pesquisa - aula 25-02 (e_i)

48
CONDUTOR substância ou corpo que oferece uma resistência relativamente pequena à passagem de uma corrente elétrica, do calor, etc. (por exemplo, um m etal) DISPOSITIVO SEMICONDUTOR é um componente eletrônico que explora as propriedades eletrônicas de materiais semicondutores , principalmente silício , germânio , e arseneto de gálio , assim como semicondutores orgânicos . Dispositivos semicondutores tem substituído dispisitivos termiônicos (tubos de vácuo) na maioria das aplicações. Eles usam condução no estado sólido em oposição aoestado gasoso ou emissão termiônica no alto vácuo. Dispositivos semicondutores são manufaturados tanto em dispositivos únicos disccretos como em circuitos integrados (CIs), os quais consistem de um número variando de uns poucos (tão baixo quanto dois) a bilhões de dispositivos fabricados e interconectados sobre um substrato semicondutor único. A principal razão porque materiais semicondutores são tão úteis é que o comportamento de um semicondutor pode ser facilmente manipulado pela adição de impurezas, o que é conhecido como "dopagem (a adição de um "dopante "). A condutividade de semicondutores pode ser controlada pela introdução de um campo elétrico, pela exposição à luz , e também pressão e calor; então, semicondutores podem produzir excelentes sensores. A condução de corrente em um semicondutor ocorre via elétrons móveis ou "livres" e buracos electrónicos , coletivamente conhecidos como portadores de carga . O QUE É SUPERCONDUTIVIDADE? Supercondutividade é um fenômeno observado em diversos metais e materiais cerâmicos. Quando esses materiais são resfriados a temperaturas que vão do zero absoluto (0 graus Kelvin, -273°C) à temperatura do nitrogênio líquido (77 K, -196°C), não apresentam resistência elétrica. A temperatura na qual a resistência elétrica é igual a zero é chamada detemperatura crítica (T c ) e varia de acordo com o material. As temperaturas críticas são atingidas por meio

Upload: janaina-diehl

Post on 06-Dec-2014

163 views

Category:

Documents


45 download

TRANSCRIPT

Page 1: Pesquisa - Aula 25-02 (E_I)

CONDUTOR

substância ou corpo que oferece uma resistência relativamente pequena à passagem de uma corrente elétrica, do calor, etc. (por exemplo, um metal)

DISPOSITIVO SEMICONDUTOR

é um componente eletrônico que explora as propriedades eletrônicas de materiais semicondutores, principalmente silício, germânio, e arseneto de gálio, assim como semicondutores orgânicos. Dispositivos semicondutores tem substituído dispisitivos termiônicos (tubos de vácuo) na maioria das aplicações. Eles usam condução no estado sólido em oposição aoestado gasoso ou emissão termiônica no alto vácuo.

Dispositivos semicondutores são manufaturados tanto em dispositivos únicos disccretos como em circuitos integrados (CIs), os quais consistem de um número variando de uns poucos (tão baixo quanto dois) a bilhões de dispositivos fabricados e interconectados sobre um substrato semicondutor único.

A principal razão porque materiais semicondutores são tão úteis é que o comportamento de um semicondutor pode ser facilmente manipulado pela adição de impurezas, o que é conhecido como "dopagem (a adição de um "dopante"). A condutividade de semicondutores pode ser controlada pela introdução de um campo elétrico, pela exposição à luz, e também pressão e calor; então, semicondutores podem produzir excelentes sensores. A condução de corrente em um semicondutor ocorre via elétrons móveis ou "livres" e buracos electrónicos, coletivamente conhecidos como portadores de carga.

O QUE É SUPERCONDUTIVIDADE?

Supercondutividade é um fenômeno observado em diversos metais e materiais cerâmicos. Quando esses materiais são resfriados a temperaturas que vão do zero absoluto (0 graus Kelvin, -273°C) à temperatura do nitrogênio líquido (77 K, -196°C), não apresentam resistência elétrica. A

temperatura na qual a resistência elétrica é igual a zero é chamada detemperatura crítica (Tc) e varia de acordo com o material. As temperaturas críticas são atingidas por meio do resfriamento do material com hélio ou nitrogênio líquidos. A tabela a seguir mostra as temperaturas críticas de diversos supercondutores:

Material Tipo Tc(K)

Zinco metal 0,88

Alumínio metal 1,19

Estanho metal 3,72

Page 2: Pesquisa - Aula 25-02 (E_I)

Mercúrio metal 4,15

YBa2Cu3O7 cerâmica 90

TlBaCaCuO cerâmica 125

Como esses materiais não possuem resistência elétrica, o que significa que os elétrons podem se deslocar livremente através deles, eles podem transmitir grandes quantidades de corrente elétrica por longos períodos sem perder energia na forma de calor. Foi comprovado que malhas de fios supercondutores podem transmitir correntes elétricas por centenas de anos sem nenhuma perda considerável. Essa propriedade tem implicações para atransmissão de energia elétrica, se as linhas de transmissão puderem ser feitas de cerâmicas supercondutoras, e para dispositivos de armazenamento de energia elétrica.

 

 A demonstração clássica do efeito Meissner. Um disco supercondutivo na parte inferior, resfriado por nitrogênio líquido, causa a levitação do magneto acima. O magneto flutuante induz uma corrente e, portanto, um campo magnético no supercondutor, e os dois campos magnéticos se repelem para fazer levitar o magneto.

Outra propriedade de um supercondutor é que, assim que ocorre a transição do estado normal para o estado supercondutor, os campos magnéticos externos não podem penetrá-lo. Esse efeito é chamado de efeito Meissnere tem implicações para a fabricação de trens de alta velocidade com levitação magnética (veja Como funcionam os trens maglev para detalhes). Isso também tem implicações quanto à fabricação de pequenos e poderosos magnetos supercondutores para a geração de imagens por ressonância magnética.

Como os elétrons se deslocam através dos supercondutores sem encontrar resistência? Vamos ver isso mais atentamente.

A estrutura atômica da maioria dos metais é reticulada, parecida com uma tela de janelas contra insetos, na qual cada intersecção dos fios perpendiculares representa um átomo. Nos metais, os elétrons são fracamente ligados, de modo que essas partículas podem se mover livremente

Page 3: Pesquisa - Aula 25-02 (E_I)

dentro da rede: é por isso que os metais são ótimos condutores de calor e eletricidade. À medida que os elétrons se movem através de um metal no estado normal, colidem com os átomos e perdem energia na forma de calor. Em um supercondutor, os elétrons se deslocam em pares e se movem rapidamente entre os átomos, com uma menor perda de energia.

Como um elétron de carga negativa se move através do espaço entre duas fileiras de átomos com carga positiva (como os fios na tela contra insetos), ele é puxado para o interior dos átomos. Essa distorção atrai um segundo elétron para se mover atrás dele. Esse segundo elétron encontra menos resistência, quase como um automóvel que segue um caminhão na estrada encontra menos resistência do ar. Os dois elétrons desenvolvem uma fraca atração, se deslocam juntos em um par e encontram uma menor resistência total. Em um supercondutor, os pares de elétrons estão se formando, quebrando e formando-se de novo constantemente, mas o efeito final é que os elétrons fluem com pouca ou nenhuma resistência. A baixa temperatura facilita o emparelhamento dos elétrons (leia Um guia do professor para a supercondutividade para estudantes do colegial - em inglês - para detalhes).

Uma propriedade final dos supercondutores é que, quando dois deles são unidos por uma fina camada isolante, é mais fácil para os pares de elétrons passarem sem resistência de um supercondutor para outro (efeito Josephson DC). Esse efeito tem implicações para comutadores elétricos super rápidos que podem ser usados para fazer pequenos computadores de alta velocidade.

O futuro da pesquisa da supercondutividade está em encontrar materiais que possam se tornar supercondutores à temperatura ambiente. Assim que isso acontecer, todo o mundo da eletrônica, da energia elétrica e dos transportes passará por uma revolução.

DIODO SEMICONDUTOR

Page 5: Pesquisa - Aula 25-02 (E_I)

Aparência real do diodo, no mesmo alinhamento que o seu símbolo. O terminal mais próximo da barra fina é o cátodo.

Comportamento em circuitos

O diodo é um componente elétrico que permite que a corrente atravesse-o num sentidocom muito mais facilidade do que no outro. O tipo mais comum de diodo é o diodo semicondutor, no entanto, existem outras tecnologias de diodo. Diodos semicondutores são simbolizados em diagramas esquemáticos como na figura abaixo. O termo "diodo" é habitualmente reservado a dispositivos para sinais baixos, com correntes iguais ou menores a 1A[3].

Quando colocado em um simples circuito bateria-lâmpada, o diodo permite ou impede corrente através da lâmpada, dependendo da polaridade da tensão aplicada, como nas duas figuras abaixo.

 

Na imagem da esquerda o diodo está diretamente polarizado, há corrente e a lâmpada fica acesa. Na imagem da direita o diodo está inversamente polarizado, não há corrente, logo a lâmpada fica apagada.

O diodo funciona como uma chave de acionamento automático (fechada quando o diodo está directamente polarizado e aberta quando o diodo está inversamente polarizado). A diferença mais substancial é que, quando diretamente polarizado, há uma queda de tensão no diodo muito maior do que aquela que geralmente se observa em chaves mecânicas (no caso do diodo de silício, 0,7 V). Assim, uma fonte de tensão de 10 V, polarizando diretamente um diodo em série com uma resistência, faz com que haja uma queda de tensão de 9,3 V na resistência, pois 0,7 V ficam no diodo. Na polarização inversa, acontece o seguinte: o diodo faz papel de uma chave aberta, já que não circula corrente, não haverá tensão no resistor, a tensão fica toda retida no diodo, ou seja, nos terminais do diodo há uma tensão de 10 V.

A principal função de um diodo semicondutor, em circuitos retificadores de corrente, é transformar corrente alternada em corrente contínua pulsante. Como no semiciclo negativo de uma corrente alternada o diodo faz a função de uma chave aberta, não passa corrente elétrica no circuito (considerando o “sentido convencional de corrente”, do “positivo” para o “negativo”). A principal função de um diodo semicondutor, em circuitos de corrente contínua, é controlar o fluxo da corrente, permitindo que a corrente elétrica circule apenas em um sentido.

A dopagem do diodo semicondutor e os cristais P e N

A dopagem no diodo[4] é feita pela introdução de elementos dentro de cristais tetravalentes, normalmente feitos de silício e germânio. Dopando esses cristais com elementos trivalentes, obtêm-

Page 6: Pesquisa - Aula 25-02 (E_I)

se átomos com sete elétrons na camada de valência, que necessitam de mais um elétron para a neutralização (cristal P). Para a formação do cristal P, utiliza-se principalmente o elemento índio. Dopando os cristais tetravalentes com elementos pentavalentes, obtêm-se átomos neutralizados (com oito elétrons na camada de valência) e umelétron excedente (cristal N).

Para a formação do cristal N, utiliza-se principalmente o elemento Fósforo. Quanto maior a intensidade da dopagem, maior acondutibilidade dos cristais, pois suas estruturas apresentam um número maior de portadores livres (lacunas e elétrons livres) e poucas impurezas que impedem a condução da corrente elétrica. Outro fator que influencia na condução desses materiais é atemperatura. Quanto maior é a temperatura de um diodo, maior a condutibilidade, pelo fato de que a energia térmica ter a capacidade de quebrar algumas ligações covalentes da estrutura, acarretando no aparecimento de mais portadores livres para a condução de corrente elétrica.

Após dopadas, cada face dos dois tipos de cristais (P e N) tem uma determinada característica diferente da oposta, gerando regiões de condução do cristal, uma com excesso de elétrons, outra com falta destes (lacunas). Entre ambas, há uma região de equilíbrio por recombinação de cargas positivas e negativas, chamada de região de depleção (a qual possui uma barreira de potencial).

Polarização do diodo

Gráfico mostra a curva característica do comportamento do diodo em sua polarização direta e inversa

A polarização do diodo é dependente da polarização da fonte geradora. A polarização é direta quando o pólo positivo da fonte geradora entra em contato com o lado do cristal P(chamado de anodo) e o pólo negativo da fonte geradora entra em contato com o lado do cristal N(chamado de cátodo).

Assim, se a tensão da fonte geradora for maior que a tensão interna do diodo, os portadores livres se repelirão por causa da polaridade da fonte geradora e conseguirão ultrapassar a junção P-N, movimentando-os e permitindo a passagem de corrente elétrica. A polarização é indireta quando o inverso ocorre. Assim, ocorrerá uma atração das lacunas do anodo(cristal P) pela polarização negativa da fonte geradora e uma atração dos elétrons livres do cátodo (cristal N) pela polarização positiva da fonte geradora, sem existir um fluxo de portadores livres na junção P-N, ocasionando no bloqueio da corrente elétrica.

Page 7: Pesquisa - Aula 25-02 (E_I)

Pelo fato de que os diodos fabricados não são ideais(contém impurezas), a condução de corrente elétrica no diodo (polarização direta) sofre uma resistência menor que 1 ohm, que é quase desprezível. O bloqueio de corrente elétrica no diodo (polarização inversa) não é total devido novamente pela presença de impurezas, tendo uma pequena corrente que é conduzida na ordem de microampéres, chamada de corrente de fuga, que também é quase desprezível.

Testes com o diodo

Os diodos, assim como qualquer componente eletrônico, operam em determinadas correntes elétricas que são especificadas em seu invólucro ou são dadas pelo fabricante em folhetos técnicos. Além da corrente, a voltagem inversa (quando o diodo está polarizado inversamente) também é um fator que deve ser analisado para a montagem de um circuito e que tem suas especificicações fornecidas pelo fabricante. Se ele for alimentado com uma corrente ou tensão inversa superior a que ele suporta, o diodo pode ser danificado, ficando em curto ou em aberto. Utilizando de um ohmímetro ou um multímetro com teste de diodo, pode-se verificar se ele está com defeito.

Colocando-se as pontas de prova desses aparelhos nas extremidades do diodo (cátodo e ânodo), verifica-se que existe condução quando se coloca a ponteira positiva no ânodo e a negativa no cátodo, além de indicar isolação quando ocorre o inverso. Assim o díodo está em perfeitas condições de operação e com isso é possível a localização do cátodo e do ânodo, porém se os aparelhos de medição indicarem condução dos dois caminhos do díodo, ele está defeituoso e em curto. Se os aparelhos de medição indicarem isolação nos dois caminhos, ele também está defeituoso e em aberto.

Usos

O fenômeno da condutividade em um só sentido é aproveitado como um chaveamento da corrente elétrica para a retificação de sinais senoidais[5], portanto, este é o efeito diodo semicondutor tão usado na eletrônica, pois permite que a corrente flua entre seus terminais apenas numa direção. Esta propriedade é utilizada em grande número de circuitos eletrônicos e nos retificadores.

Os retificadores são circuitos elétricos que convertem a tensão CA (AC) em tensão CC (DC). CA vem de Corrente alternada, significa que os elétrons circulam em dois sentidos, CC (DC), Corrente contínua, isto é circula num só sentido.

A certa altura, o potencial U , formado a partir da junção n e p não deixa os eletrons e lacunas movimentarem-se, este processo dá-se devida assimetria de cargas existente.

Tipos de diodos semicondutores

Os diodos são projetados para assumir diferentes características: diodos retificadores são capazes de conduzir altas correntes elétricas em baixa frequência, diodos de sinal caracterizam-se por retificar sinais de alta frequência, diodos de chaveamento são indicados na condução de altas

correntes em circuitos chaveados. Dependendo das características dos materiais e dopagem dos semicondutores há uma gama de dispositivos eletrônicos variantes do diodo:

DiodoDiodozener

DiodoSchottky

Diodotúnel

Page 9: Pesquisa - Aula 25-02 (E_I)

O diodo emissor de luz também é conhecido pela sigla em inglês LED (Light EmittingDiode). Sua funcionalidade básica é a emissão de luz em locais e instrumentos onde se torna mais conveniente a sua utilização no lugar de uma lâmpada. Especialmente utilizado em produtos de microeletrônica como sinalizador de avisos, também pode ser encontrado em tamanho maior, como em alguns modelos de semáforos. Também é muito utilizado em painéis de led, cortinas de led e pistas de led.

Características

O LED é um diodo semicondutor (junção P-N) que quando é energizado emite luz visível por isso LED (Diodo Emissor de Luz). A luz não é monocromática (como em um laser), mas consiste de uma banda espectral relativamente estreita e é produzida pelas interações energéticas do electrão (português europeu)/elétron (português brasileiro). O processo de emissão de luz pela aplicação de uma fonte elétrica de energia é chamadoeletroluminescência.

Em qualquer junção P-N polarizada diretamente, dentro da estrutura, próximo à junção, ocorrem recombinações de lacunas e elétrons. Essa recombinação exige que a energia possuída elétrons, que até então era livre, seja liberada, o que ocorre na forma de calor oufótons de luz .

No silício e no germânio, que são os elementos básicos dos diodos e transistores, entre outros componentes electrônicos, a maior parte da energia é liberada na forma de calor, sendo insignificante a luz emitida (devido a opacidade do material), e os componentes que trabalham com maior capacidade de corrente chegam a precisar de irradiadores de calor (dissipadores) para ajudar na manutenção dessa temperatura em um patamar tolerável.

Já em outros materiais, como o arsenieto de gálio (GaAs) ou o fosfeto de gálio (GaP), o número de fotons de luz emitido é suficiente para constituir fontes de luz bastante eficientes.

A forma simplificada de uma junção P-N de um led demonstra seu processo de eletroluminescência. O material dopante de uma área do semicondutor contém átomos com um elétron a menos na banda de valência em relação ao material semicondutor. Na ligação, osíons desse material dopante (íons "aceitadores") removem elétrons de valência do semicondutor, deixando "lacunas" (ou buracos), portanto, o semicondutor torna-se do tipo P. Na outra área do semicondutor, o material dopante contém átomos com um elétron a mais do que o semicondutor puro em sua faixa de valência. Portanto, na ligação esse elétron fica disponível sob a forma de elétron livre, formando o semicondutor do tipo N.

Os semicondutores também podem ser do tipo compensados, isto é, possuem ambos os dopantes (P e N). Neste caso, o dopante em maior concentração determinará a que tipo pertence o semicondutor. Por exemplo, se existem mais dopantes que levariam ao P do que do tipo N, o semicondutor será do tipo P. Isso implicará, contudo, na redução da Mobilidade dos Portadores.

A Mobilidade dos Portadores é a facilidade com que cargas n e p (elétrons e buracos) atravessam a estrutura cristalina do material sem colidir com a vibração da estrutura. Quanto maior a mobilidade dos portadores, menor será a perda de energia, portanto mais baixa será a resistividade.

Na região de contato das áreas, elétrons e lacunas se recombinam, criando uma fina camada praticamente isenta de portadores de carga, a chamada barreira de potencial, onde temos apenas os íons "doadores" da região N e os íons "aceitadores" da região P, que por não apresentarem portadores de carga "isolam" as demais lacunas do material P dos outros elétrons livres do material N.

Um elétron livre ou uma lacuna só pode atravessar a barreira de potencial mediante a aplicação de energia externa (polarização direta da junção). Aqui é preciso ressaltar um fato físico do semicondutor: nesses materiais, os elétrons só podem assumir determinados níveis de energia

Page 10: Pesquisa - Aula 25-02 (E_I)

(níveis discretos), sendo as bandas de valência e de condução as de maiores níveis energéticos para os elétrons ocuparem.

A região compreendida entre o topo da de valência e a parte inferior da de condução é a chamada "banda proibida". Se o material semicondutor for puro, não terá elétrons nessa banda (daí ser chamada "proibida"). A recombinação entre elétrons e lacunas, que ocorre depois de vencida a barreira de potencial, pode acontecer na banda de valência ou na proibida. A possibilidade dessa recombinação ocorrer na banda proibida se deve à criação de estados eletrônicos de energia nessa área pela introdução de outras impurezas no material.

Como a recombinação ocorre mais facilmente no nível de energia mais próximo da banda de condução, pode-se escolher adequadamente as impurezas para a confecção dos LEDs, de modo a exibirem bandas adequadas para a emissão da cor de luz desejada (comprimento de onda específico).

Funcionamento

A luz emitida não é monocromática, mas a banda colorida é relativamente estreita. A cor, portanto, dependente do cristal e da impureza de dopagem com que o componente é fabricado. O led que utiliza o arsenieto de gálio emite radiaçõesinfravermelhas. Dopando-se com fósforo, a emissão pode ser vermelha ou amarela, de acordo com a concentração. Utilizando-se fosfeto de gálio com dopagem de nitrogênio, a luz emitida pode ser verde ou amarela. Hoje em dia, com o uso de outros materiais, consegue-se fabricar leds que emitem luz azul, violeta e até ultravioleta. Existem também os leds brancos, mas esses são geralmente leds emissores de cor azul, revestidos com uma camada de fósforo do mesmo tipo usado nas lâmpadas fluorescentes, que absorve a luz azul e emite a luz branca. Com o barateamento do preço, seu alto rendimento e sua grande durabilidade, esses leds tornam-se ótimos substitutos para as lâmpadas comuns, e devem substituí-las a médio ou longo prazo. Existem também os leds brancos chamados RGB (mais caros), e que são formados por três "chips", um vermelho (R de red), um verde (G de green) e um azul (B de blue). Uma variação dos leds RGB são leds com um microcontrolador integrado, o que permite que se obtenha um verdadeiro show de luzes utilizando apenas um led.

Encontra-se o aspecto físico de alguns leds e o seu símbolo elétrico.

Page 11: Pesquisa - Aula 25-02 (E_I)

Em geral, os leds operam com nível de tensão de 1,6 a 3,3V, sendo compatíveis com os circuitos de estado sólido. É interessante notar que a tensão é dependente do comprimento da onda emitida. Assim, os leds infravermelhos geralmente funcionam com menos de 1,5V, os vermelhos com 1,7V, os amarelos com 1,7V ou 2.0V, os verdes entre 2.0V e 3.0V, enquanto os leds azuis, violeta e ultravioleta geralmente precisam de mais de 3V. A potência necessária está na faixa típica de 10 a 150 mW, com um tempo de vida útil de 100.000 ou mais horas.

Semáforo de LED com contador regressivo, na cidade de Poá, São Paulo, Brasil.

Como o led é um dispositivo de junção P-N, sua característica de polarização direta é semelhante à de um diodo semicondutor.

Page 12: Pesquisa - Aula 25-02 (E_I)

Sendo polarizado, a maioria dos fabricantes adota um "código" de identificação para a determinação externa dos terminais A (anodo) e K (catodo) dos leds.

Nos leds redondos, duas codificações são comuns: identifica-se o terminal K como sendo aquele junto a um pequeno chanfro na lateral da base circular do seu invólucro ("corpo"), ou por ser o terminal mais curto dos dois. Existem fabricantes que adotam simultaneamente as duas formas de identificação.

Nos leds retangulares, alguns fabricantes marcam o terminal K com um pequeno "alargamento" do terminal junto à base do componente, ou então deixam esse terminal mais curto.

Mas, pode acontecer do componente não trazer qualquer referência externa de identificação dos terminais. Nesse caso, se o invólucro for semi-transparente, pode-se identificar o catodo (K) como sendo o terminal que contém o eletrodo interno mais largo do que o eletrodo do outro terminal (anodo). Além de mais largo, às vezes o catodo é mais baixo do que o anodo.

Os diodos emissores de luz são empregados também na construção dos displays alfa-numéricos.

Há também leds bi-colores, que são constituídos por duas junções de materiais diferentes em um mesmo invólucro, de modo que uma inversão na polarização muda a cor da luz emitida de verde para vermelho, e vice-versa. Existem ainda leds bicolores com três terminais, sendo um para acionar a junção dopada com material para produzir luz verde, outro para acionar a junção dopada com material para gerar a luz vermelha, e o terceiro comum às duas junções. O terminal comum pode corresponder à interligação dos anodos das junções (leds bicolores em anodo comum) ou dos seus catodos (leds bi-colores em catodo comum).

Embora normalmente seja tratado por led bicolor (vermelho+verde), esse tipo de led é na realidade um "tricolor", já que além das duas cores independentes, cada qual gerada em uma junção, essas duas junções podem ser simultaneamente polarizadas, resultando na emissão de luz alaranjada.

Geralmente, os leds são utilizados em substituição às lâmpadas de sinalização ou lâmpadas pilotos nos painéis dos instrumentos e aparelhos diversos. Para fixação nesses painéis, é comum o uso de suportes plásticos com rosca.

Como o diodo, o LED não pode receber tensão diretamente entre seus terminais, uma vez que a corrente deve ser limitada para que a junção não seja danificada. Assim, o uso de um resistor limitador em série com o Led é comum nos circuitos que o utilizam. Para calcular o valor do resistor usa-se a seguinte fórmula: R = (Vfonte-VLED)/ILED, onde Vfonte é a tensão disponível, VLED é a tensão correta para o LED em questão e ILED é a corrente que ele pode suportar com segurança.

Tipicamente, os LEDs grandes (de aproximadamente 5 mm de diâmetro, quando redondos) trabalham com correntes da ordem de 12 a 30 mA e os pequenos (com aproximadamente 3 mm de diâmetro) operam com a metade desse valor.

Assim:

Adotamos I1 = 15 mA e I2 = 8 mA, Vfonte = 12 V, VLED = 2 V:

R1 = (12 - 2)/0,015 = 10/0,015 = 680*

R2 = (12 - 2)/0,008 = 10/0,008 = 1K2*

Aproximamos os resultados para os valores comerciais mais próximos.

Os LEDs não suportam tensão reversa (Vr) de valor significativo, podendo-se danificá-los com apenas 5V de tensão nesse sentido. Por isso, quando alimentado por tensão C.A., o LED costuma ser

Page 13: Pesquisa - Aula 25-02 (E_I)

acompanhado de um diodo retificador em antiparalelo (polaridade invertida em relação ao LED), com a finalidade de conduzir os semi-ciclos nos quais ele - o LED - fica no corte, limitando essa tensão reversa em torno de 0,7V (tensão direta máxima do diodo), um valor suficientemente baixo para que sua junção não se danifique. Pode-se adotar também uma ligação em série entre o diodo de proteção e o LED.

GERMÂNIO

O germânio é um elemento químico de símbolo Ge , número atômico 32 (32prótons e 32 elétrons) com massa atómica 72,6 u. À temperatura ambiente, o germânio encontra-se no estado sólido. É um semi-metal pertencente ao grupo 14 (IVA) da Classificação Periódica dos Elementos.

Descoberto em 1886 pelo químico alemão Clemens Winkler quando analisava um minério de Freiberg, da Saxônia, o germânio teve, no entanto sua existência prevista 15 anos antes por Mendeleiev, que o chamou aca-silício. As aplicações do germânio estão limitadas ao seu alto custo e em muitos casos estuda-se a sua substituição por materiais mais econômicos. Sua aplicação principal é comosemicondutor em eletrônica, produção de fibras ópticas e equipamentos de visão noturna.

TRANSÍSTOR

Transistores com diferentes encapsulamentos. À esquerda um transistor de sinal em encapsulamento TO-92. À direita um transistor de alta potência em encapsulamento metálico TO-3.

O transístor (português europeu) ou transistor (português brasileiro) é um componente eletrônicoque começou a popularizar-se na década de 1950, tendo sido o principal responsável pela revolução da eletrônica na década de 1960. São utilizados principalmente comoamplificadores e interruptores de sinais elétricos. O termo provém do inglês transfer resistor(resistor/resistência de transferência), como era conhecido pelos seus inventores.[1]

O processo de transferência de resistência, no caso de um circuito analógico, significa que aimpedância característica do componente varia para cima ou para baixo da polarização pré-estabelecida. Graças a esta função, a corrente elétrica que passa entre coletor e emissor do transistor varia dentro de determinados parâmetros pré-estabelecidos pelo projetista docircuito eletrônico. Esta variação é feita através da variação de corrente num dos terminais chamados base, o que, consequentemente, ocasiona o processo de amplificação de sinal.

Entende-se por “amplificar” o procedimento de tornar um sinal elétrico mais fraco num mais forte. Um sinal elétrico de baixa intensidade, como os sinais gerados por um microfone, é injetado num circuito eletrônico (transistorizado por exemplo), cuja função principal é transformar este sinal fraco gerado pelo microfone em sinais elétricos com as mesmas características, mas com potênciasuficiente para excitar os alto-falantes. A este processo todo dá-se o nome de ganho de sinal.

Page 14: Pesquisa - Aula 25-02 (E_I)

Invenção

O transístor de silício e germânio foi inventado nos Laboratórios da Bell Telephone por Bardeen e Brattain em 1947 e, inicialmente, demonstrado em 23 de Dezembro de 1948, por John Bardeen, Walter Houser Brattain e William Bradford Shockley, que foram laureados com o Nobel de Física em 1956. Ironicamente, eles pretendiam fabricar um transistor de efeito de campo (FET) idealizado por Julius Edgar Lilienfeld antes de 1925, mas acabaram por descobrir uma amplificação da corrente no ponto de contato do transistor. Isto evoluiu posteriormente para converter-se no transistor de junção bipolar (BJT). O objetivo do projeto era criar um dispositivo compacto e barato para substituir as válvulas termoiônicas usadas nos sistemas telefônicos da época.

Os transistores bipolares passaram, então, a ser incorporados a diversas aplicações, tais como aparelhos auditivos, seguidos rapidamente por rádios transistorizados. Mas a indústria norte-americana não adotou imediatamente o transistor nos equipamentos eletrônicos de consumo, preferindo continuar a usar as válvulas termoiônicas, cuja tecnologia era amplamente dominada. Foi por meio de produtos japoneses, notadamente os rádios portáteis fabricados pela Sony, que o transistor passou a ser adotado em escala mundial. Não houve muitas mudanças até então.

Nessa época, o MOSFET [2]  (Metal Oxide Silicon Field Effect Transistor – Transistor de Efeito de Campo formado por Metal, Óxido e Silício) ficou em segundo plano, quase esquecido. Problemas de interface inviabilizavam a construção dos MOSFETs. Contudo, em 1959, Atalla e Kahng, da Bell Labs, fabricaram e conseguiram a operação de um transistor MOS. Nessa época, os transistores MOS eram tidos como curiosidade, devido ao desempenho bastante inferior aos bipolares.

A grande vantagem dos transistores em relação às válvulas foi demonstrada em 1958, quando Jack Kilby, da Texas Instruments, desenvolveu o primeiro circuito integrado, consistindo de um transistor, três resistores e um capacitor, implementando um osciladorsimples. A partir daí, via-se a possibilidade de criação de circuitos mais complexos, utilizando integração de componentes. Isto marcou uma transição na história dos transistores, que deixaram de ser vistos como substitutos das válvulas e passaram a ser encarados como dispositivos que possibilitam a criação de circuitos complexos, integrados.

Em 1960, devido a sua estrutura mais simples, o MOS passou a ser encarado como um dispositivo viável para circuitos digitais integrados. Nessa época, havia muitos problemas com estados de impurezas, o que manteve o uso do MOS restrito até o fim da década de 60. Entre 1964 e 1969, identificou-se o Sódio Na como o principal causador dos problemas de estado de superfície e começaram a surgir soluções para tais problemas.

No início da tecnologia MOS, os transistores PMOS foram mais utilizados, apesar de o conceito de Complementary MOS (CMOS) já ter sido introduzido por Weimer. O problema ainda era a dificuldade de eliminação de estados de superfície nos transistores NMOS.

Em 1970, a Intel anunciava a primeira DRAM, fabricada com tecnologia PMOS. Em 1971, a mesma empresa lançava o primeiro microprocessador do mundo, o 4004, baseado em tecnologia PMOS. Ele tinha sido projetado para ser usado em calculadoras. Ainda em 1971, resolviam-se os problemas de estado de superfície e emergia a tecnologia NMOS, que permitia maior velocidade e maior poder de integração.

O domínio da tecnologia MOS dura até o final dos anos 70. Nessa época, o NMOS passou a ser um problema, pois com o aumento da densidade dos CIs, a tecnologia demonstrou-se insuficiente, pois surgem grandes problemas com consumo de potência (que é alta nesse tipo de tecnologia). Com isso, a tecnologia CMOS começava a ganhar espaço.

Page 15: Pesquisa - Aula 25-02 (E_I)

A partir da década de 80, o uso de CMOS foi intensificado, levando a tecnologia a ser usada em 75% de toda a fabricação de circuitos, por volta do ano 2000.

Alguns números

O primeiro processador de 8 bits (Intel 8008) usava tecnologia PMOS e tinha frequência de 0,2 MHz. Ano de fabricação: abril/1972 – 3500 transistores com 10 um ou 10000 nm, com uma tensão de trabalho de 5 V;

10 anos depois, a Intel lançou o 80286, com frequências de 6, 10 e 12 MHz, fabricado com tecnologia CMOS – 134.000 transistores 1,5 mícron ou 1500 nm, com uma tensão de trabalho de 5 V;

O Pentium 4, lançado em janeiro de 2002, trabalha com frequências de 1300 a 4000 MHz, com 55 milhões de transistores CMOS 130 nm. A série de chips Radeon 2000, por exemplo, atinge os 500 milhões de transistores, chegando à casa dos 40 nm.

A Placa de vídeo da AMD Radeon HD 6870, lançada em outubro de 2010, trabalha com frequências de 900Mhz na GPU, 4200Mhz de frequência de Memória GDDR5 interface 256Bits, atinge os 1,7 Bilhões de transistores, com processo de fabricação de 40 nm e um Core de 255 mm2.

Importância

O transistor é considerado por muitos uma das maiores descobertas ou invenções da história moderna, tendo tornado possível a revolução dos computadores e equipamentos eletrônicos. A chave da importância do transistor na sociedade moderna é sua possibilidade de ser produzido em enormes quantidades usando técnicas simples, resultando preços irrisórios.

É conveniente salientar que é praticamente impossível serem encontrados circuitos integrados que não possuam, internamente, centenas, milhares ou mesmo milhões de transistores[3], juntamente com outros componentes como resistências e condensadores. Por exemplo, o microprocessador Cell do console Playstation 3 tem aproximadamente 234 milhões de transistores, usando uma arquitetura de fabricação de 45 nanômetros, ou seja, a porta de controle de cada transistor tem apenas 45 milionésimos de um milímetro.

Seu baixo custo permitiu que se transformasse num componente quase universal para tarefas não-mecânicas. Visto que um dispositivo comum, como um refrigerador, usaria um dispositivo mecânico para o controle, hoje é frequente e muito mais barato usar ummicroprocessador contendo alguns milhões de transistores e um programa de computador apropriado para realizar a mesma tarefa. Os transistores, hoje em dia, têm substituído quase todos os dispositivos eletromecânicos, a maioria dos sistemas de controle, e aparecem em grandes quantidades em tudo que envolva eletrônica, desde os computadores aos carros.

Seu custo tem sido crucial no crescente movimento para digitalizar toda a informação. Com os computadores transistorizados a oferecer a habilidade de encontrar e ordenar rapidamente informações digitais, mais e mais esforços foram postos em tornar toda a informação digital. Hoje, quase todos os meios na sociedade moderna são fornecidos em formato digital, convertidos e apresentados por computadores. Formas analógicas comuns de informação, tais como a televisão ou os jornais, gastam a maioria do seu tempo com informação digital, sendo convertida no formato tradicional apenas numa pequena fração de tempo.

Fabricação

Page 16: Pesquisa - Aula 25-02 (E_I)

Símbolos dos transistores bipolares

Os materiais utilizados na fabricação do transistor são principalmente o Silício (Si), o Germânio (Ge), o Gálio (Ga) e alguns óxidos. Na natureza, o silício é um material isolante elétrico, devido à conformação das ligações eletrônicas do seu átomo, gerando uma rede eletrônica altamente estável. Atualmente, o transistor de germânio é menos usado, tendo sido substituído pelo de silício.

O silício é purificado e passa por um processo que forma uma estrutura cristalina em seus átomos. O material é cortado em finos discos, que a seguir vão para um processo chamado de dopagem, onde são introduzidas quantidades rigorosamente controladas de materiais selecionados (conhecidos comoimpurezas) que transformam a estrutura eletrônica, introduzindo-se entre as ligações dos átomos de silício. O Silício realiza ligações covalentes de quatro elétrons. Quando adicionamos uma impureza com 3 elétrons na última camada, faltará um elétron na ligação covalente, formando os buracos e caracterizando a pastilha como pastilha P.

Quando adicionamos uma impureza com 5 elétrons na última camada, vai sobrar um elétron na ligação covalente com o silício. Esses elétrons livres têm pouca interação com seu átomo, então qualquer energia fornecida o faz sair, sendo assim um elétron livre (assim se forma a pastilha N, que tem esse nome por ter maior número deelétrons livres). A pastilha P tem menos elétrons livres e mais "buracos" e a Pastilha N tem mais elétrons livres que buracos. Não podemos dizer que a pastilha P é positiva nem que a pastilha N é negativa, porque a soma total de elétrons é igual à soma total de prótons. Quando unimos a pastilha P e a pastilha N, os elétrons livres em excesso na pastilha N migram para a pastilha P e os buracos da pastilha P migram para a pastilha N. Deste modo a pastilha P fica negativa e a pastilha N fica positiva. Isto é o diodo.

O transistor é montado justapondo-se uma camada P, uma N e outra P (unindo-se dois diodos), criando-se um transistor do tipo PNP. O transistor do tipo NPN é obtido de modo similar. A camada do centro é denominada base, e as outras duas são o emissor e ocoletor. No símbolo do componente, o emissor é indicado por uma seta, que aponta para dentro do transistor se o componente for PNP, ou para fora, se for NPN.

Cientistas portugueses do Centro de Investigação de Materiais (Cenimat) da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, conseguiram fabricar pela primeira vez transistores com papel.[4]. Essa equipe de investigadores foi liderada por Elvira Fortunato e Rodrigo Martins.

Funcionamento

Page 17: Pesquisa - Aula 25-02 (E_I)

Transístor moderno de alta potência

No transistor de junção bipolar ou TJB (BJT – Bipolar Junction Transistor na terminologia inglesa), o controle da corrente coletor-emissor é feito injetando corrente na base. O efeito transistor ocorre quando a junção coletor-base é polarizada reversamente e a junção base-emissor é polarizada diretamente. Uma pequena corrente de base é suficiente para estabelecer uma corrente entre os terminais de coletor-emissor. Esta corrente será tão maior quanto maior for a corrente de base, de acordo com o ganho. Isso permite que o transistor funcione como amplificador pois ao se injetar uma pequena corrente na base se obtém uma alta tensão de saida. No entanto o transistor de silício só permite seu funcionamento com uma tensão entre base e emissor acima de 0,7V e 0,3V para o germânio.

Características de um transistor

Símbolo do transístor em calçada à portuguesana Universidade de Aveiro

O fator de multiplicação da corrente na base (iB), mais conhecido por Beta do transistor ou por hFE, que é dado pela expressão iC = iB x β

iC: corrente de coletor

iB: corrente de base

: beta (ganho de corrente DC)β

Page 18: Pesquisa - Aula 25-02 (E_I)

Configurações básicas de um transistor:

Existem três configurações básicas (BC, CC e EC)[5], cada uma com suas vantagens e desvantagens.

Base comum (BC)

Baixa impedância(Z) de entrada.

Alta impedância(Z) de saída.

Não há defasagem entre o sinal de saída e o de entrada.

Amplificação de corrente igual a um.

Coletor comum (CC)

Alta impedância(Z) de entrada.

Baixa impedância(Z) de saída.

Não há defasagem entre o sinal de saída e o de entrada.

Amplificação de tensão igual a um.

Emissor comum (EC)

Média impedância(Z) de entrada.

Alta impedância(Z) de saída.

Defasagem entre o sinal de saída e o de entrada de 180°.

Pode amplificar tensão e corrente, até centenas de vezes.

Os transistores possuem diversas características. Seguem alguns exemplos dos parâmetros mais comuns que poderão ser consultadas nos datasheets dos fabricantes:

Tipo: é o nome do transistor.

Pol: polarização; negativa quer dizer NPN e positiva significa PNP.

VCEO: tensão entre coletor e emissor com a base aberta.

VCER: tensão entre coletor e emissor com resistor no emissor.

IC: corrente máxima do coletor.

PTOT: é a máxima potência que o transistor pode dissipar

hFE: ganho (beta).

Ft: frequência máxima.

Encapsulamento: a maneira como o fabricante encapsulou o transistor nos fornece a identificação dos terminais.

Existem também outros tipos de transistores, notadamente os de efeito de campo (transistores FET, de Field Effect Transistor); neste caso, o controle da corrente é feito por tensão aplicada à porta.

Page 19: Pesquisa - Aula 25-02 (E_I)

CIRCUITO INTEGRADO

A escala de integração miniaturizou os componentes eletrônicos de tal forma que os circuitos integrados possuem o equivalente a milhares de componentes eletrônicos em sua constituição internaDescr.: Microprocessador Intel 80486DX2 comencapsulamento removido.

Arquitetura interna de um microprocessador dedicado para processamento de imagens de ressonância magnética, a fotografia foi aumentada 600 vezes, sob luz ultravioleta para se enxergar os detalhes.

Em eletrônica, um circuito integrado (também conhecido como CI, microcomputador,microchip, chip de silício, chip ou chipe) é um circuito eletrônico miniaturizado (composto principalmente por dispositivos semicondutores), que tem sido produzido na superfície de um substrato fino de material semicondutor.

Os circuitos integrados são usados em quase todos os equipamentos eletrônicos usados hoje e revolucionaram o mundo da eletrônica.

Um circuito integrado híbrido é um circuito eletrônico miniaturizado constituído de dispositivos semicondutores individuais, bem como componentes passivos, ligados a um substrato ou placa de circuito.

Os circuitos integrados foram possíveis por descobertas experimentais que mostraram que os dispositivos semicondutores poderiam desempenhar as funções de tubos de vácuo, e desde meados

Page 20: Pesquisa - Aula 25-02 (E_I)

do século XX, pelos avanços da tecnologia na fabricação de dispositivos semicondutores. A integração de um grande número de pequenos transistores em um chip pequeno foi uma enorme melhoria sobre o manual de montagem de circuitos com componentes eletrônicos discretos. A capacidade do circuito integrado de produção em massa, a confiabilidade e a construção de bloco de abordagem para projeto de circuito assegurou a rápida adaptação de circuitos integrados padronizados no lugar de desenhos utilizando transístores pequenos.

Há duas principais vantagens de circuitos integrados sobre circuitos discretos: custo e desempenho. O custo é baixo porque os chips, com todos os seus componentes, são impressos como uma unidade por fotolitografia: um puro cristal de silício, chamada de substrato, que são colocados em uma câmara. Uma fina camada de dióxido de silício é depositada sobre o substrato, seguida por outra camada química, chamada de fotoresiste. Além disso, muito menos material é usado para construir um circuito como um circuitos integrados do que como um circuito discreto. O desempenho é alto, visto que os componentes alternam rapidamente e consomem pouca energia (em comparação com os seus homólogos discretos) porque os componentes são pequenos e estão próximos. A partir de 2006, as áreas de chips variam de poucos milímetros quadrados para cerca de 350 mm², com até 1 milhão de transístores por mm².

História

A ideia de um circuito integrado foi levantada por Geoffrey WA Dummer (1909-2002), um cientista que trabalhava para o Royal Radar Establishment (do Ministério da Defesa britânico). Dummer publicou a ideia em 7 de maio de 1952 no Symposium on Progress in Quality Electronic Components em Washington, D.C..[1] Ele deu muitas palestras públicas para propagar suas ideias.

O circuito integrado pode ser considerado como sendo inventado por Jack Kilby de Texas Instruments [2]  e Robert Noyce, da Fairchild Semiconductor,[3] trabalhando independentemente um do outro. Kilby registrou suas ideias iniciais sobre o circuito integrado em julho de 1958 e demonstrou com sucesso o primeiro circuito integrado em função em 12 de setembro de 1958[2] Em seu pedido de patente de 6 de fevereiro de 1959, Kilby descreveu o seu novo dispositivo como "a body of semiconductor material ... wherein all the components of the electronic circuit are completely integrated."[4]

Kilby ganhou em 2000 o Prêmio Nobel de Física por sua parte na invenção do circuito integrado.[5] Robert Noyce também veio com sua própria ideia de circuito integrado, meio ano depois de Kilby. O chip de Noyce tinha resolvido muitos problemas práticos que omicrochip, desenvolvido por Kilby, não tinha. O chip de Noyce, feito em Fairchild, era feito de silício, enquanto o chip de Kilby era feito de germânio.

Marcante evolução do circuito integrado remontam a 1949, quando o engenheiro alemão Werner Jacobi (Siemens AG) entregou umapatente que mostrou o arranjo de cinco transístores em um semicondutor.[6] A utilização comercial de seu patente não foi relatado.

A ideia de precursor da IC foi a criação de pequenos quadrados de cerâmica (pastilhas), cada um contendo um único componente miniaturizado. Esta ideia, que parecia muito promissora em 1957, foi proposta para o Exército dos Estados Unidos por Jack Kilby. No entanto, quando o projeto foi ganhando força, Kilby veio em 1958 com um design novo e revolucionário: o circuito integrado.

Escala de integração e nanotecnologia

Com os componentes de larga escala de integração, (do inglês: Large Scale Integration, LSI), nos anos oitenta, e a integração em muito larga escala, (Very-large-scale integration, VLSI), nos anos noventa, vieram os microprocessadores de alta velocidade de tecnologia MOS, que nada mais são que muitos circuitos integrados numa só mesa epitaxial.

Page 21: Pesquisa - Aula 25-02 (E_I)

Atualmente a eletrônica está entrando na era da nanotecnologia. Os componentes eletrônicos se

comportam de maneiras diferentes do que na eletrônica convencional e microeletrônica, nestes a passagem de corrente elétrica praticamente não altera o seu estado de funcionamento. Nos nanocomponentes, a alteração de seu estado em função da passagem de corrente deve ser controlada, pois existe uma sensibilidade maior às variações de temperatura, e principalmente à variações dimensionais. Estas causam alterações nas medidas físicas do componente de tal forma, que podem vir a danificá-la. Por isso a nanotecnologia é tão sensível sob o ponto de vista de estabilidade de temperatura e pressão.

Escala de integração de circuitos integrados

Abrev. Denominação

Complexidade (números de transístores)

Interpretação comum

Tanenbaum [7] Texas Instruments [8]

SSI Small Scale Integration 10 1–10 em baixo de 12

MSI Medium Scale Integration 100 10–100 12–99

LSI Large Scale Integration 1.000 100–100.000 100–999

VLSIVery Large Scale Integration

10.000–100.000a partir de 100.000

ab 1.000

ULSIUltra Large Scale Integration

100.000–1.000.000 — —

SLSISuper Large Scale Integration

1.000.000–10.000.000

— —

Fabricação

Dispositivo lógico programável da empresaAltera.

A importância da integração está no baixo custo e alto desempenho, além do tamanho reduzido dos circuitos aliado à alta confiabilidade e estabilidade de funcionamento. Uma vez que os componentes são formados ao invés de montados, a resistência mecânica destes permitiu montagens cada vez

Page 22: Pesquisa - Aula 25-02 (E_I)

mais robustas a choques e impactos mecânicos, permitindo a concepção de portabilidade dos dispositivos eletrônicos.

No circuito integrado completo ficam presentes os transístores, condutores de interligação, componentes de polarização, e as camadas e regiões isolantes ou condutoras obedecendo ao seu projeto de arquitetura.

No processo de formação do chip, é fundamental que todos os componentes sejam implantados nas regiões apropriadas da pastilha. É necessário que a isolação seja perfeita, quando for o caso. Isto é obtido por um processo chamado difusão, que se dá entre os componentes formados e as camadas com o material dopado com fósforo, e separadas por um material dopado com boro, e assim por diante.

Após sucessivas interconexões, por boro e fósforo, os componentes formados ainda são interconectados externamente por uma camada extremamente fina de alumínio, depositada sobre a superfície e isolada por uma camada de dióxido de silício.

Rotulagem

Dependendo do tamanho os circuitos integrados apresentam informações de identificação incluindo 4 seções comuns: o nome oulogotipo do fabricante, seu número, número do lote e/ou número serial e um código de 4 dígitos identificando a data da fabricação. A data de fabricação é comumente representada por 2 dígitos do ano, seguido por dois dígitos informando a semana. Exemplo do código 8341: O circuito integrado foi fabricado na semana 41 do ano de 1983, ou aproximadamente em outubro de 83.

Desde que os circuitos integrados foram criados, alguns designers de chips tem usado a superfície de silício para códigos, imagens e palavras não funcionais. Eles são algumas vezes referenciados como chip art, silicon art, silicon graffiti ou silicon doodling.

Outros desenvolvimentos

Na década de 80, foi criado o dispositivo lógico programável. Esses dispositivos contêm um circuito com função lógica e conectividade que podem ser programados pelo usuário, ao contrário de ser fixada diretamente pelo fabricante do CI. Isso permite que um único chippossa ser programado para implementar diferentes funções como portas lógicas, somadores e registradores. Os dispositivos atualmente nomeados Field Programmable Gate Arrays (Arranjo de Portas Programável em Campo) podem agora implementar dezenas ou milhares de circuitos LSI em paralelo e operar acima de 550 MHz.

As técnicas aperfeiçoadas pela indústria de circuitos integrados nas últimas três décadas têm sido usadas para criar máquinas microscópicas, conhecidos como sistemas microeletromecânicos (do inglês: microelectromechanical systems, MEMS, ver também:microtecnologia). Esses dispositivos são usados em uma variedade de aplicações comerciais e militares. Exemplo de aplicações comerciais incluem a tecnologia processamento digital de luz em videoprojetores, impressoras de jato de tinta e acelerômetros usados em airbags de automóveis.

Desde 1998, um grande número de chips de rádios tem sido criado usando CMOS possibilitando avanços tecnológicos como o telefone portátil DECT da Intel ou o chipset 802.11 da empresa Atheros.

As futuras criações tendem a seguir o paradigma dos processadores multinúcleo, já utilizados pelos processadores dual-core da Intel eAMD. A Intel recentemente apresentou um protótipo não comercial, que tem 80 microprocessadores. Cada núcleo é capaz de executar uma tarefa

Page 23: Pesquisa - Aula 25-02 (E_I)

independentemente dos outros. Isso foi em resposta do limite calor vs velocidade no uso de transístores existentes. Esse design traz um novo desafio a programação de chips. X10 é uma nova linguagem open-source criada para ajudar nesta tarefa.

CI 555

A Wikipédia possui o portal:Portal de eletrônica

NE555 fabricado pela Signetics eminvólucro DIP

O 555 é um circuito integrado (chip) utilizado em uma variedade de aplicações comotemporizador ou multivibrador. O CI foi projetado por Hans R. Camenzind em 1970 e comercializado em 1971 pela Signetics (mais tarde adquirida pela Philips). Os nomes comerciais eram SE555 (invólucro metálico) e NE555 (invólucro DIP), e foi apelidado de "The IC Time Machine"[1] ("A Máquina do Tempo num Chip"). Este componente continua em pleno uso, graças a sua simplicidade de uso, baixo preço e boa estabilidade. Ainda hoje aSamsung da Coreia fabrica acima de 1 bilhão de unidades por ano (2003).

O temporizador 555 é um dos mais populares e versáteis circuitos integrados já produzidos. É composto por 23 transistores, 2 diodos e 16 resistores num chip de silício em um encapsulamento duplo em linha (DIP) de 8 pinos. Da mesma família de temporizadores temos ainda o CI 556, composto de dois temporizadores 555 combinados em um encapsulamento DIP de 14 pinos. O CI 558 é um encapsulamento DIP de 16 pinos que combina quatro temporizadores 555. Também estão disponíveis versões de potência ultra baixa como o CI 7555, que utiliza um número menor de componentes externos e tem menor consumo de energia.

O 555 tem três modos de operação:

Modo monoestável: nesta configuração, o CI 555 funciona como um disparador. Suas aplicações incluem temporizadores, detector de pulso, chaves imunes a ruído, interruptores de toque, etc.

Modo astável: o CI 555 opera como um oscilador. Os usos incluem pisca-pisca de LED, geradores de pulso, relógios, geradores de tom, alarmes de segurança, etc.

Modo biestável: o CI 555 pode operar como um flip-flop, se o pino DIS não for conectado e se não for utilizado capacitor. As aplicações incluem interruptores imunes a ruído, etc.

Page 24: Pesquisa - Aula 25-02 (E_I)

Curiosidade: o nome "555" foi adotado em alusão ao fato de que existe uma rede interna (divisor de tensão) de três resistores de 5k (1K=1000) ohms que servem de referência de tensão para os comparadores do circuito integrado.

Uso

Diagrama esquemático do temporizador 555

Pino Nome Aplicação

1 GND Terra ou massa (ground).

2 TRIGGatilho (trigger) - Um valor de tensão baixo (< 1/3 Vcc) neste terminal activa o biestável interno e a saída.

3 OUT Durante um intervalo de tempo, a saída (out) permanece em +VCC.

4 RESETUm intervalo de temporização pode ser interrompido pela aplicação de um pulso de reset.

5 CVTensão de controle (control voltage) - Permite acesso ao divisor interno de tensão (2/3 VCC).

6 THRESLimiar (threshold) - Um valor de tensão alto (> 2/3 Vcc) neste terminal desactiva o biestável interno e a saída.

7 DISCHDescarga (discharge) - A sua função é descarregar o capacitor conectado a este terminal.

8 V+, VCC A tensão (voltage) positiva da fonte, que deve estar entre +5 e +15V.

Usando apenas um capacitor e um resistor, o intervalo de temporização, ou seja, o tempo durante o qual a saída permanece em nível baixo, pode ser ajustado de acordo com a necessidade de cada aplicação. Um exemplo de configuração é mostrado abaixo:

Page 25: Pesquisa - Aula 25-02 (E_I)

Exemplo esquemático CI 555

o intervalo de tempo t é dado por:

onde t é o tempo que leva para carregar o capacitor C a 63 % da tensão aplicada

Especificações

Estas especificações aplicam-se ao NE555. Outros temporizadores 555 podem ter parâmetros diferenciados dependendo do uso a que se destinam (uso militar, médico, etc).

Parâmetro Valor(es)

Tensão de alimentação (VCC) 4.5 até 15 V

Corrente de alimentação (VCC = +5 V) 3 até 6 mA

Corrente de alimentação (VCC = +15 V) 10 até 15 mA

Corrente de saída (máxima) 200 mA

Dissipação de potência 600 mW

Temperatura de Operação 0 até 70 °C

Variantes

Muitas variantes foram desenvolvidas por vários fabricantes. O 555 é também conhecido sob as seguintes siglas:

Fabricantes Modelo

ECG Philips ECG955M

Page 27: Pesquisa - Aula 25-02 (E_I)

O circuito integrado de um Intel 8742, um microcontrolador de 8 bits que inclui uma UCP operando em 12 MHz, 128 bytes de RAM, 2048 bytes de EPROM eentrada/saída num mesmo chip.

Um microcontrolador (também denominado MCU) é um computador-num-chip, contendo um processador, memória e periféricos de entrada/saída. É ummicroprocessador que pode ser programado para funções específicas, em contraste com outros microprocessadores de propósito geral (como os utilizados nos PCs). Eles são embarcados no interior de algum outro dispositivo (geralmente um produto comercializado) para que possam controlar as funções ou ações do produto. Um outro nome para o microcontrolador, portanto, é controlador embutido.

Os microcontroladores se diferenciam dos processadores, pois além dos componentes lógicos e aritméticos usuais de um microprocessador de uso geral, o microcontrolador integra elementos adicionais em sua estrutura interna, como memória de leitura e escrita para armazenamento de dados, memória somente de leitura para armazenamento de programas, EEPROM para armazenamento permanente de dados, dispositivos periféricos como conversores analógico/digitais (ADC), conversores digitais/analógicos (DAC) em alguns casos; e, interfaces de entrada e saída de dados.

Com freqüências de clock de poucos MHz (Megahertz) ou talvez menos, os microcontroladores operam a uma freqüência muito baixa se comparados com os microprocessadores atuais, no entanto são adequados para a maioria das aplicações usuais como por exemplo controlar uma máquina de lavar roupas ou uma esteira de chão de fábrica. O seu consumo em geral é relativamente pequeno, normalmente na casa dos miliwatts e possuem geralmente habilidade para entrar em modo de espera (Sleep ou Wait) aguardando por uma interrupção ou evento externo, como por exemplo o acionamento de uma tecla, ou um sinal que chega via uma interface de dados. O consumo destes microcontroladores em modo de espera pode chegar na casa dos nanowatts, tornando-os ideais para aplicações onde a exigência de baixo consumo de energia é um fator decisivo para o sucesso do projeto.

De forma oposta aos microprocessadores, onde se superdimensiona ao máximo tendo como limite o preço que o usuário deseja investir, a escolha do microcontrolador é feita pelo projetista do equipamento. É erro de projeto superdimensionar. Cada desperdicio será multiplicado pelo número de equipamentos fabricados (às vezes milhões). Por isso existem duas linhas de pesquisa paralelas mas opostas[carece de fontes]: uma criando microcontroladores mais capazes, para atender produtos de mais tecnologia como os novos celulares ou receptores de TV digital e outra para criar microcontroladores mais simples e baratos, para aplicações elementares (como um chaveiro que emite sons).

De forma diferente da programação para microprocessadores, que em geral contam com um sistema operacional e um BIOS, o programador ou projetista que desenvolve sistemas com microcontroladores tem que lidar com uma gama muito grande de desafios, fazendo muitas vezes todo o processo construtivo do aparelho: BIOS, firmware e circuitos.

Aplicações

Page 28: Pesquisa - Aula 25-02 (E_I)

Um microcontrolador PIC18F8720 num encapsulamento TQFP de 80 pinos.

Microcontroladores são geralmente utilizados em automação e controle de produtos e periféricos, como sistemas de controle de motores automotivos, controles remotos, máquinas de escritório e residenciais, brinquedos, sistemas de supervisão, etc. Por reduzir o tamanho, custo e consumo de energia, e se comparados à forma de utilização de microprocessadores convencionais, aliados a facilidade de desenho de aplicações, juntamente com o seu baixo custo, os microcontroladores são uma alternativa eficiente para controlar muitos processos e aplicações.

Cerca de 50% dos microcontroladores vendidos são controladores "simples", outros 20% são processadores de sinais digitais (DSPs) mais especializados. Os microcontroladores podem ser encontrados em praticamente todos os dispositivos eletrônicos digitais que nos cercam: teclado do computador, dentro do monitor, disco rígido, relógio de pulso, rádio relógio, máquinas de lavar, forno de micro-ondas, telefone, etc. Você está certamente cercado de dezenas deles agora. Certamente eles foram tão ou mais importantes para a revolução dos produtos eletrônicos que os computadores. Eles permitiram a evolução de equipamentos que há anos não evoluíam, como os motores a combustão, que agora com o novo controle eletrônico podem funcionar com sistema bi-combustível e poluindo menos e as máquinas fotográficas, que migraram de processos químico/mecânico a circuitos com microcontroladores+Sensores Digitais+Memória.

Microcontroladores comuns

AMCC

Até Maio de 2004, estes microcontroladores eram desenvolvidos e produzido pela IBM, cuja família 4xx foi vendida para a Applied Micro Circuits Corporation.

403 PowerPC CPU

PPC 403GCX

405 PowerPC CPU

PPC 405EP

PPC 405GP/CR

Page 29: Pesquisa - Aula 25-02 (E_I)

PPC 405GPr

PPC NPe405H/L

440 PowerPC Book-E CPU

PPC 440GP

PPC 440GX

PPC 440EP/EPx/GRx

PPC 440SP/SPe

Atmel

Atmel AT91 series (Arquitetura ARM THUMB)

AT90 series – AVR (Atmel Norway design)

ATMega series – AVR (Memória Flash de MegaBytes – Atmel Norway design)

ATTiny series – AVR (Tamanho e Consumo Reduzido – Atmel Norway design)

Atmel AT89 series Arquitetura (Intel 8051/MCS51)

MARC4

Cypress MicroSystems

CY8C2xxxx (PSoC)

Freescale Semiconductor

Até 2004, estes microcontroladores eram desenvolvidos e produzidos vendidos pela Motorola, cuja divisão de semicondutores foi sub-dividida para estabelecer a Freescale.

8-bit

68HC05 (CPU05)

68HC08 (CPU08)

68HC11 (CPU11)

16-bit

68HC12 (CPU12)

68HC16 (CPU16)

Freescale DSP56800 (DSPcontroller)

32-bit

Freescale 683XX (CPU32)

MPC500

Page 30: Pesquisa - Aula 25-02 (E_I)

MPC 860 (PowerQUICC)

MPC 8240/8250 (PowerQUICC II)

MPC 8540/8555/8560 (PowerQUICC III)

Fujitsu

F²MC Family (8/16 bit)

FR Family (32 bit)\ satanico atrasado (64 bit)

Holtek

HT8

Intel

8-bit

8XC42

MCS48 (8048)

MCS51 (8051)

8xC251 (8251)

16-bit

MCS96

MXS296

32-bit

i960

Microchip Technology

PIC de instruções de 12 bits

PIC de instruções de 14 bits

PIC16F628

PIC16F84

PIC16F877

PIC de instruções de 16 bits

PIC18F452

National Semiconductor

COP8

CR16

Page 31: Pesquisa - Aula 25-02 (E_I)

NXP - Antiga Philips Semiconductors

LPC2000

LPC900

LPC700

NEC

78K

Parallax, Inc.

BASIC Stamp

Renesas Tech. Corp.

(Renesas é um empreendimento da Hitachi e Mitsubishi.)

H8

STMicroelectronics

ST 62

ST 7

Silicon Laboratories

C8051Fxxx (Arquitetura 8051)

Texas Instruments

TMS370

MSP430

Western Design Center

8-bit

W65C02

16-bit

W65816

ZiLOG

Z80

Z86E02

Ligações externas

Base de dados do projeto do microcontrolador de PIC

Microcontroller projects and information

Page 32: Pesquisa - Aula 25-02 (E_I)

Blog de Programação embarcada em Microcontroladores

MICROPROCESSADOR

O microprocessador, popularmente chamado de processador, é um circuito integrado que realiza as funções de cálculo e tomada de decisão de um computador. Todos os computadorese equipamentos eletrônicos baseiam-se nele para executar suas funções, podemos dizer que o processador é o cérebro do computador por realizar todas estas funções, é tornar o computador inteligente.

Um microprocessador incorpora as funções de uma unidade central de computador (CPU) em um único circuito integrado, ou no máximo alguns circuitos integrados. É um dispositivo multifuncional programável que aceita dados digitais como entrada, processa de acordo com as instruções armazenadas em sua memória, e fornece resultados como saída. Microprocessadores operam com números e símbolos representados no sistema binário.

Arquitetura interna de um microprocessador dedicado para processamento de imagens de ressonância magnética, a fotografia foi aumentada 600 vezes, sob luz ultravioleta para se enxergar os detalhes

Vista inferior de um Athlon XP 1800+ núcleo Palomino, um microprocessador moderno.

O microprocessador moderno é um circuito integrado formado por uma camada chamada demesa epitaxial de silício, trabalhada de modo a formar um cristal de extrema pureza, laminada até uma

Page 33: Pesquisa - Aula 25-02 (E_I)

espessura mínima com grande precisão, depois cuidadosamente mascarada por um processo fotográfico e dopada pela exposição a altas temperaturas em fornos que contêm misturas gasosas de impurezas. Este processo é repetido tantas vezes quanto necessário à formação da microarquitetura do componente.

Responsável pela execução das instruções num sistema, o microprocessador, escolhido entre os disponíveis no mercado, determina, em certa medida a capacidade de processamento do computador e também o conjunto primário de instruções que ele compreende. O sistema operativo é construído sobre este conjunto.

O próprio microprocessador subdivide-se em várias unidades, trabalhando em altas freqüências. A ULA(Unidade Lógica Aritmética), unidade responsável pelos cálculos aritméticos e lógicos e os registradores são parte integrante do microprocessador na famíliax86, por exemplo.

Embora seja a essência do computador, o microprocessador diferente do microcontrolador, está longe de ser um computador completo. Para que possa interagir com o utilizador precisa de: memória, dispositivos de entrada/saída, um clock, controladores e conversores de sinais, entre outros. Cada um desses circuitos de apoio interage de modo peculiar com os programas e, dessa forma, ajuda a moldar o funcionamento do computador.

História

Intel 8008, um dos primeiros microprocessadores comerciais.

O primeiro microprocessador comercial foi inventado pela Intel em 1971 para atender uma empresa japonesa que precisava de um circuito integrado especial para as suas atividades.[1] A Intel projectou o 4004, que era um circuito integrado programável que trabalhava com registradores de 4 bits, 46 instruções, clock de 740Khz e possuía cerca de 2300 transistores. Percebendo a utilidade desse invento a Intel prosseguiu com o desenvolvimento de novos microprocessadores: 8008 (o primeiro de 8 bits) e a seguir o 8080e o microprocessador 8085. O 8080 foi um grande sucesso e tornou-se a base para os primeiros microcomputadores pessoais na década de 1970 graças ao sistema operacional CP/M . Da Intel saíram alguns funcionários que fundaram a Zilog, que viria a lançar o microprocessador Z80, com instruções compatíveis com o 8080 (embora muito mais poderoso que este) e também de grande sucesso. A Motorola possuía o 68000 e a MOS Technology o 6502. A Motorola ganhou destaque quando implantou o MC68000P12, de 12 MHz com arquitetura de 32 bits (embora seu Barramento fosse de 24 bits e seu Barramento de endereços de 16 bits), no Neo-Geo, um poderoso Arcade da SNK que posteriormente ganharia a versão AES (console casero) e CD (versão CD), todos eles com o mesmo hardware inicial. Todos os microprocessadores de 8 bits foram usados em muitos computadores pessoais (Sinclair, Apple Inc., TRS, Commodore, etc).

Em 1981 a IBM decidiu lançar-se no mercado de computadores pessoais e no seu IBM-PC utilizou um dos primeiros microprocessadores de 16 bits, o 8088 (derivado do seu irmão 8086 lançado em 1978) que viria a ser o avô dos computadores atuais. A Apple nos seus

Page 34: Pesquisa - Aula 25-02 (E_I)

computadores Macintosh utilizava os processadores da Motorola, a família 68000 (de 32 bits). Outros fabricantes também tinham os seus microprocessadores de 16 bits, a Zilog tinha o Z8000, a Texas Instruments o TMS9900, a National Semiconductor tinha o 16032,mas nenhum fabricante teve tanto sucesso como a Intel, que sucessivamente foi lançando melhoramentos na sua linha 80X86, tendo surgido assim (por ordem cronológica) o 8086, 8088, 80186, 80188, 80286, 80386, 80486,Pentium, Pentium Pro, Pentium MMX, Pentium II, Pentium III, Pentium IV, Pentium M, Pentium D, Pentium Dual Core, Core 2 Duo,Core 2 Quad, Core i3, Core i5 e Core i7. Para o IBM-AT foi utilizado o 80286, depois um grande salto com o 80386 que podia trabalhar com memória virtual e multitarefa, o 80486 com coprocessador matemático embutido e finalmente a linha Pentium, com pipeline de processamento.

Como grande concorrente da Intel, a AMD aparece inicialmente como fabricante de microprocessadores da linha x86 alternativa mas a partir de um certo momento deixou de correr atrás da Intel e partiu para o desenvolvimento de sua própria linha de microprocessadores: K6, Athlon, Duron, Turion, Sempron, Phenom. Paralelamente à disputa entre Intel e AMD, a IBM possuía a linha PowerPC utilizada principalmente pelos microcomputadores da Apple.

A evolução tecnológica envolvida é surpreendentemente grande, de microprocessadores que trabalhavam com clock de dezenas de kHz e que podiam processar alguns milhares de instruções por segundo, atingiu-se clocks na casa dos 7 GHz e poder de processamento de dezenas de bilhões de instruções por segundo. A complexidade também cresceu: de alguns milhares de transístores para centenas de milhões de transístores numa mesma pastilha.

O CPU tem como função principal unificar todo o sistema, controlar as funções realizadas por cada unidade funcional, e é também responsável pela execução de todos os programas do sistema, que deverão estar armazenados na memória principal.

Componentes

O processador é composto por alguns componentes, cada um tendo uma função específica no processamento dos programas.

Unidade lógica e aritmética

A Unidade lógica e aritmética (ULA) é a responsável por executar efetivamente as instruções dos programas, como instruções lógicas, matemáticas, desvio, etc.

Unidade de controle

A Unidade de controle (UC) é responsável pela tarefa de controle das ações a serem realizadas pelo computador, comandando todos os outros componentes.

Registradores

Os registradores são pequenas memórias velozes que armazenam comandos ou valores que são utilizados no controle e processamento de cada instrução. Os registradores mais importantes são:

Contador de Programa (PC) – Sinaliza para a próxima instrução a ser executada;

Registrador de Instrução (IR) – Registra a execução da instrução;

Memory management unit

A MMU (em inglês: Memory Management Unit) é um dispositivo de hardware que transforma endereços virtuais em endereços físicos e administra a memória principal do computador.

Page 35: Pesquisa - Aula 25-02 (E_I)

Unidade de ponto flutuante

Nos processadores atuais são implementadas unidades de cálculo de números reais. Tais unidades são mais complexas que ULAs e trabalham com operandos maiores, com tamanhos típicos variando entre 64 e 128 bits.

Frequência de operação

O relógio do sistema (Clock) é um circuito oscilador a cristal (efeito piezoelétrico) que tem a função de sincronizar e ditar a medida de tempo de transferência de dados no computador. Esta freqüência é medida em ciclos por segundo, ou Hertz. A capacidade de processamento do processador não está relacionada exclusivamente à frequência do relógio, mas também a outros fatores como: largura dos barramentos, quantidade de memória cache, arquitetura do processador, tecnologia de co-processamento, tecnologia de previsão de saltos (branch prediction), tecnologia de pipeline, conjunto de instruções, etc.

O aumento da frequência de operação nominal do processador é denominado overclocking.

Arquitetura

Existem duas principais arquiteturas usadas em processadores:

A arquitetura de Von Neumann. Esta arquitetura caracteriza-se por apresentar um barramento externo compartilhado entre dados e endereços. Embora apresente baixo custo, esta arquitetura apresenta desempenho limitado pelo gargalo do barramento.

A arquitetura de Harvard. Nesta arquitetura existem dois barramentos externos independentes (e normalmente também memórias independentes) para dados e endereços. Isto reduz de forma sensível o gargalo de barramento, que é uma das principais barreiras de desempenho, em detrimento do encarecimento do sistema como um todo.

Modelos de computação

Existem dois modelos de computação usados em processadores:

CISC (em inglês: Complex Instruction Set Computing, Computador com um Conjunto Complexo de Instruções), usada em processadores Intel e AMD; possui um grande conjunto de instruções (tipicamente centenas) que são armazenadas em uma pequena memória não-volátil interna ao processador. Cada posição desta memória contém as microinstruções, ou seja, os passos a serem realizados para a execução de cada instrução. Quanto mais complexa a instrução, mais microinstruções ela possuirá e mais tempo levará para ser executada. Ao conjunto de todas as microinstruções contidas no processador denominamosmicrocódigo. Esta técnica de computação baseada em microcódigo é denominada microprogramação.

RISC (em inglês: Reduced Instruction Set Computing, Computador com um Conjunto Reduzido de Instruções) usada em processadores PowerPC (da Apple, Motorola e IBM) e SPARC (SUN); possui um conjunto pequeno de instruções (tipicamente algumas dezenas) implementadas diretamente em hardware. Nesta técnica não é necessário realizar a leitura em uma memória e, por isso, a execução das instruções é muito rápida (normalmente um ciclo de clock por instrução). Por outro lado, as instruções são muito simples e para a realização de certas tarefas são necessárias mais instruções que no modelo RISC.

Exemplos de microprocessadores

Page 36: Pesquisa - Aula 25-02 (E_I)

Uma microcontroladora, um exemplo de microprocessador.

Uma GPU.

Microprocessadores — São utilizados noscomputadores pessoais, onde são chamadas deUnidade Central de Processamento (CPU),workstations e mainframes. Podem ser programados para executar as mais variadas tarefas.

Processadores Digitais de Sinal (DSP do inglêsDigital Signal Processor) — são microprocessadores especializados em processamento digital de sinal usados para processar sinais de áudio, vídeo, etc., quer em tempo real quer em off-line. Estão presentes, por exemplo, em aparelhos de CD, DVD e televisores digitais. Em geral, realizam sempre uma mesma tarefas simples.

Microcontroladores — Processadores relativamente flexíveis, de relativo baixo custo, que podem ser utilizados em projetos de pequeno tamanho. Podem trazer facilidades como conversores A/D embutidos, ou um conjunto de instruções próprias para comunicação digital através de algum protocolo específico.

GPU — (ou Unidade de Processamento Gráfico), é um microprocessador especializado em processar gráficos. São utilizadas em placas de vídeo para fazer computação gráfica.

Propósito geral e dedicado

Durante o processo de desenvolvimento do design de um processador, uma das características que se leva em conta é o uso que ele se destina. Processadores gráficos e controladoras por exemplo não tem o mesmo fim que um processador central. Processadores de propósito geral podem executar qualquer tipo de software, embora sua execução seja mais lenta que o mesmo sendo executado em um processador especializado. Processadores dedicados são fabricados para executarem tarefas específicas, como criptografia, processamento vetorial e gráfico, sendo nesse caso bem mais rápidos do que processadores de propósito geral em tarefas equivalentes. No caso do processamento

Page 37: Pesquisa - Aula 25-02 (E_I)

gráfico, existem as GPUs, que são microprocessadores geralmente com memória dedicada e especialmente desenvolvidos para cálculos gráficos. Nem sempre os processadores seguem definidamente esses dois modelos, sendo o motivo disso que muitos processadores modernos incorporam processadores especializados (co-processador), para cálculos de criptografia, processamento de vetores, etc.

Processadores multinucleares

Até poucos anos atrás usou-se microprocessadores para atividades domésticas ou de negócios com simples núcleo. Atualmente estão sendo utilizados microprocessadores de múltiplos núcleos para melhorar a capacidade de processamento. Espera-se que no futuro os Sistemas Operacionais domésticos sejam compilados para trabalhar com processadores de múltiplos núcleos corretamente, realizando assim inúmeras tarefas ao mesmo tempo (como já acontece com os supercomputadores).

Sistemas multiprocessados

Em muitos sistemas o uso de um só processador é insuficiente. A solução nesses casos é usar dois ou mais processadores em multi processamento, aumentando assim a quantidade de processadores disponíveis ao sistema operacional. Sistemas multiprocessados podem ser de basicamente dois tipos:

Multiprocessamento simétrico (SMP): os processadores compartilham a mesma memória, embora possam ter caches separadas. O sistema operacional deve estar preparado para trabalhar com coerência de caches e, principalmente, evitar condições de corrida na memória principal.

Acesso não uniforme à memória (NUMA): a cada processador é associado um banco de memória. Nesse caso, o sistema operacional trata cada banco separadamente, pois cada banco tem um custo de acesso diferente, dependendo de qual o processador a que está associado e onde está sendo executado o processo que tenta acessar a memória.

Capacidade de processamento

A capacidade de processamento de um microprocessador é de certa forma difícil de medir, uma vez que esse desempenho pode se referir a quantidade máxima teória de instruções que podem ser executadas por segundo, que tipos de instruções são essas, em Flops (instruções de ponto flutuante), podendo essa ser de precisão simples, dupla, quádrupla, dependendo do contexto, e em MIPS (milhões de instruções por segundo), sendo essas operações com números inteiros. Somente a capacidade máxima teórica de um microprocessador não define seu desempenho, somente dá uma noção da sua capacidade, uma vez que sua arquitetura, barramento com a memória entre outros também influenciam no seu desempenho final, sendo assim, sua capacidade de processamento é medida comparando a velocidade de execução de aplicativos reais, podendo assim, testar seu desempenho em atividades comuns.