1-2-br (25)

Upload: rahmani-bagher

Post on 03-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 1-2-br (25)

    1/15

    PAPERREF#8030Proceedings:EighthInternationalSpaceSyntaxSymposium

    EditedbyM.Greene,J.ReyesandA.Castro.SantiagodeChile:PUC,2012.

    8030:1

    THEEFFECTSOFURBANFORMONWALKINGTOTRANSIT

    AUTHOR: AyeZBILOkanUniversityDepartmentofArchitecture,Istanbul,Turkey

    email:[email protected]

    JohnPEPONISGeorgiaInstituteofTechnologyCollegeofArchitecture,Atlanta,UnitedStates

    email:[email protected]

    KEYWORDS: StreetConnectivity,LandusePatterns,WalkingforTransit,Atlanta,SpatialStructureofUrbanLayouts

    THEME: MethodologicalDevelopmentandModeling

    AbstractThisstudyanalyzesanonboard transitsurveyconductedby theAtlantaRegionalCommission inorder to

    determinehowfarurbandensity,mixed landuses,and streetnetwork connectivityare related to transit

    walkmode shares to/from stations. The data are drawnfrom all the stations ofAtlantas rapid transit

    network(MARTA).Overall,theanalysespresentedinthisstudyconfirmthehypothesisthat localconditions

    aroundMARTA rail stationsare significantly related to riders choice towalk to/from transit. The results

    emphasizetheimportanceofincludingmeasuresofstreetconnectivityintransitorientedstudies.Itisshown

    that street connectivity is stronglyassociatedwithwalkmode shareswhen controllingfor transit service

    characteristicsas

    well

    as

    population

    density,

    land

    use

    mix

    and

    personal

    attributes.

    The

    research

    findings

    have several implications. They confirm that transit oriented policies are better supported by urban

    developmentpoliciesand zoningand subdivision regulations thatencourage transitfriendlyurbanforms.

    Findingsalsoaugmenttheknowledgebasethatsupportstransitorienteddevelopmentbyemphasizingthe

    contributionofthespatialstructureofthestreetnetwork,overandabovetheimpactofsidewalkprovision

    anddesignandpedestriansafety.

  • 8/12/2019 1-2-br (25)

    2/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:2

    OBJECTIVES

    The aim of this study is to determine how far urban density, mixed landuses, and street network

    connectivityarerelatedtotransitwalkmodesharescontrollingforsociodemographicattributesandtransit

    service features. The underlying hypothesis is that environments that are connected so as to support

    differentkindsofwalkingalsosupportpublictransportation.Usingtraveldatafromthe20012002Atlanta

    RegionalOnBoardTransitSurvey,multivariateregressionequationsareestimatedwithin0.25,0.5,and1

    mileradiiaroundMARTArailstationspredictingwalkmodeshares.Assuch,thisstudyaimstobuildupon

    the growing literature onwalkmode choice by investigating towhat extent local conditions of station

    environmentscontributetoanexplanationofvariations intransitaccess/egresswalkingshares,definedas

    thenumberofriderswalkingfromwithinarangeasaproportionoftotalridership.Thisresearchrepresents

    animportantcontributiontowardunderstandingtheextenttowhichstreetnetworkconnectivityinfluences

    thechoicetowalkfortransitacriticaldimensionofoverallqualityoflife.

    RESEARCHBACKGROUND

    Previousstudieshaveusedvariousmeasuresofthebuiltenvironmenttocapturetheeffectsofurbanform

    ontravelmodechoice,butmostoftheliteraturehasbeenframedaroundthreedimensionsofurbanform:

    density,diversityoflanduseandstreetnetworkdesign.

    Theprodensityargumentconsidersdensityasthemost importantfactoraffectingtravelchoices(Smith

    1984;MarshallandGrady2005;BadoeandMiller2000).Aplethoraofrecentstudieshavesuggestedthat

    compact developments with higher densities encourage nonmotorized travel by reducing the distance

    betweenoriginsanddestinations;byofferingawidervarietyofchoicesforcommutingandabetterquality

    of transit services; and by triggering changes in the overall travel pattern of households (Cervero and

    Kockelman 1997; Krizek 2003; Ewing et al. 1994). Conclusions regarding the relative importance of

    employmentandpopulationdensitiesoncommutemodechoiceprovidesomeevidencethattheprobability

    of walking (both for work and nonwork trips as well as walking for commute) increases at higher

    populationdensities (grosspopulationdensityat triporiginsanddestinations)andathigheremployment

    densities(grossemploymentdensityatoriginsonly),controllingforavarietyofsociodemographicfactors

    thatinfluencetransportchoice(FrankandPivo1994;ReillyandLandis2002;Chatman2003).Ontheother

    sideofthedebate,otherstudiescontendthatanyassociationbetweenurbanformandtravelbehavior is

    due to the intervening relationship between density and various factors such as income levels, auto

    ownership rates, costandefficiencyof transit service,and the supplyandpriceofparking (Meyer1989;

    ParsonsBrinkerhoffQuadeandDouglasInc.1996b,PushkarevandZupan1982;GomezIbanez1996).Thus,

    it seems imperative that conclusions regarding density should be considered in conjunctionwith transit

    serviceandsociodemographicattributes.

    Recentstudiesexploringthelandusetransportationconnectionhaveverifiedhighlevelsoflandusemixat

    thetriporiginsanddestinationsastheprimarydriverofmodechoice(BhatandPozsgay2002;Rodriguez

    and Joo 2004; Schwanen andMokhtarian 2005). Studies regarding themeasurable impacts of landuse

    characteristicsontravelhaveshownthattheproportionsoftripsbypublictransitandwalking increaseas

    the intensityandmixingof landuses ishigher(Cervero1996;Cervero2002;CerveroandKockelman1997;

    Frank and Pivo 1994). This is reflected in different trip generation rates and (sometimes)mode shares

    attributedtodifferentlandusedevelopmentpatterns.Thus,itisarguedthatimprovingthediversityofuses

  • 8/12/2019 1-2-br (25)

    3/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:3

    in neighborhoods through flexible zoning can reduce automobile dependence and encourage walking

    (Rajamanietal.2003).

    Incontrasttothefocusontheeffectofdensityandlanduseontravelbehaviour,therehasbeenrelatively

    lesserattentionontheimportanceattributedtostreetnetworkdesign.Forstreetnetworkdesign,prevalent

    measuresofconnectivityhavebeenlimitedtoaveragemeasuresofstreetnetworks,suchasthenumberof

    intersections,percentofgriddedstreets,andaverageblocksizesperarea.Acommonthemeofthisbodyof

    research is that inordinate size of street blocks or the lack of a finegrained urban network of densely

    interconnected streets fails topromotehigherwalking rates for transport (Kerretal.2007;Cerveroand

    Gorham1995)and increasedproportionandnumberofutilitarianandnonworkwalk trips (Handy1996;

    Moudonetal.2006;LeeandMoudon2006).Apartfromaveragemeasuresofstreetdensity,somestudies

    haveinvestigatedtheunderlyingdifferencesofstreettypes,suchasthedistinctionsbetweentraditionalvs.

    suburbanandgridvs.culdesac,toshowastatisticallysignificantrelationshipbetweenstreetdesignwitha

    gridlikegeometryand increased frequencyofwalking trips (Shriver1997;GreenwaldandBoarnet2001;

    Handy1992;Rajamanietal.2002;KhattakandRodriguez2005).

    In spite of the burgeoning literature concernedwith street connectivity, conclusions about the relative

    importanceof streetnetwork configuration inoverall travelbehavior remainsunclear.One reason is the

    absence of commonly accepted measures that capture the internal structure of urban areas. The

    significance of spatial structure in affecting pedestrian movement has been addressed through the

    frameworkof configurationalanalysisof space syntax.Empirical studieshave shown that road segments

    thatareaccessiblefromtheirsurroundingswithfewerdirectionchangestendtoattracthigherflows(Hillier

    1996; Peponis andWineman 2002). From a point of view of this study, the key implication of previous

    syntacticstudies isthatourunderstandingofhowstreetnetworks impactbehaviorsandperformancesof

    differentkinds issignificantly improvedwhenweapplystrongerdescriptivemethodsandbettermeasures

    ofspatialproperties.Asecond reason fortheweakexplanatorypowerofstreetnetworkdesign inurban

    models is the absence of rich landuse and urban design data. Themodels employed by the broader

    literatureonurbanformandpedestrianbehaviorhaveturnedtorelativelylargerunitsofanalyses,suchas

    TrafficAnalysisZones(TAZs),censustracts,orblockgroups.Thesegrossgeographicunitsestimateaverage

    regionalurbanformcharacteristics,failingtocapturefinegrainedlanduseanddesignaspectsessentialfor

    understanding travel impacts of smallscale placeoriented projects.Anothermethodological dilemma of

    studyingthetravelimpactsofstreetnetworkdesignisthemulticollinearitybetweenurbanfeatures.Clearly,

    the foregoing findings point to the fact that urban formmeasures are interrelated since denser areas

    typicallyhavehigher landusemixtures,onaveragehigherstreet intersectionsperareawithmoregridiron

    streetnetworkpatterns(ParsonsBrinkerhoffQuadeandDouglasInc.1996a).

    Thisstudyattempts toovercomesomeof themethodologicaldrawbacksunderlinedhere in twoaspects.

    First,usingconnectivitymeasureswhicharesensitivetoboththesinuosityandthedensityofthenetwork,

    the impactsof street layoutonwalkingareassesedmore rigorously,controlling for themulticollinearity

    causedbyvariousotheraspectsofthebuiltenvironment.Second,thestatisticalmodelsdevelopedinclude

    highlydisaggregatedataatthesegmentandparcellevelwithrespecttostreetnetworkdesignandlanduse

    data.Thesesmallerunitsofanalysispreventtheunfairadvantageofdensitymeasures,generallymeasured

    ataprecisemetricscale,overlanduseanddesignmeasures,computedthroughcoarserindices,anddetect

    walkingimpactsofurbanformmoreclearly.Giventhecomplexityofthefactorsreviewedhereanyattempt

    todevelopalternativebehavioraltheoriesandtoarriveatcomprehensiveexplanatorymodelswouldexceed

    thescopeofthisstudy.Rather, thestrategy inthisresearch is to focusonsomeparticularregularitiesof

  • 8/12/2019 1-2-br (25)

    4/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:4

    interesthowfardostreetnetworksencouragemorepeopletowalktothestationasaproportionoftotal

    ridership.

    CASECONTEXTANDDATA

    MARTAstationsarecharacterizednotonlybytheirowncharacteristics, includingthefrequencyofservice

    andridership levels,butalsobythepropertiesofthesurroundingareas.Surroundingareasofstationsare

    identifiedascirclesof0.25,0.5and1mileradiustojudgehowtheradiusdistancefortheanalysisaffects

    results.Thisstudyreliesoncurrentlyavailabledatasourcesonsociodemographics,landusecompositions,

    grossdensities,andstreetnetworksforsuchareas.

    Definitionofthestudyarea

    Figure1illustratesthegeographicallyaccuraterepresentationofMARTArailsystemoverlaidonthemapof

    Atlanta.Asshown,thetransitsystem isboundedwithinmetroAtlanta;only4stations,namelyDunwoody,SandySprings,NorthSprings,andIndianCreek,liebeyondI285.

    Figure1.RealgeometryofthesystemoverlaidonthemapofAtlantawithinI285.Thegreylinesrepresentroadswhiletheredlines

    denotethefreewaysystem.

  • 8/12/2019 1-2-br (25)

    5/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:5

    Dependentvariable:proportionofriderswalking

    Using traveldata from the20012002RegionalOnBoard Transit Survey, thewalkmode sharedatawas

    extractedfromthetraveldataof individualriders(n=13,751). It istheratiooftotalwalktripstothetotal

    ridershipbystation.Inotherwords, itrepresentsthepercentofwalking, includingbothaccessandegress

    walkmodeshares.

    Independentvariables

    The independentvariablesemployed in themodelswere selected fromamultitudeof factors thatwere

    showntobesignificantlyrelatedtomodechoicebytheliterature,andweregroupedintothefollowingsix

    categories:

    1. Connectivity:Themeasures of connectivity applied in this research have been developed atGaTech to allow for the

    analysisofstandardGISbasedrepresentationsofstreetnetworksaccordingtostreetcenterlines(Peponisetal.2008).Theunitofanalysisistheroadsegment.Roadsegmentsextendbetweenchoicenodes,orstreet

    intersectionsatwhichmovementcanproceedintwoormorealternativedirections.Figure2illustratesthe

    newunitofanalysisbyclarifyingthedifferencebetweenroadsegmentsandlinesegments.

    Figure2.Definitionoflinesegmentsandroadsegments.Source:Peponisetal.2008.

    Metric reach captures thedensityof streetsand streetconnectionsaccessible fromeach individual road

    segment. This ismeasured by the total street length accessible from each road segmentmoving in all

    possibledirectionsup toaparametrically specifiedmetricdistance threshold.Directional reachmeasures

    theextenttowhichtheentirestreetnetworkisaccessiblewithfewdirectionchanges.Thisismeasuredby

    thestreetlengthwhichisaccessiblefromeachroadsegmentwithoutchangingmorethanaparametrically

    specifiednumberofdirections. Figure 3 illustrates the twomeasures. In this researchmetric reachwas

    computed for1,0.5and0.25milewalkingdistance thresholds.Directional reachwas computed for two

    directionchangessubjecttoa10anglethreshold.Acompositeconnectivitymeasure(metricreachdivided

    bythecorrespondingdirectionaldistance,subjecttoa10anglethreshold)wasalsoaddedtocalculatethe

  • 8/12/2019 1-2-br (25)

    6/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:6

    ratioofmetric reach to theaveragedirectionaldistanceassociatedwith it.Thiscompositevariable takes

    highervaluesasstreetdensityincreasesandasaccesstostreetsbecomesmoredirect.Inotherwords,road

    segmentsfromwhichmorestreet length isaccessiblewithinthewalkingradius,takingfewerturnstoget

    everywhere,drawgreatervolumesofpedestrians.

    Figure3.Diagrammaticdefinitionofsegmentbasedconnectivitymeasures.Source:Peponisetal.2008.

    2. Accessibility:Sidewalkavailabilitymeasuring thepercentageofstreetswithsidewalkthatareaccessible topedestrians

    withinwalkingrangesofstations.

    3. Density:Populationdensity (people ingross acres)within1,0.5, and0.25mile radiiof stationswere established

    usingUS2000censusdata.

  • 8/12/2019 1-2-br (25)

    7/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:7

    4. LandUse:Mixeduseentropyindex

    1,basedonaformuladerivedfromCerveroandKockelman(1997),Cervero(2006),

    and Greenwald (2006), was computed using parcelbased landuse data acquired from the database

    developed at the Center for GIS at Georgia Tech for the SMARTRAQ program (Goldberg et al. 2006).

    Separateentropyindiceswerecomputedfor0.25,0.5,and1mileradiiaroundeachMARTArailstation.

    5. Transitservicefeatures:Transitservicefeatures,namelysupplyofparkandridefacilities

    2,servicefrequency

    3,feederbusservices

    4,

    andstationstructures5were included inordertocontrolforthe impactsoftransitoperationalanddesign

    factorsonwalkinglevels.

    6. Sociodemographics:A composite sociodemographic variable was developed to control for personal and household

    characteristics.Autoownership relativizedbypercapita incomemeasures the ratioofautoownership to

    percapitaincome(annualhouseholdincomedividedbyhouseholdsize).

    MODELINGWALKINGASTRANSITACCESS/EGRESSMODECHOICE

    We produced standard regressionmodels and reducedmodels forwalkmode shareswithin 1mile

    rangetoidentifythestatisticalsignificancelevelsofallvariablesandtocapturetheuniquecontributionsof

    connectivitymeasurestotheoverallmodel.Thestandardmodel includesall independentvariables.The

    reduced model shows the extracted measures which are statistically significant at 5% level in the

    standardmodel. Thenonurban form variableswere entered into the regression first to allow for the

    evaluationofurbanformvariablesincontextrelativetootherfactorsaffectingtravelbehavior.Urbanform

    measureswere thenadded into themodel respectively todemonstrate theeffectofaddingeach to the

    model and to inferwhether some variables could be eliminated in the finalmodel without noticeably

    increasingtheresidualsumofsquares.Whenmultivariateregressionsarerunforthreerangesseparately,

    thecoefficientofdeterminationisfoundtobeconsiderablyhigherfor1milerange.Eventhoughtherelative

    effectsizeofmetricreachisconsistentacrossallranges,ofamileappearstobeanoverlylimiteddistance

    thresholdsinceitfailstocapturetheeffectsoflandusemix.Thus,resultsat1milerangearereportedhere.

    Table 1 shows the results of standard regression models for 1mile radii including the connectivity

    measuremetricreachasthestreetconnectivityvariable.

    1

    k

    pp

    entropyuseMixed

    k

    i ii

    ln

    ln

    1 1

    2numberofstationparkingspaces

    3numberofinboundtrainsinampeakhour(7am9am)

    4availabilityandnumberoffeederbusesarrivingatstation

    5typesofstationstructure:atgrade,elevated,underground

  • 8/12/2019 1-2-br (25)

    8/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:8

    Fromtherelativeeffectsizesitisclearthattheprimaryfactorsinexplainingpredictabilityaremetricreach

    and landusemix.This result indicates that thedecision towalk to/from transit is significantlyassociated

    withthedensityofavailablestreetsandmixingoflanduseswithinalargersurroundingcontextofstations.

    Somewhat surprisingly, the population density coefficient is positive but not significant. Thismight be

    supportiveoftheargumentthatemploymentdensityexertsastronger influenceonthevariation inmode

    choice forwalking(FrankandPivo,1994),andthatcombinedpopulationandemploymentdensitieshasa

    greater degree of explanatory power overmode shares (Parsons Brinkerhoff Quade and Douglas Inc.,

    1996a). Thus, future research should take into account employment density in addition to population

    density.

    Standard models also point to statistically significant associations between nonurban variables and

    walkingshares.Consistentwiththeory,walkmodesharesaresensitivetotransitservicelevelsandpersonal

    attributes.Thecoefficientonthefeederbusvariableindicatesthattheavailabilityoffeederbusservicesat

    stationsisnegativelyassociatedwiththeproportionofwalking,withmorepeoplechoosingtoridethebus

    to/fromstationsthantowalk.

  • 8/12/2019 1-2-br (25)

    9/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:9

    Multivariate regressionmodelsestimatedby including thecompositeconnectivitymeasure,metric reach

    divided by the corresponding average directional distance based on metric reach (10), follow similar

    patternswiththeearliermodelsincludingmetricreach.Table2reportstheresultsofstandardregression

    model for1mileradii.Resultsreveal thataside fromstreetdensityand landusemix,spatialstructureof

    urbanareasalsomattered.Thestandardizedcoefficientforthecompositeconnectivitymeasureispositive

    and statistically significant.The signand significanceof the coefficient remains consistentevenafter the

    inclusion of other urban formmeasures, controlling for nonurban form factors. This indicates that the

    Table

    1.Effecttestsformultivariateregressionsestimatingthe

    proportionofwalkingwithin1mileb

    ufferforallstations

    consideredasasingle

    set

  • 8/12/2019 1-2-br (25)

    10/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:10

    configurationofstreetnetworksatthescaleofanindividualareaisareasonablysignificantpredictorofthe

    variation inwalkmode shares at stations.Moreparticularly, the composite connectivitymeasure,which

    takes intoaccountbothstreetdensityandtheshapeandalignmentofstreetsas indexedbythedirection

    changesneededtonavigatethesystem,isclearlyassociatedwithriderschoicetowalkfortransit.

    Table 3 shows the results of reduced models by including metric reach (1mile) and the composite

    connectivitymeasure,metric reach divided by the corresponding average directional distance based on

    metricreach(10), for1mileradii.Comparisonsofcoefficientswithinthereducedmodelsprovideuseful

    Table

    2.Effecttestsformultivariate

    testsformultivariateregressions

    multivariateregressionsestimatingthe

    regressionsestimatingtheproportionof

  • 8/12/2019 1-2-br (25)

    11/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:11

    insightsabouttheindividualcontributionofurbanformmeasures.Resultssuggestthattheprimaryfactors

    in explaining predictability are connectivitymeasures and landusemix. Stationswith highermetric and

    directionalaccessibilityaswellasmaximallymixeduseswithintheircatchmentareasattractmorewalkon

    riders, evenwhen controlling for other factors. In fact, street network overpowers the effects of socio

    demographic characteristics and transit features. Therefore it would appear that in addition to street

    density,spatialstructurebasedondirectionalbiasisindeedimplicatedinthewayinwhichstreetnetworks

    functiontosupportwalking.

    Table3.Parameterestimatesandresidualplotsforthereducedmodelsbyincluding(a)metricreach(1mile)and(b)thecomposite

    connectivitymeasure,estimatingtheproportionofwalkingwithin1milebufferforallstationsconsideredasasingleset.

    (b) ReducedModel

    totalriderswalked/total

    ridershipperstation B t std

    constant 0,15

    servicefrequency 0,00 2,47 0,26

    feederbusservices(no) 0,06 3,33 0,28

    mixedlanduseindex 0,77 6,80 0,61

    avg.metricreach(1mile)/

    directionaldistance(10)0,02 3,91 0,42

    N 37

    R2 0,81

    R2adjusted 0,79

    std.error,Se

    0,06

    Prob>F 0,00

    Numbersinbold=p

  • 8/12/2019 1-2-br (25)

    12/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:12

    DISCUSSION

    Overall, the analyses presented here confirm the hypothesis that local conditions aroundMARTA rail

    stations are significantly associated with increased transit access/egress walkmode shares. Statistical

    models developed reveal thatmeasures of street network design and landusemix aremost strongly

    associatedwithwalkingshares,whencontrollingforpopulationdensity,transitservicecharacteristics,and

    personalattributes.Whilemixeduseneighborhoodsaroundstations increasetheoddsofwalkingto/from

    transit,streetnetworkswithdenserandmoredirectconnectionsareassociatedwithhigherproportionof

    walking shares among station patrons. Importantly, the results presented here also underscore the

    significance of the spatial structure of street networks, specifically the alignment of streets and the

    directionaldistancehierarchyengenderedbythestreetnetwork.Directionalaccessibilityplaysassignificant

    aroleasmetricaccessibilityinaffectingtheproportionofriderswalkingfortransit.Thespatialstructureof

    street network does notwork independently of landuse. On the contrary, based on the standardized

    coefficientsestimatedinregressionmodels,streetnetworkandlandusemixhavecomparablyhighpositive

    impactsontransitwalkmodeshares.

    Apart from theorybuilding, this research alsoholds validity formorepractical implications.The findings

    confirmthehypothesisthatwellstructuredanddifferentiatedstreetnetworksaffecttransitaccess/egress

    walkmode shares.These resultsare likely toguide futureefforts to integrate subdivisionprovisionsand

    regulationswith zoning regulations indeveloping currently sparse suburbanareas towardsdense transit

    orientedurbanhubs.Traditionalmodelsestimatingdevelopmentimpactsarebasedontheconsiderationof

    sociodemographic factors and transit service related features, but they do not take into account the

    structuralqualitiesofstreetnetworks.Theevidenceinthisstudyconfirmsthepremisethatthedemandfor

    public transportrelated walking is significantly influenced by the configuration of street layout. Thus,

    incorporatingmeasuresofstreetdensityandmeasuresofdirectionalaccessibilityintransitorientedstudies

    canleadtoenhancedmodelsofurbanformandfunction,which,inreturn,caninformspecificurbandesign

    andurbanmasterplanningdecisions.Findingsalsosuggestthattransitorientedpoliciesarecompatiblewith

    policiesaimedattheenhancementofhealthandthereductionofobesitythroughdailyphysicalactivity

    walkingto/fromthestationcancontributeasignificantpartofthedailyactivityrecommendedbyHealthy

    LivingGuidelines (USDepartmentofHealthServices1996).Finally findingsaugment the knowledgebase

    thatsupportstransitorienteddevelopmentbyemphasizingthecontributionofthespatialstructureofthe

    streetnetwork,overandabovetheimpactofsidewalkprovisionanddesignandpedestriansafety.

    REFERENCES

    Badoe,D.&Miller,E.(2000).Transportationlanduseinteraction:empiricalfindings inNorthAmerica,and

    theirimplicationsformodeling.TransportationResearchPartD:TransportandEnvironment,5,235263.

    Bhat, C.R. & Lockwood, A. (2004). On Distinguishing Between Physically Active and Physically Passive

    EpisodesandBetweenTravelandActivityEpisodes:AnAnalysisofWeekendRecreationalParticipation In

    theSanFranciscoBayArea.TransportationResearchPartA:PolicyandPractice,38(8),573592.

    Bhat, C.R. & Srinivasan, S. (2005). A Multidimensional Mixed OrderedResponse Model for Analyzing

    WeekendActivityParticipation.TransportationResearchPartB,39(3),255278.

  • 8/12/2019 1-2-br (25)

    13/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:13

    Bhat,C.R.,&Pozsgay,M.A.(2002).DestinationChoiceModelingforHomeBasedRecreationalTrips:Analysis

    and Implications for Landuse, Transportation,andAirQualityPlanning. TransportationResearchRecord:

    JournaloftheTransportationResearchBoard,1777,4754.

    Bhat,C.R.,&Zhao,H.(2002).TheSpatialAnalysisofActivityStopGeneration.TransportationResearchB,36

    (7),593616.

    Boarnet,M.G.&Crane,R.(2001).Travelbydesign:Theinfluenceofurbanformontravel,OxfordUniversity

    Press,USA.

    Boarnet, M.G.,&Sarmiento,S. (1998).CanLandUsePolicyReallyAffectTravelBehavior?AStudyofthe

    LinkbetweenNonworkTravelandLandUseCharacteristics.UrbanStudies,35(7),11551169.

    Cervero,R.&Gorham,R. (1995).Commuting in transitversusautomobileneighborhoods.Journalof the

    AmericanPlanningAssociation,61,210225.

    Cervero, R. & Kockelman, K. (1997). Travel demand and the 3Ds: density, diversity, and design.

    TransportationResearchPartD:TransportandEnvironment,2,199219.

    Cervero, R. (1996). Mixed landuses and commuting: evidence from the American Housing Survey.

    TransportationResearchPartA:PolicyandPractice,30,361377.

    Cervero,R. (2002).Builtenvironmentsandmode choice: towardanormative framework.Transportation

    ResearchPartD:TransportandEnvironment,7,265284.

    Cervero,R.(2006).Alternativeapproachestomodelingthetraveldemandimpactsofsmartgrowth.Journal

    oftheAmericanPlanningAssociation,72,285295.

    Chatman,D.G.. (2003).HowDensityandMixedUsesattheWorkplaceAffectPersonalCommercialTravel

    andCommuteModeChoice.TransportationResearchRecord:JournaloftheTransportationResearchBoard,

    1831,193201.

    Ewing,R.H.,Haliyur,P.&Page,G.(1994).Gettingaroundatraditionalcity,asuburbanPUD,andeverything

    inbetween.TransportationResearchRecord:JournaloftheTransportationResearchBoard,1466,5362.

    Frank,L.&Pivo,G.(1994).RelationshipsbetweenlanduseandtravelbehaviorinthePugetSoundRegion.

    FinalSummaryReport,preparedfortheWashingtonStateTransportationCommission.

    Goldberg,D.,Chapman,J.,Frank,L.,Kavage,S.&Mccann,B.(2006).NewDataforaNewEra:ASummaryof

    theSMARTRAQ Findings; Linking LandUse, Transportation,AirQuality andHealth in theAtlantaRegion.

    SMARTRAQSummaryReportSmartTraqandSmartGrowth.

    GomezIbanez,J.(1996).BigCityTransitRidersnip,Deficits,andPolitics:AvoidingRealityinBoston.Journal

    oftheAmericanPlanningAssociation,62,3050.

    Greenwald,M.J.(2006).Therelationshipbetween landuseand intrazonaltripmakingbehaviors:Evidence

    andimplications.TransportationResearchPartD:TransportandEnvironment,11,432446.

  • 8/12/2019 1-2-br (25)

    14/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:14

    Greenwald,M.J.&Boarnet,M.G.(2000).Builtenvironmentasdeterminantofwalkingbehavior:analyzing

    nonwork pedestrian travel in Portland, Oregon. Transportation Research Record : Journal of the

    TransportationResearchBoard,1780,3342.

    Handy, S. (1992).Regional versus local accessibility:neotraditionaldevelopment and its implications for

    nonworktravel.BuiltEnvironment,18,253267.

    Handy, S. (1996).Understanding the link between urban form and nonwork travel behavior.Journal of

    PlanningEducationandResearch,15,183198.

    Hillier,B.(1996).Spaceisthemachine:aconfigurationaltheoryofarchitecture,CambridgeUniversityPress.

    Kerr, J., Frank, L., Sallis, J.& Chapman, J. (2007). Urban form correlates of pedestrian travel in youth:

    Differencesbygender,raceethnicityandhouseholdattributes.TransportationResearchPartD:Transport

    andEnvironment,12,177182.

    Khattak,A.J.&Rodriguez,D.(2005).Travelbehaviorinneotraditionalneighborhooddevelopments:Acase

    studyinUSA.TransportationResearchPartA,39,481500.

    Krizek,K.(2003).Residentialrelocationandchanges inurbantravel:Doesneighborhoodscaleurbanform

    matter?JournaloftheAmericanPlanningAssociation,69,265281.

    Lee, C.&Moudon, A. (2006). The 3Ds+ R:Quantifying land use and urban form correlates ofwalking.

    TransportationResearchPartD:TransportandEnvironment,11,204215.

    Marshall, N. & Grady, B. (2005). Travel demandmodeling for regional visioning and scenario analysis.

    TransportationResearchRecord:JournaloftheTransportationResearchBoard,1921,4452.

    Meyer,M.(1989).AToolboxforalleviatingtrafficcongestion,InstituteofTransportationEngineers.

    Moudon,A.,Lee,C.,Cheadle,A.,Garvin,C.,Johnson,D.,Schmid,T.,Weathers,R.&Lin,L.2006.Operationaldefinitions of walkable neighborhood: theoretical and empirical insights. Journal of Physical Activity &

    Health,3,99117.

    ParsonsBrinkerhoffQuadeandDouglasInc.(1996a).TCRPReport16:TransitandUrbanForm.Washington,

    D.C:TRB,NationalResearchCouncil.

    ParsonsBrinkerhoffQuadeandDouglasInc.(1996b).Influenceoflandusemixandneighborhooddesignon

    transitdemand.UnpublishedreportforTCRPH1project).Washington,D.C.:TransitCooperativeResearch

    Program,TransportationResearchBoard.

    ParsonsBrinkerhoffQuadeandDouglasInc.,CambridgeSystematics&CalthorpeAssociates.(1993).Making

    theLandUse,Transportation,AirQualityConnection(LUTRAQ).Portland,OR:1000FriendsofOregon.

    Peponis, J. &Wineman, J. (2002). Spatial structure of environment and behavior. In: Bechtel, R., and

    Churchman,A.(ed.)Handbookofenvironmentalpsychology.NewYork:JohnWileyandSons.

    Peponis, J., Bafna, S. & Zhang, Z.Y. (2008). The connectivity of streets: reach and directional distance.

    EnvironmentandPlanningBPlanning&Design,35,881901.

  • 8/12/2019 1-2-br (25)

    15/15

    Proceedings:EighthInternationalSpaceSyntaxSymposium.

    SantiagodeChile:PUC,2012.

    8030:15

    Pushkarev, B. & Zupan, J. (1982).Where TransitWorks: Urban Densities for Public Transportation. In:

    Levinson, H.S.,Weant, R.A . (ed.) Urban Transportation: Perspectives and Prospects.Westport, CT: Eno

    Foundation.

    Rajamani,J.,Bhat,C.R.,Handy,S.,Knaap,G.,&Song,Y.(2002).Assessingtheimpactofurbanformmeasures

    innonworktripmodechoiceaftercontrollingfordemographicandlevelofserviceeffects.Paperpresented

    atTRB

    Annual

    Meeting.

    Reilly,M.&Landis,J.(2002).TheInfluenceofBuiltFormandLandUseonModeChoiceEvidencefromthe

    1996BayAreaTravelSurvey.FinalReport,preparedforthe InstituteofUrbanandRegionalDevelopment

    UniversityofCalifornia,Berkeley,WP4(1).

    Rodriguez,D.&Joo,J.(2004).Therelationshipbetweennonmotorizedmodechoiceandthelocalphysical

    environment.TransportationResearchPartD:TransportandEnvironment,9(2),151173.

    Schwanen, T. & Mokhtarian, P.L. (2005). What affects commute mode choice: neighborhood physical

    structureorpreferencestowardneighborhoods?JournalofTransportGeography,13,8399.

    Shriver, K. (1997). Influence of environmental design on pedestrian travel behavior in four Austin

    neighborhoods.TransportationResearchRecord:JournaloftheTransportationResearchBoard,1578,6475.

    Smith,W. (1984).Mass transport forhighrisehighdensity living.Journalof Transportation Engineering,

    110,521535.

    U.S.DepartmentofHealthandHumanServices.(1996).PhysicalActivityandHealth:AReportoftheSurgeon

    General. Atlanta, GA:U.S. Department of Health and Human Services, Centers for Disease Control and

    Prevention,NationalCenterforChronicDiseasePreventionandHealthPromotion.