percurso livre - revivendo conceitos

108
PERCURSO LIVRE Revivendo Conceitos Matemática Ensino Médio

Upload: frm

Post on 08-Apr-2016

239 views

Category:

Documents


15 download

DESCRIPTION

Matemática - Ensino médio

TRANSCRIPT

Page 1: Percurso livre - Revivendo conceitos

PERCURSO LIVRERevivendo Conceitos

Matemática – Ensino Médio

Page 2: Percurso livre - Revivendo conceitos
Page 3: Percurso livre - Revivendo conceitos

Operações da Matemática, 9

Sistema cartesiano, 31

Polígonos e áreas, 51

Triângulos e o teorema de Pitágoras, 63

Princípio fundamental da contagem, 85

1º ENCONTRO

2º ENCONTRO

3º ENCONTRO

4º ENCONTRO

5º ENCONTRO

Page 4: Percurso livre - Revivendo conceitos
Page 5: Percurso livre - Revivendo conceitos

Professor, professora,

Neste caderno, vamos relembrar conceitos, propor uma revisão e for-talecer os assuntos nos quais os estudantes tiveram maior fragilidade durante o curso do Ensino Médio. Vamos sugerir maneiras de abordar esses assuntos de forma agradável e de fácil compreensão, dialogan-do com o objetivo do Percurso Livre em que o entendimento da lin-guagem matemática se dá por aplicações práticas e lúdicas, partindo de conhecimentos informais que permeiam nossa vida diariamente.

Este caderno é voltado ao último módulo do Ensino Médio do Pro-jeto Autonomia, e a proposta de sua elaboração partiu do resultado da Prova de Avaliação Externa de Proficiência, em suas duas fases, com as turmas que entraram no Ensino Médio em 2011. Foram identifica-das as principais fragilidades dos estudantes e as relações entre os conceitos para construção do conhecimento.

A cada encontro, vamos tratar de vários assuntos, que estão in-terligados e, para cada um destes, apresentaremos a proposta de um jogo. Este terá a finalidade de mobilizar a turma e propiciar uma sondagem informal a respeito dos conteúdos a serem desenvolvidos. Conversando a respeito do jogo, vamos introduzir questões matemá-ticas, seguidas de atividades para a fixação e a avaliação do conteú-do apresentado. Os jogos serão pontos de partida para diálogo com questões desenvolvidas nas provas do Exame Nacional do Ensino Mé-dio (ENEM). Desta forma, preparamos nossos estudantes, desenvol-vendo sua autonomia e capacidade reflexiva e crítica, fundamentais para resolução de questões do ENEM.

Aqui você encontrará sugestões de atividades para serem trabalha-das nos cinco encontros. Nós oferecemos as ideias, mas só você pode garantir que seja preservado o clima de prazer em cada um desses módulos. Vamos em frente!

Page 6: Percurso livre - Revivendo conceitos

O caderno Percurso Livre de Matemática do Ensino Médio está estru-turado da seguinte forma:

A seção Primeiras palavras, como o nome já diz, é uma conversa inicial, uma apresentação dos assuntos que serão revisados no encon-tro. Não é uma atividade para os estudantes e, sim, uma instigação para você, professor(a). Sugerimos que esse texto seja lido antes da preparação de sua aula. Pense nessas informações como uma ferra-menta que vai auxiliá-lo na construção de um cenário, na construção do seu planejamento de aula. Estabelecido o foco do encontro, você poderá organizar o trabalho passo a passo.

Vamos dividir o encontro por assuntos e todos irão conter as seções:

Apresentação do assunto é uma fala para “preparar o território”. Por que é importante conhecermos esse conceito? De onde surgiu? A que podemos relacionar? Informações e curiosidades para criar um cenário que aproxime e envolva nossos estudantes.

Jogo é uma atividade para esquentar a turma. É uma forma de mo-tivação, uma dinâmica em que a matemática está presente, mas não é evidente. É comum ouvirmos de pessoas de todas as idades a frase “Eu não entendo nada de matemática”. Mas não percebemos que to-dos nós usamos o pensamento matemático diariamente nas ativida-des do nosso cotidiano, seja calculando o troco ou a que horas preci-samos acordar para chegar pontualmente na escola ou no trabalho. Todos nós sabemos pelo menos um pouco de matemática. Durante o jogo, você poderá observar o quanto os estudantes já conhecem ou aplicam o conteúdo a ser abordado, sem que tenham, no entanto, um conhecimento formal a respeito desse conteúdo. E esse conhecimen-to pode ser resgatado e ampliado de maneira divertida e dinâmica.

Do jogo à matemática é um momento para mostrar que pen-samentos matemáticos estão presentes na dinâmica realizada. Por exemplo, ao cozinhar, seguindo uma receita ou não, o cozinheiro precisa pensar em porcentagens. Em um jogo como “Batalha naval”, é preciso pensar em organização e interpretação de tabelas. Em um jogo de cartas, em probabilidades. Já em um jogo de futebol, preci-samos pensar em geometria... Mas será que todos se lembram disto enquanto estão jogando ou cozinhando?

Você lembra? Essa seção é para você, professor(a); aqui você vai poder relacionar os conteúdos do encontro com as aulas do livro do aluno do Telecurso (Ensino Médio) facilitando, assim, o entendimento dos estudantes sobre a revisão dos conteúdos abordados.

Page 7: Percurso livre - Revivendo conceitos

O caderno Percurso Livre de Matemática do Ensino Médio está estru-turado da seguinte forma:

A seção Primeiras palavras, como o nome já diz, é uma conversa inicial, uma apresentação dos assuntos que serão revisados no encon-tro. Não é uma atividade para os estudantes e, sim, uma instigação para você, professor(a). Sugerimos que esse texto seja lido antes da preparação de sua aula. Pense nessas informações como uma ferra-menta que vai auxiliá-lo na construção de um cenário, na construção do seu planejamento de aula. Estabelecido o foco do encontro, você poderá organizar o trabalho passo a passo.

Vamos dividir o encontro por assuntos e todos irão conter as seções:

Apresentação do assunto é uma fala para “preparar o território”. Por que é importante conhecermos esse conceito? De onde surgiu? A que podemos relacionar? Informações e curiosidades para criar um cenário que aproxime e envolva nossos estudantes.

Jogo é uma atividade para esquentar a turma. É uma forma de mo-tivação, uma dinâmica em que a matemática está presente, mas não é evidente. É comum ouvirmos de pessoas de todas as idades a frase “Eu não entendo nada de matemática”. Mas não percebemos que to-dos nós usamos o pensamento matemático diariamente nas ativida-des do nosso cotidiano, seja calculando o troco ou a que horas preci-samos acordar para chegar pontualmente na escola ou no trabalho. Todos nós sabemos pelo menos um pouco de matemática. Durante o jogo, você poderá observar o quanto os estudantes já conhecem ou aplicam o conteúdo a ser abordado, sem que tenham, no entanto, um conhecimento formal a respeito desse conteúdo. E esse conhecimen-to pode ser resgatado e ampliado de maneira divertida e dinâmica.

Do jogo à matemática é um momento para mostrar que pen-samentos matemáticos estão presentes na dinâmica realizada. Por exemplo, ao cozinhar, seguindo uma receita ou não, o cozinheiro precisa pensar em porcentagens. Em um jogo como “Batalha naval”, é preciso pensar em organização e interpretação de tabelas. Em um jogo de cartas, em probabilidades. Já em um jogo de futebol, preci-samos pensar em geometria... Mas será que todos se lembram disto enquanto estão jogando ou cozinhando?

Você lembra? Essa seção é para você, professor(a); aqui você vai poder relacionar os conteúdos do encontro com as aulas do livro do aluno do Telecurso (Ensino Médio) facilitando, assim, o entendimento dos estudantes sobre a revisão dos conteúdos abordados.

Desafio. Essa é a hora de exercitar! Vamos, em cada assunto, pro-por exercícios que sigam a proposta do ENEM. Todos os desafios vão conter uma fala para você, professor(a), com comentários e soluções passo a passo a fim de aproximar ainda mais os conteúdos da realida-de dos estudantes.

Page 8: Percurso livre - Revivendo conceitos

8 PERCURSO LIVRE · Matemática · Ensino Médio

Page 9: Percurso livre - Revivendo conceitos

8 PERCURSO LIVRE · Matemática · Ensino Médio 9PERCURSO LIVRE · Matemática · Ensino Médio

Operações da Matemática

1° ENCONTRO

Primeiras palavras

Desde cedo, escutamos comparações entre tamanhos ou quanti-dades. Qual a referência que devemos utilizar para expressá-las? Na história da humanidade houve a necessidade de uma padronização para evitar confusões e também a necessidade de facilitar sua repre-sentação.

Professor(a), neste encontro apresentaremos fundamentos do tra-balho com números inteiros e sua aplicação em situações da vida co-tidiana.

“Que quente!” “Isso é grande!”

“Não, não, tem pouco!”

Page 10: Percurso livre - Revivendo conceitos

10 PERCURSO LIVRE · Matemática · Ensino Médio

Representar números reais na reta numérica

Apresentação do assuntoNa história da matemática, ocorreu a revolução/evolução dos núme-ros e dos conjuntos numéricos para colaborar com a necessidade do contexto histórico no qual a humanidade se encontrava.

Os números negativos levaram mais de mil anos para serem acei-tos. Na época, as comprovações eram feitas geometricamente e esses números foram descobertos a partir do trabalho da álgebra sem a utilização de geometria. Esses números estão presentes em nosso dia a dia: marcar hora, medir temperatura, contar dinheiro...

Jogo – Dinâmica

Objetivo e função do jogo Com este jogo, os estudantes vivenciarão as operações de adição e sub-tração de números inteiros também na sua representação geométrica.

DescriçãoSerão necessários um baralho, deixando apenas as cartas numéricas e o Ás, combinando-se que este valerá 1; e um dado sem números, tipo branco/preto. As cartas têm valor positivo se forem pretas, negativo se forem vermelhas e o dado determinará a operação (adição ou subtra-ção). Na falta de um dado, improvise com duas fichas pintadas de cores diferentes. Na frente da sala, desenha-se com giz uma trilha no chão.

Pede-se que um estudante seja o “peão” no “jogo”. Estabelece-se o ponto de “início”, que corresponderá ao zero. Cada passo equivalerá à unidade. O(a) professor(a) apresenta o baralho embaralhado e, os de-mais vão sorteando os valores e as operações e o “peão” vai caminhando para a frente ou para trás de acordo com os sorteios, simulando um jogo de tabuleiro.

Observar durante a dinâmica que, se o número é negativo ou a ope-ração é subtração, o sentido da movimentação mudará. Por exemplo, se for sorteada uma adição, o “peão” andará para a direita; se for uma sub-tração, o sentido deverá mudar; se for uma subtração de um número negativo, o sentido mudará duas vezes, uma para obedecer ao comando da operação e outra para obedecer à quantidade negativa.

Page 11: Percurso livre - Revivendo conceitos

10 PERCURSO LIVRE · Matemática · Ensino Médio

Representar números reais na reta numérica

Apresentação do assuntoNa história da matemática, ocorreu a revolução/evolução dos núme-ros e dos conjuntos numéricos para colaborar com a necessidade do contexto histórico no qual a humanidade se encontrava.

Os números negativos levaram mais de mil anos para serem acei-tos. Na época, as comprovações eram feitas geometricamente e esses números foram descobertos a partir do trabalho da álgebra sem a utilização de geometria. Esses números estão presentes em nosso dia a dia: marcar hora, medir temperatura, contar dinheiro...

Jogo – Dinâmica

Objetivo e função do jogo Com este jogo, os estudantes vivenciarão as operações de adição e sub-tração de números inteiros também na sua representação geométrica.

DescriçãoSerão necessários um baralho, deixando apenas as cartas numéricas e o Ás, combinando-se que este valerá 1; e um dado sem números, tipo branco/preto. As cartas têm valor positivo se forem pretas, negativo se forem vermelhas e o dado determinará a operação (adição ou subtra-ção). Na falta de um dado, improvise com duas fichas pintadas de cores diferentes. Na frente da sala, desenha-se com giz uma trilha no chão.

Pede-se que um estudante seja o “peão” no “jogo”. Estabelece-se o ponto de “início”, que corresponderá ao zero. Cada passo equivalerá à unidade. O(a) professor(a) apresenta o baralho embaralhado e, os de-mais vão sorteando os valores e as operações e o “peão” vai caminhando para a frente ou para trás de acordo com os sorteios, simulando um jogo de tabuleiro.

Observar durante a dinâmica que, se o número é negativo ou a ope-ração é subtração, o sentido da movimentação mudará. Por exemplo, se for sorteada uma adição, o “peão” andará para a direita; se for uma sub-tração, o sentido deverá mudar; se for uma subtração de um número negativo, o sentido mudará duas vezes, uma para obedecer ao comando da operação e outra para obedecer à quantidade negativa.

11PERCURSO LIVRE · Matemática · Ensino Médio

Do jogo à matemática

A experimentação corporal da trilha deverá facilitar a compreensão do que ocorre em uma reta numérica, bem como a compreensão da diferença entre direção e sentido, importantes conceitos da física.

Você lembra?

Este assunto foi trabalhado na aula 1 - Recordando operações, do livro do aluno do Telecurso (Ensino Médio).

Desafio

Se os instrumentos musicais de cordas foram inventados por volta do ano 3000 a.C., há quantos anos aproximadamente eles foram inventados?

a.C.

13000 2013

d.C.

1) Peça a um estudante que marque a posição de cada ano citado a seguir, na reta da lousa.

Comentário Professor(a), para facilitar a compreensão dos exemplos, é aconselhá-vel que se desenhe uma reta numerada na lousa e que se marque o ano 1a.C., ou que se peça a um estudante que o faça.

Solução comentada Marcando-se na reta o ano 3000 a.C. e o ano em que estamos, é fácil perceber que teremos que somar 2000 (do ano 1 até hoje) a 3000 (do ano 1 até o ano 3000), obtendo 5000 anos.

13000 2500 2000 1500 1500 20001000 1000500 500 2013

a.C. d.C.

Page 12: Percurso livre - Revivendo conceitos

12 PERCURSO LIVRE · Matemática · Ensino Médio

Se tiver tempo, seria interessante ressaltar o fato histórico de que na época não havia o zero, então os séculos começaram a ser contados a partir do ano 1. Assim, a virada do milênio não se deu de 1999 para 2000, como muitos pensam, e sim de 2000 para 2001.

2) Se você acha que esses instrumentos são velhinhos, imagine então os de sopro, inventados por volta do ano 10000 a.C.: há quantos anos aproximadamente foram inventados?

ObservaçãoProfessor(a), se sentir necessidade, repita os exemplos com outras in-venções, fazendo o cálculo do intervalo de tempo entre uma e outra. Por exemplo, pedindo-lhes que calculem quanto tempo houve de in-tervalo entre a invenção do fogo e a da pólvora. (500 000 + 1040). Para isso, poderá consultar a tabela a seguir.

época invenções revolucionárias

2,6 milhões a.C. Ferramentas de pedra

2,6 milhões a.C. Plano inclinado

2,4 milhões a.C. Cunha

500.000 a.C. Produção e controle de fogo

antes de 50.000 a.C. Arco e flecha

10.000 a.C. Instrumentos musicais de sopro

3.500 a.C. Roda

3.500 a.C. Relógio solar

3.000 a.C. Ábaco

3.000 a.C. Instrumentos musicais de corda

1.530 a.C. Vidro

400 a.C. Método de Hipócrates

antes de 260 a.C. Alavanca

antes de 260 a.C. Roldana

260 a.C. Parafuso

100 a.C. Roda hidráulica

83 d.C. Bússola

800 d.C. Moinhos de Ventos

820 d.C. Hospital

999 d.C. Relógio Mecânico

1040 Pólvora

1041 Imprensa

1232, 1926 Foguetes

Fonte: www.conei.sp.gov.br, acesso em 12/06/2013.

Page 13: Percurso livre - Revivendo conceitos

12 PERCURSO LIVRE · Matemática · Ensino Médio

Se tiver tempo, seria interessante ressaltar o fato histórico de que na época não havia o zero, então os séculos começaram a ser contados a partir do ano 1. Assim, a virada do milênio não se deu de 1999 para 2000, como muitos pensam, e sim de 2000 para 2001.

2) Se você acha que esses instrumentos são velhinhos, imagine então os de sopro, inventados por volta do ano 10000 a.C.: há quantos anos aproximadamente foram inventados?

ObservaçãoProfessor(a), se sentir necessidade, repita os exemplos com outras in-venções, fazendo o cálculo do intervalo de tempo entre uma e outra. Por exemplo, pedindo-lhes que calculem quanto tempo houve de in-tervalo entre a invenção do fogo e a da pólvora. (500 000 + 1040). Para isso, poderá consultar a tabela a seguir.

época invenções revolucionárias

2,6 milhões a.C. Ferramentas de pedra

2,6 milhões a.C. Plano inclinado

2,4 milhões a.C. Cunha

500.000 a.C. Produção e controle de fogo

antes de 50.000 a.C. Arco e flecha

10.000 a.C. Instrumentos musicais de sopro

3.500 a.C. Roda

3.500 a.C. Relógio solar

3.000 a.C. Ábaco

3.000 a.C. Instrumentos musicais de corda

1.530 a.C. Vidro

400 a.C. Método de Hipócrates

antes de 260 a.C. Alavanca

antes de 260 a.C. Roldana

260 a.C. Parafuso

100 a.C. Roda hidráulica

83 d.C. Bússola

800 d.C. Moinhos de Ventos

820 d.C. Hospital

999 d.C. Relógio Mecânico

1040 Pólvora

1041 Imprensa

1232, 1926 Foguetes

Fonte: www.conei.sp.gov.br, acesso em 12/06/2013.

13PERCURSO LIVRE · Matemática · Ensino Médio

3) (ENEM 2008) O sistema de fusos horários foi proposto na Conferên-cia Internacional do Meridiano, realizada em Washington, em 1884. Cada fuso corresponde a uma faixa de 15º entre dois meridianos. O meridiano de Greenwich foi escolhido para ser a linha mediana do fuso zero.

Passando-se um meridiano pela linha mediana de cada fuso, enu-meram-se 12 fusos para Leste e 12 fusos para oeste do fuso zero, ob-tendo-se, assim, os 24 fusos e o sistema de zonas de horas. Para cada fuso a Leste do fuso zero, soma-se uma hora, e, para cada fuso a Oeste do fuso zero, subtrai-se uma hora. A partir da Lei n.° 11.662/2008, o Brasil, que fica a Oeste de Greenwich e tinha quatro fusos, passa a ter somente três fusos horários.

Em relação ao fuso zero, o Brasil abrange os fusos 2, 3 e 4. Por exemplo, Fernando de Noronha está no fuso 2, o estado do Amapá está no fuso 3 e o Acre, no fuso 4. A cidade de Pequim, que sediou os XXIX Jogos Olímpicos de Verão, fica a Leste de Greenwich, no fuso 8.

Considerando-se que a cerimônia de abertura dos jogos tenha ocor-rido às 20h08min, no horário de Pequim do dia 8 de agosto de 2008, a que horas os brasileiros que moram no estado do Amapá devem ter ligado seus televisores para assistir ao início da cerimônia de abertura?

a. 9h08min do dia 8 de agosto. b. 12h08min do dia 8 de agosto. c. 15h08min do dia 8 de agosto. d. 18min do dia 9 de agosto. e. 4h08min do dia 9 de agosto.

Comentário Professor(a), dê a referência da geografia para os estudantes, lem-brando-lhes de que o globo é a representação esférica da Terra. Lem-brando-lhes ainda de que para facilitar seu estudo ela é “dividida” em linhas imaginárias, o que lembra uma tabela.

Nossa sugestão então é que a “escrita” do texto seja “traduzida” para uma tabela, facilitando assim a resolução do problema.

Resolução comentada Inicia-se a resolução desenhando-se uma tabela como a seguinte:

Amapá Pequim

3ºO 2 ºO 1 ºO 0º 1ºL 2 ºL 3 ºL 4 ºL 5 ºL 6 ºL 7 ºL 8 ºL

09:08 10:08 11:08 12:08 13:08 14:08 15:08 16:08 17:08 18:08 19:08 20:08

Page 14: Percurso livre - Revivendo conceitos

14 PERCURSO LIVRE · Matemática · Ensino Médio

O estado do Amapá está situado no 3° fuso Oeste: 45° O.A cidade de Pequim está localizada no 8° fuso Leste: 120°L.A diferença é de 11 fusos horários entre as duas localida-

des. Considerando que as horas são reduzidas conforme se desloca de Leste para Oeste (uma hora a cada fuso), temos: 20h08min (horário da cerimônia em Pequim) – 11 horas (diferença de fuso horário) = 09h08min.

Resposta – Alternativa A

Resolver problemas que envolvam os diferentes significados das operações com números inteiros

Apresentação do assuntoA “tradução” da linguagem escrita para a linguagem matemática é um desafio para qualquer idade, mas vale a pena, pois passa a ser compre-endida universalmente, independentemente da língua utilizada. Qual-quer tradutor concordará que só se aprende a traduzir, traduzindo.

Quando pequenos (e às vezes mesmo depois de grandes...) utiliza-mos os dedos para nos ajudar a contar. Contamos de um em um le-vantando ou abaixando os dedos, dependendo se estamos somando ou subtraindo. A seguir, você verá um exemplo em que essa correspondên-cia é feita contando-se de 50 em 50.

Jogo – Calculando

Objetivo e função do jogo Com este jogo, além de reforçar a compreensão dos conhecimentos dos estudantes sobre o sistema de numeração decimal, prepara-os(as) para o exercício seguinte, em que são exigidas “trocas” de acordo com a base em questão.

DesenvolvimentoQue tal fazer uma calculadora humana? Coloque um estudante em pé, na frente da sala, para representar cada uma das ordens. Lembran-do-lhes de que cada três ordens representam uma classe (unidades simples, milhar, milhão etc.). Peça-lhes que representem um número qualquer com os dedos. Ao acrescentar um número a esse, deverão fazer a conta levantando os dedos.

Page 15: Percurso livre - Revivendo conceitos

14 PERCURSO LIVRE · Matemática · Ensino Médio

O estado do Amapá está situado no 3° fuso Oeste: 45° O.A cidade de Pequim está localizada no 8° fuso Leste: 120°L.A diferença é de 11 fusos horários entre as duas localida-

des. Considerando que as horas são reduzidas conforme se desloca de Leste para Oeste (uma hora a cada fuso), temos: 20h08min (horário da cerimônia em Pequim) – 11 horas (diferença de fuso horário) = 09h08min.

Resposta – Alternativa A

Resolver problemas que envolvam os diferentes significados das operações com números inteiros

Apresentação do assuntoA “tradução” da linguagem escrita para a linguagem matemática é um desafio para qualquer idade, mas vale a pena, pois passa a ser compre-endida universalmente, independentemente da língua utilizada. Qual-quer tradutor concordará que só se aprende a traduzir, traduzindo.

Quando pequenos (e às vezes mesmo depois de grandes...) utiliza-mos os dedos para nos ajudar a contar. Contamos de um em um le-vantando ou abaixando os dedos, dependendo se estamos somando ou subtraindo. A seguir, você verá um exemplo em que essa correspondên-cia é feita contando-se de 50 em 50.

Jogo – Calculando

Objetivo e função do jogo Com este jogo, além de reforçar a compreensão dos conhecimentos dos estudantes sobre o sistema de numeração decimal, prepara-os(as) para o exercício seguinte, em que são exigidas “trocas” de acordo com a base em questão.

DesenvolvimentoQue tal fazer uma calculadora humana? Coloque um estudante em pé, na frente da sala, para representar cada uma das ordens. Lembran-do-lhes de que cada três ordens representam uma classe (unidades simples, milhar, milhão etc.). Peça-lhes que representem um número qualquer com os dedos. Ao acrescentar um número a esse, deverão fazer a conta levantando os dedos.

15PERCURSO LIVRE · Matemática · Ensino Médio

ExemploPara representar o número 1805, o primeiro estudante (você poderá nomeá-los, neste caso “unidades”) levantará cinco dedos de uma mão e deixará a outra mão fechada; o segundo (dezenas) ficará com as duas mãos fechadas, representando o zero; o seguinte levantará oito dedos e o último da esquerda levantará um dedo. Ao pedir-lhes que somem 5 a esse número, as unidades ficarão com 10 dedos levantados, só que no nosso sistema de numeração não podemos deixar nunca dez, “vira” uma dezena, então o estudante que representa as unidades fecha a mão, passando uma dezena para o estudante seguinte, que levanta um dedo.

Essa atividade pode ser repetida quantas vezes forem necessá-rias até que eles percebam que cada ordem representa 10 vezes a ordem anterior.

Do jogo à matemática

O jogo de trocas será importante para que os estudantes compreen-dam o raciocínio feito na resolução do próximo exercício proposto pelo ENEM, em que também há trocas na contagem ao se atingir o limite estipulado. No caso do jogo, podemos nomeá-lo de Nunca Dez.

Você lembra?

Este assunto também foi trabalhado na aula 1 - Recordando operações, do livro do aluno do Telecuro (Ensino Médio).

Desafio

1) (ENEM 2008) A contagem dos bois: Em cada parada ou pouso, para jantar ou dormir, os bois são con-tados tanto na chegada quanto na saída. Nesses lugares, há sempre um potreiro, ou seja, determinada área de pasto cercada de arame ou mangueira, quando a cerca é de madeira. Na porteira de entrada do potreiro, rente à cerca, os peões formam a seringa ou funil, para afinar a fila, e então os bois vão entrando aos poucos na área cercada. Do lado interno, o condutor vai contando; em frente a ele, está o marca-dor, peão que marca as reses. O condutor conta 50 cabeças e grita: — Talha! O marcador, com o auxílio dos dedos das mãos, vai marcando as talhas. Cada dedo da mão direita corresponde a uma talha, e da mão esquerda, a cinco talhas. Quando entra o último boi, o marcador diz: — Vinte e cinco talhas! E o condutor completa:

Page 16: Percurso livre - Revivendo conceitos

16 PERCURSO LIVRE · Matemática · Ensino Médio

— E 18 cabeças. Isso significa 1268 bois.

“Boiada, comitivas e seus peões” In: O Estado de São Paulo, ano VI, ed. 63,

21/12/1952 (com adaptações)

Para contar os 1268 bois de acordo com o processo descrito acima, o marcador utilizoua. vinte vezes todos os dedos da mão esquerda.b. vinte vezes todos os dedos da mão direita.c. todos os dedos da mão direita apenas uma vez.d. todos os dedos da mão esquerda apenas uma vez.e. cinco vezes todos os dedos da mão esquerda e cinco vezes todos

os dedos da mão direita.

Comentário Professor(a), para a resolução deste exercício, as relações que são feitas são: uma mão direita equivale a 5 talhas (um dedo da mão es-querda) então cada dedo da mão esquerda corresponde a 250 bois.

Resolução comentada

Analisemos uma a uma as alternativas:

a. Errada. Se tivesse contado 20 vezes todos os da mão esquerda, seriam 25000 bois.

b. Errada. Se tivesse contado 20 vezes todos os da mão direita, se-riam 5000 bois.

c. Errada. Se contar apenas uma vez os dedos da mão direita, seriam apenas 250 bois. Tendo a possibilidade de contar mais outras ve-zes.

d. Correta. Todos os dedos da mão esquerda contados uma única vez é igual a 1250 bois. Para 1268 faltam 18 bois, uma quantidade quantidade que não será contada nem na mão esquerda e nem na direita, será apenas anunciada pelo condutor.

e. Errada. 5 vezes todos os dedos da mão esquerda dá 6250 bois que já ultrapassa o valor de 1265 bois.

Resposta – Alternativa D 

Page 17: Percurso livre - Revivendo conceitos

16 PERCURSO LIVRE · Matemática · Ensino Médio

— E 18 cabeças. Isso significa 1268 bois.

“Boiada, comitivas e seus peões” In: O Estado de São Paulo, ano VI, ed. 63,

21/12/1952 (com adaptações)

Para contar os 1268 bois de acordo com o processo descrito acima, o marcador utilizoua. vinte vezes todos os dedos da mão esquerda.b. vinte vezes todos os dedos da mão direita.c. todos os dedos da mão direita apenas uma vez.d. todos os dedos da mão esquerda apenas uma vez.e. cinco vezes todos os dedos da mão esquerda e cinco vezes todos

os dedos da mão direita.

Comentário Professor(a), para a resolução deste exercício, as relações que são feitas são: uma mão direita equivale a 5 talhas (um dedo da mão es-querda) então cada dedo da mão esquerda corresponde a 250 bois.

Resolução comentada

Analisemos uma a uma as alternativas:

a. Errada. Se tivesse contado 20 vezes todos os da mão esquerda, seriam 25000 bois.

b. Errada. Se tivesse contado 20 vezes todos os da mão direita, se-riam 5000 bois.

c. Errada. Se contar apenas uma vez os dedos da mão direita, seriam apenas 250 bois. Tendo a possibilidade de contar mais outras ve-zes.

d. Correta. Todos os dedos da mão esquerda contados uma única vez é igual a 1250 bois. Para 1268 faltam 18 bois, uma quantidade quantidade que não será contada nem na mão esquerda e nem na direita, será apenas anunciada pelo condutor.

e. Errada. 5 vezes todos os dedos da mão esquerda dá 6250 bois que já ultrapassa o valor de 1265 bois.

Resposta – Alternativa D 

17PERCURSO LIVRE · Matemática · Ensino Médio

Operar com potências

Apresentação do assuntoO trabalho com potências tem ampla aplicação em nosso cotidiano, já que elas facilitam e contribuem na resolução de cálculos envolvendo juros compostos (taxas de juros), função exponencial, notação cientí-fica (que utiliza potências para representar números muito grandes ou pequenos, nossos próximos tópicos), além de servir de base para a compreensão futura dos logaritmos.

Jogo – Alvo

Objetivo e função do jogo Com este jogo a decomposição de números em produtos de potências é retomada e será aplicada no próximo desafio.

Desenvolvimento Com os estudantes separados em grupos, utilize um alvo e dardos, na impossibilidade de obter esse material, peça-lhes que desenhem alvos em uma folha de papel, e que utilizem bolinhas coloridas também de papel, com a pontuação demonstrada na ilustração:

1000

100

10

1

Observe que é fácil ler os pontos; por exemplo, o jogador das peças verdes fez 3210 pontos, pois tem a seguinte quantidade de peças: 3 × 1000 + 2 × 100 + 2 × 10 + 0 × 1Veja se eles percebem de imediato esta possibilidade e questione-os sobre o porquê disso ocorrer.

Page 18: Percurso livre - Revivendo conceitos

18 PERCURSO LIVRE · Matemática · Ensino Médio

Do jogo à matemática

A discussão gerada a partir da possibilidade de leitura dos pontos é o maior objetivo da atividade. Inicialmente eles talvez façam as contas conforme a expressão acima. Depois, chame sua atenção para que percebam que basta verem a quantidade de peças em cada um dos valores do alvo para lerem o número.

Você lembra?

Este assunto foi trabalhado na aula 14 - Operações com potências, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (OBM, 2012) A soma de dois inteiros positivos é 2012. A diferença en-tre o maior e o menor valores possíveis do produto dos dois números é

a. 1006²b. 1005²c. 1005×1007d. 1005×1006e. 1006×1007

ComentárioProfessor(a), a decomposição dos números, exercitada no jogo auxi-liará na resolução deste exercício. Ele diz que a soma de dois inteiros positivos é 2012. Faça o link com o jogo pedindo-lhes agora que registrem como podem escrever essa quantidade por meio de uma adição. 2000 + 10 + 2Como o exercício pede que seja a soma de dois inteiros, então terão que fazer adições e multiplicações a partir da menor possível até a maior.

Resolução comentada Inicialmente elaboremos uma tabela “traduzindo” o enunciado:

Page 19: Percurso livre - Revivendo conceitos

18 PERCURSO LIVRE · Matemática · Ensino Médio

Do jogo à matemática

A discussão gerada a partir da possibilidade de leitura dos pontos é o maior objetivo da atividade. Inicialmente eles talvez façam as contas conforme a expressão acima. Depois, chame sua atenção para que percebam que basta verem a quantidade de peças em cada um dos valores do alvo para lerem o número.

Você lembra?

Este assunto foi trabalhado na aula 14 - Operações com potências, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (OBM, 2012) A soma de dois inteiros positivos é 2012. A diferença en-tre o maior e o menor valores possíveis do produto dos dois números é

a. 1006²b. 1005²c. 1005×1007d. 1005×1006e. 1006×1007

ComentárioProfessor(a), a decomposição dos números, exercitada no jogo auxi-liará na resolução deste exercício. Ele diz que a soma de dois inteiros positivos é 2012. Faça o link com o jogo pedindo-lhes agora que registrem como podem escrever essa quantidade por meio de uma adição. 2000 + 10 + 2Como o exercício pede que seja a soma de dois inteiros, então terão que fazer adições e multiplicações a partir da menor possível até a maior.

Resolução comentada Inicialmente elaboremos uma tabela “traduzindo” o enunciado:

19PERCURSO LIVRE · Matemática · Ensino Médio

Primeiro

número

Segundo

númeroAdição Multiplicação

2011 1 2012 2011

2010 2 2012 2×2010

2009 3 2012 3×2009

... ... 2012 ...

1007 1005 2012 1007×1005

1006 1006 2012 1006×1006

1005 1007 2012 1005×1007

Neste ponto, peça-lhes que observem a primeira, a segunda e a quarta colunas e que tentem estabelecer uma relação entre elas. Espera-se que percebam que os números da quarta passarão a se repetir, então o maior número resultante da multiplicação será 1006². Pensa que acabou? Lembre-se de que o enunciado pedia a diferença entre o maior e o menor produto, ou seja, 1006² – 2011.A decomposição de números será novamente mobilizada, pensando sempre na conveniência:

1006² – 2011 pensar que tem 1006 “dentro” de 2011

=1006 × 1006 – (1006 + 1005) pensar que tem 2005 “dentro” de 2006

(1005 + 1) × (1005 + 1) – (1005 + 1 + 1005) fazer a multiplicação e tirar os parênteses

= 1005² + 1005.2 + 1 – 1005 – 1 – 1005 =

= 1005²

Resposta – Alternativa B

Operar com potências de expoentes inteiros ou fracionários

Apresentação do assunto O que foi desenvolvido nas atividades anteriores será ampliado com-preendendo-se que, com relação às operações, o que vale para os ex-poentes inteiros vale também para os expoentes fracionários.

Page 20: Percurso livre - Revivendo conceitos

20 PERCURSO LIVRE · Matemática · Ensino Médio

Jogo - O jogo do 24

Objetivo e função do jogo Este jogo pretende desenvolver o cálculo mental e exercitar o raciocínio com as operações básicas e potenciação.

Descrição O jogo consiste na sucessiva combinação de quatro números prede-finidos de forma a atingir um total igual a 24. Cada estudante poderá, para tal, utilizar uma das operações correntes da matemática (adição, subtração, multiplicação e divisão), ganhando aquele que mais vezes atingir o resultado 24 corretamente.Poderão ser utilizadas as seguintes cartas para o jogo:

7

6

6

27

5

10

55

6

6

7

1

2

5

10

16

2

1

11

8

11

4

114

36

25

7

25

36

25

7

25

2

1

11

8

11

4

114

1

36

7

36

12

5

1

1

3

10

7

8

2

1

4

1

8

8

8

8

1

5

1

11

Do jogo à matemática

Por utilizar números racionais, potências, raízes quadradas e cúbicas e o conceito de variável, este jogo é uma aplicação direta das operações de potências, objetivo deste tópico.

Page 21: Percurso livre - Revivendo conceitos

20 PERCURSO LIVRE · Matemática · Ensino Médio

Jogo - O jogo do 24

Objetivo e função do jogo Este jogo pretende desenvolver o cálculo mental e exercitar o raciocínio com as operações básicas e potenciação.

Descrição O jogo consiste na sucessiva combinação de quatro números prede-finidos de forma a atingir um total igual a 24. Cada estudante poderá, para tal, utilizar uma das operações correntes da matemática (adição, subtração, multiplicação e divisão), ganhando aquele que mais vezes atingir o resultado 24 corretamente.Poderão ser utilizadas as seguintes cartas para o jogo:

7

6

6

27

5

10

5

5

6

6

7

1

2

5

10

16

2

1

11

8

11

4

11

4

36

25

7

25

36

25

7

25

2

1

11

8

11

4

11

4

1

36

7

36

12

5

1

1

3

10

7

8

2

1

4

1

8

8

8

8

1

5

1

11

Do jogo à matemática

Por utilizar números racionais, potências, raízes quadradas e cúbicas e o conceito de variável, este jogo é uma aplicação direta das operações de potências, objetivo deste tópico.

21PERCURSO LIVRE · Matemática · Ensino Médio

Você lembra?

Este assunto também foi trabalhado na aula 14 - Operações com potên-cias, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (OBMEP, 2012) Quantas vezes 17² deve aparecer dentro do radicando na igualdade 17²+17²+...+17² = 17² +17² +17² para que ela seja verdadei-ra?

a. 9b. 51c. 289d. 861e. 2601

Comentário Neste exercício, é necessário perceber que temos uma adição de par-celas iguais, ou seja, uma multiplicação.

Professor(a), explique aos estudantes que o expoente 1 2

é √ , portanto para que o “eliminemos”, deveremos tê-lo duas vezes ( 1

2+ 1

2) = 1, por isso nos exercícios com raiz quadrada, em geral,

elevar seus termos ao quadrado é uma boa estratégia.Resolução comentada – Podemos escrever 17² + 17² +...+17²

como n.17² e 17² +17² + 17², como 3× 17².De onde sai a igualdade n x 17² = 3×17².Basta agora elevar ambos os membros ao quadrado, para elimi-

narmos a raiz:

n.17² ² ²( ) = (n.17²)

n.17²

n = 3² . 17⁴

= 3² . 17⁴

17²

n = 3² . 17² . 17² 17²

n = 9 . 17²

o 17² deverá ser somado nove vezes, então alternativa correta: A

dividindo-se ambos os membros por 17², teremos

Page 22: Percurso livre - Revivendo conceitos

22 PERCURSO LIVRE · Matemática · Ensino Médio

Utilizar a notação científica para trabalhar com potências de 10

Apresentação do assunto Um dos melhores exemplos do uso da potência de 10 é o nosso próprio sistema de numeração. Consequentemente, será bastante aplicado em nosso dia a dia, como nos cálculos utilizando o sistema monetário, prin-cipalmente para não nos confundirmos com as grandezas e nas unida-des de medida (volume, capacidade, comprimento, massa etc.).

Jogo – Ábaco

Objetivo e função do jogoPor utilizar a representação do sistema de numeração decimal, este jogo permite que visualmente seja percebida a potenciação em uma aplicação do dia a dia: os números.

DesenvolvimentoUtilize agora um ábaco. Ele poderá ser feito com sabão, palitos de churrasco e macarrão ave maria. Peça que aos estudantes que tragam de casa. Se não tiver esses recursos, faça-os desenhando mesmo.

M C D U

Como estamos trabalhando com nosso sistema de numeração, diga--lhes que novamente a regra é Nunca Dez, então cada vez que adicio-narmos peças em uma haste e chegarem a dez, devemos trocá-las por uma peça da haste seguinte.Vamos fazer um cálculo para mostrar o funcionamento do ábaco.

Representando-se 1105 no ábaco e depois somando 5, teremos:

Page 23: Percurso livre - Revivendo conceitos

22 PERCURSO LIVRE · Matemática · Ensino Médio

Utilizar a notação científica para trabalhar com potências de 10

Apresentação do assunto Um dos melhores exemplos do uso da potência de 10 é o nosso próprio sistema de numeração. Consequentemente, será bastante aplicado em nosso dia a dia, como nos cálculos utilizando o sistema monetário, prin-cipalmente para não nos confundirmos com as grandezas e nas unida-des de medida (volume, capacidade, comprimento, massa etc.).

Jogo – Ábaco

Objetivo e função do jogoPor utilizar a representação do sistema de numeração decimal, este jogo permite que visualmente seja percebida a potenciação em uma aplicação do dia a dia: os números.

DesenvolvimentoUtilize agora um ábaco. Ele poderá ser feito com sabão, palitos de churrasco e macarrão ave maria. Peça que aos estudantes que tragam de casa. Se não tiver esses recursos, faça-os desenhando mesmo.

M C D U

Como estamos trabalhando com nosso sistema de numeração, diga--lhes que novamente a regra é Nunca Dez, então cada vez que adicio-narmos peças em uma haste e chegarem a dez, devemos trocá-las por uma peça da haste seguinte.Vamos fazer um cálculo para mostrar o funcionamento do ábaco.

Representando-se 1105 no ábaco e depois somando 5, teremos:

23PERCURSO LIVRE · Matemática · Ensino Médio

M C D U M C D U

Como a regra é Nunca Dez, trocamos as dez unidades por uma dezena:

M C D U

E obtemos o resultado de 1110

Do jogo à matemática

Faça a seguinte observação:1110 = 1000 + 100 + 10“Brincar” com a decomposição dos números colabora no raciocínio

para o cálculo mental.Outra forma de representar as ordens é por meio das potências. Ob-serve a seguir o que acontece cada vez que dividimos por dez os nú-meros (mostrar o esquema na lousa):

103

÷ 10

÷ 10

÷ 10

÷ 10

÷ 10

1000

100

10

1

0,1

0,01

102

101

100

10-1

10-2

Page 24: Percurso livre - Revivendo conceitos

24 PERCURSO LIVRE · Matemática · Ensino Médio

ObservaçãoFaça a relação dessas representações com a notação científica. Ima-gine se tivéssemos que colocar todos os zeros da representação da distância da Terra à Lua.

Você lembra?

Este assunto foi trabalhado na aula 59 - Usando potências de 10, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM 1999) O diagrama abaixo representa a energia solar que atin-ge a Terra e sua utilização na geração de eletricidade. A energia solar é responsável pela manutenção do ciclo da água, pela movimentação do ar, e pelo ciclo do carbono que ocorre por meio da fotossíntese dos vegetais, da decomposição e da respiração dos seres vivos, além da formação de combustíveis fósseis.

Proveniente do Sol200 bilhões de MW

Usinas hidroelétricas100 000 MW

Usinas termoelétricas400 000 MW

Energia potencial (chuvas) Petróleo, gás e carvão

Aquecimento do solo Evaporação da água Aquecimento do ar Absorção pelas plantas

Eletricidade500 000 MW

De acordo com o diagrama, a humanidade aproveita, na forma de energia elétrica, uma fração da energia recebida como radiação solar, correspondente a:

Page 25: Percurso livre - Revivendo conceitos

24 PERCURSO LIVRE · Matemática · Ensino Médio

ObservaçãoFaça a relação dessas representações com a notação científica. Ima-gine se tivéssemos que colocar todos os zeros da representação da distância da Terra à Lua.

Você lembra?

Este assunto foi trabalhado na aula 59 - Usando potências de 10, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM 1999) O diagrama abaixo representa a energia solar que atin-ge a Terra e sua utilização na geração de eletricidade. A energia solar é responsável pela manutenção do ciclo da água, pela movimentação do ar, e pelo ciclo do carbono que ocorre por meio da fotossíntese dos vegetais, da decomposição e da respiração dos seres vivos, além da formação de combustíveis fósseis.

Proveniente do Sol200 bilhões de MW

Usinas hidroelétricas100 000 MW

Usinas termoelétricas400 000 MW

Energia potencial (chuvas) Petróleo, gás e carvão

Aquecimento do solo Evaporação da água Aquecimento do ar Absorção pelas plantas

Eletricidade500 000 MW

De acordo com o diagrama, a humanidade aproveita, na forma de energia elétrica, uma fração da energia recebida como radiação solar, correspondente a:

25PERCURSO LIVRE · Matemática · Ensino Médio

a. 4 × 10-⁹b. 2,5 × 10-⁶c. 4 ×10-⁴d. 2,5 ×10-³e. 4 × 10-²

ComentárioProfessor(a), chame a atenção para a representação científica continu-ando a tabela apresentada após o jogo. Relacione a quantidade de ze-ros do número do denominador com o expoente negativo do número dez e também no resultado, ao transformá-lo em notação científica.

Resolução comentadaPara calcular o quanto se aproveita da energia recebida, deve-se divi-dir a energia utilizada pela recebida e em seguida, prosseguir com as simplificações:

500.000 MW 200 bi MW

= 500.000 200.000.000.000

= 1 4

= 0,25 . 10-5 = 2,5.10-6

Resposta – Alternativa B

Atividades complementares sugeridas – AmpliaçãoSe tiver tempo e recursos, valerá a pena...

Atividade 1

Se imaginarmos um vídeo mostrando a Terra vista do universo pro-duzido em 1968, como ele seria? O que os números inteiros têm a ver com essa situação? Com primeira versão nesse ano e versão final em 1977, Charles e Ray Eames produziram um filme que parece ter usado as imagens do atual Google Earth.

Professor(a), observe eventuais questionamentos que surjam duran-te as discussões, pois além dos conteúdos matemáticos, há conteúdos de física, química e biologia que podem ser abordados a partir do filme.

VídeoAssistir ao vídeo Powers of Ten, de Charles e Ray Eames, de 1977. Vídeo original: http://www.youtube.com/watch?v=0fKBhvDjuy0Versão com legendas: http://www.youtube.com/watch?v=hECEUKH_xdE

Page 26: Percurso livre - Revivendo conceitos

26 PERCURSO LIVRE · Matemática · Ensino Médio

Do vídeo à matemática

1. Pedir que os estudantes expliquem, em duplas, como poderiam justificar a alteração dos expoentes conforme a câmera se afasta ou se aproxima dos objetos.

Eles poderão responder que ao se aproximar da Terra, se vindo do espaço, tira-se um zero do número e o expoente de 10 diminui uma vez. Ou que ao se afastar da Terra, coloca-se um zero no número, e o expoente de 10 aumenta uma vez.

2. Pedir-lhes ainda que escolham dois momentos do vídeo, com certa distância entre eles e que façam o registro de cada uma dessas distâncias de duas formas diferentes.

Exemplo

• Registrar a distância que um avião supersônico pode percorrer em 10 segundos:

• 10000 metros, ou seja, 104 metros.

• Em seguida, a distância da Terra à linha da órbita lunar:

• 100 000 000 metros, ou seja, 108 metros.

3. Discutir e comparar os registros.

Exemplo de questionamento para a discussão – Qual forma de registro é mais simples? Em que essa forma de registro facilita os cálculos?Espera-se que percebam que a notação científica facilita o registro por não ser necessário escrever os vários zeros.

4. Perguntar-lhes: Como calcular a distância entre os dois locais?100 000 000 metros – 10000 metros = 10000 metros108 metros – 104 metros = 104 metros (Registrar a conta feita, 108 – 104 = 104)

5. Repetir os passos anteriores, se necessário.

Page 27: Percurso livre - Revivendo conceitos

26 PERCURSO LIVRE · Matemática · Ensino Médio

Do vídeo à matemática

1. Pedir que os estudantes expliquem, em duplas, como poderiam justificar a alteração dos expoentes conforme a câmera se afasta ou se aproxima dos objetos.

Eles poderão responder que ao se aproximar da Terra, se vindo do espaço, tira-se um zero do número e o expoente de 10 diminui uma vez. Ou que ao se afastar da Terra, coloca-se um zero no número, e o expoente de 10 aumenta uma vez.

2. Pedir-lhes ainda que escolham dois momentos do vídeo, com certa distância entre eles e que façam o registro de cada uma dessas distâncias de duas formas diferentes.

Exemplo

• Registrar a distância que um avião supersônico pode percorrer em 10 segundos:

• 10000 metros, ou seja, 104 metros.

• Em seguida, a distância da Terra à linha da órbita lunar:

• 100 000 000 metros, ou seja, 108 metros.

3. Discutir e comparar os registros.

Exemplo de questionamento para a discussão – Qual forma de registro é mais simples? Em que essa forma de registro facilita os cálculos?Espera-se que percebam que a notação científica facilita o registro por não ser necessário escrever os vários zeros.

4. Perguntar-lhes: Como calcular a distância entre os dois locais?100 000 000 metros – 10000 metros = 10000 metros108 metros – 104 metros = 104 metros (Registrar a conta feita, 108 – 104 = 104)

5. Repetir os passos anteriores, se necessário.

27PERCURSO LIVRE · Matemática · Ensino Médio

Atividade 2

O que se propõe com a atividade a seguir é a compreensão dos loga-ritmos por meio de uma aplicação prática de seu uso.Medir a intensidade de diversos sons com um decibelímetro (dis-ponível em alguns celulares, ou com download gratuito no link: http://www.techtudo.com.br/tudo-sobre/s/decibelimetro-sound-meter.html e tentar identificar quais causam incômodo.

Da atividade à matemática

“A unidade de medida de intensidade sonora é o decibel, ou seja 1/10 do Bel. Esta unidade foi criada para se tratar diferenças entre gran-dezas como voltagem, corrente, potência etc. A razão principal para a criação desta unidade foi que, por se tratar de uma escala logarítmica, pode-se comparar e trabalhar intensidades de sinal muito pequenas com outras muito grandes. Como se não bastasse, nossa audição tam-bém reage a estímulos de forma logarítmica [...]

som maisforte que existe

crescesem limite

sensaçãode dor!

menor som queouvimos

intensidade do som

nossa percepção

É fácil entender por que percebemos sons em escala logarítmica. Veja na figura acima que se a escala fosse linear (vermelha), teríamos muita dificuldade de ouvir sons fracos, como um sussurro, mas se al-guém estourasse uma bombinha perto de nós, pensaríamos que se tratava do fim do mundo. Já a escala logarítmica (azul), devido à sua acentuada curvatura no início da escala, permite que sons muito fra-cos sejam percebidos e sons quando cada vez mais fortes, vão sendo comprimidos em um limite superior da escala. Por este motivo, às ve-zes não acreditamos que um som está alto demais, a partir de certo ponto não percebemos tão bem as diferenças de amplitude.

Page 28: Percurso livre - Revivendo conceitos

28 PERCURSO LIVRE · Matemática · Ensino Médio

Nível dB Som característico

0-10 Limite da audibilidade

20-30 Dentro de casa, de madrugada

em bairro tranquilo

30-40 Sussurro a 1,5 metros

40-50 Sons normais dentro de uma residência

50-60 Conversa normal entre duas pessoas

70-80 Nível ótimo de conservação para máxima

inteligibilidade

80 a 110 Nocivo aos ouvidos se exposto

por longos períodos

80-85 Dentro de um carro esporte a 80Km/h

80-90 Perfuratriz pneumática a 15m

90-100 Ruídos dentro de uma indústria

100-110 Fones de ouvido em volume máximo.

>110 Dano auditivo permanente

110-120 Show de rock em locais fechados

Limiar do desconforto

120-130 Decolagem de avião a jato a 50m

Limiar da dor auditiva

130-140 Sirene antiaérea a 30m

... Continua até 200 = limite

Ouvir música em volumes muito altos acaba provocando descon-forto e cansaço mesmo que antes dos 100 dB. O volume ideal para se ouvir música de forma prolongada e sem que provoque desconforto ou dores de cabeça é em torno de 65 dB.”.

Fonte: http://dirsom.com.br/index_htm_files/Curso%20%20Caixas%20Acusticas%20-

-%20Faca%20voce%20mesmo.pdf, acesso em 09/06/2013.

Page 29: Percurso livre - Revivendo conceitos

28 PERCURSO LIVRE · Matemática · Ensino Médio

Nível dB Som característico

0-10 Limite da audibilidade

20-30 Dentro de casa, de madrugada

em bairro tranquilo

30-40 Sussurro a 1,5 metros

40-50 Sons normais dentro de uma residência

50-60 Conversa normal entre duas pessoas

70-80 Nível ótimo de conservação para máxima

inteligibilidade

80 a 110 Nocivo aos ouvidos se exposto

por longos períodos

80-85 Dentro de um carro esporte a 80Km/h

80-90 Perfuratriz pneumática a 15m

90-100 Ruídos dentro de uma indústria

100-110 Fones de ouvido em volume máximo.

>110 Dano auditivo permanente

110-120 Show de rock em locais fechados

Limiar do desconforto

120-130 Decolagem de avião a jato a 50m

Limiar da dor auditiva

130-140 Sirene antiaérea a 30m

... Continua até 200 = limite

Ouvir música em volumes muito altos acaba provocando descon-forto e cansaço mesmo que antes dos 100 dB. O volume ideal para se ouvir música de forma prolongada e sem que provoque desconforto ou dores de cabeça é em torno de 65 dB.”.

Fonte: http://dirsom.com.br/index_htm_files/Curso%20%20Caixas%20Acusticas%20-

-%20Faca%20voce%20mesmo.pdf, acesso em 09/06/2013.

29PERCURSO LIVRE · Matemática · Ensino Médio

PERCURSO LIVRE Revivendo Conceitos

Page 30: Percurso livre - Revivendo conceitos

30 PERCURSO LIVRE · Matemática · Ensino Médio

Page 31: Percurso livre - Revivendo conceitos

30 PERCURSO LIVRE · Matemática · Ensino Médio 31PERCURSO LIVRE · Matemática · Ensino Médio

Primeiras palavras

Ao contrário do que muitos podem pensar, no passado os mapas não tiveram como principal função atender à necessidade de navegar. Eram utilizados para ostentação, alguns feitos até com ouro, ou escondiam informações do inimigo apresentando representações incorretas.

Por trás da representação de um espaço está uma concepção de mundo que se quer transmitir.

Hoje em dia a utilidade dos mapas é bem ampla, desde a localiza-ção de algo fixo, como um imóvel em uma rua, ou o acompanhamento de um automóvel em seu percurso, como é o caso de um GPS, até o traçar das rotas das aeronaves e o posicionamento global por meio dos satélites.

O estudo dos mapas por meio de sua leitura e interpretação ajuda os estudantes a desenvolverem seu raciocínio espacial. A geometria tem nesses casos grande aplicabilidade, bem como as funções por meio da utilização de coordenadas geográficas. Vamos trilhar alguns passos para compreender como ajudá-los a se localizar e a compreen-der como descobrir a medida de alguns espaços.

Localização/movimentação de obras em mapas, croquis e no plano cartesiano

Apresentação do assuntoA leitura de coordenadas geográficas é a habilidade básica para fa-cilitar a leitura e interpretação de gráficos e mapas. Para que possa localizar um país, uma região, e correlacionar as informações obtidas, os estudantes precisam inicialmente compreender como determinar a posição dos lugares.

Sistema cartesiano

2° ENCONTRO

Page 32: Percurso livre - Revivendo conceitos

32 PERCURSO LIVRE · Matemática · Ensino Médio

Jogo – Batalha naval

Objetivo e função do jogoÉ um jogo para duas pessoas que aplica diretamente os conceitos de-senvolvidos no estudo de funções e plano cartesiano.

DescriçãoSão necessários um lápis e dois tabuleiros quadriculados como os se-guintes para cada jogador:

1ABCDEFGHIJLMNOP

2 3 4 5 6 7 8 9 10 11 12 13 14 15 1ABCDEFGHIJLMNOP

2 3 4 5 6 7 8 9 10 11 12 13 14 15

meu jogo jogo do meu adversário

submarinos

hidroaviões

cruzadores

porta aviões

encouraçados

Inicialmente cada jogador dispõe de suas embarcações na tabela de seu jogo. Lembrar-lhes que não é permitido que elas se toquem As respectivas quantidades estão desenhadas ao redor dos tabuleiros. Ao terminarem, decidem quem começa e cada um, em sua vez, faz o disparo de três tiros, indicando as coordenadas do alvo por meio da letra da linha e do número da coluna. O controle dos tiros é feito no ta-buleiro do adversário que deverá anunciar se alguma parte da embar-cação foi atingida, e qual, ou se atingiu água. A cada tiro acertado em um alvo o oponente deverá marcar em seu tabuleiro para que possa

Page 33: Percurso livre - Revivendo conceitos

32 PERCURSO LIVRE · Matemática · Ensino Médio

Jogo – Batalha naval

Objetivo e função do jogoÉ um jogo para duas pessoas que aplica diretamente os conceitos de-senvolvidos no estudo de funções e plano cartesiano.

DescriçãoSão necessários um lápis e dois tabuleiros quadriculados como os se-guintes para cada jogador:

1ABCDEFGHIJLMNOP

2 3 4 5 6 7 8 9 10 11 12 13 14 15 1ABCDEFGHIJLMNOP

2 3 4 5 6 7 8 9 10 11 12 13 14 15

meu jogo jogo do meu adversário

submarinos

hidroaviões

cruzadores

porta aviões

encouraçados

Inicialmente cada jogador dispõe de suas embarcações na tabela de seu jogo. Lembrar-lhes que não é permitido que elas se toquem As respectivas quantidades estão desenhadas ao redor dos tabuleiros. Ao terminarem, decidem quem começa e cada um, em sua vez, faz o disparo de três tiros, indicando as coordenadas do alvo por meio da letra da linha e do número da coluna. O controle dos tiros é feito no ta-buleiro do adversário que deverá anunciar se alguma parte da embar-cação foi atingida, e qual, ou se atingiu água. A cada tiro acertado em um alvo o oponente deverá marcar em seu tabuleiro para que possa

33PERCURSO LIVRE · Matemática · Ensino Médio

informar ao adversário quando todas as casas tiverem sido atingidas, e assim que a embarcação for afundada. O jogo termina quando um dos jogadores afundar todas as armas do seu adversário.

Do jogo à matemática

Esse jogo é de baixa complexidade e de alto nível de estratégia. Com-preender o sistema das coordenadas geográficas por meio da dupla entrada é o básico para o desenvolvimento da habilidade de localiza-ção de lugares em mapas.

Você lembra?

Este assunto foi trabalhado na aula 8 - Coordenadas, do livro do aluno do Tecurso (Ensino Médio).

Desafio

1) Se alguém tiver que comprar um par de meia-calça para sua mãe ou namorada e não souber o número que ela usa, sabendo seu peso e sua altura, para não errar, poderá consultar a tabela que consta em seu pacote. Qual seria o tamanho da meia para uma pessoa com 1,60m e 62 Kg?

a. Pequenob. Médioc. Granded. Extragrandee. Plus

Page 34: Percurso livre - Revivendo conceitos

34 PERCURSO LIVRE · Matemática · Ensino Médio

40

peso (quilogramas)

contém 1 unidade

altu

ra (m

etro

s)42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

88 93 97 101 106 110 115 119 123 128 132 137 141 146 150 154 159 163 168 172 176 181 185 190 194 198 203 207 212

1,50 59

1,53 60

1,55 61

1,58 62

1,60 63

1,63 64

1,65 65

1,68 66

1,70 67

1,73 68

1,75 69

1,78 70

1,80 71

1,83 72

1,85 73

pequeno

médio

grande

extra grande

plus

ComentárioEste exercício é uma aplicação direta do jogo. Além da leitura e da in-terpretação da tabela, será exigido que cruzem linhas e colunas para obter a informação solicitada.

Solução comentada Inicialmente vamos identificar as informações da tabela:A linha horizontal traz os valores de peso em quilogramas (unidade de massa utilizada no Brasil) e em pounds (libras), medida utilizada em outros países, como os Estados Unidos. A linha vertical apresenta a altura em metros e em inches (polegadas). Outra informação disponível é o tamanho da meia, por meio das cores.“Ligando” as duas linhas, ou seja, a de 1,60m e a de 62 Kg, tamanho grande.

Resposta – Alternativa C

Identificar o gráfico adequado na representação de situações do cotidiano

Apresentação do assuntoApós compreender o funcionamento das coordenadas geográficas, a habilidade de identificar, dentre vários, qual gráfico representa uma situação descrita é o passo seguinte.

Em algumas casas de espetáculo a localização do assento do público é feita com a combinação de números e letras. Para evitar confusões, é necessário perceber qual foi o critério adotado pelo local. Ir para um show e localizar seu assento poderá ser um desafio para alguns.

Page 35: Percurso livre - Revivendo conceitos

34 PERCURSO LIVRE · Matemática · Ensino Médio

40

peso (quilogramas)

contém 1 unidade

altu

ra (m

etro

s)

42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

88 93 97 101 106 110 115 119 123 128 132 137 141 146 150 154 159 163 168 172 176 181 185 190 194 198 203 207 212

1,50 59

1,53 60

1,55 61

1,58 62

1,60 63

1,63 64

1,65 65

1,68 66

1,70 67

1,73 68

1,75 69

1,78 70

1,80 71

1,83 72

1,85 73

pequeno

médio

grande

extra grande

plus

ComentárioEste exercício é uma aplicação direta do jogo. Além da leitura e da in-terpretação da tabela, será exigido que cruzem linhas e colunas para obter a informação solicitada.

Solução comentada Inicialmente vamos identificar as informações da tabela:A linha horizontal traz os valores de peso em quilogramas (unidade de massa utilizada no Brasil) e em pounds (libras), medida utilizada em outros países, como os Estados Unidos. A linha vertical apresenta a altura em metros e em inches (polegadas). Outra informação disponível é o tamanho da meia, por meio das cores.“Ligando” as duas linhas, ou seja, a de 1,60m e a de 62 Kg, tamanho grande.

Resposta – Alternativa C

Identificar o gráfico adequado na representação de situações do cotidiano

Apresentação do assuntoApós compreender o funcionamento das coordenadas geográficas, a habilidade de identificar, dentre vários, qual gráfico representa uma situação descrita é o passo seguinte.

Em algumas casas de espetáculo a localização do assento do público é feita com a combinação de números e letras. Para evitar confusões, é necessário perceber qual foi o critério adotado pelo local. Ir para um show e localizar seu assento poderá ser um desafio para alguns.

35PERCURSO LIVRE · Matemática · Ensino Médio

Jogo – Adivinha

Objetivo e função do jogo Espera-se que os estudantes percebam as necessidades de criar uma convenção e de explicitá-la para que as pessoas possam utilizar-se de um mapa.

Descrição Dois estudantes ficam de fora da sala e os demais combinam como funcionará a localização. As fileiras poderão ser organizadas por meio da combinação de letras e números ou números e letras, mas sem identificá-las. Lembre a turma de que em algumas situações, a nume-ração é separada por um corredor central e de um lado ficam a nume-ração ímpar e do outro a par.

Após decidirem o critério de organização, escolhem a cadeira de uma pessoa e chamam quem ficou de fora para que localize, por meio das coordenadas oferecidas (por exemplo, B7), a pessoa sentada na cadeira que tem essas coordenadas.

Do jogo à matemática

Professor(a), aproveite a atividade para reforçar a necessidade de con-vencionar o critério que será utilizado na localização, assim como com-preender algum já estabelecido. Se acertarem de primeira, problema-tize a situação questionando-os sobre o que aconteceria se a classe tivesse escolhido a outra possibilidade de organização. Explique-lhes que no plano cartesiano ficou convencionado utilizar o eixo horizontal para “o x”, e o vertical para “o y”.

Você lembra?

Este assunto também foi trabalhado na aula 8 - Coordenadas, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2011) Uma empresa de telefonia fixa oferece dois planos aos seus clientes: no plano K, o cliente paga R$ 29,90 por 200 minutos mensais e R$ 0,20 por cada minuto excedente; no plano Z, paga R$

Page 36: Percurso livre - Revivendo conceitos

36 PERCURSO LIVRE · Matemática · Ensino Médio

49,90 por 300 minutos mensais e R$ 0,10 por cada minuto excedente.O gráfico que representa o valor pago, em reais, nos dois planos

em função dos minutos utilizados é

89,90

R$

Z

K

79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

89,90

R$

Z

K

79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

89,90

R$

ZK

79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

Page 37: Percurso livre - Revivendo conceitos

36 PERCURSO LIVRE · Matemática · Ensino Médio

49,90 por 300 minutos mensais e R$ 0,10 por cada minuto excedente.O gráfico que representa o valor pago, em reais, nos dois planos

em função dos minutos utilizados é

89,90

R$

Z

K

79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

89,90

R$

Z

K

79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

89,90

R$

ZK

79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

37PERCURSO LIVRE · Matemática · Ensino Médio

89,90

R$

Z

K

79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

Comentário Professor(a), questione os estudantes sobre a leitura e interpretação dos gráficos. Chame sua atenção para o título de cada eixo (tempo em minutos e valor em reais). Você pode lhes perguntar, por exemplo, qual o significado da reta paralela ao eixo do tempo (quer dizer que o valor não mudou nessa faixa de tempo).

Solução comentada Apesar de os gráficos poderem ser interpretados algebricamente, este exercício, assim como outros, poderá ser resolvido por observação e exclusão. É dado do enunciado do problema que o plano K tem valor de R$ 29,90 por 200 minutos. Com esta informação já eliminamos a alternativa A, já que o valor para esse tempo está abaixo de R$ 29,90; e a alternativa E, porque esse valor, para esse plano, chega até o tempo de 300 minutos. Pergunte aos estudantes em que ponto do gráfico es-sas informações são percebidas e mostre-lhes os pontos assinalados nos gráficos com setas.

89,90

R$

Z

K

79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

89,90

R$

ZK79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

Page 38: Percurso livre - Revivendo conceitos

38 PERCURSO LIVRE · Matemática · Ensino Médio

O plano Z custa R$ 49,90 por 300 minutos. Eliminamos então a alter-nativa B, pois no gráfico esse valor vai apenas até o tempo de 200 minutos.

89,90

R$

Z

K79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

Como na alternativa C os valores são coincidentes nos dois planos, está errada.

89,90

R$

Z

K79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

Resposta – Alternativa D

Identificar retas paralelas e perpendiculares.

Apresentação do assunto Além dos pontos de referência, como locais conhecidos; dos coman-dos de direção, direita, esquerda, em frente; os conceitos de paralelas e perpendiculares podem auxiliar na descrição de um percurso ou na localização de algo em um mapa.

Page 39: Percurso livre - Revivendo conceitos

38 PERCURSO LIVRE · Matemática · Ensino Médio

O plano Z custa R$ 49,90 por 300 minutos. Eliminamos então a alter-nativa B, pois no gráfico esse valor vai apenas até o tempo de 200 minutos.

89,90

R$

Z

K79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

Como na alternativa C os valores são coincidentes nos dois planos, está errada.

89,90

R$

Z

K79,90

69,90

59,90

49,90

39,90

29,90

0 100 200 300 400 500 min

Resposta – Alternativa D

Identificar retas paralelas e perpendiculares.

Apresentação do assunto Além dos pontos de referência, como locais conhecidos; dos coman-dos de direção, direita, esquerda, em frente; os conceitos de paralelas e perpendiculares podem auxiliar na descrição de um percurso ou na localização de algo em um mapa.

39PERCURSO LIVRE · Matemática · Ensino Médio

Jogo

Caça ao tesouro na cidade

Objetivo e função do jogo Com este jogo pretende-se que os estudantes diferenciem paralelas de perpendiculares, e portanto que as identifiquem. Tem também a função de verificar se eles(as) sabem os comandos de direita e esquer-da, além do conceito de ponto de referência.

DescriçãoCada dupla, com um mapa na mão, deverá desafiar a outra a encon-trar um local por meio de um percurso descrito em uma folha de pa-pel. Para isso, deverão utilizar-se dos comandos direita, esquerda, em frente, paralela, perpendicular e poderão facilitar incluindo alguns pontos de referência.

Exemplo de mapa e de solicitação de percurso:

Av. Nilo Peçanha

R. da Carioca

R. São José

Rua da Assembleia

R. Debret

R. México

Av. Rio Branco

Av. Passos

R. do Carmo

R. da Quitanda

R. do OuvidorR. do Rosário Av. Presidente Antônio Carlos

Museu Nacional de Belas Artes

Cinelândia

Carioca Ministério da Fazenda

Lgo. de São Francisco de Paula

Praça Monte Castelo

M

M

Por exemplo: duas pessoas marcaram de se encontrar, mas uma delas se atrasou e mandou a seguinte mensagem para a outra que está no Metrô – Estação Carioca:

“Ao sair do metrô, vire à esquerda, no sentido contrário ao Museu Nacional de Belas Artes, e siga em frente até chegar à Rua da Assem-bleia, na qual deve virar à direita. Estou na primeira paralela da Rua da Quitanda, passando esta, no exato ponto em que ela é perpendicular à Rua do Rosário. Ah, quando sair da Rua da Assembleia, você tem que virar à esquerda, senão vai parar na rua S. José, que fica no sentido oposto ao local onde estou.”

Page 40: Percurso livre - Revivendo conceitos

40 PERCURSO LIVRE · Matemática · Ensino Médio

Eles deverão chegar ao ponto assinalado com uma estrela:

Av. Nilo Peçanha

R. da Carioca

R. São José

R. Debret

R. México

Av. Rio Branco

Av. Passos

R. do Carmo

R. da Quitanda

R. do OuvidorR. do Rosário Av. Presidente Antônio Carlos

Museu Nacional de Belas Artes

Cinelândia

Carioca Ministério da Fazenda

Lgo. de São Francisco de Paula

Praça Monte Castelo

M

M

Rua da Assembleia

Professor(a), alguns estudantes poderão ter dificuldade em saber o que é ponto de referência. Certifique-se de que todos tenham a com-preensão de que é um local que ajuda a localizar outro. No exemplo acima, o Museu Nacional de Belas Artes foi utilizado como referência.

Se julgar necessário, peça-lhes que criem seu próprio itinerário para trocarem de desafio entre si.

Do jogo à matemática

No próximo exercício será feita referência às paralelas e às perpen-diculares e à consequência de terem quadras de mesmo tamanho. A atividade realizada permitiu diferenciar uma da outra.

Você lembra?

Este assunto foi trabalhado na aula 12 - A interseção de retas e a solução de sistemas e na aula 46 - O coeficiente angular, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2011) Um bairro de uma cidade foi planejado em uma re-gião plana, com ruas paralelas e perpendiculares, delimitando qua-

Page 41: Percurso livre - Revivendo conceitos

40 PERCURSO LIVRE · Matemática · Ensino Médio

Eles deverão chegar ao ponto assinalado com uma estrela:

Av. Nilo Peçanha

R. da Carioca

R. São José

R. Debret

R. México

Av. Rio Branco

Av. Passos

R. do Carmo

R. da Quitanda

R. do OuvidorR. do Rosário Av. Presidente Antônio Carlos

Museu Nacional de Belas Artes

Cinelândia

Carioca Ministério da Fazenda

Lgo. de São Francisco de Paula

Praça Monte Castelo

M

M

Rua da Assembleia

Professor(a), alguns estudantes poderão ter dificuldade em saber o que é ponto de referência. Certifique-se de que todos tenham a com-preensão de que é um local que ajuda a localizar outro. No exemplo acima, o Museu Nacional de Belas Artes foi utilizado como referência.

Se julgar necessário, peça-lhes que criem seu próprio itinerário para trocarem de desafio entre si.

Do jogo à matemática

No próximo exercício será feita referência às paralelas e às perpen-diculares e à consequência de terem quadras de mesmo tamanho. A atividade realizada permitiu diferenciar uma da outra.

Você lembra?

Este assunto foi trabalhado na aula 12 - A interseção de retas e a solução de sistemas e na aula 46 - O coeficiente angular, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2011) Um bairro de uma cidade foi planejado em uma re-gião plana, com ruas paralelas e perpendiculares, delimitando qua-

41PERCURSO LIVRE · Matemática · Ensino Médio

dras de mesmo tamanho. No plano de coordenadas cartesianas se-guinte, esse bairro localiza-se no segundo quadrante, e as distâncias nos eixos são dadas em quilômetros.

Y8

6

4

2

2 4 6 8

X

- 8 - 6 - 4 - 2- 2

- 4

- 6

- 8

A reta de equação y = x + 4 representa o planejamento do percurso da linha do metrô subterrâneo que atravessará o bairro e outras regi-ões da cidade. No ponto P = (–5, 5), localiza-se um hospital público. A comunidade solicitou ao comitê de planejamento que fosse prevista uma estação do metrô de modo que sua distância ao hospital, medida em linha reta, não fosse maior que 5 km. Atendendo ao pedido da comunidade, o comitê argumentou corretamente que isso seria au-tomaticamente satisfeito, pois já estava prevista a construção de uma estação no ponto:

a. (–5, 0).b. (–3, 1).c. (–2, 1).d. (0, 4).e. (2, 6).

ComentárioPergunte aos estudantes o porquê de no enunciado ser citado que “[...] com ruas paralelas e perpendiculares, delimitando quadras de mesmo tamanho.”. Espera-se que compreendam que há necessidade dessa informação para garantir que esse gráfico possa ser sobrepos-to ao mapa do bairro e que este esteja organizado como uma malha quadrada, tornando possível a solução do problema.

Lembre-lhes de como se convencionou chamar os quadrantes:

Page 42: Percurso livre - Revivendo conceitos

42 PERCURSO LIVRE · Matemática · Ensino Médio

Y

4

3

2

1

01 2 3 4

X

- 4 - 3 - 2 - 1- 1

- 2

- 3

- 4

2° quadrante 1° quadrante

3° quadrante 4° quadrante

Outro conteúdo que deverá ser abordado será o do cálculo da dis-tância entre dois pontos. Se eles não se lembrarem, diga-lhes que o Teorema de Pitágoras é ótimo nesse tipo de situação. É interessante chegar à fórmula da distância com eles.

Represente a distância entre dois pontos.

Depois desenhe um triângulo retângulo acrescentando os outros dois lados do triângulo.

A seguir, nomeie cada lado do triângulo, de forma que chame de d o lado que representa a distância entre os dois pontos.

Page 43: Percurso livre - Revivendo conceitos

42 PERCURSO LIVRE · Matemática · Ensino Médio

Y

4

3

2

1

01 2 3 4

X

- 4 - 3 - 2 - 1- 1

- 2

- 3

- 4

2° quadrante 1° quadrante

3° quadrante 4° quadrante

Outro conteúdo que deverá ser abordado será o do cálculo da dis-tância entre dois pontos. Se eles não se lembrarem, diga-lhes que o Teorema de Pitágoras é ótimo nesse tipo de situação. É interessante chegar à fórmula da distância com eles.

Represente a distância entre dois pontos.

Depois desenhe um triângulo retângulo acrescentando os outros dois lados do triângulo.

A seguir, nomeie cada lado do triângulo, de forma que chame de d o lado que representa a distância entre os dois pontos.

43PERCURSO LIVRE · Matemática · Ensino Médio

db

a

Como se trata de um triângulo retângulo, podemos aplicar o Teore-ma de Pitágoras: d²=a²+b². Então, elevando-se a 1

2ambos os membros:

d= (a²+b²)

Professor(a), se necessário, mostre na lousa por meio do desenho do triângulo no plano cartesiano que a = x2 - x1 e b = y2 - y1 então d= (x2 + x1)² +(y2 - y1)² .

Solução comentadaInicialmente verifiquemos quais pontos pertencem à reta.

y = x+4

a. Ponto(−5,0) Substituindo-se y = 0 e x= − 5 0 = -5+4 0≠-1Então esse ponto não pertence à reta.

b. Ponto(−3,1) Substituindo-se y = 1 e x= − 3 1=- 3+4 1=1Então esse ponto pertence à reta.

c. Ponto(−2,1) Substituindo-se y = 1 e x= − 2 1=- 2+4 1≠2Então esse ponto não pertence à reta.d. Ponto(0,4) Substituindo-se y = 4 e x= 0 4=0+4 4=4Então esse ponto pertence à reta.

e. Ponto(2,6) Substituindo-se y = 6 e x= 2 6=2+4 6=6

Page 44: Percurso livre - Revivendo conceitos

44 PERCURSO LIVRE · Matemática · Ensino Médio

Então esse ponto pertence à reta.

O passo seguinte é verificar a distância de cada um dos pontos ao pon-to indicado para a construção da praça, ponto P.

a. DistânciadeP=(−5,5)aB=(−3,1).

d= (x2 + x1)² +(y2 - y1)²

dPB= [(-5) - (-3)]² +(5 - 1)² = (-2)² + 4² = 20

b. DistânciadeP=(−5,5)aD=(0,4)

d= (x2 + x1)² +(y2 - y1)²

dPD= [(-5) - 0]² +(5 - 4)² = (-5)² + 1² = 26 > 5

c. DistânciadeP=(−5,5)aE=(2,6)

d= (x2 + x1)² +(y2 - y1)²

dPE= [(-5) - 2]² +(5 - 6)² = (-7)² + (-1)² = 50 > 5

Observe que as distâncias de P aos pontos D e E são maiores do que 5.

Resposta–AlternativaB

Resolver problemas de utilização de escala em mapas e plantas no cálculo de perímetros e áreas

Apresentação do assunto A matemática é aplicada em muitas situações da geografia, como na medida de distâncias, no estudo da forma da Terra e nas projeções em cartografia.

Jogo

Volta ao mundo (adaptação de Viagem pelo Mundo).

Objetivo e função do jogoO objetivo do jogo é que os estudantes apliquem os conceitos de dis-tância e de escalas.

Page 45: Percurso livre - Revivendo conceitos

44 PERCURSO LIVRE · Matemática · Ensino Médio

Então esse ponto pertence à reta.

O passo seguinte é verificar a distância de cada um dos pontos ao pon-to indicado para a construção da praça, ponto P.

a. DistânciadeP=(−5,5)aB=(−3,1).

d= (x2 + x1)² +(y2 - y1)²

dPB= [(-5) - (-3)]² +(5 - 1)² = (-2)² + 4² = 20

b. DistânciadeP=(−5,5)aD=(0,4)

d= (x2 + x1)² +(y2 - y1)²

dPD= [(-5) - 0]² +(5 - 4)² = (-5)² + 1² = 26 > 5

c. DistânciadeP=(−5,5)aE=(2,6)

d= (x2 + x1)² +(y2 - y1)²

dPE= [(-5) - 2]² +(5 - 6)² = (-7)² + (-1)² = 50 > 5

Observe que as distâncias de P aos pontos D e E são maiores do que 5.

Resposta–AlternativaB

Resolver problemas de utilização de escala em mapas e plantas no cálculo de perímetros e áreas

Apresentação do assunto A matemática é aplicada em muitas situações da geografia, como na medida de distâncias, no estudo da forma da Terra e nas projeções em cartografia.

Jogo

Volta ao mundo (adaptação de Viagem pelo Mundo).

Objetivo e função do jogoO objetivo do jogo é que os estudantes apliquem os conceitos de dis-tância e de escalas.

45PERCURSO LIVRE · Matemática · Ensino Médio

DescriçãoCom o auxílio de um mapa mundi, os estudantes escrevem em peda-ços de papel o nome de 18 cidades. Joga-se em duplas. Cada um, em sua vez, sorteia três cidades e ambos planejam um roteiro de forma que este o leve mais rápido a cada uma delas, partindo-se do Rio de Janeiro.Deverão medir a distância entre as cidades, em linha reta, com uma régua e converter a medida de acordo com a escala do mapa, fazendo o cálculo em quilômetros. Aquele(a) que tiver conseguido menor qui-lometragem para o percurso de ida, passagem pelas três cidades e de volta ao Rio de Janeiro, vence.

Do jogo à matemática

Ao calcular a rota do percurso, o conceito de distância entre dois pon-tos estará sendo diretamente aplicado. O cálculo da conversão da dis-tância de centímetros para quilômetros facilitará a compreensão da aplicação de escalas.

Você lembra?

Este assunto foi trabalhado na aula 22 - Plantas e mapas, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2011) Sabe-se que a distância real, em linha reta, de uma cidade A, localizada no estado de São Paulo, a uma cidade B, localizada no estado de Alagoas, é igual a 2000 km. Um estudante, ao analisar um mapa, verificou com sua régua que a distância entre essas duas cidades, A e B, era 8 cm.

Os dados nos indicam que o mapa observado pelo estudante está na escala de:

a. 1 : 250b. 1 : 2.500c. 1 : 25.000d. 1 : 250.000e. 1 : 25.000.000

Page 46: Percurso livre - Revivendo conceitos

46 PERCURSO LIVRE · Matemática · Ensino Médio

ComentárioProfessor(a), este exercício mobiliza conhecimentos relativos a es-calas, transformação de unidades e sistema de numeração decimal. Aproveite para verificar o nível dos estudantes nestes tópicos. Além disso, ela é do tipo não canônico, ou seja, em vez de dar a escala e pedir a distância, dá a distância e pede a escala. Chame a atenção dos estudantes para esse fato, orientando-os a utilizar um raciocínio que seja o inverso do habitual. Refletir sobre o fato de que o tipo de estra-tégia que se pode adotar ao resolver um problema ajuda-os a ampliar seu repertório de estratégias.

Retome o conteúdo de transformação de medidas por meio da ta-bela a seguir, comentando que se tiverem dificuldade em se recordar dela, basta lembrarem do significado da palavra quilômetro (quilo = mil), e que portanto 1km = 1.000m. As outras medidas podem ser de-duzidas tomando-se como referência o metro e também a partir do significado da palavra: 1 décimo de metro = 1 decímetro, 1 centésimo de metro = 1 centímetro.

x 10 x 10 x 10 x 10 x 10

dam m

200.000 2.000.000

Km Hm

2.000 20.000 20.000.000 200.000.000

dm cm

Solução comentadaO primeiro passo na resolução do problema é uniformizar as unidades. Como a distância entre as cidades no mapa está em centímetros e as medidas geográficas, em quilômetros, passemos estas para centímetros.

Utilizando a tabela de conversão de medidas: 2000 km = 200000000 cm.

A razão entre a distância e sua representação é:

8 : 200000000 o que quer dizer que cada 8 cm no mapa equivale a 200000000 cm na distância entre as cidades.

Sabemos que isso representa um quociente, ou seja, uma divisão:

8 200000000

= 4 100000000

= 1 25000000

Que é representada por:

1 : 25000000

Page 47: Percurso livre - Revivendo conceitos

46 PERCURSO LIVRE · Matemática · Ensino Médio

ComentárioProfessor(a), este exercício mobiliza conhecimentos relativos a es-calas, transformação de unidades e sistema de numeração decimal. Aproveite para verificar o nível dos estudantes nestes tópicos. Além disso, ela é do tipo não canônico, ou seja, em vez de dar a escala e pedir a distância, dá a distância e pede a escala. Chame a atenção dos estudantes para esse fato, orientando-os a utilizar um raciocínio que seja o inverso do habitual. Refletir sobre o fato de que o tipo de estra-tégia que se pode adotar ao resolver um problema ajuda-os a ampliar seu repertório de estratégias.

Retome o conteúdo de transformação de medidas por meio da ta-bela a seguir, comentando que se tiverem dificuldade em se recordar dela, basta lembrarem do significado da palavra quilômetro (quilo = mil), e que portanto 1km = 1.000m. As outras medidas podem ser de-duzidas tomando-se como referência o metro e também a partir do significado da palavra: 1 décimo de metro = 1 decímetro, 1 centésimo de metro = 1 centímetro.

x 10 x 10 x 10 x 10 x 10

dam m

200.000 2.000.000

Km Hm

2.000 20.000 20.000.000 200.000.000

dm cm

Solução comentadaO primeiro passo na resolução do problema é uniformizar as unidades. Como a distância entre as cidades no mapa está em centímetros e as medidas geográficas, em quilômetros, passemos estas para centímetros.

Utilizando a tabela de conversão de medidas: 2000 km = 200000000 cm.

A razão entre a distância e sua representação é:

8 : 200000000 o que quer dizer que cada 8 cm no mapa equivale a 200000000 cm na distância entre as cidades.

Sabemos que isso representa um quociente, ou seja, uma divisão:

8 200000000

= 4 100000000

= 1 25000000

Que é representada por:

1 : 25000000

47PERCURSO LIVRE · Matemática · Ensino Médio

ObservaçãoQuestione-os sobre qual é o significado dessa representação. Espera--se que digam que cada 1 cm do mapa representa 25000000 cm nas medidas geográficas.

Resposta–AlternativaE

Resolver problemas de utilização de escala em plantas de casa no cálculo de perímetros e áreas

Apresentação do assunto O estudo de escalas em plantas de algo próximo ao estudantes, como uma casa, colabora no entendimento do uso de mapas em uma situa-ção ampla como a distância entre cidades e a área de um estado.

Jogo – Quantos cabem?

Objetivo e função do jogoEsta dinâmica pretende aproximar os(as) jovens do conceito de metro quadrado, área e perímetro. A estimativa, conteúdo importante da mate-mática devido à sua aplicabilidade no dia a dia, será também abordada.

DescriçãoPara esta atividade serão necessários os seguintes materiais: jornal, fita crepe e um instrumento de medida de comprimento (régua, trena, fita métrica etc.).

Inicie a atividade questionando-os sobre quantos jovens, aproxi-madamente, eles imaginam que cabem em um metro quadrado. Ob-servar que, em eventos públicos, muitas vezes é noticiada a quantida-de de participantes sem que tenham sido contados, mas por meio do método que utilizarão na atividade.

Em seguida, peça-lhes que “construam” um metro quadrado e que “entrem” nele para que possam conferir se sua estimativa foi próxima da realidade.

Os metros quadrados serão utilizados em seguida para medir quantos metros quadrados tem a sala de aula e qual é a sua dimensão.

Do jogo à matemática

É comum que os estudantes confundam os conceitos de área e perí-metro. Uma das formas de fixar esses conceitos é por meio da vivência

Page 48: Percurso livre - Revivendo conceitos

48 PERCURSO LIVRE · Matemática · Ensino Médio

de situações em que tenham que refletir sobre eles.

Você lembra?

Este assunto também foi trabalhado na aula 22 - Plantas e mapas, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) Observe a escala apresentada no mapa do estado do Rio de Janeiro e considerando que cada quadradinho da malha tem lado de 1 cm, o valor aproximado da área desse estado e da distância entre as cidades de Volta Redonda e Petrópolis são respectivamente:

a. 24 mil km² e 50 kmb. 43 mil km² e 100 kmc. 43 mil km² e 200 kmd. 55 mil km² e 60 kme. 55 mil km² e 100 km

Estado do Rio de Janeiro

Minas Gerais

São PauloOceano Atlântico

Espírito Santo

Campos dosGoytacazes

Rio de Janeiro

Macaé

Cabo Frio

Nova FriburgoTeresópolis

PetrópolisVolta Redonda

Angra dosReis

São João de MeritiNova Iguaçú Duque de

CaxiasMagé

São GonçaloNiterói

0 25 50 KmRio de Janeiro

N

Page 49: Percurso livre - Revivendo conceitos

48 PERCURSO LIVRE · Matemática · Ensino Médio

de situações em que tenham que refletir sobre eles.

Você lembra?

Este assunto também foi trabalhado na aula 22 - Plantas e mapas, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) Observe a escala apresentada no mapa do estado do Rio de Janeiro e considerando que cada quadradinho da malha tem lado de 1 cm, o valor aproximado da área desse estado e da distância entre as cidades de Volta Redonda e Petrópolis são respectivamente:

a. 24 mil km² e 50 kmb. 43 mil km² e 100 kmc. 43 mil km² e 200 kmd. 55 mil km² e 60 kme. 55 mil km² e 100 km

Estado do Rio de Janeiro

Minas Gerais

São PauloOceano Atlântico

Espírito Santo

Campos dosGoytacazes

Rio de Janeiro

Macaé

Cabo Frio

Nova FriburgoTeresópolis

PetrópolisVolta Redonda

Angra dosReis

São João de MeritiNova Iguaçú Duque de

CaxiasMagé

São GonçaloNiterói

0 25 50 KmRio de Janeiro

N

49PERCURSO LIVRE · Matemática · Ensino Médio

Comentário Este exercício, além de exigir a aplicação dos conhecimentos de área, escalas, transformação de medidas, leitura de mapas, precisa que o estudante tenha noções de estimativa. Observe que deverá contar a quantidade de quadrados inteiros e juntar partes de quadrados até ter aproximadamente um inteiro.

Solução comentadaIniciaremos pelo cálculo da área. Este cálculo será feito em duas eta-pas, a primeira contando-se os quadrados inteiros (42) e a segunda, juntando partes de quadrados (26), perfazendo um total de 68.

De acordo com a escala1 : 25 KmEntão, cada quadrado tem de lado o equivalente a 25 Km.Portanto a área de cada quadrado é de 25 Km × 25 km = 625 Km².A área total aproximada será de 625 Km² × 68 = 42.500 Km².Em um segundo momento, calcularemos a distância entre as duas

cidades, Volta Redonda e Petrópolis. No mapa, a distância entre elas é de pouco mais de quatro quadrados. Como já citado, cada quadrado equivale a 25 km, então o cálculo é

4 × 25 km = 100 km

Resposta–AlternativaB

Page 50: Percurso livre - Revivendo conceitos

50 PERCURSO LIVRE · Matemática · Ensino Médio

Page 51: Percurso livre - Revivendo conceitos

50 PERCURSO LIVRE · Matemática · Ensino Médio 51PERCURSO LIVRE · Matemática · Ensino Médio

Polígonos e áreas

3° ENCONTRO

Primeiras palavras

“Um mapa plano do Brasil não é semelhante ao território brasileiro pelo simples fato de que um plano não é semelhante a uma esfera – a Terra.

Por falar nisso, vamos fazer algumas considerações a respeito de mapas. Por se tratar de representações planas de uma porção de su-perfície esférica, em todos os mapas planos a deformação é inevitável.

Na verdade, só há uma maneira de construir um mapa que represente fielmente a região correspondente, preservando tanto os ângulos quanto os tamanhos relativos, conservando enfim a proporcionalidade entre as distâncias representadas e as distâncias reais. Qual é essa maneira?

Tal mapa não pode ser plano; precisa ser construído sobre uma esfera, ou seja, deve ser uma miniatura do globo terrestre.

Apenas uma esfera é semelhante a outra esfera!”

Adaptado de: "Semelhança não é mera coincidência", Nilson José Machado, Ed. Ática

Uma das maneiras de trabalhar a compreensão do cálculo da área de diversos polígonos é a visualização das possibilidades de decomposição das figuras. O tangram é uma delas, e como já é largamente utilizado, faremos uma proposta diferente, abordando concomitantemente a se-melhança por meio da ampliação e da redução de figuras.

Calcular a área de diversos polígonos

Apresentação do assuntoRaciocinar com os estudantes sobre as fórmulas do cálculo de área é sempre produtivo, pois sua compreensão permite que haja aplicação dos conhecimentos adquiridos em várias profissões, como no plane-jamento da utilização de tecido na confecção de uma roupa, ou da madeira no caso de móveis, dentre outras.

Page 52: Percurso livre - Revivendo conceitos

52 PERCURSO LIVRE · Matemática · Ensino Médio

Jogo – Deformação

Objetivo e função do jogo O objetivo desta atividade é tratar da decomposição de figuras e do cálculo de área. Espera-se ainda que os estudantes percebam que em matemática semelhança é mais do que “ser parecido” ou “igualzinho”, termos recorrentes no dia a dia, mas a manutenção da forma e da proporção das medidas, preparando-os para as atividades que serão propostas em seguida.

DescriçãoPara introduzir o jogo, estudantes com características físicas seme-lhantes se juntam em grupos e o professor(a) explica que apesar da semelhança eles não são iguais. Por exemplo, grupo dos que têm a mesma cor de cabelo. Eles podem ter essa característica igual, mas não têm o mesmo tamanho etc.

Em seguida desenha-se na lousa (ou projeta-se no telão) uma ma-lha quadriculada e nela, uma figura geométrica que utilize variados polígonos. Pergunta-se quais são os polígonos de que é formada a figura. Pede-se então aos estudantes que reproduzam o desenho da lousa em uma folha de papel quadriculado. Em seguida, pede-se que “aumentem” duas vezes essa figura sem dar muitas explicações.

Neste ponto, comentar os resultados, observando que se a amplia-ção não for feita multiplicando-se por dois todas as medidas, a figura ficará deformada.

Sugestão de figura para ampliação (composta por triângulos, qua-drado e retângulo):

Do jogo à matemática

Os estudantes poderão, como resultado, somar dois quadradinhos de cada lado, ou multiplicar por dois apenas as medidas da largura, ou

Page 53: Percurso livre - Revivendo conceitos

52 PERCURSO LIVRE · Matemática · Ensino Médio

Jogo – Deformação

Objetivo e função do jogo O objetivo desta atividade é tratar da decomposição de figuras e do cálculo de área. Espera-se ainda que os estudantes percebam que em matemática semelhança é mais do que “ser parecido” ou “igualzinho”, termos recorrentes no dia a dia, mas a manutenção da forma e da proporção das medidas, preparando-os para as atividades que serão propostas em seguida.

DescriçãoPara introduzir o jogo, estudantes com características físicas seme-lhantes se juntam em grupos e o professor(a) explica que apesar da semelhança eles não são iguais. Por exemplo, grupo dos que têm a mesma cor de cabelo. Eles podem ter essa característica igual, mas não têm o mesmo tamanho etc.

Em seguida desenha-se na lousa (ou projeta-se no telão) uma ma-lha quadriculada e nela, uma figura geométrica que utilize variados polígonos. Pergunta-se quais são os polígonos de que é formada a figura. Pede-se então aos estudantes que reproduzam o desenho da lousa em uma folha de papel quadriculado. Em seguida, pede-se que “aumentem” duas vezes essa figura sem dar muitas explicações.

Neste ponto, comentar os resultados, observando que se a amplia-ção não for feita multiplicando-se por dois todas as medidas, a figura ficará deformada.

Sugestão de figura para ampliação (composta por triângulos, qua-drado e retângulo):

Do jogo à matemática

Os estudantes poderão, como resultado, somar dois quadradinhos de cada lado, ou multiplicar por dois apenas as medidas da largura, ou

53PERCURSO LIVRE · Matemática · Ensino Médio

fazer de fato a ampliação de forma adequada, mantendo a proporção das medidas. É interessante que se permita o erro, para propiciar a discussão. Ampliar a discussão, por exemplo, da ampliação do olho: um quadradinho vira quatro, e não dois como muitos podem pensar.

Você lembra?

Este assunto foi trabalhado na aula 15 - Áreas de polígonos, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2009) O governo cedeu terrenos para que famílias constru-íssem suas residências com a condição de que no mínimo 94% da área do terreno fosse mantida como área de preservação ambiental. Ao re-ceber o terreno retangular ABCD, em que AB = BC

2, Antônio demarcou

uma área quadrada no vértice A, para a construção de sua residência, de acordo com o desenho, no qual AE = AB

5 é o lado do quadrado.

EA

B C

D

Nesse caso, a área definida por Antônio atingiria exatamente o li-mite determinado pela condição se ele: a. duplicasse a medida do lado do quadrado. b. triplicasse a medida do lado do quadrado. c. triplicasse a área do quadrado.d. ampliasse a medida do lado do quadrado em 4%. e. ampliasse a área do quadrado em 4%.

Comentário Professor(a), nesse exercício é interessante diferenciar para os estu-dantes as expressões “triplicasse a medida do lado do quadrado” e “triplicasse a área do quadrado”. Como na situação do jogo, em que o olho do peixe, ao ser ampliado, teve a medida do lado duplicada e a área quadruplicada.

Page 54: Percurso livre - Revivendo conceitos

54 PERCURSO LIVRE · Matemática · Ensino Médio

Solução comentada Nomeie o lado do quadrado como x.

EAx

B C

D

São dados do problema que AE = AB 5

, o que quer dizer que AB é o quíntuplo de AE, ou seja, AB = 5 × AE.

Como AB = BC 2

, isto significa que AB é a metade de BC:

2 × AB = BC BC = 2 × 5 × AE = 10AE.

Para o cálculo da área, fazemos AB × BC = (5 × AE) × (10AE) = 50AE.

Vejamos quanto o quadrado representa do total, se a área total é 50AE, então podemos dizer que

100% = 50AE AE = 100 50

% AE=2%

Se 94% do terreno devem ser mantidas, então sobram 6%. Como AE é 2% do terreno, 6% será o triplo da área de AE.

Resposta – Alternativa C

Resolver problemas que envolvam figuras semelhantes e determinação da razão de semelhança

Apresentação do assuntoAo construir uma maquete, um arquiteto aplica os conhecimentos relativos à semelhança entre figuras. Ao ampliar ou reduzir fotos, os mesmos conceitos são mobilizados. A proporcionalidade na Geome-tria tem várias outras aplicações na vida cotidiana. Vamos estudar um pouco mais esse assunto.

Page 55: Percurso livre - Revivendo conceitos

54 PERCURSO LIVRE · Matemática · Ensino Médio

Solução comentada Nomeie o lado do quadrado como x.

EAx

B C

D

São dados do problema que AE = AB 5

, o que quer dizer que AB é o quíntuplo de AE, ou seja, AB = 5 × AE.

Como AB = BC 2

, isto significa que AB é a metade de BC:

2 × AB = BC BC = 2 × 5 × AE = 10AE.

Para o cálculo da área, fazemos AB × BC = (5 × AE) × (10AE) = 50AE.

Vejamos quanto o quadrado representa do total, se a área total é 50AE, então podemos dizer que

100% = 50AE AE = 100 50

% AE=2%

Se 94% do terreno devem ser mantidas, então sobram 6%. Como AE é 2% do terreno, 6% será o triplo da área de AE.

Resposta – Alternativa C

Resolver problemas que envolvam figuras semelhantes e determinação da razão de semelhança

Apresentação do assuntoAo construir uma maquete, um arquiteto aplica os conhecimentos relativos à semelhança entre figuras. Ao ampliar ou reduzir fotos, os mesmos conceitos são mobilizados. A proporcionalidade na Geome-tria tem várias outras aplicações na vida cotidiana. Vamos estudar um pouco mais esse assunto.

55PERCURSO LIVRE · Matemática · Ensino Médio

Jogo

Jogo de semelhança de triângulos¹

Objetivo e função do jogo

Compreender o conceito de semelhança entre triângulos e estudar os casos de semelhança.

DescriçãoPara este jogo são necessários conjuntos de triângulos semelhantes (cinco conjuntos de tamanhos diferentes, mas semelhantes; de quatro triângulos, sendo um triângulo equilátero; um triângulo retângulo, um triângulo escaleno e um triângulo isósceles).

Dividir os estudantes em grupos, onde o número de grupos deve ser igual ou menor do que o número de conjuntos (neste caso, cinco).

Colocar todos os triângulos misturados numa mesa (ou no chão) e os grupos competidores deverão estar atrás de uma linha de partida. Após um sinal, os grupos deverão correr até a mesa e achar um con-junto semelhante para cada grupo.

Vence o grupo que separar primeiro um conjunto corretamente.

Do jogo à matemática

Após o jogo, perguntar aos estudantes quais características cada grupo usou para escolher o conjunto de triângulos (propósito: chegar à condição de ângulos correspondentes congruentes e lados corres-pondentes proporcionais.)

Fazer os casos simplificados de semelhança: A.A.A, L.A.L, A.L.A, L.L.L.

Você lembra?

Este assunto foi trabalhado na aula 21 - Semelhanças e áreas, do livro do aluno do Telecurso (Ensino Médio).

1Jogo disponível em http://pibiduspsc.blogspot.com.br/2012/03/normal-0-21-fal-

se-false-false-pt-br-x_21.html, acesso em 18/06/2013.

Page 56: Percurso livre - Revivendo conceitos

56 PERCURSO LIVRE · Matemática · Ensino Médio

Desafio

1) (ENEM, 2004) Nos X-Games Brasil, em maio de 2004, o skatista bra-sileiro Sandro Dias, apelidado “Mineirinho”, conseguiu realizar a ma-nobra denominada “900”, na modalidade skate vertical, tornando-se o segundo atleta no mundo a conseguir esse feito.

A denominação “900” refere-se ao número de graus que o atleta gira no ar em torno de seu próprio corpo, que, no caso, corresponde aa. uma volta completa.b. uma volta e meia.c. duas voltas completas.d. duas voltas e meia.e. cinco voltas completas.

Comentário Para a resolução deste exercício, é necessário resgatar o conceito de proporção trabalhado no jogo.

Solução comentadaPensar geometricamente auxilia na resolução deste exercício. É neces-sário lembrar-se que:

360° é a medida de uma volta completa sobre seu cor-po, a proporção é de 360

1

Se foram dados 900°, para ser mantida a proporção, deve-se igualar:

360 1

= 900 X

Ou seja, 360 graus está para uma volta assim como 900 graus está para x. 360x = 900

x = 900 360

= 2,5

Resposta – Alternativa D

Page 57: Percurso livre - Revivendo conceitos

56 PERCURSO LIVRE · Matemática · Ensino Médio

Desafio

1) (ENEM, 2004) Nos X-Games Brasil, em maio de 2004, o skatista bra-sileiro Sandro Dias, apelidado “Mineirinho”, conseguiu realizar a ma-nobra denominada “900”, na modalidade skate vertical, tornando-se o segundo atleta no mundo a conseguir esse feito.

A denominação “900” refere-se ao número de graus que o atleta gira no ar em torno de seu próprio corpo, que, no caso, corresponde aa. uma volta completa.b. uma volta e meia.c. duas voltas completas.d. duas voltas e meia.e. cinco voltas completas.

Comentário Para a resolução deste exercício, é necessário resgatar o conceito de proporção trabalhado no jogo.

Solução comentadaPensar geometricamente auxilia na resolução deste exercício. É neces-sário lembrar-se que:

360° é a medida de uma volta completa sobre seu cor-po, a proporção é de 360

1

Se foram dados 900°, para ser mantida a proporção, deve-se igualar:

360 1

= 900 X

Ou seja, 360 graus está para uma volta assim como 900 graus está para x. 360x = 900

x = 900 360

= 2,5

Resposta – Alternativa D

57PERCURSO LIVRE · Matemática · Ensino Médio

Identificar figuras semelhantes e determinar a razão de semelhança

Apresentação do assuntoQuando precisamos tirar a medida de algo, basta pegar um instru-mento de medida como, por exemplo, uma trena. Mas e se o objeto for inacessível como uma árvore? Para estas situações, a semelhança, principalmente de triângulos, pode ser aplicada para facilitar, ou até viabilizar o trabalho.

Jogo – Arquitetura

Objetivo e função do jogoPretende-se observar a semelhança entre figuras e determinar a razão de semelhança entre elas.

DescriçãoEm duplas, estudantes recebem jogos compostos por 11 desenhos de casas (anexos 1, 2 e 3) que devem ser agrupadas segundo o critério de serem semelhantes e determinada a razão de semelhança para cada par. Ao final, comparam-se os resultados de todas as duplas.

Do jogo à matemática

Após ampliar figuras no tópico anterior, o passo seguinte seria a per-cepção de que há uma razão de semelhança entre figuras semelhan-tes, de que é mantida a proporção entre as medidas. Este conceito é importante para a compreensão das escalas utilizadas nos mapas. É ele que é trabalhado neste jogo.

Você lembra?

Este assunto também foi trabalhado na aula 21 - Semelhanças e áreas, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM,1998) A sombra de uma pessoa que tem 1,80 m de altura mede 60 cm. No mesmo momento, a seu lado, a sombra projetada de

Page 58: Percurso livre - Revivendo conceitos

58 PERCURSO LIVRE · Matemática · Ensino Médio

um poste mede 2,00 m. Se, mais tarde, a sombra do poste diminuiu 50 cm, a sombra da pessoa passou a medir:

a. 30 cm b. 45 cm c. 50 cm d. 80 cm e. 90 cm

ComentárioProfessor(a), para a resolução deste exercício, é interessante reforçar com os estudantes que a “tradução” da linguagem matemática pode ser feita por meio de de desenhos. Ao fazê-los lado a lado, será facilmente percebido que se trata de um caso de semelhança de triângulos.

Solução comentadaComo há unidades em metros e em centímetros, passemos todas para centímetros:

Observar que o poste, sua sombra e o raio de sol formam um triân-gulo semelhante ao formado pela pessoa, sua sombra e o raio de sol.

A relação que fazemos é que:a altura do poste está para a altura do homem assim como a som-

bra do poste está para a do homem. Conforme o Sol se movimenta, as sombras diminuem de tamanho,

porém as do homem e do poste continuam iguais e a relação passa a ser:a altura do poste está para a altura do homem assim como a nova

sombra do poste está para a nova sombra do homem. Como a sombra do poste foi de 200 para 150cm, diminuiu 1/4 do

seu tamanho, mantendo-se a proporção, a sombra do homem dimi-nuiu também 1

4 do seu tamanho, indo de 60cm para 45cm.

Resposta – Alternativa B

180 cm

Poste Pessoa60 cm

200 cm

Raio de sol

casa 2

casa 5

casa 10

Page 59: Percurso livre - Revivendo conceitos

58 PERCURSO LIVRE · Matemática · Ensino Médio

um poste mede 2,00 m. Se, mais tarde, a sombra do poste diminuiu 50 cm, a sombra da pessoa passou a medir:

a. 30 cm b. 45 cm c. 50 cm d. 80 cm e. 90 cm

ComentárioProfessor(a), para a resolução deste exercício, é interessante reforçar com os estudantes que a “tradução” da linguagem matemática pode ser feita por meio de de desenhos. Ao fazê-los lado a lado, será facilmente percebido que se trata de um caso de semelhança de triângulos.

Solução comentadaComo há unidades em metros e em centímetros, passemos todas para centímetros:

Observar que o poste, sua sombra e o raio de sol formam um triân-gulo semelhante ao formado pela pessoa, sua sombra e o raio de sol.

A relação que fazemos é que:a altura do poste está para a altura do homem assim como a som-

bra do poste está para a do homem. Conforme o Sol se movimenta, as sombras diminuem de tamanho,

porém as do homem e do poste continuam iguais e a relação passa a ser:a altura do poste está para a altura do homem assim como a nova

sombra do poste está para a nova sombra do homem. Como a sombra do poste foi de 200 para 150cm, diminuiu 1/4 do

seu tamanho, mantendo-se a proporção, a sombra do homem dimi-nuiu também 1

4 do seu tamanho, indo de 60cm para 45cm.

Resposta – Alternativa B

180 cm

Poste Pessoa60 cm

200 cm

Raio de sol

casa 2

casa 5

casa 10

59PERCURSO LIVRE · Matemática · Ensino Médio

casa 2

casa 5

casa 10

anexo 1

Page 60: Percurso livre - Revivendo conceitos

60 PERCURSO LIVRE · Matemática · Ensino Médio

casa 9

casa 4

casa 8

casa 6 casa 11

casa 1

anexo 2

casa 7

casa 3

casa 7

casa 3

Page 61: Percurso livre - Revivendo conceitos

60 PERCURSO LIVRE · Matemática · Ensino Médio

casa 9

casa 4

casa 8

casa 6 casa 11

casa 1

anexo 2

casa 7

casa 3

casa 7

casa 3

61PERCURSO LIVRE · Matemática · Ensino Médio

casa 9

casa 4

casa 8

casa 6 casa 11

casa 1

casa 7

casa 3

casa 7

casa 3

anexo 3

Page 62: Percurso livre - Revivendo conceitos

6262 PERCURSO LIVRE · Matemática · Ensino Médio

Page 63: Percurso livre - Revivendo conceitos

6262 PERCURSO LIVRE · Matemática · Ensino Médio 63PERCURSO LIVRE · Matemática · Ensino Médio

Triângulos e o teorema de Pitágoras

4º ENCONTRO

Primeiras palavras

Apesar da incerteza quanto à origem da trigonometria, sabe-se que por volta do século V a.C. egípcios e babilônios a desenvolveram para resolver problemas de localização e medidas, como os relativos à as-tronomia e à navegação.

Posteriormente os gregos fizeram estudos profundos das relações entre ângulos, ou arcos de uma circunferência e o comprimento de suas cordas. O estudo dos triângulos e de suas medidas, o que dá origem ao nome trigonometria, é o que estudaremos neste encontro.

Identificar os diversos tipos de ângulos e suas medidas

Apresentação do assunto A classificação dos ângulos permitirá melhor compreensão dos conteú-dos de geometria e trigonometria. Muitas vezes os estudantes não tive-ram muito contato com os conteúdos básicos dessas áreas da matemá-tica o que compromete a compreensão de conceitos mais elaborados.

Jogo – Ângulos com arte

Objetivo e função do jogoIdentificar, estimar e aferir medidas de ângulos.

Descrição Professor(a), exponha a imagem a seguir...

Page 64: Percurso livre - Revivendo conceitos

6464 PERCURSO LIVRE · Matemática · Ensino Médio

...e peça-lhes que identifiquem e estimem a medida dos ângulos que nele aparecem. Em seguida, que confiram as medidas com o uso de um transferidor.

Pode-se recortar partes da imagem e pedir que identifiquem o ân-gulo. Por exemplo,

... é um ângulo obtuso retirado da figura.

Do jogo à matemática

A vivência da visualização dos ângulos, a estimativa de sua medida, a conferência e posterior nomeação, pretendem permitir que os estudan-tes possam apreender esse conteúdo que para alguns é muito abstrato.

Você lembra?

Este assunto foi trabalhado na aula 39 – Medidas de ângulos, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2002) Na construção civil, é muito comum a utilização de ladrilhos ou azulejos com a forma de polígonos para o revestimento de pisos ou paredes. Entretanto, não são todas as combinações de po-lígonos que se prestam a pavimentar uma superfície plana, sem que haja falhas ou superposições de ladrilhos, como ilustram as figuras:

Page 65: Percurso livre - Revivendo conceitos

6464 PERCURSO LIVRE · Matemática · Ensino Médio

...e peça-lhes que identifiquem e estimem a medida dos ângulos que nele aparecem. Em seguida, que confiram as medidas com o uso de um transferidor.

Pode-se recortar partes da imagem e pedir que identifiquem o ân-gulo. Por exemplo,

... é um ângulo obtuso retirado da figura.

Do jogo à matemática

A vivência da visualização dos ângulos, a estimativa de sua medida, a conferência e posterior nomeação, pretendem permitir que os estudan-tes possam apreender esse conteúdo que para alguns é muito abstrato.

Você lembra?

Este assunto foi trabalhado na aula 39 – Medidas de ângulos, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2002) Na construção civil, é muito comum a utilização de ladrilhos ou azulejos com a forma de polígonos para o revestimento de pisos ou paredes. Entretanto, não são todas as combinações de po-lígonos que se prestam a pavimentar uma superfície plana, sem que haja falhas ou superposições de ladrilhos, como ilustram as figuras:

65PERCURSO LIVRE · Matemática · Ensino Médio

figura 1: ladrilhos retangulares pavimentando o plano

figura 2: heptágonos regulares não pavimentam o plano

(há falhas ou superposição)

A tabela traz uma relação de alguns polígonos regulares, com as respectivas medidas de seus ângulos internos.

nome

figura

ângulo interno

triângulo

60°

quadrado

90°

pentágono

108°

hexágono

120°

octógono

135°

eneágono

140°

Se um arquiteto deseja utilizar uma combinação de dois tipos di-ferentes de ladrilhos entre os polígonos da tabela, sendo um deles octogonal, o outro tipo escolhido deverá ter a forma de um: a. triângulob. quadradoc. pentágonod. hexágonoe. eneágono

ComentárioO exercício exige o conhecimento de que a soma dos ângulos internos dos polígonos que concorrem no mesmo vértice deve ser 360°.

Solução comentadaPara que sejam usados dois ladrilhos e para que não haja sobreposi-ção das peças, é necessário subtrair da soma dos ângulos internos, ou seja, de 360°, a medida do ângulo interno do octógono, 135°:

360° – 135° = 225°Como será utilizado outro octógono, além do ladrilho diferente,

deve-se deduzir novamente 135°:

Page 66: Percurso livre - Revivendo conceitos

6666 PERCURSO LIVRE · Matemática · Ensino Médio

225° – 135° = 90°Portanto o outro polígono será um quadrado. Resposta – Alternativa B

Identificar triângulos semelhantes

Apresentação do assunto “Conta a lenda que quando o matemático e filósofo grego Tales (século VI a.C.) chegou ao Egito, os sacerdotes pediram-lhe que averiguasse a altura da pirâmide de Quéops. Tales traçou uma linha no solo, marcando nela sua altura e esperou que sua sombra, projetada pelo sol, ficasse igual à sua altura; nesse momento, mediu a sombra projetada pela pirâmide. O matemático respondeu aos sacerdotes: ‘Agora que minha sombra é igual à minha altura, o comprimento da sombra da pirâmide deve coincidir com o comprimento de sua altura’. Podemos também medir a altura de edifícios, árvores, postes telefônicos pela sombra que projetam no solo.”http://www.klickeducacao.com.br/materia/20/display/0,5912,POR-20-92-963-,00.

html, acesso em 19/06/2013

Através da semelhança de triângulos Tales calculou a altura da pi-râmide.

Jogo – Combinado

Objetivo e função do jogoManipulação de peças para observar os casos de congruência de tri-ângulos.

DescriçãoProfessor(a), os triângulos podem ser montados na frente dos estu-dantes para facilitar a compreensão. Para este jogo serão necessários canudinhos, tachinhas, régua, trans-feridor, lápis e papel. Monte triângulos juntando seus lados, os vérti-ces são presos com tachinhas.1. Fixe a medida de dois ângulos e peça-lhes que façam triângulos

Page 67: Percurso livre - Revivendo conceitos

6666 PERCURSO LIVRE · Matemática · Ensino Médio

225° – 135° = 90°Portanto o outro polígono será um quadrado. Resposta – Alternativa B

Identificar triângulos semelhantes

Apresentação do assunto “Conta a lenda que quando o matemático e filósofo grego Tales (século VI a.C.) chegou ao Egito, os sacerdotes pediram-lhe que averiguasse a altura da pirâmide de Quéops. Tales traçou uma linha no solo, marcando nela sua altura e esperou que sua sombra, projetada pelo sol, ficasse igual à sua altura; nesse momento, mediu a sombra projetada pela pirâmide. O matemático respondeu aos sacerdotes: ‘Agora que minha sombra é igual à minha altura, o comprimento da sombra da pirâmide deve coincidir com o comprimento de sua altura’. Podemos também medir a altura de edifícios, árvores, postes telefônicos pela sombra que projetam no solo.”http://www.klickeducacao.com.br/materia/20/display/0,5912,POR-20-92-963-,00.

html, acesso em 19/06/2013

Através da semelhança de triângulos Tales calculou a altura da pi-râmide.

Jogo – Combinado

Objetivo e função do jogoManipulação de peças para observar os casos de congruência de tri-ângulos.

DescriçãoProfessor(a), os triângulos podem ser montados na frente dos estu-dantes para facilitar a compreensão. Para este jogo serão necessários canudinhos, tachinhas, régua, trans-feridor, lápis e papel. Monte triângulos juntando seus lados, os vérti-ces são presos com tachinhas.1. Fixe a medida de dois ângulos e peça-lhes que façam triângulos

67PERCURSO LIVRE · Matemática · Ensino Médio

com lados de medidas diferentes. Depois chame sua atenção para o fato de terem os lados proporcionais.

2. Fixe as medidas dos lados e peça-lhes que façam outros triângulos com medidas proporcionais e que verifiquem as medidas dos ân-gulos.

3. Fixe a medida de dois lados e do ângulo entre eles e peça-lhes que construam outros triângulos com a mesma medida de ângulo e com dois lados com medidas proporcionais aos lados do primeiro.

4. Explore a situação do triângulo retângulo como uma situação par-ticular desta última.Conclua com eles os casos de congruência de triângulos, respectiva-

mente AA (ângulo, ângulo), LLL (lado, lado, lado) e LAL (lado, ângulo, lado).

Do jogo à matemática

Ao manipular, medir, calcular, comparar, observar, os estudantes con-cluirão os casos de congruência de triângulos, tornando o aprendiza-do mais significativo.

Você lembra?

Este assunto também foi trabalhado na aula 39 – Medidas de ângulos do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM 2000) Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de maneira que o mais baixo e o mais alto tenham largu-ras respectivamente iguais a 60 cm e a 30 cm, conforme a figura abaixo:

30

60

Page 68: Percurso livre - Revivendo conceitos

6868 PERCURSO LIVRE · Matemática · Ensino Médio

Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser:

a. 144b. 180c. 210d. 225e. 240

ComentárioProfessor(a), explore o desenho da representação da situação na lou-sa. Chame a atenção da turma para os requisitos que indicam que a resolução se dá através do Teorema de Tales: que haja duas retas transversais cortadas por um feixe de retas paralelas.

Solução comentada Ao reproduzir-se o desenho com as informações do enunciado, desta-car-se os triângulos retângulos, sairão as relações:

30

30x

y

z

15

xh

2h

3h

4hy

z

15

30

30

30

x está para 15 assim como h está para 4h

= ―› x =

y está para 15 assim como 2h está para 4h

= ―› y =

x 15

h 4h

15 4

y 15

2h 4h

15 2

Page 69: Percurso livre - Revivendo conceitos

6868 PERCURSO LIVRE · Matemática · Ensino Médio

Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser:

a. 144b. 180c. 210d. 225e. 240

ComentárioProfessor(a), explore o desenho da representação da situação na lou-sa. Chame a atenção da turma para os requisitos que indicam que a resolução se dá através do Teorema de Tales: que haja duas retas transversais cortadas por um feixe de retas paralelas.

Solução comentada Ao reproduzir-se o desenho com as informações do enunciado, desta-car-se os triângulos retângulos, sairão as relações:

30

30x

y

z

15

xh

2h

3h

4hy

z

15

30

30

30

x está para 15 assim como h está para 4h

= ―› x =

y está para 15 assim como 2h está para 4h

= ―› y =

x 15

h 4h

15 4

y 15

2h 4h

15 2

69PERCURSO LIVRE · Matemática · Ensino Médio

z está para 15 assim como 3h está para 4h

= ―› z =

Para calcular-se o comprimento mínimo, deverão ser somados to-dos os segmentos:

2x + 2y + 2z + 2 × 15 + 5 × 30 =

2 × + 2 × + 2 × + 30+150 =

= 225

Resposta – Alternativa D

Determinar as medidas dos elementos de triângulos equiláteros e retângulos, utilizando as relações entre esses elementos: ângulos, lados e relações trigonométricas

Apresentação do assunto Os elementos fundamentais de um triângulo são os seus lados, os seus ângulos e a sua área, resolver um triângulo, significa conhecer as medidas destes elementos. Conhecendo-se três entre estes elemen-tos podemos usar as relações métricas ou as relações trigonométri-cas dependendo do caso, para calcular os outros elementos. O que se propõe a seguir é uma atividade lúdica que costuma deixar as pessoas intrigadas e curiosas.

Jogo – Que buraco é esse? ¹

Objetivo e função do jogoDescobrir onde foi parar o “buraco” que surge após o rearranjo das peças que formam um triângulo.

DescriçãoOs dois triângulos da figura a seguir são iguais, no entanto, o segundo triângulo é formado pelas “peças” do primeiro e por um misterioso buraco (retângulo rosa) que parece ter surgido do nada. Como isto é possível, se os dois triângulos são iguais e ao usarmos todas as partes do primeiro, cobrimos o segundo e ainda sobra o “buraco”?

z 15

3h 4h

45 2

15 4

15 2

45 4

1http://www.magiadamatematica.com/uss/licenciatura/jogos.pdf, acesso em 19/06/2013

Page 70: Percurso livre - Revivendo conceitos

7070 PERCURSO LIVRE · Matemática · Ensino Médio

A A

A A

C

C C

CB B

B B

Pode-se verificar que a linha une os pontos M e N não é um seg-mento de reta, já que os ângulos α e β não são iguais. Como essa dife-rença é muito pequena, ilusoriamente somos induzidos a pensar que se trata de um segmento de reta. Na primeira figura há um “excesso”, ou seja, uma sobra de área em relação à área de um triângulo. Na se-gunda figura há uma “falta”. Quando as peças são reagrupadas, essa diferença é que forma o buraco rosa que apareceu.

A

M

N

C

CBα

β

tg β = = 2,5 52

tg α = = 2,33 73

~

β > α

A

C

B

α

β

tg β = = 2,33 73

tg α = = 2,5 52

~

β < α

Page 71: Percurso livre - Revivendo conceitos

7070 PERCURSO LIVRE · Matemática · Ensino Médio

A A

A A

C

C C

CB B

B B

Pode-se verificar que a linha une os pontos M e N não é um seg-mento de reta, já que os ângulos α e β não são iguais. Como essa dife-rença é muito pequena, ilusoriamente somos induzidos a pensar que se trata de um segmento de reta. Na primeira figura há um “excesso”, ou seja, uma sobra de área em relação à área de um triângulo. Na se-gunda figura há uma “falta”. Quando as peças são reagrupadas, essa diferença é que forma o buraco rosa que apareceu.

A

M

N

C

CBα

β

tg β = = 2,5 52

tg α = = 2,33 73

~

β > α

A

C

B

α

β

tg β = = 2,33 73

tg α = = 2,5 52

~

β < α

71PERCURSO LIVRE · Matemática · Ensino Médio

Do jogo à matemática

Essa atividade envolve, de maneira lúdica, o conceito de razões trigo-nométricas.

Você lembra?

Este assunto foi trabalhado na aula 41 – Triângulos especiais do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2011) Para determinar a distância de um barco até a praia, um navegante utilizou o seguinte procedimento: a partir de um ponto A, mediu o ângulo visual α fazendo mira em um ponto fixo P da praia. Mantendo o barco no mesmo sentido, ele seguiu até um ponto B de modo que fosse possível ver o mesmo ponto P da praia, no entanto sob um ângulo visual 2α. A figura ilustra essa situação:

trajetória do barcoA B

P

α 2α

Suponha que o navegante tenha medido o ângulo α= 30° e, ao che-gar ao ponto B, verificou que o barco havia percorrido a distância AB = 2 000 m. Com base nesses dados e mantendo a mesma trajetória, a menor distância do barco até o ponto fixo P será:

a. 1 000m.

b. 1 000√3m.

c. 2 000 √3 3 m.

d. 2 000m.

e. 2 000√3m.

ComentárioNeste exercício são aplicados os conhecimentos sobre a medida

dos ângulos internos de um triângulo, ângulos suplementares e tam-bém sobre os ângulos notáveis da trigonometria.

Page 72: Percurso livre - Revivendo conceitos

7272 PERCURSO LIVRE · Matemática · Ensino Médio

Solução comentada

A menor distância do barco até o ponto fixo P, sendo mantida a sua trajetória, será a medida do segmento de reta em vermelho na figura abaixo, perpendicular à sua trajetória:

trajetória do barcoA B

P

d

α 2α

Do enunciado passamos as medidas para a figura a seguir:

A B2000

P

d

30° 60°120°

Dois ângulos são suplementares quando a soma de suas medidas é igual a 180°. Nesta nossa figura o suplemento do ângulo de 60° é um ângulo de 120°:

A B2000

P

d

30° 60°120°

Como a soma dos ângulos internos de um triângulo é 180°, o outro ângulo interno deste triângulo também tem a medida de 30°:

A B2000

P

d

30° 60°120°

30°

Os ângulos  A  e  P  são congruentes, então a medida do segmen-to AB é igual à medida do segmento BP.

Page 73: Percurso livre - Revivendo conceitos

7272 PERCURSO LIVRE · Matemática · Ensino Médio

Solução comentada

A menor distância do barco até o ponto fixo P, sendo mantida a sua trajetória, será a medida do segmento de reta em vermelho na figura abaixo, perpendicular à sua trajetória:

trajetória do barcoA B

P

d

α 2α

Do enunciado passamos as medidas para a figura a seguir:

A B2000

P

d

30° 60°120°

Dois ângulos são suplementares quando a soma de suas medidas é igual a 180°. Nesta nossa figura o suplemento do ângulo de 60° é um ângulo de 120°:

A B2000

P

d

30° 60°120°

Como a soma dos ângulos internos de um triângulo é 180°, o outro ângulo interno deste triângulo também tem a medida de 30°:

A B2000

P

d

30° 60°120°

30°

Os ângulos  A  e  P  são congruentes, então a medida do segmen-to AB é igual à medida do segmento BP.

73PERCURSO LIVRE · Matemática · Ensino Médio

Da trigonometria temos que:

sen60° =

O valor do seno de 60° deve ser de nosso conhecimento:

sen60° =

Como medPC = d e medBP = 2000, então:

= ―› d = ―› d = 1000√3

Resposta – Alternativa B

Aplicar o teorema de Pitágoras na solução de problemas do cotidiano

Apresentação do assuntoPitágoras viveu no séc. VI a.C., na Grécia e pensa-se que nasceu na ilha de Samos. Diz-se que Pitágoras viajou pelo Egito e pela Babilônia vin-do a fixar-se no sul da Itália (em Crotona) fundando a chamada Esco-la Pitagórica, onde se estudava Matemática, Filosofia, Música e outras Ciências. Foi Pitágoras o primeiro a elevar a ciência dos números e da geometria à categoria das artes maiores e a estabelecer o princípio de que uma proposição científica deve ser totalmente convincente, isto é, verdadeiramente demonstrada. Atribuem-se notáveis descobertas a Pitágoras, tais como o sistema de numeração decimal, tabelas de mul-tiplicação e a demonstração do célebre teorema que leva o seu nome. Há uma lenda que conta que Pitágoras ofereceu aos deuses mil bois como agradecimento, por ter descoberto a demonstração do referido teorema. Os Pitagóricos tinham algumas superstições e para prevenir desgraças usavam o símbolo «pentagrama», nas portas das casas e nos sítios que queriam preservar de maus acontecimentos. Este teorema indica que os gregos conseguiram estabelecer uma ligação abstrata en-tre os números e as figuras, o que representa um importante esforço intelectual. Também prova que tinham aprendido a demonstrar, e não apenas a persuadir, o que representa um considerável salto cognitivo. Existem inúmeras demonstrações do teorema de Pitágoras. Em 1940 o matemático americano Elisha Scott Loomis compilou 367 demonstra-ções diferentes para o seu livro ‘The Pythagorean Proposition’.

medPC medBP

√3 2

2000√3 2

√3 2

d 2000

Page 74: Percurso livre - Revivendo conceitos

7474 PERCURSO LIVRE · Matemática · Ensino Médio

Jogo – Quebra-cabeças

Objetivo e função do jogoQuebra cabeças que mostra que a área do quadrado de lado igual à hipotenusa é igual à soma das áreas dos quadrados de lados iguais aos catetos do triângulo retângulo.

DescriçãoTrata-se da demonstração geométrica do teorema.

Do jogo à matemática

Distribuir as peças do quebra cabeças abaixo e pedir que demons-trem o teorema de Pitágoras.

a b

c

Você lembra?

Este assunto foi trabalhado na aula 19 – O teorema de Pitágoras e na aula 20 - Calculando distâncias sem medir, do livro do aluno do Telecur-so (Ensino Médio).

Desafio

1) (ENEM, 2008) O tangram é um jogo oriental antigo, uma espécie de quebra-cabeça, constituído de sete peças: 5 triângulos retângulos e isósceles, 1 paralelogramo e 1 quadrado. Essas peças são obtidas recortando-se um quadrado de acordo com o esquema da figura 1.

Utilizando-se todas as sete peças, é possível representar uma gran-de diversidade de formas, como as exemplificadas nas figuras 2 e 3.

Page 75: Percurso livre - Revivendo conceitos

7474 PERCURSO LIVRE · Matemática · Ensino Médio

Jogo – Quebra-cabeças

Objetivo e função do jogoQuebra cabeças que mostra que a área do quadrado de lado igual à hipotenusa é igual à soma das áreas dos quadrados de lados iguais aos catetos do triângulo retângulo.

DescriçãoTrata-se da demonstração geométrica do teorema.

Do jogo à matemática

Distribuir as peças do quebra cabeças abaixo e pedir que demons-trem o teorema de Pitágoras.

a b

c

Você lembra?

Este assunto foi trabalhado na aula 19 – O teorema de Pitágoras e na aula 20 - Calculando distâncias sem medir, do livro do aluno do Telecur-so (Ensino Médio).

Desafio

1) (ENEM, 2008) O tangram é um jogo oriental antigo, uma espécie de quebra-cabeça, constituído de sete peças: 5 triângulos retângulos e isósceles, 1 paralelogramo e 1 quadrado. Essas peças são obtidas recortando-se um quadrado de acordo com o esquema da figura 1.

Utilizando-se todas as sete peças, é possível representar uma gran-de diversidade de formas, como as exemplificadas nas figuras 2 e 3.

75PERCURSO LIVRE · Matemática · Ensino Médio

figura 1 figura 2 figura 3

Se o lado AB do hexágono mostrado na figura 2 mede 2 cm, en-tão a área da figura 3, que representa uma “casinha”, é igual a:

a. 4 cm²b. 8 cm²c. 12 cm²d. 14 cm²e. 16 cm²

ComentárioO próprio enunciado dá a “dica” de que todas as peças do tangram es-tão sendo utilizadas em cada uma das três figuras. Consequentemen-te suas áreas têm mesmo valor. Como se trata de um triângulo retân-gulo, resolve-se o problema com a aplicação do teorema de Pitágoras.

Solução comentada Se o segmento AB mede 2cm, a diagonal do quadrado da figura 1 mede 4cm pois contém duas vezes as mesmas peças desse segmento.

figura 1 figura 2 figura 3

A

B

Chamando de “l” a medida do lado do quadrado, observe que a diago-nal corresponde à hipotenusa de um triângulo retângulo. Então pelo Teorema de Pitágoras:

Page 76: Percurso livre - Revivendo conceitos

7676 PERCURSO LIVRE · Matemática · Ensino Médio

a² = b² + c² 4² = l² + l² 16 = 2l² 2l² = 16 l² = 16/2 l² = 8

Essa é a medida da área do quadrado, pois calculamos a área do qua-drado multiplicando seus lados um pelo outro.

Resposta – Alternativa B

Calcular medidas inacessíveis, usando propriedades do triângulo retângulo e Identificar as relações trigonométricas em um triângulo retângulo

Apresentação do assuntoA Topografia é a base para diversos trabalhos de engenharia, onde o conhecimento das formas e dimensões do terreno é importante. Al-guns exemplos de sua aplicação são: projetos e execução de estra-das; grandes obras de engenharia, como pontes, portos, viadutos e túneis; trabalhos de terraplenagem; monitoramento de estruturas; planejamento urbano; irrigação e drenagem; reflorestamentos; etc. A aplicação dos conhecimentos matemáticos relativos às propriedades do triângulo retângulo é bem ampla na Topografia.

Jogo – Teodolito

Objetivo e função do jogoO teodolito é um instrumento de medida que foi inventado por volta do ano de 1835. É como um telescópio com movimentos graduados na vertical e na horizontal. Facilita o levantamento topográfico de um local. O objetivo da atividade é vivenciar um problema prático utilizan-do um teodolito rudimentar.

Page 77: Percurso livre - Revivendo conceitos

7676 PERCURSO LIVRE · Matemática · Ensino Médio

a² = b² + c² 4² = l² + l² 16 = 2l² 2l² = 16 l² = 16/2 l² = 8

Essa é a medida da área do quadrado, pois calculamos a área do qua-drado multiplicando seus lados um pelo outro.

Resposta – Alternativa B

Calcular medidas inacessíveis, usando propriedades do triângulo retângulo e Identificar as relações trigonométricas em um triângulo retângulo

Apresentação do assuntoA Topografia é a base para diversos trabalhos de engenharia, onde o conhecimento das formas e dimensões do terreno é importante. Al-guns exemplos de sua aplicação são: projetos e execução de estra-das; grandes obras de engenharia, como pontes, portos, viadutos e túneis; trabalhos de terraplenagem; monitoramento de estruturas; planejamento urbano; irrigação e drenagem; reflorestamentos; etc. A aplicação dos conhecimentos matemáticos relativos às propriedades do triângulo retângulo é bem ampla na Topografia.

Jogo – Teodolito

Objetivo e função do jogoO teodolito é um instrumento de medida que foi inventado por volta do ano de 1835. É como um telescópio com movimentos graduados na vertical e na horizontal. Facilita o levantamento topográfico de um local. O objetivo da atividade é vivenciar um problema prático utilizan-do um teodolito rudimentar.

77PERCURSO LIVRE · Matemática · Ensino Médio

DescriçãoComo medir algo inacessível, como uma edificação ou uma árvore? Propõe-se a construção de um teodolito utilizando um transferidor, um canudinho e uma tachinha.

Fixe a tachinha na base central do transferidor de forma que ela fique com mobilidade. Cole o canudo na tachinha, de modo que a sua movimentação seja completa.

transferidor

tachinha

canudo 908070

60

50

40

3020

100

100 110 120 130 140 150 160 170 180

O primeiro passo consiste em mirar o canudo na posição horizon-tal correspondente à base do que se deseja medir, uma árvore, um poste, uma casa etc., fixando o teodolito. O segundo passo consiste em deslocar o canudo focando o ponto extremo do que está sendo medido. O ângulo indicado no transferidor deve ser analisado com cuidado devido à espessura do canudo usado como mira.

908070

60

50

40

3020

100

100 110 120 130 140 150 160 170 180

α

Page 78: Percurso livre - Revivendo conceitos

7878 PERCURSO LIVRE · Matemática · Ensino Médio

Conhecendo o valor do ângulo e a distância do ponto de medição até o objeto medido, basta utilizarmos a relação trigonométrica ade-quada para determinarmos a altura. Caso a medida seja feita por uma pessoa de pé, ressaltamos que a altura entre os olhos da pessoa e o chão deve ser acrescentada ao resultado da medição.

ExemploConsideremos que se tenha obtido o ângulo de 60° a uma distância de 40 metros de uma edificação que queremos medir. O esquema repre-senta a situação descrita:

40 m

60°

h

tan60° =

√3 =

h = 40√3 =̃ 69,3 m

Do jogo à matemática

Professor(a), novamente propõe-se que os estudantes tenham uma vivência que possibilite a aplicação prática de um conceito matemáti-co. Muitos dos problemas resolvidos por semelhança de triângulos e com o uso do Teorema de Pitágoras, são relativos ao cálculo de medi-das inacessíveis.

Você lembra?

Estes assuntos foram trabalhados na aula 20 – Calculando distâncias sem medir e na aula 40 – A trigonometria do triângulo retângulo, do livro do aluno do Telecurso (Ensino Médio).

h 40

h 40

Page 79: Percurso livre - Revivendo conceitos

7878 PERCURSO LIVRE · Matemática · Ensino Médio

Conhecendo o valor do ângulo e a distância do ponto de medição até o objeto medido, basta utilizarmos a relação trigonométrica ade-quada para determinarmos a altura. Caso a medida seja feita por uma pessoa de pé, ressaltamos que a altura entre os olhos da pessoa e o chão deve ser acrescentada ao resultado da medição.

ExemploConsideremos que se tenha obtido o ângulo de 60° a uma distância de 40 metros de uma edificação que queremos medir. O esquema repre-senta a situação descrita:

40 m

60°

h

tan60° =

√3 =

h = 40√3 =̃ 69,3 m

Do jogo à matemática

Professor(a), novamente propõe-se que os estudantes tenham uma vivência que possibilite a aplicação prática de um conceito matemáti-co. Muitos dos problemas resolvidos por semelhança de triângulos e com o uso do Teorema de Pitágoras, são relativos ao cálculo de medi-das inacessíveis.

Você lembra?

Estes assuntos foram trabalhados na aula 20 – Calculando distâncias sem medir e na aula 40 – A trigonometria do triângulo retângulo, do livro do aluno do Telecurso (Ensino Médio).

h 40

h 40

79PERCURSO LIVRE · Matemática · Ensino Médio

Desafio

O antigo livro chinês Jiuzhang suanshu contém 246 problemas. Veja um desses problemas traduzido do Capítulo 9 do Jiuzhang e adaptado para fins didáticos.

No alto de um bambu vertical está presa uma corda. A parte da corda em contato com o solo mede 3 chih. Quando a corda é esticada, sua extremidade toca no solo formando um ângulo de 49° com este. Que comprimento tem o bambu?

ComentárioAlém de exigir o conhecimento das relações trigonométricas, este exercício pede que se interprete que a medida da corda esticada será somada à medida da corda. No anexo 4 é possível consultar o valor do seno de 49°.

Solução comentada Se x é a medida do bambu, temos:

x

3 m

x + 3

49°

A relação utilizada nesta situação será o seno, pois temos os valo-res do cateto oposto e da hipotenusa:

Page 80: Percurso livre - Revivendo conceitos

8080 PERCURSO LIVRE · Matemática · Ensino Médio

sen49° =

0,75 =

0,75x (x+3) = x

0,75x + 2,25 = x

0,25x = 2,25

x = = 9

Resposta – O bambu mede 9 chih

x x +3

x x +3

2,25 0,25

Page 81: Percurso livre - Revivendo conceitos

8080 PERCURSO LIVRE · Matemática · Ensino Médio

sen49° =

0,75 =

0,75x (x+3) = x

0,75x + 2,25 = x

0,25x = 2,25

x = = 9

Resposta – O bambu mede 9 chih

x x +3

x x +3

2,25 0,25

81PERCURSO LIVRE · Matemática · Ensino Médio

PERCURSO LIVRE Ensino Médio

Page 82: Percurso livre - Revivendo conceitos

8282 PERCURSO LIVRE · Matemática · Ensino Médio

anexo 1

Tabela trigonométricaÂngulo sen cos tg0 0,000000 1,000000 0,000000

1 0,017452 0,999848 0,017455

2 0,034899 0,999391 0,034921

3 0,052336 0,99863 0,052408

4 0,069756 0,997564 0,069927

5 0,087156 0,996195 0,087489

6 0,104528 0,994522 0,105104

7 0,121869 0,992546 0,122785

8 0,139173 0,990268 0,140541

9 0,156434 0,987688 0,158384

10 0,173648 0,984808 0,176327

11 0,190809 0,981627 0,19438

12 0,207912 0,978148 0,212557

13 0,224951 0,97437 0,230868

14 0,241922 0,970296 0,249328

15 0,258819 0,965926 0,267949

16 0,275637 0,961262 0,286745

17 0,292372 0,956305 0,305731

18 0,309017 0,951057 0,32492

19 0,325568 0,945519 0,344328

20 0,34202 0,939693 0,36397

21 0,358368 0,93358 0,383864

22 0,374607 0,927184 0,404026

23 0,390731 0,920505 0,424475

24 0,406737 0,913545 0,445229

25 0,422618 0,906308 0,466308

26 0,438371 0,898794 0,487733

27 0,45399 0,891007 0,509525

28 0,469472 0,882948 0,531709

29 0,48481 0,87462 0,554309

30 0,5 0,866025 0,57735

31 0,515038 0,857167 0,600861

32 0,529919 0,848048 0,624869

33 0,544639 0,838671 0,649408

34 0,559193 0,829038 0,674509

35 0,573576 0,819152 0,700208

36 0,587785 0,809017 0,726543

37 0,601815 0,798636 0,753554

38 0,615661 0,788011 0,781286

39 0,62932 0,777146 0,809784

40 0,642788 0,766044 0,8391

41 0,656059 0,75471 0,869287

42 0,669131 0,743145 0,900404

43 0,681998 0,731354 0,932515

44 0,694658 0,71934 0,965689

Page 83: Percurso livre - Revivendo conceitos

8282 PERCURSO LIVRE · Matemática · Ensino Médio

anexo 1

Tabela trigonométricaÂngulo sen cos tg0 0,000000 1,000000 0,000000

1 0,017452 0,999848 0,017455

2 0,034899 0,999391 0,034921

3 0,052336 0,99863 0,052408

4 0,069756 0,997564 0,069927

5 0,087156 0,996195 0,087489

6 0,104528 0,994522 0,105104

7 0,121869 0,992546 0,122785

8 0,139173 0,990268 0,140541

9 0,156434 0,987688 0,158384

10 0,173648 0,984808 0,176327

11 0,190809 0,981627 0,19438

12 0,207912 0,978148 0,212557

13 0,224951 0,97437 0,230868

14 0,241922 0,970296 0,249328

15 0,258819 0,965926 0,267949

16 0,275637 0,961262 0,286745

17 0,292372 0,956305 0,305731

18 0,309017 0,951057 0,32492

19 0,325568 0,945519 0,344328

20 0,34202 0,939693 0,36397

21 0,358368 0,93358 0,383864

22 0,374607 0,927184 0,404026

23 0,390731 0,920505 0,424475

24 0,406737 0,913545 0,445229

25 0,422618 0,906308 0,466308

26 0,438371 0,898794 0,487733

27 0,45399 0,891007 0,509525

28 0,469472 0,882948 0,531709

29 0,48481 0,87462 0,554309

30 0,5 0,866025 0,57735

31 0,515038 0,857167 0,600861

32 0,529919 0,848048 0,624869

33 0,544639 0,838671 0,649408

34 0,559193 0,829038 0,674509

35 0,573576 0,819152 0,700208

36 0,587785 0,809017 0,726543

37 0,601815 0,798636 0,753554

38 0,615661 0,788011 0,781286

39 0,62932 0,777146 0,809784

40 0,642788 0,766044 0,8391

41 0,656059 0,75471 0,869287

42 0,669131 0,743145 0,900404

43 0,681998 0,731354 0,932515

44 0,694658 0,71934 0,965689

83PERCURSO LIVRE · Matemática · Ensino Médio

45 0,707107 0,707107 1

46 0,71934 0,694658 1,03553

47 0,731354 0,681998 1,072369

48 0,743145 0,669131 1,110613

49 0,75471 0,656059 1,150368

50 0,766044 0,642788 1,191754

51 0,777146 0,62932 1,234897

52 0,788011 0,615661 1,279942

53 0,798636 0,601815 1,327045

54 0,809017 0,587785 1,376382

55 0,819152 0,573576 1,428148

56 0,829038 0,559193 1,482561

57 0,838671 0,544639 1,539865

58 0,848048 0,529919 1,600335

59 0,857167 0,515038 1,664279

60 0,866025 0,5 1,732051

61 0,87462 0,48481 1,804048

62 0,882948 0,469472 1,880726

63 0,891007 0,45399 1,962611

64 0,898794 0,438371 2,050304

65 0,906308 0,422618 2,144507

66 0,913545 0,406737 2,246037

67 0,920505 0,390731 2,355852

68 0,927184 0,374607 2,475087

69 0,93358 0,358368 2,605089

70 0,939693 0,34202 2,747477

71 0,945519 0,325568 2,904211

72 0,951057 0,309017 3,077684

73 0,956305 0,292372 3,270853

74 0,961262 0,275637 3,487414

75 0,965926 0,258819 3,732051

76 0,970296 0,241922 4,010781

77 0,97437 0,224951 4,331476

78 0,978148 0,207912 4,70463

79 0,981627 0,190809 5,144554

80 0,984808 0,173648 5,671282

81 0,987688 0,156434 6,313752

82 0,990268 0,139173 7,11537

83 0,992546 0,121869 8,144346

84 0,994522 0,104528 9,514364

85 0,996195 0,087156 11,43005

86 0,997564 0,069756 14,30067

87 0,99863 0,052336 19,08114

88 0,999391 0,034899 28,63625

89 0,999848 0,017452 57,28996

90 1 0 -

Page 84: Percurso livre - Revivendo conceitos

84 PERCURSO LIVRE · Matemática · Ensino Médio

Page 85: Percurso livre - Revivendo conceitos

84 PERCURSO LIVRE · Matemática · Ensino Médio 85PERCURSO LIVRE · Matemática · Ensino Médio

Princípio fundamental da contagem

Primeiras palavras

Em sua história, o homem sempre se deparou com problemas de con-tagem...

5° ENCONTRO

Page 86: Percurso livre - Revivendo conceitos

86 PERCURSO LIVRE · Matemática · Ensino Médio

Com o crescimento da complexidade dos problemas, foram surgin-do estratégias de resolução mais elaboradas.

Neste encontro, veremos formas diferentes de raciocinar diante de problemas que envolvem a multiplicação, porém que em função de seu tipo, por se tratarem do raciocínio combinatório, exigem organiza-ção de sua solução de formas variadas.

Resolver problemas que envolvam processos de contagem, medida e cálculo de probabilidades

Apresentação do assuntoNão é à toa que Johann Carl Friedrich Gauss é considerado por muitos o “príncipe da matemática”. Conta-se que em 1787, por volta de dez anos, o professor de Gauss pediu que ele e seus colegas somassem todos os números de 1 a 100. Mal tinha acabado de fazer a solicitação, ele já tinha colocado sua resposta sobre a mesa. Gauss observou o comportamento desses números nessa contagem e criou uma estra-tégia simples para resolver o problema. Vejamos como foi.

Jogo – Como Gauss

Objetivo e função do jogo Pretende-se que os estudantes percebam a diferença entre os tipos de problemas de contagem e que aprendam variadas e possíveis for-mas de resolução para eles.

DescriçãoO jogo se passa em três momentos. No primeiro, é apresentado aos estudantes um recipiente repleto de grãos. Por exemplo: um pote de vidro com feijões. Os estudantes terão um tempo para a observação e receberão uma ficha onde colocarão o número estimado de feijões que acreditam haver no pote. O professor(a) recolherá todas as fichas e verá qual dos estudantes chegou mais perto do número real. No se-gundo momento, o professor(a) enuncia o desafio proposto a Gauss: que cada um some todos os números inteiros de 1 a 100, sem usar a calculadora, em 30 segundos. O terceiro momento será a discussão sobre os problemas e suas formas de chegar às soluções.

Page 87: Percurso livre - Revivendo conceitos

86 PERCURSO LIVRE · Matemática · Ensino Médio

Com o crescimento da complexidade dos problemas, foram surgin-do estratégias de resolução mais elaboradas.

Neste encontro, veremos formas diferentes de raciocinar diante de problemas que envolvem a multiplicação, porém que em função de seu tipo, por se tratarem do raciocínio combinatório, exigem organiza-ção de sua solução de formas variadas.

Resolver problemas que envolvam processos de contagem, medida e cálculo de probabilidades

Apresentação do assuntoNão é à toa que Johann Carl Friedrich Gauss é considerado por muitos o “príncipe da matemática”. Conta-se que em 1787, por volta de dez anos, o professor de Gauss pediu que ele e seus colegas somassem todos os números de 1 a 100. Mal tinha acabado de fazer a solicitação, ele já tinha colocado sua resposta sobre a mesa. Gauss observou o comportamento desses números nessa contagem e criou uma estra-tégia simples para resolver o problema. Vejamos como foi.

Jogo – Como Gauss

Objetivo e função do jogo Pretende-se que os estudantes percebam a diferença entre os tipos de problemas de contagem e que aprendam variadas e possíveis for-mas de resolução para eles.

DescriçãoO jogo se passa em três momentos. No primeiro, é apresentado aos estudantes um recipiente repleto de grãos. Por exemplo: um pote de vidro com feijões. Os estudantes terão um tempo para a observação e receberão uma ficha onde colocarão o número estimado de feijões que acreditam haver no pote. O professor(a) recolherá todas as fichas e verá qual dos estudantes chegou mais perto do número real. No se-gundo momento, o professor(a) enuncia o desafio proposto a Gauss: que cada um some todos os números inteiros de 1 a 100, sem usar a calculadora, em 30 segundos. O terceiro momento será a discussão sobre os problemas e suas formas de chegar às soluções.

87PERCURSO LIVRE · Matemática · Ensino Médio

Do jogo à matemática

Professor(a), analise com os estudantes a forma de resolver o primei-ro problema. Trata-se de uma estimativa, que como em outras situa-ções semelhantes, como por exemplo, o cálculo dos participantes em uma manifestação popular, soma-se a quantidade para uma pequena área e depois se multiplica a quantidade encontrada por quantas ve-zes essa área se repete:

Em seguida mostre-lhes que a resolução da segunda situação pro-posta pede a observação da soma dos números em pares o primeiro com o penúltimo, o segundo com o antepenúltimo, e assim por diante:

+ ...1

99100

298

100

397

100

496

100

595

100

694

100

793

100

892

100

991

100

1090

100

Após perceber isso, rapidamente pode-se calcular a soma de to-dos os números: será a multiplicação de 100 (total de cada uma das somas) pela quantidade de somas. Perceba que a cada duas dezenas temos dez somas.

+ ...1189

100

2080

100

+ ...2179

100

3070

100

+ ...3169

100

4060

100

+ ...4159

100

5050

100

Imagine um pote com

aproximadamente 22 “camadas”

com 55 feijões em cada uma.

22 × 55 = 1210

Total aproximado: 1.200 grãos de feijão.

Page 88: Percurso livre - Revivendo conceitos

88 PERCURSO LIVRE · Matemática · Ensino Médio

100 × 10 = 1.000Como temos cinco conjuntos de pares, 5 × 1.000 = 5.000Observe que o número 100 não foi somado e que o número 50 foi

somado duas vezes. Então teremos 5.000 + 100 – 50 = 5.050

Você lembra?

Este assunto foi trabalhado na aula 48 - Princípio multiplicativo, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2004) No Nordeste brasileiro, é comum encontrarmos pe-ças de artesanato constituídas por garrafas preenchidas com areia de diferentes cores, formando desenhos. Um artesão deseja fazer peças com areia de cores cinza, azul, verde e amarela, mantendo o mesmo desenho, mas variando as cores da paisagem (casa, palmeira e fundo), conforme a figura.

O fundo pode ser representado nas cores azul ou cinza; a casa, nas cores azul, verde ou amarela; e a palmeira, nas cores cinza ou verde. Se o fundo não pode ter a mesma cor nem da casa nem da palmeira, por uma questão de contraste, então o número de variações que po-dem ser obtidas para a paisagem é a. 6. b. 7. c. 8. d. 9. e. 10.

fundo

Page 89: Percurso livre - Revivendo conceitos

88 PERCURSO LIVRE · Matemática · Ensino Médio

100 × 10 = 1.000Como temos cinco conjuntos de pares, 5 × 1.000 = 5.000Observe que o número 100 não foi somado e que o número 50 foi

somado duas vezes. Então teremos 5.000 + 100 – 50 = 5.050

Você lembra?

Este assunto foi trabalhado na aula 48 - Princípio multiplicativo, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2004) No Nordeste brasileiro, é comum encontrarmos pe-ças de artesanato constituídas por garrafas preenchidas com areia de diferentes cores, formando desenhos. Um artesão deseja fazer peças com areia de cores cinza, azul, verde e amarela, mantendo o mesmo desenho, mas variando as cores da paisagem (casa, palmeira e fundo), conforme a figura.

O fundo pode ser representado nas cores azul ou cinza; a casa, nas cores azul, verde ou amarela; e a palmeira, nas cores cinza ou verde. Se o fundo não pode ter a mesma cor nem da casa nem da palmeira, por uma questão de contraste, então o número de variações que po-dem ser obtidas para a paisagem é a. 6. b. 7. c. 8. d. 9. e. 10.

fundo

89PERCURSO LIVRE · Matemática · Ensino Médio

ComentárioDeve-se analisar primeiramente o fundo, já que ele impedirá as cores dos demais elementos. Como são poucas quantidades, a estratégia escolhida é a de contagem.

Solução comentadaPode-se resolver este exercício com duas tabelas, a primeira, no caso do fundo ser azul:

casa/palmeira cinza verde

verde casa verde/

palmeira cinza

casa verde/

palmeira verde

amarela casa amarela/

palmeira cinza

casa amarela/

palmeira verde

A segunda, no caso do fundo ser cinza:

casa/palmeira verde

verde casa verde/plameira verde

amarela casa amarela/palmeira verde

azul casa azul/palmeira verde

Serão então sete variações.

Resposta – Alternativa B

Operar com fatorial de um número

Apresentação do assuntoMuitos dos exercícios de análise combinatória são resolvidos por meio de produtos de números naturais em que a possibilidade não é consi-derada. Para esse tipo de exercício, temos o fatorial, que simplifica seu registro. Os arranjos têm n elementos que são tomados em grupos de p elementos. As permutações são casos especiais de arranjos em que os elementos dados são em igual quantidade dos (n=p). Neste tópico o foco do trabalho são as permutações.

Page 90: Percurso livre - Revivendo conceitos

90 PERCURSO LIVRE · Matemática · Ensino Médio

Jogo – Fatorial

Objetivo e função do jogoCom a composição de números a partir de fatores, os estudantes são levados a perceber que a multiplicação que estão fazendo trata-se de uma representação do fatorial.

DescriçãoUma parte da turma será responsável por circular pela sala com placas que contenham números e sinais de multiplicação. Divida o restante da turma em grupos: cada um terá que, a partir do resultado já apre-sentado de uma multiplicação (e da quantidade de peças definida), montar seu produto. Esse produto será representado pela combina-ção de números e sinais das placas.

Vence o grupo que montar o resultado primeiro.

ExemploO grupo 1 ficou com o seguinte resultado: 24, cinco peças: ele terá que caçar na sala, cinco peças que resultem na resposta (no caso, 1, 2, 3, 4 e ×).

O grupo 2 ficou com 120, seis peças (deverá localizar as peças 1, 2, 3, 4, 5 e ×).

Observação O sinal de multiplicação pode ser usado várias vezes, mesmo que o grupo só capte um estudante no meio da classe com esse símbolo.

Do jogo à matemática

Ao final da atividade perguntar aos estudantes se conhecem uma for-ma simplificada de representar as multiplicações . Os estudantes de-verão fazer a representação fatorial dos números.

Você lembra?

Este assunto foi trabalhado na aula 49 - As permutações, do livro do aluno do Telecurso (Ensino Médio).

Page 91: Percurso livre - Revivendo conceitos

90 PERCURSO LIVRE · Matemática · Ensino Médio

Jogo – Fatorial

Objetivo e função do jogoCom a composição de números a partir de fatores, os estudantes são levados a perceber que a multiplicação que estão fazendo trata-se de uma representação do fatorial.

DescriçãoUma parte da turma será responsável por circular pela sala com placas que contenham números e sinais de multiplicação. Divida o restante da turma em grupos: cada um terá que, a partir do resultado já apre-sentado de uma multiplicação (e da quantidade de peças definida), montar seu produto. Esse produto será representado pela combina-ção de números e sinais das placas.

Vence o grupo que montar o resultado primeiro.

ExemploO grupo 1 ficou com o seguinte resultado: 24, cinco peças: ele terá que caçar na sala, cinco peças que resultem na resposta (no caso, 1, 2, 3, 4 e ×).

O grupo 2 ficou com 120, seis peças (deverá localizar as peças 1, 2, 3, 4, 5 e ×).

Observação O sinal de multiplicação pode ser usado várias vezes, mesmo que o grupo só capte um estudante no meio da classe com esse símbolo.

Do jogo à matemática

Ao final da atividade perguntar aos estudantes se conhecem uma for-ma simplificada de representar as multiplicações . Os estudantes de-verão fazer a representação fatorial dos números.

Você lembra?

Este assunto foi trabalhado na aula 49 - As permutações, do livro do aluno do Telecurso (Ensino Médio).

91PERCURSO LIVRE · Matemática · Ensino Médio

Desafio

1) (ENEM, 2011) O setor de recursos humanos de uma empresa vai realizar uma entrevista com 120 candidatos a uma vaga de contador. Por sorteio, eles pretendem atribuir a cada candidato um número, co-locar a lista de números em ordem numérica crescente e usá-la para convocar os interessados. Acontece que, por um defeito do compu-tador, foram gerados números com cinco algarismos distintos e, em nenhum deles, apareceram dígitos pares.

Em razão disso, a ordem de chamada do candidato que tiver rece-bido o número 75.913 é:

a. 24.b. 31.c. 32.d. 88.e. 89.

ComentárioTrata-se de um exercício de análise combinatória em que temos que calcular o número de permutações dos cinco algarismos ímpares an-tes do número 75.913 para que encontremos seu número de ordem.

Solução comentadaPoderemos utilizar apenas os algarismos ímpares, ou seja, 1, 3, 5, 7 ou 9. Inicialmente analisamos os algarismos da primeira ordem (1, 3 ou 5):

1,3 ou 5

3 x =4! 72

Em seguida, se for 7 no primeiro, analisamos o segundo dígito:

7

2 x =3! 12

1 ou 3

Page 92: Percurso livre - Revivendo conceitos

92 PERCURSO LIVRE · Matemática · Ensino Médio

Em seguida, se for 7 no primeiro e 5 no segundo, analisamos o terceiro dígito:

7

2 x =2! 4

5 1 ou 3

A última situação é:

7 5 9 1 3

Somando-se todas as permutações, teremos:72 + 12 + 4 + 1 = 89

Resposta – Alternativa E

Resolver problemas de contagem, utilizando o princípio multiplicativo

Apresentação do assuntoHá pouco tempo, em São Paulo, os telefones celulares passaram a ter nove dígitos. Por quê? Com a crescente venda de celulares, a quantida-de de números disponível já não era mais suficiente; a quantidade de combinações dos algarismos aumentou substancialmente com essa alteração. Este é um exemplo de combinação em que a ordem dos algarismos faz diferença, mas e se não fizer?

Jogo – Colheita

Objetivo e função do jogoO objetivo do jogo é que percebam que ao combinar os resultados dos sorteios dos dados e das cartas, a ordenação não faz diferença.

DescriçãoDivide-se a turma em grupos. Cada grupo tem uma cesta de frutas vazia. Consiste num jogo de dados e cartas. Serão 8 valores de cartas (5, 4, 3, 2, 1, 0, -1, -2).

Page 93: Percurso livre - Revivendo conceitos

92 PERCURSO LIVRE · Matemática · Ensino Médio

Em seguida, se for 7 no primeiro e 5 no segundo, analisamos o terceiro dígito:

7

2 x =2! 4

5 1 ou 3

A última situação é:

7 5 9 1 3

Somando-se todas as permutações, teremos:72 + 12 + 4 + 1 = 89

Resposta – Alternativa E

Resolver problemas de contagem, utilizando o princípio multiplicativo

Apresentação do assuntoHá pouco tempo, em São Paulo, os telefones celulares passaram a ter nove dígitos. Por quê? Com a crescente venda de celulares, a quantida-de de números disponível já não era mais suficiente; a quantidade de combinações dos algarismos aumentou substancialmente com essa alteração. Este é um exemplo de combinação em que a ordem dos algarismos faz diferença, mas e se não fizer?

Jogo – Colheita

Objetivo e função do jogoO objetivo do jogo é que percebam que ao combinar os resultados dos sorteios dos dados e das cartas, a ordenação não faz diferença.

DescriçãoDivide-se a turma em grupos. Cada grupo tem uma cesta de frutas vazia. Consiste num jogo de dados e cartas. Serão 8 valores de cartas (5, 4, 3, 2, 1, 0, -1, -2).

93PERCURSO LIVRE · Matemática · Ensino Médio

Os grupos jogam o dado e tiram uma carta. A combinação dada será a quantidade de frutas que eles irão colocar ou tirar da cesta. Após seis rodadas, ganha a equipe com mais frutas. As equipes po-dem fazer seus jogos em separado, ou seja, os grupos se dividem e jogam. Ou é feita uma mesa com um representante de cada grupo e todos jogam ao mesmo tempo.

Podemos sugerir que eles façam desenhos grandes de frutas, para que o jogo seja mais tátil. E, em cada jogada, eles poderão realmente pôr as "frutas" nas cestas.

Do jogo à matemática

Professor(a), explore com os estudantes a ideia de que a soma suces-siva de parcelas iguais pode ser feita através de uma multiplicação. Ao pegarem 5 frutas, fizeram uma multiplicação por 5, e não fez diferença no resultado final terem pegado, por exemplo, 5 × 3 primeiro e 4 × 2 depois.

Você lembra?

Este assunto também foi trabalhado na aula 48 - O princípio multiplica-tivo, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2007) Estima-se que haja, no Acre, 209 espécies de mamífe-ros, distribuídas conforme a tabela abaixo:

Page 94: Percurso livre - Revivendo conceitos

94 PERCURSO LIVRE · Matemática · Ensino Médio

Grupos Taxonômicos Número de espécies

Artiodáctilos 4

Carnívoros 18

Cetáceos 2

Quirópteros 103

Lagomorfos 1

Marsupiais 16

Perissodáctilos 1

Primatas 20

Roedores 33

Sirênios 1

Edentados 10

Total 209

T &C Amazônia, ano 1, n.º 3, dez/2003.

Deseja-se realizar um estudo comparativo entre três dessas espé-cies de mamíferos — uma do grupo Cetáceos, outra do grupo Primatas e a terceira do grupo Roedores. O número de conjuntos distintos que podem ser formados com essas espécies para esse estudo é igual a:

a. 1.320.b. 2.090.c. 5.845.d. 6.600.e. 7.245.

ComentárioQuando vamos fazer uma contagem em um conjunto com pouca quantidade de elementos, é fácil, basta formar todos eles e contá-los.

Se uma pessoa tiver em seu guarda roupa quatro camisetas e três bermudas, estas serão as possíveis combinações:

C1B1 C1B2 C1B3

C2B1 C2B2 C2B3

C3B1 C3B2 C3B3

C4B1 C4B2 C4B3

Page 95: Percurso livre - Revivendo conceitos

94 PERCURSO LIVRE · Matemática · Ensino Médio

Grupos Taxonômicos Número de espécies

Artiodáctilos 4

Carnívoros 18

Cetáceos 2

Quirópteros 103

Lagomorfos 1

Marsupiais 16

Perissodáctilos 1

Primatas 20

Roedores 33

Sirênios 1

Edentados 10

Total 209

T &C Amazônia, ano 1, n.º 3, dez/2003.

Deseja-se realizar um estudo comparativo entre três dessas espé-cies de mamíferos — uma do grupo Cetáceos, outra do grupo Primatas e a terceira do grupo Roedores. O número de conjuntos distintos que podem ser formados com essas espécies para esse estudo é igual a:

a. 1.320.b. 2.090.c. 5.845.d. 6.600.e. 7.245.

ComentárioQuando vamos fazer uma contagem em um conjunto com pouca quantidade de elementos, é fácil, basta formar todos eles e contá-los.

Se uma pessoa tiver em seu guarda roupa quatro camisetas e três bermudas, estas serão as possíveis combinações:

C1B1 C1B2 C1B3

C2B1 C2B2 C2B3

C3B1 C3B2 C3B3

C4B1 C4B2 C4B3

95PERCURSO LIVRE · Matemática · Ensino Médio

Como temos quatro camisetas e três bermudas, pelo princípio multiplicativo, podemos calcular 4×3=12 maneiras diferentes de se vestir com essas peças.

Nesta situação, o princípio multiplicativo pôde ser deduzido para que possa ser aplicado em situações de raciocínio semelhante, porém com grande quantidade de elementos, como é o caso do desafio que será resolvido a seguir.

Solução comentada Pela tabela, o número de cetáceos é dois, de primatas, 20 e, de roe-dores, 33. Pelo princípio multiplicativo, teremos 2 × 20 × 33 = 1.320.

Resposta – Alternativa A

Resolver problemas do cotidiano que envolvam permutações simples, com repetição e circulares

Apresentação do assuntoAs permutações simples já foram abordadas no tópico “Operar com Fatorial”. Um exemplo de permutação circular é a dança de roda das crianças. As formas com que podem se organizar na roda são as per-mutações possíveis. Vamos então focar o trabalho deste tópico nas permutações com repetição.

Jogo – Dança das cadeiras identificadas

Objetivo e função do jogoAo contrário do jogo anterior, neste caso a ordem deve ser levada em conta. O objetivo é que percebam a diferença entre as duas situações.

DescriçãoFaz-se uma dança das cadeiras (o ideal é fazer mais de um grupo, para não demorar muito) na qual os estudantes não podem se sentar na mesma cadeira em que se sentaram na rodada anterior. Para isso, cada estudante pode ter uma plaquinha com um número, que deixará na cadeira após sentar-se e enquanto a música é tocada, assim aquela cadeira já estará marcada.

Page 96: Percurso livre - Revivendo conceitos

96 PERCURSO LIVRE · Matemática · Ensino Médio

Do jogo à matemática

Professor(a), questione os estudantes quanto à diferença entre o jogo tradicional e o desenvolvido nesta atividade. De que forma essa nova regra afeta o desenvolvimento do jogo?

Você lembra?

Este assunto foi trabalhado na aula 50 - Continuando com permutações, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) Em um campeonato de futebol, certo time participou de nove parti-das, tendo vencido três, perdido dois e empatado quatro. De quantas maneiras diferentes isso pode ter ocorrido?

a. 216b. 24c. 1.260d. 9e. 126

ComentárioEste é um caso de permutação em que dentre os elementos, ou seja, o número de partidas de que o time participou, há repetição de elemen-tos. A permutação destes elementos não irá gerar novas possibilida-des de mudanças, já que os elementos são iguais.

Solução comentadaSerá a permutação de nove elementos com repetição (três vitórias, duas derrotas e quatro empates).

Calcula-se

Resposta – Alternativa C

9! 3!2!4!

= 9.8.7.6.5.4! = 1.260 3!2!4!

Page 97: Percurso livre - Revivendo conceitos

96 PERCURSO LIVRE · Matemática · Ensino Médio

Do jogo à matemática

Professor(a), questione os estudantes quanto à diferença entre o jogo tradicional e o desenvolvido nesta atividade. De que forma essa nova regra afeta o desenvolvimento do jogo?

Você lembra?

Este assunto foi trabalhado na aula 50 - Continuando com permutações, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) Em um campeonato de futebol, certo time participou de nove parti-das, tendo vencido três, perdido dois e empatado quatro. De quantas maneiras diferentes isso pode ter ocorrido?

a. 216b. 24c. 1.260d. 9e. 126

ComentárioEste é um caso de permutação em que dentre os elementos, ou seja, o número de partidas de que o time participou, há repetição de elemen-tos. A permutação destes elementos não irá gerar novas possibilida-des de mudanças, já que os elementos são iguais.

Solução comentadaSerá a permutação de nove elementos com repetição (três vitórias, duas derrotas e quatro empates).

Calcula-se

Resposta – Alternativa C

9! 3!2!4!

= 9.8.7.6.5.4! = 1.260 3!2!4!

97PERCURSO LIVRE · Matemática · Ensino Médio

Resolver problemas do cotidiano, utilizando combinação

Apresentação do assuntoArquimedes foi o precursor dos estudos em combinatória. No século III a.C., propôs o jogo Stomachion, cujo objetivo era saber de quantas formas suas partes menores poderiam formar o mesmo quadrado. A resposta: 17.152 vezes.

Ainda hoje a combinatória é utilizada para calcular combinações em jogos.

Jogo – Micro sena

Objetivo e função do jogo Pretende-se que os estudantes percebam o conceito de combinações.

DescriçãoSimular em sala um sorteio da mega sena, com cada um podendo marcar apenas seis números na cartela.

Do jogo à matemática

Pode-se restringir a uma quantidade pequena de números dentre os quais os estudantes poderão fazer sua escolha, para que percebam a enorme quantidade de combinações possíveis com os números de 01 a 60.

Page 98: Percurso livre - Revivendo conceitos

98 PERCURSO LIVRE · Matemática · Ensino Médio

Você lembra?

Este assunto foi trabalhado na aula 51 - As combinações, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2009) A população brasileira sabe, pelo menos intuitivamen-te, que a probabilidade de acertar as seis dezenas da mega sena não é zero, mas é quase. Mesmo assim, milhões de pessoas são atraídas por essa loteria, especialmente quando o prêmio se acumula em valores altos. Até junho de 2009, cada aposta de seis dezenas, pertencentes ao conjunto {01, 02, 03, …, 59, 60}, custava R$1,50.

Disponível em: www.caixa.gov.br, acesso em: 07/07/2009

Considere que uma pessoa decida apostar exatamente R$126,00 e que esteja mais interessada em acertar apenas cinco das seis dezenas da mega sena, justamente pela dificuldade desta última. Nesse caso, é melhor que essa pessoa faça 84 apostas de seis dezenas diferentes, que não tenham cinco números em comum, do que uma única aposta com nove dezenas, porque a probabilidade de acertar a quina no se-gundo caso em relação ao primeiro é, aproximadamente:

a. 1 2 vez menor.

b. 2 1 2

vezes menor.c. 4 vezes menor.d. 9 vezes menor.e. 14 vezes menor.

ComentárioHá algumas perguntas que são interessantes de se fazer antes de ini-ciar a resolução deste exercício, como por exemplo: “Quantos elemen-tos estão envolvidos?”, “Todos serão usados?”, “Não há mudança de ordem no contexto utilizado?”. São questões que orientarão os estu-dantes a perceber que tipo de arranjo está envolvido na ocorrência. Nesta situação, como não contempla ordem, então se trata de um pro-blema de combinação.

Solução comentadaO total de quinas possíveis em um cartão com seis dezenas é

Page 99: Percurso livre - Revivendo conceitos

98 PERCURSO LIVRE · Matemática · Ensino Médio

Você lembra?

Este assunto foi trabalhado na aula 51 - As combinações, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2009) A população brasileira sabe, pelo menos intuitivamen-te, que a probabilidade de acertar as seis dezenas da mega sena não é zero, mas é quase. Mesmo assim, milhões de pessoas são atraídas por essa loteria, especialmente quando o prêmio se acumula em valores altos. Até junho de 2009, cada aposta de seis dezenas, pertencentes ao conjunto {01, 02, 03, …, 59, 60}, custava R$1,50.

Disponível em: www.caixa.gov.br, acesso em: 07/07/2009

Considere que uma pessoa decida apostar exatamente R$126,00 e que esteja mais interessada em acertar apenas cinco das seis dezenas da mega sena, justamente pela dificuldade desta última. Nesse caso, é melhor que essa pessoa faça 84 apostas de seis dezenas diferentes, que não tenham cinco números em comum, do que uma única aposta com nove dezenas, porque a probabilidade de acertar a quina no se-gundo caso em relação ao primeiro é, aproximadamente:

a. 1 2 vez menor.

b. 2 1 2

vezes menor.c. 4 vezes menor.d. 9 vezes menor.e. 14 vezes menor.

ComentárioHá algumas perguntas que são interessantes de se fazer antes de ini-ciar a resolução deste exercício, como por exemplo: “Quantos elemen-tos estão envolvidos?”, “Todos serão usados?”, “Não há mudança de ordem no contexto utilizado?”. São questões que orientarão os estu-dantes a perceber que tipo de arranjo está envolvido na ocorrência. Nesta situação, como não contempla ordem, então se trata de um pro-blema de combinação.

Solução comentadaO total de quinas possíveis em um cartão com seis dezenas é

99PERCURSO LIVRE · Matemática · Ensino Médio

C(6,5) = 6! = 6 5! (6 - 5)!

e em um cartão com nove dezenas é

C(9,5) = 9! = 126 5! (9 - 5)!

Caso a pessoa faça 84 apostas de seis dezenas diferentes, que não tenham cinco números em comum, ela terá

84 × 6 = 504 chances de acertar a quina.

504 ÷ 126 = 4

Logo, no segundo caso, a probabilidade de acertar a quina, em re-lação ao primeiro caso é quatro vezes menor.

Resposta – Alternativa C

Resolver problemas do cotidiano, que envolvam o conceito de probabilidade

Apresentação do assuntoAo escolher em qual fila do supermercado aguardar a vez, alguns fato-res são levados em conta, como a quantidade de itens nos carrinhos das pessoas já nas filas, ou se pode observar a agilidade da pessoa que está trabalhando no caixa. Para tomar decisões, a teoria das pro-babilidades auxilia em diversas profissões como na engenharia, ao de-terminar a quantidade de pistas de um aeroporto; ou a quantidade de boxes e mecânicos em uma concessionária, em função da demanda.

Jogo – Par ou ímpar

Objetivo e função do jogoAnalisar os resultados de um jogo para estabelecer estratégia de esco-lha a partir da resolução de um problema.

DescriçãoDivididos em duplas um estudante escolhe par e o outro, ímpar. O jogo consiste em se lançar três dados e multiplicar os resultados. Se o produto for par, ponto para quem escolheu PAR, se for ímpar, para quem escolheu ímpar. Após oito rodadas o jogo termina. Na tabela,

Page 100: Percurso livre - Revivendo conceitos

100 PERCURSO LIVRE · Matemática · Ensino Médio

os estudantes devem anotar o resultado de cada rodada, o produto do resultado dos três dados, em suas respectivas jogadas, e qual foi o(a) vencedor(a) do jogo.

Rodada Par Ímpar1ª

Vencedor:

Do jogo à matemática

Vamos analisar as possibilidades do produto, se par ou ímpar, resul-tantes do lançamento de três dados:

par

ímpar

par

ímpar

par

ímpar

par

ímpar

par

ímpar

par

ímpar

par

par

par

par

par

par

par

ímpar

par

ímpar

Lançamento do

1º dado

Lançamento do

2º dado

Lançamento do

3º dadoProduto

Após analisar as possibilidades, espera-se que os estudantes con-cluam que devem escolher “par” para terem maior probabilidade de vencer: sete de oito ( 7

8 ).

Page 101: Percurso livre - Revivendo conceitos

100 PERCURSO LIVRE · Matemática · Ensino Médio

os estudantes devem anotar o resultado de cada rodada, o produto do resultado dos três dados, em suas respectivas jogadas, e qual foi o(a) vencedor(a) do jogo.

Rodada Par Ímpar1ª

Vencedor:

Do jogo à matemática

Vamos analisar as possibilidades do produto, se par ou ímpar, resul-tantes do lançamento de três dados:

par

ímpar

par

ímpar

par

ímpar

par

ímpar

par

ímpar

par

ímpar

par

par

par

par

par

par

par

ímpar

par

ímpar

Lançamento do

1º dado

Lançamento do

2º dado

Lançamento do

3º dadoProduto

Após analisar as possibilidades, espera-se que os estudantes con-cluam que devem escolher “par” para terem maior probabilidade de vencer: sete de oito ( 7

8 ).

101PERCURSO LIVRE · Matemática · Ensino Médio

Você lembra?

Este assunto foi trabalhado na aula 53 - O conceito de probabilidade, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (ENEM, 2001) Uma empresa de alimentos imprimiu em suas emba-lagens um cartão de apostas do seguinte tipo:frente do cartão

verso do cartão

Como jogar

- Inicie raspando apenas uma das alternativas

da linha de início (linha1).

- Se achar uma bola de futebol, vá para linha 2 e

raspe apenas uma das alternativas.

Continue raspando dessa forma até o fim do jogo.

- Se encontrar um “X” em qualquer uma das linhas,

o jogo está encerrado e você não terá direito ao prêmio.

- Se você encontrar uma bola de futebol em cada uma

das linhas terá direito ao prêmio.

1

2

3

4

5

Cada cartão de apostas possui sete figuras de bolas de futebol e oito sinais de “X” distribuídos entre os 15 espaços possíveis, de tal for-ma que a probabilidade de um cliente ganhar o prêmio nunca seja igual a zero.

Em determinado cartão existem duas bolas na linha 4 e duas bolas na linha 5. Com esse cartão, a probabilidade de o cliente ganhar o prêmio é:

a. 1 27

b. 1 54

c. 1 72

d. 1 108

Page 102: Percurso livre - Revivendo conceitos

102 PERCURSO LIVRE · Matemática · Ensino Médio

Comentário Para facilitar a resolução deste exercício, recomenda-se que suas in-formações sejam passadas para o cartão, assim haverá visualização das possibilidades:

frente do cartão

verso do cartão

Como jogar

- Inicie raspando apenas uma das alternativas

da linha de início (linha1).

- Se achar uma bola de futebol, vá para linha 2 e

raspe apenas uma das alternativas.

Continue raspando dessa forma até o fim do jogo.

- Se encontrar um “X” em qualquer uma das linhas,

o jogo está encerrado e você não terá direito ao prêmio.

- Se você encontrar uma bola de futebol em cada uma

das linhas terá direito ao prêmio.

1

2

3

4

5

Solução comentadaObservar que, para que a probabilidade de o cliente ganhar o prêmio nunca seja igual a zero, é necessário que exista pelo menos uma bola em cada uma das cinco linhas. Se o citado cartão tem duas bolas na linha 4 e duas na linha 5, cada uma das outras três bolas deve estar nas linhas 1, 2 ou 3. A probabilidade de acerto para o cartão todo será o produto das probabilidades de cada linha.

Linha a linha, temos as seguintes probabilidades:1ª linha 1 de 32ª linha 1 de 43ª linha 1 de 34ª linha 2 de 35ª linha 2 de 2 (ou seja, 1)A probabilidade será:

P = × × × × 1 =

1 3

1 4

1 3

2 3

2 108

Page 103: Percurso livre - Revivendo conceitos

102 PERCURSO LIVRE · Matemática · Ensino Médio

Comentário Para facilitar a resolução deste exercício, recomenda-se que suas in-formações sejam passadas para o cartão, assim haverá visualização das possibilidades:

frente do cartão

verso do cartão

Como jogar

- Inicie raspando apenas uma das alternativas

da linha de início (linha1).

- Se achar uma bola de futebol, vá para linha 2 e

raspe apenas uma das alternativas.

Continue raspando dessa forma até o fim do jogo.

- Se encontrar um “X” em qualquer uma das linhas,

o jogo está encerrado e você não terá direito ao prêmio.

- Se você encontrar uma bola de futebol em cada uma

das linhas terá direito ao prêmio.

1

2

3

4

5

Solução comentadaObservar que, para que a probabilidade de o cliente ganhar o prêmio nunca seja igual a zero, é necessário que exista pelo menos uma bola em cada uma das cinco linhas. Se o citado cartão tem duas bolas na linha 4 e duas na linha 5, cada uma das outras três bolas deve estar nas linhas 1, 2 ou 3. A probabilidade de acerto para o cartão todo será o produto das probabilidades de cada linha.

Linha a linha, temos as seguintes probabilidades:1ª linha 1 de 32ª linha 1 de 43ª linha 1 de 34ª linha 2 de 35ª linha 2 de 2 (ou seja, 1)A probabilidade será:

P = × × × × 1 =

1 3

1 4

1 3

2 3

2 108

103PERCURSO LIVRE · Matemática · Ensino Médio

Simplificando-se o resultado:

=

Resposta – Alternativa C

Resolver problemas do cotidiano, que envolvam o conceito de probabilidade condicional

Apresentação do assunto“No ano de 1654, um jogador da sociedade parisiense, Chevalier de Mère, propôs a Blaise Pascal (1623-1662) algumas questões sobre possibilida-des de vencer jogos. Uma questão foi: “Um jogo de dados entre dois ad-versários chega ao fim quando um dos jogadores vence três partidas em primeiro lugar. Se esse jogo for interrompido antes do final, de que ma-neira cada um dos adversários deve ser indenizado?”. Pascal escreveu a Pierre de Fermat (1601 – 1665) sobre este problema, e a correspondência entre eles deu subsídios ao início da teoria das probabilidades.”1 Veja-mos um caso particular desse tópico: a probabilidade condicional.

Jogo – Circuito

Objetivo e função do jogoO objetivo deste jogo é que os estudantes percebam a interdependên-cia entre dois fatos em situações de probabilidade condicional.

DescriçãoA turma se dividirá em grupos e será feito um circuito composto por quatro etapas dentro da sala, com um estudante para cada etapa. As tarefas ocorrem em sequência e o estudante só poderá executar uma tarefa, depois que o responsável pela atividade anterior tiver termi-nado a sua parte. O tempo será cronometrado e vence a equipe que realizar o percurso em menos tempo.

As atividades podem ser desafios como: responder a uma pergun-ta, quem sabe uma conta relativamente grande, ter várias chaves para abrir uma caixa etc.

2 108

1 54

Page 104: Percurso livre - Revivendo conceitos

104 PERCURSO LIVRE · Matemática · Ensino Médio

Do jogo à matemática

Professor(a), após o final da atividade, chamar a atenção dos estudan-tes para o fato de alguém só poder realizar sua atividade após o tér-mino da anterior. Este é o principal aspecto a ser observado para que haja compreensão do desafio que virá a seguir.

Você lembra?

Este assunto foi trabalhado na aula 54 - O princípio multiplicativo, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (Enem, 2010) Um experimento foi conduzido com o objetivo de ava-liar o poder germinativo de duas culturas de cebola, conforme a tabe-la:

Germinação de sementes de

duas culturas de cebola

culturas

BUSSAB, w. O; MORETIN, L. G. Estatística para as ciências agrárias e biológicas (adaptado).

A

B

total

germinação

germinaram

392

381

773 27

8

19

400

400

800

não germinaram

total

Desejando-se fazer uma avaliação do poder germinativo de uma das culturas de cebola, uma amostra foi retirada ao acaso. Sabendo-se que a amostra escolhida germinou, a probabilidade de essa amostra pertencer à cultura A é de:

1Fonte: http://www.matematica.ccet.ufrn.br/doc/Semana%20de%20matemati-

ca%202011/Carlos%20Gomes.pdf, acesso em 22/06/2013

Page 105: Percurso livre - Revivendo conceitos

104 PERCURSO LIVRE · Matemática · Ensino Médio

Do jogo à matemática

Professor(a), após o final da atividade, chamar a atenção dos estudan-tes para o fato de alguém só poder realizar sua atividade após o tér-mino da anterior. Este é o principal aspecto a ser observado para que haja compreensão do desafio que virá a seguir.

Você lembra?

Este assunto foi trabalhado na aula 54 - O princípio multiplicativo, do livro do aluno do Telecurso (Ensino Médio).

Desafio

1) (Enem, 2010) Um experimento foi conduzido com o objetivo de ava-liar o poder germinativo de duas culturas de cebola, conforme a tabe-la:

Germinação de sementes de

duas culturas de cebola

culturas

BUSSAB, w. O; MORETIN, L. G. Estatística para as ciências agrárias e biológicas (adaptado).

A

B

total

germinação

germinaram

392

381

773 27

8

19

400

400

800

não germinaram

total

Desejando-se fazer uma avaliação do poder germinativo de uma das culturas de cebola, uma amostra foi retirada ao acaso. Sabendo-se que a amostra escolhida germinou, a probabilidade de essa amostra pertencer à cultura A é de:

1Fonte: http://www.matematica.ccet.ufrn.br/doc/Semana%20de%20matemati-

ca%202011/Carlos%20Gomes.pdf, acesso em 22/06/2013

105PERCURSO LIVRE · Matemática · Ensino Médio

a. 8 27

b. 19 27

c. 381 773

d. 392 773

e. 392 800

ComentárioProfessor(a), chame a atenção dos estudantes para o fato de este exer-cício ser uma aplicação de Probabilidade Condicional. A probabilidade de o evento A (amostra pertencer à cultura A) acontecer, dependente do evento B (amostra escolhida germinou), ou seja, a probabilidade de A muda após o evento B ter acontecido.

Solução comentadaO que se pede é que se calcule a probabilidade condicional de A dado B.

Precisamos calcular os eventos comuns a A e B, ou seja, A B

P (A|B) = n (A B) = 392 n(B) 773

Resposta – Alternativa D

Page 106: Percurso livre - Revivendo conceitos

PERCURSO LIVRE Revivendo Conceitos

Page 107: Percurso livre - Revivendo conceitos

PERCURSO LIVRE Revivendo Conceitos

PERCURSO LIVRE Revivendo Conceitos

Page 108: Percurso livre - Revivendo conceitos

FUNDAÇÃO ROBERTO MARINHO

Percurso Livre MatemáticaEnsino Médio - Revivendo Conceitos

SUPERVISÃO GERALVilma Guimarães

COORDENAÇÃO PEDAGÓGICACélia FariasMaria de Fátima GabrielTereza Farias

EQUIPE DE CONTEÚDOSandra Portugal (Coord.)José Henrique de Oliveira

SUGESTÕES E REVISÃO DE CONTEÚDOMaria Emília RodriguesRenan Carlos da Silva

EQUIPE DE MATERIAISHelena Jacobina (Coord.)Anne RochaJacqueline BarbosaPaula Reis

REDAÇÃOZilda Ferreira Fressa

COLABORAÇÃO (Seção Jogo)Nathália Basil

EDIÇÃOSapoti Projetos Culturais

REVISÃOEliane Sondermann

PROJETO GRÁFICO Grande Circular

ILUSTRAÇÕESGrande Circular