movimento dos animais dinâmica do movimento dos corpos · 282 12 movimento dos animais leatura e...

24
LICENCIATURA EM CIÊNCIAS · USP/ UNIVESP Gil da Costa Marques 12 MOVIMENTO DOS ANIMAIS 12.1 Introdução 12.2 Força Muscular e Velocidade Impressa 12.3 Velocidade no andar e no correr 12.4 O caminhar do Homem e dos Animais 12.5 Velocidade dos Animais 12.6 O Voo das Aves 12.7 Força de arraste 12.8 Força no Regime Turbulento 12.9 Movimento de Planeio 12.10 Movimento de Paraquedismo 12.11 Movimento de Paraquedismo no Regime Laminar 12.12 Movimento de paraquedismo no Regime Turbulento 12.13 Forças resultantes de diferenças de pressão 12.14 Forças de Sustentação 12.15 Força de impulsão: voo com propulsão Dinâmica do Movimento dos Corpos

Upload: vonga

Post on 27-Jan-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

Licenciatura em ciências · USP/ Univesp

Gil da Costa Marques

12MOVIMENTO DOS ANIMAIS

12.1 Introdução12.2 Força Muscular e Velocidade Impressa12.3 Velocidade no andar e no correr12.4 O caminhar do Homem e dos Animais12.5 Velocidade dos Animais12.6 O Voo das Aves12.7 Força de arraste12.8 Força no Regime Turbulento12.9 Movimento de Planeio12.10 Movimento de Paraquedismo12.11 Movimento de Paraquedismo no Regime Laminar12.12 Movimento de paraquedismo no Regime Turbulento12.13 Forças resultantes de diferenças de pressão12.14 Forças de Sustentação12.15 Força de impulsão: voo com propulsão

Dinâ

mic

a do

Mov

imen

to d

os C

orpo

s

Page 2: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

281

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

12.1 IntroduçãoQuando analisado à luz das leis de Newton, os movimentos dos animais são extremamente

complexos. E isso ocorre por duas razões: Em primeiro lugar, porque são muitas as forças

musculares agindo, especialmente quando em movi-

mento acelerado. O segundo complicador tem rela-

ção com o fato de que o formato do animal muda

continuamente com o tempo. Às vezes, ele está mais

recolhido (entre as passadas), às vezes mais alongado.

Em linguagem científica, dizemos que um animal em

movimento não se comporta como um corpo rígido.

Nesta aula estudaremos, à luz da dinâmica Newtoniana, apenas o movimento de paraque-

dismo. Nesse caso, analisaremos o efeito da força de arraste e do peso da ave.

Os demais movimentos (planeio, com propulsão e flutuação no ar) serão analisados com

base em argumentos simples, isto é, levando em conta aspectos gerais de alguns tipos de força

(como arraste e sustentação), mas sem nos preocuparmos com expressões analíticas para elas.

Exploraremos também alguns modelos simples para descrever movimentos tanto o de andar

quanto o de correr.

12.2 Força Muscular e Velocidade ImpressaAs molas motoras dos movimentos dos animais são os músculos, isto é, mediante o aciona-

mento de algumas células excitáveis, que compõem os músculos, o animal adquire a habilidade

de se locomover.

Os músculos esqueléticos (no corpo humano existem outros dois tipos: lisos e cardíacos)

são responsáveis pelo movimento do animal todo. Eles são constituídos de milhares de células

especializadas denominadas fibras musculares. Tipicamente, as dimensões das fibras são: 20 cm

de comprimento e 50 μm de diâmetro da base.

Figura 12.1: Quando em movimento, os animais adquirem diferentes conformações.

Page 3: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

282

12 Movimento dos Animais

Licenciatura em Ciências · USP/Univesp · Módulo 1

As fibras musculares são células excitáveis eletricamente. Quando estimuladas, elas se contraem.

Ao se contraírem, como no caso de uma mola comprimida, um músculo exerce uma força.

Figura 12.2: Quando estimuladas, as fibras musculares se contraem.

Page 4: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

283

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

A força máxima (Fm) pode ser inferida a partir do dado, experimental, de que um músculo é

caracterizado por uma tensão máxima dada por:

12.1

onde Fm , na expressão 12.1, é a força muscular.

Exemplos• ExEmplo 1:A Figura 12.3 esquematiza um exercício pliométrico, que envolve ciclos de rápida distensão seguida de rápido encurtamento muscular. Se durante o exercício um músculo exercer uma força de 700 N, qual a sua seção transversal?

→ REsolução:De acordo com a expressão 12.1, a área do músculo será: A Fm= = =

70700

7010

N/cm N

N/cm cm2 2

2.

Os músculos esqueléticos terminam, nos dois extremos, nos tendões.

Eles ligam os músculos aos ossos. Alguns músculos terminam em

dois (os bíceps) ou três tendões (os tríceps). Os músculos são assim

ligados a diferentes ossos.

O tendão tem o papel de transmitir a força muscular aos ossos.

Como já percebera Leonardo da Vinci, “a função do músculo é

puxar, nunca empurrar”.

O significado da expressão 12.1 é o de que a força muscular é variável. Depende, até certo limite,

da força solicitadora. Na medida da necessidade, mais e mais fibras são acionadas, ou seja, encurtadas.

Para efeito de considerações energéticas durante o movimento, devemos analisar o trabalho

realizado pela força muscular.

FA

FA

m m≅ × ≅7 10 706 2 2dina/cm ou N/cm

Figura 12.3: Ação muscular concêntrica.

Figura 12.4: Tendões ligando os músculos aos ossos.

Page 5: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

284

12 Movimento dos Animais

Licenciatura em Ciências · USP/Univesp · Módulo 1

Se o músculo se contrair por uma distância d, o trabalho realizado pela força muscular Fm é dado por

12.2

Tendo em vista que o trabalho é igual à variação da energia cinética, e admitindo-se que a

velocidade inicial da pata de um animal seja nula e que ela tenha massa mP, então, a contração

do músculo por uma distância d propiciará à pata do animal uma velocidade Vp, dada por:

12.3

Assim, a velocidade impressa à pata depende da distância contraída pelo músculo, da força

muscular e da massa da pata do animal.

• ExEmplo 2A Figura 12.5 ilustra a força

F F jB B= exercida pelo bíceps contraído no ponto B do antebraço. Um sistema de referência xyz foi desenhado de modo que o eixo 0z “saia” do plano do papel. O peso do antebraço tem intensidade 20 N e é localizado no centro de gravidade CG

anteb; a bola, com centro de gravidade CG

bola tem peso

de intensidade 50 N.Sendo x1 = 4,5 cm; x2 = 15 cm e x3 = 30 cm,calcule FB e a reação na articulação

F0.

→ REsolução:Esta situação não trata de forças concentradas numa partícula. Trata-se de um sistema de forças distribuídas ao longo de um corpo extenso. Esse corpo extenso é o antebraço que, para simplificar a análise, iremos considerar como uma alavanca com ponto de apoio em 0 (arti-culação) e, nela, esquematizar as forças (ou seja, esquematizar o DCL da alavanca).Os vetores

x1 = 4,5

i ; x2 = 15

i e x3 = 30

i (em cm) representam os vetores posição dos pontos de aplicação de cada força na alavanca em relação à origem 0 (articulação do antebraço, no nosso caso).O caso em análise é uma situação estática, ou seja, uma situação na qual a aceleração resultante do sistema é

a = 0. Portanto, de acordo com a 2ª Lei de Newton, podemos escrever:

( I )

τ = F dm

mV F d V F d

mp

p m pm

p222 = ⇒ =

Figura 12.5: Esquema da força do bíceps sobre o antebraço.

Figura 12.6: Modelo da alavanca para o antebraço.

F m a R F j j ji B= = + + −( ) + −( ) =∑ . 0 20 50 001

4 ou

Page 6: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

285

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

Temos duas incógnitas (R0 e FB). Precisamos de outra relação entre as incógnitas. Essa relação será obtida mediante uma função importantíssima das forças que os músculos exercem sobre os ossos: trata-se da rotação que as forças podem produzir nos ossos ao redor das articulações. Esse poder de rotação é denominado Torque ou Momento da força em relação à articulação.

O módulo do torque é τ = r.F.sen θ, onde r.sen θ = b = braço de alavanca da força em relação à articulação.

O torque será nulo se o braço da força b = 0, ou seja, se θ = 0°. Para θ = 90° (

r F⊥ ) → sen90° = 1 e τ = F.b (intensidade máxima do torque). Portanto, o torque de uma força é tal que 0 ≤ τ ≤ F.b.O sentido do vetor torque pode ser determinado, na prática, pela regra da mão direita, conforme ilustra a Figura 12.8.No caso de forças cujas direções (linhas de ação) pertencem a um mesmo plano, os torques dessas forças serão vetores perpendiculares ao plano. Em relação a um eixo de rotação perpendicular ao plano, alguns torques serão no sentido horário e outros no sentido anti--horário. Se a soma dos torques no sentido horário suplantar a soma dos torques no sentido anti-horário, o objeto sujeito às forças será dotado de uma aceleração angular no sentido horário e vice-versa.No caso analisado, no entanto, o objeto está em equilíbrio e destituído do movimento de rotação.Em resumo: Para que uma alavanca não se desloque e não experimente movimentos de rotação, devem ser satisfeitas as seguintes condições:

Definição de torqueO torque é um vetor que resulta do produto vetorial do vetor posição r pela força

F , ou seja,

τ = ×r F .

Figura 12.8: Regra da mão direita para definir o sentido do vetor torque. Mantendo a mesma orientação relativa desenha-se r e

F num mesmo plano e aplicados num mesmo ponto; os dedos da mão direita devem girar (sempre) no sentido de r para

F. O polegar indica o sentido do vetor torque

τ. Sendo o giro no sentido “anti-horário” (como na figura), o torque é para cima. O torque será oposto se o giro for no sentido horário.

Figura 12.7: Detalhe do “braço” da força em relação ao eixo de rotação.

Figura 12.9: Alavanca estática.

Fii

ii

=

=

0

Page 7: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

286

12 Movimento dos Animais

Licenciatura em Ciências · USP/Univesp · Módulo 1

Calculando os torquesOs produtos vetoriais (ver tema Vetores) dos vetores cartesianos i i j j k k×( ) = ×( ) = ×( ) =

0 e i j k j k i k i j×( ) = ×( ) = ×( ) =

; ; serão utilizados nos cálculos dos torques.

τF B B B BBx F i F j F i j F k= × = ( ) × ( ) = ( ) ( ) ×( ) = ( )1 4 5 4 5 4 5, , , N.cmm( )

τP x P i j i j k1 2 1 15 20 300 300= × = ( ) × −( ) = −( ) ×( ) = −( ) ( )N.cm

τP x P i j i j k3 3 3 30 50 1500 1500= × = ( ) × −( ) = −( ) ×( ) = −( ) ( )N.cm

τR0 = 0 (pois o respectivo vetor posição

xR0 = 0)

Como o sistema se encontra estático → τs alavanca/ ,= − −( ) =∑ 4 5 300 1500 0F kB

.

De II determinamos FB = =1800

4 5400 N.cm

cm N

, (vertical para cima) que, substituído em I, determi-

namos

R0 = −330

j ou R0 = 330 N (vertical para baixo).

12.3 Velocidade no andar e no correrNo caso de um animal que se move a velocidade constante, o movimento pode ser visto

como uma repetição de movimentos. É nesse sentido que ele será encarado como um movi-

mento periódico.

O período T, nesse caso, é o intervalo de tempo necessário para que ele se repita; por exemplo,

quando o animal volta a colocar as mesmas patas, de novo, no chão. O intervalo de meio

período define o tempo por ele despendido para dar uma passada.

Tanto no caso do caminhar quanto no do correr, a velocidade de um animal pode ser

expressa em termos da passada (P), a distância entre dois pontos nos quais o animal coloca uma

das patas,e o período do movimento:

12.4

O número de passos por segundo é o inverso da metade do período 2T

. Assim, a veloci-

dade do caminhar dito natural é dada pela expressão 12.4.

( II )

v PT

= ⋅2

Page 8: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

287

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

• ExEmplo 3Usain Bolt, em 2009, em Berlin, venceu a corrida de 100 m rasos em 9,58 s, estabelecendo um novo recorde. Analisando o vídeo do evento, constatou-se que Bolt precisou de 41 passos para completar os 100 m.a. Qual foi a velocidade média de Bolt?b. Supondo uniforme o movimento de Bolt, qual o período e a frequência das passadas?

→ REsolução 1:a. Velocidade média =

v = ≅1009 58

10 44 m s

m/s,

, .

b. A Figura 12.10 ilustra passadas de um atleta; em A, o pé direito toca na pista e, em B, é o pé esquerdo. A distância AB = passo = P. Sendo uniforme a sucessão das passadas, podemos analisar o movimento como um “movimento periódico”. Portanto, desse modo, definem-se um período e uma frequência do movimento periódico.

Cálculo do período T

Qual o tempo de uma passada? Os 100 m são vencidos por 41 passadas em 9,58 s. A razão 9 58

41, s

passadas = 0.2334 s/passada; portanto, ∆t1 passada

= 0,2334 s.

Como o período T corresponde ao intervalo de tempo de duas passadas sucessivas, tem-se:

Figura 12.10: O período é o tempo de duas passadas sucessivas, ou seja, o intervalo de tempo que decorre desde o toque do pé direito em A e o toque do mesmo pé em C.

T = × ( ) ≅2 0 2334 0 47, , s s

Page 9: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

288

12 Movimento dos Animais

Licenciatura em Ciências · USP/Univesp · Módulo 1

Cálculo da frequência f das passadas

A frequência é o número de “2 passadas sucessivas” que Bolt realiza em cada intervalo de 1 s. Como

Bolt completa 41 passadas na corrida, o número de “2 passadas sucessivas” = 41/2. Logo, a frequência

das passadas será f = ≅41 2

9 582 14 passadas

s,, passadas/segundo. Como “passada” não é uma grandeza

física, podemos escrever que f = 2,14/s = 2,14 Hz (hertz).

→ REsolução 2:

Por meio da expressão v PT

= ⋅2 podemos determinar o período T Pv

=2

. A velocidade foi determi-

nada no item (a); precisamos calcular o tamanho P da passada, ou seja, P = =100

412 44 m , m. Assim,

T =× ( )

≅2 2 4410 438

0 467,

,,

m m/s

s. A frequência f = 1/T = 2,14 Hz.

12.4 O caminhar do Homem e dos AnimaisTendo em vista que as pernas dos animais executam um movimento periódico e que elas

executam um movimento pendular durante as passadas,é muito comum analisar o caminhar

dos animais tomando como base um movimento pendular, ou seja,um MHS. É, assim, uma

descrição baseada num modelo simples.

Analisaremos o caminhar dos homens e dos animais

considerando um modelo no qual as pernas executam

um movimento pendular,onde o pêndulo físico, que

executa um movimento oscilatório, será encarado

como se fosse a perna do animal. E ela será pensada

como uma barra delgada. Este é outro aspecto do

modelo empregado.

Como sabemos, no movimento harmônico simples, a velocidade máxima, Vmax, atingida

pelo móvel é dada por:

12.5

Figura 12.11: A perna funciona como um pêndulo.

V ATAmax = =ω

π2

Page 10: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

289

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

A velocidade quadrática média, por outro lado, é dada por:

12.6

A aceleração máxima amax é dada por:

12.7

onde A é a amplitude do movimento e T é o período.

A amplitude será, no caso do homem, a metade do valor de uma passada associada a uma

das pernas.

O modelo pendular permite-nos concluir, portanto, que a velocidade quadrática será dada,

em função do período do movimento e do comprimento da passada, por

12.8

Esse resultado é, basicamente, o mesmo previsto inicialmente e expresso pela equação 12.4,

o que confere crédito ao modelo pendular.

Outra vantagem do modelo pendular diz respeito a previsões para o período do movimento

como função do comprimento das pernas. Nesse caso, a perna dos animais será pensada como

um pêndulo físico (não um pêndulo simples). No caso do pêndulo simples, a relação entre o

período e o comprimento do pêndulo é T Lg

= 2π . No entanto, a perna (não o animal todo),

pode ser pensada como um corpo rígido. Como consequência, o período de oscilação depende

de uma característica sua, denominada momento de inércia.Considerando agora a perna como

se fosse uma barra fina, e o seu centro de massa situando-se no meio da perna, então, o período

do movimento é dado por:

12.9

onde L é o comprimento do pêndulo, ou seja, o comprimento da perna do animal. No caso de

um homem cuja perna meça 80 cm, o seu período, de acordo com 12.9, é 1,46 s.

V A V= =ω

2 2max

a AT

Amax = =

ω

π222

VTA P

TPT

= = =22 2

2 2π π ,

T Lg

= 2 23

π

Page 11: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

290

12 Movimento dos Animais

Licenciatura em Ciências · USP/Univesp · Módulo 1

E a sua velocidade quadrática média será dada por:

12.10

Admitindo-se uma passada de 80 cm, a velocidade desse indivíduo será:

Finalmente, se considerarmos a passada como igual ao compri-

mento das pernas, concluiremos que:

2.11

e, portanto, a velocidade do caminhar cresce com o comprimento

das pernas dos animais.

A aceleração máxima do caminhante é dada por:

12.5 Velocidade dos AnimaisPode-se fazer uma previsão para a velocidade de um animal quando ele está correndo à

velocidade máxima, com base em uma análise dimensional, ou seja, admitimos que a distância

d contraída pelo músculo é proporcional a um fator de escala com dimensão de comprimento

(l ), dito comprimento característico dos músculos, independentemente do animal. Escrevemos:

12.12

onde o parâmetro b1 depende do animal e pode ser considerado um parâmetro muscular.

V PT

P gl

= =π2

34

Figura 12.12: Caminhada pendular do homem.

V = = =π2

0 81 46

1 2 4 32,,

, , m/s kmh

V lg=3

4

amax ,. ,=

=

21 46

0 8 14 82

π ms

ms2 2

d b l= 1

Page 12: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

291

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

Admitamos, ainda mais, que a força máxima do músculo seja proporcional ao número de

fibras no músculo. Esse número, por sua vez, é proporcional à área da seção transversal. Essa

área é proporcional ao comprimento característico aludido antes (A = b2l2). Assim, escrevemos.

12.13

onde b2 é uma constante característica do animal. Finalmente, escrevemos a massa da pata como

se fosse proporcional ao cubo do comprimento característico do músculo, ou seja:

12.14

onde b3 depende da densidade da pata e da sua forma geométrica.

Assim, utilizando as expressões 12.12-12.14 em 12.3, inferimos que a velocidade máxima

de um animal que corre independe da dimensão característica, ou seja:

12.15

Se considerarmos dois animais semelhantes quanto à forma, é de se esperar que os coeficientes bi

de cada um deles sejam iguais. Por exemplo, tendo em vista que a forma e a densidade da pata são se-

melhantes, o mesmo ocorrerá com o coeficiente b3. Assim, para dois animais semelhantes, escrevemos:

12.16

Portanto, todos os animais semelhantes quanto à forma terão os mesmos valores para as suas

velocidades máximas, ou seja, elas são independentes do tamanho dos animais, o que contrasta

com o a velocidade do caminhar, no qual ela depende, de acordo com 12.11, do tamanho das

pernas do animal, como se pode verificar pela Tabela 12.1 a seguir.

Tabela 12.1: Velocidade do caminhar dos animais.

Animais Leopardo Gazela Avestruz Raposa Cavalo Coelho Lobo Cão

V (m/s) 32 30 25 20 20 18 20 15

F b lm = 22

m b l= 33

V b bbp = 2 1 2

3

b b3 1 3 2( ) = ( )

Page 13: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

292

12 Movimento dos Animais

Licenciatura em Ciências · USP/Univesp · Módulo 1

12.6 O Voo das AvesO voo das aves torna-se possível graças a quatro

forças que podem estar agindo simultaneamente

sobre os animais. Poderíamos adicionar uma quinta

- o empuxo, mas esta é desprezível. Essas forças são:

1. Força de arraste (

FA);2. Força de sustentação (

FS);3. Força de impulsão ou propulsão(

FP);4. Força da gravidade(

P).

Na Figura 12.13 ilustramos três dessas forças no

caso em que uma ave se desloca para cima e para a

frente. A seguir, faremos uma descrição sucinta dessas

forças e três tipos de voos: paraquedismo, planeio e,

finalmente,movimentos com propulsão.

Dentro de uma boa aproximação, podemos adotar

as forças de arraste como ortogonais às forças de sus-

tentação. Escrevemos:

12.17

A validade desse resultado está relacionada com a origem das próprias forças. A força de

arraste tem a direção oposta à do movimento enquanto a de sustentação tem uma direção

ortogonal ao sentido do movimento (Figura 12.13).

As aves podem, ainda, ser impulsionadas por correntes de ar. Trata-se de uma força de natu-

reza colisional, isto é, a colisão das moléculas do ar no sentido ascendente com as asas das aves

gera uma força sobre elas, impulsionando-as na direção do ar.

As aves podem ganhar altitudes de até 5 km fazendo uso de correntes de ar ascendente.

Podemos citar dois tipos bastante comuns de tais correntes. A primeira resulta do movimento do

ar em direção a uma montanha, ou até mesmo uma colina. A corrente resultante do movimento

associado ao desvio do obstáculo gera uma corrente do tipo plano inclinado, só que, nesse caso,

o movimento ao longo do plano inclinado é para cima. O segundo tipo de corrente são as termas.

Figura 12.13: Forças de arraste e de sustentação se somam constituindo a força aerodinâmica e essa exibe uma componente vertical e uma componente horizontal. A componente vertical da força aerodinâmica é uma força de sustentação da ave nessa direção e que pode ser maior, igual ou menor do que o seu peso.

�i�

F FA S = 0

Page 14: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

293

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

Nesse caso, o ar quente próximo da superfície terrestre, sendo menos denso, sobe. Produz assim

uma corrente ascendente, da qual as aves tiram proveito.

Dizemos que uma ave f lutua quando a sua altura, em relação à superfície da Terra (do

mar), permanece constante. As aves podem f lutuar sob a ação de correntes ascendentes.

12.7 Força de arrasteSe o movimento se dá ao longo do eixo z, a componente da força de arraste na direção do

movimento depende da componente da velocidade nessa direção. Ela assume a forma geral

envolvendo potências da componente da velocidade,ou seja:

12.18

onde κ é uma constante.

Como veremos a seguir, a potência depende do regime do movimento do fluido.

A expressão 12.18 para a força exercida por um fluido, quando do movimento de um objeto

nele imerso, só vale para pequenas velocidades, ou seja, quando se trata do regime dito laminar.

Nesse regime, a força é de natureza viscosa; resulta apenas da colisão do objeto em movimento

com os átomos do fluido.

No regime laminar, a velocidade do fluido em relação ao objeto é a mesma ao longo de uma

lâmina. As moléculas de uma determinada lâmina não interagem com as moléculas de outras

lâminas. O movimento é mais organizado. Observe a Figura 12.16a.

Figura 12.14: Uma ave utilizando uma corrente ascendente.

F vz zn= − ( )κ

Page 15: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

294

12 Movimento dos Animais

Licenciatura em Ciências · USP/Univesp · Módulo 1

• ExEmplo 4G. G. Stokes (1819-1903) deduziu a força de arraste sobre uma pequena partícula esférica (0,0002 mm ≤ diâmetro ≤ 0,2 mm), que se movimenta ao longo do eixo 0z no seio de um fluido vis-coso à velocidade constante e de baixa intensidade. A expressão é conhecida como fórmula de Stokes:

onde η = coeficiente de viscosidade do fluido, d = diâmetro da esfera e vz = velocidade da esfera em relação ao fluido.a. Compare a fórmula de Stokes com a expressão 12.18, e indique a potência n e a expressão para

a constante k.b. Considere uma gotícula de chuva despencando no ar (sem movimento). Quando a velocidade

atingir o seu valor terminal (v = constante), determine a expressão da força de arraste sobre a gotícula e a respectiva velocidade com que a gota colide com o solo.

→ REsolução:Consideremos o movimento num regime laminar. a. Na fórmula de Stokes (3π.η.d)= kstokes e a fórmula pode assim ser escrita: Fz = −kstokes.vz.

Comparando com a expressão Fz = −k(vz)n, podemos concluir que n = 1 e k = 3π.η.d.

b. Vamos considerar uma gotícula de água de raio d em queda no ar (sem movimento). Na Figura 12.15 o vetor

E representa o empuxo do ar sobre a gotícula de água.Aplicando a 2ª Lei de Newton no eixo 0z:

( I )

onde m′ = massa de ar deslocado pela gotícula e F = força de arraste. A velo-

cidade limite é atingida quando vz = constante ou dvdtz = 0. Nessa condição, a

expressão I acima pode ser escrita: 0 = − (m − m′)g + F donde

( II )

As massas podem ser expressas em função das respectivas densidades e volumes:

m dρ

πágua

3

6

e ′

m d

ρπ

ar

3

6.

Sendo estas substituídas na expressão II, teremos:

12.19

que é a expressão da força de arraste sobre a gotícula.

F d vz z= −3π η. . .

Figura 12.15: Gotícula de chuva caindo na vertical. Admitimos o ar sem movimento.

mdvdt

mg m g Fz = −( ) + ′ +

F = (m − m′).g

F d g= −

⋅( )ρ ρ

πágua ar

3

6

Page 16: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

295

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

A velocidade terminal pode ser determinada considerando-se F = a força de Stokes, ou seja,

e, portanto,

12.20

que é a velocidade com que a gota de chuva colide com o solo.Considerando uma gota de chuva com diâmetro d = 0,2 mm; viscosidade η = 1,8 × 10−5 s.Pa; ρágua = 10³ kg/m³; g = 10 m/s² e desprezando-se ρar (por ser desprezível ante a densidade da água), a velocidade terminal dessa gota é vz = 2,8 m/s.Na ausência da força de arraste, a gota cairia em queda livre; nesse caso, se a nuvem de onde a gota iniciou a sua queda estivesse a 200 metros de altura, ela atingiria o solo com velocidade aproximada de 230 km/h.

12.8 Força no Regime TurbulentoNo regime dito turbulento, ocorrem interações

entre as diversas moléculas. O movimento é muito

mais complexo, mais desorganizado. As linhas de força

exibem um padrão que pode ser representado pela

Figura 12.16b.

O que caracteriza cada um dos regimes é o número

de Reynolds, Re, o qual depende, entre outros parâ-

metros, da velocidade do fluido em relação ao objeto.

Para números de Reynolds pequenos, o regime é

laminar, enquanto, para números de Reynolds grandes

(acima de 1.000), o regime é turbulento.

36

3

π η ρ ρπ. . . ( )d v d gz = −

⋅água ar

v d gz = −

⋅( )

.ρ ρ

ηágua ar

2

18

Figura 12.16: Campos de velocidade no regime laminar (a) e turbulento (b).

b

a

Page 17: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

296

12 Movimento dos Animais

Licenciatura em Ciências · USP/Univesp · Módulo 1

Ao atingir o regime turbulento,a força de arraste sobre um objeto, quando este se movimen-

ta ao longo do eixo z tem componente Fz que pode ser escrita como:

12.21

onde ρ é a densidade do ar (quando o fluido é o ar), Ca é o coeficiente de arrasto (o qual

depende da geometria do objeto), A é a área do objeto em contato com o fluido e vz é a

componente z da velocidade.

Na Tabela 12.2 apresentamos alguns valores típicos e aproximados dos coeficientes de

arrasto para diferentes designs de automóveis.Tabela 12.2: Alguns valores do coeficiente de arrasto.

Forma Ca

0,8-0,9

0,35

0,24

0,16

0,13

12.9 Movimento de PlaneioO movimento de planeio de um animal é aquele que tem a trajetória linear. O ângulo θ entre

a linha reta e a direção horizontal, definida a partir do plano que tangencia a superfície terrestre, é

denominado ângulo de planeio. Em geral, tal tipo de movimento é caracterizado pelas condições:

12.22

F C A vz a z= − ( )12

��F F F F FP S A S A= >0 ou ainda

Page 18: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

297

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

Quando um animal estiver planando, as equações do movimento são dadas por:

12.23

Nas condições especificadas em 12.22, obtemos:

12.24

12.10 Movimento de ParaquedismoO movimento é dito de paraquedismo quando a ave, ou qualquer outro animal, se

movimenta sob a ação da força de arraste e a gravitacional. Mais geralmente, escrevemos para o

movimento de paraquedismo:

12.25

O mesmo comportamento para os objetos que caem, de adquirir velocidade constante

depois de um certo tempo, vale para o movimento de planeio.

A força de arraste é aquela exercida pelo fluido sobre a partícula em movimento, de tal

forma a se opor ao movimento. Em Forças, admitimos que essa força é da forma:

12.26

onde o coeficiente b depende da viscosidade do fluido e da sua forma geométrica. O sinal

menos na expressão acima significa apenas que a força é contrária ao movimento, ou seja, ela

mdVdt

F F mg

m dVdt

F F

yS y A y

xS x A x

= ( ) + ( ) −

= ( ) + ( )

dVdt

g FmS

= +

Figura 12.17: Movimento de Planeio.

��F F F FP A S S= =0 0 ou ainda

F bV= −

Page 19: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

298

12 Movimento dos Animais

Licenciatura em Ciências · USP/Univesp · Módulo 1

tem o sentido contrário ao sentido do movimento que tem o sentido da velocidade, pois, como

sabemos, a velocidade sempre indica para onde a partícula vai logo em seguida. O sinal menos

indica que essa força atua sempre impedindo o movimento.

A força se comporta de acordo com a expressão 12.26 apenas no regime laminar.

12.11 Movimento de Paraquedismo no Regime Laminar

Consideremos o caso de um objeto que é solto dentro de

um líquido viscoso e que agora é colocado em movimento

sob a ação da gravidade. Nesse caso, devemos levar em conta,

além da força da gravidade, a força exercida pelo fluido vis-

coso. Admitiremos, ainda mais, que o movimento se dá ao

longo do eixo y, pois agora o movimento é na vertical.

Assim, levando em conta a força exercida pelo fluido

como se fosse diretamente proporcional à velocidade, e a

força gravitacional como constante, escrevemos a seguinte

equação de primeira ordem para a velocidade da esfera:

12.27

ou, de uma forma equivalente:

12.28

onde γ = b/m. Integrando membro a membro a equação acima, obtemos a solução para a

velocidade em função da velocidade inicial (no caso em que ela é solta, essa velocidade é nula);

12.29

Figura 12.18: Movimento de Paraquedismo: Relevância de arraste.

mdV tdt

bV t mgyy

( )= − ( ) +

dV t

V t gdty

y

( )

( ) +

= −

γ

γ

V t g V t g ey yt t( ) = −

+ ( ) +

− −( )

γ γγ

00

Page 20: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

299

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

A primeira conclusão a que chegamos é a de que, independentemente do valor da velocidade

inicial, a partícula atinge uma velocidade final, que é constante, e que é dada por:

12.30

Observe que essa velocidade final é exatamente aquela para a qual a força exercida pelo

líquido se torna igual à força gravitacional. De fato, de 12.26, vemos que tal condição implica:

12.31

Infere-se da equação de Newton, portanto, que, ao atingir essa velocidade limite, a partícula

se movimenta com velocidade constante, fato esse que se pode comprovar experimentalmente.

A solução para a posição como função do tempo é:

12.32

Da solução acima concluímos que, no limite em que o tempo tende a infinito, temos:

12.33

o que, de novo, indica que, com o passar do tempo, o movimento da esfera tende a ser um

movimento uniforme.

12.12 Movimento de paraquedismo no Regime Turbulento

Consideremos agora o caso de uma força que depende do quadrado da velocidade. Nesse

caso, a lei de Newton se escreve como:

12.34

V gy final( ) = −

γ

− ( ) − =bV mgy final 0

y t y g t t V t g eyt t( ) = ( ) −

−( ) − ( ) +

−− −( )0 1

0 00

γ γ γγ 11( )

y t y g t t V t gy→∞( ) ≅ ( ) −

−( ) + ( ) +

0 1

0 0γ γ γ

mdV tdt

BV t mg( )= − ( ) +2

Page 21: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

300

12 Movimento dos Animais

Licenciatura em Ciências · USP/Univesp · Módulo 1

Apesar de ter a mesma forma da equação anterior, a equação 12.34 não é linear, ou seja,

não vale o princípio da superposição para ela. Como no caso anterior, no entanto, podemos

escrevê-la de uma forma equivalente à expressão 12.28, ou seja,

12.35

onde, agora, γ = B/m. Integrando membro a membro a equação acima, obtemos a solução para

o caso de uma velocidade inicial diferente de zero, ou seja:

12.36

Assim, nos instantes de tempo iniciais, caracterizados pela condição t (gγ)−1/2, podemos

verificar que o movimento é acelerado, pois nesse caso vale o resultado aproximado:

12.37

enquanto, para grandes valores do intervalo de tempo, caracterizados pela condição t (gγ)−1/2,

a solução 12.36 nos leva a um valor constante da velocidade, e esse valor, considerando-se agora

o caso de velocidade inicial nula, é dado por:

12.38

valor esse que poderíamos deduzir do fato de que nesse limite as forças se compensam, levando-nos

ao resultado:

12.39

Concluímos assim que, como no caso anterior, a partícula atinge uma velocidade final constante.

Se a partícula parte de uma posição inicial y(0) = 0, sua coordenada y dependerá do tempo

da seguinte forma:

12.40

dV t

V t gdty

y

( )

( ) +

= −2

γ

γ

V t V g g ty y( ) = ( ) +

−0

1 2

γγ

/

tanh

V t V gty y( ) ≈ ( ) +0

V t gy ( ) =

γ

1 2/

− ( ) + = ⇒ ( ) =

BV t mg V t g

y y2

1 2

0 γ

/

y t g t( ) =

( )1

γγlncosh

Page 22: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

301

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

E, portanto, nos instantes iniciais do movimento (t (gγ)−1/2), temos:

12.41

ao passo que, nos instantes finais (aqueles para os quais vale a desigualdade t (gγ)−1/2), o

movimento será uniforme. Nesse limite, a solução 12.40 nos leva ao resultado:

12.42

o qual é inteiramente compatível com o movimento uniforme dado em 12.39.

12.13 Forças resultantes de diferenças de pressãoPor causa da impenetrabilidade da matéria, ou seja,do caráter repulsivo das forças inter-

moleculares, os fluidos exercem uma pressão. Normalmente, essa pressão equilibra o efeito da

gravitação. Esse é um tema que é objeto de estudo da Hidrostática.

Num fluido em equilíbrio, todos os pontos a uma

mesma profundidade estão sujeitos à mesma pressão.

Esta, no entanto, depende linearmente da profundi-

dade. Um corpo, como um cubo, quando submerso

num líquido, está sujeito a uma pressão na sua parte

inferior (a base do cubo), que é maior do que aquela

vigente na sua parte superior. Resulta daí que um

corpo imerso num líquido experimentará a ação de

uma força, denominada empuxo.

Por causa da baixa densidade do ar, a força denominada empuxo é desprezível no voo das aves

e dos animais em geral, ou seja, o peso do líquido deslocado é desprezível ante o peso do objeto.

y t gt( ) ≅ 12

2

y t g t( ) ≅ −

( )

γ γ1 2ln

Figura 12.19: Pressão como função da profundidade e o efeito da diferença de pressão num corpo imerso num fluido.

Page 23: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

302

12 Movimento dos Animais

Licenciatura em Ciências · USP/Univesp · Módulo 1

12.14 Forças de SustentaçãoOutro exemplo de força resultante de diferenças de pressão é a força de sustentação - aquela que

consegue, quando em pleno voo, se equilibrar com a força gravitacional agindo sobre um avião.

Ela surge, no entanto, apenas quando esse objeto está dotado de movimento em relação ao ar.

O equilíbrio só é conseguido ao atingir uma velocidade mínima.

As asas, tanto dos aviões quanto dos pássaros, têm uma forma tal que sob elas a pressão é maior

na sua parte inferior e menor na sua parte superior. Isso ocorre porque o seu design acarreta uma

velocidade do ar maior na parte superior

do que na parte inferior. E isso leva às

diferenças de pressão mencionadas.

As diferenças de pressão entre a parte

superior da asa e a inferior acarretam

uma força dita de sustentação. É uma

força aerodinâmica.

12.15 Força de impulsão: voo com propulsão É a força que impulsiona os animais, por exemplo, quando do movimento a partir do

repouso. Nesse caso, dizemos que o voo é com propulsão. Ele ocorre quando o animal bate as

asas. Ao fazê-lo, as asas empurram o ar na direção contrária ao do movimento.

A força propulsora resulta da interação das asas com o ar no entorno. Essa força será desig-

nada por

Fp, e pode ser entendida como uma força de reação exercida pelo ar.

Figura 12.20: Força de sustentação agindo sobre asas de um pássaro.

Figura 12.21: Voo com propulsão. Figura 12.22: Voo sem propulsão.

Page 24: MOVIMENTO DOS ANIMAIS Dinâmica do Movimento dos Corpos · 282 12 Movimento dos Animais Leatura e Cas vesp dulo 1 As fibras musculares são células excitáveis eletricamente. Quando

303

Dinâmica do Movimento dos Corpos

Licenciatura em Ciências · USP/Univesp · Módulo 1

Figura 11.23: (a) As quatro forças que agem no voo das aves (para cima e para frente). (b) A resultante das quatro forças

R determina a direção da velocidade da ave.

a b

Agora é sua vez...Acesse o Ambiente Virtual de Aprendizagem e

realize a(s) atividade(s) proposta(s).