis e seus usos ......................................................................................................................... 593

17.10 Reações de fenóis .......................................................................................................................... 595

17.11 Espectroscopia de álcoois e fenóis ................................................................................................ 597

Em Foco... Etanol: produto químico, droga e veneno 600Resumo e palavras-chave 602 Resumo das reações 602

Visualizando a química 604 Problemas adicionais 606

Apêndice A Nomenclatura de compostos orgânicos polifuncionais ..................................A-1

Apêndice B Constantes de acidez para alguns compostos orgânicos ...............................A-7

Apêndice C Glossário .........................................................................................................A-9

Apêndice D Respostas dos problemas do texto ..............................................................A-27

Índice Remissivo ......................................................................................................................... I-1

Page 12: Química Orgânica - Combo - tradução da 7a ed. norte-americana
Page 13: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Prefácio

Eu adoro escrever. Sinto um prazer enorme quando tenho em mãos um tema difícil, em que necessite entendê-lo para poder traduzi-lo em palavras mais simples. Hoje, escrevo para expli-car a química aos estudantes da maneira como gostaria de que tivessem feito para mim há alguns anos.

O retorno obtido nas seis edições anteriores tem sido muito gratifi cante e é bastante útil aos estudantes. Espero que você perceba que esta sétima edição de Química Orgânica acumula to-das as forças das seis edições anteriores e atende mais às necessidades dos alunos. Fiz todo o esforço necessário para tornar esta nova edição mais efi caz, clara e legível, com a fi nalidade de mostrar a beleza e a lógica da química orgânica, tornando-a agradável de ser aprendida.

Organização e estratégia de ensino Esta sétima edição, como as outras, constitui um misto da abordagem tradicional dos grupos funcionais com uma abordagem de mecanismo. A organiza-ção principal é pelo grupo funcional, começando com os mais simples (alcanos) e progredindo até chegar aos compostos mais complexos. A maior parte do corpo docente vai concordar com que os estudantes iniciantes e não familiarizados com as sutilezas dos mecanismos se saiam melhor dessa maneira. Em outras palavras, para a maioria dos estudantes o quê da química é geralmente mais fácil de perceber do que o porquê. Entretanto, nessa organização principal, procurei enfatizar a explicação sobre as similaridades dos mecanismos fundamentais entre as reações. Essa ênfase é clara nos capítulos sobre a química do grupo carbonílico (capítulos 19 a 23), em que as reações relacionadas com mecanismos, como as condensações aldólicas e as de Claisen, são mostradas juntas. Quando os estudantes atingem esse estágio, é porque eles já viram todos os mecanismos comuns, por isso o valor dos mecanismos como um princípio de organização se torna mais evidente.

A primeira reação: adição de HBr aos alcenos Os alunos normalmente atribuem grande importân-cia à primeira reação, pois é a primeira que veem e a mais discutida. Utilizei a reação de adição de HBr a um alceno como a primeira reação para ilustrar os princípios gerais da química orgâ-nica por várias razões: a reação vai relativamente direto ao ponto, envolve um grupo funcional comum, porém importante, não exige um conhecimento prévio sobre estereoquímica ou cinética para compreendê-la e o mais importante: é uma reação polar. Como tal, acredito que as reações de adição eletrofílica representam uma introdução mais realística e útil à química dos grupos funcionais do que a primeira reação, como a cloração radicalar de um alcano.

Mecanismos de reação Na primeira edição, introduzi um formato inovador para explicar os mecanismos de uma reação em que os passos são impressos verticalmente, com as mudanças que ocorrem em cada etapa descrita ao lado da seta de reação. Esse formato permite ao leitor visualizar bem o que está ocorrendo em cada etapa sem ter de ficar no vaivém entre a estru-tura e o texto. Cada edição sucessiva tem sido um aumento na quantidade e na qualidade desses mecanismos, que ainda permanecem novos e úteis.

Síntese orgânica A síntese é abordada como um dispositivo de ensino para auxiliar os estu-dantes a organizar e a lidar com um corpo enorme de informações reais — a mesma habilida-

Page 14: Química Orgânica - Combo - tradução da 7a ed. norte-americana

xvi Química Orgânica

de tão crítica em medicina. Duas seções, a primeira no Capítulo 8 (“Alcinos”) e a segunda no Capítulo 16 (“Química do benzeno”), explicam os processos envolvidos nos problemas de sínte-se no trabalho e enfatizam o valor de começar aquilo que é conhecido e logicamente trabalhado logo no início. Além disso, as seções "Em foco…", incluindo "A arte da síntese orgânica", “Quími-ca combinatória” e “Síntese enantiosseletiva”, enfatizam ainda mais essa importância.

Apresentação modular Os tópicos são dispostos de uma maneira aproximadamente modular. Consequentemente, determinados capítulos estão agrupados em: hidrocarbonetos simples (Capítulos 3 a 8); espectroscopia (Capítulos 12 a 14), química do grupo carbonila (Capítulos 19 a 23) e biomoléculas (Capítulos 25 a 29). Acredito que essa organização facilita a coesão dos tópicos e permite ao professor a flexibilidade de ensinar em uma ordem diferente.

Auxílios básicos para o aprendizado Ao escrever e revisar este texto, buscava transmitir explica-ções elucidativas com transições suaves entre os parágrafos e os tópicos. Conceitos novos são introduzidos somente quando necessários e são ilustrados com exemplos concretos. Referências cruzadas em relação ao material anterior são dadas frequentemente e numerosos resumos tam-bém são fornecidos para juntar todas as informações, ambos ao longo e ao final dos capítulos. Além do mais, no fim do livro, há muitos dados para ajudar no aprendizado da química orgânica, incluindo um grande glossário, uma explicação de como dar nomes aos compostos orgânicos po-lifuncionais e respostas a todos os problemas apresentados no decorrer do texto.

Mudanças e acréscimos nesta nova ediçãoA razão principal de se preparar outra edição é manter o livro atualizado, tanto em sua cober-tura científica quanto em sua forma pedagógica. Meu principal objetivo sempre foi aperfeiçoar os tópicos já existentes nas edições anteriores, acrescentando alguns novos.

O texto foi mais uma vez revisado na questão gramatical, modernizando a apresentação, ❚melhorando as explicações e atualizando milhares de detalhes. Várias reações pouco usa-das foram excluídas (a fusão de bases dos ácidos arenossulfônicos para produzir os fenóis, por exemplo) e algumas novas, adicionadas (como a epoxidação enantiosseletiva de alcenos de Sharpless).Outras mudanças dignas de nota estão em: ❚

Capítulo 2. Ligações covalentes polares; ácidos e bases – Uma nova seção, a 2.13, sobre as interações não covalentes, foi acrescida.

Capítulo 3. Compostos orgânicos: alcanos e sua estereoquímica – O capítulo foi revisado para enfocar exclusivamente os alcanos de cadeia aberta.

Capítulo 4. Compostos orgânicos: cicloalcanos e sua estereoquímica – O capítulo foi revisa-do para enfocar exclusivamente os cicloalcanos.

Capítulo 5. Uma visão geral de reações orgânicas – Uma nova seção, a 5.11, que compara as reações biológicas e as realizadas em laboratório, foi acrescida.

Capítulo 7. Alcenos: reações e síntese – a epoxidação dos alcenos foi transferida para a se-ção 7.8, e a seção 7.11, sobre a adição biológica de radicais nos alcenos, vem com novas in-formações.

Capítulo 9. Estereoquímica – Uma discussão sobre a quiralidade no fósforo e no enxofre foi acrescida na seção 9.12, e uma discussão sobre os ambientes quirais, na seção 9.14.

Capítulo 11. Reações dos haletos de alquila: substituições nucleofílicas e eliminações – Uma discussão sobre a reação E1cB foi acrescida na seção 11.10, e uma nova seção, a 11.11, discute as reações biológicas de eliminação.

Capítulo 12. Determinação de estruturas: espectrometria de massas e espectroscopia no infravermelho – Uma nova seção, a 12.4, discute espectrometrias de massas das moléculas biológicas, com foco nos instrumentos de tempo de percurso e nos métodos de ionização suave, tais como MALDI.

Page 15: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Prefácio xvii

Capítulo 20. Ácidos carboxílicos e nitrilas – Uma nova seção, a 20.3, aborda os ácidos car-boxílicos biológicos e a equação de Henderson-Hasselbalch.

Capítulo 24. Aminas e heterociclos – Este capítulo agora inclui uma discussão sobre os heterociclos, e uma nova seção, a 24.5, sobre as aminas biológicas e a equação de Hender-son-Hasselbalch foi adicionada.

Capítulo 25. Biomoléculas: carboidratos – Uma nova seção, a 25.7, sobre os oito carboidra-tos essenciais, foi acrescida e foram realizadas numerosas revisões de conteúdo.

Capítulo 26. Biomoléculas: aminoácidos, peptídeos e proteínas – O capítulo foi atualizado, principalmente na questão da síntese de peptídeos na fase sólida.

Capítulo 27. Biomoléculas: lipídeos – O capítulo foi amplamente revisado, mais detalha-damente sobre as prostaglandinas (seção 27.4), a biossíntese dos terpenoides (seção 27.5) e a biossíntese dos esteroides (seção 27.7).

Capítulo 28. Biomoléculas: ácidos nucleicos – O tema da química heterocíclica foi transfe-rido para o Capítulo 24.

Capítulo 29. A química orgânica das rotas metabólicas – O capítulo foi reorganizado e amplamente revisado, mais detalhadamente nas rotas metabólicas importantes.

Capítulo 30. Orbitais e química orgânica: reações pericíclicas – Toda a parte ilustrativa deste capítulo foi reelaborada.

A ordem dos tópicos, quase sempre a mesma, foi alterada no Capítulo 3, para dedicá-lo ❚inteiramente aos alcanos, e o Capítulo 4, aos cicloalcanos. Além disso, os epóxidos são ago-ra introduzidos no Capítulo 7 sobre os alcenos, e o tema da química dos heterociclos foi transferido para o Capítulo 24.Os problemas ao longo e ao final de cada capítulo foram revistos e, aproximadamente, cem ❚novos problemas foram adicionados, muitos dos quais enfocam a química biológica. As seções “Em foco…”, no final de cada capítulo, apresentam aplicações interessantes da ❚química orgânica pertinentes ao tema principal do capítulo. Incluindo tópicos da Biologia, da indústria e da vida cotidiana, essas aplicações são vivenciadas e reforçam o material apresentado no capítulo. As seções, como já dito, foram atualizadas, e outras novas, acres-centadas, entre elas: “De onde vêm os medicamentos?” (Capítulo 5), “Química verde” (Ca-pítulo 11), “Cristalografia de raios X” (Capítulo 22) e “Química Verde II: líquidos iônicos” (Capítulo 24). Moléculas e mecanismos biologicamente importantes receberam atenção especial nesta ❚edição. Diversas reações agora mostram os equivalentes biológicos dos exemplos em labo-ratório, muitos novos problemas exemplificam as reações e os mecanismos que ocorrem em organismos vivos, e foi dado bastante destaque às rotas metabólicas principais.

Mais Tópicos

❚ Por que aprendemos isto? Os alunos me fizeram essa pergunta tantas vezes que eu pensei que seria conveniente iniciar cada capítulo com a resposta. A seção “Qual a razão deste capítulo?” é constituída de um parágrafo curto que aparece no fim da introdução de todos os capítulos e revela aos alunos o porquê de o assunto abordado ser tão importante.

❚ Treze ideias-chave são destacadas no livro. Essas incluem tópicos indispensáveis para o desenvolvimento dos alunos na química orgânica, tais como “Setas curvas nos mecanismos de reações” (Capítulo 5) e a “Regra de Markovnikov” (Capítulo 6). As ideias-chave são mais tarde reforçadas nos problemas ao final dos capítulos. Os “Problemas para praticar” estão agora separados com esse título para dar aos alunos ❚um quadro de referência. Cada “Problema para praticar” inclui uma Estratégia e uma So-lução explicada, e depois é seguida por problemas que os alunos devem tentar resolver sozinhos. Este livro tem mais de 1.800 problemas no decorrer e no final dos capítulos.

Novo!

Novo!

Page 16: Química Orgânica - Combo - tradução da 7a ed. norte-americana

xviii Química Orgânica

Um capítulo para uma visão geral – “Uma prévia dos compostos de carbonila” ❚ está inseri-da depois do Capítulo 18 e destaca a crença do autor de que estudar química orgânica re-quer tanto a habilidade de resumir quanto a de olhar para o futuro.Os problemas da seção “Visualizando a química”, que iniciam a série de exercícios no final ❚de cada capítulo, oferecem aos estudantes a oportunidade de estudar a química de uma maneira diferente, observando as moléculas em vez de simplesmente interpretar as fór-mulas estruturais.As seções “Resumo” e “Palavras-chave” ajudam os alunos a traçar os conceitos-chave do ❚capítulo.As seções "Resumos das reações", no final de determinados capítulos, resumem as reações- ❚-chave do capítulo em uma lista completa.

OWL (Online Web-based Learning) A Cengage Learning, alinhada com as mais atuais tecnologias educacionais, apresenta o LMS (learning management system) OWL, desenvolvido na Universidade de Massachusetts. Testa-do em sala por milhares de alunos e usado por mais de 50 mil estudantes, OWL (Online Web-based Learning) oferece conteúdo digital em um formato de fácil utilização, fornecendo aos alunos análise instantânea de seus exercícios e feedback sobre as tarefas realizadas. OWL possui mais de 6 mil questões, bem como um aplicativo Java para visualizar e desenhar estru-turas químicas.

Este poderoso sistema maximiza a experiência de aprendizagem dos alunos e, ao mesmo tempo, reduz a carga de trabalho do corpo docente. OWL também utiliza o aplicativo Chime, da MDL, para auxiliar os estudantes a visualizar as estruturas dos compostos orgânicos. Todo o conteúdo, bem como a plataforma, encontra-se em língua inglesa.

O acesso à plataforma é gratuito para professores que comprovadamente adotam a obra. Os alunos somente poderão utilizá-la com o código de acesso que pode ser adquirido em http://www.cengage.com/owl.

Para mais informações sobre este produto, envie e-mail para brasil.solucoesdigitais @cengage.com

AgradecimentosAgradeço a todos os que ajudaram a configurar este livro e as mensagens recebidas. Da Brooks/Cole, estão incluídos: David Harris, editor; Sandra Kiselica, editora de desenvolvimento sê-nior; Amee Mosley, gerente executiva de marketing; Teresa Trego, gerente de projeto; Lisa Weber, gerente de projeto de tecnologia; Sylvia Krick, editora assistente; Suzanne Kastner e Gwen Gilbert, da Graphic World.

Sou grato aos colegas que revisaram o original e participaram da pesquisa de abordagem. Entre eles:

Revisores do originalArthur W. Bull, Oakland UniversityRobert Coleman, Ohio State UniversityNicholas Drapela, Oregon State UniversityChristopher Hadad, Ohio State UniversityEric J. Kantorowski, California Polytechnic

State University

James J. Kiddle, Western Michigan UniversityJoseph B. Lambert, Northwestern UniversityDominic McGrath, University of ArizonaThomas A. Newton, University of Southern

MaineMichael Rathke, Michigan State UniversityLaren M. Tolbert, Georgia Institute of

Technology

EMINGLES

EMINGLES

Page 17: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Estrutura e Ligação

O que é química orgânica e por que devemos estudá-la? As respostas para essas questões estão todas à sua volta. Todo organismo vivo é constituído de compostos orgânicos. As proteínas que constituem seu cabelo, pele e múscu-los; o DNA que contém sua herança hereditária; os alimentos que nutrem você; e os remédios que curam – todos são compostos orgânicos. Qualquer indivíduo com um pouco de curiosidade sobre a vida e os organismos vivos, e qualquer um que queira ser parte dos muitos avanços entusiasmantes que estão acontecendo atualmente na medicina e nas ciências biológicas, precisa primeiramente entender a química orgânica. Observe os desenhos a seguir, por exemplo, que mostram as estruturas químicas de algumas moléculas cujos nomes devem ser familiares para você.

Benzilpenicilina

H H

H

CH3O

O

OHCH3

CH3

CH3

CO2–

N

OO

N

H

H

S

N

O

HOH

HCH3

CH3 H

H

Colesterol

H

Rofecoxib (Vioxx)

S

O

O

CH2CH2CH3

CH3CH2O

CH3

CH3

O

O O N

N

N

N

N

N

O

O

H

SCH3

Sildenafil(Viagra)

Oxicodona(OxyContin)

1

Page 18: Química Orgânica - Combo - tradução da 7a ed. norte-americana

2 Química Orgânica

Embora os desenhos possam parecer ininteligíveis neste ponto, não se preocupe. Em pouco tempo, eles farão muito sentido e você estará dese-nhando estruturas similares para quaisquer substâncias nas quais esteja interessado.

Os fundamentos da química orgânica datam da metade do século XVIII, quando evoluía da arte dos alquimistas a uma ciência moderna. Naquele tempo, foram observadas diferenças inexplicáveis entre as substâncias ob-tidas a partir dos organismos vivos e aquelas derivadas dos minerais. Os compostos extraídos das plantas e dos animais eram muito difíceis de isolar e refinar. Mesmo quando puros, eles eram difíceis de manusear e tinham a tendência de se decompor mais facilmente que os compostos extraídos dos minerais. O químico sueco Torbern Bergman, em 1770, foi o primeiro a ex-pressar a diferença entre substâncias “orgânicas” e “inorgânicas”, e o termo química orgânica logo passou a denominar a química dos compostos encon-trados em organismos vivos.

Para muitos químicos daquele tempo, a única explicação para as dife-renças de comportamento entre os compostos orgânicos e os inorgânicos era que os orgânicos deviam conter uma “força vital” porque se originavam de organismos vivos. Uma consequência dessa força vital, acreditavam os quí-micos, era que os compostos orgânicos não podiam ser preparados e mani-pulados em laboratório, como era o caso dos compostos inorgânicos. Por volta de 1816, essa teoria da força vital foi abalada quando Michel Che-vreul descobriu que o sabão, preparado pela reação de álcalis com gordura animal, poderia ser separado em diversos compostos orgânicos puros, que ele próprio denominou ácidos graxos. Pela primeira vez, uma substância orgânica (gordura) fora convertida em outras (ácidos graxos e glicerina) sem a intervenção de uma força vital externa.

Gordura animal Sabão + GlicerinaH2O

NaOH

Sabão “Ácidos graxos”H3O+

Um pouco mais de uma década depois, a teoria da força vital sofreu ou-tro golpe quando Friedrich Wöhler descobriu, em 1828, que era possível con-verter o sal “inorgânico” cianato de amônio na substância “orgânica” já conhecida como ureia, que havia sido previamente encontrada na urina humana.

UreiaCianato de amônio

CNH2H2N

OCalor

NH4+ –OCN

Em meados do século XIX, o peso dessas evidências foi claramente con-trário à teoria da força vital. Como William Brande escreveu em 1848, “Não se pode traçar nenhuma linha divisória definida entre a química orgânica e a química inorgânica... Quaisquer distinções... devem ser consideradas da-qui para a frente como sendo de caráter meramente prático, para favorecer a compreensão dos alunos”. A química hoje é unificada, e os mesmos princí-pios explicam os comportamentos de todas as substâncias, independente da origem ou da complexidade. A única característica que distingue as substân-cias químicas orgânicas é que todas contêm o elemento carbono.

Michel-eugène chevreul

Michel-Eugène Chevreul (1786-1889) nasceu em Angers, França. Após seus estudos no Collège de France, em Paris, tornou-se professor de física no Lycée Charlemagne em 1813 e professor de química em 1830. Os estudos de Chevreul sobre sabões e ceras levaram-no a patentear um método de manufatura de velas. Ele também publicou um trabalho sobre a psicologia de percepção da cor e do envelhecimento. Toda a França celebrou seu 100o aniversário de nascimento em 1886.

Friedrich Wöhler

Friedrich Wöhler (1800- -1882) nasceu em Eschersheim, Alemanha, e estudou em Heidelberg sob a supervisão de Leopold Gmelin. De 1836 a 1882 foi professor de química em Göttingen. Wöhler desenvolveu o primeiro método industrial para a preparação de alumínio metálico, além de descobrir vários elementos novos e escrever diversos livros-textos sobre química orgânica e inorgânica.

WilliaM ThoMas Brande

William Thomas Brande (1788-1866) nasceu em Londres, Inglaterra. Experiente como farmacêutico, tornou-se professor assistente de química na Universidade de Londres em 1808 e foi professor da Royal Institution de 1813 a 1852. Suas descobertas científicas foram modestas, embora tenha sido a primeira pessoa a descobrir o naftaleno, utilizado atualmente em naftalina contra traças.

Page 19: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 3

A química orgânica é, então, o estudo dos compostos de carbono. Mas por que o carbono é especial? Por que, dos mais de 30 milhões de compostos químicos atualmente conhecidos, mais de 99% deles contêm carbono? As respostas a estas perguntas são provenientes da estrutura eletrônica do carbono e de sua consequente posição na tabela periódica (Figura 1.1). Como um elemento do grupo 14, o carbono pode compartilhar quatro elé-trons de valência e formar quatro ligações covalentes fortes. Além do mais, os átomos de carbono podem se ligar uns aos outros formando cadeias e anéis. O carbono sozinho é capaz de formar uma diversidade imensa de compos-tos, desde o mais simples até o mais surpreendente complexo – do metano, com um único átomo de carbono, ao DNA, que pode ter mais de 100 bilhões de carbonos.

OLi

Grupo1

H

Na

K

Rb

Cs

Fr

Be

2

Mg

Ca

Sr

Ba

Ra

B

Al

Ga

In

Tl

Si P

C N

Ge

Sn

Pb

As

Sb

Bi

S

Se

Te

Po

F

Cl

Br

I

At

Ne

Ar

He13

18

Kr

Xe

Rn

Sc

Y

La

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

Ac

3 4 5 6 7 8 9 10 11 12

14 15 16 17

Nem todos os compostos de carbono são derivados dos organismos vivos, naturalmente, e os químicos, no decorrer dos anos, desenvolveram uma ca-pacidade notavelmente sofisticada para projetar e sintetizar novos compostos orgânicos. Remédios, corantes, polímeros, aditivos de alimentos, pesticidas e uma grande quantidade de substâncias são atualmente preparadas em laboratório. A química orgânica tem a ver com a vida de todos nós. Seu es-tudo constitui uma empreitada fascinante.

QUAL A RAZÃO DESTE CAPÍTULO?

Entraremos no estudo da química orgânica retomando primeiramente algu-mas ideias sobre os átomos, ligações e a geometria molecular, de que você deve se lembrar do seu curso de química geral. Grande parte do material deste ca-pítulo e do próximo provavelmente será familiar a você, mas é uma boa ideia, não obstante, assegurar-se de que você o entenda antes de seguir adiante.

1.1Como você provavelmente sabe, um átomo consiste de um núcleo denso, carregado positivamente, circundado a uma distância relativamente gran-de por elétrons carregados negativamente (Figura 1.2). O núcleo consiste de partículas subatômicas denominadas nêutrons, que são eletricamente neu-tros; e de prótons, que são positivamente carregados. Pelo fato de um átomo ser neutro na totalidade, a quantidade de prótons positivos no núcleo e a quantidade de elétrons negativos em volta do núcleo é a mesma.

Estrutura atômica: o núcleo

FIGURA 1.1 A posição do carbono na tabela periódica. Outros elementos comumente encontrados em compostos orgânicos também são mostrados nas cores normalmente usadas para representá-las.

Page 20: Química Orgânica - Combo - tradução da 7a ed. norte-americana

4 Química Orgânica

Embora extremamente pequeno – cerca de 10–14 a 10–15 metros (m) em diâmetro –, o núcleo contém essencialmente toda a massa do átomo. Os elétrons têm massa negligenciável e circulam em volta do núcleo a uma distância de aproximadamente 10–10 m. Dessa forma, o diâmetro típico de um átomo é de cerca de 2 × 10–10 m, ou 200 picômetros (pm), em que 1 pm 5 10–12 m. Para se ter uma ideia de quão pequeno é o átomo, um traço mui-to fino de lápis contém cerca de 3 milhões de átomos de carbono na largura. Muitos químicos orgânicos e bioquímicos, especialmente nos Estados Uni-dos, ainda usam a unidade angström (Å) para expressar distâncias atômi-cas, em que 1 Å 5 10–10 m 5 100 pm, mas ficaremos com a unidade SI picômetro neste livro.

Núcleo (prótons + nêutrons)

Volume em volta do núcleo ocupado pelos elétrons em órbita

Um átomo específico é descrito pelo seu número atômico (Z), que indica o número de prótons no núcleo do átomo, e seu número de massa (A), que indica o número total de prótons mais nêutrons no seu núcleo. Todos os átomos de um dado elemento têm o mesmo número atômico – 1 para o hidrogênio, 6 para o carbono, 15 para fósforo, e assim por diante – mas eles podem ter número de massa diferente, dependendo da quantidade de nêutrons que eles contêm. Os átomos com o mesmo número atômico, porém com número de massa diferen-te, são chamados isótopos. A massa média pesada em unidades de massa atômica (uma) de isótopos que ocorrem naturalmente é chamada massa atô-mica do elemento – 1,008 uma para o hidrogênio, 12,011 uma para o carbono, 30,974 uma para o fósforo, e assim por diante.

1.2Como os elétrons estão distribuídos em um átomo? Você deve se lembrar, de seu curso de química geral que, de acordo com o modelo da mecânica quân-tica, o comportamento de um elétron específico em um átomo pode ser des-crito por uma expressão matemática chamada de equação de onda – o mesmo tipo de expressão usado para descrever o movimento das ondas em um fluido. A solução de uma equação de onda é denominada função de onda, ou orbital, e é descrita pela letra grega psi, c.

Ao demarcar o quadrado da função de onda, c2, no espaço tridimensio-nal, o orbital descreve o volume de espaço em torno de um núcleo que um elétron está mais propenso a ocupar. Portanto, você pode pensar em um orbital como uma fotografia do elétron sendo tirada a uma velocidade lenta do obturador da câmera. O orbital apareceria como uma nuvem borrada indicando a região do espaço em volta do núcleo onde o elétron esteve. Essa nuvem eletrônica não tem uma fronteira bem-definida, mas por questões de praticidade podemos fixar os limites dizendo que um orbital representa o espaço onde o elétron passa a maior parte de seu tempo (90%-95%).

Qual é a aparência de um orbital? Existem quatro tipos diferentes de orbitais, denominados s, p, d e f, cada um com um formato diferente. Dos quatro, vamos nos concentrar primeiramente nos orbitais s e p porque estes são os mais comuns na química orgânica e biológica. Os orbitais s são esfé-ricos, com o núcleo em seu centro; orbitais p têm a forma de halteres; e

Estrutura atômica: orbitais

FIGURA 1.2 Uma visão esquemática do átomo. O núcleo denso, positivamente carregado, contém a maioria da massa do átomo e é rodeado por elétrons negativamente carregados. Uma visão tridimensional à direita mostra as superfícies de densidade eletrônica calculadas. A densidade eletrônica aumenta em direção ao núcleo e é 40 vezes maior na superfície sólida (azul) que na superfície de malha (cinza).

Page 21: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 5

quatro dos cinco orbitais d têm o formato de uma folha de trevo, como mos-tra a Figura 1.3. O quinto orbital d possui a forma de um halteres alongado com uma argola ao redor do seu centro.

Orbital s Orbital p Orbital d

Os orbitais em um átomo são organizados em diferentes camadas, ou níveis eletrônicos, de tamanho e energia sucessivamente maiores. Cama-das diferentes contêm diferentes números e tipos de orbitais, e cada orbital dentro de um nível pode ser ocupado por dois elétrons. O primeiro nível contém somente um único orbital s, denominado 1s, e dessa forma acomoda apenas dois elétrons. O segundo nível contém um orbital 2s e três orbitais 2p e assim acomoda um total de oito elétrons. O terceiro nível contém um orbital s (3s), três orbitais p (3p) e cinco orbitais d (3d), com capacidade to-tal de 18 elétrons. Esses grupos de orbitais e seus níveis de energia estão mostrados na Figura 1.4.

terceiro nível(capacidade — 18 elétrons)

segundo nível(capacidade — oito elétrons)

primeiro nível(capacidade — dois elétrons)

En

erg

ia

3d

3p

2p

3s

2s

1s

Os três diferentes orbitais p em um mesmo nível são orientados no es-paço ao longo dos direcionamentos perpendiculares, denotados como px, py e pz. Como mostra a Figura 1.5, os dois lóbulos de cada orbital p são sepa-rados por uma região onde a densidade eletrônica é zero, denominada nó. Além disso, as duas regiões do orbital separadas pelo nó têm diferentes símbolos algébricos, + e –, na função de onda. Como veremos na Seção 1.11, os símbolos algébricos dos diferentes lóbulos dos orbitais têm consequên-cias importantes com relação à ligação química e à reatividade química.

y y

x

y

x

zzz

x

Orbital 2pzOrbital 2px Orbital 2py

FIGURA 1.3 Representações dos orbitais s, p e d. Os orbitais s são esféricos, com o núcleo em seu centro; orbitais p têm a forma de halteres; e quatro dos cinco orbitais d possuem a forma de uma folha de trevo. Lóbulos diferentes dos orbitais p são frequentemente desenhados em forma de lágrimas, mas sua verdadeira forma é mais próxima à de uma maçaneta de porta, conforme indicado.

FIGURA 1.4 Os níveis de energia dos elétrons em um átomo. O primeiro nível acomoda o máximo de dois elétrons em um orbital 1s; o segundo nível acomoda o máximo de oito elétrons em um orbital 2s e três orbitais 2p; o terceiro nível acomoda o máximo de 18 elétrons em um orbital 3s, três orbitais 3p e cinco orbitais 3d; e assim por diante. Os dois elétrons em cada orbital são representados por setas, ↑↓, para cima e para baixo. Embora não seja mostrado, o nível de energia do orbital 4s localiza-se entre os orbitais 3p e 3d.

FIGURA 1.5 Formas dos orbitais 2p. Cada um dos três orbitais p perpendiculares entre si, em forma de halteres, tem dois lóbulos separados por um nó. Os dois lóbulos têm símbolos algébricos diferentes na função de onda correspondente, conforme indicado por cores diferentes.

Page 22: Química Orgânica - Combo - tradução da 7a ed. norte-americana

6 Química Orgânica

1.3O arranjo de menor energia, ou a configuração eletrônica do estado fun-damental, de um átomo é uma lista dos orbitais ocupados por seus elétrons. Podemos prever esse arranjo seguindo estas três regras:

REGRA 1 Os orbitais de menor energia são preenchidos primeiramente de acordo com a ordem 1s n 2s n 2p n 3s n 3p n 4s n 3d, uma afirmação chamada princípio de Aufbau. Observe que o orbital 4s está situado entre os orbitais 3p e 3d em termos de energia.

REGRA 2 Os elétrons agem como se estivessem girando em torno de um eixo, da mes-ma maneira que a Terra gira. Esse movimento denominado spin tem duas orientações, denominadas para cima h e para baixo g. Somente dois elé-trons podem ocupar um orbital e eles devem ter spins opostos, uma afirma-ção chamada de princípio de exclusão de Pauli.

REGRA 3 Se dois ou mais orbitais vazios de mesma energia estão disponíveis, um elétron ocupa cada um com os spins paralelos até que todos os orbitais es-tejam ocupados pela metade, uma afirmação chamada de regra de Hund.

Alguns exemplos de como essas regras se aplicam são exibidos na Tabe-la 1.1. O hidrogênio, por exemplo, tem apenas um elétron, que deve ocupar o orbital de mais baixa energia. Desse modo, o hidrogênio tem configuração 1s. O carbono possui seis elétrons e a configuração do seu estado fundamen-tal é 1s2 2s2 2px

1 2py1 e assim por diante. Observe que o número que apare-

ce no expoente do orbital é utilizado para representar o número de elétrons de um orbital em particular.

Estrutura atômica: configurações eletrônicas

TABELA 1.1 Configuração eletrônica do estado fundamental de alguns elementos

Elemento

Número atômico

Configuração

Elemento

Número atômico

Configuração

Hidrogênio 1 1s Fósforo 15

3s

2s

1s

3p

2pCarbono 6

2s

1s

2p

PROBLEMA 1.1 Escreva a configuração eletrônica do estado fundamental de cada um dos seguintes elementos: (a) Oxigênio (b) Silício (c) Enxofre

PROBLEMA 1.2 Quantos elétrons cada um dos seguintes elementos possui em nível eletrô-nico mais externo? (a) Magnésio (b) Molibdênio (c) Selênio

1.4Em meados do século XIX, uma nova ciência química se desenvolvia rapi-damente e os químicos iniciavam a investigação sobre as forças que manti-nham os compostos unidos. Em 1858, August Kekulé e Archibald Couper, independentemente um do outro, propuseram que, em todos os seus com-postos, o carbono é tetravalente – ele sempre forma quatro ligações quando se une a outros elementos para formar compostos estáveis. Além do mais,

Desenvolvimento da teoria de ligação química

Page 23: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 7

disse Kekulé, os átomos de carbono podem se ligar uns aos outros para for-mar longas cadeias estendidas de átomos ligados.

Pouco tempo depois da natureza do carbono tetravalente ter sido pro-posta, extensões da teoria de Kekulé-Couper foram desenvolvidas em razão da possibilidade de ligação múltipla entre os átomos. Emil Erlenmeyer pro-pôs a ligação tripla carbono-carbono para o acetileno, e Alexander Crum Brown propôs a ligação dupla carbono-carbono para o etileno. Em 1865, Kekulé foi responsável pelo maior avanço quando sugeriu que as cadeias de átomos de carbono podem formar anéis de átomos.

Embora Kekulé e Couper estivessem corretos em descrever a natureza tetravalente do carbono, a química era ainda vista em duas dimensões até 1874. Naquele ano, Jacobus van’t Hoff e Joseph Le Bel adicionaram uma terceira dimensão às nossas ideias sobre os compostos orgânicos, quando pro-puseram que as quatro ligações de carbono não são orientadas aleatoriamen-te mas têm direções espaciais específicas. Van’t Hoff foi mais além e sugeriu que os quatro átomos aos quais o carbono está ligado estão localizados nos vértices de um tetraedro regular, com o átomo de carbono no centro.

A representação de um átomo de carbono tetraédrico é exibida na Figu-ra 1.6. Observe as convenções usadas para mostrar a tridimensionalidade: linhas sólidas representam as ligações no plano da página, o traço mais grosso representa a ligação que sai da página em direção ao leitor e a linha tracejada representa a ligação que está puxada para dentro da página, afastada do leitor. Essas representações serão usadas no decorrer do texto.

Por que, entretanto, os átomos se ligam e como as ligações podem ser des-critas eletronicamente? O porquê da questão é fácil de responder: átomos se ligam uns aos outros porque o composto que resulta disso tem energia mais reduzida e, portanto, é mais estável, do que os átomos separados. A energia (normalmente em forma de calor) sempre flui para fora do sistema químico quando uma ligação se forma. De modo inverso, a energia deve ser colocada no sistema para quebrar uma ligação química. Fazer ligações sempre libera energia e quebrar as ligações sempre absorve energia. A pergunta sobre como as ligações podem ser descritas eletronicamente é mais difícil. Para respon-dê-la, precisamos saber mais sobre as propriedades eletrônicas dos átomos.

Friedrich augusT KeKulé

Friedrich August Kekulé (1829-1896) nasceu em Darmstadt, Alemanha. Tão logo ingressou na Universidade de Giessen, em 1847, com o objetivo de se tornar arquiteto, Kekulé mudou seu curso para química. Após receber o título de doutor sob a orientação de Liebig e realizar alguns estudos em Paris, Kekulé tornou-se professor-assistente em Heidelberg em 1855 e professor de química em Ghent (1858) e Bonn (1867). Dizem que sua compreensão de que o átomo de carbono poderia formar anéis surgiu de um sonho em que viu uma cobra morder sua própria cauda.

archiBald scoTT couper

richard a. c. e. erlenMeyer

alexander cruM BroWn

JacoBus hendricus van’T hoFF

Archibald Scott Couper (1831-1892) nasceu em Kirkintilloch, Escócia, estudou nas universidades de Glasgow, Edimburgo e Paris. Embora seu artigo científico sobre a habilidade do carbono em formar quatro ligações tenha sido submetido antes do artigo muito parecido escrito por Kekulé, Couper nunca recebeu crédito pelo seu trabalho. Sua saúde começou a declinar após a rejeição de suas realizações e, em 1858, ele sofreu um colapso nervoso. Então se aposentou dos trabalhos científicos, passando os últimos 30 anos de sua vida cuidando da mãe.

Richard A. C. E. Erlenmeyer (1825-1909) nasceu em Wehen, Alemanha. Estudou em Giessen e em Heidelberg, inicialmente com a intenção de se tornar farmacêutico, porém tornou-se professor de química da Politécnica de Munique de 1868 a 1883. Muito do seu trabalho foi realizado com moléculas biológicas, sendo o primeiro a preparar o aminoácido tirosina.

Alexander Crum Brown (1838-1922) nasceu em Edimburgo, filho de um pastor presbiteriano. Estudou em Edimburgo, Heidelberg e Marburg e foi professor de química em Edimburgo de 1869 a 1908. Os focos de interesse de Crum Brown eram muitos. Ele estudou a fisiologia dos canais do ouvido interno, era proficiente na língua japonesa e teve, durante toda sua vida, interesse em tricotar.

Jacobus Hendricus van’t Hoff (1852-1911) nasceu em Roterdã, Holanda. Estudou em Delft, Leyden, Bonn, Paris e Utrecht. Com uma educação muito ampla, ele serviu como professor de química, mineralogia e geologia, primeiro na Universidade de Amsterdã de 1878 a 1896 e depois em Berlim. Hoff recebeu o primeiro prêmio Nobel de química em 1901 por seu trabalho sobre equilíbrio químico e pressão osmótica.

Joseph achille le Bel

Joseph Achille Le Bel (1847-1930) nasceu em Péchelbronn, França, e estudou na École Polytechnique e na Sorbonne em Paris. Sem ter de lutar pelo seu sustento, uma vez que era de família rica, Le Bel montou seu próprio laboratório.

Page 24: Química Orgânica - Combo - tradução da 7a ed. norte-americana

8 Química Orgânica

Sabemos, por meio da observação, que oito elétrons (um octeto) em um nível mais externo, ou nível de valência, fornecem uma estabilidade espe-cial aos gases nobres, elementos no grupo 18 da tabela periódica: Ne (2 1 8); Ar (2 1 8 1 8); Kr (2 1 81 18 18). Também sabemos que a química de mui-tos elementos do grupo principal é governada pela tendência de atingir a configuração eletrônica próxima à de um gás nobre. Os metais alcalinos no grupo 1, por exemplo, atingem a configuração de gás nobre perdendo seu único elétron s do seu nível de valência para formar um cátion, enquanto os halogênios no grupo 17 atingem a configuração de gás nobre ganhando um elétron p para preencher seu nível de valência, formando, portanto, um ânion. Os íons resultantes estão ligados uns aos outros em compostos como Na+ Cl– por uma atração eletrostática que chamamos de ligação iônica.

Mas como os elementos mais próximos do meio da tabela periódica for-mam ligações? Veja, por exemplo, o metano, CH4, principal constituinte do gás natural. A ligação no metano não é iônica; caso contrário, gastaria muita ener-gia para o carbono (1s2 2s2 2p2) ganhar ou perder quatro elétrons até atingir a configuração de gás nobre. Como resultado, o carbono liga-se a outros átomos, não pelo ganho ou perda de elétrons, mas por compartilhamento destes. Tal ligação com o elétron compartilhado foi proposta inicialmente em 1916 por G. N. Lewis e é chamada ligação covalente. Ao conjunto neutro de átomos unidos uns aos outros por ligações covalentes dá-se o nome de molécula.

Uma maneira simples de indicar as ligações covalentes em moléculas é usar o que chamamos estruturas de Lewis ou estruturas de pontos, em que os elétrons de valência de um átomo são representados por pontos. Dessa forma, o hidrogênio tem apenas um ponto representando o elétron 1s, o carbono tem quatro pontos (2s2 2p2), o oxigênio tem seis pontos (2s2 2p4), e assim por diante. Uma molécula estável resulta quando a configuração de gás nobre é atingida por todos os átomos – oito pontos (um octeto) para os átomos do grupo principal ou dois pontos para o hidrogênio. Mais simples ainda é usar as estruturas de Kekulé, ou estruturas de ligação por traços, nas quais uma ligação covalente de dois elétrons está indicada como uma linha desenhada entre átomos.

C HH

HCHH

HN HH

O H O H

C H

H

H

N H

H

H O

Água(H2O)

H CH

H

H

Metano(CH4)

Estruturas de pontos (estruturas de Lewis)

Estruturas de pontos(estruturas de Kekulé)

Amônia(NH3)

Metanol(CH3OH)

O HH H

H H H

gilBerT neWTon leWis

Gilbert Newton Lewis (1875-1946) nasceu em Weymouth, Massachusetts. Recebeu o título de doutor pela Harvard University em 1899. Após um curto período como professor de química no Massachusetts Institute of Technology (MIT) – 1905-1912 –, ele passou o restante de sua carreira (1912-1946) na Universidade da Califórnia, em Berkeley. Além do seu trabalho sobre a teoria estrutural, Lewis foi o primeiro a preparar a “água pesada”, D2O, em que os dois átomos de hidrogênio da água são os isótopos de deutério, 2H.

FIGURA 1.6 Uma representação do carbono tetraédrico de Van’t Hoff. Linhas sólidas estão no plano da página, o traço mais grosso sai do plano da página e a linha tracejada vai para trás do plano da página.

H

HH

H

Ligação puxada para dentroda página

Ligações no plano da página

Ligação saindodo plano

Átomo de carbono tetraédrico

Um tetraedro regular

C

Page 25: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 9

O número de ligações covalentes que um átomo forma depende da quanti-dade de elétrons de valência adicionais necessários para alcançar uma configu-ração de gás nobre. O hidrogênio tem um elétron de valência (1s) e necessita de mais um para alcançar a configuração do hélio (1s2), portanto ele forma uma ligação. O carbono tem quatro elétrons de valência (2s2 2p2) e necessita de mais quatro para alcançar a configuração do neônio (2s2 2p6), portanto ele forma quatro ligações. O nitrogênio tem cinco elétrons de valência (2s2 2p3), necessita de mais três e forma três ligações; o oxigênio tem seis elétrons de valência (2s2 2p4), necessita de mais dois e forma duas ligações; e os halogênios têm sete elétrons de valência, necessitam de mais um e formam uma ligação.

Quatro ligações Três ligações Duas ligaçõesUma ligação Uma ligação

Br

ClF

ICH ON

Os elétrons de valência não usados na ligação são chamados de pares de elétrons solitários, ou elétrons não ligantes. O átomo de nitrogênio na amônia, por exemplo, compartilha seis elétrons de valência em três ligações covalentes e possui os dois elétrons de valência restantes em um par não ligante solitário. Para simplificar e poupar tempo, os elétrons não ligantes são frequentemente omitidos nos esboços das estruturas de ligação por tra-ços, mas você ainda precisa tê-los em mente levando em conta que são nor-malmente cruciais nas reações químicas.

N HHH

N HHou ou

H

N HH

H

Amônia

Pares de elétronssolitários, não ligantes

Problemas Para Praticar 1.1

Prevendo o número de ligações formadas pelos átomos em uma moléculaA quantos átomos de hidrogênio o fósforo se liga na formação da fosfina PH??

Estratégia Identifique o grupo do fósforo na tabela periódica e diga, a partir disso, quantos elétrons (ligações) são necessários para formar um octeto.

Solução O fósforo está no grupo 15 da tabela periódica e possui cinco elétrons de valência. Ele precisa então compartilhar mais três elétrons para formar o octeto e, portanto, ligações com três átomos de hidrogênio, originando PH3.

PROBLEMA 1.3 Desenhe a molécula de clorofórmio, CHCl3, utilizando as linhas cheia, gros-sa e tracejada para mostrar a geometria tetraédrica.

PROBLEMA 1.4 Converta a seguinte representação do etano, C2H6, em um desenho conven-cional que utiliza linhas cheia, grossa e tracejada para indicar a geometria tetraédrica em volta de cada átomo de carbono (cinza 5 C, marfim 5 H)

Etano

Page 26: Química Orgânica - Combo - tradução da 7a ed. norte-americana

10 Química Orgânica

PROBLEMA 1.5 Quais são as fórmulas prováveis para as seguintes substâncias?(a) GeCl? (b) AlH? (c) CH?CI2 (d) SiF? (e) CH3NH?

PROBLEMA 1.6 Escreva as estruturas de ligação por traços para as substâncias a seguir, mostrando todos os elétrons não ligantes:(a) CHCl3, clorofórmio (b) H2S, sulfeto de hidrogênio(c) CH3NH2, metilamina (d) CH3Li, metil-lítio

PROBLEMA 1.7 Por que uma molécula orgânica não pode ter a fórmula C2H7?

1.5Como o compartilhamento de elétrons leva à ligação entre os átomos? Dois modelos foram desenvolvidos para descrever a ligação covalente: a teo ria da ligação de valência e a teoria do orbital molecular. Cada modelo tem seus pontos fortes e fracos, e os químicos tendem a usá-los de maneira per-mutável dependendo das circunstâncias. A teoria de ligação de valência é mais facilmente visualizada, assim como a maioria das descrições que usa-remos neste livro deriva dessa abordagem.

De acordo com a teoria da ligação de valência, uma ligação covalente se forma quando dois átomos se aproximam muito um do outro e o orbital ocupado com um único elétron em um átomo se superpõe ao orbital ocupado do outro átomo. Os elétrons estão agora emparelhados nos orbitais que se super-puseram e são atraídos por ambos os núcleos, unindo os átomos. Na molécula de H2, por exemplo, a ligação HH resulta da superposição de dois orbitais 1s, ocupados por um único elétron, de cada átomo de hidrogênio:

H H H

1s 1s molécula de H2

H

Os orbitais superpostos na molécula de H2 têm a forma de um ovo alon-gado que podemos obter pressionando as duas esferas juntas. Se um plano passasse no meio da ligação, a interseção do plano com os dois orbitais que se superpuseram formaria um círculo. Em outras palavras, a ligação H]H é si-metricamente cilíndrica, como mostrada na Figura 1.7. Tais ligações, forma-das pela superposição frontal de dois orbitais atômicos ao longo de uma linha desenhada entre os núcleos, são chamadas ligações sigma ().

Durante a reação ao formar a ligação 2 H n H2, 436 kJ mol–1 (104 kcal mol–1)* de energia são liberados. Em razão de o produto H2 possuir menos 436 kJ mol–1 em energia que os átomos de partida 2 H, dizemos que o pro-duto é mais estável que o reagente e que a nova ligação HH possui uma força de ligação de 436 kJ mol–1. Em outras palavras, teríamos de introdu-zir 436 kJ mol–1 de energia na ligação HH para quebrar a molécula de H2 em dois átomos de H separados (Figura 1.8). [Por conveniência, geralmente fornecemos as energias tanto em quilocalorias (kcal) como em quilojoules (kJ): 1 kJ 5 0,2390 kcal; 1 kcal 5 4,184 kJ.]

Quão perto estão os dois núcleos na molécula de H2? Se estiverem muito próximos, eles irão se repelir porque ambos são carregados positivamente. Se estiverem muito separados, eles não conseguirão compartilhar os elétrons li-gantes. Desse modo, existe uma distância ótima entre os núcleos que condu-zem ao máximo de estabilidade (Figura 1.9). Denominada comprimento de ligação, essa distância é de 74 pm na molécula de H2. Cada ligação covalente tem um comprimento e uma força de ligação característicos.

* As unidades foram modificadas, em relação ao original inglês, de kJ/mol para kJ mol–1, se-guindo as normas aceitas pela IUPAC de 1993 (N. R. T.).

A natureza das ligações químicas: teoria da ligação de valência

FIGURA 1.7 A simetria cilíndrica da ligação s H–H em uma molécula de H2. A interseção de um plano cortando através da ligação s é um círculo.

Corte circulartransversal

HH

Page 27: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 11

FIGURA 1.8 Níveis de energia relativa dos átomos de H e da molécula de H2. A molécula de H2 tem 436 kJ mol1 (104 kcal mol–1) menos energia do que os dois átomos de H, portanto 436 kJ mol1 de energia são liberados quando é formada a ligação HH. De modo inverso, 436 kJ mol1 devem ser adicionados à molécula de H2 para quebrar a ligação HH.

Dois átomos de hidrogênio

2 H H2

Molécula de H2

436 kJ mol�1Liberada quando a ligação se forma

Absorvida quando a ligação se quebraEn

erg

ia

FIGURA 1.9 Gráfico da energia versus distância internuclear para dois átomos de hidrogênio. A distância entre os núcleos ao ponto mínimo de energia é o comprimento de ligação.

1.6A ligação na molécula de hidrogênio é obtida diretamente, porém a situa- ção é mais complicada para moléculas orgânicas com átomos de carbono tetravalentes. Vamos observar o metano, CH4, por exemplo. Conforme vi-mos, o carbono tem quatro elétrons de valência (2s2 2p2) e forma quatro li-gações. Como o carbono utiliza dois tipos de orbitais para fazer a ligação, 2s e 2p, podemos esperar que o metano possua dois tipos de ligações CH. Mas, na verdade, todas as quatro ligações CH no metano são idênticas e orientadas espacialmente em direção aos vértices de um tetraedro regular (Figura 1.6). Como podemos explicar isso?

Linus Pauling forneceu uma resposta em 1931, e mostrou como um orbi-tal s e três orbitais p em um átomo podem se combinar matematicamente, ou se tornar híbridos, para formar quatro orbitais atômicos equivalentes com orientação tetraédrica. Mostrados na Figura 1.10, esses orbitais orientados tetraedricamente são chamados de híbridos sp3. Observe que o índice supe-rior 3 no nome sp3 mostra a quantidade de cada tipo de orbital atômico que se combina para formar o híbrido, não quantos elétrons o ocupam.

O conceito de hibridização explica como o carbono forma quatro ligações tetraédricas equivalentes, mas não porque o faz. A forma do orbital híbrido sugere a resposta. Quando um orbital s se hibridiza com três orbitais p, os orbitais sp3 híbridos resultantes são assimétricos – com relação ao núcleo. Um dos dois lóbulos é muito maior que o outro e pode se superpor com mais eficiência com um orbital de outro átomo quando este forma uma ligação.

Orbitais híbridos sp3 e a estrutura do metano

Comprimento de ligação74 pm

H H (muito afastado)0

+

– H H

Distância intranuclear

En

erg

ia

HH (muito próximo)

linus carl pauling

Linus Carl Pauling (1901- -1994) nasceu em Portland, Oregon, era filho de um farmacêutico. Após obter o grau de bacharel pela Oregon State University, recebeu o título de doutor pelo California Institute of Technology em 1925. Linus Pauling foi professor de química de 1925 a 1967 no mesmo instituto e então de 1974 a 1994 na Universidade da Califórnia, em San Diego, e Stanford University. Pauling foi um gigante científico. Ele fez descobertas fundamentais em campos que vão desde ligação química, biologia molecular até medicina. Um pacifista, Pauling foi o único que ganhou, sozinho, dois prêmios Nobel em diferentes áreas: o primeiro em química em 1954 e o segundo pela paz em 1963.

Page 28: Química Orgânica - Combo - tradução da 7a ed. norte-americana

12 Química Orgânica

Como resultado, os orbitais híbridos sp3 formam ligações mais fortes do que as dos orbitais s ou p não hibridizados.

A assimetria dos orbitais sp3 surge, como foi observado anteriormente, porque os dois lóbulos de um orbital p têm símbolos algébricos diferentes, + e –. Consequentemente, quando um orbital p hibridiza com um orbital s, o lóbulo positivo p se adiciona ao orbital s, mas o lóbulo negativo p se subtrai do orbital s. O híbrido resultante é assimétrico em relação ao núcleo e é fortemente orientado em uma direção.

Quando cada um dos quatro orbitais híbridos sp3 idênticos de um átomo de carbono se superpõe com o orbital 1s de um átomo de hidrogênio, quatro ligações idênticas CH são formadas e então surge o metano. Cada ligação CH no metano tem uma força de ligação de 436 kJ mol–1 (104 kcal mol–1) e um comprimento de 109 pm. Em razão de as quatro ligações terem uma geometria específica, também podemos definir uma propriedade denomina-da ângulo de ligação. O ângulo que forma cada HCH é de 109,5°, conhe-cido como ângulo tetraédrico. Logo, o metano tem a estrutura mostrada na Figura 1.11.

H

H

H

H

Ângulode ligação109,5°

Comprimentode ligação109 pmC

1.7O mesmo tipo de hibridização de orbital que justifica a estrutura do me-tano também justifica a ligação conjunta dos átomos de carbono em ca-deias e anéis para tornar possível muitos milhões de compostos orgânicos. O etano, C2H6, é a molécula mais simples que contém uma ligação car-bono-carbono:

FIGURA 1.11 A estrutura do metano mostrando os ângulos de ligação de 109,5°.

Orbitais híbridos sp3 e a estrutura do etano

FIGURA 1.10 Quatro orbitais híbridos sp3 (verde), orientados para os vértices de um tetraedro regular, são formados por combinações de um orbital s (vermelho) e três orbitais p (vermelho/azul). Os híbridos sp3 possuem dois lóbulos e são assimétricos em relação ao núcleo, o que dá o direcionamento e permite a formação de novas ligações com outros átomos.

2s

2py

2px

Quatro orbitaissp3 tetraédricos

Um orbital sp3

Hibridização

2pz

Page 29: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 13

Algumas representações do etano

C HH

HCH

HH

C H

H

H

C CH3CH3H

H

H

Podemos ter uma ideia da molécula do etano ao imaginar os dois átomos de carbono ligados entre si por uma superposição de um orbital híbrido sp3 proveniente de cada átomo (Figura 1.12). Os três orbitais híbridos sp3 re-manescentes de cada carbono se sobrepõem aos orbitais 1s dos três hidro-gênios para formar as seis ligações CH. As ligações CH no etano são similares àquelas do metano, embora um pouquinho mais fracas – 423 kJ mol–1 (101 kcal mol–1) para o etano contra 436 kJ mol–1 para o metano. A ligação CC tem comprimento de 154 pm e uma força de 376 kJ mol–1 (90 kcal mol–1). Todos os ângulos de ligação no etano são próximos do valor tetraédrico de 109,5o, embora não exatamente neste valor.

Etano

CC C C

111,2

C C

H H

H

H H

H

154 pm

sp3–sp3 ligaçãoCarbono sp3 Carbono sp3

PROBLEMA 1.8 Escreva a fórmula estrutural de traços para o propano, CH3CH2CH3. Faça uma previsão do ângulo de ligação e indique a forma global da molécula.

PROBLEMA 1.9 Converta o seguinte modelo molecular do hexano, um componente da gaso-lina, em uma fórmula estrutural de traços (cinza 5 C, marfim 5 H).

FIGURA 1.12 A estrutura do etano. A ligação carbono- -carbono é formada pela superposição de dois orbitais híbridos sp3 de cada átomo de carbono. Por questões de clareza, os lóbulos pequenos dos orbitais híbridos sp3 não foram mostrados.

Hexano

Page 30: Química Orgânica - Combo - tradução da 7a ed. norte-americana

14 Química Orgânica

1.8Embora a hibridização sp3 seja o estado eletrônico mais comum do carbono, não é a única possibilidade. Veja o etileno, C2H4, por exemplo. Foi reconhe-cido há mais de cem anos que os carbonos do etileno podem ser tetravalen-tes somente se eles puderem compartilhar quatro elétrons e estar unidos por uma ligação dupla. Além do mais, o etileno é plano e tem ângulos de ligação de aproximadamente 120° em vez de 109,5°.

Algumas representações do etileno

CH

HC

H

HC

H

H

H

H

C C C H2CH

H

Vista de cima

H

H

Vista lateral

CH2

Quando discutimos os orbitais híbridos sp3 na Seção 1.6, dissemos que os quatro orbitais atômicos do nível de valência do carbono combinam-se para formar quatro híbridos equivalentes sp3. Imagine em vez disso que o orbital 2s combine-se com somente dois dos três orbitais 2p disponíveis. Três orbitais híbridos sp2 resultam, e um orbital 2p permanece inalterado. Os três orbitais híbridos sp2 situam-se em um plano separados uns dos outros por ângulos de 120°, com o orbital p remanescente perpendicular ao plano sp2, como mostrado na Figura 1.13.

sp2

sp2

sp2

sp2

sp2

sp2

p

p

90

Vista lateral Vista de cima

120

Quando dois carbonos hibridizados sp2 se aproximam um do outro, eles formam uma ligação s sp2-sp2 através da superposição frontal. Ao mesmo tem-po, os orbitais p não hibridizados se aproximam com uma geometria correta para que ocorra uma superposição lateral, originando a formação de uma liga-ção pi (p). A combinação de uma ligação s sp2-sp2 e uma ligação p 2p-2p re-sulta no compartilhamento de quatro elétrons e na formação de uma ligação dupla carbono-carbono (Figura 1.14). Observe que os elétrons na ligação s ocu-pam a região localizada entre os núcleos, enquanto os elétrons na ligação p ocupam regiões em ambos os lados da linha desenhada entre os núcleos.

Para completar a estrutura do etileno, quatro átomos de hidrogênio for-mam s ligações com os outros quatro orbitais sp2 remanescentes. Dessa for-ma, o etileno possui uma estrutura plana com ângulos de ligação HCH e HCC de aproximadamente 120° (os valores reais são 117,4º para os ângu-los de ligação HCH e 121,3º para o ângulo de ligação HCC). Cada liga-ção CH tem um comprimento de 108,7 pm e uma força de 465 kJ mol–1 (111 kcal mol–1).

Orbitais híbridos sp2 e a estrutura do etileno

FIGURA 1.13 Um carbono hibridizado sp2. Os três orbitais híbridos (verde) equivalentes sp2 situam-se em um plano e são separados uns dos outros por ângulos de 120°, e um único orbital p não hibridizado (vermelho/azul) é perpendicular ao plano sp2.

Page 31: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 15

Como você esperaria, a ligação dupla carbono-carbono no etileno é tanto mais curta quanto mais forte que uma ligação simples no etano, porque ela tem quatro elétrons ligando os núcleos entre si em vez de dois. O etileno tem um comprimento de ligação C5C de 134 pm e uma força de 728 kJ mol–1 (174 kcal mol–1) contra um comprimento CC de 154 pm e uma força de 376 kJ mol–1 para o etano. Observe que a ligação dupla carbono–carbono é menos forte que o somatório de duas ligações, porque a superposição na parte p da ligação dupla não é tão efetiva em comparação com a superposi-ção na parte s.

Problemas Para Praticar 1.2

Prevendo as estruturas de moléculas orgânicas simples a partir de suas fórmulas

Normalmente usado na biologia como um conservante de tecidos, o formal-deído, CH2O, contém uma ligação dupla carbono-oxigênio. Desenhe a estru-tura da ligação em traços do formaldeído e indique a hibridização do átomo de carbono.

Estratégia Sabemos que o hidrogênio forma uma ligação covalente, o carbono, quatro, e o oxigênio, duas. Tentativa e erro, combinado com intuição, são necessá-rios para encaixar os átomos entre si.

Solução Existe um único modo pelo qual os dois hidrogênios, um carbono e um oxi-gênio podem se combinar:

FormaldeídoCH

O

H

Como os átomos de carbono no etileno, o átomo de carbono do formaldeído está em uma ligação dupla e, portanto, é hibridizado sp2.

PROBLEMA 1.10 Desenhe a fórmula estrutural de traços para o propeno, CH3CH5CH2, indi-que a hibridização de cada carbono e o valor de cada ângulo de ligação.

FIGURA 1.14 A estrutura do etileno. A superposição de orbitais de dois carbonos hibridizados sp2 forma uma ligação dupla carbono-carbono.Uma parte da ligação dupla resulta da superposição s (frontal) de orbitais sp2 (verde) e a outra parte resulta da superposição p (lateral) de orbitais p não hibridizados (vermelho/azul). A ligação p tem regiões de densidade eletrônica em ambos os lados da linha desenhada entre os núcleos.

121,3

117,4C C

H H

H H

134 pm

108,7 pm

Ligação dupla carbono-carbono

C C

ligação

orbitais p

ligação

ligação

carbono sp2

orbitais sp2

carbono sp2

Page 32: Química Orgânica - Combo - tradução da 7a ed. norte-americana

16 Química Orgânica

PROBLEMA 1.11 Desenhe a fórmula estrutural de traços para o 1,3-butadieno, H2C5CH CH5CH2, indique a hibridização de cada carbono e o valor de cada ângulo de ligação.

PROBLEMA 1.12 A seguir vemos um modelo molecular da aspirina (ácido acetilsalicílico). Identifique a hibridização de cada átomo de carbono na aspirina e diga quais átomos têm pares de elétrons solitários (cinza 5 C, vermelho 5 O, marfim 5 H).

Aspirina(ácido acetilsalicílico)

1.9Além da formação de ligações simples e duplas pelo compartilhamento de dois e quatro elétrons, respectivamente, o carbono também pode formar uma ligação tripla pelo compartilhamento de seis elétrons. Para explicar a ligação tripla em uma molécula como o acetileno, HCqCH, precisa-mos de um terceiro tipo de orbital híbrido, um híbrido sp. Imagine que, em vez de combinar com dois ou três orbitais p, o orbital 2s do carbono hibridiza apenas com um único orbital p. Daí resultam dois orbitais híbri-dos sp e dois orbitais p permanecem inalterados. Os dois orbitais sp estão separados em 180º um do outro no eixo x, enquanto os dois orbitais p re-manescentes situados nos eixos y e z são perpendiculares, como mostra a Figura 1.15.

180 sp

spp

p

Outro híbrido spUm híbrido sp

Quando dois átomos de carbonos hibridizados sp aproximam-se um do outro, os orbitais híbridos sp de cada carbono se superpõem frontalmente para formar uma ligação forte s sp-sp. Além do mais, os orbitais pz de cada átomo de carbono formam uma ligação p pz-pz através da superposição la-teral, e os orbitais py se sobrepõem de forma análoga para formar uma liga-ção p py-py. O efeito total é o compartilhamento de seis elétrons e a formação da ligação tripla carbono–carbono. Os dois orbitais híbridos sp remanescen-tes formam uma ligação s com o hidrogênio para completar a molécula de acetileno (Figura 1.16).

Orbitais híbridos sp e a estrutura do acetileno

FIGURA 1.15 Um átomo de carbono hibridizado sp. Os dois orbitais híbridos sp (verde) estão separados em 180° um do outro e são perpendiculares aos dois orbitais p (vermelho/azul).

Page 33: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 17

C C HH

120 pm

106 pm180°

Ligação tripla carbono-carbono

ligação

ligação

ligação

orbital sp

orbital sp

orbitais porbitais sp

orbitais p

Como sugerido pela hibridização sp, o acetileno é uma molécula line-ar com ângulos de ligação HCC de 180°. As ligações CH têm um comprimento de 106 pm e uma força de 556 kJ mol–1 (133 kcal mol–1). O com-primento da ligação CC no acetileno é 120 pm e sua força é de aproximada-mente 965 kJ mol–1 (231 kcal mol–1), tornando a ligação a mais curta e mais forte que qualquer ligação carbono-carbono. Uma comparação entre as hi-bridizações sp, sp2 e sp3 é fornecida na Tabela 1.2.

TABELA 1.2 Comparação das ligações CC e CH no metano, etano e acetileno

Molécula Ligação

Força de ligação

(kJ mol–1) (kcal mol–1)

Comprimento de ligação

(pm)

Metano, CH4 (sp3) CH 436 104 109

Etano, CH3CH3

(sp3) CC(sp3)(sp3) CH

376423

90101

154109

Etileno, H2C5CH2

(sp2) CC (sp2)(sp2) CH

728465

174111

134109

Acetileno, HCqCH

(sp) CqC (sp)(sp) CH

965556

231133

120106

PROBLEMA 1.13 Desenhe a fórmula estrutural de traços para o propino, CH3CqCH e indi-que a hibridização de cada carbono e o valor de cada ângulo de ligação.

1.10O conceito de hibridização de orbitais da ligação de valência descrito nas quatro seções anteriores não está limitado aos compostos de carbono. Liga-ções covalentes formadas por outros elementos também podem ser descri-tas utilizando orbitais híbridos. Observe, por exemplo, o átomo de nitrogênio

FIGURA 1.16 A estrutura do acetileno. Os dois carbonos hibridizados sp são unidos por uma ligação s sp–sp e duas ligações p p–p.

Hibridização do nitrogênio, oxigênio, fósforo e enxofre

Page 34: Química Orgânica - Combo - tradução da 7a ed. norte-americana

18 Química Orgânica

na metilamina, CH3NH3, um derivado orgânico da amônia (NH3) e a subs-tância responsável pelo odor do peixe em decomposição.

O ângulo de ligação HNH medido experimentalmente na metilami-na é 107,1º e o ângulo de ligação CNH é 110,3º, ambos os quais estão próximos ao ângulo tetraédrico de 109,5º encontrado no metano. Portanto, assumimos que o nitrogênio hibridiza para formar quatro orbitais híbridos sp3, exatamente como o carbono faz. Um dos quatro orbitais sp3 é ocupado por dois elétrons não ligantes e os outros três orbitais híbridos têm um elé-tron cada. A superposição desses orbitais do nitrogênio preenchidos pela metade com orbitais de outros átomos (C ou H) resulta na metilamina. Ob-serve que o par de elétrons solitários que está situado no quarto orbital híbrido sp3 do nitrogênio ocupa tanto espaço quanto uma ligação NH, e isso é muito importante para a química da metilamina e das outras molé-culas orgânicas que contêm nitrogênio.

Metilamina

H

CH3H

Par solitário

107,1° 110,3°

N

Como o átomo de carbono no metano e o átomo de nitrogênio na metila-mina, o átomo de oxigênio no metanol (álcool metílico) e em muitas outras moléculas orgânicas também pode ser descrito como hibridizado sp3. O ân-gulo de ligação COH no metanol é 108,5º, muito próximo do ângulo te-traédrico de 109,5º. Dois dos quatro orbitais híbridos sp3 no oxigênio são ocupados por pares de elétrons solitários não ligantes e dois são usados para formar ligações.

Metanol(álcool metílico)

Pares solitários

108,5°

O

H

CH3

O fósforo e o enxofre são os análogos do terceiro período do nitrogênio e do oxigênio, e as ligações em ambos podem ser descritas usando orbitais híbridos. Em função de suas posições no terceiro período, entretanto, tanto o fósforo quanto o enxofre podem expandir seus octetos do nível mais exter-no e formar mais do que a quantidade usual de ligações covalentes. O fósfo-ro, por exemplo, frequentemente forma cinco ligações covalentes e o enxofre ocasionalmente forma quatro.

O fósforo aparece com mais frequência nas moléculas biológicas em or-ganofosfatos, compostos que contêm um átomo de fósforo ligado a quatro de oxigênio, com um dos átomos de oxigênio também ligado ao carbono. O fos-fato de metila, CH3OPO3

2– é o exemplo mais simples. O ângulo de ligação OPO nesses compostos normalmente varia de 110º a 112º, indicando hibridização sp3 para o fósforo.

Page 35: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 19

–O

–O PO

O

CH3

Fosfato de metila(um organofosfato)

110°

O enxofre aparece com mais frequência em moléculas biológicas, em compostos chamados tióis, que têm um átomo de enxofre ligado a um de hidrogênio e um de carbono, ou em sulfetos, que têm um átomo de enxofre ligado a dois átomos de carbono. Produzido por algumas bactérias, o meta-notiol (CH3SH) é o exemplo mais simples de um tiol e o sulfeto de dimetila [(CH3)2S] é o exemplo mais simples de um sulfeto. Ambos podem ser descri-tos com hibridização sp3 próxima do enxofre, embora tenham um desvio significativo do ângulo tetraédrico de 109,5º.

H3C

Metanotiol

96,5°

S

Pares solitários

H

CH3

Sulfeto de dimetila

99,1°

SCH3

Pares solitários

PROBLEMA 1.14 Identifique todos os pares de elétrons solitários não ligantes nas molé-culas a seguir e diga qual geometria você espera para cada um dos áto-mos indicados.(a) O átomo de oxigênio no éter dimetílico, CH3OCH3

(b) O átomo de nitrogênio na trimetilamina, H3CNCH3

|

CH3

(c) O átomo de fósforo na fosfina, PH3

(d) O átomo de enxofre no aminoácido metionina, S

NH2

CH2CH2CHCOHCH3

O

– –W

X

1.11Dissemos na Seção 1.5 que os químicos usam dois modelos para descrever as ligações covalentes: teoria de ligação de valência e teoria do orbital mo-lecular. Após estudarmos como a teoria de ligação de valência aborda esse assunto, ao utilizar orbitais atômicos híbridos para explicar a geometria e ao assumir que a superposição dos orbitais atômicos explica o compartilha-mento de elétron, forneceremos um breve resumo da teoria do orbital mole-cular para uma ligação química. Retornaremos a este tópico nos Capítulos 14 e 15 para uma discussão mais aprofundada.

A teoria do orbital molecular (OM) descreve a formação da ligação cova-lente como proveniente de uma combinação matemática de orbitais atômicos (função de onda) em átomos diferentes para formar os orbitais moleculares,

A natureza das ligações químicas: teoria do orbital molecular

Page 36: Química Orgânica - Combo - tradução da 7a ed. norte-americana

20 Química Orgânica

assim chamados porque pertencem à molécula inteira e não ao átomo indi-vidual. Da mesma maneira que um orbital atômico, independentemente de ser hibridizado ou não hibridizado, descreve uma região do espaço em torno de um átomo onde a probabilidade de encontrar o elétron é grande, o orbital molecular descreve a região do espaço em uma molécula onde os elétrons têm maior probabilidade de ser encontrados.

Como um orbital atômico, o orbital molecular possui tamanho, forma e energia específicos. Na molécula de H2, por exemplo, dois orbitais atômicos 1s individualmente se combinam para formar dois orbitais moleculares. Existem duas maneiras para que a combinação de orbitais ocorra – de um modo aditivo e de um modo subtrativo. A combinação aditiva conduz à for-mação de um orbital molecular que possui menor energia e uma forma que lembra a de um ovo, enquanto a combinação subtrativa conduz à formação de um orbital molecular que possui energia muito maior e apresenta um nó entre os núcleos (Figura 1.17). Observe que a combinação aditiva origina um orbital molecular único, em forma de ovo; isto não é a mesma coisa que dois orbitais atômicos 1s se superpondo, como na teoria de ligação de valên-cia. De maneira semelhante, a combinação subtrativa é um orbital molecu-lar único com a forma de um haltere alongado.

En

erg

ia

Combinam-se

Dois orbitais 1s

OM s antiligante(não preenchido)

OM s ligante(preenchido)

A combinação aditiva tem menor energia que os dois orbitais atômi-cos 1s separados e é, portanto, denominada orbital molecular ligante porque os elétrons nesse OM passam a maior parte do tempo na região entre os dois núcleos, unindo os átomos. A combinação subtrativa tem maior energia que os dois orbitais atômicos 1s separados e é, portanto, denominada orbital molecular antiligante porque quaisquer elétrons que ele contenha não podem ocupar a região central entre os núcleos onde existe um nó e não podem contribuir para a ligação. Os dois núcleos, portan-to, se repelem.

Da mesma forma que os orbitais moleculares ligante e antiligante s resultam da combinação de dois orbitais atômicos s na molécula de H2, en-tão os orbitais moleculares ligante e antiligante p resultam da combinação de dois orbitais atômicos p na molécula de etileno. Como mostrado na Figu-ra 1.18, o OM ligante p de mais baixa energia não tem nenhum nó entre os núcleos e resulta da combinação de lóbulos do orbital p com o mesmo sinal algébrico. O OM p antiligante de mais alta energia tem um nó entre os núcleos e resulta da combinação de lóbulos de sinais algébricos opostos. Somente o OM ligante está ocupado; o OM antiligante de maior energia está livre. Veremos nos Capítulos 14 e 15 que a teoria do orbital molecular é extremamente útil para descrever as ligações p em compostos que pos-suem mais de uma ligação dupla.

FIGURA 1.17 Orbitais moleculares do H2. A combinação de dois orbitais atômicos 1s do hidrogênio conduz à formação de dois orbitais moleculares. O orbital com menor energia, OM ligante, está preenchido, e o OM de maior energia antiligante não está preenchido.

Page 37: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 21

1.12Vamos tratar de mais um tema antes de terminar este capítulo introdu-tório. Nas estruturas que desenhamos até agora, uma linha entre os áto-mos representou os dois elétrons em uma ligação covalente. Desenhar todas as ligações e todos os átomos é entediante, entretanto, e por este motivo os químicos criaram várias maneiras simplificadas para escrever as estruturas. Nas estruturas condensadas, as ligações simples carbo-no-hidrogênio e carbono-carbono não são mostradas; em vez disso, estão implícitas. Se um carbono tem três hidrogênios ligados a ele, escrevemos CH3; se um carbono tem dois hidrogênios ligados a ele, escrevemos CH2; e assim por diante. O composto chamado 2-metilbutano, por exemplo, se escreve como segue:

2-Metilbutano

Estruturas condensadas

H

H

CC

H

H

H

H

C

H

C H CH3CH2CHCH3 CH3CH2CH(CH3)2ou=

H

H CH3

C H

H

Observe que as ligações horizontais entre os carbonos não são mostradas nas estruturas condensadas – as unidades CH3, CH2 e CH são simplesmen-te colocadas uma ao lado da outra – mas a ligação vertical carbono-carbono na primeira das estruturas condensadas desenhadas acima é mostrada cla-ramente. Observe também na segunda das estruturas condensadas que as duas unidades CH3 ligadas ao carbono CH são agrupadas juntas como (CH3)2.

Ainda mais simples que as estruturas condensadas é o uso das estrutu-ras esqueléticas, tais como as mostradas na Tabela 1.3. As regras para desenhar as estruturas esqueléticas são claras.

REGRA 1 Os átomos de carbono normalmente não são mostrados. Ao invés disso, su-põe-se que um átomo de carbono está em cada intersecção de duas linhas (ligações) e no final de cada linha. Ocasionalmente, um átomo de carbono poderá estar indicado para dar ênfase ou para melhor esclarecimento.

Desenhando as estruturas químicas

FIGURA 1.18 Uma descrição do orbital molecular da ligação p C5C na molécula de etileno. O OM ligante p de mais baixa energia resulta de uma combinação dos lóbulos dos orbitais p com o mesmo sinal algébrico e está preenchido. O OM antiligante p de mais alta energia resulta de uma combinação dos lóbulos dos orbitais p com os sinais algébricos opostos e não está preenchido.

Dois orbitais p

Combinam-se

En

erg

ia

OM p ligante(preenchido)

OM p antiligante(não preenchido)

Page 38: Química Orgânica - Combo - tradução da 7a ed. norte-americana

22 Química Orgânica

REGRA 2 Os átomos de hidrogênio ligados ao carbono não são mostrados. Consideran-do que o carbono sempre tem uma valência de 4, nós fornecemos mentalmen-te a quantidade correta de átomos de hidrogênio para cada carbono.

REGRA 3 Os átomos que não são de carbono nem de hidrogênio são mostrados.

TABELA 1.3 As estruturas de Kekulé e as esqueléticas para alguns compostos

Composto Estrutura de Kekulé Estrutura esquelética

Isopreno, C5H8

Phenol, C6H6O

H

C

C

C

C

C

C

H

H

H

H

Methylcyclohexane, C7H14

Isoprene, C5H8

OH

C

C

C

C

C

C

CH

HH

H

HH H

H HH

H

H

H

H

H

C

H

CC C

H

H

HH

CH

OH

H

Phenol, C6H6O

H

C

C

C

C

C

C

H

H

H

H

Methylcyclohexane, C7H14

Isoprene, C5H8

OH

C

C

C

C

C

C

CH

HH

H

HH H

H HH

H

H

H

H

H

C

H

CC C

H

H

HH

CH

OH

H

Metilcicloexano, C7H14

Phenol, C6H6O

H

C

C

C

C

C

C

H

H

H

H

Methylcyclohexane, C7H14

Isoprene, C5H8

OH

C

C

C

C

C

C

CH

HH

H

HH H

H HH

H

H

H

H

H

C

H

CC C

H

H

HH

CH

OH

H

Phenol, C6H6O

H

C

C

C

C

C

C

H

H

H

H

Methylcyclohexane, C7H14

Isoprene, C5H8

OH

C

C

C

C

C

C

CH

HH

H

HH H

H HH

H

H

H

H

H

C

H

CC C

H

H

HH

CH

OH

H

Fenol, C6H6O

Phenol, C6H6O

H

C

C

C

C

C

C

H

H

H

H

Methylcyclohexane, C7H14

Isoprene, C5H8

OH

C

C

C

C

C

C

CH

HH

H

HH H

H HH

H

H

H

H

H

C

H

CC C

H

H

HH

CH

OH

H

Phenol, C6H6O

H

C

C

C

C

C

C

H

H

H

H

Methylcyclohexane, C7H14

Isoprene, C5H8

OH

C

C

C

C

C

C

CH

HH

H

HH H

H HH

H

H

H

H

H

C

H

CC C

H

H

HH

CH

OH

H

Um comentário adicional: embora estes agrupamentos como CH3, OH e NH2 sejam normalmente escritos com o átomo de C, O ou N em primeiro lugar e o átomo de H em segundo, a ordem da escrita às vezes é invertida para H3C, HO e H2N se necessário para tornar mais claras as conexões de ligações em uma molécula. Entretanto, as unidades maiores, tais como CH2CH3, não são invertidas; nós não escrevemos H3CH2C porque ocasio-naria confusão. Não existem, entretanto, regras bem-definidas que abran-jam todos os casos; trata-se de uma questão de preferência.

Ordem invertida paramostrar a ligação C–C

Ordem invertida paramostrar a ligação O–C

CH3

OH

H3C

HO

Não invertida

Ordem invertida paramostrar a ligação N–C

CH2CH3

NH2

CH3CH2

H2N

Problemas Para Praticar 1.3

Interpretando as estruturas de ligação por traçosA carvona, uma substância responsável pelo odor da hortelã, tem a estru-tura a seguir. Diga quantos hidrogênios estão ligados a cada carbono e dê a fórmula molecular da carvona.

Page 39: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 23

O

Carvona

Estratégia O final de uma linha representa um átomo de carbono com três hidrogê-nios, CH3; uma intersecção de duas vias é um átomo de carbono com dois hidrogênios, CH2; uma intersecção de três vias é um átomo de carbono com um hidrogênio, CH; e uma intersecção de quatro vias é um átomo de carbo-no sem nenhum hidrogênio ligado.

Solução

Carvona, C10H14O

0H

0H

0H O2H

1H2H

2H

1H

3H

3H

PROBLEMA 1.15 Diga quantos hidrogênios estão ligados a cada carbono nos compostos a seguir e dê a fórmula molecular de cada substância:

a)

Adrenalina Estrógeno (um hormônio)

(a)

NHCH3HO

HO

OH (b)

HO

O

b)

Adrenalina Estrógeno (um hormônio)

(a)

NHCH3HO

HO

OH (b)

HO

O

PROBLEMA 1.16 Proponha estruturas esqueléticas para os compostos que satisfaçam as fórmulas moleculares a seguir. Existe mais de uma possibilidade em cada caso.

(a) C5H12 (b) C2H7N (c) C3H6O (d) C4H9CI

PROBLEMA 1.17 O modelo molecular a seguir é uma representação do ácido par-aminoben-zoico (PABA), o ingrediente ativo em muitos protetores solares. Indique as posições das ligações múltiplas e desenhe uma estrutura esquelética (cinza 5 C, vermelho 5 O, azul 5 N, marfim 5 H).

Ácido par-aminobenzoico(PABA)

Page 40: Química Orgânica - Combo - tradução da 7a ed. norte-americana

24 Química Orgânica

Em foco...

Todos nós corremos alguns riscos diariamente – alguns muito mais perigosos que outros.

© 2

011

Phot

os.c

om, u

ma

divi

são

da G

etty

Imag

es.

Todo

s os

dire

itos

rese

rvad

os.

Reagentes químicos, toxidade e risco

Muita coisa tem sido dita e escrita a respeito dos perigos dos “produtos químicos” – sobre os resíduos de pesticidas nos nossos alimentos, lixo tóxico no nosso solo, medica-mentos perigosos, e assim por diante. Em que devemos acreditar?

A vida não está livre de riscos; estamos sujeitos a eles todos os dias. Andamos de bicicleta para não dirigirmos um carro, ainda que exista um risco dez vezes maior de morrer em um acidente de bicicleta do que em um aciden-te de carro. Descemos as escadas em vez de usar o eleva-dor, embora 7.000 pessoas morram por ano ao cair de

escadas só nos Estados Unidos. Fumamos cigarros, mesmo que isso au-mente em 50% nossa chance de adquirir um câncer. Tomar decisões que afetam nossa saúde é uma coisa que fazemos rotineiramente sem nos darmos conta disso.

E sobre os riscos provenientes de produtos químicos? A avaliação dos riscos causados por produtos químicos é feita ao expor animais de laboratório (geralmente ratos) ao produto químico seguido de um mo-nitoramento de sinais que indiquem algum dano. Para limitar o gasto e o tempo, as quantidades de produtos administradas são cerca de cem a mil vezes maior que aquela que um ser humano estaria expos-to em condições normais. A informação é, então, reduzida a um único número denominado valor LD50 (dose letal 50%), a quantidade de substância por quilograma de massa do corpo que é letal para 50% dos animais de laboratório. Os valores LD50 de algumas substâncias comuns são mostrados na Tabela 1.4. Quanto menor o valor, mais tó-xica é a substância.

TABELA 1.4 Alguns valores LD50

Substância LD50 (g kg21) Substância LD50 (g kg21)

Estriquinina 0,005 Sulfato de ferro (II) 1,5

Trióxido de arsênio 0,015 Clorofórmio 3,2

DDT 0,115 Álcool etílico 10,6

Aspirina 1,1 Ciclamato de sódio 17

Mesmo com a disponibilidade da informação obtida a partir de ani-mais, ainda é difícil avaliar o risco. Se uma substância é prejudicial aos animais, ela seria necessariamente prejudicial aos humanos? Como pode uma dose elevada de produto fornecida a um pequeno animal ser convertida para uma pequena dose dada a um ser humano já adulto? Todas as substâncias são tóxicas ao organismo até um certo ponto, e a diferença entre fazer “bem” e “mal” é uma questão de dosagem. A vita-

(continua)

Page 41: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 25

mina A, por exemplo, é necessária para a visão, todavia, em doses eleva-das, pode estimular o aparecimento de um câncer. O trióxido de arsênio é um dos venenos mais clássicos, ainda que recentemente um trabalho tenha mostrado que tal composto pode ser efetivo na indução de remis-sões em alguns tipos de leucemia. Até mesmo a água pode ser tóxica se tomada em grandes quantidades porque ela dilui o sal nos fl uidos do corpo e causa um estado que tem a potencialidade de ser fatal cha-mado hiponatremia. Além do mais, o modo como avaliamos um risco é fortemente influenciado pela familiaridade. Muitos alimentos contêm ingredientes naturais muito mais tóxicos que aditivos alimentares sin-téticos ou resíduos de pesticidas, porém esses ingredientes são ignora-dos porque os alimentos são familiares.

Todas as decisões que tomamos envolvem julgamentos. Será que o benefício do aumento da produção de alimentos tem mais valor do que os possíveis riscos à saúde causados por um pesticida? Os efeitos benéficos de uma nova droga são mais importantes que um efeito cola-teral potencialmente perigoso em uma pequena fração de usuários? As respostas nem sempre são óbvias, mas deveríamos ao menos tentar ba-sear nossas respostas nos fatos.

Resumo e palavras-chave

Química orgânica é o estudo dos compostos de carbono. Muito embora te-nha ocorrido uma divisão histórica entre a química orgânica e a química inorgânica, não existe uma razão científica para isso.

Um átomo consiste em um núcleo positivamente carregado rodeado por um ou mais elétrons negativamente carregados. A estrutura eletrônica de um átomo pode ser descrita por uma equação de onda da mecânica quânti-ca, na qual se considera que os elétrons ocupam orbitais em torno do nú-cleo. Orbitais diferentes têm níveis de energia e formas diferentes. Por exemplo, orbitais s são esféricos e orbitais p têm a forma de halteres. A con-fi guração eletrônica do estado fundamental de um átomo pode ser obtida preenchendo-se com elétrons os orbitais apropriados, começando com os orbitais de menor energia.

Ligações covalentes são formadas quando um par de elétrons é com-partilhado por mais de um átomo. De acordo com a teoria de ligação de valência, o compartilhamento ocorre em razão da superposição de dois or-bitais atômicos. De acordo com a teoria do orbital molecular (OM), as li-gações resultam da combinação matemática de orbitais atômicos para formar orbitais moleculares que pertencem à molécula como um todo. As ligações que possuem uma seção transversal circular e são formadas pela interação frontal de dois orbitais são denominadas ligações sigma (); as ligações formadas pela superposição lateral de orbitais p são denomina-das ligações pi (p).

Na descrição da ligação de valência, o carbono utiliza orbitais híbridos para formar ligações nas moléculas orgânicas. Quando o carbono forma so-mente ligações simples com geometria tetraédrica, ele utiliza quatro orbi-tais híbridos sp3 equivalentes. Quando o carbono forma uma ligação dupla com geometria plana, ele utiliza três orbitais híbridos sp2 equivalentes e um orbital p não hibridizado. Ao formar uma ligação tripla com geometria linear, o carbono utiliza dois orbitais híbridos sp equivalentes e dois orbitais

ângulo de ligação, 12comprimento de ligação, 10configuração eletrônica do

estado fundamental, 6elétrons solitários, 9estrutura de ligação por

traços, 26estruturas de pontos, 8força de ligação, 10híbrido sp, 16isótopos, 4ligação covalente, 8ligação pi (p), 14ligações sigma (s), 10massa atômica, 4molécula, 8nível de valência, 8níveis eletrônicos, 5nó, 5orbital molecular antiligante, 20orbital molecular ligante, 20orbitais híbridos sp2, 14orbitais híbridos sp3, 11orbital híbrido sp, 16orbital, 4pares de elétrons solitários, 9química orgânica, 3teoria da ligação de valência,

10teoria do orbital molecular

(OM), 19

(continuação)

Page 42: Química Orgânica - Combo - tradução da 7a ed. norte-americana

26 Química Orgânica

p não hibridizados. Outros átomos, tais como o nitrogênio, fósforo, oxigê-nio e enxofre também usam orbitais híbridos para formar ligações fortes, direcionadas.

As moléculas orgânicas são normalmente desenhadas usando estrutu-ras condensadas ou estruturas esqueléticas. Nas estruturas condensadas, as ligações carbono-carbono e carbono-hidrogênio não são mostradas. Nas estruturas esqueléticas, somente as ligações, e não os átomos, são mostra-das. Supõe-se que um átomo de carbono esteja nas extremidades e nas jun-ções das linhas (ligações), e a quantidade correta de átomos de hidrogênio é fornecida mentalmente.

Problemas para praticar Não existe maneira mais segura de aprender química orgânica do que resol-vendo problemas. Embora a leitura cuidadosa e releitura deste texto sejam importantes, apenas ler não é suficiente. Você precisa também ser capaz de usar as informações que leu e de aplicar seu conhecimento em novas situações. Resolver problemas dá a você a prática para fazer isso.

Cada capítulo deste livro apresenta muitos problemas de diferentes tipos. Os problemas no decorrer do capítulo são inseridos para um reforço imediato das ideias que acabaram de ser aprendidas, enquanto os problemas do final de capítulo proporcionam prática adicional e são de vários tipos. Eles iniciam com uma curta seção chamada “Visualizando a química”, que ajuda você a “ver” o mundo microscópico das moléculas e fornece a prática para trabalhar em três dimensões. Após as visualizações, inserimos muitos “Problemas adi-cionais”. Os problemas iniciais são basicamente para exercitar, dando uma oportunidade para que você pratique seu domínio das noções básicas. Os pro-blemas posteriores tendem a ser do tipo que provoca mais reflexão, e alguns são verdadeiros desafios.

À medida que você vai estudando química orgânica, é interessante que re-serve tempo para resolver os problemas. Responda aqueles que puder e peça ajuda naqueles onde encontrar dificuldades. Resolver problemas exige esforço, mas a recompensa pelo conhecimento e compreensão é imensa.

EXERCÍCIOS

Visualizando a química

(Os Problemas 1.1 a 1.17 aparecem no decorrer do capítulo.)

1.18 Converta cada um dos seguintes modelos moleculares em uma estrutura esquelética e escreva a fórmula molecular de cada um. Somente as conexões entre os átomos são mostradas; as ligações múltiplas não estão indicadas (cinza 5 C, vermelho 5 O, azul 5 N, marfim 5 H).

(a)

Coniina (a substância tóxicaem plantas venenosas–cicuta)

Alamina (um aminoácido)

(b)(a)

(b)

Coniina (a substância tóxica

em plantas venenosas–cicuta)Alamina (um aminoácido)

(b)(a)

1.19 O modelo a seguir é uma representação do ácido cítrico, a substância-chave no famoso ciclo do ácido cítrico em que moléculas de alimentos são metabolizadas no organismo. Somente as conexões entre

Page 43: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Cap. 1 Estrutura e Ligação 27

os átomos estão representadas; as ligações múltiplas não estão indicadas. Complete a estrutura, indicando as posições das ligações múltiplas e os elétrons solitários (cinza 5 C, vermelho 5 O, mar-fim 5 H).

1.20 O modelo a seguir é uma representação do acetaminofeno, um analgésico vendido nas farmácias como Tylenol. Identifique a hibridização de cada átomo de carbono no acetominofeno e diga quais átomos possuem elétrons solitários (cinza 5 C, vermelho 5 O, azul 5 N, marfim 5 H).

1.21 O modelo a seguir é uma representação do aspartame, mostrado a seguir, C14H18N2O5, é conhecido co-mercialmente como NutraSweet. Somente as conexões entre os átomos estão mostradas; as ligações múltiplas não estão indicadas. Complete a estrutura, indicando a posição das ligações múltiplas (cinza 5 C, vermelho 5 O, azul 5 N, marfim 5 H).

Problemas adicionais

1.22 Quantos elétrons de valência possui cada um dos seguintes elementos nutrientes essenciais?

(a) Zinco (b) Iodo (c) Silício (d) Ferro

1.23 Escreva a configuração eletrônica do estado fundamental para cada um dos seguintes elementos:

(a) Potássio (b) Arsênio (c) Alumínio (d) Germânio

1.24 Quais são as fórmulas mais prováveis das seguintes moléculas?

(a) NH?OH (b) AlCl? (c) CF2Cl? (d) CH?O

Page 44: Química Orgânica - Combo - tradução da 7a ed. norte-americana

Química Orgânica

John McMurryCom

boC

ombo

Tradução da 7ª edição

norte-americana

Este livro, editado em dois volumes e nesta versão combo, escrito de forma clara e legível, tem como preocupação básica mostrar a beleza e a lógica da química orgânica, tornando um assunto considerado complexo algo simples de ser entendido pelos leitores.

Para tanto, o autor privilegia, entre outras, as seguintes características:

• Organização e estratégia de ensino, aliando a abordagem tradicional dosgrupos funcionais uma abordagem de mecanismo.

• Reação de abertura: adição de HBr aos alcenos, por considerar que os alunosdão grande importância à primeira reação que veem e a discutem de modo mais detalhado.

• Apresentação modular, o que facilita a coesão dos tópicos e permite aoprofessor a flexibilidade de ensinar em uma ordem diferente.

• Reforço dos principais conceitos por meio de diversos problemas; algunsincluem estratégias e soluções, outros oferecem aos alunos a oportunidade de estudar química de uma maneira diferente, observando as moléculas em vez de simplesmente interpretar as fórmulas estruturais.

• Resumo, palavras-chave e um pequeno glossário fecham a parte teórica decada capítulo, oferecendo rápida revisão do conteúdo estudado.

AplicaçõesIndicado a disciplinas na área de química orgânica dos cursos de Química, Farmácia e Engenharia Química.

Química Orgânica – ComboTradução da 7ª edição norte-americana

ComboComboComboTradução da

7ª ediçãonorte-americana

Fundamentos da Química Analítica – tradução da 8ª edição norte-americanaSkoog, West, Holler, Crouch

Bioquímica – ComboMary K. Campbell e Shawn O. Farrell

Química Geral Aplicada à EngenhariaLawrence S. Brown e Thomas A. Holme

Química TecnológicaJorge Wilson Hilsdorf,Newton Deleo de Barros,Celso Aurélio Tassinari e Isolda Costa

Energia e Meio Ambiente – tradução da 5ª edição norte-americanaRoger A. Hinrichs,Merlin Kleinbach eLineu Belico dos Reis

Mecânica dos Materiais – tradução da 7ª edição norte-americanaJames M. Gere e Barry J. Goodno

Outras obras

Quím

ica Orgânica

John McM

urryAF_quim_organ_combo_2014.pdf 1 22/07/2014 17:06:59