universidade federal do rio grande furg instituto de ...ƒo_final.pdf · tornar melhor,...

121
Universidade Federal do Rio Grande FURG Instituto de Oceanografia Programa de Pós-Graduação em Aquicultura TOXICIDADE DA AMÔNIA E DO NITRITO EM JUVENIS DE LINGUADO Paralichthys orbignyanus Lucas Campos Maltez Rio Grande, RS 2017

Upload: others

Post on 29-Dec-2019

6 views

Category:

Documents


0 download

TRANSCRIPT

Universidade Federal do Rio Grande – FURG

Instituto de Oceanografia

Programa de Pós-Graduação em Aquicultura

TOXICIDADE DA AMÔNIA E DO NITRITO EM JUVENIS

DE LINGUADO Paralichthys orbignyanus

Lucas Campos Maltez

Rio Grande, RS

2017

ii

UNIVERSIDADE FEDERAL DO RIO GRANDE-FURG

INSTITUTO DE OCEANOGRAFIA

PROGRAMA DE PÓS-GRADUAÇÃO EM AQUICULTURA

TOXICIDADE DA AMÔNIA E DO NITRITO EM JUVENIS DE LINGUADO

Paralichthys orbignyanus

Lucas Campos Maltez

Orientador: Prof. Dr. Luciano de Oliveira Garcia

Rio Grande, RS

Março de 2017

Tese apresentada como parte dos

requisitos para obtenção do grau de

Doutor em Aquicultura pelo

Programa de Pós-Graduação em

Aquicultura da Universidade Federal

do Rio Grande.

iii

“Você não pode mudar o vento, mas pode ajustar as

velas do barco para chegar onde quer.”

Confúcio

iv

AGRADECIMENTOS

Ao meu orientador Prof. Dr. Luciano de Oliveira Garcia, não só pela orientação e

ensinamentos fundamentais nesta etapa da minha formação acadêmica, como também pela

amizade e por demonstrar que ficar tranquilo e de bem com a vida, sem esquecer as

responsabilidades, torna tudo mais fácil.

Aos mais que apenas colegas, mas sim amigos do Laboratório de Aquicultura

Continental: Lilian, Lucas, Daniel, Giovanna, Lili, Blade. Obrigado por fazer do LAC um

lugar no qual me sinto em casa! Ao Dr. Barbas, que também ainda faz parte dessa equipe,

mesmo estando lá no outro extremo do Brasil, que sempre se dispôs a me ajudar e

aconselhar.

Aos demais amigos cassineiros, aos de longe, e até aos de muito longe, com quem

gosto de compartilhar os bons momentos, mas que também sei que posso dividir os meus

problemas.

A todos os professores do Programa de Pós-Graduação em Aquicultura, por todo o

conhecimento repassado, o que me motivou a querer aprender cada vez mais. Em especial

aos professores Dr. Luis André Sampaio, Dr. Luis Alberto Romano e Dr. José Monserrat

por abrir as portas de seus laboratórios para que este projeto pudesse ser executado e por

suas valiosas contribuições ao longo do desenvolvimento do trabalho.

Aos técnicos e ex-técnicos da FURG, em especial ao Dr. Diogão e ao Sandro, e a

todos aqueles que participaram de alguma forma na construção dessa tese, seja ajudando na

parte experimental, em alguma análise ou tirando alguma das muitas dúvidas que sempre

me surgiam. Estendo ainda meus agradecimentos a todos os demais funcionários da FURG,

pelas diversas funções indispensáveis que exercem dentro da universidade.

A cada um dos membros da banca, por me conceder seu precioso tempo, que

certamente será traduzido em críticas construtivas e sugestões buscando sempre melhorar o

trabalho.

Aos meus pais, Raymundo e Kátia, onde sempre encontrei todo apoio que precisei e

que apesar dos 3400 km entre Rio Grande e Salvador, sempre se fizeram presentes.

v

À Mariana Holanda, que embarcou nessa viagem desconhecida de quatro anos

comigo, e agora estamos chegando ao destino, com a certeza de que foi a escolha certa.

Muito obrigado pelo amor, carinho e compreensão, e por ser meu maior incentivo para me

tornar melhor, profissionalmente e como pessoa, a cada dia. Ao Duke e à Duna, por

completar essa família, trazendo ainda mais alegria a casa.

À FURG e ao Programa de Pós Graduação em Aquicultura, pela oportunidade de

realizar o doutorado, e a CAPES e ao CNPq pelo suporte financeiro que permitiram o

desenvolvimento deste trabalho.

vi

ÍNDICE

RESUMO GERAL................................................................................................................1

ABSTRACT...........................................................................................................................3

INTRODUÇÃO GERAL......................................................................................................5

OBJETIVO GERAL...........................................................................................................21

OBJETIVOS ESPECÍFICOS............................................................................................21

HIPÓTESES........................................................................................................................22

REFERÊNCIAS BIBLIOGRÁFICAS..............................................................................22

CAPÍTULO 1: Secondary stress responses in juvenile Brazilian flounder Paralichthys

orbignyanus throughout and after exposure to sub-lethal levels of ammonia and

nitrite.....................................................................................................................................32

CAPÍTULO 2: Ammonia exposure and subsequent recovery trigger oxidative stress

responses in juveniles of Brazilian flounder Paralichthys orbignyanus...............................58

CAPÍTULO 3: Oxidative stress and antioxidant responses in juvenile Brazilian flounder

Paralichthys orbignyanus exposed to sub-lethal levels of nitrite.........................................84

CONCLUSÕES.................................................................................................................114

CONSIDERAÇÕES FINAIS E PERSPECTIVAS........................................................114

1

RESUMO GERAL 1

2

O linguado Paralichthys orbignyanus é uma espécie que apresenta grande potencial para a 3

aquicultura intensiva, onde o acúmulo de compostos nitrogenados pode ser um dos 4

principais limitantes a produção. A amônia e o nitrito são os mais tóxicos dentre estes 5

compostos, sendo capazes de induzir diversos distúrbios fisiológicos nos peixes, mesmo se 6

em níveis subletais. Portanto, a presente tese teve como objetivo determinar os efeitos 7

subletais da exposição à amônia e ao nitrito, e posterior recuperação em juvenis do 8

linguado utilizando parâmetros sanguíneos, de estresse oxidativo e histopatologia como 9

biomarcadores. Foram realizados dois experimentos, nos quais os peixes foram expostos a 10

três concentrações de amônia (0,12; 0,28 e 0,57 mg NH3-N.L-1

) ou nitrito (5,72; 10,43 e 11

15,27 mg NO2-N.L-1

), além de um tratamento controle, durante 10 dias. Em seguida os 12

animais foram mantidos por mais 10 dias em água livre ou com concentrações mínimas de 13

amônia (0.00 mg NH3-N.L-1

) ou nitrito (0.05 mg NO2-N.L-1

) para avaliar a recuperação. 14

Foram coletadas amostras de sangue, brânquia, fígado, músculo e cérebro de 9 peixes por 15

tratamento após 1, 5 e 10 dias de exposição, e ao final da recuperação. Os resultados 16

demonstram que os efeitos atribuídos à ação tóxica da amônia e do nitrito nos juvenis de 17

linguado foram influenciados pelo tempo de exposição e concentração, e mesmo nas 18

concentrações mais baixas testadas de ambos os compostos, houve perturbação da 19

homeostase de alguns dos parâmetros. A análise dos parâmetros sanguíneos (glicose, Na+, 20

K+, Ca

++, HCO3

−, pCO2, pH, perfil leucocitário) durante a exposição a amônia e nitrito 21

indicaram diferentes distúrbios metabólicos, osmorregulatórios, ácido-base e na resposta 22

imune dos peixes. A indução a uma condição pró-oxidante nas brânquias, fígado e músculo 23

também foi demonstrada como mais um dos mecanismos de toxicidade destes compostos 24

para a espécie. A inibição do sistema antioxidante (redução da capacidade antioxidante 25

total e da atividade da enzima antioxidante glutationa-S-transferase) e/ou aumento nos 26

níveis de dano oxidativo em lipídio e proteínas demonstram este efeito. Além disso, a 27

ativação de diferentes defesas antioxidantes enzimáticas e não enzimáticas foi observada, 28

indicando a um mecanismo adaptativo para combater ou minimizar o estresse oxidativo. 29

Não foram evidenciadas alterações histopatológicas no cérebro, no fígado e nas brânquias 30

dos peixes decorrentes da exposição à amônia ou ao nitrito. Após o período de recuperação, 31

2

apenas os peixes submetidos ao tratamento 5,72 mg NO2-N.L-1

apresentaram todos os 1

parâmetros sanguíneos e de estresse oxidativo dentro dos valores basais. Para os demais 2

tratamentos do experimento com nitrito e nos peixes expostos a amônia, este 3

restabelecimento ocorreu apenas em parte dos parâmetros. Como conclusão, concentrações 4

a partir de 0,12 mg NH3-N.L-1

e 5,72 mg NO2-N.L-1

causam diversas alterações fisiológicas 5

nos juvenis de linguado, portanto devem ser evitadas nos sistemas de produção. O período 6

de recuperação de 10 dias foi capaz de levar ao restabelecimento parcial ou total da 7

condição fisiológica dos peixes, dependendo do composto e concentração ao qual foram 8

expostos. A recuperação completa foi demonstrada apenas nos peixes expostos a 5,72 mg 9

NO2-N.L-1

. 10

11

Palavras-chave: composto nitrogenado, estresse oxidativo, histologia, parâmetro 12

sanguíneo, recuperação, toxicidade 13

14

3

ABSTRACT 1

2

The flounder Paralichthys orbignyanus is a species with high potential for intensive 3

aquaculture, in which the accumulation of nitrogen compounds is one of the main limiting 4

factors to production. Ammonia and nitrite are the most toxic among these compounds, 5

being able to induce many physiological disturbances in fish, even when in sublethal levels. 6

Therefore, the present thesis aimed to determine the sublethal effects of exposure to 7

ammonia and nitrite and posterior recovery in juvenile flounder using blood and oxidative 8

stress parameters and histopathology as biomarkers. Two experiments were performed, in 9

which the fish were exposed to three concentrations of ammonia (0.12; 0.28 and 0.57 mg 10

NH3-N.L-1

) or nitrite (5.72; 10.43 and 15.27 mg NO2-N.L-1

), plus a control, during 10 days. 11

Then the animals were maintained for more 10 days in water with minimum concentrations 12

of ammonia and nitrite to evaluate the recovery. Blood, gills, liver, muscle and brain were 13

sampled from nine fish per treatment after 1, 5 and 10 days of exposure and at the end of 14

recovery. The results demonstrate that the effects attributed to the toxic action of ammonia 15

and nitrite in juvenile flounder were influenced by the exposure time and concentration. 16

However, even in the lowest concentrations tested for both compounds, there was 17

disturbance of the homeostasis of some of the parameters. The analysis of blood parameters 18

(glucose, Na+, K

+, Ca

++, HCO3

−, pCO2, pH, leukocyte profile) during the exposure to 19

ammonia and nitrite indicated different metabolic, osmoregulatory and acid-base 20

disturbances and immune responses of fish. Induction to a pro-oxidant condition in the 21

gills, liver and muscle was also demonstrated as one of the toxicity mechanisms of these 22

compounds to the species. The inhibition of the antioxidant system (reduction of total 23

antioxidant capacity and of the activity of the antioxidant enzyme glutathione-S-24

transferase) and/or increase of oxidative damage levels in lipids and proteins demonstrate 25

this effect. Furthermore, the activation of different enzymatic and non-enzymatic 26

antioxidant defenses was observed, indicating an adaptive mechanism to combat or 27

minimize the oxidative stress. Histopathological changes in the brain, liver and gills of fish 28

exposed to ammonia or nitrite were not evidenced. After the recovery period, only the fish 29

submitted to treatment 5.72 mg NO2-N.L-1

presented all blood and oxidative stress 30

parameters within the baseline values. For the other treatments of the nitrite experiment and 31

4

the fish exposed to ammonia, this restoration occurred only for some of the parameters. In 1

conclusion, concentrations from 0.12 mg NH3-N.L-1

and 5.72 mg NO2-N.L-1

cause several 2

physiological alterations in juvenile flounder, and should be avoided in production systems. 3

The period of recovery of 10 days was able to induce partial or total reestablishment of the 4

fish physiological condition, depending of the compound and concentration to which they 5

were exposed. Only fish exposed to 5.72 mg NO2-N.L-1

showed complete resumption of 6

normal physiological condition after recovery. 7

8

Keywords: blood parameter, histology, nitrogen compound, oxidative stress, recovery, 9

toxicity 10

11

5

1. INTRODUÇÃO 1

2

1.1. Aquicultura 3

4

Em um cenário global marcado pelo aumento populacional e uma crescente 5

competição por recursos naturais, a produção de alimento para a humanidade será um dos 6

maiores desafios para as próximas décadas. Diante deste panorama, a aquicultura tem 7

despontado como uma alternativa viável para o uso dos recursos naturais disponíveis para 8

produção de proteínas de alta qualidade, de modo econômico, social e ambientalmente 9

sustentável (Troell et al., 2014; FAO, 2016). 10

A aquicultura é o setor de produção de alimentos de origem animal que mais cresce 11

atualmente, o que se deve principalmente a um rápido aumento na demanda por pescado, 12

enquanto a produção pesqueira permanece praticamente constante. No ano de 2014, a 13

produção mundial de pescado foi de 167,2 milhões de toneladas, das quais 73,8 milhões de 14

toneladas (44,1 %) foram provenientes da aquicultura. O Brasil encontra-se na 14ª posição 15

no ranking dos países com maior produção aquícola no mundo, com uma produção total de 16

562,5 mil toneladas, sendo a piscicultura continental (474,3 mil toneladas) a principal 17

responsável por esta produção (FAO, 2016). 18

Por outro lado, a piscicultura marinha ainda é incipiente no país (FAO, 2016), 19

apesar do extenso litoral e de uma ictiofauna nativa rica em espécies com potencial para a 20

aquicultura, que conferem ao Brasil múltiplas possibilidades para o crescimento da 21

atividade. Nos últimos anos, a introdução do beijupirá Rachycentron canadum na 22

piscicultura marinha brasileira não só motivou pesquisas, como iniciativas no setor 23

produtivo, proporcionando ótimas perspectivas para o desenvolvimento da atividade e 24

mudança deste cenário (Sampaio et al., 2010). Entretanto, a carência de insumos (ração, 25

equipamentos, estruturas de produção) e serviços especializados (mão-de-obra, seguro 26

aquícola), e a ineficiência nas questões legais para cessão de águas públicas e licenciamento 27

ambiental ainda são os principais entraves para o crescimento da piscicultura marinha no 28

Brasil (Cavalli et al., 2011). Outro ponto chave necessário para impulsionar a atividade é o 29

desenvolvimento de pacotes tecnológicos adequados para a criação de outras espécies 30

6

nativas com potencial para aquicultura. O robalo-peva Centropomus parallelus, o peixe-rei 1

marinho Odontesthes argentinensis, a tainha Mugil liza e o linguado Paralichtys 2

orbignyanus são algumas dessas espécies (Baldisserotto & Gomes, 2010). 3

4

1.2. Linguado Paralichthys orbignyanus 5

6

O linguado P. orbignyanus (Valenciennes, 1839) (Figura 1) é uma espécie 7

bentônica, carnívora, que pode atingir até 1 m de comprimento total e cerca de 10 kg. 8

Habita águas costeiras e estuarinas, em geral até cerca de 20 m de profundidade, o que 9

facilita a obtenção de reprodutores e a criação nestes ambientes (Bianchini et al., 2010). 10

Sua distribuição se estende do estado do Rio de Janeiro, no Brasil, até Mar del Plata, na 11

Argentina (Figura 2) (Figueiredo & Menezes, 2000), constituindo um importante recurso 12

pesqueiro nestas áreas em que ocorre (Millner et al., 2005). A sua importância comercial é 13

atribuída ao elevado valor de mercado devido a excelente qualidade da carne, além de 14

apresentar um alto rendimento de filetagem (Robaldo et al., 2012). 15

16

17

Figura 1 – Exemplar de linguado Paralichtys orbignyanus (Fonte: arquivo pessoal). 18

7

1

Figura 2 – Distribuição geográfica e probabilidade relativa de ocorrência do linguado 2

Paralichtys orbignyanus (Fonte: FishBase – www.fishbase.org). 3

4

Esta espécie apresenta uma ampla tolerância aos fatores ambientais, como pH 5

(Wasielesky et al. 1997), temperatura (Okamoto & Sampaio, 2012; Garcia et al. 2015), 6

salinidade (Sampaio & Bianchini, 2002) e compostos nitrogenados (Bianchini et al. 1996), 7

bem como a procedimentos de manejo, incluindo anestesia, transporte e captura (Bolasina 8

et al., 2011; Benovit et al., 2012). Além disso, sua desova e larvicultura têm sido realizadas 9

com sucesso em condições de laboratório, permitindo a produção de juvenis com altas 10

taxas de sobrevivência (Sampaio et al. 2007; 2008). 11

Em virtude das características citadas, o linguado é uma das espécies consideradas 12

promissoras para o desenvolvimento da piscicultura marinha no Brasil (Sampaio et al. 13

2007). Apesar da produção comercial ainda não ser uma realidade, a criação desta espécie 14

de forma intensiva, utilizando sistemas de recirculação de água (SRA) vem sendo realizado 15

em escala experimental no Laboratório de Piscicultura Estuarina e Marinha da FURG. 16

Entretanto, ainda há necessidade de mais estudos que proporcionem informações relevantes 17

para que o processo de criação do linguado se torne uma alternativa viável comercialmente 18

nestes sistemas. 19

20

8

1.3. Sistema de recirculação de água 1

2

A intensificação dos sistemas de produção na aquicultura é importante para permitir 3

o desenvolvimento sustentável da atividade, pois aumenta a produtividade e minimiza o uso 4

de espaço e água e a produção de efluentes (Klinger & Naylor, 2012). Entretanto, o 5

incremento da densidade de estocagem exige uma maior atenção ao monitoramento e 6

controle dos parâmetros de qualidade de água, evitando que os organismos sejam mantidos 7

em condições indesejáveis, que afetem o bem-estar e desempenho dos mesmos (Boyd & 8

Tucker, 2012). 9

Dentre os parâmetros de qualidade da água, um dos maiores limitantes para a 10

aquicultura intensiva, sobretudo em sistemas fechados com pequenas taxas de renovação de 11

água, é o acúmulo de compostos nitrogenados, que pode ocorre devido principalmente à 12

excreção dos animais e decomposição de matéria orgânica, tais como sobras de ração e 13

fezes (Ebeling & Timmons, 2012). 14

Apesar de o nitrogênio ser indispensável aos organismos, o problema associado ao 15

acúmulo deste nutriente no ambiente de cultivo está relacionado ao fato de que, alguns 16

compostos nitrogenados, em especial a amônia e nitrito apresentam elevada toxicidade para 17

os peixes (Randall & Tsui, 2002; Jensen, 2003). O uso do SRA (Figura 3a) é uma das 18

alternativas para se intensificar a produção, sem que estes compostos atinjam concentrações 19

indesejáveis. Nestes sistemas, a remoção da amônia e nitrito é assegurada pelo processo de 20

nitrificação que ocorre no biofiltro (Figura 3b). Este processo envolve duas etapas, nas 21

quais a amônia é oxidada a nitrito, e este por sua vez a nitrato, pela ação de bactérias como 22

por exemplo, as dos gêneros Nitrosomonas e Nitrobacter, de acordo com as reações: 23

Nitrosomonas: NH4+ + 1,5O2 → NO2

- + 2H

+ + H2O 24

Nitrobacter: NO2- + 0,5O2 → NO3

- 25

Como produto final da nitrificação, o nitrato tende a acumular em SRA (Ebeling & 26

Timmons, 2012), entretanto este composto é menos tóxico que a amônia e o nitrito para os 27

peixes, principalmente em água salgada, tornando-se um problema apenas em 28

concentrações extremamente elevadas (Baldisserotto, 2013). 29

9

1

2

Figura 3 – Sistemas de recirculação de água (a) com biofiltro (b) do Laboratório de 3

Piscicultura Estuarina e Marinha da FURG (Fonte: arquivo pessoal). 4

5

Apesar da comprovada eficiência do SRA no controle das concentrações de amônia 6

e nitrito, para que isto ocorra o sistema deve ser planejado e construído adequadamente. 7

Assim, deve-se levar em conta o tipo de cultivo a ser empregado (espécie, densidade de 8

estocagem, manejo alimentar, critérios de qualidade da água), de modo que o processo de 9

nitrificação seja eficiente (Ebeling & Timmons, 2012). Entretanto, em sistemas que não 10

apresentem um design adequado, que o biofiltro não esteja devidamente maturado, ou que a 11

ação das bactérias nitrificantes seja afetada negativamente por algum fator, estes compostos 12

nitrogenados podem atingir níveis tóxicos para os organismos cultivados. 13

14

1.4. Amônia e nitrito: definições e toxicidade 15

16

No ambiente aquático, a amônia existe em sob duas formas: a amônia não ionizada 17

(NH3) e a amônia ionizada ou íon amônio (NH4+). A soma de ambas as formas é 18

denominada de nitrogênio amoniacal total ou simplesmente amônia total (NAT), a qual 19

pode ser mensurada através de técnicas analíticas. A proporção relativa de cada uma das 20

formas depende da temperatura, salinidade e principalmente do pH da água. A fração NH3 21

10

aumenta com o aumento da temperatura e pH, e com a redução da salinidade (Boyd & 1

Tucker, 2012). 2

A toxicidade da amônia é usualmente descrita em termos das concentrações de NH3 3

(Boyd & Tucker, 2012), o que leva a interpretações equivocadas de que esta forma 4

realmente seja mais tóxica. O que acontece de fato é que a NH3 por sua natureza lipofílica 5

atravessa facilmente as membranas branquiais por difusão (Ip & Chew, 2010), e elevadas 6

concentrações de NH3 também comprometem a excreção, favorecendo o acúmulo de 7

amônia nos tecidos dos peixes. A excreção da NH3 por difusão ocorre pela via transcelular 8

através das glicoproteínas Rhesus (Rhbg e Rhcg) devido ao gradiente sangue-água 9

favorável, o qual pode ser reduzido ou invertido quando a concentração de NH3 no 10

ambiente é alta. Além disso, em espécies de água doce e algumas adaptadas a água salgada, 11

a amônia também pode ser eliminada através das células de cloreto, onde é dependente ou 12

facilitada pela excreção de H+ pela V-ATPase e/ou pelo antiporte Na

+/H

+ (Baldisserotto, 13

2013). O mecanismo primário de toxicidade da amônia nos peixes está relacionado ao 14

efeito despolarizante do íon NH4+ nos neurônios e músculo branco, o que leva a uma 15

ativação excessiva de receptores glutamatérgicos do tipo NMDA (N-metil D-Aspartato). 16

Esta ativação excessiva ocasiona a depleção de ATP e um aumento na concentração 17

intracelular de Ca2+

ativando enzimas Ca2+

-dependentes que desencadeiam uma série de 18

reações que levam a morte celular (Randall & Tsui, 2002). 19

Assim como a amônia, o nitrito também está presente em duas formas na água: 20

ácido nítrico (HNO2) e nitrito ionizado (NO2-), e o equilíbrio entre as duas formas depende 21

do pH. Porém, em valores de pH da água acima de 5,5 apenas o NO2- está presente, 22

portanto esta é a forma a ser considerada quando se fala em termos de toxicidade do nitrito 23

nos sistemas de produção aquícola (Baldisserotto, 2013). 24

Em peixes de água doce, o nitrito é absorvido do ambiente através das brânquias, 25

via antiporte Cl-/HCO3

-, competindo com o Cl

- (Jensen, 2003). Por conta desta competição 26

entre o Cl- e o nitrito pelo mesmo transportador, salinidades elevadas podem reduzir a 27

toxicidade deste composto para os peixes (Wuertz et al., 2013). Entretanto, como a 28

permeabilidade do epitélio branquial de peixes marinhos é relativamente alta, a entrada de 29

nitrito pode ocorrer por difusão a favor do gradiente eletroquímico (Jensen, 2003; 30

Baldisserotto, 2013). Outra importante via de absorção do nitrito também ocorre em peixes 31

11

marinhos ou adaptados a água do mar. Por serem hiposmóticos em relação ao meio, 1

precisam beber água para compensar a perda por osmose, e o nitrito é absorvido 2

principalmente no intestino, também em substituição ao Cl- nos simportes Na

+/K

+/2Cl

- e 3

Na+/Cl

- (Grossel & Jensen, 2000). 4

O nitrito que é absorvido durante a exposição tende a se acumular inicialmente no 5

plasma (Hvas et al., 2016) e, posteriormente, se difunde para os eritrócitos, onde oxida o 6

Fe2+

da hemoglobina a Fe3+

, formando a metahemoglobina que não é capaz de transportar 7

oxigênio, ocasionando uma hipóxia funcional nos peixes (Jensen, 2003). 8

Além dos mecanismos de toxicidade primários descritos, a exposição à amônia e 9

nitrito pode induzir uma ampla variedade de alterações fisiológicas (Baldisserotto et al., 10

2014; Jia et al., 2015), morfológicas (Saoud et al., 2014; Rodrigues et al., 2014) e até 11

comportamentais (Schram et al., 2010; Roques et al., 2015) nos peixes. Os efeitos tóxicos 12

de ambos os compostos são espécie-específicos e dependem da concentração e duração da 13

exposição (Kroupova et al., 2005; USEPA, 2013), podendo em casos extremos levar até a 14

morte dos animais (Medeiros et al., 2016; Pinto et al., 2016). 15

Entretanto, na aquicultura, a exposição a concentrações subletais pode ser um 16

problema grave, pois muitas vezes seus efeitos não são detectáveis através da simples 17

observação dos animais e de seu comportamento pelo produtor. Porém, o estresse causado 18

nos peixes pode levar a uma redução no desempenho zootécnico (Paust et al., 2011; Ciji et 19

al., 2014), ao comprometimento imunológico aumentando a susceptibilidade a doenças 20

(Chen et al., 2011; Jia et al., 2016), e até a perda de qualidade do produto final (Veeck et 21

al., 2013). 22

23

1.5. Estresse 24

25

Iwama et al. (2011) apontam que existe uma dificuldade em se estabelecer uma 26

definição universal de estresse, diante da grande diversidade de definições já propostas até 27

então por diferentes autores. Nesta tese, o termo estresse será aplicado para caracterizar um 28

estado desencadeado por um agente estressor, no qual a homeostase ou condição biológica 29

basal foi alterada (Barton & Iwama, 1991). Este desbalanço da homeostase pode resultar de 30

12

algum efeito direto desencadeado pelo estressor, como por exemplo, a formação de 1

metahemoglobina induzida pela exposição ao nitrito. Além disso, o estresse pode estar 2

relacionado a uma resposta adaptativa ou compensatória inespecífica, desencadeada pela 3

ativação do sistema nervoso simpático. Este ajuste fisiológico permite aos organismos uma 4

maior chance de sobrevivência diante de uma condição desfavorável, e pode ou não ser 5

prejudicial dependendo da severidade e duração (Bonga, 1997; Barton, 2002). 6

As diferentes respostas ao estresse podem ser classificadas em primárias, 7

secundárias e terciárias de acordo com o nível de organização biológica em que ocorrem. A 8

resposta primária é neuroendócrina e envolve a liberação de catecolaminas (adrenalina e 9

noradrenalina) e hormônios corticosteroides na corrente sanguínea. As respostas 10

secundárias são caracterizadas por alterações em parâmetros metabólicos (glicose, lactato e 11

glicogênio) e perfil hematológico, distúrbios osmorregulatórios e ácido-base, dentre outras. 12

Por fim, as respostas terciárias acontecem em nível de indivíduos ou populacional, podendo 13

afetar o crescimento, reprodução e sistema imune, alterar padrões comportamentais, além 14

de reduzir a capacidade de tolerar estressores subsequentes ou adicionais (Bonga, 1997; 15

Barton, 2002). Apesar da distinção entre os tipos de estresse, as respostas acontecem de 16

forma integrada, e em certas circunstâncias, as respostas primárias e secundárias, acabam 17

por desencadear as respostas secundárias e terciárias, respectivamente (Figura 4) (Barton, 18

2002). 19

20

21

13

Figura 4 – Respostas (primárias, secundárias e terciárias) de estresse frente a um agente 1

estressor e as possíveis relações entre os diferentes tipos de resposta (Fonte: Adaptado de 2

Barton, 2002). 3

Considerando que o estresse relacionado a níveis elevados de amônia e nitrito nos 4

sistema de produção é um risco em potencial, sobretudo na aquicultura intensiva, 5

reconhecer as respostas biológicas envolvidas e os limites de tolerância do organismo 6

cultivado é fundamental para estabelecer uma estratégia de manejo adequada, assegurando 7

o bem-estar animal e a produção (Conte, 2004; Iwama et al., 2011). Neste sentido, a 8

avaliação de respostas primárias e/ou secundárias de estresse é fundamental, pois fornece 9

um diagnóstico precoce acerca dos efeitos tóxicos decorrentes da exposição a níveis 10

indesejáveis destes compostos. Desta forma, o monitoramento de parâmetros que 11

mensurem estas respostas deve ser uma prática rotineira na aquicultura, a fim de permitir a 12

tomada das medidas corretivas necessárias (Satheeshkumar et al., 2012), evitando outros 13

efeitos de longo prazo como a redução no desempenho zootécnico dos animais. 14

Diversos biomarcadores tem sido aplicados na avaliação do estresse desencadeado 15

pela amônia ou nitrito nos peixes, dentro os quais se pode citar: os parâmetros sanguíneos 16

(Clifford et al., 2015; Hvas et al., 2016) e de estresse oxidativo (Jia et al., 2015; Li et al., 17

2016) e análises histopatológicas (Wuertz et al., 2013; Banihashemi et al., 2016). Vale 18

ressaltar que, quando viável, a utilização de múltiplos biomarcadores é recomendada, pois 19

permite uma compreensão mais ampla e integrada dos efeitos tóxicos destes compostos. 20

21

1.5.1. Parâmetros sanguíneos 22

23

O perfil hematológico e de outros parâmetros bioquímicos e fisiológicos do sangue 24

dos peixes está intimamente relacionado com as respostas fisiológicas frente a fatores 25

ambientais (Roche & Bogé, 1996; Clauss et al., 2008). Alterações nas características 26

sanguíneas estão entre as primeiras respostas observadas nos peixes submetidos a situações 27

de estresse e podem refletir o comprometimento de diversas funções biológicas (trocas 28

gasosas, manutenção do equilíbrio iônico e ácido-base, eliminação de resíduos metabólitos, 29

dentre outras) nas quais o sangue está envolvido (Heath, 1995). Além disso, a coleta de 30

14

sangue (Figura 5) dos animais é um procedimento não letal e as análises de modo geral, 1

fornecem resultados rápidos (Satheeshkumar et al., 2012). Devido a estas vantagens, o 2

monitoramento dos parâmetros sanguíneos é uma ferramenta que vem sendo amplamente 3

utilizada na avaliação do estado de saúde e bem estar dos animais (Satheeshkumar et al., 4

2012; Segner et al., 2012; Dal’Bó et al., 2015). 5

6

7

Figura 5 – Coleta de sangue via veia caudal em juvenil de Paralichtys orbignyanus (Fonte: 8

arquivo pessoal). 9

10

Diante das diferentes alterações fisiológicas decorrentes do estresse, uma grande 11

diversidade de parâmetros sanguíneos pode ser utilizada para identificar esta condição nos 12

peixes (Segner et al., 2012; Dal’Bó et al., 2015). Todavia, a escolha dos parâmetros 13

adequados para esta avaliação é fundamental e deve ser feita de acordo com o estressor, 14

sobre o qual os efeitos querem ser investigados. Dentre as alterações fisiológicas resultantes 15

do estresse ocasionado pela exposição a níveis indesejáveis de amônia e nitrito, incluem-se 16

distúrbios respiratórios, iônicos, ácido-base, metabólicos e imunológicos. Como 17

consequência destes distúrbios, concentrações plasmáticas de glicose e íons (Na+, K

+, Ca

2+ 18

e HCO3−), pressão parcial de gases (pO2 e pCO2), pH e o perfil leucocitário estão entre os 19

parâmetros sanguíneos que podem ter a homeostase afetada, demonstrando a aplicabilidade 20

dos mesmos como biomarcadores na avaliação dos efeitos tóxicos destes compostos 21

15

(Vosyliene & Kazlauskiene, 2004; Wood & Nawata, 2011; Saoud et al., 2014; Clifford et 1

al., 2015; Jia et al., 2015; Hvas et al., 2016). 2

3

1.5.2. Estresse oxidativo 4

5

Durante o processo de produção de energia por via aeróbica, a redução tetravalente 6

do oxigênio molecular (O2) na mitocôndria resulta na formação de água. Entretanto, mesmo 7

em condições fisiológicas normais dos organismos, em torno de 1 a 3% do oxigênio 8

metabolizado nos diversos processos endógenos é apenas parcialmente reduzido, formando 9

as espécies reativas de oxigênio (ERO) (Livingstone, 2003), tais como os radicais 10

superóxido (O2-) e hidroxila (OH

-) e o peróxido de hidrogênio (H2O2). Esta produção de 11

radicais livres dá origem ao termo ―Paradoxo do Oxigênio‖, pois apesar de essencial para a 12

vida dos organismos aeróbios, o oxigênio também pode ter efeitos prejudiciais inerentes ao 13

seu metabolismo (Davies, 2016). Os efeitos deletérios das ERO estão relacionados à 14

capacidade que possuem de oxidar e danificar biomoléculas, como proteínas, lipídeos, 15

DNA e RNA, prejudicando ou levando a perda de suas funções biológicas (Halliwell & 16

Gutteridge, 2015). 17

Os peixes, como todos os organismos aeróbios, desenvolveram evolutivamente um 18

complexo sistema antioxidante composto de diversas defesas não enzimáticas e enzimáticas 19

que atuam impedindo a formação e ação das ERO’s, ou favorecendo o reparo e a 20

reconstituição de moléculas que sofreram dano oxidativo (Halliwell & Gutteridge, 2015). 21

Os antioxidantes não enzimáticos são representados por moléculas de baixo peso 22

molecular, como o tripeptídeo glutationa (GSH), as metalotioneínas (MTs), o ácido 23

ascórbico (vitamina C), o β-caroteno e o α-tocoferol, precursores das vitaminas A e E, 24

respectivamente, os carotenóides, os flavonóides, além de minerais como o zinco, o cobre, 25

o selênio e o magnésio. 26

Entre as principais enzimas envolvidas no sistema antioxidante temos a superóxido 27

dismutase (SOD), a catalase (CAT) e a glutationa peroxidase (GPx), as quais são 28

consideradas a primeira linha de defesa celular, devido a sua atuação direta na conversão 29

em formas menos reativas ou na eliminação das ERO. A SOD catalisa a dismutação do O2- 30

16

em O2 e H2O2, enquanto a CAT decompõe o H2O2 em O2 e água. Já a GPx atua na 1

detoxificação de H2O2 e hidroperóxidos orgânicos utilizando a GSH como cofator 2

(Sevcikova et al., 2011). Entretanto, outras enzimas como a glutationa redutase (GR) e as 3

glutationa-S-transferases (GST) também apresentam um importante papel neste sistema 4

antioxidante. A GR é uma enzima auxiliar que tem como principal função reciclar a GSH a 5

partir da sua forma oxidada (GSSG) (Hermes-Lima, 2004). Enquanto as GST são enzimas 6

multifuncionais que catalisam o ataque nucleofílico da GSH a compostos que apresentem 7

átomos eletrofílicos, e sua atividade está envolvida na detoxificação celular de xenobióticos 8

e metabólitos endógenos, incluindo produtos de dano oxidativo (Figura 6) (Blanchette et 9

al., 2007). 10

11

12

Figura 6 – Principais enzimas do sistema de defesa antioxidante atuando de forma integrada 13

na proteção celular contra radicais oxidativos. SOD – superóxido dismutase; CAT – 14

catalase; GPX – glutationa peroxidase; GR – glutationa redutase; GST – glutationa-S-15

transferases; GSH – glutationa reduzida; GSSG – glutationa oxidada (Fonte: adaptado de 16

Hermes-Lima, 2004). 17

18

17

A atuação destas defesas antioxidantes e dos pró-oxidantes no organismo dos 1

animais apresenta um equilíbrio em condições normais. Entretanto, em resposta a agentes 2

estressores, incluindo alterações em variáveis ambientais ou durante a exposição a 3

poluentes, pode haver a perturbação deste equilíbrio (Lushchak, 2011; Stoliar & Lushchak, 4

2012). O estresse oxidativo pode ser definido como aumento transitório ou crônico na 5

concentração de ERO, quando este desequilíbrio acontece em favor dos pró-oxidantes, 6

resultando em aumento nos níveis de dano oxidativo (Lushchak, 2011; Halliwell & 7

Gutteridge, 2015). 8

Apesar de ser um tema ainda relativamente pouco estudado, trabalhos recentes tem 9

demonstrado que a exposição à amônia ou ao nitrito pode induzir a um aumento na 10

produção de radicais livres, incluindo ERO e espécies reativas de nitrogênio (ERN), nos 11

tecidos de peixes (Sinha et al., 2014; Cheng et al., 2015; Jensen et al., 2015). A produção 12

excessiva destes agentes oxidantes leva a ativação de fatores de transcrição redox-sensível 13

(FoxO, Nrf2, p53, HIF-1α, NF-κB, etc.) e a modificação covalente de proteínas 14

antioxidantes, resultando no aumento da expressão e atividade de enzimas antioxidantes 15

(Hermes-Lima et al., 2015). Este tipo de mecanismo adaptativo para minimizar o estresse 16

oxidativo já foi demonstrado para enzimas como a SOD, CAT, GPx, GST, dentre outras, 17

durante a exposição de peixes à amônia (Sinha et al., 2014; Li et al., 2016) e ao nitrito (Ciji 18

et al., 2012; Sun et al., 2014). Entretanto, em certas condições de estresse mais severas, 19

como a exposição prolongada ou a concentrações mais altas destes compostos, pode haver 20

falha do sistema de defesa antioxidante, resultando, por exemplo, em redução da atividade 21

de enzimas e concentrações de GSH (Jia et al., 2015; Li et al., 2016). 22

Diante da capacidade que a amônia e o nitrito apresentam de elevar a produção de 23

agentes oxidantes e de diminuir a eficácia do sistema antioxidante, o aumento nos níveis de 24

dano oxidativo é esperado, e já foi demonstrado em lipídeos, proteínas e até DNA nos 25

tecidos de peixes (Sinha et al., 2014; Sun et al., 2014; Cheng et al., 2015; Jia et al., 2015; Li 26

et al., 2016; Lisser et al., 2017). Esta condição, além de comprometer as funções 27

fisiológicas dos animais (Livingstone, 2003; Valavanidis et al., 2006), pode também causar 28

alterações na qualidade da carne (Zhang et al., 2016), afetando negativamente a aquicultura. 29

30

18

1.5.3. Histopatologia 1

2

O aumento nos níveis de dano oxidativo, além de outras alterações fisiológicas e 3

bioquímicas, desencadeadas pela exposição a um agente estressor, como contaminantes, 4

pode resultar no aparecimento de histopatologias que comprometem a funcionalidade de 5

diferentes órgãos dos peixes (Bernet et al., 1999; Simonato et al., 2008; Sun et al., 2014). 6

Portanto, análises histopatológicas podem ser consideradas úteis para avaliar os efeitos de 7

alterações de qualidade de água em um nível de organização biológica mais alto nos 8

animais (Liebel et al., 2013). 9

Diversas metodologias são empregadas nos estudos histopatológicos, podendo ser 10

realizadas análises descritivas (Rodrigues et al., 2014; Saould et al., 2014) ou quantitativas 11

(abundância) das lesões observadas (Reiser et al., 2010), ou ainda aplicados índices que 12

mensuram o grau de lesão do órgão (Bernet et al., 1999). Vários órgãos alvo são 13

considerados adequados para este tipo de avaliação (Bernet et al., 1999), entretanto, o 14

fígado e principalmente a brânquia são os mais aplicados para avaliar os efeitos da 15

exposição dos peixes à amônia e nitrito (Park et al., 2007; Dong et al., 2013; Wuertz et al., 16

2013; Rodrigues et al., 2014; Saoud et al., 2014). 17

A avaliação das brânquias deve-se ao fato de que toda sua superfície está em 18

contato direto e constante com a água e, consequentemente, com os contaminantes 19

presentes (Bernet et al., 1999). Além disso, é um órgão que participa ativamente dos 20

mecanismos relacionados à absorção e à eliminação de amônia e nitrito do organismo 21

(Jensen, 2003; Ip & Chew, 2010). 22

Hiperplasia e hipertrofia de células epiteliais, hipertrofia de células de cloreto, 23

fusão lamelar, descolamento do epitélio branquial e telangiectasia são algumas das 24

alterações histopatológicas reportadas nas brânquias de peixes expostos a estes compostos 25

(Rodrigues et al., 2014; Saoud et al., 2014; Medeiros et al., 2016). De acordo com Mallat 26

(1985), a não especificidade destas alterações sugerem que as mesmas estejam relacionadas 27

a um mecanismo de defesa, que visa aumentar a distância entre o meio externo e o meio 28

interno. Entretanto, o que primariamente é um mecanismo de proteção contra o estresse 29

19

ambiental, pode acabar se tornando prejudicial para o organismo, dificultando trocas 1

gasosas, excreção e processos osmorregulatórios. 2

O fígado apresenta funções metabólicas vitais, sendo o principal órgão envolvido 3

nos processos de biotransformação e detoxificação de xenobióticos, e a presença de 4

contaminantes rapidamente induz alterações estruturais, bioquímicas e moleculares, que 5

podem resultar em lesões neste tecido dos peixes (Bernet et al.,1999). Dilatação sinusoidal, 6

degeneração hidrópica, deposição lipídica nos hepatócitos, desintegração de hepatócitos e 7

necrose são alguns dos exemplos de lesões hepáticas relacionadas à toxicidade da amônia 8

ou do nitrito (Benli et al., 2008; Rodrigues et al., 2014; Thangam, 2014). 9

Rodrigues et al. (2014) demonstraram pela primeira vez que alterações 10

histopatológicas como a proliferação de células de glia e espaço de Virchow-Robin 11

indicando satelitose e edema perisvascular severo, respectivamente, também podem ocorrer 12

no cérebro de peixes relacionadas ao potencial neurotóxico da amônia. Entretanto, com 13

relação ao nitrito, não foram encontrados na literatura trabalhos que demonstrem o 14

aparecimento de lesões no cérebro de peixes associadas aos feitos tóxicos deste composto. 15

16

1.6. Recuperação 17

18

Mesmo durante a exposição à amônia ou ao nitrito, os peixes são capazes de realizar 19

ajustes fisiológicos adaptativos que podem restabelecer a homeostase de certos parâmetros, 20

os quais acabam apenas sendo alterados transitoriamente (Martinez & Souza, 2002; Sinha 21

et al., 2012). Em certas condições, entretanto, é necessário que o agente estressor seja 22

eliminado para que o animal consiga restabelecer a sua condição fisiológica normal. Esta 23

informação é corroborada por trabalhos prévios que demonstram que a transferência para 24

água com concentração mínima ou livre de amônia e nitrito é suficiente para a recuperação 25

dos animais (Knudsen & Jensen, 1997; Gisbert et al., 2004; Yang et al., 2010). 26

Esta recuperação esta relacionada à capacidade que os peixes naturalmente possuem 27

em eliminar o excesso desses compostos dos organismos, a qual durante a exposição acaba 28

se tornando comprometida ou insuficiente (Jensen, 2003; Clifford et al., 2015). Uma vez 29

que são transferidos para uma água com boa qualidade, ocorre gradualmente a 30

20

detoxificação do excesso de amônia e nitrito que se acumularam no plasma e tecidos dos 1

peixes (Knudsen & Jensen, 1997; Gisbert et al., 2004; Clifford et al., 2015), e as alterações 2

fisiológicas decorrentes de seus efeitos tóxicos tendem a diminuir ou desaparecer com o 3

tempo. Este tempo necessário para o restabelecimento da homeostase pode variar desde 4

horas (Gisbert et al., 2004) até alguns dias (3-15), dependendo da espécie, do composto ao 5

qual o peixe foi exposto e do parâmetro avaliado (Knudsen & Jensen, 1997; Gisbert et al., 6

2004;Yang et al., 2010). 7

Na aquicultura, o período de recuperação é fundamental após qualquer evento ou 8

procedimento de manejo que atue como um estressor para os peixes, visando minimizar os 9

efeitos de um estresse subsequente (Wedemeyer, 2012), e até a perda da qualidade do 10

produto final, devido a uma condição estressante pré-abate (Terlouw et al., 2008; Veeck et 11

al., 2013). Apesar da importância, as respostas fisiológicas durante a recuperação pós-12

exposição à amônia e nitrito ainda são relativamente pouco estudadas nos peixes e uma 13

maior atenção deve ser dada neste sentido. 14

15

1.7. Toxicidade da amônia e nitrito no Paralichthys orbignyanus 16

17

Atualmente, o conhecimento acerca dos efeitos tóxicos da amônia e do nitrito para o 18

linguado é limitado apenas à determinação das concentrações letais (CL50-96h) em duas 19

condições experimentais de salinidade e temperatura: ―condição de inverno‖ (0 ‰ e 12°C) 20

e ―condição de verão‖ (30 ‰ e 25°C). Os valores obtidos para a CL50-96h foram maiores na 21

"condição de verão" (0,67 mg NH3-N.L-1

e 30,57 mg NO2-N.L-1

) do que na "condição de 22

inverno"( 0,19 mg NH3-N.L-1

e 24,01 mg NO2-N.L-1

) para ambos os compostos (Bianchini 23

et al., 1996). Estes resultados demonstram a influência de outros parâmetros ambientais na 24

toxicidade da amônia e nitrito, e que, principalmente em água salgada e temperaturas 25

elevadas, o linguado apresenta uma boa tolerância a estes compostos. 26

Entretanto, não existem trabalhos que demonstrem os efeitos do estresse ocasionado 27

pela exposição do linguado a concentrações subletais destes compostos, as quais podem ser 28

um fator limitante para sua produção em sistemas intensivos, incluindo SRA. A avaliação 29

da recuperação dos animais em água com boa qualidade (concentrações mínimas ou livre 30

21

de amônia não-ionizada e nitrito) após um período de exposição também ainda não foi 1

estudada para a espécie. Desta forma, as informações obtidas na presente tese poderão 2

contribuir para a compreensão dos mecanismos de toxicidade da amônia e nitrito no 3

linguado, bem como das respostas fisiológicas da espécie frente a níveis indesejáveis dos 4

mesmos e durante a recuperação. Na perspectiva da aquicultura, os dados gerados irão 5

auxiliar no estabelecimento de critérios de qualidade de água nos sistemas de produção, 6

bem como no desenvolvimento de estratégias de manejo adequadas. Além disso, as 7

respostas dos diferentes biomarcadores avaliados servirão como referência, quando da 8

aplicação dos mesmos, para monitorar o estado fisiológico e bem estar dos animais e 9

relacioná-los com as concentrações de amônia e nitrito na água. 10

11

2. OBJETIVOS 12

13

2.1. Objetivo geral 14

15

- Avaliar os efeitos subletais da exposição à amônia e nitrito, e posterior 16

recuperação em juvenis do linguado Paralichthys orbignyanus utilizando parâmetros 17

sanguíneos, de estresse oxidativo e análises histopatológicas como biomarcadores. 18

19

2.2. Objetivos específicos 20

21

- Determinar as alterações nos parâmetros sanguíneos (glicose, Na+, K

+, Ca

2+, 22

HCO3−, pO2, pCO2, pH e contagem diferencial de leucócitos) ocasionadas pela exposição 23

dos juvenis de linguado a diferentes concentrações subletais de amônia e nitrito; 24

- Avaliar os efeitos da exposição a concentrações subletais de amônia e nitrito no 25

sistema de defesa antioxidante e nos níveis de dano oxidativo no fígado, no músculo e nas 26

brânquias em juvenis de linguado; 27

22

- Verificar se ocorrem alterações histopatológicas no fígado, brânquias e cérebro de 1

juvenis de linguado submetidos a concentrações subletais de amônia e nitrito; 2

- Avaliar se a recuperação em água livre ou com concentrações mínimas de amônia 3

e nitrito é suficiente para o restabelecimento da condição fisiológica normal dos juvenis de 4

linguado após a exposição a diferentes concentrações destes compostos. 5

6

3. HIPÓTESES 7

8

- Concentrações subletais de amônia e nitrito são agentes estressores para os juvenis 9

de linguado, o que resulta em alterações nos parâmetros sanguíneos, induz o estresse 10

oxidativo e o aparecimento de histopatologias; 11

- As alterações nos parâmetros sanguíneos, de estresse oxidativo e histopatológicas 12

decorrentes da exposição de juvenis de linguado à amônia ou ao nitrito dependem do tempo 13

de exposição e concentração; 14

- A recuperação em água livre ou com concentrações mínimas de amônia e nitrito é 15

capaz de reverter as alterações fisiológicas ocasionadas pela exposição a estes compostos 16

nos juvenis de linguado; 17

- A recuperação dos juvenis de linguado é dependente da concentração de amônia 18

ou nitrito a qual foram expostos. 19

20

4. REFERÊNCIAS BIBLIOGRÁFICAS 21

22

Baldisserotto, B., 2013. Fisiologia de peixes aplicada à piscicultura, terceira ed. Editora da 23

UFSM, Santa Maria. 24

Baldisserotto, B., Gomes, L.C., 2010. Espécies nativas para a piscicultura no Brasil, 25

segunda ed. Editora da UFSM, Santa Maria. 26

Baldisserotto, B., Martos-Sitcha, J.A., Menezes, C.C., Toni, C., Prati, R.L., Garcia, L.O., 27

Salbegoa, J., Mancera, J.M., Martínez-Rodríguez, G., 2014. The effects of ammonia and 28

23

water hardness on the hormonal, osmoregulatory and metabolic responses of the freshwater 1

silver catfish Rhamdia quelen. Aquat. Toxicol. 152, 341-352. 2

Banihashemi, E.S., Khara, H., Pajand, Z., Rahnandeh, M., 2016. Histopathological study of 3

gill, kidney and liver of Persian Sturgeon (Acipenser persicus Borodin, 1897) and Stellate 4

(Acipenser stellatus Pallas, 1811) exposed to sublethal concentration of un-ionised 5

ammonia UAN. J. Parasit. Dis. 40, 1443-1450. 6

Barton, B.A., Iwama, G.K., 1991. Physiological changes in fish from stress in aquaculture 7

with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1, 3-26. 8

Barton, B.A., 2002. Stress in fishes: a diversity of responses with particular reference to 9

changes in circulating corticosteroids. Integr. Comp. Biol. 42, 517-525. 10

Benli, A.Ç.K., Köksal, G., Özkul, A., 2008. Sublethal ammonia exposure of Nile tilapia 11

(Oreochromis niloticus L.): effects on gill, liver and kidney histology. Chemosphere 72, 12

1355-1358. 13

Benovit, S.C., Gressler, L.T., Silva, L.L., Garcia, L.O., Okamoto, M.H., Pedron, J.S., 14

Sampaio, L.A., Rodrigues, R.V., Heinzmann, B.M., Baldisserotto, B., 2012. Anesthesia and 15

transport of Brazilian flounder, Paralichthys orbignyanus, with essential oils of Aloysia 16

gratissima and Ocimum gratissimum. J. World. Aquac. Soc. 43, 896-900. 17

Bernet, D., Schmidt, H., Meier, W., Burkhardt‐Holm, P., Wahli, T., 1999. Histopathology 18

in fish: proposal for a protocol to assess aquatic pollution. J. Fish Dis. 22, 25-34. 19

Bianchini, A., Wasielesky, Jr, W., Miranda Filho, K.C., 1996. Toxicity of nitrogenous 20

compounds to juveniles of flatfish Paralichthys orbignyanus. Bull. Environ. Contam. 21

Toxicol. 56, 453-459. 22

Bianchini, A., Robaldo, R.B., Sampaio, L.A., 2010. Cultivo do linguado (Paralichthys 23

orbignyanus), in: Baldisserotto, B., Gomes, L. C. (Eds.), Espécies nativas para piscicultura 24

no Brasil, segunda ed. Editora UFSM, Santa Maria, pp. 559-587. 25

Blanchette, B., Feng, X., Singh, B.R., 2007. Marine glutathione S-transferases. Mar. 26

Biotechnol., 9, 513-542. 27

Bolasina, S.N., 2011. Stress response of juvenile flounder (Paralichthys orbignyanus, 28

Valenciennes 1839), to acute and chronic stressors. Aquaculture 313, 140-143. 29

24

Bonga, S.W., 1997. The stress response in fish. Physiol. Rev. 77, 591-625. 1

Boyd, C.E., Tucker, C.S., 2012. Pond aquaculture water quality management. Springer 2

Science & Business Media, Nova Iorque. 3

Cavalli, R.O., Domingues, E.C., Hamilton, S., 2011. Desenvolvimento da produção de 4

peixes em mar aberto no Brasil: possibilidades e desafios. R. Bras. Zootec. 40, 155-164. 5

Chen, J.Z., Zhang, X.L., Hu, G.D., Qu, J.H., Fan, L.M., Song, C., 2011. The immune 6

response of GIFT Oreochromis niloticus and its susceptibility to Streptococcus iniae under 7

stress in different ammonia. J. Ecol. Environ. Sci. 20, 629-634. 8

Cheng, C.H., Yang, F.F., Ling, R.Z., Liao, S.A., Miao, Y.T., Ye, C.X., Wang, A.L., 2015. 9

Effects of ammonia exposure on apoptosis, oxidative stress and immune response in 10

pufferfish (Takifugu obscurus). Aquat. Toxicol. 164, 61-71. 11

Ciji, A., Sahu, N.P., Pal, A.K., Dasgupta, S., Akhtar, M.S., 2012. Alterations in serum 12

electrolytes, antioxidative enzymes and haematological parameters of Labeo rohita on 13

short-term exposure to sublethal dose of nitrite. Fish Physiol. Biochem. 38, 1355-1365. 14

Ciji, A., Sahu, N.P., Pal, A.K., Akhtar, M.S., Tincy, V., Mishal, P., Das, P., 2014. Effect of 15

dietary vitamin E and nitrite exposure on growth and metabolic variables of Labeo rohita 16

juveniles. Natl. Acad. Sci. Lett. 37, 123-129. 17

Clauss, T.M., Dove, A.D., Arnold, J.E., 2008. Hematologic disorders of fish. Vet. Clin. 18

North. Am. Exot. Anim. Pract. 11, 445-462. 19

Clifford, A.M., Goss, G.G., Wilkie, M.P., 2015. Adaptations of a deep sea scavenger: High 20

ammonia tolerance and active NH4+ excretion by the Pacific hagfish (Eptatretus stoutii). 21

Comp. Biochem. Physiol. A Mol. Integr. Physiol. 182, 64-74. 22

Conte, F.S., 2004. Stress and the welfare of cultured fish. Appl. Anim. Behav. Sci. 86, 205-23

223. 24

Dal'Bó, G.A., Sampaio, F.G., Losekann, M.E., Queiroz, J.F.D., Luiz, A.J.B., Wolf, V.H. 25

G., Gonçalves, V.T., Carra, M.L., 2015. Hematological and morphometric blood value of 26

four cultured species of economically important tropical foodfish. Neotropic. Ichthyol. 13, 27

439-446. 28

25

Davies, K.J., 2016. The Oxygen Paradox, oxidative stress, and ageing. Arch. Biochem. 1

Biophys. 595, 28-32. 2

Dong, X., Zhang, X., Qin, J., Zong, S., 2013. Acute ammonia toxicity and gill 3

morphological changes of Japanese flounder Paralichthys olivaceus in normal versus 4

supersaturated oxygen. Aquac. Res. 44, 1752-1759. 5

Ebeling, J.M., Timmons, M.B., 2012. Recirculating aquaculture systems, in: Tidwell, J. 6

(Ed.), Aquaculture Production Systems. John Wiley & Sons, pp 245-277. 7

FAO – Food and Agriculture Organization of the United Nations, 2016. The State of World 8

Fisheries and Aquaculture – Contributing to food security and nutrition for all. Rome. 9

Figueiredo, J.L., Menezes, N.A., 2000. Manual de peixes marinhos do sudeste do Brasil. 10

São Paulo, Museu de Zoologia / USP. 11

Garcia, L.O., Okamoto, M.H., Riffel, A.P.K., Saccol, E.M., Pavanato, M.A., Sampaio, 12

L.A., 2015. Oxidative stress parameters in juvenile Brazilian flounder Paralichthys 13

orbignyanus (Valenciennes, 1839) (Pleuronectiformes: Paralichthyidae) exposed to cold 14

and heat shocks. Neotropic. Ichthyol. 13, 607-612. 15

Gisbert, E., Rodrıguez, A., Cardona, L., Huertas, M., Gallardo, M.A., Sarasquete, C., Sala-16

Rabanal, M., Ibarz, A., Sánchez, J., Castello-Orvay, F., 2004. Recovery of Siberian 17

sturgeon yearlings after an acute exposure to environmental nitrite: changes in the 18

plasmatic ionic balance, Na+–K+ ATPase activity, and gill histology. Aquaculture 239, 19

141-154. 20

Grosell, M., Jensen, F. B., 2000. Uptake and effects of nitrite in the marine teleost fish 21

Platichthys flesus. Aquat. toxicol. 50, 97-107. 22

Halliwell, B., Gutteridge, J.M., 2015. Free radicals in biology and medicine, quinta ed. 23

Oxford University Press, Estados Unidos da América. 24

Heath, A.G., 1995. Water pollution and fish physiology, segunda ed. CRC Press, Boca 25

Raton. 26

Hermes-Lima, M., 2004. Oxygen in biology and biochemistry: role of free radicals, in: 27

Storey, K.B. (Ed.), Functional metabolism: Regulation and adaptation. Wiley‐Liss, 28

Hoboken, pp. 319-368. 29

26

Hermes-Lima, M., Moreira, D.C., Rivera-Ingraham, G.A., Giraud-Billoud, M., Genaro-1

Mattos, T.C., Campos, É.G., 2015. Preparation for oxidative stress under hypoxia and 2

metabolic depression: revisiting the proposal two decades later. Free Radic. Biol. Med. 89, 3

1122-1143. 4

Hvas, M., Damsgaard, C., Jensen, F.B., Bayley, M., 2016. The effect of environmental 5

hypercapnia and size on nitrite toxicity in the striped catfish (Pangasianodon 6

hypophthalmus). Aquat. Toxicol. 176, 151-160. 7

Ip, Y.K., Chew, S.F., 2010. Ammonia production, excretion, toxicity, anddefense in fish: A 8

review. Front. Physiol. 1, 134. 9

Iwama, G.K., Pickering, A.D., Sumpter, J.P., Schreck, C. B., 2011. Fish stress and health in 10

aquaculture. Cambridge University Press, Nova Iorque. 11

Jensen, F.B., 2003. Nitrite disrupts multiple physiological functions in aquatic animals. 12

Comp. Biochem. Physiol. A Mol. Integ. Physiol. 135, 9-24. 13

Jensen, F.B., Gerber, L., Hansen, M.N., Madsen, S.S., 2015. Metabolic fates and effects of 14

nitrite in brown trout under normoxic and hypoxic conditions: blood and tissue nitrite 15

metabolism and interactions with branchial NOS, Na+/K+-ATPase and hsp70 expression. J. 16

Exp. Biol. 218, 2015-2022. 17

Jia, R., Han, C., Lei, J.L., Liu, B.L., Huang, B., Huo, H.H., Yin, S.T., 2015. Effects of 18

nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile 19

turbot (Scophthalmus maximus). Aquat. Toxicol. 169, 1-9. 20

Jia, R., Liu, B.L., Han, C., Huang, B., Lei, J.L., 2016. The physiological performance and 21

immune response of juvenile turbot (Scophthalmus maximus) to nitrite exposure. Comp. 22

Biochem. Physiol. C Toxicol. Pharmacol. 181, 40-46. 23

Klinger, D., Naylor, R., 2012. Searching for solutions in aquaculture: charting a sustainable 24

course. Annu. Rev. Environ. Resour. 37, 247-276. 25

Knudsen, P.K., Jensen, F.B., 1997. Recovery from nitrite-induced methaemoglobinaemia 26

and potassium balance disturbances in carp. Fish Physiol. Biochem. 16, 1-10. 27

Kroupova, H., Machova, J., Svobodova, Z., 2005. Nitrite influence on fish: a review. Vet. 28

Med. 50, 461. 29

27

Li, M., Gong, S., Li, Q., Yuan, L., Meng, F., Wang, R., 2016. Ammonia toxicity induces 1

glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish 2

Pelteobagrus fulvidraco. Comp. Biochem. Physiol. C Toxicol. Pharmacol.183, 1-6. 3

Liebel, S., Tomotake, M.E.M., Ribeiro, C.A.O., 2013. Fish histopathology as biomarker to 4

evaluate water quality. Ecotoxicol. Environ. Contam. 8, 09-15. 5

Lisser, D.F., Lister, Z.M., Pham-Ho, P.Q., Scott, G.R., Wilkie, M.P., 2017. Relationship 6

between oxidative stress and brain swelling in goldfish (Carassius auratus) exposed to high 7

environmental ammonia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R114-R124. 8

Livingstone, D.R., 2003. Oxidative stress in aquatic organisms in relation to pollution and 9

aquaculture. Rev. Med. Vet. 154, 427-430. 10

Lushchak, V.I., 2011. Environmentally induced oxidative stress in aquatic animals. Aquat. 11

Toxicol. 101, 13-30. 12

Mallatt, J., 1985. Fish gill structural changes induced by toxicants and other irritants: a 13

statistical review. Can. J. Fish. Aquat. Sci. 42, 630-648. 14

Martinez, C.B., Souza, M.M., 2002. Acute effects of nitrite on ion regulation in two 15

neotropical fish species. Comp. Biochem. Physiol. A Mol. Integ. Physiol. 133, 151-160. 16

Medeiros, R.S., Lopez, B.A., Sampaio, L.A., Romano, L.A., Rodrigues, R.V., 2016. 17

Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris. Aquacult. Int. 24, 18

985-993. 19

Millner, R., Walsh, S.J., Diaz de Astarloa, J.M., 2005. Atlantic Flatfish Fisheries, 20

in:Gibson, R.N. (Ed.), Flatfishes: Biology and Exploitation. Blackwell Science Ltd, 21

Oxford, pp. 240-271. 22

Okamoto, M.H., Sampaio, L.A., 2012. Sobrevivência e crescimento de juvenis do linguado 23

Paralichthys orbignyanus criados em diferentes temperaturas. Atlântica 34, 57-61. 24

Park, I.S., Lee, J., Hur, J.W., Song, Y.C., Na, H.C., Noh, C. H., 2007. Acute Toxicity and 25

Sublethal Effects of Nitrite on Selected Hematological Parameters and Tissues in Dark‐26

banded Rockfish, Sebastes inermis. J. World Aquacult. Soc. 38, 188-199. 27

28

Paust, L.O., Foss, A., Imsland, A.K., 2011. Effects of chronic and periodic exposure to 1

ammonia on growth, food conversion efficiency and blood physiology in juvenile Atlantic 2

halibut (Hippoglossus hippoglossus L.). Aquaculture 315, 400-406. 3

Pinto, D.S.B., Maltez, L.C., Stringhetta, G.R., Pellegrin, L., Nitz, L.F., Figueiredo, M.R.C., 4

Garcia, L.O., 2016. Ammonia and nitrite acute toxicity in juvenile piavuçu Leporinus 5

macrocephalus (Actinopterygii, Anostomidae). Pan-Am. J. Aquat. Sci. 11, 292-300. 6

Reiser, S., Schroeder, J.P., Wuertz, S., Kloas, W., Hanel, R., 2010. Histological and 7

physiological alterations in juvenile turbot (Psetta maxima, L.) exposed to sublethal 8

concentrations of ozone-produced oxidants in ozonated seawater. Aquaculture 307, 157-9

164. 10

Randall, D.J., Tsui, T.K.N., 2002. Ammonia toxicity in fish. Mar. Pollut. Bull. 45, 17-23. 11

Robaldo, R.B., Rodrigues, R.V., Okamoto, M.H., Sampaio, L.A., 2012. Processing yield of 12

wild‐caught and indoor‐reared Brazilian flounder Paralichthys orbignyanus. J. Appl. 13

Ichthyol. 28, 815-817. 14

Roche, H., Bogé, G., 1996. Fish blood parameters as a potential tool for identification of 15

stress caused by environmental factors and chemical intoxication. Mar. Environ. Res. 41, 16

27-43. 17

Rodrigues, R.V., Romano, L.A., Schwarz, M.H., Delbos, B., Sampaio, L.A., 2014. Acute 18

tolerance and histopathological effects of ammonia on juvenile maroon clownfish Premnas 19

biaculeatus (Block 1790). Aquac. Res. 45, 1133-1139. 20

Roques, J.A., Schram, E., Spanings, T., Schaik, T., Abbink, W., Boerrigter, J., Vries, P., 21

Vis, H., Flik, G., 2015. The impact of elevated water nitrite concentration on physiology, 22

growth and feed intake of African catfish Clarias gariepinus (Burchell 1822). Aquac. Res. 23

46, 1384-1395. 24

Sampaio, L.A., Bianchini, A., 2002. Salinity effects on osmoregulation and growth of the 25

euryhaline flounder Paralichthys orbignyanus. J. Exp. Mar. Biol. Ecol. 269, 187-196 26

Sampaio, L.A., Freitas, L.S., Okamoto, M.H., Louzada, L.R., Rodrigues, R.V., Robaldo, R. 27

B., 2007. Effects of salinity on Brazilian flounder Paralichthys orbignyanus from 28

fertilization to juvenile settlement. Aquaculture 262, 340-346. 29

29

Sampaio, L.A., Robaldo, R.B., Bianchini, A., 2008. Hormone‐induced ovulation, natural 1

spawning and larviculture of Brazilian flounder Paralichthys orbignyanus (Valenciennes, 2

1839). Aquac. Res. 39, 712-717. 3

Sampaio, L.A., Tesser, M.B., Wasielesky Junior, W., 2010. Avanços da maricultura na 4

primeira década do século XXI: piscicultura e carcinocultura marinha. R. Bras. Zootec. 39, 5

102-111. 6

Saoud, P., Naamani, S., Ghanawi, J., Nasser, N., 2014. Effects of acute and chronic nitrite 7

exposure on rabbitfish Siganus rivulatus growth, hematological parameters, and gill 8

histology. J. Aquac. Res. Dev. 5, 263-271. 9

Satheeshkumar, P., Ananthan, G., Senthilkumar, D., Khan, A.B., Jeevanantham, K., 2012. 10

Comparative investigation on haematological and biochemical studies on wild marine 11

teleost fishes from Vellar estuary, southeast coast of India. Comp. Clin. Path., 21, 275-281. 12

Schram, E., Roques, J.A., Abbink, W., Spanings, T., de Vries, P., Bierman, S., van de Vis, 13

H., Flik, G., 2010. The impact of elevated water ammonia concentration on physiology, 14

growth and feed intake of African catfish (Clarias gariepinus). Aquaculture 306, 108-115. 15

Segner, H., Sundh, H., Buchmann, K., Douxfils, J., Sundell, K.S., Mathieu, C., Ruane, N., 16

Jutfelt, F., Toften, H., Vaughan, L., 2012. Health of farmed fish: its relation to fish welfare 17

and its utility as welfare indicator. Fish Physiol. Biochem. 38, 85-105. 18

Sevcikova, M., Modra, H., Slaninova, A., Svobodova, Z., 2011. Metals as a cause of 19

oxidative stress in fish: a review. Vet. Med. 56, 537-546. 20

Simonato, J.D., Guedes, C.L., Martinez, C.B., 2008. Biochemical, physiological, and 21

histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. 22

Ecotox. Environ. Saf. 69, 112-120. 23

Sinha, A.K., Liew, H.J., Diricx, M., Blust, R., De Boeck, G., 2012. The interactive effects 24

of ammonia exposure, nutritional status and exercise on metabolic and physiological 25

responses in gold fish (Carassius auratus L.). Aquat. Toxicol. 109, 33-46. 26

Sinha, A.K., AbdElgawad, H., Giblen, T., Zinta, G., De Rop, M., Asard, H., Blust, R., De 27

Boeck, G., 2014. Anti-oxidative defences are modulated differentially in three freshwater 28

teleosts in response to ammonia-induced oxidative stress. PloS One 9, e95319. 29

30

Stoliar, O.B., Lushchak, V.I., 2012. Environmental pollution and oxidative stress in fish, in: 1

Lushchak, Volodymyr (Ed.), Oxidative Stress — Environmental Induction and Dietary 2

Antioxidants. InTech, Rijeka, pp. 131-166. 3

Sun, S., Ge, X., Zhu, J., Xuan, F., Jiang, X., 2014. Identification and mRNA expression of 4

antioxidant enzyme genes associated with the oxidative stress response in the Wuchang 5

bream (Megalobrama amblycephala Yih) in response to acute nitrite exposure. Comp. 6

Biochem. Physiol. C Toxicol. Pharmacol. 159, 69-77. 7

Thangam, Y., 2014. Effect of acute and sublethal toxicity of nitrite to fresh water fish 8

Cirrhinus Mrigala. Int. J. Sci. Eng. Res. 5, 789-795. 9

Terlouw, E.M.C., Arnould, C., Auperin, B., Berri, C., Le Bihan-Duval, E., Deiss, V., 10

Lefèvre, F., Lensink, B.J., Mounier, L., 2008. Pre-slaughter conditions, animal stress and 11

welfare: current status and possible future research. Animal 2, 1501-1517. 12

Troell, M., Naylor, R. L., Metian, M., Beveridge, M., Tyedmers, P.H., Folke, C., Arrow, K. 13

J., Barrett, S., Crépin, A., Ehrlich, P.R., Gren, Å., Kautsky, N., Levin, S.A., Nyborg, K., 14

Österblom, H., Polasky, S., Scheffer, M., Walker, B.H., Xepapadeas, T., Zeeuw, A., 2014. 15

Does aquaculture add resilience to the global food system?. Proc. Natl. Acad. Sci. 111, 16

13257-13263. 17

USEPA – United States Environmental Protection Agency, 2013. Aquatic Life Ambient 18

Water Quality Criteria for Ammonia - Freshwater 2013. EPA 822-R-13-001. National 19

Technichal Information Service, Springfield, VA, USA. 20

Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M., 2006. Molecular 21

biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental 22

pollutants. Ecotoxicol. Environ. Saf. 64, 178-189. 23

Veeck, A.P.L., Garcia, L.O., Baldisserotto, B., Zaniboni Filho, E., Emanuelli, T., 2013. 24

Proximate composition and lipid stability of dourado (Salminus brasilensis, Cuvier, 1817) 25

fillets exposed to different levels of ammonia and oxygen in vivo. J. Sci. Food Agr. 93, 26

2590-2595. 27

31

Vosylienė, M.Z., Kazlauskienė, N., 2004. Comparative studies of sublethal effects of 1

ammonia on rainbow trout (Oncorhynchus mykiss) at different stages of its development. 2

Acta Zool. Lit. 14, 13-18. 3

Wasielesky, W., Bianchini, A., Santos, M.H., Poersch, L.H., 1997. Tolerance of juvenile 4

flatfish Paralichthys orbignyanus to acid stress. J. World Aquac. Soc. 28, 202-204. 5

Wedemeyer, G., 2012. Physiology of Fish in Intensive Culture Systems. Springer Science 6

& Business Media, Dordrecht. 7

Wood, C.M., Nawata, C.M., 2011. A nose-to-nose comparison of the physiological and 8

molecular responses of rainbow trout to high environmental ammonia in seawater versus 9

freshwater. J. Exp. Biol. 214, 3557-3569. 10

Wuertz, S., Schulze, S.G.E., Eberhardt, U., Schulz, C., Schroeder, J.P., 2013. Acute and 11

chronic nitrite toxicity in juvenile pike-perch (Sander lucioperca) and its compensation by 12

chloride. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 157, 352-360. 13

Yang, W., Xiang, F., Sun, H., Chen, Y., Minter, E., Yang, Z., 2010. Changes in the selected 14

hematological parameters and gill Na+/K

+ ATPase activity of juvenile crucian carp 15

Carassius auratus during elevated ammonia exposure and the post-exposure recovery. 16

Biochem. Syst. Ecol. 38, 557-562. 17

Zhang, L., Feng, L., Jiang, W.D., Liu, Y., Jiang, J., Li, S.H., Tang, L., Kuang, S.Y., Zhou, 18

X.Q., 2016. The impaired flesh quality by iron deficiency and excess is associated with 19

increasing oxidative damage and decreasing antioxidant capacity in the muscle of 20

younggrass carp (Ctenopharyngodon idellus). Aquacult. Nutr. 22, 191-201. 21

22

32

CAPÍTULO 1 1

2

Secondary stress responses in juvenile Brazilian flounder Paralichthys orbignyanus 3

throughout and after exposure to sub-lethal levels of ammonia and nitrite 4

5

Lucas Campos Malteza, Marcelo Hideo Okamoto

b, Diogo Luiz de Alcantara Lopes

b, Luis André Luz Barbas

d, 6

Luis Alberto Romanoc, Luís André Sampaio

b and Luciano Garcia

a* 7

8 aLaboratório de Aquacultura Continental, Instituto de Oceanografia, Universidade Federal do Rio Grande – 9

FURG, Rio Grande, RS, Brazil. 10 bLaboratório de Piscicultura Estuarina e Marinha, Instituto de Oceanografia, Universidade Federal do Rio 11

Grande – FURG, Rio Grande, RS, Brazil. 12 cLaboratório de Patologia e Imunologia de Organismos Aquáticos, Instituto de Oceanografia, Universidade 13

Federal do Rio Grande – FURG, Rio Grande, RS, Brazil. 14 dLaboratório de Aquacultura de Espécies Tropicais, Instituto Federal de Educação Ciência e Tecnologia do 15

Pará, Castanhal – PA, Brazil. 16

17

*Corresponding author: Laboratório de Aquacultura Continental, Universidade Federal do Rio Grande – 18

FURG, 96201-900, Rio Grande, RS, Brazil. Phone: +55 53 3237-3003; E-mail address: 19

[email protected] 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Artigo formatado e submetido para a revista Aquaculture 37

33

Abstract 1

2

The aim of this study was to investigate the secondary stress responses in blood of juvenile 3

Brazilian flounder Paralichthys orbignyanus throughout exposure to sub-lethal levels of 4

ammonia and nitrite and after recovery in water with minimum concentrations of these 5

compounds. Fish were exposed to three concentrations of ammonia (0.12; 0.28 and 0.57 mg 6

NH3-N.L-1

) or nitrite (5.72; 10.43 and 15.27 mg NO2-N.L-1

), plus a control, for 10 days 7

followed by the same time for recovery. Blood parameters (glucose, Na+, K

+, Ca

2+ and 8

HCO3− concentrations, pO2, pCO2, pH and differential leukocyte count) were measured 9

after 1, 5 and 10 days of exposure, and after recovery. Fish exposed to all ammonia 10

concentrations presented lower glucose levels after 10 days of exposure and higher values 11

after recovery. Although ammonia induced initial ionic disturbances (Na+, K

+, Ca

2+), basal 12

levels were restored still over the course of exposure. A metabolic blood alkalosis occurred 13

from the 5th

day of exposure and forward until the end of the experiment (day 20). Nitrite 14

exposure caused hyperglicemia, increased plasma K+ levels and respiratory alkalosis, 15

whereas a metabolic acidosis was observed in fish after recovery. The differential leukocyte 16

count revealed an increased proportion of monocytes and granulocytes, or only monocytes. 17

Yet, reductions of lymphocytes in response to intermediate concentrations of ammonia 18

(0.28 mg NH3-N.L-1

at day 1) and nitrite (10.43 mg.L-1

at day 5), and after recovery in 19

treatments 0.28 and 0.57 mg NH3-N.L-1

were observed. Exposure to ammonia also 20

decreased the proportion of granulocytes at day 5. In conclusion, exposure to sub-lethal 21

levels of ammonia and nitrite for 10 days led to alterations in blood parameters of juvenile 22

Brazilian flounder, and concentrations at 0.12 mg NH3-N.L-1

and 5.72 mg NO2-N.L-1 23

should be avoided to prevent physiological disorders that can compromise aquaculture 24

production. Furthermore, only fish exposed to 5.72 mg NO2-N.L-1

following a 10-days 25

recovery period showed complete resumption of normal physiological condition. 26

27

Keywords: blood parameters; estuarine fish; homeostasis; nitrogen compounds; toxicity 28

29

34

1. Introduction 1

2

The Brazilian flounder Paralichthys orbignyanus inhabits estuaries and shallow 3

coastal waters of the southwestern Atlantic Ocean, from Rio de Janeiro, Brazil to 4

Argentinian Patagonia, representing an important fishery resource in South America 5

(Millner et al., 2005). It is considered a promising species for the development of intensive 6

marine aquaculture due to its wide tolerance to changes in water quality (Bianchini et al. 7

1996; Wasielesky et al. 1997; Sampaio and Bianchini, 2002; Okamoto and Sampaio, 2012) 8

and handling (Bolasina, 2011). Spawning, larviculture and juvenile production have been 9

successfully achieved in Brazilian flounder (Sampaio et al., 2007; Sampaio et al., 2008). 10

Build-up of nitrogen compounds is one of the most important limiting factors in 11

intensive aquaculture. In recirculating aquaculture systems (RAS), ammonia and nitrite are 12

removed via the nitrification process whereby bacteria inside the biofilter oxidize ammonia 13

to nitrite, and subsequently to nitrate (Blancheton et al., 2013). However, imbalances within 14

these bacterial processes may lead to increments in concentrations of these compounds, 15

which are extremely toxic to fish (Randall and Tsui, 2002; Jensen, 2003). 16

The accumulation of ammonia in production systems occurs due to decomposition 17

of the organic matter and fish excretion, being the main by-product of protein catabolism in 18

most teleost species (Wilkie, 2002). Ammonia exists in ionized (NH4+) and un-ionized 19

forms (NH3), and its toxicity is mainly attributed to un-ionized form, which can readily 20

diffuse across gill membranes because of its high solubility in lipids (Ip and Chew, 2010). 21

High concentrations of environmental ammonia impair the blood-to-water gradient for NH3 22

diffusion and therefore, ammonia build-up in blood and tissues is favoured by the 23

decreased gill excretion (Wilkie and Wood, 1996). According to Randall and Tsui (2002), 24

the main cause of ammonia toxicity is related to the depolarizing effect of the ion NH4+

in 25

neurons, leading to excessive activation of N-Methyl-D-Aspartate (NMDA) type glutamate 26

receptors. Over activation of these receptors leads to an influx of Ca2+

to cells, which in 27

turn activates Ca2+

-dependent enzymes, being followed by a series of reactions that can 28

ultimately cause cell death. 29

Environmental nitrite is taken up across the gill epithelium via the active chloride 30

uptake mechanism, following further accumulation in the extracellular fluid (Bath and 31

35

Eddy, 1980). In marine fish, the intestinal epithelium is another important route for nitrite 1

uptake (Grosell and Jensen, 2000). From the blood plasma, nitrite diffuses into red blood 2

cells (RBCs) oxidizing hemoglobin Fe2+

to Fe3+

and thus giving rise to the formation of 3

methemoglobin (metHb), losing its oxygen-binding capacity (Jensen, 2003). 4

In addition to the primary toxic mechanisms as aforementioned, exposure to 5

ammonia and nitrite can also induce metabolic, ionic, acid-base and immune changes in 6

fish, which led to alterations of some blood parameters as glucose, concentration of 7

electrolytes, partial pressure of gases, pH and leukocyte profile (Vosyliene and 8

Kazlauskiene, 2004; Wood and Nawata, 2011; Saoud et al., 2014; Jia et al., 2015; Hvas et 9

al., 2016). These secondary stress responses are early signs of compromise to fish health, 10

and therefore should not be overlooked, for they can provide relevant information to 11

establish nontoxic thresholds for NH3-N and NO2-N concentrations. Maintaining safe 12

thresholds for nitrogen compounds in RAS is critical to avoid stress, which, if linger on 13

above safe levels, may eventually progress to tertiary responses (Barton et al., 2002) such 14

as growth suppression (Paust et al., 2011; Ciji et al., 2014), diseases and fish death 15

(Medeiros et al., 2016). 16

Information on the suitable time length to allow for ammonia and nitrite 17

detoxification from plasma and tissues of fish is very scarce. Although some studies have 18

shown resumption of normal physiological conditions during recovery in fish previously 19

exposed to ammonia and nitrite (Gisbert et al., 2004; Yang et al., 2010), such similar results 20

cannot be simply expected when different concentrations, time of exposure, or distinct 21

species are used. Different species might require distinct time frames for resumption of 22

homeostasis. Fish reared in intensive aquaculture systems that have been exposed to 23

oscillations in nitrogen compounds should undergo an adequate recovery period in 24

ammonia- and nitrite-free water, in order to minimize the risk of cumulative stress 25

(Wedemeyer, 2012) and to decrease impairment of end-products due to pre-slaughter stress 26

(Terlouw et al., 2008). 27

Studies dealing with ammonia and nitrite toxicity to the Brazilian flounder are 28

limited to the determination of lethal concentration (LC50-96h) in two experimental 29

conditions of salinity and temperature: the "winter condition" (0‰ and 12°C) and the 30

"summer condition" (30‰ and 25°C). Values for LC50-96h were 0.67 mg NH3-N.L-1

and 31

36

30.57 mg NO2-N.L-1

in "summer condition", and 0.19 mg NH3-N.L-1

and 24.01 mg NO2-1

N.L-1

in "winter condition" (Bianchini et al., 1996). Responses of Brazilian flounder 2

exposed to sub-lethal levels of these compounds, following a recovery period in ammonia- 3

and nitrite-free water are unknown. Thus, the aim of this study was to assess the effects of 4

exposure to sub-lethal levels of un-ionized ammonia and nitrite on secondary stress 5

responses of juvenile P. orbignyanus. Furthermore, responses of fish allowed to recover in 6

ammonia- and nitrite-free water were also monitored. 7

8

2. Materials and methods 9

10

2.1. Fish and experimental conditions 11

12

Juvenile Brazilian flounders were produced and reared at the Laboratory of Marine 13

Fish Culture of the Federal University of Rio Grande - FURG in southern Brazil. The 14

experimental protocol was approved by the Committee on Animal Experimentation of 15

FURG under the registration number 23116.001030/2016-15. 16

Two experiments were performed: 180 fish (107.3 ± 1.9 g and 21.2 ± 0.1 cm) were 17

exposed to ammonia (Experiment 1 – E1), and another 180 fish (310.0 ± 5.6 g and 29.4 ± 18

0.2 cm) were exposed to nitrite (Experiment 2 – E2). Fish were randomly distributed in 12 19

tanks (250 L useful volume) consisting of four RAS for acclimation to experimental 20

conditions during 20 days. 21

The juveniles were fed twice daily (3% of total biomass) with commercial diet (46% 22

crude protein) throughout the acclimation period and experiments. Uneaten food and faeces 23

were siphoned out after feeding and the water was replenished at the same experimental 24

conditions. 25

After the acclimation period, fish were exposed for 10 days to three sub-lethal 26

concentrations of ammonia (E1): 0.12 ± 0.01; 0.28 ± 0.02 and 0.57 ± 0.02 mg NH3-N.L-1

or 27

nitrite (E2): 5.72 ± 0.02; 10.43 ± 0.05 and 15.27 ± 0.04 mg NO2-N.L-1

, plus a control (E1 - 28

0.05 ± 0.01 mg NH3-N.L-1

; E2 - 0.08 ± 0.01 mg NO2-N.L-1

), being each treatment in 29

triplicate. Water flow was turned off and throughout the exposure period fish were kept in a 30

37

semi-static system. Concentrations tested were chosen based on the safe levels of un-1

ionized ammonia (0.067 mg NH3-N.L-1

) and nitrite (3.06 mg NO2-N.L-1

) that were 2

estimated by Bianchini et al. (1996) in seawater. The desired ammonia and nitrite 3

concentrations were obtained by the addition of ammonium chloride (NH3Cl4) or sodium 4

nitrite (NaNO2) (Synth, Brazil) solutions, or water exchanges. In both experiments, at the 5

end of the exposure period, water was entirely renewed in all tanks, water recirculation was 6

re-established and fish remained for another 10 days in a RAS for the evaluation of 7

recovery (E1 – 0.00 ± 0.00 mg NH3-N.L-1

; E2 – 0.05 ± 0.01 mg NO2-N.L-1

). 8

Water quality parameters were measured daily before the first feeding: temperature 9

and dissolved oxygen (oximeter YSI 55), salinity (refractometer), pH (pH meter, WTW 10

315i), total ammonia (UNESCO, 1983), un-ionized ammonia (Colt, 2002), nitrite 11

(Bendschneider and Robinson, 1952), and total alkalinity (Eaton et al., 2005). Water quality 12

was maintained as follows: salinity (E1 – 27.82 ± 0.06; E2 – 23.91 ± 0.05), temperature (E1 13

– 22.65 ± 0.07 °C; E2 – 21.68 ± 0.10 °C), dissolved oxygen concentration (E1 – 6.88 ± 14

0.01 mg O2.L-1

; E2 – 7.34 ± 0.02 mg O2.L-1

), pH (E1 – 8.20 ± 0.01; E2 – 8.17 ± 0.01), 15

alkalinity (E1 – 168.85 ± 1.19 mg CaCO3.L-1

; E2 – 232.19 ± 1.50 mg CaCO3.L-1

). 16

Photoperiod was fixed at 12 h Light: 12 h Dark. 17

18

2.2. Blood sampling and analyses 19

20

Feeding was discontinued 24 hours prior to each sampling day and three fish per 21

tank (nine per treatment) were collected after 1, 5 and 10 days of exposure, and after the 22

recovery period (day 20). After collection, fish were anaesthetized with benzocaine 23

hydrochloride (50 ppm) and blood samples were obtained by caudal puncture using 24

heparinized syringes. 25

The blood glucose was measured using a glucose meter (Accu-Chek Advantage; 26

Roche Diagnosis®). Ions (Na

+, K

+ and Ca

2+) and bicarbonate concentration (HCO3

-), partial 27

pressure of gases (pCO2 and pO2) and pH and were measured with a portable i-STAT®

28

clinical analyser using CG8+ cartridges (Abbott laboratories, Chicago, IL, USA). Values 29

for pO2, pCO2, HCO3 and pH were corrected for the water temperature with the assumption 30

that water temperature and fish body temperatures were equivalent (Hanley et al., 2010). 31

38

Corrections were made according to the manufacturer's specifications. The accuracy of the 1

gained data using an i-STAT device has been questioned when compared to data from 2

conventional laboratory analyses, because some discrepancies can occur (Harter et al., 3

2014). However, when using i-STAT measurements, the focus should not be on attaining 4

absolute values, but in other ways, allow for comparisons among experimental treatments 5

(Calabrese et al., 2017) or assess conditions in which precision is more relevant than 6

accuracy (Davidson et al., 2014). Beyond that, monitoring of blood parameters using i-7

STAT may be a useful and practical tool for a quick evaluation of stress in animals. Many 8

recent studies have used i-STAT-based analyses on fish (Barbas et al., 2016; Hvas et al., 9

2016; Calabrese et al., 2017). 10

Blood smears were prepared and stained with May-Grünwald-Giemsa (Rosenfeld, 11

1947). Two thousand cells per slide were counted under a microscope (100x) for 12

differential counting of leukocytes (monocytes, lymphocytes and granulocytes). 13

14

2.3. Statistical analysis 15

16

All data were expressed as means ± standard error (SEM). To verify the normality 17

and homogeneity of variances, data were submitted to Kolmogorov-Smirnov and Levene 18

tests, respectively. After assumptions were satisfied, one-way ANOVA and Tukey test 19

were performed to check for differences among treatments (Ammonia/Nitrite 20

concentrations) within the same sampling day. The significance level was set at p < 0.05 in 21

all cases. 22

23

3. Results 24

25

The survival rate of juvenile Brazilian flounder was 100% in both experiments. 26

Glucose levels were significantly lower in juvenile Brazilian flounder irrespective 27

of ammonia concentration when compared to control after 10 days of exposure, whereas 28

after the recovery period, all treatments showed higher glycemia than control (Table 1). 29

39

The blood K+

concentration was higher in fish exposed to ammonia, regardless of 1

concentration, in relation to control on day 1. Ca2+

concentrations increased after one day of 2

exposure in treatment 0.57 mg NH3-N.L-1

compared to control. At the first day of exposure, 3

Na+ concentration was higher in treatment 0.57 mg NH3-N.L

-1 compared to treatment 0.12 4

mg NH3-N.L-1

and control, and in the treatment 0.28 mg NH3-N.L-1

compared to control. 5

On day 5, concentration of Na+ was lower in treatment 0.57 mg NH3-N.L

-1 compared to 6

control (Table 1). 7

The pO2 levels were higher in treatment 0.57 mg NH3-N.L-1

compared to treatment 8

0.12 mg NH3-N.L-1

at day 1. Fish exposed to 0.57 mg NH3-N.L-1

for one day had a 9

reduction in pCO2 and HCO3- concentration in relation to all other treatments. On day 5, the 10

HCO3-

concentration was higher in treatment 0.57 mg NH3-N.L-1

when compared to 11

treatment 0.12 mg NH3-N.L-1

. The pH increased significantly in treatments 0.28 and 0.57 12

mg NH3-N.L-1

in relation to control at day 5. At the end of the exposure period (day 10), 13

the HCO3- concentration was higher in fish exposed to 0.28 mg NH3.L

-1 compared to the 14

other treatments. In the same day (day 10), the pH was higher in treatment 0.28 mg NH3-15

N.L-1

when compared to the others, and in treatment 0.57 mg NH3-N.L-1

in comparison 16

with control. After the recovery period, the HCO3- concentration was higher in treatments 17

0.28 and 0.57 mg NH3-N.L-1

than in control, being the pH also higher in these treatments in 18

relation to control and treatment 0.12 NH3-N.L-1

(Table 1). 19

Brazilian flounder exposed for one day to 0.28 mg NH3-N.L-1

showed increased 20

proportion of monocytes and reduced lymphocytes when compared to other treatments. The 21

proportion of granulocytes was higher in treatment 0.28 mg NH3-N.L-1

in relation to the 22

treatment 0.57 mg NH3-N.L-1

. Fish exposed to ammonia, irrespective of concentration 23

showed decreased proportion of granulocytes in relation to control on day 5. After 24

recovery, proportion of granulocytes increased in treatment 0.57 mg NH3-N.L-1

in relation 25

to control and treatment 0.12 mg NH3-N.L-1

, and this proportion increment was also 26

observed in treatment 0.28 mg NH3-N.L-1

compared to control. There was a reduction in 27

lymphocytes in treatments 0.28 and 0.57 mg NH3-N.L-1

compared to control and 0.12 mg 28

NH3-N.L-1

after the recovery period (Table 2). 29

Blood glucose was higher in fish exposed to treatments 10.43 and 15.27 mg NO2-30

N.L-1

compared to the other treatments at the end of the exposure period (day 10). On day 31

40

5, the K+ concentration was higher in treatment 15.27 mg NO2-N.L

-1 compared to all other 1

treatments, whereas on the 10th

day it was higher in treatments 10.43 e 15.27 mg NO2-N.L-1

2

than that of control. There was an elevation and a reduction in Na+ concentrations in 3

treatment 15.27 mg NO2-N.L-1

compared to all other treatments at day 5 and after recovery, 4

respectively. The pCO2 levels were lower in all treatments exposed to nitrite as compared 5

to control throughout the exposure period (1, 5 and 10 days). After five days of exposure, 6

the HCO3- concentration was lower in treatment 15.27 mg NO2-N.L

-1 compared to all other 7

treatments and in treatments 5.72 and 10.43 mg NO2-N.L-1

when compared to control. Fish 8

exposed to 15.27 mg NO2-N.L-1

had a reduction in blood pH compared to 5.72 mg NO2-9

N.L-1

and control on day 5. Blood pH increased significantly in all treatments compared to 10

controls on days 1 and 10. After the recovery period, treatments 10.43 and 15.27 mg NO2-11

N.L-1

had significantly lower HCO3- concentrations compared to treatment 5.72 mg NO2-12

N.L-1

and control, whereas the pH values were lower in treatment 15.27 mg NO2-N.L-1

in 13

relation to all others treatments, and in treatment 10.43 mg NO2-N.L-1

compared to control 14

(Table 3). 15

Exposure to 10.43 mg NO2-N.L-1

during five days led to increased percentage of 16

monocytes and granulocytes, and a reduction in lymphocytes, compared to all other 17

treatments. After recovery, the treatment 15.27 NO2-N.L-1

showed a reduced proportion of 18

lymphocytes and an increased proportion of granulocytes relative to treatment 10.43 NO2-19

N.L-1

(Table 4). 20

21

4. Discussion 22

23

The build-up of toxic nitrogen compounds imposes a potential risk for intensive 24

aquaculture, and exposure to certain levels of ammonia and nitrite can be lethal to fish 25

(Medeiros et al., 2016). In the present study, the absence of mortality in fish exposed to 26

concentrations of up to 0.57 mg NH3-N.L-1

or 15.27 mg NO2-N.L-1

for 10 days, is in 27

agreement with the observations of Bianchini et al. (1996) when evaluating acute toxicity 28

for P. orbignyanus in seawater (30‰ and 25°C) for 96 h. These authors demonstrated 29

100% of survival in fish exposed to concentrations around 0.54 mg NH3-N.L-1

and 10 mg 30

NO2-N.L-1

, and mortality occurred only at concentrations 0.67 mg NH3-N.L-1

and 20 mg 31

41

NO2-N.L-1

or above. However, taking into account the different exposure time between the 1

two studies, our results suggest that the species is capable of tolerating longer periods of 2

exposure to these ammonia and nitrite concentration ranges, without mortality, which is an 3

important feature of a candidate species for intensive aquaculture. 4

Despite the absence of mortality, evaluation of blood parameters revealed the 5

triggering of several secondary stress responses, which were time and concentration 6

dependent. The required physiological adaptations which increase the chances of survival 7

under stress conditions, involve energy expenditure that is likely to impair other biological 8

processes closely related to aquaculture productivity, as in the case of growth, reproduction 9

and tolerance to additional stress (Bonga, 1997; Barton, 2002). Therefore, the knowledge 10

on the ammonia- and nitrite-induced changes in blood, combined with a periodic 11

monitoring of fish blood and water quality, allows for an early diagnosis of stress induced 12

by deleterious levels of these compounds in the production system, therefore reducing the 13

possibility of more severe or long-term effects. 14

Nitrogenous compounds can provoke the release of catecholamine and cortisol to 15

the bloodstream as primary stress responses in fish. Elevation of plasma cortisol induces 16

the mobilization of energy substrates, resulting in increased plasma glucose levels, which in 17

turn, is related to carbohydrate metabolism, such as glycogenolysis and gluconeogenesis 18

(Bonga, 1997). Increased glucose levels were observed in Brazilian flounder after recovery 19

irrespective of ammonia treatment, and hyperglycemia was also caused by higher nitrite 20

concentrations (10.43 and 15.27 mg NO2-N.L-1

) after 10 days of exposure, indicating an 21

increased metabolic demand in either cases. In contrast, reduced plasma glucose levels 22

were observed after 10 days of exposure to ammonia. Similar response was also reported 23

by Baldisserotto et al. (2014) for silver catfish Rhamdia quelen exposed to 0.18 and 0.50 24

mg NH3-N.L-1

for five days. This reduction is presumably caused by the depletion of 25

glycogen reserves in the liver and muscle during ammonia-induced stress (Miron et al., 26

2008). 27

Exposure to ammonia and nitrite caused osmoregulatory disturbances in Brazilian 28

flounder, which led to alterations in plasma electrolyte concentrations. Fish exposed to 29

ammonia (0.12 - 0.57 mg NH3-N.L-1

) showed an initial elevation (day 1) of plasma K+ 30

concentration. This result was similar to those observed for Atlantic cod Gadus morhua 31

42

(Remen et al., 2008) and turbot Scophthalmus maximus (Person-Le Ruyet et al., 2003). The 1

primary mechanism of ammonia toxicity concerns to the ability of NH4+ in replacing K

+ in 2

neurons (Binstock and Lecar, 1969) and muscle (Beaumont et al., 2000). This could have 3

decreased the concentration of K+

in the intracellular fluids, as demonstrated in the muscle 4

of rainbow trout Oncorhynchus mykiss (Vedel et al., 1998), and in turn, promoted an 5

elevation of K+ concentration in the blood plasma. 6

Elevation of plasma K+ concentrations in juvenile Brazilian flounder exposed to 7

10.43 (day 10) and 15.27 mg NO2-N.L-1

(days 5 and 10) was probably caused by the 8

release of K+ from RBCs and skeletal muscle. In RBCs, the K

+ efflux is related to the 9

formation of metHb, which activates the K+/Cl

- cotransport (Jensen, 1992). The transport 10

mechanism involved in the K+ losses from the muscle seems to be similar to that observed 11

in RBCs (Knudsen and Jensen, 1997). Hyperkalemia has been demonstrated in several 12

species during nitrite exposure (Grosell and Jensen, 2000; Gisbert et al., 2004; Ciji et al., 13

2012; Jia et al., 2015). 14

Increased plasma Ca2+

concentrations of fish exposed to 0.57 mg NH3-N.L-1

(day 1) 15

are likely a transient disturbance of calcium exchanges through the gill and intestine and/or 16

come from internal pools (Person-Le Ruyet et al., 2003). Silver catfish exposed to ammonia 17

(0.18 - 0.50 mg NH3-N.L-1

) for 24 h also showed increased plasma Ca2+

concentrations, 18

with subsequent restoration of basal levels after 5 days (Baldisserotto et al., 2014), 19

resembling the results of the present study. 20

Juvenile Brazilian flounder showed increased plasmatic concentration of Na+ when 21

exposed to 0.28 and 0.57 mg NH3-N.L-1

(day 1) and 15.27 mg NO2-N.L-1

(day 5). Similar 22

results were reported for European sea bass Dicentrarchus labrax (Sinha et al., 2015) and 23

Atlantic Salmon Salmo salar in seawater (Knoph and Thorud, 1996) during ammonia 24

exposure and for sea bass exposed to nitrite (Woo and Chiu, 1997). The rise in Na+

plasma 25

concentrations suggests a reduction of Na+ excretion. This could be related to an inhibition 26

of branchial Na+/K

+ ATPase activity and/or Na

+/NH4

+ exchange mechanism, which are 27

involved in ammonia excretion (Weihrauch et al., 2009). In contrast, the Na+

plasma 28

concentration of fish subjected to 0.57 mg NH3-N.L-1

was reduced on the 5th

day. These 29

results resemble those observed for turbot after seven days of exposure to 0.73 and 0.88 mg 30

NH3-N.L-1

(Person-Le Ruyet et al., 2003) and can be explained by different osmoregulatory 31

43

imbalances. More Na+ is excreted across the gills due to an enhanced in Na

+/K

+-ATPase 1

activity, which is triggered by endocrine stress responses (McCormick, 2001). Ionic 2

disturbances between intra and extracellular fluids (Vedel et al., 1998) and reduction of Na+

3

uptake due to competition for active transport between Na+ and NH4

+ (Schmidt-Nielsen, 4

1997) are also causes of lessened plasma Na+ concentrations. 5

The ionic disturbances associated with ammonia toxicity were limited to the first 5 6

days of exposure. These results indicate an adaptation of Brazilian flounder to 7

environmental ammonia, which involves physiological adjustments to recover and maintain 8

normal osmoregulation, without requiring a recovery period in ammonia-free water. In the 9

nitrite experiment, the 10 days of recovery sufficed to restore the basal levels of plasma K+, 10

which was the only altered ionic parameter at the end of the exposure. 11

Acid-base regulation is essential to maintain the physiological and biochemical 12

functions and consequently, the whole animal performance. Fish can regulate an acid–base 13

disturbance through modulations in ventilation rate to modify blood pCO2 and mainly by 14

ionic regulation across the gills (Evans et al., 2005; Perry and Gilmour, 2006). Brazilian 15

flounder juveniles exposed to 0.57 mg NH3-N.L-1

(day 1) and all nitrite concentrations (day 16

5) presented a reduction in pCO2 and bicarbonate concentration, which indicates a 17

compensatory mechanism to regulate the acid-base status. However, exposure to ammonia 18

and nitrite also elicits changes in blood pH, which is an indication of failure in acid-base 19

regulation. 20

Exposure to 0.28 and 0.57 mg NH3-N.L-1

induced a slight metabolic alkalosis from 21

day 5 and forward, throughout the exposure period, and even after recovery. Similarly, 22

Nawata et al. (2015) reported a slight alkalosis and a significant rise in plasma bicarbonate 23

of spiny dogfish shark Squalus acanthias during ammonia exposure. Clifford et al. (2015) 24

also found a metabolic alkalosis characterized by a rise in plasma bicarbonate concentration 25

and an unchanged plasma pCO2 in Pacific hagfish Eptatretus stoutii exposed to ammonia. 26

Rainbow trout acclimated to seawater experienced a gradual increase in blood pH as the 27

ammonia exposure continued during 24 h without changes in plasma bicarbonate (Wilson 28

and Taylor, 1992). Analysis of blood non-respiratory acid-base status of seawater fish 29

exposed to ammonia revealed a metabolic acid consumption (base load) through the 30

conversion of NH3 to NH4+ and subsequently extrusion via NH4

+/Na

+ exchange (Wilson 31

44

and Taylor, 1992; Clifford et al., 2015). For fish living in small volumes of water, as it 1

occurs in intensive production systems, it is possible that acid excretions may have a 2

significant impact on environmental pH. Water acidification and blood alkalosis reduce the 3

concentration of NH3 in the water and increase it in plasma, respectively, raising NH3 4

plasma-water gradient and therefore its excretion (Chew et al., 2003). Thus, under certain 5

conditions, fish can take advantage of the mechanisms of ionic and acid-base regulation to 6

facilitate the detoxification of excessive ammonia. 7

Increased blood pH levels in fish exposed to all nitrite concentrations on days 1 and 8

10 indicate a respiratory alkalosis as a consequence of reductions in blood pCO2, which in 9

turn could be caused by hyperventilation (Williams et al., 1997). Metahemoglobin-related 10

reductions in blood O2 content during nitrite intoxication may be a trigger mechanism for 11

hyperventilation (Aggergaard and Jensen, 2001). Another strategy observed in fish during 12

nitrite exposure would be to reduce the metabolism to decrease the oxygen demand (Espina 13

& Alcaraz, 1993), resulting in lower blood pCO2 (Williams et al., 1997). 14

The period of recovery was sufficient for resumption of pCO2 to baseline levels 15

irrespective of treatment. The loss of nitrite to the environment across the gills and via the 16

urine, recovery of functional hemoglobin levels due to the methaemoglobin-reductase 17

system and the ability to oxidise nitrite to nitrate, are efficient mechanisms involved in the 18

detoxification and recovery from nitrite exposure (Jensen, 2003). Thus, the return of pCO2 19

values and plasma K+ concentrations to baseline levels can be an indication of restored 20

functional hemoglobin levels. However, fish exposed to 10.43 and 15.27 mg NO2-N.L-1

21

(day 20) had a decreased concentration of bicarbonate and pH, indicating a metabolic 22

acidosis. According to Clifford et al. (2015), the stepwise correction of the alkalosis was 23

likely due to an increase in the addition of metabolic acid to the blood, resulting in a 24

temporary acidosis during recovery. Metabolic acidosis was more pronounced in the 25

highest nitrite concentration concomitantly with the decreased plasma Na+. Since the 26

excretion of H+ is related to the uptake of Na

+ (Perry and Gilmour, 2006), this result 27

suggests a possible reduction in Na+/H

+ exchange mechanisms, leading to an acid load. 28

Nevertheless, further studies are needed for a better understanding of the ionic and acid-29

base changes observed during recovery from nitrite exposure. 30

45

The use of leukocyte profiles to assess immune responses is also an important tool 1

for the monitoring of stress in fish (Davis et al., 2008; Souza Neves et al., 2014; Zebral et 2

al., 2015). Brazilian flounder exposed to intermediate concentrations of ammonia (0.28 mg 3

NH3-N.L-1

on day 1) and nitrite (10.43 mg NO2-N.L-1

on day 5), and after recovery for 4

those previously exposed to 0.28 and 0.57 mg NH3-N.L-1

, presented increased proportion of 5

monocytes and/or granulocytes, and reduced number of lymphocytes. This pattern is 6

described as a common secondary stress response in fish (Davis et al., 2008) and represents 7

an innate immune response (Miller et al., 1998). Increased proportion of granulocytes, and 8

decreased lymphocytes were observed in rainbow trout (Vosyliene and Kazlauskiene, 9

2004) and common carp Cyprinus carpio (Dabrowska and Wlasow, 1986) exposed to 10

sublethal levels of ammonia. Saoud et al. (2014) demonstrated an increased proportion of 11

eosinophils and neutrophils, two types of granulocytes, during exposure of rabitfish 12

Siganus rivulatus for 56 days to nitrite (up to 40 mg NO2-N.L-1

). Immune response of 13

Brazilian flounder exposed to intermediate concentrations revealed a protective mechanism 14

response at these concentrations. However, at higher concentrations or longer exposure, 15

this response was not activated probably due to the higher magnitude of stress (Svobodova 16

et al. 1994), as observed in mrigal Cirrhinus mrigala (Das et al., 2004) and rabitfish S. 17

rivulatus (Saoud et al., 2014) exposed to ammonia and nitrite, respectively. 18

Otherwise, irrespective of concentration, exposure to ammonia induced a decreased 19

proportion of granulocytes at day 5, indicating an immunosuppressive effect of ammonia 20

and/or a migration of these cells from blood stream to other tissues. The suppression of the 21

immune system responses increases the susceptibility to diseases during stress (Nardocci et 22

al., 2014), which can be a serious problem for aquaculture development, especially at high 23

stocking densities. 24

Briefly, the alterations in secondary stress responses of Brazilian flounder were 25

present even in fish exposed to the lowest concentration of either compounds (0.12 mg 26

NH3-N.L-1

and 5.72 mg NO2-N.L-1

). Thus, these are defined as the lowest-observable-effect 27

concentration for the species and provide relevant information for the establishment of safe 28

thresholds of NH3-N and NO2-N concentrations in production systems. The findings of this 29

study also demonstrated that recovery responses after transfer of Brazilian flounder to good 30

quality water for a period of 10 days were dependent both on the concentration and toxic 31

46

compound to which the fish were exposed. The return of all parameters to basal levels was 1

demonstrated in treatment 5.72 mg NO2-N.L-1

. As for the other treatments, only some 2

parameters were restored to normal levels (as in treatments 0.12 mg NH3-N.L-1

; 10.43 and 3

15.27 mg NO2-N.L-1

) or no recovery was observed (as in the case of 0.28 and 0.57 mg 4

NH3-N.L-1

treatments), suggesting that a longer recovery time is necessary, especially for 5

fish exposed to ammonia. 6

7

5. Conclusion 8

9

Exposure to ammonia and nitrite caused metabolic, ionic and acid-base 10

disturbances, with modulation of immune responses in juvenile Brazilian flounder. In this 11

perspective, concentrations at 0.12 mg NH3-N.L-1

and 5.72 mg NO2-N.L-1

should be 12

avoided in production systems in order to prevent physiological disorders, which are likely 13

to negatively impact P. orbignyanus performance reared under intensive production 14

systems. Furthermore, only fish exposed to 5.72 mg NO2-N.L-1

following a 10-days 15

recovery period showed complete resumption of normal physiological condition. 16

17

Acknowledgements 18

19

This study was supported by research funds from Conselho Nacional de Pesquisa e 20

Desenvolvimento Científico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de 21

Nível Superior (CAPES). The authors are grateful to CNPq for research fellowships 22

provided for Dr. L. Garcia, Dr. L. Sampaio and Dr. L. Romano, and to CAPES for a PhD 23

scholarship provided for MSc. Lucas C. Maltez. 24

25

References 26

27

Aggergaard, S., Jensen, F. B., 2001. Cardiovascular changes and physiological response 28

during nitrite exposure in rainbow trout. J. Fish Biol. 59, 13-27. 29

Baldisserotto, B., Martos-Sitcha, J. A., Menezes, C. C., Toni, C., Prati, R. L., Garcia, L., 30

Salbegoa, J., Mancera, J. M., Martínez-Rodríguez, G., 2014. The effects of ammonia and 31

47

water hardness on the hormonal, osmoregulatory and metabolic responses of the freshwater 1

silver catfish Rhamdia quelen. Aquat. Toxicol. 152, 341-352. 2

Barbas, L. A. L., Stringhetta, G. R., de Oliveira Garcia, L., Figueiredo, M. R. C., & 3

Sampaio, L. A., 2016. Jambu, Spilanthes acmella as a novel anaesthetic for juvenile 4

tambaqui, Colossoma macropomum: Secondary stress responses during recovery. 5

Aquaculture 456, 70-75. 6

Barton, B. A., 2002. Stress in fishes: a diversity of responses with particular reference to 7

changes in circulating corticosteroids. Integr. Comp. Biol. 42, 517-525. 8

Bath, R. N., Eddy, F. B., 1980. Transport of nitrite across fish gills. J. Exp. Zool. 214, 119-9

121. 10

Beaumont, M. W., Taylor, E. W., Butler, P. J., 2000. The resting membrane potential of 11

white muscle from brown trout (Salmo trutta) exposed to copper in soft, acidic water. J. 12

Exp. Biol. 203, 2229-2236. 13

Bendschneider, K., Robinson, R.J.,1952. A new spectrophotometric method for the 14

determination of nitrite in sea water. J. Mar.Res. 11, 87-96. 15

Bianchini, A., Wasielesky, Jr, W., & Miranda Filho, K. C., 1996. Toxicity of nitrogenous 16

compounds to juveniles of flatfish Paralichthys orbignyanus. Bull. Environ. Contam. 17

Toxicol. 56, 453-459. 18

Binstock, L., Lecar, H., 1969. Ammonium ion currents in the squid giant axon. The J. Gen. 19

Physiol. 53, 342-361. 20

Blancheton, J. P., Attramadal, K. J. K., Michaud, L., d’Orbcastel, E. R., Vadstein, O. 21

(2013). Insight into bacterial population in aquaculture systems and its implication. 22

Aquacult. Eng. 53, 30-39. 23

Bolasina, S. N., 2011. Stress response of juvenile flounder (Paralichthys orbignyanus, 24

Valenciennes 1839), to acute and chronic stressors. Aquaculture. 313, 140-143. 25

Bonga, S. W., 1997. The stress response in fish. Physiol. Rev. 77, 591-625. 26

Calabrese, S., Nilsen, T. O., Kolarevic, J., Ebbesson, L. O. E., Pedrosa, C., Fivelstad, S., 27

Hosfeld, C., Stefansson, S. O., Terjesen, B. F., Takle, H., Martins, C. I. M., Sveier, H., 28

48

Mathisen, F., Imsland, A. K., Handeland, S. O., 2017. Stocking density limits for post-1

smolt Atlantic salmon (Salmo salar L.) with emphasis on production performance and 2

welfare. Aquaculture 468, 363-370. 3

Chew, S. F., Hong, L. N., Wilson, J. M., Randall, D. J., Ip, Y. K., 2003. Alkaline 4

environmental pH has no effect on ammonia excretion in the mudskipper 5

Periophthalmodon schlosseri but inhibits ammonia excretion in the related species 6

Boleophthalmus boddaerti. Physiol. Biochem. Zool. 76, 204-214. 7

Ciji, A., Sahu, N. P., Pal, A. K., Akhtar, M. S., Tincy, V., Mishal, P., Das, P., 2014. Effect 8

of dietary vitamin E and nitrite exposure on growth and metabolic variables of Labeo 9

rohita juveniles. Natl. Acad. Sci. Lett. 37, 123-129. 10

Ciji, A., Sahu, N. P., Pal, A. K., Dasgupta, S., Akhtar, M. S., 2012. Alterations in serum 11

electrolytes, antioxidative enzymes and haematological parameters of Labeo rohita on 12

short-term exposure to sublethal dose of nitrite. Fish Physiol. Biochem. 38, 1355-1365. 13

Clifford, A. M., Goss, G. G., Wilkie, M. P., 2015. Adaptations of a deep sea scavenger: 14

High ammonia tolerance and active NH4+ excretion by the Pacific hagfish (Eptatretus 15

stoutii). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 182, 64-74. 16

Colt, J., 2002. List of spreadsheets prepared as a complement (available in 17

(http://www.fisheries.org/afs/hatchery.html) to the book Fish Hatchery Management, 18

Second edition. Wedemeyer, G.A. (Ed.) American Fisheries Society Publication, p. 751. 19

Dabrowska, H., Własow, T.,1986. Sublethal effect of ammonia on certain biochemical and 20

haematological indicators in common carp (Cyprinus carpio L.). Comp. Biochem. Physiol. 21

C Pharmacol. 83, 179-184. 22

Das, P. C., Ayyappan, S., Jena, J. K., Das, B. K., 2004. Acute toxicity of ammonia and its 23

sub‐lethal effects on selected haematological and enzymatic parameters of mrigal, 24

Cirrhinus mrigala (Hamilton). Aquac. Res. 35, 134-143. 25

Davidson, J., Good, C., Welsh, C., & Summerfelt, S. T., 2014. Comparing the effects of 26

high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout 27

Oncorhynchus mykiss within water recirculating aquaculture systems. Aquacult. Eng. 59, 28

30-40. 29

49

Davis, A. K., Maney, D. L., Maerz, J. C., 2008. The use of leukocyte profiles to measure 1

stress in vertebrates: a review for ecologists. Funct. Ecol. 22, 760-772. 2

Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A.E., 2005. Standard methods for the 3

examination of water and wastewater, 21st ed. American Public Health Association, 4

Washington. 5

Espina, S., Alcaraz, G., 1993. Effect of nitrite on the respiratory response of grass carp 6

Ctenopharyngodon idella (Val.) with relation to chloride. Comp. Biochem. Physiol C 7

Pharmacol. Toxicol. Endocrinol. 106, 761-764. 8

Evans, D. H., Piermarini, P. M., Choe, K. P., 2005. The multifunctional fish gill: dominant 9

site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous 10

waste. Physiol. Rev. 85, 97-177. 11

Gisbert, E., Rodrıguez, A., Cardona, L., Huertas, M., Gallardo, M. A., Sarasquete, C., Sala-12

Rabanald, M., Ibarzd, A., Sánchezd, J., Castello-Orvay, F., 2004. Recovery of Siberian 13

sturgeon yearlings after an acute exposure to environmental nitrite: changes in the 14

plasmatic ionic balance, Na+–K+ ATPase activity, and gill histology. Aquaculture. 239, 15

141-154. 16

Grosell, M., & Jensen, F. B., 2000. Uptake and effects of nitrite in the marine teleost fish 17

Platichthys flesus. Aquat. toxicol. 50, 97-107. 18

Hanley, C. S., Clyde. V. L., Wallace, R. S., Paul-Murphy, J., Patterson, T. A., Keuler, N. 19

S., Sladky, K. K., 2010. Effects of anesthesia and surgery on serial blood gas values and 20

lactate concentrations in yellow perch (Perca flavescens), walleye pike (Sander vitreus), 21

and koi (Cyprinus carpio). J. Am. Vet. Med. Assoc. 236, 1104-1108. 22

Harter, T. S., Shartau, R. B., Brauner, C. J., & Farrell, A. P., 2014. Validation of the i-23

STAT system for the analysis of blood parameters in fish. Conserv Physiol 2, cou037. 24

Hvas, M., Damsgaard, C., Jensen, F. B., & Bayley, M., 2016. The effect of environmental 25

hypercapnia and size on nitrite toxicity in the striped catfish (Pangasianodon 26

hypophthalmus). Aquat. Toxicol. 176, 151-160. 27

Ip, Y. K., Chew, S. F., 2010. Ammonia production, excretion, toxicity, and defense in fish: 28

A review. Front. Physiol. 1, 134. 29

50

Jensen, F. B., 1992. Influence of haemoglobin conformation, nitrite and eicosanoids on K+ 1

transport across the carp red blood cell membrane. J. Exp. Biol. 171, 349-371. 2

Jensen, F. B., 2003. Nitrite disrupts multiple physiological functions in aquatic animals. 3

Comp. Biochem. Physiol. A Mol. Integ. Physiol. 135, 9-24. 4

Jia, R., Han, C., Lei, J. L., Liu, B. L., Huang, B., Huo, H. H., Yin, S. T., 2015. Effects of 5

nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile 6

turbot (Scophthalmus maximus). Aquat. Toxicol. 169, 1-9. 7

Knoph, M. B., Thorud, K., 1996. Toxicity of ammonia to Atlantic salmon (Salmo salar L.) 8

in seawater—Effects on plasma osmolality, ion, ammonia, urea and glucose levels and 9

hematologic parameters. Comp. Biochem. Physiol. A Physiol. 113, 375-381. 10

Knudsen, P. K., Jensen, F. B., 1997. Recovery from nitrite-induced methaemoglobinaemia 11

and potassium balance disturbances in carp. Fish Physiol.Biochem.. 16, 1-10. 12

McCormick, S. D., 2001. Endocrine control of osmoregulation in teleost fish. Am. Zool. 13

41, 781-794. 14

Medeiros, R. S., Lopez, B. A., Sampaio, L. A., Romano, L. A., & Rodrigues, R. V., 2016. 15

Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris. Aquacult. Int. 24, 16

985–993. 17

Miller, N., Wilson, M., Bfufltén, E., Stuge, T., Warr, G., Ciem, W., 1998. Functional and 18

molecular characterization of teleost leukocytes. Immunol. Rev. 166, 187-197. 19

Millner, R., Walsh, S. J., Diaz de Astarloa, J. M., 2005. Atlantic flatfish fisheries. In: 20

Gibson, R. N., Nash, R. D. M., Geffen, A. J., Van Der Veer, H. W. (Eds.), Flatfishes: 21

Biology and Exploitation. Blackwell Science Ltd, Oxford, pp. 240-271. 22

Miron, D. D. S., Moraes, B., Becker, A. G., Crestani, M., Spanevello, R., Loro, V. L., 23

Baldisserotto, B., 2008. Ammonia and pH effects on some metabolic parameters and gill 24

histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture. 277, 192-196. 25

Nardocci, G., Navarro, C., Cortés, P. P., Imarai, M., Montoya, M., Valenzuela, B., Jarab, 26

P., Acuña-Castillob, C., Fernández, R., 2014. Neuroendocrine mechanisms for immune 27

system regulation during stress in fish. Fish Shellfish Immunol. 40, 531-538. 28

51

Nawata, C. M., Walsh, P. J., Wood, C. M., 2015. Physiological and molecular responses of 1

the spiny dogfish shark (Squalus acanthias) to high environmental ammonia: scavenging 2

for nitrogen. J. Exp. Biol. 218, 238-248. 3

Okamoto, M. H., Sampaio, L. A., 2012. Sobrevivência e crescimento de juvenis do 4

linguado Paralichthys orbignyanus criados em diferentes temperaturas. Atlântica. 34, 57-5

61. 6

Paust, L. O., Foss, A., Imsland, A. K., 2011. Effects of chronic and periodic exposure to 7

ammonia on growth, food conversion efficiency and blood physiology in juvenile Atlantic 8

halibut (Hippoglossus hippoglossus L.). Aquaculture. 315, 400-406. 9

Perry, S. F., Gilmour, K. M., 2006. Acid–base balance and CO2 excretion in fish: 10

unanswered questions and emerging models. Respir. Physiol.Neurobiol. 154, 199-215. 11

Person-Le Ruyet, J., Lamers, A., Roux, A. L., Severe, A., Boeuf, G., Mayer‐Gostan, N., 12

2003. Long‐term ammonia exposure of turbot: effects on plasma parameters. J. Fish Biol. 13

62, 879-894. 14

Randall, D. J., Tsui, T. K. N., 2002. Ammonia toxicity in fish. Mar. Pollut. Bull.. 45, 17-23. 15

Remen, M., Imsland, A. K., Stefansson, S. O., Jonassen, T. M., Foss, A., 2008. Interactive 16

effects of ammonia and oxygen on growth and physiological status of juvenile Atlantic cod 17

(Gadus morhua). Aquaculture. 274, 292-299. 18

Rosenfeld, G.,1947. Corante pancrômico para hematologia e citologia clínica. Nova 19

combinação dos componentes do May-Grünwald e do Giemsa num só corante de emprego 20

rápido. Mem. Inst. Butantan, 20, 329-334. 21

Sampaio, L. A., Bianchini, A., 2002. Salinity effects on osmoregulation and growth of the 22

euryhaline flounder Paralichthys orbignyanus. J. Exp. Mar. Biol. Ecol. 269, 187-196. 23

Sampaio, L. A., Freitas, L. S., Okamoto, M. H., Louzada, L. R., Rodrigues, R. V., Robaldo, 24

R. B., 2007. Effects of salinity on Brazilian flounder Paralichthys orbignyanus from 25

fertilization to juvenile settlement. Aquaculture. 262, 340-346. 26

Sampaio, L. A., Robaldo, R. B., Bianchini, A., 2008. Hormone‐induced ovulation, natural 27

spawning and larviculture of Brazilian flounder Paralichthys orbignyanus (Valenciennes, 28

1839). Aquac. Res. 39, 712-717. 29

52

Saoud, P., Naamani, S., Ghanawi, J., Nasser, N., 2014. Effects of acute and chronic nitrite 1

exposure on rabbitfish Siganus rivulatus growth, hematological parameters, and gill 2

histology. J. Aquac. Res. Development. 5, 1-9. 3

Schmidt-Nielsen, K., 1997. Animal physiology: adaptation and environment, fifth ed. 4

Cambridge University Press, Cambridge. 5

Sinha, A. K., Rasoloniriana, R., Dasan, A. F., Pipralia, N., Blust, R., De Boeck, G., 2015. 6

Interactive effect of high environmental ammonia and nutritional status on 7

ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to 8

reduced seawater salinities. Aquat. Toxicol. 160, 39-56. 9

Souza Neves, M., Barbas, L. A. L. Fujimoto, R. Y., 2014. Hematology and recovery 10

response in jacundá, Crenicichla saxatilis (Linnaeus, 1758) after short‐term handling stress. 11

J. Appl. Ichthyol. 30, 42-47. 12

Svobodova Z., Vykusova B., Machova J., 1994. The effects of pollutants on selected 13

haematological and biochemical parameters in fish. In: Muller, R., Lloyd, R. (Eds.), 14

Sublethal and Chronic Effects of Pollutants on Freshwater Fish. FAO Fishing News Books, 15

Oxford, pp. 39-52. 16

Terlouw, E. M. C., Arnould, C., Auperin, B., Berri, C., Le Bihan-Duval, E., Deiss, V., 17

Lefèvre, F., Lensink, B. J. & Mounier, L. 2008. Pre-slaughter conditions, animal stress and 18

welfare: current status and possible future research. Animal. 2, 1501-1517. 19

UNESCO., 1983. Chemical methods for use in marine environmental monitoring. Manual 20

and Guides 12. Intergovernamental Oceanographic Commissiony. Paris. 21

Vedel, N. E., Korsgaard, B., Jensen, F. B., 1998. Isolated and combined exposure to 22

ammonia and nitrite in rainbow trout (Oncorhynchus mykiss): effects on electrolyte status, 23

blood respiratory properties and brain glutamine/glutamate concentrations. Aquat. Toxicol. 24

41,325-342. 25

Vosylienė, M. Z., Kazlauskienė, N., 2004. Comparative studies of sublethal effects of 26

ammonia on rainbow trout (Oncorhynchus mykiss) at different stages of its development. 27

Acta Zool. Litu. 14, 13-18. 28

53

Wasielesky, W., Bianchini, A., Santos, M. H., Poersch, L. H., 1997. Tolerance of juvenile 1

flatfish Paralichthys orbignyanus to acid stress. J. World Aquac. Soc. 28, 202-204. 2

Wedemeyer, G. (2012). Physiology of Fish in Intensive Culture Systems. Springer Science 3

& Business Media. 4

Weihrauch, D., Wilkie, M. P., Walsh, P. J., 2009. Ammonia and urea transporters in gills of 5

fish and aquatic crustaceans. J. Exp. Biol. 212, 1716-1730. 6

Wilkie, M. P., Wood, C. M., 1996. The adaptations of fish to extremely alkaline 7

environments. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 113, 665-673. 8

Wilkie, M.P., 2002. Ammonia excretion and urea handling by fish gills: present 9

understanding and future research challenges. J. Exp. Zool. 293, 284–301. 10

Williams, E. M., Nelson, J. A., Heisler, N., 1997. Cardio‐respiratory function in carp 11

exposed to environmental nitrite. J. Fish Biol. 50, 137-149. 12

Wilson, R. W., Taylor, E. W., 1992. Transbranchial ammonia gradients and acid-base 13

responses to high external ammonia concentration in rainbow trout (Oncorhynchus mykiss) 14

acclimated to different salinities. J. Exp. Biol. 166, 95-112. 15

Woo, N. Y. S., Chiu, S. F., 1997. Metabolic and osmoregulatory responses of the sea bass 16

Lates calcarifer to nitrite exposure. Environ. Toxicol. Water Qual. 12, 257-264. 17

Wood, C. M., Nawata, C. M., 2011. A nose-to-nose comparison of the physiological and 18

molecular responses of rainbow trout to high environmental ammonia in seawater versus 19

freshwater. J. Exp. Biol. 214, 3557-3569. 20

Yang, W., Xiang, F., Sun, H., Chen, Y., Minter, E., & Yang, Z. 2010. Changes in the 21

selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian 22

carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. 23

Biochem. Syst. Ecol. 38, 557-562. 24

Zebral, Y. D., Zafalon‐Silva, B., Mascarenhas, M. W., Robaldo, R. B., 2015. Leucocyte 25

profile and growth rates as indicators of crowding stress in pejerrey fingerlings 26

(Odontesthes bonariensis). Aquac. Res. 46, 2270-2276. 27

54

Tables 1

2

Table 1 – Blood parameters (mean ± SEM) in juvenile Brazilian flounder Paralichthys 3

orbignyanus subjected to ammonia exposure (1, 5 and 10 days) followed by a recovery 4

period (day 20). 5

Blood parameters

Glucose

(mg dL-1)

K+

(mmol L-1)

Ca2+

(mmol L-1)

Na+

(mmol L-1)

pO2

(mm Hg)

pCO2

(mm Hg)

HCO3-

(mmol L-1)

pH

Day 1 Control 30.22±1.79a 3.35±0.05b 1.31±0.04b 154.12±0.82c 18.27±0.84ab 4.10±0.07a 2.19±0.03a 7.33±0.01a

0.12 mg NH3-N.L-1 26.78±0.62a 3.68±0.08a 1.37±0.03ab 154.89±0.75bc 15.87±1.02b 4.01±0.10a 2.13±0.06a 7.34±0.01a

0.28 mg NH3-N.L-1 29.11±1.84a 3.63±0.03a 1.37±0.02ab 157.12±0.60ab 19.45±1.22ab 4.04±0.09a 2.14±0.07a 7.34±0.01a

0.57 mg NH3-N.L-1 27.22±1.83a 3.75±0.10a 1.45±0.01a 158.33±0.60a 19.76±0.69a 3.63±0.07b 1.94±0.02b 7.34±0.01a

Day 5 Control 27.22±1.39a 3.42±0.11a 1.34±0.04a 154.11±0.42a 17.05±0.88a 4.00±0.11a 2.35±0.08ab 7.35±0.01b

0.12 mg NH3-N.L-1 23.67±0.98a 3.52±0.07a 1.37±0.04a 153.11±0.63ab 19.01±0.99a 3.89±0.10a 2.04±0.06b 7.37±0.01ab

0.28 mg NH3-N.L-1 25.44±2.02a 3.29±0.05a 1.35±0.03a 152.78±0.78ab 16.48±0.71a 3.81±0.16a 2.28±0.11ab 7.39±0.01a

0.57 mg NH3-N.L-1 26.66±1.27a 3.54±0.08a 1.34±0.04a 151.11±0.95b 19.29±1.28a 4.11±0.11a 2.43±0.07a 7.40±0.01a

Day 10 Control 27.00±0.94a 3.52±0.11a 1.39±0.03a 154.78±0.72a 16.19±0.91a 4.00±0.14a 2.13±0.09b 7.31±0.01c

0.12 mg NH3-N.L-1 21.11±1.34b 3.62±0.15a 1.44±0.03a 155.78±0.83a 15.07±1.28a 3.87±0.16a 2.09±0.07b 7.33±0.02bc

0.28 mg NH3-N.L-1 22.00±1.03b 3.47±0.08a 1.34±0.02a 154.00±0.33a 17.71±1.40a 4.16±0.11a 2.85±0.12a 7.42±0.02a

0.57 mg NH3-N.L-1 22.33±0.91b 3.64±0.10a 1.38±0.04a 156.44±0.73a 15.15±0.95a 3.75±0.15a 2.07±0.07b 7.36±0.01b

Day 20 Control 27.89±0.73b 3.45±0.09a 1.38±0.03a 153.89±1.05a 20.76±1.17a 5.01±0.17a 2.51±0.10b 7.30±0.02b

0.12 mg NH3-N.L-1 33.25±0.75a 3.55±0.09a 1.37±0.05a 155.37±1.01a 20.15±1.61a 5.21±0.12a 2.60±0.09ab 7.30±0.01b

0.28 mg NH3-N.L-1 36.22±1.60a 3.62±0.12a 1.40±0.02a 153.00±0.87a 17.67±2.38a 5.25±0.15a 2.95±0.13a 7.36±0.01a

0.57 mg NH3-N.L-1 32.78±0.74a 3.60±0.07a 1.36±0.02a 153.77±0.77a 18.47±1.00a 5.17±0.06a 2.94±0.12a 7.36±0.01a

6

Different lowercase letters indicate significant differences among treatments within the 7

same sampling day (Tukey’s test, p < 0.05, n = 9). 8

9

10

55

Table 2 – Differential leukocyte count (monocytes, lymphocytes and granulocytes) (mean ± 1

SEM) in juvenile Brazilian flounder Paralichthys orbignyanus exposed to ammonia (1, 5 2

and 10 days) followed by a recovery period (day 20). 3

Monocyte (%) Granulocyte (%) Lymphocyte (%)

Day 1 Control 3.38±0.87b 3.16±0.86ab 93.45±0.86a

0.12 mg NH3-N.L-1

1.79±0.49b 3.32±0.50ab 94.88±0.55a

0.28 mg NH3-N.L-1

6.89±0.36a 5.83±1.18a 87.28±1.29b

0.57 mg NH3-N.L-1

3.62±0.55b 1.94±0.55b 94.44±0.78a

Day 5 Control 2.69±0.82a 5.64±1.23a 92.80±1.59a

0.12 mg NH3-N.L-1

2.97±0.91a 1.24±0.47b 95.80±1.27a

0.28 mg NH3-N.L-1

4.27±0.69a 1.12±0.27b 94.61±0.78a

0.57 mg NH3-N.L-1

5.13±1.06a 1.49±0.30b 93.38±0.94a

Day 10 Control 0.83±0.54a 1.48±0.56a 97.69±1.05a

0.12 mg NH3-N.L-1

0.96±0.26a 0.00±0.00a 99.04±0.26a

0.28 mg NH3-N.L-1

1.71±0.52a 0.99±0.44a 97.30±0.69a

0.57 mg NH3-N.L-1

1.93±0.83a 0.19±0.16a 97.87±0.87a

Day 20 Control 1.23±0.39ab 0.74±0.30c 98.02±0.67a

0.12 mg NH3-N.L-1

0.66±0.15b 1.32±0.15bc 98.01±0.26a

0.28 mg NH3-N.L-1

1.47±0.40ab 4.33±1.35ab 94.19±1.58b

0.57 mg NH3-N.L-1

3.55±1.18a 4.68±0.49a 91.77±1.04b

4

Different lowercase letters indicate significant differences among treatments within the 5

same sampling day (Tukey’s test, p < 0.05, n = 9). 6

7

8

56

Table 3 – Blood parameters (mean ± SEM) in juvenile Brazilian flounder Paralichthys 1

orbignyanus exposed to nitrite (1, 5 and 10 days) followed by a recovery period (day 20). 2

Blood parameters

Glucose

(mg dL-1)

K+

(mmol L-1)

Ca2+

(mmol L-1)

Na+

(mmol L-1)

pO2

(mm Hg)

pCO2

(mm Hg)

HCO3-

(mmol L-1)

pH

Day 1 Control 27.67±2.83a 3.61±0.05ab 1.27±0.05a 155.55±0.97a 12.62±0.97a 5.67±0.06a 3.10±0.10a 7.34±0.01b

5.72 mg NO2-N.L-1 29.22±1.25a 3.52±0.09ab 1.13±0.05a 156.33±0.50a 11.41±0.83a 5.06±0.17b 3.24±0.11a 7.41±0.01a

10.43 mg NO2-N.L-1 28.67±2.35a 3.38±0.04b 1.15±0.06a 154.22±0.76a 13.86±1.05a 4.91±0.13b 3.21±0.10a 7.43±0.01a

15.27 mg NO2-N.L-1 28.44±1.24a 3.76±0.06a 1.22±0.07a 154.22±1.12a 12.18±1.26a 4.77±0.07b 3.10±0.08a 7.40±0.01a

Day 5 Control 25.89±1.54a 3.51±0.12b 1.12±0.04a 155.67±0.47b 13.43±1.21a 5.21±0.10a 3.24±0.07a 7.41±0.01a

5.72 mg NO2-N.L-1 27.11±0.48a 3.44±0.07b 1.11±0.05a 155.55±0.41b 14.26±0.58a 4.46±0.18b 2.78±0.11b 7.40±0.02a

10.43 mg NO2-N.L-1 28.44±1.51a 3.47±0.14b 1.19±0.03a 156.42±0.28b 15.17±0.51a 4.71±0.08b 2.81±0.13b 7.37±0.01ab

15.27 mg NO2-N.L-1 26.67±1.30a 4.04±0.05a 1.07±0.04a 158.44±0.18a 16.43±0.99a 4.45±0.10b 2.38±0.07c 7.34±0.02b

Day 10 Control 23.67±0.75b 3.42±0.09b 1.05±0.4a 154.33±0.83a 12.68±1.19a 4.82±0.18a 2.77±0.12a 7.37±0.01b

5.72 mg NO2-N.L-1 24.11±0.39b 3.57±0.05ab 1.19±0.07a 155.44±0.69a 12.65±0.68a 4.19±0.21b 2.87±0.12a 7.43±0.01a

10.43 mg NO2-N.L-1 31.22±0.90a 3.73±0.07a 1.09±0.06a 154.44±0.47a 13.21±1.11a 4.20±0.13b 3.03±0.12a 7.46±0.01a

15.27 mg NO2-N.L-1 33.11±0.89a 3.78±0.08a 1.21±0.05a 155.78±0.36a 13.96±0.71a 4.01±0.07b 2.74±0.06a 7.43±0.01a

Day 20 Control 25.44±1.48a 3.58±0.06a 1.19±0.05a 155.11±0.61a 15.28±1.08a 5.35±0.16a 3.17±0.05a 7.41±0.01a

5.72 mg NO2-N.L-1 22.45±1.16a 3.58±0.13a 1.19±0.03a 155.56±0.44a 14.10±1.00a 5.51±0.10a 3.37±0.08a 7.38±0.01ab

10.43 mg NO2-N.L-1 24.11±0.68a 3.68±0.09a 1.12±0.07a 155.55±0.71a 14.07±0.55a 5.08±0.16a 2.83±0.08b 7.36±0.01b

15.27 mg NO2-N.L-1 26.77±1.15a 3.52±0.05a 1.00±0.05a 151.78±0.94b 13.96±0.75a 5.39±0.12a 2.87±0.06b 7.31±0.01c

3

Different lowercase letters indicate significant differences among treatments within the 4

same sampling day (Tukey’s test, p < 0.05, n = 9). 5

6

7

8

9

10

11

12

13

57

Table 4 – Differential leukocyte count (monocytes, lymphocytes and granulocytes) (mean ± 1

SEM) in juvenile Brazilian flounder Paralichthys orbignyanus exposed to nitrite (1, 5 and 2

10 days) following a recovery period (day 20). 3

4

Monocyte (%) Granulocyte (%) Lymphocyte (%)

Day 1 Control 3.40±1.74a 2.33±1.20a 93.67±2.73a

5.72 mg NO2-N.L-1

2.29±0.33a 4.55±2.28a 93.16±2.45a

10.43 mg NO2-N.L-1

3.62±1.45a 3.27±0.88a 93.11±2.09a

15.27 mg NO2-N.L-1

2.50±1.50a 2.22±0.78a 95.28±2.25a

Day 5 Control 1.32±0.34b 1.31±0.33b 97.37±0.34a

5.72 mg NO2-N.L-1

1.96±0.59b 1.93±0.54b 96.11±0.54a

10.43 mg NO2-N.L-1

7.49±0.86a 14.62±2.67a 77.90±3.53b

15.27 mg NO2-N.L-1

1.29±0.85b 0.65±0.65b 98.06±0.97a

Day 10 Control 1.64±0.86a 4.26±1.18a 94.11±2.04a

5.72 mg NO2-N.L-1

2.22±0.85a 4.19±1.14a 93.55±1.36a

10.43 mg NO2-N.L-1

2.99±0.58a 2.50±0.87a 94.51±1.45a

15.27 mg NO2-N.L-1

2.39±0.44a 5.89±2.62a 91.71±2.04a

Day 20 Control 1.90±1.10a 1.58±0.83ab 96.52±0.82ab

5.72 mg NO2-N.L-1

0.66±0.33a 2.30±1.30ab 97.05±1.50ab

10.43 mg NO2-N.L-1

1.97±0.01a 4.61±1.20a 93.40±1.20b

15.27 mg NO2-N.L-1

1.28±0.33a 0.31±0.32b 98.41±0.32a

5

Different lowercase letters indicate significant differences among treatments within the 6

same sampling day (Tukey’s test, p < 0.05, n = 9). 7

8

9

10

58

CAPÍTULO 2 1

2

Ammonia exposure and subsequent recovery trigger oxidative stress responses in 3

juveniles of Brazilian flounder Paralichthys orbignyanus 4

5

Lucas Campos Maltez1, Giovanna Rodrigues Stringhetta

1, Alain Danilo Enamorado

2, Marcelo Hideo 6

Okamoto3, Luis Alberto Romano

4, José Maria Monserrat

2, Luís André Sampaio

3 and Luciano Garcia

1* 7

8 1Laboratório de Aquacultura Continental, Instituto de Oceanografia, Universidade Federal do Rio Grande – 9

FURG, Rio Grande, RS, Brasil. 10 2Laboratório de Bioquímica Funcional de Organismos Aquáticos, Universidade Federal do Rio Grande – 11

FURG, Rio Grande, RS, Brasil. 12 3Laboratório de Piscicultura Estuarina e Marinha, Instituto de Oceanografia, Universidade Federal do Rio 13

Grande – FURG, Rio Grande, RS, Brasil. 14 4Laboratório de Patologia e Imunologia de Organismos Aquáticos, Instituto de Oceanografia, Universidade 15

Federal do Rio Grande – FURG, Rio Grande, RS, Brasil. 16

17

*Corresponding author: Laboratório de Aquacultura Continental, Instituto de Oceanografia, 18

Universidade Federal do Rio Grande – FURG, 96201-900, Rio Grande, RS, Brasil. Phone: 55 53 19

3237-3003; E-mail address: [email protected] 20

21

22

23

24

25

26

27

28

29

30

31

32

Artigo formatado e submetido para a revista Fish Physiology and Biochemistry 33

34

59

Abstract 1

2

It was evaluated the effects of ammonia exposure and recovery on oxidative stress 3

parameters and histology of juvenile Brazilian flounder Paralichthys orbignyanus. The fish 4

were exposed to 0.05 (control), 0.12, 0.28 and 0.57 mg NH3-N L-1

for 10 days followed by 5

the same recovery time in ammonia free-water. Gill, liver and muscle samples (n=9) were 6

collected after 1, 5 and 10 days of exposure and after recovery for oxidative stress analysis 7

(Antioxidant Capacity Against Peroxyl Radicals (ACAP); Glutathione-S-transferase (GST) 8

activity; lipoperoxidation levels measured through thiobarbituric acid reactive substances 9

(TBARS) content). For the histological assessment, it was collected gill, liver, and brain 10

samples. Exposure to all NH3-N concentrations induced different time- and concentration-11

dependent changes in oxidative stress parameters. Reduced antioxidant capacity of liver 12

and muscle, and enhanced TBARS levels of gill and liver were demonstrated. Differently, 13

high ammonia concentration elicited lower hepatic TBARS levels. Enhanced GST activity 14

in all organs and increased antioxidant capacity of gills were also observed. No ammonia-15

induced histopathological effects were demonstrated. After recovery, most of the 16

parameters (liver ACAP, GST activity in muscle and liver, and TBARS in gills) returned to 17

baseline levels. However, liver TBARS and gills GST activity remained altered in 18

treatment 0.57 mg NH3-N L-1

. The recovery period also led to a decrease in gills 19

antioxidant capacity and an increase in muscle antioxidant capacity. In conclusion, 20

concentrations from 0.12 mg NH3-N L-1

induce oxidative stress and antioxidant responses 21

in juvenile Brazilian flounder. Moreover, 10-day recovery period was not sufficient to 22

restore fish homeostasis. 23

Keywords: nitrogen compound; lipid peroxidation; antioxidant system; glutathione-S-24

transferase; histology 25

26

27

28

29

60

Introduction 1

2

Aquaculture is the fastest growing animal food production sector, mainly due to the 3

stagnation of global capture fishery production and rapidly rising in demand for seafood 4

(FAO 2016). The use of recirculating aquaculture system (RAS) is an interesting strategy 5

for intensification of production in a more environmentally sustainable manner, reducing 6

land and freshwater use and minimizing wastewater production (Klinger and Naylor 2012). 7

One of the most limiting factors in intensive aquaculture system is the buildup of 8

nitrogenous compounds, mainly ammonia due to its high toxicity to fish (Randall and Tsui 9

2002). In RAS, ammonia is removed in biofilters by nitrification process, in which 10

nitrifying bacteria oxidize ammonia into nitrite and nitrite into nitrate (Schreier et al. 2010). 11

However, a system functioning in an inadequate way or not properly planned can lead to an 12

insufficient nitrification process to oxidize the input of ammonia, which in turn 13

accumulates in the water. 14

In aquatic environments, ammonia exists in ionized (NH4+) and un-ionized (NH3) 15

forms and the NH3 form can readily diffuse across gill membranes. Furthermore, ammonia 16

excretion is inhibited at high NH3 due to reduced gradient for diffusive elimination (Wilkie 17

and Wood 1996). Therefore, the buildup of ammonia in blood and tissues can lead to 18

physiological, biochemical, morphological and behavioral changes in fish (Schram et al. 19

2010; Kolarevic et al. 2012; Dong et al. 2013; Baldisserotto et al. 2014; Cheng et al. 2015). 20

These alterations can result in reduction of growth performance (Paust et al. 2011), 21

increased susceptibility to diseases (Ackerman et al. 2006) and death (Medeiros et al. 22

2016), all factors that affect the production of aquaculture systems. 23

Oxidative stress is a biochemical response frequently triggered by environmental 24

variables and pollutants in aquatic organisms (Monserrat et al. 2007; Lushchak 2011; 25

Stoliar and Lushchak 2012). This condition is defined as a transiently or chronically 26

enhanced concentration of reactive oxygen species (ROS) due to an unbalanced state 27

between pro-oxidants and antioxidants, resulting in damage of cellular constituents, such as 28

DNA, proteins, and lipids (Lushchak 2011; Halliwell and Gutteridge 2015). In recent years, 29

studies have shown that exposure of fish to ammonia can induce oxidative stress by 30

enhancing ROS production and/or by a decrease in antioxidant defenses (Ching et al. 2009; 31

61

Hegazi et al. 2010; Yang et al. 2010a; Sinha et al. 2014; Sun et al. 2014; Cheng et al. 2015). 1

However, the response of oxidative stress parameters after recovery in ammonia free-water 2

is still unknown. 3

The use of histopathological investigations is also a sensitive tool to assess health 4

status of fish since tissue alterations of target organs may occur due to environmental 5

stressors and related biochemical responses (Schwaiger et al. 1997; Rašković et al. 2013). 6

Several studies demonstrate that exposure to environmental ammonia induces tissue 7

injuries in different fish organs, such as gill, liver, and brain (Roumieh et al. 2013; 8

Rodrigues et al. 2014). The recovery of damaged tissues was also demonstrated for fish 9

kept in ammonia free water for 7 or 14 days (Ravindrababu and Neeraja 2012). 10

The Brazilian flounder Paralichthys orbignyanus occurs in estuaries and shallow 11

coastal waters of the southwestern Atlantic Ocean, from Rio de Janeiro, Brazil to Mar del 12

Plata, Argentina (Figueiredo and Menezes 2000; Millner et al. 2005). This species is an 13

important fishing resource in these areas and presents a wide tolerance to water quality 14

parameters (Bianchini et al. 1996; Wasielesky et al. 1997; Wasielesky et al. 1998; Sampaio 15

and Bianchini 2002, Okamoto and Sampaio 2012; Garcia et al. 2015) and handling 16

procedures (Bolasina 2011). In addition, the spawning, larviculture and juvenile production 17

has been successfully performed (Sampaio et al. 2007; Sampaio et al. 2008). Thus, the 18

Brazilian flounder is a species with a great potential to intensive aquaculture (Sampaio et 19

al. 2007). However, limited information exists related to the toxicity of ammonia to this 20

species (Bianchini et al. 1996) and more studies are necessary to evaluate the mechanisms 21

of toxicity and defense strategies during exposure and recovery. 22

Therefore, the aim of the present study was to assess the effects of sub-lethal 23

ammonia exposure and followed recovery on oxidative stress parameters (glutathione-S-24

transferase (GST) activity , total antioxidant capacity against peroxyl radicals (ACAP) and 25

lipid peroxidation levels) and histology of different juvenile Brazilian flounder tissues. 26

27

28

29

Materials and methods 30

62

1

Fish and experimental conditions 2

3

The juveniles Brazilian flounder (107.3 ± 1.9 g and 21.2 ± 0.1 cm) were produced 4

and reared at the Aquaculture Marine Station of the Universidade Federal do Rio Grande - 5

FURG in Rio Grande do Sul, Southern Brazil. The experimental protocol and use of fish 6

were approved by the Committee on Animal Experimentation of FURG under registration 7

number 23116.001030/2016-15. 8

Fish (15 per tank) were distributed randomly in 12 tanks (250 L useful volume) in 9

four recirculation system for acclimation to experimental conditions during 20 days. The 10

fish were fed twice daily (3% of total biomass) with commercial diet (46% crude protein) 11

throughout the acclimation and experimental period. Photoperiod was fixed at 12 h Light : 12

12h Dark. 13

After the acclimation period, the fish were exposed to 0.05 ± 0.01 (control), 0.12 ± 14

0.01, 0.28 ± 0.02 and 0.57 ± 0.02 mg NH3-N L-1

in triplicate for 10 days in a semi-static 15

system. The tested concentrations were chosen above the safety level (0.06 mg NH3-N L-1

) 16

obtained for this species in saltwater by Bianchini et al. (1996). The desired ammonia 17

concentrations were obtained by adding ammonium chloride (NH3Cl4) (Synth, Brazil) 18

solutions or water exchange of the tanks. After the exposure period, fish remained for 10 19

days in recirculation system for assessment of recovery in ammonia free-water. 20

Temperature and dissolved oxygen (oximeter YSI 55), salinity (refractometer), pH 21

(pH meter, WTW 315i), total alkalinity (Eaton et al. 2005), total (Intergovernmental 22

Oceanographic Commission 1983) and un-ionized ammonia (Colt 2002), and nitrite 23

(Bendschneider and Robinson 1952) were measured daily before first feeding. All 24

parameters were maintained as follows: temperature (22.65 ± 0.07 °C), dissolved oxygen 25

concentration (6.88 ± 0.01 mg L-1

), salinity (27.82 ± 0.06), pH (8.20 ± 0.01), alkalinity 26

(168.85 ± 1.19 mg CaCO3 L-1

) and nitrite (0.92 ± 0.11 mg L-1

). 27

28

Organ sampling 29

30

63

Nine fish of each treatment (three per tank) were netted after 1, 5 and 10 days of 1

exposure, and after recovery period (day 20). Fish were immediately euthanized with a 2

lethal dose of hydrochloride benzocaine (500 ppm), and samples of gills, liver, brain, and 3

muscle were collected. Feeding was ceased 24 h prior each sampling day. 4

5

Oxidative stress analyses 6

7

Organs homogenization 8

9

Samples of gill, liver and muscle tissues were maintained in an ultra-freezer (-80 ºC) 10

and then homogenized (1:5; w/v) in a Tris–HCl (100 mM, pH 7.75) buffer with EDTA (2 11

mM) and Mg2+

(5 mM) (da Rocha et al. 2009). The supernatants resulting from the 12

centrifugation of the homogenates (10000 x g, 20 minutes, 4ºC) were used for all analyses. 13

The total protein content of homogenized samples was determined in a microplate reader 14

(BioTek LX 800) using a commercial kit (Doles®) based on the Biuret assay (550 nm). 15

16

Glutathione-S-transferase activity 17

18

GST activity was determined following the conjugation of 1 mM glutathione (GSH) 19

and 1 mM1-chloro-2,4-dinitrobenzene (CDNB) according to Habig et al. (1974) and Habig 20

and Jakoby (1981). Potassium phosphate buffer (KH2PO4 – 0.05 M; K2HPO4 – 0.05 M; pH 21

= 7.0) was used as reaction medium (previously heated at 25 ºC with a water bath). The 22

absorbance (340 nm) was read in transparent 96 wells microplate using a 23

spectrofluorometer (Victor 2, Perkin Elmer, MA, USA). The data were expressed as nmol 24

of CNDB-GSH conjugate min-1

mg wet tissue-1

. 25

26

Total antioxidant capacity against peroxyl radicals 27

28

ACAP was determined through detection of ROS in samples treated or not with a 29

peroxyl radical generator, according to the method described by Amado et al. (2009). All 30

samples were previously diluted with homogenization buffer to 2.0 mg protein mL-1

and 31

then exposed to peroxyl radicals generated by thermal (37°C) decomposition of 2,2′-azobis 32

64

(2 methylpropionamidine) dihydrochloride (ABAP, 4 mM). Peroxyl radicals reacted with a 1

fluorescent substrate (2′,7′ dichlorofluorescein diacetate - H2DCF-DA) and fluorometry 2

(excitation: 485 nm; emission: 520 nm) was measured through a microplate reader (Victor 3

2, Perkin Elmer) with readings at every 5 minutes, during 35 minutes. The results were 4

expressed as a relative area (the difference between the ROS area with and without ABAP 5

relative to the without ABAP). For interpretation purposes of the results, a higher relative 6

area means a lower antioxidant capacity. 7

8

Lipid Peroxidation 9

10

The lipid peroxidation levels were measured according Oakes and Van Der Kraak 11

(2003). To determine the thiobarbituric acid reactive substances (TBARS) by the 12

quantification of MDA (malondialdehyde), 20 µL of BHT solution (67 µM), 150 µL 20% 13

acetic acid solution, 150 µL 0.8 % TBA solution, 50 µL Milli-Q H2O, and 20 µL of 8.1% 14

SDS were added to samples (gills: 40 µL; liver: 60 µL; muscle: 100 µL) before being 15

heated at 95 ºC during 30 minutes. Thereafter, 100 µL of Milli-Q H2O and 500 µL of n-16

butanol were added to the final solution. The remaining supernatant after centrifugation 17

(3,000 x g, 10 minutes, 15 ºC) was used to determine the fluorescence (excitation: 520 nm; 18

emission: 580 nm) and the results were expressed as nmol TMP mg wet tissue-1

, where 19

TMP stands for tetramethoxypropane (ACROS Organics), employed as standard. 20

21

Histopathological analysis 22

23

The samples of gill tissues were fixed in Bouin’s solution, and brain and liver 24

samples were fixed in 10% buffered formalin. Samples were dehydrated using sequentially 25

increasing concentrations of ethanol, cleared in xylene and embedded in Paraplast®

with an 26

automatic tissue processor (LUPETEC, PT 05, Brazil). The sections (5 µm) were prepared 27

using a microtome (LUPETEC, MRP03, Brazil), stained with hematoxylin-eosin (H-E) and 28

slides analyzed with an optical microscope (ZEISS, PRIMO STAR). 29

30

Statistical analysis 31

32

65

All data were expressed as means ± standard error (SEM) and analysed through 1

analysis of variance (ANOVA). ANOVA assumptions (normality and variance 2

homogeneity) were previously verified by Kolmogorov-Smirnov and Levene tests, 3

respectively. Two-way ANOVA (factors: ammonia concentrations and exposure time) and 4

Tukey tests were performed to check differences among treatments. For all analysis, the 5

significance level was set at 5% (α = 0.05). 6

7

Results 8

9

The fish survival rate was 100% throughout the period of exposure and recovery for 10

all treatments. 11

Fish exposed to 0.28 and 0.57 mg NH3-N L-1

showed higher antioxidant 12

competence on gills compared to control and to the treatment 0.12 mg NH3-N L-1

at day 1, 13

and lower values compared to control after the recovery period (Fig. 1a). The ACAP on the 14

liver were lower than the control in fish exposed to treatments 0.28 and 0.57 mg NH3-N L-1

15

during the entire period of exposure (days 1, 5 and 10), and to treatment 0.12 mg NH3-N L-

16

1 only at day 1 (Fig. 1b). On the muscle, a lower ACAP were also demonstrated in 17

treatment 0.57 mg NH3-N L-1

compared to control at days 1 and 5, and in treatment 0.28 18

mg NH3-N L-1

in relation to control and to treatment 0.12 mg NH3-N L-1

at day 5. The 19

muscle ACAP was higher for all NH3-N treatments compared to control after the recovery 20

period (Fig. 1c). 21

The GST activity was higher on the gills of fish exposed to all ammonia 22

concentrations when compared to control at day 1, and in treatments 0.28 and 0.57 mg 23

NH3-N L-1

in relation to control and to treatment 0.12 mg NH3-N L-1

at the end of the 24

exposure period (day 10). After recovery, only treatment 0.57 mg NH3-N L-1

remained 25

higher than the control (Fig. 2a). Fish exposed to 0.28 and 0.57 mg NH3-N L-1

presented 26

higher GST activity of liver compared to control and to treatment 0.12 mg NH3-N L-1

at 27

days 1 and 10 (Fig. 2b). An enhanced GST activity was also observed on the muscle of fish 28

exposed to 0.28 or 0.57 mg NH3-N L-1

when compared to control at day 10 (Fig. 2c). 29

The TBARS levels were higher in relation to control and to 0.12 mg NH3-N L-1

on 30

the gills of fish exposed to 0.28 and 0.57 mg NH3-N L-1

at day 10 (Fig. 3a). The values for 31

66

this parameter are significantly lower on the liver of fish exposed to treatment 0.57 mg 1

NH3-N L-1

, compared to control and to all the other treatments, at days 1 and 5, 2

respectively. At day 10, the levels of TBARS presented higher values in treatment 0.28 mg 3

NH3-N L-1

in relation to the others, and lower values in treatment 0.57 mg NH3-N L-1

4

compared to control. After recovery, the values were lower on the liver of fish exposed to 5

the treatment 0.57 mg NH3-N L-1

in relation to control and treatment 0.12 mg NH3-N L-1

, 6

and in treatment 0.28 mg NH3-N L-1

compared to treatment 0.12 mg NH3-N L-1

(Fig. 3b). 7

No significant differences were registered among treatments for TBARS levels on the 8

muscle (Fig. 3c). 9

The histological analysis did not reveal any morphological alteration in brain, gills, 10

and liver of flounder juveniles resulting from the experimental treatments. 11

12

Discussion 13

14

Under normal physiological conditions, around 0.1% of the oxygen consumed in 15

aerobic metabolism is converted in the mitochondria into ROS (Fridovich 2004), such as 16

superoxide radical (O2-), hydrogen peroxide (H2O2), and the hydroxyl radical (HO

.), which 17

can oxidize and damage several biomolecules (Halliwell and Gutteridge 2015). Despite a 18

not complete understanding of the mechanisms involved, previous evidences indicate that 19

ammonia can trigger a pro-oxidant scenario in different fish organs (Hegazi et al. 2010; 20

Sinha et al. 2014; Cheng et al. 2015; Li et al. 2016). In the present study, changes in 21

oxidative stress parameters of Brazilian flounder juveniles were found depending on the 22

exposure time and concentration, and reflect the toxic effects of this compound at 23

biochemical level and possible adaptive responses. 24

Fish, like other aerobic organisms, present a complex antioxidant system with 25

several enzymatic and non-enzymatic defences to protect tissues against oxidative damage 26

(Halliwell and Gutteridge 2015). The analysis of total antioxidant capacity evaluates the 27

overall antioxidant status, without distinguishing between enzymatic and non-enzymatic 28

components of the antioxidant system. The basal total antioxidant capacity of Brazilian 29

flounder tissues was higher in gill, followed by the liver and muscle, in this order, 30

67

indicating variability in antioxidant competence among different organs. The values found 1

in the liver and gill were like those reported for Micropogonias furnieri, Pimelodus 2

pintado, Loricariichthys anus and Parapimelodus nigribarbis using the same technique (Da 3

Rocha et al. 2009). In contrast, the muscle presented an extremely low antioxidant capacity, 4

differently than demonstrated for other fish species (Amado et al. 2009; Da Rocha et al. 5

2009; Enamorado et al. 2015). This is possibly related to the very low swimming activity of 6

the species (Wilhelm Filho et al. 1993), which results in reduced metabolism and 7

consequently little generation of ROS in this organ, as demonstrated by the TBARS levels 8

that show the same pattern (gill > liver > muscle) found for total antioxidant competence. 9

Therefore, reduced antioxidant defences are sufficient to maintain tolerable levels of 10

oxidative damage in this organ. 11

Besides the differences in antioxidant competence among organs, the response to a 12

stressor is also organ-specific. Exposure to ammonia lead to a reduction in the total 13

antioxidant capacity in liver (0.12 mg NH3-N L-1

on day 1; 0.28 and 0.57 mg NH3-N L-1

on 14

days 1, 5 and 10) and muscle (0.28 mg NH3-N L-1

on day 5; 0.57 mg NH3-N L-1

on days 1 15

and 5) of Brazilian flounder. Previous studies have reported that ammonia-induced 16

oxidative stress is at least in part related to inhibition of antioxidant defences (Yang et al. 17

2011; Li et al. 2016), resulting in increased susceptibility to suffer oxidative damage. The 18

gill showed a different response with an initial induction of antioxidant defence 19

mechanisms demonstrated by an increase in antioxidant capacity of fish exposed to 0.28 20

and 0.57 mg NH3-N L-1

on day 1. Other authors also demonstrate various antioxidants 21

responses, such as increased synthesis of glutathione and induced activity of various 22

antioxidant enzymes as an attempt to alleviate ammonia-induced oxidative stress in fish 23

organs (Ching et al. 2009; Hegazi et al. 2010; Yang et al. 2010a; Sinha et al. 2014). 24

The glutathione S-transferases (GSTs) are a family of multifunctional enzymes that 25

play an important role as antioxidant defence. These enzymes catalyse the nucleophilic 26

attack of reduced glutathione (GSH) on electrophilic groups and are involved in 27

detoxification of xenobiotic and endogenous metabolites including products of oxidative 28

damage (Blanchette et al. 2007), and the determination of their activity is a useful 29

biochemical biomarker of environmental stress (Carvalho-Neta and Abreu-Silva 2013). In 30

the present study, ammonia exposure led to an initial (day 1) increased GST activity in the 31

68

gills (0.12, 0.28 and 0.57 mg NH3-N L-1

) and liver (0.28 and 0.57 mg NH3-N L-1

) of fish, 1

followed by a return to baseline levels on day 5. GST activity also showed an increase in all 2

organs (gill, liver, and muscle) of fish exposed to 0.28 and 0.57 mg NH3-N L-1

at the end of 3

the exposure period (day 10), indicating that the activity of this enzyme is part of an 4

adaptive response against a pro-oxidant condition induced by ammonia exposure at 5

different times. The enhanced ROS formation during an environmental stress situation 6

causing the activation of redox-sensitive transcription factors (Nrf2, for example) and ROS-7

mediated covalent modification of antioxidant proteins led to enhancement of antioxidant 8

defences (Hermes-Lima et al. 2015). Similar patterns of GST activity were reported for 9

Nile tilapia Oreochromis niloticus (Hegazi et al. 2010), rainbow trout Oncorhynchus mykiss 10

(Farzad et al. 2015) and rockfish Sebastes schlegelii (Kim et al. 2015) exposed to ammonia. 11

Additionally, the increased GST activity can also suggest a role of glutathione system in the 12

detoxification of ammonia (Farzad et al. 2015; Kim et al. 2015). This could explain the 13

high ammonia tolerant capability of this species point out by Bianchini et al. (1996). In 14

further studies, GSH is an important parameter that should also be evaluated to a better 15

comprehension of these biochemical mechanisms against ammonia toxicity. 16

The compromise of the antioxidant system and/or the ROS overproduction during 17

ammonia exposure (Sinha et al. 2014; Cheng et al. 2015) can result in enhanced oxidative 18

damage of proteins, lipids and DNA as demonstrated in other fish species (Hegazi et al. 19

2010; Sinha et al. 2014; Sun et al. 2014; Cheng et al. 2015). In present study, this condition 20

was demonstrated by the increased TBARS contents in gills (0.28 and 0.57 mg NH3-N L-1

) 21

and liver (0.28 mg NH3-N L-1

) on day 10. The TBARS assay quantifies by-end products of 22

lipid peroxidation (LPO), which is a chain reaction, initiated by the action of a hydroxyl 23

radical that led to an oxidative degradation of polyunsaturated fatty acids (PUFA). The 24

main effect of LPO is the decrease in membrane fluidity due to PUFA oxidation, affecting 25

several biological processes (Halliwell and Gutteridge 2015). According to the 26

classification of oxidative stress based on its intensity proposed by Lushchak (2014), in the 27

present study, ammonia exposure induce a low intensity (mild) oxidative stress in liver and 28

gill of Brazilian flounder, which is characterized by a slightly enhanced level of oxidative 29

damage and enhanced activity of antioxidant enzymes (as observed for GST). Although 30

the results found for ACAP and GST activity also suggest a potential pro-oxidant condition 31

69

in the muscle, the TBARS levels were kept in baseline levels indicating less harmful effects 1

of ammonia in this organ. 2

Sun et al. (2014) exposed juvenile bighead carp Hypophthalmichthys nobilis to 3

0.053, 0.106, 0.159 and 0.212 mg NH3-N L-1

for six weeks and reported an increase in 4

TBARS levels only in the two lower concentrations. These same authors suggest that at 5

higher concentrations of ammonia, a lack of increase in TBARS levels may indicate more 6

severe effects, possibly related to a decreased PUFA levels. This may be a possible 7

explanation for the reduction in liver TBARS levels of the fish exposed to 0.57 mg NH3-N 8

L-1

throughout the experimental period in the present study. Results of Li et al. (2014) 9

support this possibility, since they showed an enhance in saturated fatty acids content and 10

lower levels of PUFA in juvenile dark barbel catfish Pelteobagrus vachelli exposed to 0.12 11

mg NH3-N L-1

for 14 days. Gottschalk and Zwingmann (2009) also demonstrates that 12

ammonia caused alterations in the metabolism and composition of fatty acids, leading to 13

increased mono and decreased polyunsaturated fatty acids levels in cultured astrocytes. 14

In the context of aquaculture, the oxidative stress and the energy cost involved in 15

antioxidant responses can result in negative implications for the health and performance of 16

animals affecting productivity, and led to the impairment of final product (Zhang et al. 17

2016). The inclusion of antioxidants in the diet may be an interesting strategy to minimize 18

the ammonia-induced oxidative stress (Pan et al. 2011; Kütter et al. 2014; Enamorado et al. 19

2015) and can be the subject of future studies with Brazilian flounder. 20

The transfer of fish to ammonia free-water after a period of exposure can allow the 21

recovery of the basal physiological conditions as demonstrated by Yang et al. (2010b), 22

assessing haematological parameters and gill Na+/K

+ ATPase activity of juvenile crucian 23

carp Carassius auratus. However, this is the first study that evaluates the effects of 24

ammonia recovery on oxidative stress parameters of fish and the results demonstrate that 25

recovery capacity is variable, depending on the exposure concentration, the parameter 26

evaluated and organ. After recovery, most of the parameters (liver ACAP, GST activity in 27

muscle and liver, and TBARS in gill) that differ from the control at the end of the exposure 28

period returned to baseline levels, regardless of treatment, indicating that the 10-day period 29

was long enough for the recovery of these parameters. Differently, as in the case of liver 30

TBARS and gill GST activity, the recovery of normal levels was demonstrated only in fish 31

70

exposed to 0.28 mg NH3-N L-1

, remaining altered at the highest concentration (0.57 mg 1

NH3-N L-1

). The recovery period also triggered new changes in antioxidant defenses, 2

including a decrease in ACAP of the gills of fish exposed to 0.28 and 0.57 mg NH3-N L-1

, 3

and an increase in antioxidant capacity of muscle in all concentrations of ammonia. The 4

decrease in antioxidant capacity combined with increased GST activity suggests a pro-5

oxidant scenario in the gills during recovery, possibly related to the process of ammonia 6

detoxification and/or oxidative damage products removal. In muscle, the response observed 7

may be an adaptive antioxidant response to prevent possible enhanced oxidative damage 8

during recovery. Based on our findings, we suggest that a longer time is required to restore 9

the complete normal physiological conditions, however, further studies should be 10

conducted for a more accurate determination of the required time. 11

Besides the recovery in ammonia-free water, it is worth mentioning that certain 12

biochemical adjustments can occur in fish even during exposure period restoring the 13

homeostasis, as shown in treatment 0.12 mg NH3-N L-1

. From the fifth day of exposure, 14

fish exposed to this lower ammonia concentration presented a recovery of basal levels of 15

some parameters (gill GST activity, liver ACAP), which were transiently changed only on 16

day 1, indicating an adaptation to this level of the environmental ammonia 17

The ammonia production, excretion and toxicity in fish involve several 18

physiological and biochemical mechanisms in different organs such as brain, liver, and gill 19

(Ip and Chew 2010), and exposure to undesirable levels of environmental ammonia can 20

also result in histopathogical alterations to these tissues (Rodrigues et al. 2014). However, 21

no negative effect was evidenced in histological sections of brain, liver and gills of juvenile 22

Brazilian flounder during ammonia exposure or subsequent recovery in ammonia free-23

water. No hispathological alterations were also demonstrated in gill of silver perch 24

Bidyanus bidyanus exposed to 0.14 mg NH3-N L-1

for 39 days (Frances et al. 2000). 25

Medeiros et al. (2016) showed enhanced gill lesion in false clownfish Amphiprion ocellaris 26

only at 0.57 mg NH3-N L-1

, while concentrations up to 0.23 mg NH3-N L-1

did not differ 27

from the control, in acute toxicity test (96 h). The absence of histopathological effects 28

while the parameters of oxidative stress presented several alterations indicating the toxic 29

effects of ammonia, is related to the fact that these biochemical responses can be early 30

indicators of biological damage (Bernet et al. 1999). Similar results were also demonstrated 31

71

in fish exposed to other environmental contaminants (Velisek et al. 2011; Zivna et al. 2013; 1

Sevcikova et al. 2016). This result demonstrates a good tolerance of the species to this 2

nitrogenous compound, since its effects were limited to biochemical level without leading 3

to a more severe impairment of assessed organs, which can affect its vital functions. 4

It is important to point out that present results also demonstrate the relevance of 5

using multiple biomarkers of different organization levels for assessment of the effects 6

related to environmental stressors on aquatic organisms. Furthermore, oxidative stress 7

parameters can be used as a more sensitive tool to determine water quality criteria for 8

aquaculture, aiming a more appropriate management, especially in intensive systems, such 9

as RAS. 10

The present study shows that ammonia exposure to concentrations ranging from 11

0.12 to 0.57 mg NH3-N L-1

throughout 10 days induces different changes in oxidative stress 12

parameters in a time- and concentration-dependent way, but does not cause histological 13

changes in juvenile Brazilian flounders. The activation of antioxidant defenses in an 14

adaptive response to prevent organs from oxidative damage, and a reduction in the total 15

antioxidant competence were observed in all tested concentrations, indicating that ammonia 16

exposure can lead to a disruption of homeostasis even at the lowest concentration. 17

However, only in fish exposed to 0.28 and 0.57 mg NH3-N L-1

a mild oxidative stress was 18

evidenced. In addition, the recovery period (10 days) was not sufficient to complete re-19

establishment of fish homeostasis and induced further changes in antioxidant defenses. 20

21

22

23

Acknowledgements 24

25

This study was supported by research funds from Conselho Nacional de Pesquisa e 26

Desenvolvimento Científico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de 27

Nível Superior (CAPES). The authors are grateful to CNPq for productivity research 28

fellowships provided for L. Garcia, L. Sampaio, L. Romano and J. Monserrat, and to 29

CAPES for a PhD scholarship provided for MSc. Lucas C. Maltez. 30

31

72

Conflict of interest 1

2

The authors declare that they have no conflict of interest. 3

4

References 5

6

Ackerman PA, Wicks BJ, Iwama GK, Randall DJ (2006) Low levels of environmental 7

ammonia increase susceptibility to disease in Chinook salmon smolts. Physiol Biochem 8

Zool 79:695–707. doi: 10.1086/504615 9

Amado LL, Garcia ML, Ramos PB, Freitas RF, Zafalon B, Ferreira JL, Yunes JS, 10

Monserrat JM (2009) A method to measure total antioxidant capacity against peroxyl 11

radicals in aquatic organisms: Application to evaluate microcystins toxicity. Sci Total 12

Environ 407:2115-23. doi: 10.1016/j.scitotenv.2008.11.038 13

Baldisserotto B, Martos-Sitcha JA, Menezes CC, Toni C, Prati RL, Garcia L de O, Salbego 14

J, Mancera JM, Martínez-Rodríguez G (2014) The effects of ammonia and water hardness 15

on the hormonal, osmoregulatory and metabolic responses of the freshwater silver catfish 16

Rhamdia quelen. Aquat Toxicol 152:341-352. doi: 10.1016/j.aquatox.2014.04.023 17

Bendschneider K, Robinson RJ (1952) A new spectrophotometric method for the 18

determination of nitrite in sea water. J Mar Res 11:87-96 19

Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: 20

proposal for a protocol to assess aquatic pollution. J Fish Dis 22:25-34. doi: 21

10.1046/j.1365-2761.1999.00134.x 22

Bianchini A, Wasielesky W, Filho KC (1996) Toxicity of nitrogenous compounds to 23

juveniles of flatfish Paralichthys orbignyanus. Bull Environ Contam Toxicol 56:453-459. 24

doi: 10.1007/s001289900065 25

Blanchette B, Feng X, Singh BR (2007) Marine glutathione S-transferases. Mar Biotechnol 26

9:513-542. doi: 10.1007/s10126-007-9034-0 27

73

Bolasina SN (2011) Stress response of juvenile flounder (Paralichthys orbignyanus, 1

Valenciennes 1839), to acute and chronic stressors. Aquaculture 313:140-143. doi: 2

10.1016/j.aquaculture.2011.01.011 3

Carvalho-Neta RN, Abreu-Silva AL (2013) Glutathione S-Transferase as biomarker in 4

Sciades herzbergii (Siluriformes: Ariidae) for environmental monitoring: the case study of 5

São Marcos Bay, Maranhão, Brazil. Lat Am J Aquat Res 41:217-225. doi: 10.3856/vol41-6

issue2-fulltext-2 7

Cheng CH, Yang FF, Ling RZ, Liao SA, Miao YT, Ye CX, Wang AL (2015) Effects of 8

ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish 9

(Takifugu obscurus). Aquat Toxicol 164:61-71. doi: 10.1016/j.aquatox.2015.04.004 10

Ching B, Chew SF, Wong WP, Ip YK (2009) Environmental ammonia exposure induces 11

oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper). Aquat Toxicol 12

95:203-212. doi: 10.1016/j.aquatox.2009.09.004 13

Colt J (2002) List of spreadsheets prepared as a complement. In: Wedemeyer GA (ed) Fish 14

hatchery management, 2nd ed. American Fish Society Publication. 15

http://www.fisheries.org/afs/hatchery.html. Accessed 10 April 2013 16

Da Rocha AM, de Freitas DP, Burns M, Vieira JP, de la Torre FR, Monserrat JM (2009) 17

Seasonal and organ variations in antioxidant capacity, detoxifying competence and 18

oxidative damage in freshwater and estuarine fishes from Southern Brazil. Comp Biochem 19

Phys C Toxicol Pharmacol 150:512-520. doi: 10.1016/j.cbpc.2009.07.012 20

Dong X, Zhang X, Qin J, Zong S (2013) Acute ammonia toxicity and gill morphological 21

changes of Japanese flounder Paralichthys olivaceus in normal versus supersaturated 22

oxygen. Aquac Res 44:1752-1759. doi: 10.1111/j.1365-2109.2012.03181.x 23

Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the 24

examination of water and wastewater, 21st edition. American Public Health Association, 25

Washington, D.C. 26

Enamorado AD, Martins AC, Flores JA, Tesser MB, Caldas SS, Primel EG, Monserrat JM 27

(2015) Biochemical responses over time in common carp Cyprinus carpio (Teleostei, 28

74

Cyprinidae) during fed supplementation with α-lipoic acid. Comp Biochem Phys A Mol 1

Integr Physiol 188:9-16. doi: 10.1016/j.cbpa.2015.05.023 2

FAO – Food and Agriculture Organization of the United Nations (2016) The State of World 3

Fisheries and Aquaculture – Contributing to food security and nutrition for all. Rome. 4

http://www.fao.org/3/a-i5555e.pdf. Accessed 13 February 2017 5

Farzad R, Inanlou DN, Cohan RA, Ghorbani M (2015) Effects of the industrial pollution on 6

glutathione s-tranferase in the liver of rainbow trout. Bulg Chem Commun, 47:720-724 7

Figueiredo JL, Menezes NA (2000) Manual de peixes marinhos do sudeste do Brasil. São 8

Paulo, Museu de Zoologia / USP 9

Frances J, Nowak BF, Allan GL (2000) Effects of ammonia on juvenile silver perch 10

(Bidyanus bidyanus). Aquaculture 183:95-103. doi: 10.1016/S0044-8486(99)00286-0 11

Fridovich I (2004) Mitochondria: are they the seat of senescence? Aging Cell 3:13-16. doi: 12

10.1046/j.1474-9728.2003.00075.x 13

Garcia LO, Okamoto MH, Riffel AP, Saccol EM, Pavanato MA, Sampaio LA (2015) 14

Oxidative stress parameters in juvenile Brazilian flounder Paralichthys orbignyanus 15

(Valenciennes, 1839) (Pleuronectiformes: Paralichthyidae) exposed to cold and heat 16

shocks. Neotrop Ichthyol 13:607-612. doi: 10.1590/1982-0224-20140148 17

Gottschalk S, Zwingmann C (2009) Altered fatty acid metabolism and composition in 18

cultured astrocytes under hyperammonemic conditions. J Neurochem 109:258-264. doi: 19

10.1111/j.1471-4159.2009.05985.x 20

Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. 21

Methods Enzymol. 77:398–405 22

Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic 23

step in mercapturic acid formation. J Biol Chem 249:7130-7139 24

Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University 25

Press, USA 26

75

Hegazi MM, Attia ZI, Ashour OA (2010) Oxidative stress and antioxidant enzymes in liver 1

and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat Toxicol 2

99:118-125. doi: 10.1016/j.aquatox.2010.04.007 3

Hermes-Lima M, Moreira DC, Rivera-Ingraham GA, Giraud-Billoud M, Genaro-Mattos 4

TC, Campos ÉG (2015) Preparation for oxidative stress under hypoxia and metabolic 5

depression: revisiting the proposal two decades later. Free Radical Bio Med 89:1122-1143. 6

doi: 10.1016/j.freeradbiomed.2015.07.156 7

Intergovernmental Oceanographic Commission (1983) Chemical methods for use in marine 8

environmental monitoring. UNESCO, Paris 9

Ip YK, Chew SF (2010) Ammonia production, excretion, toxicity, and defense in fish: A 10

review. Front Physiol 1:134. doi: 10.3389/fphys.2010.00134 11

Kim SH, Kim JH, Park MA, Hwang SD, Kang JC (2015) The toxic effects of ammonia 12

exposure on antioxidant and immune responses in Rockfish, Sebastes schlegelii during 13

thermal stress. Environ Toxicol Pharmacol 40:954-959. doi: 10.1016/j.etap.2015.10.006 14

Klinger D, Naylor R (2012) Searching for solutions in aquaculture: charting a sustainable 15

course. Annu Rev Env Resour 37:247-276. doi: 10.1146/annurev-environ-021111-161531 16

Kolarevic J, Takle H, Felip O, Ytteborg E, Selset R, Good CM, Baeverfjord G, Asgård T, 17

Terjesen BF (2012) Molecular and physiological responses to long-term sub-lethal 18

ammonia exposure in Atlantic salmon (Salmo salar). Aquat Toxicol 124:48-57. doi: 19

10.1016/j.aquatox.2012.07.003 20

Kütter MT, Romano LA, Ventura-Lima J, Tesser MB, Monserrat JM (2014) Antioxidant 21

and toxicological effects elicited by alpha-lipoic acid in aquatic organisms. Comp Biochem 22

Phys C Toxicol Pharmacol 162:70-76. doi: 10.1016/j.cbpc.2014.03.008 23

Li M, Gong S, Li Q, Yuan L, Meng F, Wang R (2016) Ammonia toxicity induces 24

glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish 25

Pelteobagrus fulvidraco. Comp Biochem Phys C Toxicol Pharmacol 183-184:1-6. doi: 26

10.1016/j.cbpc.2016.01.005 27

76

Li M, Yu N, Qin JG, Li E, Du Z, Chen L (2014) Effects of ammonia stress, dietary linseed 1

oil and Edwardsiella ictaluri challenge on juvenile darkbarbel catfish Pelteobagrus 2

vachelli. Fish Shellfish Immun 38:158-165. doi: 10.1016/j.fsi.2014.03.015 3

Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat 4

Toxicol 101:13-30. doi: 10.1016/j.aquatox.2010.10.006 5

Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its 6

classification. Chem-Biol Interact 224:164-175. doi: 10.1016/j.cbi.2014.10.016 7

Medeiros RS, Lopez BA, Sampaio LA, Romano LA, Rodrigues RV (2016) Ammonia and 8

nitrite toxicity to false clownfish Amphiprion ocellaris. Aquacult Int 24:985-993. doi: 9

10.1007/s10499-015-9965-9 10

Millner R, Walsh SJ, Díaz de Astarloa JM (2005) Atlantic flatfish fisheries. In: Gibson RN 11

(ed) Flatfishes: biology and exploitation, 1st edn. Blackwell Science, Oxford, pp 240-271 12

Monserrat JM, Martínez PE, Geracitano LA, Amado LL, Martins CM, Pinho GL, Chaves 13

IS, Ferreira-Cravo M, Ventura-Lima J, Bianchini A (2007) Pollution biomarkers in 14

estuarine animals: Critical review and new perspectives. Comp Biochem Phys C Toxicol 15

Pharmacol 146:221-234. doi: 10.1016/j.cbpc.2006.08.012 16

Oakes KD, Van Der Kraak GJ (2003) Utility of the TBARS assay in detecting oxidative 17

stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. 18

Aquat Toxicol 63:447-463. doi: 10.1016/S0166-445X(02)00204-7 19

Okamoto MH, Sampaio LA (2012) Sobrevivência e crescimento de juvenis do linguado 20

Paralichthys orbignyanus criados em diferentes temperaturas. Atlântica (Rio Grande), 21

34:57-61. doi: 10.5088/atlântica.v34i1.2710 22

Pan CH, Chien YH, Wang YJ (2011) Antioxidant defence to ammonia stress of characins 23

(Hyphessobrycon eques Steindachner) fed diets supplemented with carotenoids. Aquacult 24

Nutr 17:258-266. doi: 10.1111/j.1365-2095.2009.00747.x 25

Paust LO, Foss A, Imsland AK (2011) Effects of chronic and periodic exposure to 26

ammonia on growth, food conversion efficiency and blood physiology in juvenile Atlantic 27

halibut (Hippoglossus hippoglossus L.). Aquaculture 315:400-406. doi: 28

10.1016/j.aquaculture.2011.03.008 29

77

Randall DJ, Tsui TK (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17-23. doi: 1

10.1016/S0025-326X(02)00227-8 2

Rašković B, Jarić I, Koko V, Spasić M, Dulić Z, Marković Z, Poleksić V (2013) 3

Histopathological indicators: a useful fish health monitoring tool in common carp 4

(Cyprinus carpio Linnaeus, 1758) culture. Cent Eur J Biol 8:975-985. doi: 10.2478/s11535-5

013-0220-y 6

Ravindrababu G, Neeraja, P (2012) Histological changes in certain tissues of fish on 7

ambient ammonia stress and post ammonia state (Recovery). Int. J. Adv. Biol. Res 2:430-8

435. 9

Rodrigues RV, Romano LA, Schwarz MH, Delbos B, Sampaio LA (2014) Acute tolerance 10

and histopathological effects of ammonia on juvenile maroon clownfish Premnas 11

biaculeatus (Block 1790). Aquac Res 45:1133-1139. doi: 10.1111/are.12054 12

Roumieh R, Barakat A, Abdelmeguid NE, Ghanawi J, Saoud IP (2013) Acute and chronic 13

effects of aqueous ammonia on marbled spinefoot rabbitfish, Siganus rivulatus (Forsskål 14

1775). Aquac Res 44:1777-1790. doi: 10.1111/j.1365-2109.2012.03188.x 15

Sampaio LA, Bianchini A (2002) Salinity effects on osmoregulation and growth of the 16

euryhaline flounder Paralichthys orbignyanus. J Exp Mar Biol Ecol 269:187-196. doi: 17

10.1016/S0022-0981(01)00395-1 18

Sampaio LA, Freitas LS, Okamoto MH, Louzada LR, Rodrigues RV, Robaldo RB (2007) 19

Effects of salinity on Brazilian flounder Paralichthys orbignyanus from fertilization to 20

juvenile settlement. Aquaculture 262:340-346. doi: 10.1016/j.aquaculture.2006.09.046 21

Sampaio LA, Robaldo RB, Bianchini A (2008) Hormone‐induced ovulation, natural 22

spawning and larviculture of Brazilian flounder Paralichthys orbignyanus (Valenciennes, 23

1839). Aquac Res 39:712-717. doi: 10.1111/j.1365-2109.2008.01923.x 24

Schram E, Roques JA, Abbink W, Spanings T, de Vries P, Bierman S, van de Vis H, Flik G 25

(2010) The impact of elevated water ammonia concentration on physiology, growth and 26

feed intake of African catfish (Clarias gariepinus). Aquaculture 306:108-115. doi: 27

10.1016/j.aquaculture.2010.06.005 28

78

Schreier HJ, Mirzoyan N, Saito K (2010) Microbial diversity of biological filters in 1

recirculating aquaculture systems. Curr Opin Biotech 21:318–325. doi: 2

10.1016/j.copbio.2010.03.011 3

Schwaiger J, Wanke R, Adam S, Pawert M, Honnen W, Triebskorn R (1997) The use of 4

histopathological indicators to evaluate contaminant-related stress in fish. J Aquat Ecosyst 5

Stress Recovery 6:75-86. doi: 10.1023/A:1008212000208 6

Sevcikova M, Modra H, Blahova J, Dobsikova R, Plhalova L, Zitka O, Hynek D, Kizek R, 7

Skoric M, Svobodova Z (2016) Biochemical, haematological and oxidative stress responses 8

of common carp (Cyprinus carpio L.) after sub-chronic exposure to copper. Vet Med 9

61:35-50. doi: 10.17221/8681-VETMED 10

Sinha AK, AbdElgawad H, Giblen T, Zinta G, De Rop M, Asard H, Blust R, De Boeck G 11

(2014) Anti-oxidative defences are modulated differentially in three freshwater teleosts in 12

response to ammonia-induced oxidative stress. Plos One 9: e95319. doi: 13

10.1371/journal.pone.0095319 14

Stoliar OB, Lushchak VI (2012) Environmental pollution and oxidative stress in fish. In: 15

Lushchak VI (ed) Oxidative Stress - Environmental Induction and Dietary Antioxidants. 16

InTech. http://www.intechopen.com/books/oxidative-stress-environmental-induction-and-17

dietary-antioxidants/environmental-pollution-and-oxidative-stress-in-fish. Accessed 2 18

February 2017 19

Sun H, Wang W, Li J, Yang Z (2014) Growth, oxidative stress responses, and gene 20

transcription of juvenile bighead carp (Hypophthalmichthys nobilis) under chronic-term 21

exposure of ammonia. Environ Toxicol Chem 33:1726-1731. doi: 10.1002/etc.2613 22

Velisek J, Stara A, Kolarova J, Svobodova Z (2011) Biochemical, physiological and 23

morfological responses in common carp (Cyprinus carpio L.) after long-term exposure to 24

terbutryn in real environmental concentration. Pestic Biochem Phys 100:305-313. doi: 25

10.1016/j.pestbp.2011.05.004 26

Wasielesky W, Bianchini A, Miranda FK (1998) Tolerancia a la temperatura de juveniles 27

de lenguado Paralichthys orbignyanus. Frente Marítimo 17:43-48. 28

79

Wasielesky W, Bianchini A, Santos MH, Poersch LH (1997) Tolerance of juvenile flatfish 1

Paralichthys orbignyanus to acid stress. J World Aquacult Soc 28:202-204. doi: 2

10.1111/j.1749-7345.1997.tb00857.x 3

Wilhelm Filho D, Giulivi C, Boveris A (1993) Antioxidant defences in marine fish-I. 4

Teleosts. Comp Biochem Phys C Pharmacol Toxicol Endocrinol 106:409-413. doi: 5

10.1016/0742-8413(93)90154-D 6

Wilkie MP, Wood CM (1996) The adaptations of fish to extremely alkaline environments. 7

Comp Biochem Phys B Biochem Mol Biol 113:665-673. doi: 10.1016/0305-8

0491(95)02092-6 9

Yang W, Sun H, Xiang F, Yang Z, Chen Y (2011) Response of juvenile crucian carp 10

(Carassius auratus) to long-term ammonia exposure: feeding, growth, and antioxidant 11

defenses. J Freshwater Ecol 26:563-570. doi: 10.1080/02705060.2011.570944 12

Yang W, Xiang F, Liang L, Yang Z, (2010a) Toxicity of ammonia and its effects on 13

oxidative stress mechanisms of juvenile crucian carp (Carassius auratus). J Freshwater 14

Ecol 25:297-302. doi: 10.1080/02705060.2010.9665080 15

Yang W, Xiang F, Sun H, Chen Y, Minter E, Yang Z (2010b) Changes in the selected 16

hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp 17

Carassius auratus during elevated ammonia exposure and the post-exposure recovery. 18

Biochem Syst Ecol 38:557-562. doi: 10.1016/j.bse.2010.06.005 19

Zhang L, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Tang L, Kuang SY, Zhou XQ (2016) 20

The impaired flesh quality by iron deficiency and excess is associated with increasing 21

oxidative damage and decreasing antioxidant capacity in the muscle of young grass carp 22

(Ctenopharyngodon idellus). Aquacult Nutr 22:191-201. doi: 10.1111/anu.12237 23

Zivna D, Plhalova L, Praskova E, Stepanova S, Siroka Z, Sevcikova M, Blahova J, 24

Bartoskova M, Marsalek P, Skoric M, Svobodova Z (2013) Oxidative stress parameters in 25

fish after subchronic exposure to acetylsalicylic acid. Neuroendocrinol Lett 34:116-122 26

27

28

80

Figure Captions 1

2

Fig. 1 Total antioxidant capacity against peroxyl radicals (ACAP) (relative area) in gill (a), 3

liver (b) and muscle (c) of juvenile Brazilian flounder Paralichthys orbignyanus exposed to 4

ammonia and after recovery in ammonia-free water. Data were expressed as means ± SEM 5

(n=9). Different lowercase letters indicate significant differences among treatments within 6

the same sampling day (Tukey’s test, p <0.05). 7

8

Fig. 2 Glutathione-S-transferase (GST) activity (nmol CNDB-GSH min-1

mg wet tissue-1

) 9

in gill (a), liver (b) and muscle (c) of juvenile Brazilian flounder Paralichthys orbignyanus 10

exposed to ammonia and after recovery in ammonia-free water. Data were expressed as 11

means ± SEM (n=9). Different lowercase letters indicate significant differences among 12

treatments within the same sampling day (Tukey’s test, p <0.05). 13

14

Fig. 3 Thiobarbituric acid reactive substances (TBARS) content (nmol TMP mg wet tissue-15

1) in gill (a), liver (b) and muscle (c) of juvenile Brazilian flounder Paralichthys 16

orbignyanus exposed to ammonia and after recovery in ammonia-free water. Data were 17

expressed as means ± SEM (n=9). Different lowercase letters indicate significant 18

differences among treatments within the same sampling day (Tukey’s test, p <0.05). 19

20

21

22

23

24

25

26

27

28

29

30

81

Fig.1 1

AC

AP

(re

lative a

rea)

0

2

4

6

8

100

125

150

aa

b

b

a

a

aa

b

ab

a aa a

a

a

a

AC

AP

(re

lative a

rea)

0

25

50

75

100

125

150

b

a

a

a

bb

aa

aa

a a

a

a

bb

b

Time (days)

AC

AP

(re

lative a

rea)

0

25

50

75

100

125

150

1 5 10 20

Exposure Recovery

bb

b

a

c

bc

a

b a

b

b ba

aa a

c

mg NH3-N L

-1

0.05 (control)0.120.280.57 2

82

Fig. 2 1

GS

T a

ctivity (

nm

ol C

ND

B-G

SH

min

-1 m

g w

et

tissue

-1)

0.00

0.50

1.00

1.50

2.00

2.50

b

a a aa

aa

a

b

abab

a

a

a

b b

a

GS

T a

ctivity (

nm

ol C

ND

B-G

SH

min

-1 m

g w

et

tissue

-1)

0.00

0.50

1.00

1.50

2.00

2.50

b

b

a

a

a

aa

a

a

a a a

a

a

b

b

b

Time (days)

GS

T a

ctivity (

nm

ol C

ND

B-G

SH

min

-1 m

g w

et

tissue

-1)

0.00

0.02

0.04

0.06

0.08

0.10

2.00

2.25

2.50

1 5 10 20

Exposure Recovery

a

a

a

a

aa

a

a

aa

a

a

a

a

b

ab

c

mg NH3-N L

-1

0.05 (control)0.120.280.57

2

83

Fig. 3 1

TB

AR

S (

nm

ol T

MP

mg

we

t tissu

e-1)

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.190

0.200

TB

AR

S (

nm

ol T

MP

mg

we

t tissu

e-1)

0.000

0.040

0.080

0.120

0.160

0.200

a

aa

a

aa

aa

a aa

aa

a

bb

a

b

Time (days)

TB

AR

S (

nm

ol T

MP

mg

we

t tissu

e-1)

0.000

0.005

0.010

0.015

0.020

0.195

0.200

a

abab

ba

a a

b

ab a

bc

c

a

c

bbc

1 5 10 20

Exposure Recovery

a a

a a

aa a a

aa a

a

a aa

a

c

mg NH3-N L

-1

0.05 (control)0.120.280.57 2

84

CAPÍTULO 3 1

2

Oxidative stress and antioxidant responses in juvenile Brazilian flounder Paralichthys 3

orbignyanus exposed to sub-lethal levels of nitrite 4

5

Lucas Campos Malteza, Lilian Fiori Nitz

a, Lucas Pellegrin

a, Giovanna Rodrigues 6

Stringhettaa, Marcelo Hideo Okamoto

b, Luis Alberto Romano

c, José Maria 7

Monserratd, Luís André Sampaio

b, Luciano Garcia

a* 8

9 aLaboratório de Aquacultura Continental, Instituto de Oceanografia, Universidade Federal do Rio Grande – 10

FURG, Rio Grande, RS, Brazil. 11 bLaboratório de Piscicultura Estuarina e Marinha, Instituto de Oceanografia, Universidade Federal do Rio 12

Grande – FURG, Rio Grande, RS, Brazil. 13 cLaboratório de Patologia e Imunologia de Organismos Aquáticos, Instituto de Oceanografia, Universidade 14

Federal do Rio Grande – FURG, Rio Grande, RS, Brazil. 15 dLaboratório de Bioquímica Funcional de Organismos Aquáticos, Instituto de Oceanografia, Universidade 16

Federal do Rio Grande – FURG, Rio Grande, RS, Brazil. 17

18

Running title: Nitrite-induced oxidative stress in Paralichthys orbignyanus 19

20

ms. has 29 pages, 6 figures 21

22

*Corresponding author: 23

Dr. Luciano de Oliveira Garcia 24

Laboratório de Aquacultura Continental, Universidade Federal do Rio Grande – FURG 25

96201-900, Rio Grande, RS, Brazil 26

Phone: +55 53 3237-3003 27

[email protected] 28

29

30

31

32

33

Artigo formatado e submetido para a revista Comparative Biochemistry and Physiology - 34

Part C: Toxicology & Pharmacology 35

85

Abstract 1

This study evaluated the effects of short-term exposure to sub-lethal levels of nitrite on 2

total protein content, oxidative stress parameters and histology of juvenile Brazilian 3

flounder Paralichthys orbignyanus. An assessment of fish recovery was also performed. 4

Fish were exposed to 0.08 (control), 5.72, 10.43 and 15.27 mg NO2-N L-1

for 10 days 5

followed by the same recovery time. Gill, liver and muscle samples were collected after 1, 6

5 and 10 days of exposure and after recovery for the measurement of total protein content, 7

antioxidant capacity against peroxyl radicals (ACAP), glutathione-S-transferase (GST) 8

activity, content of non-protein (NPSH) and protein thiols (PSH), and lipid peroxidation 9

levels by thiobarbituric acid reactive substances (TBARS) content. For the 10

histopathological evaluation, samples of gill, liver and brain tissues were collected. Nitrite 11

exposure induced alterations pertained to reduced total protein content, compromising of 12

the overall antioxidant system (reduced ACAP and GST activity) and enhanced oxidative 13

damage in lipids and proteins. Increases in GST activity, NPSH and PSH contents were 14

also demonstrated. No nitrite-induced histopathological effects were found. The recovery 15

period allowed for resumption of basal levels for all (treatment 5.72 mg NO2-N.L-1

) or 16

some of the evaluated parameters (other treatments). In conclusion, exposure to nitrite 17

concentrations from 5.72 to 15.27 mg NO2-N.L-1

caused changes in protein content and 18

induced oxidative stress and antioxidant responses of juvenile Brazilian flounder. The 19

recovery period led to complete or partial resumption of homeostasis depending on the 20

nitrite concentrations at which the fish were previously exposed. 21

22

Key words: fish, lipoperoxidation, nitrogen compound, recovery, thiol groups, toxicity 23

24

1. Introduction 25

26

Nitrite (NO2-) is an intermediate product in bacterial nitrification and denitrification 27

processes and therefore constitutes a component of the nitrogen cycle in aquatic 28

environments. In intensive fish culture systems, especially in recirculation aquaculture 29

systems (RAS), imbalances of nitrifying bacteria activity present in biofilter, may lead to a 30

build-up of nitrite. This nitrogen compound causes a potential risk to cultured species due 31

to its high toxicity (Jensen, 2003; Kroupova et al., 2005). Besides, the deleterious effects of 32

86

nitrite exposure can adversely affect growth (Ciji et al., 2014), immune system (Jia et al., 1

2016) and survival of fish (Wuertz et al., 2013) resulting in production losses. 2

The mechanisms of nitrite uptake and toxicity are widely discussed for freshwater 3

organisms but poorly studied on estuarine and marine fish (Tomasso, 2012; Jia et al., 4

2015). Nitrite is generally less toxic in saltwater due to the high chloride concentration and 5

to the opposite osmotic gradients, which reduce nitrite influx via competition with chloride 6

active uptake in gill (Jensen, 2003). However, potential routes for nitrite uptake have been 7

demonstrated in intestinal (Grosell and Jensen, 2000) and gill (inward diffusion) epithelium 8

of saltwater species (Jensen, 2003), and can lead to a build-up of this compound in blood 9

plasma (Park et al., 2013) and other organs, such as muscle, gills and liver (Huertas et al., 10

2002). The main physiological disorder related to nitrite accumulation is the oxidation of 11

functional hemoglobin (Hb) to methemoglobin (metHb), which cannot transport oxygen. In 12

addition to inducing functional hypoxia due to methemoglobinemia, exposure to nitrite can 13

affect multiple physiological functions in fish (Jensen, 2003). 14

The imbalance between pro-oxidants and antioxidant defenses which leads to an oxidative 15

stress condition (Halliwell and Gutteridge, 2015) is one of these nitrite-induced 16

disturbances at the biochemical level. Exposure of fish to nitrite can enhance the 17

intracellular generation of reactive oxygen species (ROS) (Sun et al., 2014a) and reactive 18

nitrogen species (RNS) (Jensen and Hansen, 2011; Jensen et al., 2015), and/or reduce 19

antioxidant defenses (Jia et al., 2015). Therefore, increased levels of oxidative damage in 20

different macromolecules such as lipids and proteins have already been demonstrated (Sun 21

et al., 2014a; Jia et al., 2015). Furthermore, the non-enzymatic antioxidant defenses such as 22

reduced glutathione (GSH) plays an important role in preventing Hb oxidation by nitrite 23

(Smith and Nunn, 1984; Doblander and Lackner, 1996) and elevated activities of several 24

antioxidant enzymes provide protection against oxidative damage during nitrite exposure 25

(Ciji et al., 2012). 26

At a higher biological organization level, exposure to environmental stressors and related 27

biochemical responses can also induce histopathological changes in specific target organs 28

resulting in impairment of their vital functions (Bernet et al., 1999). These kinds of changes 29

were already demonstrated in fish exposed to nitrite by some authors (Saoud et al., 2014; 30

Medeiros et al., 2016). Differently, other studies did not find a relationship between 31

histological lesions and nitrite toxicity (Wuertz et al., 2013; Roques et al., 2015). In fact, 32

87

the application of multiple biomarkers provides a more reliable and integrative assessment 1

of toxic effects related to contaminants (Saleh and Marie, 2016). 2

Despite the different toxic effects, undesirable nitrite concentrations are often transient in 3

aquatic ecosystems and aquaculture systems (Jensen, 2003). The return of fish to nitrite-4

free water after an exposure episode is generally sufficient to induce nitrite detoxification 5

from the organism and to reverse physiological disturbances within a few days as 6

demonstrated by previous studies (Jensen et al., 1987; Knudsen & Jensen, 1997; Gisbert et 7

al., 2004). Fish are capable of detoxifying nitrite by oxidising it to low-toxic nitrate through 8

different biochemical pathways involving the enzymes catalase and cytochrome oxidase, 9

and mainly via haemoglobin oxidation (Doblander and Lackner, 1996). 10

Since this mechanism of nitrite detoxification is the same involved on metHb formation, 11

the metHb reductase systems play an important role not only for the ressumptions of 12

normal Hb levels but also indirectly assist the nitrite detoxification process (Jensen, 2003). 13

Excretion of nitrite to the environment across the gills and via the urine are also 14

mechanisms involved in the elimination thereof (Zachariasen, 2001). However, the 15

recovery responses of fish after nitrite exposure are still understudied and there are no 16

works that perform this evaluation using oxidative stress parameters. For aquaculture 17

purposes, the provision of a suitable recovery period for nitrite-exposed fish is critical to 18

minimize the chances of cumulative effects if fish are subject to additional stressors 19

(Wedemeyer, 2012). 20

The Brazilian flounder Paralichthys orbignyanus (Valenciennes, 1839) is a native species 21

to South America, inhabiting estuarine and coastal waters from Brazil to Argentina 22

(Figueiredo and Menezes, 2000; Millner et al., 2005). This is a promising species for 23

intensive aquaculture due its commercial importance, easy adaptation to captivity 24

conditions and wide tolerance to distinct water quality conditions (Bianchini et al., 2010). 25

However, the knowledge about nitrite toxicity, a potential problem in intensive systems, is 26

quite limited regarding this species (Bianchini et al., 1996) and the sub-lethal effects of 27

exposure to this compound and recovery responses are still unknown. 28

Therefore, the aim of this study was to investigate the effects of exposure to sublethal 29

concentrations of nitrite on oxidative stress parameters and histopatology in different 30

tissues of juvenile Brazilian flounder P. orbignyanus. Moreover, an assessment of fish 31

recovery after a period in water with minimum nitrite concentrations was also performed. 32

88

1

2. Materials and methods 2

3

2.1 Ethical procedures 4

The experimental protocol was approved by the Committee on Animal Experimentation of 5

FURG (process number 23116.001030/2016-15). 6

7

2.2 Fish and experimental conditions 8

The juveniles Brazilian flounder (310.0 ± 5.6 g and 29.4 ± 0.2 cm) were obtained from the 9

Aquaculture Marine Station of the Universidade Federal do Rio Grande - FURG in Rio 10

Grande do Sul, south Brazil. Prior to the experiment, 180 fish were randomly distributed in 11

twelve 300 L circular tanks (15 fish per tank) organized in four recirculation systems which 12

were connected to their respective biological and mechanical filters. Fish were acclimated 13

for 20 days, fed twice daily (3% of total biomass) with commercial diet (46% crude 14

protein) throughout the acclimation and experimental periods. Photoperiod was fixed at 12 15

h Light :12 h Dark. 16

The fish were exposed to 0.08 ± 0.01(control), 5.72 ± 0.02, 10.43 ± 0.05 and 15.27 ± 0.04 17

mg NO2-N.L-1

in triplicate for 10 days in a semi-static system. Test concentrations were 18

chosen above the safety level (3.06 mg NH3-N.L-1

) for the species in seawater (Bianchini et 19

al., 1996) and reached through the addition of aliquots from a sodium nitrite (NaNO2; 20

Synth, Brazil) solution to the experimental units. The analytical verification of the desired 21

nitrite concentrations was performed daily according to Bendschneider and Robinson 22

(1952). After the exposure period, fish remained for 10 days in a recirculation system to 23

recover under minimum nitrite concentrations (0.05 ± 0.01 mg NO2-N.L-1

). 24

The water quality parameters temperature (23.91 ± 0.05 ºC) and dissolved oxygen (7.34 ± 25

0.02 mg.L-1

) (oximeter YSI 55), salinity (23.91 ± 0.05) (refractometer), pH (8.17 ± 0.01) 26

(pH meter, WTW 315i), total (0.27 ± 0.02 mg.L-1

) (UNESCO, 1983) and un-ionized 27

ammonia (< 0.01 mg.L-1

) (Colt, 2002), and total alkalinity (232.19 ± 1.50 mg CaCO3.L-1

) 28

(Eaton et al., 2005) were measured daily during the acclimation and experimental periods, 29

and always before the first feeding. 30

31

2.3 Organ sampling 32

89

After 1, 5 and 10 days of exposure and after a recovery period (day 20), nine fish were 1

randomly netted from each treatment and immediately euthanized with a lethal 2

concentration of hydrochloride benzocaine (500 ppm). Samples of gills, liver, brain and 3

muscle tissues were collected. Feeding was ceased 24 hours prior to each sampling day. 4

5

2.4 Organ homogenization and total protein content 6

Samples of gill, liver and muscle tissues were stored at -80 ºC and then homogenized 7

(1:5,w/v) in a Tris–HCl (100 mM, pH 7.75) buffer with EDTA (2 mM) and Mg2+

(5 mM). 8

The supernatants resulting from the centrifugation of the homogenates (10000 x g, 20 9

minutes, at 4ºC) were used for all analyses (da Rocha et al., 2009). The total protein content 10

of homogenized samples was determined in a microplate reader (BioTek LX 800) using a 11

commercial kit (Doles®) based on the Biuret assay (550 nm). 12

13

2.5 Total antioxidant capacity against peroxyl radicals 14

All samples were previously diluted with homogenization buffer to 2.0 mg protein mL-1

15

and the total antioxidant capacity against peroxyl radicals (ACAP) was determined 16

according to the method described by Amado et al. (2009). Fluorometry (excitation: 485 17

nm; emission: 520 nm) was measured through a spectrofluorimeter (Victor 2, Perkin Elmer, 18

MA, USA) with readings at every 5 minutes, during 30 minutes (gill and liver samples) or 19

at every 20 minutes, during 120 minutes (muscle samples). The ACAP values (expressed as 20

a relative area) were calculated using the expression proposed by Monserrat et al. (2014). 21

For interpretation purposes, a higher relative area means a lower antioxidant capacity. 22

23

2.6 Glutathione-S-transferase activity 24

Glutathione-S-transferase (GST) activity was determined following the conjugation of 1 25

mM glutathione (GSH) and 1 mM 1-chloro-2,4-dinitrobenzene (CDNB) according to Habig 26

et al. (1974) and Habig and Jakoby (1981). The absorbance (340 nm) was read in 96-wells 27

transparent microplates using a microplate reader (Biotek Elx 800). 28

29

2.7 Content of non-protein and protein thiols 30

For the measurement of non-proteic (NPSH) and proteic (PSH) thiols, the employed 31

method using DTNB (5,5-dithiobis-(2-nitrobenzoic acid; Sigma) was based on Sedlak and 32

90

Lindsay (1968). Determination of NPSH content in the samples was measured after 1

deproteinization with trichloro acetic acid (TCA 50%). The pellet formed by the 2

precipitated protein was re-suspended with homogenization buffer for determination of 3

PSH content. The absorbance readings (405 nm) were performed using a microplate reader 4

(Biotek Elx 800). 5

6

2.8 Lipid Peroxidation 7

The lipid peroxidation levels were measured according Oakes and Van Der Kraak (2003). 8

This method quantifies malondialdehyde (MDA) levels, a by-product of lipid peroxidation, 9

by measuring thiobarbituric acid-reactive substances (TBARS). Fluorometric 10

measurements (excitation: 520 nm, emission: 580 nm) was performed in spectrofluorimeter 11

(Victor 2, Perkin Elmer, MA, USA) and the results were expressed as nmol TMP mg wet 12

tissue-1

, where TMP stands for tetramethoxypropane (ACROS Organics), employed as a 13

standard. 14

15

2.9 Histopathological evaluation 16

Gill samples were fixed in Bouin’s solution, while brain and liver samples were fixed in 17

10% buffered formalin. Samples were dehydrated using sequentially increasing 18

concentrations of ethanol, cleared in xylene and embedded in paraplast with an automatic 19

tissue processor (LUPETEC, PT 05, Brazil). The sections (5 µm) were prepared using a 20

microtome (LUPETEC, MRP03, Brazil), stained with hematoxylin-eosin and slides were 21

analyzed using an optical microscope (ZEISS, PRIMO STAR). 22

23

2.10 Statistical analysis 24

All data were expressed as means ± standard error (S.E.M). One-way ANOVA and Tukey’s 25

test were performed to check differences among treatments on the same day. The data of 26

non-protein thiols content in gills did not meet the assumptions for ANOVA and therefore 27

the non-parametric Kruskall-Wallis’test followed by a multiple comparisons’ test. The 28

significance level was set at 5% in all cases (p<0.05). 29

30

3. Results 31

32

91

No mortality occurred for any of the experimental treatments throughout the exposure and 1

recovery periods. 2

3

3.1 Total protein content 4

The total protein content in gill was significantly lower in juvenile Brazilian flounder 5

exposed to 5.72 mg NO2-N.L-1

compared to other experimental groups at day 1, and 6

compared to treatment 10.43 mg NO2-N.L-1

at the 10th

day of exposure. After recovery, the 7

values were higher in the gill of fish subjected to 5.72 mg NO2-N.L-1

compared to those 8

exposed to 10.43 and 15.27 mg NO2-N.L-1

. However, treatments did not differ significantly 9

from controls at day 10 and after recovery (Figure 1A). The total protein content was 10

significantly lower in liver of fish exposed to 10.43 and 15.27 mg NO2-N.L-1

in relation to 11

control and 5.72 mg NO2-N.L-1

at day 10 (Figure 1B). The total protein content of muscle 12

was also significantly lower in fish exposed to 15.27 mg NO2-N.L-1

in relation to other 13

treatments, and in fish exposed to 10.43 mg NO2-N.L-1

compared to control fish and to 14

those exposed to 5.72 mg NO2-N.L-1

at day 5 (Figure 1C). No differences were found 15

among treatments after recovery in liver and muscle (Figure 1B-C). 16

17

3.2 Total antioxidant capacity against peroxyl radicals 18

Reduced antioxidant competence in relation to control were observed in gills of fish 19

exposed to all NO2-N.L-1

concentrations on day 1 and a similar condition was observed in 20

gills of fish exposed to 15.27 mg NO2-N.L-1

on day 5 (Figure 2A). The antioxidant 21

competence in the liver of fish exposed to treatment 15.27 mg NO2-N.L-1

was significantly 22

lower than that of their respective control during the entire period of exposure (days 1, 5 23

and 10). Moreover, treatments 5.72 and 10.43 mg NO2-N.L-1

showed lower antioxidant 24

competence compared to controls at days 5 and 10 (Figure 2B). Exposure to 15.27 and 5.72 25

mg NO2-N.L-1

reduced antioxidant competence in muscle as compared to controls on day 1 26

and at the end of exposure period (day 10), respectively (Figure 2C). Regardless of organ, 27

no differences were found among treatments after recovery (Figure 2A-B-C). 28

29

3.3 Glutathione-S-transferase activity 30

The GST activity in gills was lower in treatment of 15.27 mg NO2-N.L-1

compared to 31

control group and to concentration of 5.72 mg NO2-N.L-1

, and in treatments of 10.43 mg 32

92

NO2-N.L-1

compared to control at day 5. No differences were found among treatments after 1

recovery (Figure 3A). Liver of fish exposed to 10.43 and 15.27 mg NO2-N.L-1

showed 2

enhanced GST activity compared to other experimental groups at day 10. Differently, fish 3

exposed to 15.27 mg NO2-N.L-1

had a lower GST activity in relation to control and 4

treatment 5.72 mg NO2-N.L-1

after recovery (Figure 3B). During the exposure period, 5

muscle GST activity showed higher values in fish exposed to 15.27 mg NO2-N.L-1

6

compared to all groups at day 5, and lower values in treatment 5.72 mg NO2-N.L-1

at day 7

10, in comparison to all other treatments. Reduced GST activity was observed in treatment 8

15.27 mg NO2-N.L-1

compared to control after recovery (Figure 3C). 9

10

3.4 Content of non-protein thiols 11

The NPSH content were higher in the gill of fish exposed to the treatment 15.27 mg NO2-12

N.L-1

in relation to control and to treatment 5.72 mg NO2-N.L-1

, and in treatment 10.43 mg 13

NO2-N.L-1

in relation to control at day 10. After recovery, higher contents of NPSH were 14

found in treatments 10.43 and 15.27 mg NO2-N.L-1

compared to control and to treatment 15

5.72 mg NO2-N.L-1

(Figure 4A). On day 1, hepatic NPSH content were higher in fish 16

exposed to the treatment 15.27 mg NO2-N.L-1

in relation to control fish and to those 17

exposed to 5.72 mg NO2-N.L-1

. On day 5, higher values of this parameter were observed in 18

treatments 10.43 and 15.27 mg NO2-N.L-1

compared to control and to treatment 5.72 mg 19

NO2-N.L-1

. NPSH contents were also higher in liver of fish exposed to 15.27 mg NO2-N.L-1

20

compared to control and to treatment 5.72 mg NO2-N.L-1

, and in fish exposed to 10.43 mg 21

NO2-N.L-1

compared to control fish, at day 10. NPSH content was higher in liver of fish 22

exposed to 15.27 mg NO2-N.L-1

compared to control after the recovery (Figure 4B). In 23

muscle, NPSH content was higher in fish exposed to 15.27 mg NO2-N.L-1

compared to 24

other groups on the 10th

day of exposure. Elevations in NPSH content were also found in 25

treatments 10.43 and 15.27 mg NO2-N.L-1

compared to control and to treatment 5.72 mg 26

NO2-N.L-1

after recovery (Figure 4C). 27

28

3.5 Content of protein thiols 29

Exposure of fish to 15.27 mg NO2-N.L-1

and all NO2-N treatments led to a reduced content 30

of PSH in gill in comparison with controls at day 1 and 5, respectively. No differences were 31

found among treatments after recovery (Figure 5A). In liver, enhanced PSH content was 32

93

observed in treatments 10.43 and 15.27 mg NO2-N.L-1

compared to control and to 1

treatment 5.72 NO2-N.L-1

at the end of exposure and after recovery (Figure 5B). Nitrite 2

exposure induced a progressive enhanced of muscle PSH content over increasing 3

concentrations on days 5 and 10. At these days, PSH contents were higher in fish exposed 4

to 15.27 mg NO2-N.L-1

compared to all groups, and higher in fish exposed to 10.43 mg 5

NO2-N.L-1

compared to control fish. After recovery, treatment 5.72 mg NO2-N.L-1

6

presented higher PSH content than that of the 10.43 mg NO2-N.L-1

– exposed fish, 7

however, both treatments did not differ from control (Figure 5-C). 8

9

3.6 Lipid Peroxidation – TBARS 10

The TBARS levels in gill of Brazilian flounder exposed to all NO2-N treatments were 11

higher than those of the control group at day 1. On the 5th

day of exposure, the treatment 12

5.72 mg NO2-N.L-1

showed higher values compared to control, whereas treatment 15.27 13

mg NO2-N.L-1

had lower TBARS content in relation to any of the treatments. No 14

differences were found among treatments after recovery (Figure 6A). The liver of fish had 15

lower TBARS levels in treatments 10.43 and 15.27 mg NO2-N.L-1

compared to control and 16

to treatment 5.72 mg NO2-N.L-1

at day 10. A reduced TBARS level was also observed in 17

fish subjected to treatment 15.27 mg NO2-N.L-1

in comparison to control fish after recovery 18

(Figure 6B). Significant differences in muscle TBARS levels were detected only on day 10, 19

when the values were higher in fish exposed to 15.27 mg NO2-N.L-1

compared to control 20

and treatment 5.72 mg NO2-N.L-1

. After recovery, no differences were found among 21

treatments (Figure 6C). 22

23

3.7 Histopathological investigation 24

The histological investigation did not reveal any morphological alterations in gills, liver 25

and brain of flounder juveniles during nitrite exposure or after recovery period. 26

27

4. Discussion 28

29

In natural environments, nitrite typically occurs at very low concentrations, however, toxic 30

levels of this compound can be found in polluted waters or aquaculture production systems, 31

particularly in RAS (Kroupová et al., 2016). Understanding how nitrite affects animals is 32

94

essential to establish appropriate management strategies, to avoid deleterious effects 1

(Tomasso, 2012). In the present study, exposure to nitrite concentrations ranging from 5.72 2

to 15.27 mg NO2-N.L-1

for 10 days led to changes in protein content and caused oxidative 3

stress, without the occurrence of histopathological alterations in the assessed organs of 4

juvenile Brazilian flounder. The observed nitrite-induced effects were organ-, time- and 5

concentration-dependent. 6

Metabolic alterations, which are triggered during stress condition (Bonga, 1997), can lead 7

to reduced protein content in tissues of fish exposed to environmental contaminants (Liu et 8

al., 2010; Feng et al., 2014), as seen with nitrite toxicity reported in this study. The 9

reduction in total protein could indicate either an inhibition of synthesis or increased 10

degradation or breakdown (Firat et al., 2011). The protein catabolism is a general stress 11

response to cope with the high energy demand, when glycogen reserves are depleted (Oruc, 12

2011). While proteins are the major organic constituents of fish tissues and closely 13

involved with biological processes (Halver and Hardy, 2002), changes in its normal 14

metabolism can be linked to further physiological alterations. 15

The oxidative stress induced by environmental contaminants in fish is a result of enhanced 16

ROS production and/or weakening of the antioxidant system (Lushchak, 2016), which is 17

comprised of low-molecular-weight antioxidants and several enzymes (Martínez-Álvarez et 18

al., 2005). Nitrite exposure led to reduced total antioxidant competence in gill, liver and 19

muscle of Brazilian flounder, making these organs more susceptible to further ROS attack. 20

The impairment of a specific enzymatic defence was also demonstrated by some inhibition 21

of GST activity in muscle and gill, thus corroborating the nitrite-induced deleterious effects 22

in antioxidant and detoxifying system. Similarly, reduced enzymatic and non-enzymatic 23

antioxidant defences were demonstrated in gills of juvenile turbot (Scophthalmus maximus) 24

exposed for 96 h to similar concentrations (5.60 and 11.20 mg NO2-N.L-1

) of nitrite used 25

herein (Jia et al., 2015). These results suggest an enhanced production of free-radicals, as 26

ROS and RNS, resulting in expenditure or inhibition of antioxidant components due to 27

oxidative damage (Sun et al., 2012; Jia et al., 2015). Furthermore, coping with stress 28

involves several physiological adjustments to supply increased energy demand (Barton, 29

2002), which can lead to a deficiency in antioxidants production in the organism. The 30

lowering of protein content seems support this idea. 31

95

Otherwise, in certain conditions of ROS overproduction, the activation of redox-sensitive 1

transcription factors and ROS-mediated covalent modification of antioxidant proteins can 2

trigger antioxidant responses (Hermes-Lima et al., 2015). Enhanced gene expression and 3

activity of antioxidant enzymes have already been described in fish as an adaptive 4

mechanism to prevent oxidative stress induced by environmental nitrite (Ciji et al., 2012; 5

Sun et al., 2014a). In the present study, fish exposed to 10.43 and 15.27 mg NO2-N.L-1

6

triggered similar protective response mechanisms within the antioxidant system, 7

characterized by increases in GST activity and more evidently by elevations in the thiol 8

contents. 9

GST represent the major group of xenobiotic detoxification enzymes and are often used as 10

biomarkers of aquatic environmental contamination. The main role of these enzymes is the 11

catalysis of nucleophilic attack of the sulfur atom of GSH to electrophilic substrates 12

providing cellular defence against chemically induced toxicity (Blanchette et al., 2007). 13

Enhanced GST activity mediated by a prooxidant condition promotes the detoxification of 14

some toxic carbonyl-, peroxide-, and epoxide-containing metabolites produced by oxidative 15

damage (Hayes and Pulford, 1995). 16

Sinhorin et al. (2014) observed that when enzymatic defences are impaired or insufficient 17

to counteract oxidative radicals, non-enzymatic antioxidants including thiols levels are 18

enhanced so as to prevent the occurrence of auto-oxidation reactions. Increased levels of 19

NPSH (all tissues) and PSH (liver and muscle) in nitrite-exposed Brazilian flounder could 20

result either from enhanced synthesis, or decreased consumption and/or degradation (Husak 21

et al., 2017). It is recognized that nitrite accumulation in fish organism can cause excessive 22

production of nitric oxide (NO) (Jensen and Hansen, 2011) and the GSH biosynthetic 23

pathway can be stimulated in response to enhanced NO levels to protect cells against 24

oxidative or nitrosative stress (Moellering et al., 1998). These mechanisms can explain the 25

enhanced NPSH contents in the present study, since GSH is the predominant non-protein 26

thiol in cells (Dickinson and Forman, 2002). GSH is synthesized mainly in the liver and 27

released to the bloodstream before being distributed to other tissues (Peña et al., 2000). 28

This could explain the early increment in hepatic NPSH content on the first day of 29

exposure, whereas increases in this parameter were observed only on day 10 for gill and 30

muscle tissues. Besides the important role as an antioxidant, GSH can covalently modify 31

cysteine residues of protein thiols in a reversible process called S-glutathionylation, 32

96

avoiding irreversible oxidative damage and regulate protein function (Jakob and 1

Reichmann, 2013; Halliwell and Guteridge, 2015). Thus, enhanced PSH content is an 2

indication of reduced oxidative damage in proteins, possibly mediated by higher GSH 3

availability. 4

Considering the metahemoglobinemia as the main effect of nitrite toxicity (Jensen, 2003), 5

the up regulation of certain antioxidants, including GSH, can improve the tolerance of fish 6

to this compound, by shielding oxidation of haemoglobin (Smith and Nunn, 1984). Zhou et 7

al. (2013) reported an improved antioxidant capability and a higher tolerance to nitrite in 8

GIFT Oreochromis niloticus previously fed with dietary GSH. However, future studies 9

evaluating the relation between oxidative stress responses in blood and metahemoglobin 10

content can shed light on the role of the antioxidant system of Brazilian flounder against 11

nitrite-induced haemoglobin oxidation. 12

When antioxidant system is unable to efficiently counteract ROS and RNS, enhanced levels 13

of oxidative damage occurs. The higher TBARS values showed in gill on days 1 and 5, and 14

in muscle of fish exposed to 15.27 mg NO2-N.L-1

at the end of exposure, indicate enhanced 15

levels of lipid peroxidation end products (Halliwell and Gutteridge, 2015). Concomitantly, 16

the reduction in PSH content in gill could be also interpreted as a signal of a more oxidative 17

environment in cells leading to protein oxidation (Mitton et al., 2016). Our results are in 18

agreement with previous works that demonstrated nitrite-induced oxidative damage in 19

lipids and proteins of fish tissues (Sun et al., 2014a; Jia et al., 2015). The gill was the most 20

affected organ and the enhanced levels of oxidative damage in the first 5 days of exposure 21

are consistent with the impairment of antioxidant system at these days. Oxidative stress 22

responses can be influenced both by metabolism and basal redox condition of each organ 23

(da Rocha et al., 2009). Among the analyzed organs, the gill presented higher basal levels 24

of TBARS and lower content of thiol groups which is an indication of a pre-existing and 25

more intense pro-oxidant environment, making it more susceptible to oxidative damage 26

during a stress condition. 27

After enhanced TBARS values on day 1, the gills of fish exposed to 15.27 mg NO2-N.L-1

28

had lower levels of this parameter on day 5. This result may indicate more severe effects, 29

possibly related to a decrease in polyunsaturated fatty acids levels due to early oxidative 30

degradation (Sun et al., 2014b). Similarly, this is a possible explanation for the reduced 31

TBARS levels in the liver of fish exposed to 10.43 and 15.27 mg NO2-N.L-1

on day 10. 32

97

However, the reduced hepatic TBARS could also be related to a higher detoxification of 1

LPO end products as the MDA, due to the concurrently increase in GST activity. 2

Generally, it is important to highlight that some of nitrite-induced effects showed in this 3

study were transitory, occurring on the first and/or fifth day of exposure with subsequent 4

recovery of homeostasis, even during the exposure period. This pattern suggests that 5

Brazilian flounder presents biochemical compensatory mechanisms which confer to the 6

species a certain degree of adaptation to high levels of environmental nitrite. 7

Adverse biochemical and physiological changes, including enhanced oxidative damage of 8

macromolecules as lipids and proteins result in pathological alterations in tissues of fish 9

exposed to nitrite (Sun et al., 2014a). Although nitrite exposure induced oxidative stress in 10

juvenile Brazilian flounder, no histological abnormalities were found, indicating that toxic 11

effects of this compound were limited to the biochemical level. These results are in 12

agreement with other studies that evaluated the effects of contaminants on fish (Velisek et 13

al., 2011; Zivna et al., 2013; Sevcikova et al., 2016; Simonato et al., 2016), in which time 14

and/or nitrite concentrations were insufficient to cause further severe tissue damage 15

(Wuertz et al., 2013; Roques et al., 2015). Thus, the absence of histological alterations in 16

fish exposed to concentrations above the safety level (Bianchinni et al., 1996) suggest a 17

higher tolerance to nitrite than it would have been expected for this species. 18

The recovery period of 10 days was sufficient to restore basal levels of all analysed 19

parameters in fish exposed to the lowest nitrite concentration indicating a complete 20

reestablishment of homeostasis in this case. Differently, fish exposed to the other two 21

highest nitrite concentrations presented partial recovery, with return to basal levels only for 22

some parameters, and then a longer time is possibly required for complete recovery. NPSH 23

content in all tissues (except in liver of fish exposed to 10.43 mg NO2-N.L-1

) and hepatic 24

PSH levels were elevated in both treatments, suggesting a remaining effect of exposure 25

period and/or a role of thiols in nitrite detoxification and recovery of related physiological 26

disturbances. The recovery of basal TBARS content was demonstrated in fish exposed to 27

10.43 mg NO2-N.L-1

, while remained altered in liver of fish subjected to 15.27 mg NO2-28

N.L-1

as well as at the end of the exposure period. This is explained by a more severe effect 29

at higher concentrations. Reduced GST activity in liver and muscle was also observed in 30

treatment 15.27 mg NO2-N.L-1

after recovery. There is no evidence of a pro-oxidant 31

scenario triggered during the recovery period that can result in an inhibition of GST activity 32

98

by oxidative damage. On the contrary, antioxidant enzymes activity as GST is modulated 1

by ROS action and concentrations of oxidative damage products in tissues (Hermes-Lima 2

et al., 2015). Thus, the down-regulation of GST activity also can be expected due to a less 3

oxidant condition and/or reduced levels of oxidative damage products, as showed for liver 4

TBARS. 5

For Brazilian flounder aquaculture, negative implications can result from nitrite-induced 6

oxidative stress. This condition is known to be responsible for a variety of adverse health 7

effects and diseases in living organism (Livingstone, 2003; Valavanidis et al., 2006), and 8

also can lead to an impairment of final product due to higher oxidative degradation (Zhang 9

et al., 2016). Additionally, the increased energy cost related to stress, can result in tertiary 10

stress responses as reduced growth and reproductive performances (Barton, 2002). Hence, 11

concentrations of nitrite at 5.72 mg NO2-N.L-1

or above should be avoided in production 12

systems, even in the case of short-term exposure. Therefore, the constant monitoring of 13

nitrite levels becomes critical to ensure an adequate management of water quality, 14

especially in intensive production systems. As further research endeavours, we also suggest 15

that investigations on the use of strategies to improve the antioxidant system, such as the 16

inclusion of dietary antioxidants, should be conducted for it can potentially minimize nitrite 17

toxicity in this species. 18

In conclusion, the results of the present study revealed that short-term (10 days) exposure to 19

nitrite concentrations from 5.72 mg NO2-N.L-1

compromises the overall antioxidant system 20

and induced oxidative stress, without inducing histopathological alterations in juvenile 21

Brazilian flounder. Enhanced non-protein and protein thiols were also demonstrated as an 22

adaptive antioxidant response against nitrite toxicity. In addition, the recovery period was 23

sufficient for a complete (treatment 5.72 mg NO2-N.L-1

) or partial resumption (treatment 24

10.43 and 15.27 mg NO2-N.L-1

) of physiological condition depending on the nitrite 25

concentrations at which the fish were exposed. 26

27

Acknowledgements 28

29

This study was supported by research funds from Conselho Nacional de Pesquisa e 30

Desenvolvimento Científico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de 31

Nível Superior (CAPES). The authors are grateful to CNPq for research fellowships 32

99

provided for L. Garcia, L. Sampaio, L. Romano and J. Monserrat, and to CAPES for a PhD 1

scholarship provided for MSc. Lucas C. Maltez. We are grateful to Dr. L.A. Barbas for his 2

valuable contributions during the writing of this manuscript. 3

4

References 5

6

Amado, L.L., Longaray Garcia, M., Ramos, P.B., Freitas, R.F., Zafalon, B., Ribas Ferreira, 7

J.L., Yunes, J.S., Monserrat, J.M., 2009. A method to measure total antioxidant 8

capacity against peroxyl radicals in aquatic organisms: Application to evaluate 9

microcystins toxicity. Sci. Total Environ. 407, 2115–2123. 10

Barton, B. A., 2002. Stress in fishes: a diversity of responses with particular reference to 11

changes in circulating corticosteroids. Integr. Comp. Biol. 42, 517-525. 12

Bendschneider, K., Robinson, R.J. 1952. A new spectrophotometric method for the 13

determination of nitrite in sea water. J. Mar. Res. 11, 87-96. 14

Bernet, D., Schmidt, H., Meier, W., Burkhardt‐Holm, P., & Wahli, T., 1999. 15

Histopathology in fish: proposal for a protocol to assess aquatic pollution. J. Fish 16

Dis. 22, 25-34. 17

Bianchini, A., Robaldo, R.B., Sampaio, L.A., 2010. Cultivo do linguado (Paralichthys 18

orbignyanus). In: Baldisserotto, B., Gomes, L.C. (Eds.), Espécies nativas para 19

piscicultura no Brasil, 2ª edição. Editora UFSM, Santa Maria, Brasil, pp. 559-587. 20

Bianchini, A., Wasielesky Jr., W., Miranda Filho, K.C., 1996. Toxicity of nitrogenous 21

compounds to juveniles of flatfish Paralichthys orbignyanus. Bull. Environ. 22

Contam. Toxicol. 56, 453-459. 23

Blanchette, B., Feng, X., Singh, B.R., 2007. Marine glutathione S-transferases. Mar. 24

Biotechnol. 9, 513-542. 25

Bonga, S.W., 1997. The stress response in fish. Physiol. Rev. 77, 591-625. 26

Ciji, A., Sahu, N.P., Pal, A.K., Akhtar, M.S., Tincy, V., Mishal, P., Das, P., 2014. Effect of 27

dietary vitamin E and nitrite exposure on growth and metabolic variables of Labeo 28

rohita juveniles. Natl. Acad. Sci. Lett. 37, 123-129. 29

Ciji, A., Sahu, N.P., Pal, A.K., Dasgupta, S., Akhtar, M.S., 2012. Alterations in serum 30

electrolytes, antioxidative enzymes and haematological parameters of Labeo rohita 31

100

on short-term exposure to sublethal dose of nitrite. Fish Physiol. Biochem. 38, 1

1355-1365. 2

Colt, J., 2002. List of spreadsheets prepared as a complement. In: Wedemeyer GA (ed) Fish 3

hatchery management, 2nd ed. American Fish Society Publication. 4

http://www.fisheries.org/afs/hatchery.html. Accessed 10 April 2013 5

Da Rocha, A.M., de Freitas, D.S., Burns, M., Vieira, J.P., de La Torre, F.R., Monserrat, 6

J.M., 2009. Seasonal and organ variations in antioxidant capacity, detoxifying 7

competence and oxidative damage in freshwater and estuarine fishes from Southern 8

Brazil. Comp. Biochem. Phys. C. 150, 512-520. 9

Dickinson, D.A., Forman, H. J., 2002. Cellular glutathione and thiols metabolism. Biochem. 10

Pharmacol. 64, 1019-1026. 11

Doblander, C., Lackner, R., 1996. Metabolism and detoxification of nitrite by trout 12

hepatocytes. Biochim. Biophys. Acta 1289, 270-274. 13

Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E., 2005. Standard methods for the 14

examination of water and wastewater, 21st edition. American Public Health 15

Association, Washington. 16

Feng, M., Qu, R., Li, Y., Wei, Z., Wang, Z., 2014. Biochemical biomarkers in liver and gill 17

tissues of freshwater fish Carassius auratus following in vivo exposure to 18

hexabromobenzene. Environ. Toxicol. 29, 1460-1470. 19

Figueiredo, J.L., Menezes, N.A., 2000. Manual de peixes marinhos do sudeste do Brasil. 20

São Paulo, Museu de Zoologia / USP. 21

Fırat, Ö., Cogun, H.Y., Yüzereroğlu, T.A., Gök, G., Fırat, Ö., Kargin, F., Kötemen, Y., 22

2011. A comparative study on the effects of a pesticide (cypermethrin) and two 23

metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. 24

Fish Physiol. Biochem. 37, 657-666. 25

Gisbert, E., Rodrıguez, A., Cardona, L., Huertas, M., Gallardo, M.A., Sarasquete, C., Sala-26

Rabanal, M., Ibarz, A., Sánchez, J., Castello-Orvay, F., 2004. Recovery of Siberian 27

sturgeon yearlings after an acute exposure to environmental nitrite: changes in the 28

plasmatic ionic balance, Na+–K

+ ATPase activity, and gill histology. Aquaculture 29

239, 141-154. 30

Grosell, M., Jensen, F.B., 2000. Uptake and effects of nitrite in the marine teleost fish 31

Platichthys flesus. Aquat. Toxicol. 50, 97-107. 32

101

Habig, W.H., Jakoby, W.B., 1981. Assays for differentiation of glutathione S-transferases. 1

Methods Enzymol. 77, 398–405. 2

Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-transferases: the first 3

enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139. 4

Halliwell, B., Gutteridge, J.M., 2015. Free Radicals in Biology and Medicine. Oxford 5

University Press, USA. 6

Halver, J.E., Hardy, R.W., 2002. Fish Nutrition. Academic press, United States of America. 7

Hayes, J.D., Pulford, D.J., 1995. The glutathione-S-transferase supergene family: 8

regulation of GST and the contribution of the lisoenzymes to cancer 9

chemoprotection and drug resistance part II. Crit. Rev. Biochem. Mol. 30, 521-600. 10

Hermes-Lima, M., Moreira, D.C., Rivera-Ingraham, G.A., Giraud-Billoud, M., Genaro-11

Mattos, T.C., Campos, É.G., 2015. Preparation for oxidative stress under hypoxia 12

and metabolic depression: revisiting the proposal two decades later. Free Radic. 13

Biol. Med. 89, 1122-1143. 14

Huertas, M., Gisbert, E., Rodrıguez, A., Cardona, L., Williot, P., Castello-Orvay, F., 2002. 15

Acute exposure of Siberian sturgeon (Acipenser baeri, Brandt) yearlings to nitrite: 16

median-lethal concentration (LC 50) determination, haematological changes and 17

nitrite accumulation in selected tissues. Aquat. Toxicol. 57, 257-266. 18

Husak, V.V., Mosiichuk, N.M., Storey, J.M., Storey, K.B., Lushchak, V. I., 2017. Acute 19

exposure to the penconazole-containing fungicide Topas partially augments 20

antioxidant potential in goldfish tissues. Comp. Biochem. Phys. C. 193, 1-8. 21

Jakob, U., Reichmann, D., 2013. Oxidative stress and redox regulation. Springer, 22

Dordrecht. 23

Jensen, F. B., 2003. Nitrite disrupts multiple physiological functions in aquatic animals. 24

Comp. Biochem. Physiol. A. 135, 9-24. 25

Jensen, F.B., Andersen, N.A., Heisler, N., 1987. Effects of nitrite exposure on blood 26

respiratory properties, acid-base and electrolyte regulation in the carp (Cyprinus 27

carpio). J Comp. Physiol. B. 157, 533-541. 28

Jensen, F.B., Gerber, L., Hansen, M.N., Madsen, S.S., 2015. Metabolic fates and effects of 29

nitrite in brown trout under normoxic and hypoxic conditions: blood and tissue 30

nitrite metabolism and interactions with branchial NOS, Na+/K

+-ATPase and hsp70 31

expression. J. Exp. Biol. 218, 2015-2022. 32

102

Jensen, F.B., Hansen, M.N., 2011. Differential uptake and metabolism of nitrite in 1

normoxic and hypoxic goldfish. Aquat. Toxicol. 101, 318-325. 2

Jia, R., Han, C., Lei, J.L., Liu, B.L., Huang, B., Huo, H.H., Yin, S.T., 2015. Effects of 3

nitrite exposure on haematological parameters, oxidative stress and apoptosis in 4

juvenile turbot (Scophthalmus maximus). Aquat. Toxicol. 169, 1-9. 5

Jia, R., Liu, B.L., Han, C., Huang, B., Lei, J.L., 2016. The physiological performance and 6

immune response of juvenile turbot (Scophthalmus maximus) to nitrite exposure. 7

Comp. Biochem. Phys. C. 181, 40-46. 8

Knudsen, P.K., Jensen, F.B., 1997. Recovery from nitrite-induced 9

methaemoglobinaemia and potassium balance disturbances in carp. Fish Physiol. 10

Biochem. 16, 1-10. 11

Kroupova, H., Machova, J., Svobodova, Z., 2005. Nitrite influence on fish: a review. Vet. 12

Med. 50, 461. 13

Kroupová, H.K., Valentová, O., Svobodová, Z., Šauer, P., Máchová, J., 2016. Toxic effects 14

of nitrite on freshwater organisms: a review. Rev. Aquacult. 0, 1-18. 15

Liu, X.J., Luo, Z., Xiong, B.X., Liu, X., Zhao, Y.H., Hu, G.F., Lv, G.J., 2010. Effect of 16

waterborne copper exposure on growth, hepatic enzymatic activities and histology 17

in Synechogobius hasta. Ecotox. Environ. Safe. 73, 1286-1291. 18

Livingstone, D.R., 2003. Oxidative stress in aquatic organisms in relation to pollution and 19

aquaculture. Ver. Med. Vet. 154, 427-430. 20

Lushchak, V.I., 2016. Contaminant-induced oxidative stress in fish: a mechanistic 21

approach. Fish Physiol. Biochem. 42, 711-747. 22

Martínez-Álvarez, R.M., Morales, A.E., Sanz, A., 2005. Antioxidant defenses in fish: biotic 23

and abiotic factors. Rev. Fish Biol. Fish. 15, 75-88. 24

Medeiros, R.S., Lopez, B.A., Sampaio, L.A., Romano, L.A., Rodrigues, R.V., 2016. 25

Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris. Aquac. Int. 26

24, 1-9. 27

Millner, R., Walsh, S.J., Diaz de Astarloa, J.M., 2005. Atlantic flatfish fisheries. In: 28

Gibson, R.N., Nash, R.D.M., Geffen, A.J., Van Der Veer, H.W. (Eds.), Flatfishes: 29

Biology and Exploitation. Blackwell Science Ltd, Oxford, pp. 240-271. 30

Mitton, F.M., Ferreira, J.L.R., Gonzalez, M., Miglioranza, K.S., Monserrat, J.M., 2016. 31

Antioxidant responses in soybean and alfalfa plants grown in DDTs contaminated 32

103

soils: Useful variables for selecting plants for soil phytoremediation? Pest. 1

Biochem. Physiol. 130, 17-21. 2

Moellering, D., McAndrew, J., Patel, R.P., Cornwell, T., Lincoln, T., Cao, X. Darley-3

Usmar, V.M., 1998. Nitric oxide-dependent induction of glutathione synthesis 4

through increased expression of γ-glutamylcysteine synthetase. Arch. Biochem. 5

Biophys. 358, 74-82. 6

Monserrat, J.M., Garcia, M.L., Ventura-Lima, J., Gonzalez, M., Ballesteros, M.L., 7

Miglioranza, K.S., Ame, M.V., Wunderlin, D.A., 2014. Antioxidant, phase II and III 8

responses induced by lipoic acid in the fish Jenynsia multidentata (Anablapidae) 9

and its influence on endolsulfan accumulation and toxicity. Pestic. Biochem. 10

Physiol. 108, 8-15. 11

Oakes, K.D., Kraak, V.D., 2003. Utility of the TBARS assay in detecting oxidative stress in 12

white sucker (Catostomus commersoni) populations. Aquat. Toxicol. 63, 447–463. 13

Oruc, E., 2011. Effects of diazinon on antioxidant defense system and lipid peroxidation in 14

the liver of Cyprinus carpio (L.). Environ. Toxicol. 26, 571-578 15

Park, J., Daniels, H.V., Cho, S.H., 2013. Nitrite toxicity and methemoglobin changes in 16

southern flounder, Paralichthys lethostigma, in brackish water. J. World Aquac. 17

Soc. 44, 726-734. 18

Peña, S., Peña, J.B., Ríos, C., Sancho, E., Fernández, C., Ferrando, M.D., 2000. Role of 19

glutathione in thiobencarb resistance in the European eel Anguilla anguilla. Ecotox. 20

Environ. Safe. 46, 51-56. 21

Roques, J.A., Schram, E., Spanings, T., Schaik, T., Abbink, W., Boerrigter, J., Vries, 22

P.,Vis, H., Flik, G., 2015. The impact of elevated water nitrite concentration on 23

physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 24

1822). Aquacult. Res. 46, 1384-1395. 25

Saleh, Y.S., Marie, M.A.S., 2016. Use of Arius thalassinus fish in a pollution 26

biomonitoring study, applying combined oxidative stress, hematology, biochemical 27

and histopathological biomarkers: A baseline field study. Mar. Pollut. Bull. 106, 28

308-322. 29

Saoud, P., Naamani, S., Ghanawi, J., Nasser, N., 2014. Effects of acute and chronic nitrite 30

exposure on rabbitfish Siganus rivulatus growth, hematological parameters, and gill 31

histology. J. Aquac. Res. Dev. 5, 263-271. 32

104

Sedlak, J., Lindsay, R.H., 1968. Estimation of total, protein-bound, and nonprotein 1

sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 25, 192–205. 2

Sevcikova, M., Modra, H., Blahova, J., Dobsikova, R., Plhalova, L., Zitka, O., Hynek, D., 3

Kizek, R., Skoric, M., Svobodova, Z., 2016. Biochemical, haematological and 4

oxidative stress responses of common carp (Cyprinus carpio L.) after sub-chronic 5

exposure to copper. Vet. Med. 61, 35-50. 6

Simonato, J.D., Mela, M., Doria, H.B., Guiloski, I.C., Randi, M.A., Carvalho, P.S., Meletti, 7

P.C., Assis, H.C.S., Bianchini, A., Martinez, C.B., 2016. Biomarkers of waterborne 8

copper exposure in the Neotropical fish Prochilodus lineatus. Aquat. Toxicol. 170, 9

31-41. 10

Sinhorin, V.D.G., Sinhorin, A.P., dos Santos Teixeira, J.M., Miléski, K.M.L., Hansen, P.C., 11

Moreira, P.S.A., Kawashita, N.H., Baviera, A.M., Loro, V.L., 2014. Effects of the 12

acute exposition to glyphosate-based herbicide on oxidative stress parameters and 13

antioxidant responses in a hybrid Amazon fish surubim (Pseudoplatystoma sp). 14

Ecotox. Environ. Safe. 106, 181-187. 15

Smith, R.C., Nunn, V., 1984. Prevention by 3-N-ribosyluric acid of the oxidation of bovine 16

hemoglobin by sodium nitrite. Arch. Biochem. Biophys. 232, 348-353. 17

Sun, H., Li, J., Tang, L., Yang, Z., 2012. Responses of crucian carp Carassius auratus to 18

long-term exposure to nitrite and low dissolved oxygen levels. Biochem. Syst. Ecol. 19

44, 224-232. 20

Sun, H., Wang, W., Li, J., Yang, Z., 2014b. Growth, oxidative stress responses, and gene 21

transcription of juvenile bighead carp (Hypophthalmichthys nobilis) under chronic-22

term exposure of ammonia. Environ. Toxicol. Chem. 33, 1726–1731. 23

Sun, S., Ge, X., Zhu, J., Xuan, F., Jiang, X., 2014a. Identification and mRNA expression of 24

antioxidant enzyme genes associated with the oxidative stress response in the 25

Wuchang bream (Megalobrama amblycephala Yih) in response to acute nitrite 26

exposure. Com. Biochem. Phys. C. 159, 69-77. 27

Tomasso, J.R., 2012. Environmental nitrite and aquaculture: a perspective. Aquacult. Int. 28

20, 1107-1116. 29

UNESCO, 1983. Chemical methods for use in marine environmental monitoring. Manual 30

and Guides 12, Intergovernamental Oceanographic Commissiony. Paris, France. 31

105

Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M., 2006. Molecular 1

biomarkers of oxidative stress in aquatic organisms in relation to toxic 2

environmental pollutants. Ecotox. Environ. Safe. 64, 178-189. 3

Velisek, J., Stara, A., Kolarova, J., Svobodova, Z., 2011. Biochemical, physiological and 4

morfological responses in common carp (Cyprinus carpio L.) after long-term 5

exposure to terbutryn in real environmental concentration. Pestic. Biochem. Physiol. 6

100, 305-313. 7

Wedemeyer, G., 2012. Physiology of Fish in Intensive Culture Systems. Springer Science 8

& Business Media. 9

Wuertz, S., Schulze, S.G.E., Eberhardt, U., Schulz, C., Schroeder, J.P., 2013. Acute and 10

chronic nitrite toxicity in juvenile pike-perch (Sander lucioperca) and its 11

compensation by chloride. Comp. Biochem. Phys. C. 157, 352-360. 12

Zachariasen, F., 2001. Intraspecific differences in nitrite tolerance of rainbow trout. The 13

role of gill and kidney. Thesis, Institute of Biology, University of Southern 14

Denmark, Odense. 15

Zhang, L., Feng, L., Jiang, W.D., Liu, Y., Jiang, J., Li, S.H., Tang, L., Kuang, S.Y., Zhou, 16

X.Q., 2016. The impaired flesh quality by iron deficiency and excess is associated 17

with increasing oxidative damage and decreasing antioxidant capacity in the muscle 18

of young grass carp (Ctenopharyngodon idellus). Aquacult. Nutr. 22, 191-201. 19

Zhou, T. T., Cao, J. M., Huang, Y. H., Wang, G. X., Zhao, H. X., Sun, Z. W., & Liu, Q. F. 20

2013. Effects of dietary glutathione on antioxidant capability and resistance to 21

nitrite exposure of GIFT Oreochromis niloticus. Freshw. Fish. 1. 22

Zivna, D., Plhalova, L., Praskova, E., Stepanova, S., Siroka, Z., Sevcikova, M., Blahova, J., 23

Bartoskova, M., Marsalek, P., Skoric, M., Svobodova, Z., 2013. Oxidative stress 24

parameters in fish after subchronic exposure to acetylsalicylic acid. 25

Neuroendocrinol. Lett. 34, 116-122. 26

27

28

29

30

31

32

106

Legends 1

2

Figure 1. Total protein content in gill, liver and muscle of juvenile Brazilian flounder. 3

Total protein content (mg g wet tissue-1

) in gill (A), liver (B) and muscle (C) of juvenile 4

Brazilian flounder Paralichthys orbignyanus exposed to nitrite for 1, 5 and 10 days and 5

after recovery (day 20). Data were expressed as means ± S.E.M (n=9). Different lowercase 6

letters indicate significant differences among treatments at the same day (p <0.05). 7

8

Figure 2. Total antioxidant capacity against peroxyl radicals in gill, liver and muscle 9

of juvenile Brazilian flounder.Total antioxidant capacity against peroxyl radicals (ACAP) 10

(relative area) in gill (A), liver (B) and muscle (C) of juvenile Brazilian flounder 11

Paralichthys orbignyanus exposed to nitrite for 1, 5 and 10 days and after recovery (day 12

20). Data were expressed as means ± S.E.M (n=9). Different lowercase letters indicate 13

significant differences among treatments at the same day (p <0.05). 14

15

Figure 3. Glutathione-S-transferase activity in gill, liver and muscle of juvenile 16

Brazilian flounder. Glutathione-S-transferase (GST) activity (nmol CNDB-GSH min-1

mg 17

wet tissue-1

) in gill (A), liver (B) and muscle (C) of juvenile Brazilian flounder 18

Paralichthys orbignyanus exposed to nitrite for 1, 5 and 10 days and after recovery (day 19

20). Data were expressed as means ± S.E.M (n=9). Different lowercase letters indicate 20

significant differences among treatments at the same day (p <0.05). 21

22

Figure 4. Content of non-protein thiols in gill, liver and muscle of juvenile Brazilian 23

flounder. Content of non-protein thiols (NPSH) (nmol SH mg wet tissue

-1) in gill (A), liver 24

(B) and muscle (C) of juvenile Brazilian flounder Paralichthys orbignyanus exposed to 25

nitrite for 1, 5 and 10 days and after recovery (day 20). Data were expressed as means ± 26

S.E.M (n=9). Different lowercase letters indicate significant differences among treatments 27

at the same day (p <0.05). 28

29

Figure 5. Content of protein thiols in gill, liver and muscle of juvenile Brazilian 30

flounder. Content of protein thiols (PSH) (nmol SH mg protein

-1) in gill (A), liver (B) and 31

muscle (C) of juvenile Brazilian flounder Paralichthys orbignyanus exposed to nitrite for 32

107

1, 5 and 10 days and after recovery (day 20). Data were expressed as means ± S.E.M (n=9). 1

Different lowercase letters indicate significant differences among treatments at the same 2

day (p <0.05). 3

4

Figure 6. Content of thiobarbituric acid reactive substances in gill, liver and muscle of 5

juvenile Brazilian flounder. Thiobarbituric acid reactive substances (TBARS) content 6

(nmol TMP mg wet tissue-1

) in gill (A), liver (B) and muscle (C) of juvenile Brazilian 7

flounder Paralichthys orbignyanus exposed to nitrite for 1, 5 and 10 days and after 8

recovery (day 20). Data were expressed as means ± S.E.M (n=9). Different lowercase 9

letters indicate significant differences among treatments at the same day (p <0.05). 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

108

Figure 1 1

Time (days)

Pro

tein

(m

g.g

wet

tissue

-1)

0

20

40

60

80

100

120

140

160

1 5 10 20

Exposure Recovery

aa

aa

aa

b

c

aa a a

aaa a

C

mg NO2-N.L-1

0.08 (control)5.72

10.4315.27

Pro

tein

(m

g.g

wet

tissue

-1)

0

20

40

60

80

100

120

140

160

aa

aa

a aa a

a

aa

a

a

b

a

b

B

Pro

tein

(m

g.g

wet

tissue

-1)

0

20

40

60

80

100

120

140

160

a

b

a a a a a a b

abb

a

a

ababb

A

2

109

Figure 2 1

AC

AP

(re

lative

are

a)

0

1

2

3

4

98

99

100

b

aa a

bab

ab

a a

aa a

a a

aa

A

AC

AP

(re

lative

are

a)

0

10

20

30

40

50

60

70

80

90

100

B

b b b

a

b

a a a

a aa

a

a a

b

a

Time (days)

AC

AP

(re

lative

are

a)

0

10

20

30

40

50

60

70

80

90

100

1 5 10 20

Exposure Recovery

b

b

b

a

a aa

a

a

a

aab

b

a

b

C

mg NO2-N.L-1

0.08 (control)5.72

10.4315.27 2

3

110

Figure 3 1

Time (days)

GS

T a

ctivity (

nm

ol C

ND

B-G

SH

min

-1 m

g w

et

tissu

e-1)

0.00

0.05

0.10

0.15

0.20

5.90

5.95

6.00

1 5 10 20

Exposure Recovery

a a aa

b bb

a a

ab

abb

b

aa

a

C

mg NO2-N.L-1

0.08 (control)5.72

10.4315.27

GS

T a

ctivity (

nm

ol C

ND

B-G

SH

min

-1 m

g w

et

tissu

e-1)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

GS

T a

ctivity (

nm

ol C

ND

B-G

SH

min

-1 m

g w

et

tissu

e-1)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

a a a a

aab

bcc

aa a

aa

aa a

A

aa

aa a

a

a a

a a

ab

b

a

a

b b

B

2

111

Figure 4 1

NP

SH

(nm

ol S

H.m

g w

et

tissue

-1)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1.10

1.15

1.20

a a

aa

aa

aa

b

a

a

b

ab

a

c bc

A

Time (days)

NP

SH

(nm

ol S

H.m

g w

et

tissue

-1)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

NP

SH

(nm

ol S

H.m

g w

et

tissue

-1)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

b b

ab

a

b

b

a a ab

a

ab

b

ab

a

c

bc

B

1 5 10 20

Exposure Recovery

a

a

a

a

a

a

a a

a

b

a

bb

a

bb

C

mg NO2-N.L-1

0.08 (control)5.72

10.4315.27 2

112

Figure 5 1

PS

H (

nm

ol S

H.m

g p

rote

in-1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

19.0

19.2

19.4

19.6

19.8

20.0

a

abab

b

a

b

b

b

a

a

aa

a

a

a

a

A

PS

H (

nm

ol S

H.m

g p

rote

in-1)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

a aa

a

a aa a

b

aab

a

a

bb

Time (days)

PS

H (

nm

ol S

H.m

g p

rote

in-1)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

B

15.27

1 5 10 20

Exposure Recovery

a a

a

a

c

c

b

a

ab

b

a

ab

c

a

b

c

C

mg NO2-N.L-1

0.08 (control)5.72

10.43

2

113

Figure 6 1

TB

AR

S (

nm

ol T

MP

mg

wet

tissue

-1)

0.0000

0.0300

0.0600

0.0900

0.1200

0.1500

0.1800

0.2100

0.2400

0.2700

0.3000

b

aa

a

b

a

ab

c

aa

a

a

a a

aa

A

TB

AR

S (

nm

ol T

MP

mg

we

t tissu

e-1)

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.2960

0.2980

0.3000

a a

a

a

a aa

a

ab

a

ab

b

b b

aa

B

Time (days)

TB

AR

S (

nm

ol T

MP

mg

we

t tissu

e-1)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.2990

0.2995

0.3000

1 5 10 20

Exposure Recovery

a

aa

a

aa

a

a

a

a aa

b

a

ab

b

C

mg NO2-N.L-1

0.08 (control)5.72

10.4315.27

2

114

5. CONCLUSÕES 1

2

- A exposição a concentrações partir de 0,12 mg NH3-N.L-1

e 5,72 mg NO2-N.L-1

3

por um período de 10 dias induzem diversas alterações fisiológicas e bioquímicas, de modo 4

tempo e concentração-dependentes, em juvenis de P. orbignyanus. 5

- Os efeitos decorrentes da exposição à amônia e nitrito em P. orbignyanus incluem 6

distúrbios metabólicos, osmorregulatórios, ácido-base, e na resposta imune, além da 7

indução ao estresse oxidativo e a ativação de respostas antioxidantes. 8

- A exposição a concentrações de até 0,57 mg NH3-N.L-1

e 15,27 mg NO2-N.L-1

por 9

um período de 10 dias não foi suficiente para ocasionar alterações histopatológicas no 10

cérebro, brânquia e fígado de P. orbignyanus. 11

- O período de recuperação de 10 dias foi capaz de reverter todas ou parte das 12

alterações nos parâmetros sanguíneos e de estresse oxidativo ocasionados nos juvenis de P. 13

orbignyanus, dependendo do composto e concentração que foram expostos. A recuperação 14

completa foi demonstrada apenas nos peixes expostos a 5,72 mg NO2-N.L-1

. 15

16

6. CONSIDERAÇÕES FINAIS E PERSPECTIVAS 17

18

- Com base nos resultados obtidos, concentrações de amônia e nitrito a partir de 19

0,12 mg NH3-N.L-1

e 5,72 mg NO2-N.L-1

, respectivamente, devem ser evitadas nos sistemas 20

de produção do linguado P. orbignyanus, uma vez que foram capazes de causar estresse nos 21

peixes, mesmo em curto prazo (1 a 10 dias). Vale ressaltar que esta é uma recomendação 22

para condições de cultivo semelhantes as do presente estudo e não deve ser generalizada, 23

uma vez que a toxicidade destes compostos pode ser influenciada por diversos fatores 24

bióticos e abióticos. No presente estudo, mesmo as concentrações mais baixas testadas de 25

ambos os compostos induziram alterações na homeostase dos peixes. Portanto, recomenda-26

se que futuros trabalhos sejam realizados avaliando os efeitos da exposição a concentrações 27

inferiores a 0,12 mg NH3-N.L-1

e 5,72 mg NO2-N.L-1

, bem como a interação com outras 28

115

variáveis, o que poderá permitir o estabelecimento mais preciso de quais os níveis seguros 1

de amônia e nitrito na água para espécie em diferentes condições. 2

- O monitoramento não só da qualidade de água, mas também do estado fisiológico 3

dos peixes deve ser uma prática rotineira nos sistemas de produção aquícola, permitindo a 4

detecção de condições estressantes para os animais e a tomada de medidas necessárias de 5

maneira precoce. 6

- Os parâmetros sanguíneos e de estresse oxidativo aplicados nesta tese 7

demonstraram ser excelentes biomarcadores para detectar os efeitos deletérios ocasionados 8

pela exposição de juvenis de linguado a níveis subletais de amônia e nitrito. 9

- Uma vez que o estresse oxidativo foi um dos efeitos tóxicos da amônia e nitrito 10

para os juvenis de linguado, a busca por alternativas que melhorem o sistema antioxidante, 11

como a inclusão de antioxidantes na dieta, pode potencialmente minimizar ou evitar este 12

efeito. Portanto, recomenda-se que esta hipótese seja testada em futuros estudos com a 13

espécie. 14

- Um período de 10 dias de recuperação em água livre ou com concentrações 15

mínimas de nitrito é recomendado para restabelecer as condições fisiológicas normais de 16

juvenis de linguado que tenham sido expostos a concentrações até 5,72 mg NO2-N.L-1

. Para 17

peixes expostos a concentrações de amônia e nitrito a partir de 0,12 mg NH3-N.L-1

e 10,43 18

mg NO2-N.L-1

, respectivamente, sugere-se que um período de recuperação mais longo seja 19

necessário, o qual deverá ser estabelecido a partir de novos estudos. 20

21