notas de aulas resistencia1

34

Click here to load reader

Upload: mariana-chantal

Post on 22-Dec-2015

125 views

Category:

Documents


21 download

DESCRIPTION

Apostila aula resistência!

TRANSCRIPT

Page 1: Notas de Aulas Resistencia1

Centro Universitário de Belo Horizonte

NOTAS DE AULA

RESISTÊNCIA DOS MATERIAIS

DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLOGIA - DCET

ENGENHARIA DE ALIMENTOS

Prof. Sinthya Gonçalves Tavares

Page 2: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 1 – Introdução – Revisão de Estática e Vigas Prismáticas

________________________________________________________________________________ 1

1. INTRODUÇÃO – REVISÃO DE ESTÁTICA

1.1 – I NTRODUÇÃO

• Objetivo do estudo da mecânica dos materiais ⇒ proporcionar ao futuro engenheiro os meios

para analisar e projetar várias máquinas e estruturas de apoio de carga.

• Tanto a análise quanto o projeto de uma dada estrutura envolvem a determinação das tensões e

deformações.

• Na construção mecânica, as peças componentes de uma determinada estrutura devem ter

dimensões e proporções adequadas para suportarem esforços impostos sobre elas. Exemplos:

Figura 1.1 – O eixo de transmissão de uma máquina deve ter dimensões adequadas para resistir ao torque a ser aplicado; b) A asa de um avião deve suportar às cargas aerodinâmicas

que aparecem durante o vôo; c) As paredes de um reservatório de pressão deve ter resistência apropriada para suportar a pressão interna, etc.

1.2 – CLASSE DE SOLICITAÇÕES

• Quando um sistema de forças atua sobre um corpo, o efeito produzido é diferente segundo a

direção e sentido e ponto de aplicação destas forças. Os efeitos provocados neste corpo podem

ser classificados em:

Page 3: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 1 – Introdução – Revisão de Estática e Vigas Prismáticas

________________________________________________________________________________ 2

→ esforços normais ou axiais ⇒ atuam no sentido do eixo de um corpo. Podem ser forças de

tração, compressão e flexão.

→ esforços transversais ⇒ atuam na direção perpendicular ao eixo de um corpo. Podem ser de

cisalhamento e/ou torção.

• Quando as forças agem para fora do corpo, tendendo a alongá-lo no sentido da sua linha de

aplicação, a solicitação é chamada de TRAÇÃO ; se as forças agem para dentro, tendendo a

encurtá-lo no sentido da carga aplicada, a solicitação é chamada de COMPRESSÃO.

Figura 1.2 – Pés da mesa submetidos à compressão; b) Cabo de sustentação submetido à tração.

• A FLEXÃO é uma solicitação transversal em que o corpo sofre uma deformação que tende a

modificar seu eixo longitudinal.

Figura 1.3 – Viga submetida à flexão;

• A solicitação de CISALHAMENTO é aquela que ocorre quando um corpo tende a resistir à

ação de duas forças agindo próxima e paralelamente, mas em sentidos contrários.

Figura 1.4 – Rebite submetido ao cisalhamento

Page 4: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 1 – Introdução – Revisão de Estática e Vigas Prismáticas

________________________________________________________________________________ 3

• A TORÇÃO é um tipo de solicitação que tende a girar as seções de um corpo, uma em relação à

outra.

Figura 1.5 – Ponta de eixo submetida à torção

• Um corpo é submetido a SOLICITAÇÕES COMPOSTAS quando atuam sobre eles duas ou

mais solicitações simples.

Figura 1.6 – Árvore de transmissão – Flexo-torção

1.3 – REVISÃO DE ESTÁTICA

• Força é uma grandeza vetorial que necessita para sua definição, além da intensidade, da direção,

e do sentido, o ponto de aplicação.

Figura 1.7 – Representação de um vetor de força

• As forças mais conhecidas são os pesos, que tem sempre sentido vertical para baixo, como por

exemplo, o peso próprio de uma viga, ou o peso de uma laje sobre esta mesma viga.

Page 5: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 1 – Introdução – Revisão de Estática e Vigas Prismáticas

________________________________________________________________________________ 4

• As forças podem ser classificadas em concentradas e distribuídas.

• No sistema internacional (SI) as forças concentradas são expressas em Newton [N]. As forças

distribuídas ao longo de um comprimento são expressas com as unidades de força pelo

comprimento [N/m], [N/cm], [N/mm],etc.

• Duas ou mais forças constituem um sistema de forças, sendo que cada uma delas é chamada de

componente. Todo sistema de forças pode ser substituído por uma única força chamada

resultante, que produz o mesmo efeito das componentes.

• Sendo dada uma força F num plano “xy”, é possível decompô-la em duas outras forças Fx e Fy ,

como no exemplo abaixo:

Figura 1.8 – Forças atuando em um plano “xy”

onde: α= F.cos Fx e α= F.sen Fy

• Momento da força ⇒ é a medida da eficiência de uma força no que se refere à tendência de fazer

um corpo girar em relação a um ponto fixo.

• Seja F uma força constante aplicada em um corpo, d a distância entre o ponto de aplicação desta

força e um ponto qualquer P. Por definição, o momento “M” realizado pela força F em relação

ao ponto P é dado pelo seguinte produto vetorial:

Figura 1.9 – Representação gráfica do momento de uma força

onde: α= sen F.d. M P

Page 6: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 1 – Introdução – Revisão de Estática e Vigas Prismáticas

________________________________________________________________________________ 5

• Equilíbrio estático ⇒ considera-se que um corpo está em equilíbrio estático quando o somatório

das forças atuantes e o somatório dos momentos em relação a um ponto qualquer sejam nulos.

1.4 – VIGAS PRISMÁTICAS

• Vigas ⇒ elementos estruturais que suportam forças aplicadas em vários pontos ao longo do

elemento.

• Outra definição de vigas ⇒ estrutura linear que trabalha em posição horizontal ou inclinada,

assentada em um ou mais apoios e que tem a função de suportar os carregamentos normais à sua

direção (se a direção da viga é horizontal, os carregamentos são verticais).

• As cargas dispostas verticalmente resultam em esforços de cisalhamento e flexão. Quando cargas

não verticais são aplicadas a estrutura, surgirão forças axiais, o que tornará mais complexa a

análise estrutural.

Figura 1.10 – Viga prismática

• Quanto ao carregamento, uma viga pode estar submetida a cargas concentradas, a cargas

distribuídas ou a combinação de ambas.

(a) (b)

(c)

Figura 1.11 – Viga submetida à (a) cargas concentradas (b) carga distribuída uniforme

(c) cargas distribuídas não uniformes

• As vigas são classificadas de acordo com a maneira como são vinculadas ou apoiadas.

Page 7: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 1 – Introdução – Revisão de Estática e Vigas Prismáticas

________________________________________________________________________________ 6

• Apoios ou vínculos ⇒ componentes ou partes de uma mesma peça que impedem o movimento

em uma ou mais direções. A Figura 1.12 mostra alguns tipos de vigas, classificadas de acordo

com o vínculo.

Figura 1.12 – Tipos de apoios em vigas

• As cargas externas aplicadas sobre as vigas exercem esforços sobre os apoios, que por sua vez

produzem reações para que seja estabelecido o equilíbrio do sistema. Portanto, estas reações

devem ser iguais e de sentido oposto às cargas aplicadas.

• Já os apoios são classificados de acordo com o grau de liberdade, ou seja, os movimentos que

permitem. Desta forma temos:

Tabela 1.1 – Graus de liberdade e reações nos apoios de vigas

Page 8: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 1 – Introdução – Revisão de Estática e Vigas Prismáticas

________________________________________________________________________________ 7

Exercícios – Capítulo 1

1) A luminária de 80 kg é suportada por duas hastes AB e BC como mostra a figura abaixo.

Determinara a força atuando em cada haste. Considere que o ângulo entre a haste BC e a

abscissa de um plano xy que tem a sua origem em

B é igual a 37o.

RESPOSTA: FAB = 644 N; FBC = 402,5 N

2) Determine as reações nos apoios das vigas mostradas.

(a)

(b)

3) Para a viga e o carregamento mostrado nas figuras, determine as reações nos apoios e momento

fletor no ponto C.

(a)

(b)

4) Para as vigas e carregamentos apresentados determine as reações nos apoios e momento fletor

que atua no ponto especificado para cada caso.

Page 9: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 1 – Introdução – Revisão de Estática e Vigas Prismáticas

________________________________________________________________________________ 8

(a) Momento fletor em x = a (ponto B)

RESPOSTA: RA = Pb/L;

RC = Pa/L;

MB = Pba/L

(b) Momento fletor em x = L/2

RESPOSTA: RA = wL/2;

RB = wL/2;

ML/2 = wL2/8

(c) Momento fletor em x = L/2

RESPOSTA: RA = ½ w(L – 2a);

RD = ½ w (L – 2a);

ML/2 = w (L2/8 – a2/2)

(d) Momento fletor em x = L/2

RESPOSTA: RA = wa;

RD = wa;

ML/2 = wa2/2

Page 10: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 2 – Forças e Tensões

________________________________________________________________________________ 9

2. FORÇAS E TENSÕES

2.1 – CONCEITO DE TENSÃO

• Os resultados obtidos no capítulo anterior, embora necessários a uma primeira análise da

estrutura, não dizem se cada um dos componentes vai suportar a carga à qual está submetido.

• Tensão ⇒ resultado da ação de cargas externas sobre uma unidade de área da seção transversal

analisada na peça, componente mecânico ou estrutural submetido a solicitações mecânicas, ou

seja:

A

P =σ

onde σ = tensão

P = carga axial à qual a estrutura está submetida

A = área da seção transversal do componente

• Por convenção, será utilizado sinal positivo para indicar uma tensão de tração e sinal negativo

para indicar tensão de compressão.

• A Unidade de tensão (σ) no SI é o Pascal (Pa). Porém, considerando-se que o Pascal é um valor

extremamente pequeno, na pratica deverão ser usados múltiplos desta unidade. Lembramos que:

1 kPa = 103 Pa = 103 N/m2

1 MPa = 106 Pa = 106 N/m2

1 GPa = 109 Pa = 109 N/m2

• Observação: em unidades inglesas, a carga P, geralmente, é expressa em libras (lb) ou quilolibras

(kip), e a área da seção transversal A em polegadas quadradas (in2). A tensão (σ) será então

expressa em libras por polegada quadrada (psi) ou quilolibras por polegada quadrada (ksi).

2.2 – TENSÃO ADMISSÍVEL E TENSÃO ÚLTIMA – COEFICIENTE D E SEGURANÇA

• Em aplicações de engenharia, a determinação das tensões é utilizada pelos profissionais tanto na

avaliação de estruturas e máquinas já existentes, com o objetivo de prever seu comportamento

quando submetida à determinada solicitação, quanto no projeto de estruturas e máquinas novas

Page 11: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 2 – Forças e Tensões

________________________________________________________________________________ 10

que executarão determinada função. Tudo isto, levando-se sempre em consideração fatores de

economia e de segurança.

• Seja em projetos novos, quanto na análise de estruturas já existentes, um elemento importante a

ser levado em consideração é como o material selecionado se comportará sob um carregamento.

• Carga limite ⇒ máxima força que pode ser aplicada em um corpo de prova sem que o mesmo se

rompa ou apresente perda de resistência, suportando forças menores.

• Tensão última ⇒ máxima tensão que pode ser aplicada em um corpo de prova sem que o mesmo

se rompa ou apresente perda de resistência. Também conhecida como limite de resistência. É

expressa por:

A

P u

u =σ

onde: σu = Tensão última à tração

Pu = carga axial limite

A = área da seção transversal do corpo de prova

• Qualquer elemento estrutural ou componente deve ser projetado de forma que a sua carga limite

seja sempre consideravelmente superior à carga que este elemento ou componente estará sujeito

em condições normais de funcionamento.

• Carga admissível (carga de trabalho, carga de projeto) ⇒ máxima carga que pode ser aplicada

em um elemento estrutural ou componente quando em funcionamento normal. É sempre menor

que a carga limite.

• Tensão admissível ⇒ máxima tensão que pode ser aplicada em um elemento estrutural ou

componente quando em funcionamento normal. É sempre menor que a tensão última.

• Coeficiente de segurança ⇒ relação entre a carga limite (ou tensão última) e a carga admissível

(ou tensão admissível).

admissível carga

limite carga S . C =

admissível tensão

útlima tensão S . C =

Page 12: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 2 – Forças e Tensões

________________________________________________________________________________ 11

• A seleção do coeficiente de segurança a ser usado para várias aplicações é uma das mais

importantes tarefas da engenharia. Por isto deve sempre ser feito por profissionais com certa

experiência em projetos, levando-se em consideração fatores como: as variações que podem

ocorrer nas propriedades do elemento, o número de cargas que podem ser esperadas durante a

vida da estrutura ou máquina, o tipo de carregamento planejado no projeto e prováveis mudanças

futuras, o tipo de falha que pode ocorrer, a incerteza do método de análise, a deterioração que

pode ocorrer durante a vida útil do componente (incluindo falta de manutenção), a importância

do elemento para a integridade de toda a estrutura, etc.

2.3 – FORÇA AXIAL E TENSÃO NORMAL

• Força axial ⇒ força que atua ao longo do eixo da estrutura ou componente analisado. Quando

um componente está sujeito a uma força axial, dizemos que está sob carga axial.

• Tensão normal ⇒ tensão resultante de uma força axial atuando sob a área da seção transversal de

uma estrutura ou componente.

Figura 2.1 – Força axial e tensão normal

• Apesar de sabermos que a tensão obtida em cada ponto da área da seção transversal é diferente,

na prática consideraremos que a distribuição das tensões normais em uma componente sob carga

axial é uniforme (exceto nas vizinhanças imediatas dos pontos de aplicação das cargas).

• Porém, é importante ressaltar que uma distribuição uniforme da tensão é possível somente se a

linha de ação das cargas concentradas passarem através do centróide da seção considerada. Esse

tipo de carregamento é chamado de carga centrada. Consideraremos que ele ocorre em todos os

elementos de barra retos encontrados em treliças e estruturas conectadas por pinos.

Page 13: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 2 – Forças e Tensões

________________________________________________________________________________ 12

Figura 2.2 – Variação das tensões na seção transversal de uma barra

Figura 2.3 – Carga centrada

• Se um elemento de barra estiver carregado axialmente, mas excentricamente, percebemos, pelas

condições de equilíbrio, que as forças internas em uma dada seção devem ser equivalentes a uma

força P aplicada no centróide da seção e um conjugado M , cuja intensidade é dada pelo

momento M = P.d. Neste caso, a distribuição das forças, bem como a distribuição

correspondente das tensões, não pode ser uniforme.

Figura 2.4 – Elemento com carregamento excêntrico

Page 14: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 2 – Forças e Tensões

________________________________________________________________________________ 13

2.4 – TENSÃO DE CISALHAMENTO

• Força de cisalhamento ⇒ força que atua transversalmente ao eixo da estrutura ou componente

analisado, onde a intensidade P de sua resultante é a força cortante na seção.

Figura 2.5 – Força de cisalhamento

• Tensão média de cisalhamento ⇒ obtida dividindo-se a força cortante P pela área A da seção

transversal.

A

P média =τ

onde: τ = Tensão média de cisalhamento

P = força cortante

A = área da seção transversal

• O valor obtido para a tensão de cisalhamento é um valor médio sobre a seção toda.

• Tensões de cisalhamento são encontradas comumente em parafusos, pinos e rebites, usados para

conectar componentes estruturais e de máquinas. Podem estar sujeitos a tensões de cisalhamento

simples ou duplo.

A

F

A

P média ==τ

Figura 2.6 – Parafuso submetido à tensão de cisalhamento simples

Page 15: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 2 – Forças e Tensões

________________________________________________________________________________ 14

A2

F

A

F/2

A

P média ===τ

Figura 2.7 – Parafusos submetidos à tensão de cisalhamento duplo

2.5 – TENSÃO DE ESMAGAMENTO EM CONEXÕES

• Parafusos, pinos e rebites criam tensões nos componentes aos quais eles se conectam, ao longo

da superfície de esmagamento.

d.t

P

A

P e ==σ

Figura 2.8 – Tensão de esmagamento em conexões

• Tensão de esmagamento ⇒ obtida dividindo-se a carga P pela área do retângulo que representa a

projeção do parafuso sobre a seção da placa

Page 16: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 2 – Forças e Tensões

________________________________________________________________________________ 15

Exercícios – Capítulo 2

1) O elemento mostrado abaixo está submetido a uma força vertical de 3 kN. Determinar a posição

x de aplicação da força (distância entre a aplicação

da força e o ponto A) de modo que a tensão na

barra AB seja a mesma tensão sofrida pelo apoio C

(ou seja, σAB= σC). A haste tem uma seção

transversal de 400 mm2, e a área de contato em C é

de 650 mm2.

RESPOSTA: 124 mm

2) A barra rígida AB mostrada na figura abaixo é suportada por um bloco de alumínio, que tem

área da seção transversal de 1.800 m2, e por uma haste de aço AC que tem diâmetro de 20 mm.

Os pinos de 18 mm em A e C estão submetidos a cisalhamento simples. Considerando a tensão

última do aço igual a: (σu,aço = 680 MPa); a tensão última do

alumínio igual a: (σu,al = 70 MPa) e a tensão de cisalhamento

última de cada pino igual a: (σu, pinos = 900 MPa), determinar

a maior carga P que pode ser aplicada à barra, se o fator de

segurança para todo o projeto for igual a 2.

RESPOSTA: 168 kN

3) No suporte mostrado na figura, a parte superior do membro ABC tem 9,5 mm de espessura e as

partes inferiores tem 6,4 mm de espessura cada uma. É usada

resina epóxi para unir as partes superior e inferior em B. O pino

A tem 9,5 mm de diâmetro e o pino usado em C tem 6,4 mm de

diâmetro. Determine (a) a tensão de cisalhamento no pino A

(b) a tensão de cisalhamento no pino C, (c) a maior tensão

normal no membro ABC, (d) a tensão de cisalhamento média

nas superfícies coladas em B, (e) a tensão de esmagamento no

membro em C.

RESPOSTA: (a) 47,2 MPa; (b) 52,0 MPa; (c) 17,2 MPa; d) 1,24 MPa; (e) 40,8 MPa

Page 17: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 2 – Forças e Tensões

________________________________________________________________________________ 16

4) São aplicadas duas forças ao suporte BCD mostrado na figura. (a) Sabendo que a barra de

controle AB deve ser feita de aço tendo um limite de tensão normal de 600 MPa, determine o

diâmetro da barra para o qual o coeficiente de segurança com relação à falha seja igual a 3,3.

(b) O pino em C deve ser feito de aço com um limite

de tensão de cisalhamento 350 MPa. Determine o

diâmetro do pino C para o qual o coeficiente de

segurança com relação ao cisalhamento seja também

igual a 3,3. (c) Determine a espessura necessária para

as barras de apoio em C sabendo que a tensão de

esmagamento admissível do aço utilizado é 300 MPa.

RESPOSTA: (a) 16,74 mm; (b) 22 mm; (c) 6 mm

5) A viga rígida BCD está presa por parafusos a uma barra de controle em B, a um cilindro

hidráulico em C e a um suporte fixo em D. Os diâmetros dos parafusos são: dB = dD = 9,5 mm,

dC = 12,7 mm. Cada parafuso age sob cisalhamento duplo e é feito de um aço para o qual o

limite de tensão de cisalhamento é τu = 275 MPa. A barra de

controle AB tem um diâmetro dA = 11 mm e é feita de um

aço para o qual o limite da tensão de tração é σu = 414MPa.

Se o coeficiente de segurança mínimo deve ser 3,0 para toda

a estrutura, determine a maior força ascendente que pode ser

aplicada pelo cilíndrico hidráulico em C.

RESPOSTA: 22,75 kN

6) Duas barras cilíndricas cheias AB e BC são soldadas uma à outra em B e submetidas a um

carregamento conforme mostra a figura. Sabendo que d1 = 50 mm e

d2 = 30 mm, calcule a tensão normal no ponto média da (a) barra AB, (b)

barra BC.

RESPOSTA: (a) 35,7 MPa; (b) 42,4 MPa

Page 18: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 2 – Forças e Tensões

________________________________________________________________________________ 17

7) Considerando a mesma barra do exercício 6 e que a tensão normal média não pode exceder

140 MPa em nenhuma das duas barras, determine os menores valores admissíveis de d1 e d2.

RESPOSTA: d1 = 25,2 mm d2 = 16,52 mm

8) Cada uma das quatro barras verticais da figura tem uma seção transversal uniforme e retangular

de 8 x 36 mm e cada um dos pinos têm um diâmetro de 16 mm.

Determine o valor máximo da tensão normal média nos vínculos

que conectam (a) os ponto B e D, (b) os pontos C e E.

RESPOSTA: (a) 101,6 MPa; (b) – 21,7 MPa

9) Para a montagem e carregamento do exercício 8 determine (a) a tensão de cisalhamento média

no pino B, (b) a tensão de esmagamento média em B no componente BD, (c) a tensão de

esmagamento média em B no componente ABC, sabendo que essa componente tem uma seção

transversal retangular uniforme medindo 10 x 50 mm.

RESPOSTA: (a) 80,8 MPa; (b) 127,0 MPa; (c) 203 MPa

10) Duas forças horizontais de 22 kN são aplicadas ao pino B do conjunto mostrado na figura.

Sabendo que é usado um pino de 20 mm de diâmetro em cada

conexão, determine o valor máximo da tensão normal média (a)

na barra AB, (b) na barra BC.

RESPOSTA: (a) 102,5 MPa; (b) – 69,7 MPa

11) Os componentes de madeira A e B devem ser unidas por cobrejuntas de madeira compensada

que serão totalmente coladas às superfícies em contato. Como parte do projeto da junção, e

sabendo que a folga entre as extremidades das componentes deve ser de 6,4 mm, determine o

comprimento mínimo permitido para que a tensão de cisalhamento na cola não exceda 0,8 MPa.

RESPOSTA: 308 mm

Page 19: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 2 – Forças e Tensões

________________________________________________________________________________ 18

12) A força axial na coluna que suporta a viga de madeira mostrada na figura é P = 75 kN.

Determine o menor comprimento L admissível para a chapa

de contato para que a tensão de contato na madeira não exceda

3,0 MPa.

13) A barra AC é feita de um aço com um limite de tensão normal igual a 450 MPa e tem um seção

transversal retangular uniforme de 6,4 x 12,7 mm. Ela está conectada a um suporte em A e à

componente BCD em C por pinos com diâmetro de

7,5 mm. A componente BCD está conectada a seu

suporte em B por um pino com diâmetro de 8,5 mm.

Todos os pinos são feitos de um aço com um limite de

tensão de cisalhamento igual a 172 MPa e sofrem

cisalhamento simples. Sabendo que se deseja um

coeficiente de segurança de 2,8, determine a maior

carga P que pode ser aplicada em D.

14) Duas barras cilíndricas cheias AB e BC são soldadas uma à outra em B e submetidas a um

carregamento conforme mostra a figura.

Determine a tensão normal média no ponto

médio da barra AB e da barra BC.

Page 20: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 19

3. TENSÃO E DEFORMAÇÃO – CARREGAMENTO AXIAL

• Outro aspecto importante da análise e projeto de estruturas relaciona-se com as deformações

produzidas pelas cargas aplicadas.

• Nem sempre é possível determinar as forças nos componentes de uma estrutura aplicando

somente os princípios da estática; isto porque a estática é baseada na hipótese de estruturas

rígidas e indeformáveis.

• Considerando as estruturas de engenharia deformáveis e analisando as deformações em seus

vários componentes, poderemos determinar as forças estaticamente indeterminadas.

3.1 – DEFORMAÇÃO ESPECÍFICA NORMAL

• Vamos considerar a barra BC, de comprimento L e com seção transversal uniforme de área A,

que está suspensa em B. Se aplicarmos, gradativamente, uma força P à extremidade C, a barra se

alonga. Com os dados deste ensaio, pode-se gerar o gráfico da força (P) pela deformação (δδδδ).

Figura 3.1 – Deformação em uma barra de seção transversal uniforme – gráfico P x δ

• Embora o gráfico P x δ mostrado na Figura 3.1 contenha informações sobre a barra estudada, ele

não pode ser utilizado para prever o comportamento de uma barra de mesmo material, mas de

diâmetro diferente, conforme mostrado na Figura 3.2.

• Porém, em todos os casos a relação entre deformação e comprimento da barra é a mesma; ela é

igual a δδδδ/L .

• Deformação específica normal ⇒ é a deformação por unidade de comprimento de uma barra sob

carregamento axial. Podemos escrever, então:

L δ=ε

Page 21: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 20

Figura 3.2 – Deformação em barras de seção transversal uniforme

Exemplo 3.1: Considere uma barra de comprimento L = 0,600 m, com seção transversal uniforme,

que sofre uma deformação δ = 150 x 10-6 m. Determine a deformação específica correspondente.

Exemplo 3.2: Se usarmos unidades inglesas no exemplo 3.1, o comprimento da barra será 23,6 pol

e a deformação 5,91 x 10-3 pol. Determine a deformação específica correspondente.

• Construindo o gráfico da tensão, σ = P/A em função da deformação específica, ε = δ/L, obtemos

a curva característica das propriedades do material, não dependente das dimensões do corpo de

prova utilizado. Esta curva é chamada de diagrama tensão-deformação.

3.2 – DIAGRAMA TENSÃO-DEFORMAÇÃO

• Para se obter o diagrama tensão-deformação de um material, geralmente se executa um ensaio

de tração em um corpo de prova do material. A Figura 3.3 apresenta um tipo de corpo de prova

usado comumente.

Page 22: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 21

Figura 3.3 – Corpo de prova típico

• A área da seção transversal da parte central cilíndrica foi determinada com precisão e foram

feiras duas marcas de referência naquela parte, a uma distância L0 uma da outra (comprimento de

referência do corpo de prova). O corpo de prova é então colocado em uma máquina de teste

usada para aplicar uma carga centrada P.

Figura 3.4 – Máquina de prova

• À medida que a carga P aumenta, a distância L entre as duas marcas de referência também

aumenta. Mede-se então, com o extensômetro, o alongamento (δδδδ = L – L0) para cada valor de P.

• Para cada par de leitura (P e δ), é calculada a tensão, σ, tendo como referência a área original da

seção transversal do corpo de prova, A0. A deformação específica, ε, é obtida dividindo-se o

alongamento, δ, pela distância original L0. Obtêm-se, então, o diagrama tensão-deformação.

• A Figura 3.5 apresenta os principais pontos e áreas representados em um diagrama tensão-

deformação.

Page 23: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 22

Figura 3.5 – Pontos importantes do diagrama tensão-deformação

• Se as deformações específicas provocadas em um corpo de prova pela aplicação de uma dada

força desaparecem quando a força é removida, dizemos que o material se comporta

elasticamente.

• Limite elástico do material ⇒ o maior valor da tensão para o qual o material se comporta

elasticamente.

• Se o limite de escoamento for atingido, quando a força for removida, a tensão e a deformação

diminuem, porém o material não volta às condições iniciais (ε não retorna à zero). Isto significa

que as deformações no material foram permanentes, ou seja, o material sofreu deformação

plástica.

• A parte da deformação plástica que não depende da tensão é conhecida como escoamento. O

escoamento caracteriza-se por uma deformação permanente do material sem que haja aumento

de carga, mas com aumento da velocidade de deformação. Durante o escoamento a carga oscila

entre valores muito próximos uns dos outros.

• Após o escoamento ocorre o encruamento, que é um endurecimento causado pela quebra dos

grãos que compõem o material quando deformados a frio. O material resiste cada vez mais à

tração externa, exigindo uma tensão cada vez maior para se deformar. Nessa fase, a tensão

recomeça a subir, até atingir um valor máximo num ponto chamado de limite de resistência.

• Continuando a tração, chega-se à ruptura do material, que ocorre num ponto chamado limite de

ruptura . Note que a tensão no limite de ruptura é menor que no limite de resistência, devido à

diminuição da área que ocorre no corpo de prova depois que se atinge a carga máxima.

Page 24: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 23

3.3 – LEI DE HOOKE – MÓDULO DE ELASTICIDADE

• Muitas estruturas de engenharia são projetadas para sofrer deformações relativamente pequenas,

envolvendo somente a parte reta do diagrama tensão-deformação específica. Para esta parte

inicial do diagrama, a tensão σ é diretamente proporcional à deformação específica ε e podemos

escrever:

ε=σ .E ⇒ Lei de Hooke

onde: E = módulo de elasticidade do material envolvido – Módulo de Young

• Como a deformação específica, ε, é uma quantidade adimensional, o módulo de Young é

expresso nas mesmas unidades de tensão.

• Tensão de proporcionalidade ⇒ valor máximo da tensão, abaixo do qual o material obedece a lei

de Hooke.

• Para cada um dos materiais considerados até agora, a relação entre a tensão normal e deformação

específica normal, σ=E.ε, é independente da direção de carregamento. Isso porque as

propriedades mecânicas de cada material, incluindo o módulo de Young, E, são independentes

da direção considerada.

• Materiais isotrópicos ⇒ materiais cujas propriedades independem da direção considerada.

• Materiais anisotrópicos ⇒ materiais cujas propriedades dependem da direção considerada.

3.4 – CARREGAMENTOS REPETIDOS – FADIGA

• Nas seções anteriores vimos que se a tensão máxima no corpo não exceder o limite elástico do

material, o corpo de prova retornará à sua condição inicial quando a carga for removida.

• Porém, quando a carga é repetida milhares ou milhões de vezes poderá ocorrer a ruptura do

material a uma tensão muito mais baixa do que a resistência à ruptura estática. Esse fenômeno é

conhecido com fadiga.

• A fadiga deve ser levada em conta no projeto de todos os componentes estruturais e de máquinas

que estão submetidos a cargas repetidas ou flutuantes. Lembrando-se ainda que o número de

ciclos de carregamento que se pode esperar durante a vida útil de um componente varia

grandemente.

Page 25: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 24

• O numero de ciclos de carregamento necessários para provocar a falha de um corpo de prova

através da aplicação de cargas cíclicas pode ser determinado experimentalmente para um dado

nível de tensão máxima.

• Como resultados destes ensaios obtêm-se uma curva de tensão máxima, σ, pelo número de

ciclos, n, que a estrutura/material suporta.

Figura 3.6 – Limite de resistência à fadiga

• Limite de resistência à fadiga ⇒ tensão para a qual não ocorre falha, mesma para um número

indefinidamente grande de ciclos de carregamento.

3.5 – DEFORMAÇÕES DE COMPONENTES SOB CARREGAMENTO AXIAL

• Considere a barra homogênea BC de comprimento L e seção transversal uniforme A submetida a

uma força axial concentrada P.

Figura 3.7 – Deformações de componentes sob carregamento axial

• Se a tensão resultante, σ=P/A, não ultrapassar o limite de proporcionalidade do material,

podemos aplicara lei de Hooke e escrever:

ε=σ .E

da qual segue-se que:

AE

P

E=σ=ε

Page 26: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 25

Lembrando que a deformação, ε, foi definida como ε = δ/L, temos:

L . ε=δ

Daí: E.A

L.P=δ

• Observação: a equação acima só pode ser usada se a barra for homogênea, se tiver seção

uniforme de área A e se tiver força aplicada em suas extremidades.

• Para o caso de barras carregadas em outros pontos que não em suas extremidades ou se ela

consistir em diversas partes, com várias seções transversais e/ou de diferentes materiais,

precisamos dividi-la em partes componentes que satisfaçam individualmente às condições

necessárias para a aplicação da equação descrita acima. Nestes casos, a deformação da barra

inteira pode ser expressa como:

∑=δi ii

ii

E.A

L.P

onde: Pi = força interna correspondente à parte i

Li = comprimento da parte i

A i = área da seção transversal da parte i

Ei = módulo de elasticidade (módulo de Young) da parte i

Exemplo 3.3: Determine a deformação da varra de aço mostrada abaixo, submetida às forças dadas.

O módulo de Young do material é igual a 200 GPa.

Page 27: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 26

3.6 – PROBLEMAS ESTATICAMENTE INDETERMINADOS

• Nos problemas considerados até agora, sempre podíamos usar diagramas de corpo livre e

equações de equilíbrio para determinar as forças internas produzidas nas várias partes de um

componente sob certas condições de carregamento.

• No entanto, existem problemas em que as forças internas não podem ser determinadas apenas

por meio da estática. Nestes casos as equações de equilíbrio devem ser complementadas por

relações envolvendo as deformações obtidas, considerando a geometria do problema. Dizemos

que os problemas deste tipo são estaticamente indeterminados.

Exemplo 3.4: Uma barra de comprimento L, seção transversal A1, e módulo de elasticidade E1, foi

colocada dentro de um tubo do mesmo comprimento L, mas de seção transversal A2 e módulo de

elasticidade E2. Qual a deformação da barra e do tubo quando uma força P é aplicada em uma placa

lateral rígida como mostra a figura?

• Uma estrutura é estaticamente indeterminada se ela é vinculada por mais suportes do que aqueles

necessários para manter seu equilíbrio. Isto resulta em mais reações desconhecidas do que

equações de equilíbrio disponíveis.

• Muitas vezes é conveniente designar uma das reações como redundante e eliminar o suporte

correspondente. Porém, como as condições estabelecidas no problema não podem ser alteradas

arbitrariamente, a reação redundante deve ser mantida na solução (mas tratada como força

desconhecida).

• Nestes casos, a solução do problema é obtida considerando-se separadamente as deformações

provocadas pelas forças e pela reação redundante e somando ou superpondo os resultados

obtidos.

Page 28: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 27

Exemplo 3.5: Seja a barra de aço presa em ambas as extremidades por apoios fixos, conforme a

figura abaixo, submetida ao carregamento indicado. Determine o valor das reações nestes apoios.

3.7 – PROBLEMAS ENVOLVENDO MUDANÇAS DE TEMPERATURA

• Consideremos uma barra homogênea AB de seção transversal uniforme, que se apóia livremente

em uma superfície horizontal livre, submetida à variação de temperatura ∆T.

Figura 3.8 – Barra sujeita a variação de temperatura

• Se a temperatura da barra for aumentada de ∆T, observamos que a barra se alonga de δT, que é

proporcional à variação de temperatura ∆T e ao comprimento L da barra. Daí temos:

L T)( T ∆α=δ

onde: α = é o coeficiente de dilatação térmica do material

• A deformação específica causada pela variação de temperatura, εT, é conhecida como a

deformação específica térmica, dada por:

T)( T ∆α=ε

Page 29: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 28

• Consideremos a mesma barra homogênea AB de seção transversal uniforme, porém agora

colocada entre dois apoios fixos a uma distância L. Novamente a barra é submetida à variação de

temperatura ∆T.

Figura 3.9 – Barra engastada sujeita a variação de temperatura

• Se a temperatura da barra for aumentada de ∆T, a barra não pode se alongar devido às restrições

impostas nas extremidades; A deformação δT será, então, igual a zero, assim como a sua

deformação específica, εT.

• Por outro lado, os apoios exercerão forças iguais e opostas P e P’ na barra. Concluímos então

que é criado um estado de tensão (sem a deformação correspondente) na barra.

• Para resolver um problema deste tipo, consideramos um dos apoios como redundante,

eliminando-o em um primeiro momento. Com isto, supomos que a barra pode alongar-se

livremente com a variação de temperatura ∆T.

Figura 3.10 – Solução de problema envolvendo barra engastada sujeita a variação de temperatura

• A deformação decorrente do aumento da temperatura será, portanto:

L T)( T ∆α=δ

Page 30: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 29

• Aplicando-se agora à extremidade B a força P, representando a reação redundante, obtemos uma

segunda deformação:

E.A

L.Pp =δ

• Considerando que a deformação total, δ, deve ser zero, temos:

0A.E

P.LL T)( pT =+∆α=δ+δ=δ

de onde concluímos que: )T(.E.AP ∆α−=

• A tensão na barra devido à mudança de temperatura será então:

)T.(.EA

P ∆α−==σ

Exemplo 3.6: Determine os valores da tensão nas partes AC e CB da barra de aço mostrada na

figura abaixo, quando a temperatura da barra é de -45oC, sabendo que ambos os apoios rígidos estão

ajustados quando a temperatura é de +20oC. Use os valores E = 200 GPa e α = 12 x 10-6/oC para o

aço.

Page 31: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 30

Exercícios – Capítulo 3

1) A barra rígida BDE é suspensa por duas barras AB e CD. A barra AB é de alumínio

(E = 70 GPa) e tem um seção transversal com área de

500 mm2; a barra CD é de aço (E = 200 GPa) e tem uma

seção transversal com área de 600 mm2. Para a força de

30 kN mostrada na figura, determine os deslocamentos dos

pontos (a) B, (b) D, (c) E.

RESPOSTA: (a) 0,514 mm; (b) 0,300 mm ; (c) 1,928 mm

2) Um fio de aço de 60 m de comprimento está submetido a uma força de tração de 6 kN. Sabendo

que E = 200 GPa e que o comprimento do fio deve aumentar, no máximo, 48 mm, determine

(a) o menor diâmetro que pode ser selecionado para o fio, (b) a tensão normal correspondente.

RESPOSTA: (a) 6,91 mm; (b) 160 MPa

3) O cabo BC de 4 mm de diâmetro é feito de aço com E = 200 GPa. Sabendo que a máxima

tensão no cabo não pode exceder 190 MPa e que a deformação

do cabo não deve exceder 6 mm, determine a máxima força P

que pode ser aplicada, conforme a figura.

RESPOSTA: 1,998 kN

4) Uma única força axial de intensidade P = 58 kN é aplicada à extremidade C da barra de latão

ABC. Sabendo que E = 105 GPa, determine o diâmetro da parte

BC para o qual o deslocamento do ponto C será de 3 mm.

RESPOSTA: 16,52 mm

5) Um bloco de 250 mm de comprimento e seção transversal de 50 x 40 mm deve suportar uma

força de compressão centrada P. O material usado é uma liga de bronze para o qual E = 95 GPa.

Determine a maior força que pode ser aplicada, sabendo que a tensão normal não deve exceder

80 MPa e que a diminuição no comprimento do bloco deverá ser, no máximo, 0,12% de seu

comprimento original.

Page 32: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 31

6) Para a treliça de aço (E = 200 GPa) e o carregamento mostrado, determine as deformações dos

componentes AB e AD, sabendo que suas áreas de

seção transversal são, respectivamente, 2600 mm2 e

1800 mm2.

RESPOSTA: δAB = 1,95 mm; δAB = 2,03 mm

7) Os elementos ABC e DEF são unidos com barras de aço (E = 200 GPa). Cada barra é feita de

um par de chapas de 25 x 35 mm. Determine a variação no

comprimento do elemento BE e do elemento CF.

RESPOSTA: (a) – 0,0302 mm; (b) 0,01783 mm

8) As barras CE de 12 mm de diâmetro e DF de 20 mm de diâmetro estão ligadas à barra rígida

ABCD conforme a figura. Sabendo que as barras são

feitas de alumínio e usando E = 70 GPa, determine, (a)

a força em cada barra provocada pela força mostrada

na figura, (b) o deslocamento do ponto A.

RESPOSTA: (a) 35,43 kN; 9,96 kN; (b) 1,16mm

9) Duas barras cilíndricas sólidas são unidas em B e carregadas conforme mostra a figura. A barra

AB é feita de aço (E = 200 GPa) e a barra BC, de latão

(E = 105 GPa). Determine o deslocamento total da barra

composta ABC e o deslocamento do ponto B.

Page 33: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 32

10) A barra AB é feita de aço cujo módulo de Young (E) é igual a 125 GPa, e tem seção transversal

igual a 150 mm2. A barra CD é feita de alumínio (E = 95 GPa) e tem seção transversal igual a

220 mm2. Sabendo que a força P é igual a 5 kPa, determine o deslocamento do ponto B e C.

11) A barra rígida CDE está ligada a um pino com apoio em E e apoiada sobre o cilindro BD de

latão, com 30 mm de diâmetro. Uma barra de aço AC com

diâmetro de 22 mm passa através de um furo na barra e está

presa por uma porca que está ajustada quando a temperatura

do conjunto todo é de 20oC. A temperatura do cilindro de

latão é então elevada para 50oC enquanto a barra de aço

permanece a 20oC. Supondo que não havia tensões presentes

antes da variação de temperatura determine a tensão no

cilindro. (Barra AC: aço, E = 200 GPa, α = 11,7 x 10-6/oC;

Barra BD: latão, E = 105 GPa, α = 20,9 x 10-6/oC).

RESPOSTA: 44,8 MPa

12) O conjunto mostrado na figura consiste em um tubo de alumínio (Ealumínio = 70 GPa, αlatão = 23,6

x 10-6/oC) totalmente preso a um núcleo de aço (Eaço = 200 GPa, αaço = 11,7 x 10-6/oC) que está

livre de tensões a uma temperatura de 20oC.

Considerando somente deformações axiais, determine

a tensão no tubo de alumínio quando a temperatura

atinge 180oC.

RESPOSTA: – 47,0 MPa

Page 34: Notas de Aulas Resistencia1

Notas de Aulas – Resistência dos Materiais Capítulo 3 – Tensão e deformação – Carregamento Axial

________________________________________________________________________________ 33

13) Uma barra consistindo em duas partes cilíndricas AB e BC está impedida de se deformar em

ambas as extremidades. A parte AB é feita de latão e a

parte BC é feita de alumínio. Sabendo que a barra está

inicialmente livre de tensões, determine (a) as tensões

normais nas partes AB e BC provocadas por um aumento

de temperatura de 42oC,(b) o deslocamento do ponto B.

Considere: Elatão = 105 GPa, αlatão = 20,9 x 10-6/oC,

Ealumínio = 72 GPa, αaluminio = 23,9 x 10-6/oC .

RESPOSTA: (a) 44,4 MPa; –100,0 MPa; (b)0,500mm

14) Na temperatura ambiente (20oC) existe um espaçamento de 0,5 mm entre as extremidades das

barras mostradas na figura. Algum tempo depois,

quando a temperatura atingir 140oC, determine (a) a

tensão normal na barra de alumínio, (b) a variação

do comprimento da barra de alumínio.

RESPOSTA: (a) – 116,2 MPa; (b) 0,363 mm

15) Um tubo de latão é totalmente preso ao núcleo de aço. Determine o maior aumento permitido na

temperatura se a tensão no núcleo de aço não deve

exceder 55 MPa.

αlatão = 20,9 x 10-6/oC

αaço = 11,7x10-6/oC

RESPOSTA: 77,71oC