investigação cinética de modos geodésicos de baixas frequências...

143

Upload: others

Post on 16-Mar-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Investigação Cinética de Modos Geodésicos de

Baixas Frequências em Plasmas Magnetizados

Autor: Reneé Jordashe Franco Sgalla

Orientador: Artour Grigorievich Elmov

Co-orientador: Ricardo Magnus Osório Galvão

3 de junho de 2014

Page 2: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Dedicatória

Dedico esta tese à minha querida esposa, Mila Silva Costa, que sempre me apoiou em minhas

atividades acadêmicas, à minha lha, Helena Costa Sgalla, a quem espero conseguir deixar uma

herança de conhecimentos para toda a vida e aos meus pais, Remo Sgalla e Maria Alice Franco

Sgalla, a quem devo todas as minhas conquistas pessoais e prossionais.

Page 3: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Agradecimentos

A realização deste trabalho não foi fruto somente do meu esforço e da minha dedicação, mas

também da colaboração de pessoas e instituições às quais devo sinceros agradecimentos.

Agradeço ao Conselho Nacional de Desenvolvimento Cientíco e Tecnológico (CNPq) pelo

apoio nanceiro, por meio da bolsa Doutorado Pleno (GD), que me foi concedido durante

o presente programa de doutoramento. O referido apoio me proporcionou, além de condições

nanceiras essenciais, motivação suciente para poder levar este trabalho adiante e, em conse-

quência deste, os próximos que provavelmente se seguirão.

Em especial, a minha querida esposa, Mila Silva Costa, devo meu mais sincero reconheci-

mento pelo apoio emocional que, desde o nal do meu mestrado, tem sido de inestimável ajuda

para seguir adiante em minha carreira acadêmica. Também reconheço a ajuda prestada por ela

quanto à revisão gramatical e estilística da escrita desta tese.

Agradeço também a minha lha, Helena Costa Sgalla, pela motivação para continuar adi-

ante, principalmente nos momentos mais difíceis, que não foram poucos.

Não poderia esquecer de agradecer também a minha mãe, Maria Alice Franco Sgalla, pelos

cuidados, ajuda e carinho que ela teve com a Helena e que me permitiram dedicar uma boa parte

do meu tempo para o meu doutorado. Da mesma forma agradeço ao meu falecido pai, Remo

Sgalla, pela minha educação e formação, que certamente teve inuencia no meu doutorado, e

pela sua ajuda durante minhas viagens com intuitos acadêmicos.

Ao meu orientador, Prof. Dr. Artour Grigorievich Elmov, que revisou meus cálculos e

sempre esteve presente para discussões sobre a física de tokamaks, devo boa parte da realização

deste trabalho, cujas contribuições com relação às diversas correções desta tese por ele fornecidas

foram essenciais para atingir a forma atual.

Uma grande parte do conhecimento que adquiri com relação à aplicação do modelo girocinético

e da teoria de dois uidos ao estudo de modos geodésicos em tokamaks devo ao Prof. Dr. Andrei

I. Smolyakov, com quem tive o prazer de trabalhar em uma colaboração que resultou na maior

parte dos capítulos desta tese e em trabalhos publicados e apresentados em conferências. Além

disso, boa parte das referências bibliográcas desta tese foram de sua recomendação.

Ao Prof. Dr. Ricardo Magnus Osório Galvão agradeço pelo curso de Física de Plasmas I

ministrado no 2semestre de 2011, o qual me ajudou melhorar meus conhecimentos em física de

plasma de uma maneira geral. Também agradeço a ele as discussões sobre rotação de plasma,

as quais contaram também com a participação do Prof. Dr. Artour G. Elmov.

Ao meu colega Davi Ciro Taborda, além dos excelentes cafés sem açúcar após almoço em sua

sala, agradeço pelas frutíferas discussões sobre equilíbrio MHD e outros assuntos importantes

sobre conhecimentos de fronteira em física de plasma. Agradeço também ao Davi a ajuda

prestada na edição de algumas das guras desta tese.

Page 4: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Resumo

Devido à sua importância em turbulência causada por ondas de deriva e à aplicação com

propósitos em diagnósticos de plasma, a investigação de uxos zonais (ZFs) e modos acústicos

geodésicos (GAMs) tem atraído bastante atenção na literatura em física de plasmas. Nesta

tese, primeiramente consideramos efeitos de equilíbrio com rotação poloidal e toroidal nestes

modos, posteriormente investigamos efeitos diamagnéticos em GAMs a partir de um modelo

de dois uido, no qual incluímos viscosidade paralela de íons e, na parte nal, consideramos

amortecimento de Landau e efeitos diamagnéticos simultaneamente no estudo de GAMs, porém,

a partir do modelo girocinético. Efeitos diamagnéticos são causados por termos que envolvem

gradientes de densidade e de temperatura provenientes da função Maxwelliana de equilíbrio.

O acoplamento entre os harmônicos poloidais, m = ±1, e as derivadas radiais de quantidades

macroscópicas do plasma é responsável pelo aumento no valor da frequência no GAM de alta

frequência e pela instabilidade no GAM de baixa frequência. Este tipo de instabilidade, que é

proporcional à frequência diamagnética de elétrons e à razão entre os gradientes de temperatura

e de densidade, é mais propenso a ocorrer em posições radiais em que o fator segurança é alto.

Modos geodésicos são fracamente amortecidos devido a um mecânismo não colisional conhecido

por amortecimento de Landau, o qual é causado pela interação entre a onda eletrostática e

partículas carregadas, íons no caso, e a taxa de amortecimento é maior próximo ao centro da

coluna de plasma, onde o fator de segurança assume valores mais baixos.

O equilíbrio MHD com rotação foi investigado em três regimes com relação às superfícies

magnéticas: isotérmico, adiabático e isométrico. Foi observado que o gradiente de temperatura

possui sentido oposto em relação à velocidade de rotação poloidal apenas no regime isométrico.

Ao considerar equilíbrio com rotação e superfícies magnéticas isotérmicas e incluir uxo de

calor na equação da energia, observamos que ZFs apresentam frequência não-nula, a qual é

proporcional à velocidade de rotação poloidal e inversamente proporcional ao fator de segurança.

Como direções futuras ressaltamos que é importante considerar efeitos eletromagnéticos,

estudar automodos geodésicos e incluir o efeito de partículas aprisionadas em modos de baixas

para o desenvolvimento da física de ZFs e GAMs. Tal desenvolvimento beneciará tanto a área

de transporte em tokamaks como a área de diagnósticos, na qual a obtenção do perl radial

da temperatura de íons e do fator de segurança é um dos objetivos. Nesta área, um novo

tipo de diagnóstico conhecido como espectroscopia em modos acústicos geodésicos está sendo

desenvolvido baseado no estudo de automodos.

Palavras chaves: Modos acústicos geodésicos, GAM, efeitos diamagnéticos, efeitos de

deriva, amortecimento de Landau, uxos zonais, ZF, espectroscopia em GAM.

Page 5: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Abstract

Due to the important role in drift wave turbulence and applications for plasma diagnostic

purposes, the investigation of zonal ows (ZFs) and associated geodesic acoustic modes (GAMs)

has arisen much attention in the plasma physics literature. In this thesis, rst we consider equi-

librium poloidal and toroidal rotation eects on these modes using the ideal MHD model, then

we investigate diamagnetic eects on GAMs using a two uid model that includes parallel ion

viscosity, and, in the nal step, we include both Landau damping and diamagnetic eects on the

study of GAMs within the framework of the gyrokinetic model. By diamagnetic eects we mean

the density and temperature radial gradients terms coming from the equilibrium Maxwellian

distribution function. The eects caused by the coupling between the m = ±1 poloidal har-

monics and the radial derivatives of equilibrium macroscopic quantities are responsible for an

increase in the frequency value of the high frequency GAM and for an instability in the low

frequency GAM. This instability, which is proportional to the electron drift frequency and the

ratio between ion temperature and density gradients, are more likely to occur in radial positions

where the safety factor is high. We observe that geodesic modes are slowly damped by a colli-

sionlees mechanism known as Landau damping which is caused by the wave particle interaction

between the eletrostatic potential and the íons. This damping is enhanced near the center of

the plasma column, where the safety factor has lower values.

Equilibrium MHD with plasma rotation were investigated in three regimes regarding the

magnetic surfaces: isotherm, adiabatic and isometric. It is found that the temperature gradient

has opposite directions compared to the poloidal rotation only for the isometric regime. By

considering equilibrium rotation with isotherm magnetic surfaces and including heat ux we

observed that ZFs has a non-zero frequency which is proportional to the poloidal velocity and

the inverse of the safety factor.

For future directions we point out that electromagnetic eects, geodesic eigenmodes and

trapped particles physics should be important for the development of the ZF and GAMs physics,

either in the area of anomalous transport caused by drift wave turbulence or for diagnostic

purposes for obtaining the radial prole of the ion temperature and the safety factor. In this

area, a new kind of diagnostic known as geodesic acoustic mode spectroscopy is being developing

based on the study of eigenmodes.

keywords: Geodesic Acoustic Modes, GAM, diamagnetic eects, drift eects, Landau

damping, zonal ows, ZF, GAM spectroscopy.

Page 6: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Sumário

Lista de Figuras IV

Lista de Tabelas IV

1 Introdução 1

1.1 Energia para futuras gerações . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 O connamento do plasma no tokamak . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 O princípio de connamento magnético . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Degradação do connamento em tokamaks . . . . . . . . . . . . . . . . . . 6

1.3 Motivação para o estudo de modos geodésicos e resultados obtidos . . . . . . . . 7

1.4 Frequência dos modos acústicos geodésicos (GAMs) . . . . . . . . . . . . . . . . . 10

1.5 Organização desta tese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Capítulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 Apêndices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Física de tokamaks 12

2.1 Comprimentos e tempos característicos do plasma . . . . . . . . . . . . . . . . . . 12

2.2 Campo magnético e equilíbrio no tokamak . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Difusão e transporte em tokamaks . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Movimento de partículas e velocidade do centro guia . . . . . . . . . . . . . . . . 20

2.5 Teoria cinética . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Análise da equação de Boltzmann . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 A equação girocinética . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Equação cinética de deriva . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Teoria de uidos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Teoria de dois uidos e as equações de Braginskii . . . . . . . . . . . . . . 26

2.6.2 Teoria da magneto-hidrodinâmica (MHD) ideal . . . . . . . . . . . . . . . 29

3 Modelo de uido para uxos zonais e modos acústicos geodésicos 34

3.1 Modelo da magnetohidrodinâmica (MHD) ideal . . . . . . . . . . . . . . . . . . . 34

3.2 Equilíbrio com rotação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

I

Page 7: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

3.2.1 Rotação toroidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Rotação poloidal e toroidal . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Sistema de equações perturbadas e relação de dispersão . . . . . . . . . . . . . . 43

3.4 Fluxos zonais (ZFs) e modos acústicos geodésicos (GAMs) . . . . . . . . . . . . . 44

3.5 Efeito de rotação nos GAMs e ZFs . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Efeito da rotação toroidal . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Efeito da rotação poloidal e toroidal . . . . . . . . . . . . . . . . . . . . . 52

3.6 Discussão sobre o índice adiabático . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Modelo de dois uidos com viscosidade paralela . . . . . . . . . . . . . . . . . . . 54

3.7.1 Efeito de anisotropia de pressão nos GAMs . . . . . . . . . . . . . . . . . 55

3.7.2 Efeitos diamagnéticos nos GAM . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Discussão sobre GAMs eletromagnético . . . . . . . . . . . . . . . . . . . . . . . . 59

3.9 Sumário e discussão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Investigação de modos acústicos geodésicos (GAMs) pelo modelo girocinético 64

4.1 Estudo de GAMs a partir do modelo girocinético . . . . . . . . . . . . . . . . . . 64

4.1.1 Limite de uido com k‖vTi = 0 (q →∞) . . . . . . . . . . . . . . . . . . . 67

4.1.2 Limite de uido com k‖vTi nito (q 1) . . . . . . . . . . . . . . . . . . . 69

4.1.3 Dissipação de Landau em GAMs (ω > k‖vTi) . . . . . . . . . . . . . . . . 72

4.2 Discussão sobre aplicações do modelo girocinético na forma mais geral . . . . . . 74

4.3 Efeitos diamagnéticos e amortecimento de Landau em GAMs . . . . . . . . . . . 75

4.3.1 Soluções no limite de uido . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.2 Efeito cinético em modos geodésicos (amortecimento de Landau) . . . . . 80

4.4 Sumário e discussão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusões e direções futuras 83

5.1 Modelo de uidos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Modelo girocinético . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Propostas para trabalhos futuros . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A Cálculo numérico de parâmetros e grandezas características do TCABR 89

A.1 Constantes da Física . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.2 Parâmetros do tokamak TCABR . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.3 Grandezas características do tokamak TCABR . . . . . . . . . . . . . . . . . . . 90

B Identidades e relações vetoriais 91

B.1 Identidades vetoriais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.2 Identidades e teoremas fundamentais . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.3 Identidades envolvendo o operador ∇ . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.4 Gradiente, Divergente, Rotacional e Laplaciano em coordenadas cilíndricas . . . . 92

II

Page 8: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

B.5 Gradiente, Divergente e Rotacional em coordenadas quasi-toroidais . . . . . . . . 93

B.6 Derivativos de versores em coordenadas cilíndricas . . . . . . . . . . . . . . . . . 93

B.7 Derivativos de versores em coordenadas quasi-toroidais . . . . . . . . . . . . . . . 93

C Obtenção das expressões analíticas referentes à análise de equilíbrio com ro-

tação 95

C.1 Relações envolvendo B e J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.2 Relações para V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

C.3 Cálculo de ∇ · q de equilíbrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

D Derivação de fórmulas usadas no capítulo 3 101

D.1 Relações para B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

D.2 Cálculo da divergência de π, v, J e q . . . . . . . . . . . . . . . . . . . . . . . . . 102

D.2.1 Relações para velocidades (v) . . . . . . . . . . . . . . . . . . . . . . . . . 102

D.2.2 Relações para a densidade de corrente (j) . . . . . . . . . . . . . . . . . . 103

D.3 Equação de evolução de π‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

D.4 Aproximação para tokamaks de superfícies magnéticas concentricas . . . . . . . . 105

D.4.1 Campo magnético de equilíbrio . . . . . . . . . . . . . . . . . . . . . . . . 105

D.4.2 Campo magnético perturbado . . . . . . . . . . . . . . . . . . . . . . . . . 105

D.4.3 Velocidade e densidade de corrente. . . . . . . . . . . . . . . . . . . . . . . 106

E Solução iterativa das equações perturbadas da MHD ideal 107

E.1 Equações iniciais e solução de equilíbrio . . . . . . . . . . . . . . . . . . . . . . . 107

E.2 Cálculo de F‖, R e P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

E.2.1 Termos de convecção e derivadas angulares . . . . . . . . . . . . . . . . . 108

E.2.2 Cálculo de F‖ e Fθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

E.2.3 Cálculo de R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

E.2.4 Cálculo de ∇ · q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

E.2.5 Cálculo de P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

E.3 Solução sem rotação (primeira iteração) . . . . . . . . . . . . . . . . . . . . . . . 111

E.4 Solução com rotação toroidal (segunda iteração) . . . . . . . . . . . . . . . . . . . 111

E.5 Rotação poloidal e toroidal (terceira iteração) . . . . . . . . . . . . . . . . . . . . 112

E.6 Relação de dispersão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

F Cálculo de integrais da função distribuição 117

F.1 Relações envolvendo a distribuição maxwelliana . . . . . . . . . . . . . . . . . . . 117

F.2 Cálculo das integrais na aproximação de uido . . . . . . . . . . . . . . . . . . . 118

F.3 Função dispersão de plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

F.4 Cálculo das integrais com efeitos cinéticos . . . . . . . . . . . . . . . . . . . . . . 121

F.5 Obtenção do limite de uido a partir das integrais com efeitos cinéticos . . . . . . 123

III

Page 9: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

G Participação em eventos cientícos 124

G.1 Cursos internacionais: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

G.2 Produção bibliográca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

G.3 Conferências e encontros cientícos . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Referências Bibliográcas 132

IV

Page 10: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Lista de Figuras

1.1 Esquema de obtenção de energia por meio de fusão termonuclear controlada em

um futuro reator a fusão baseado no tokamak . . . . . . . . . . . . . . . . . . . . 4

1.2 Esquema de um tokamak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Gráco do perl radial da velocidade de rotação poloidal e toroidal como função

da posição radial no TCABR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Dinâmica de modos acústicos geodésicos (GAMs) em tokamaks. . . . . . . . . . . 49

3.3 Singularidades do denomindador de D(P) para MP ≥ 0 . . . . . . . . . . . . . . . 51

V

Page 11: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Lista de Tabelas

3.1 Frequências normalizadas em diferentes regimes de equilíbrio com rotação toroidal 53

4.1 Frequências típicas normalizadas (por vTi/R0) relacionadas a efeitos geodésicos,

acústicos de íons e diamagnéticos.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1 Parâmetros do TCABR no Instituto de Física da Universidade de São Paulo

(IFUSP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.2 Valor numérico aproximado da frequência de giração, da velocidade térmica e do

raio de Larmor para o tokamak TCABR . . . . . . . . . . . . . . . . . . . . . . . 90

VI

Page 12: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Capítulo 1

Introdução

Nesta introdução, inicialmente, discutimos aspectos sobre a questão da produção de energia

para o consumo humano e, ainda neste contexto, apresentamos a proposta da fusão termonuclear

controlada como meio alternativo para superar a maioria dos problemas da área de energia. O

princípio de connamento do plasma no tokamak e alguns dos principais desaos da física de

tokamaks são elucidados em seguida.

Na terceira seção, na qual as principais referências relacionadas ao tema desta tese foram

inseridas, apresentamos a motivação para este trabalho, que tem como principal objetivo inves-

tigar modos acústicos geodésicos (GAM1). Finalmente, a forma como esta tese está organizada,

os assuntos de que trata cada capítulo e o conteúdo dos apêndices são apresentados de forma

resumida na última seção.

1.1 Energia para futuras gerações

Há algumas décadas atrás, quando o aquecimento global não era considerado um problema

em potencial e, além disso, as reservas naturais de petróleo e carvão eram consideradas garantia

de energia suciente por um longo período, métodos alternativos de produção de energia, tais

como energia solar, eólica, geotérmica, etc... não tinham tanta força para prevalecer na prática.

Atualmente, entretanto, a ameaça de possíveis mudanças negativas no planeta, provocadas

principalmente pelo aquecimento global, tem sido considerada uma preocupação para cientistas

e ambientalistas no mundo inteiro. Ademais, sinais de escassez de recursos naturais e o aumento

do consumo de energia, principalmente devido ao desenvolvimento tecnológico e ao aumento da

população mundial, mostram-se cada vez mais evidentes, de forma que a busca por formas

alternativas de produzir energia com um mínimo de impacto ambiental vem ganhando força em

diversos países, inclusive na mídia.

Contudo, é possível, considerando algumas estimativas, que as atuais formas de energia

1Geodesic Acoustic Modes

1

Page 13: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

limpa e renováveis não possam suprir a demanda causada pelo aumento do consumo de energia

que certamente ocorrerá nas próximas décadas. Por esta razão torna-se imprescindível o desen-

volvimento de novos mecanismos de produção de energia e, em particular, da energia por meio

de fusão termonuclear controlada, que é uma solução em potencial para o problema. Isto se

deve ao fato de que, além de não haver impacto ambiental e, a longo prazo, o custo de obtenção

dos combustíveis a serem utilizados na reação de fusão se tornar baixo, a grande quantidade de

energia que poderá ser produzida e a facilidade de instalação são vantagens decisivas. Quanto às

questões sobre a produção de resíduos radioativos e ao risco de acidentes nucleares, considerados

de suma relevância quando se trata de reatores a ssão nuclear, o tempo de armazenamento

destes resíduos para que não causem danos ao meio ambiente é bem menor no caso da fusão e,

além disso, o impacto de um improvável acidente não se estenderia a proporções maiores do que

o local de instalação do reator, ao contrário do que ocorreu no passado com reatores a ssão.

Com base nestes argumentos, acredita-se que a energia a fusão é a solução mais ecaz no que

se refere à produção de grande quantidade de energia de forma sustentável com um mínimo

de impacto ambiental. Entretanto há muitos desaos tanto na física como na engenharia não

superados ainda que impedem a obtenção de energia por meio de fusão. Com o objetivo de

superar estes desaos, pesquisas em diversos dispositivos de connamento de plasma vêm sendo

realizadas ao longo do tempo e, atualmente, acredita-se que o tokamak2, inventado por I. Tamm

e A. Sakharov [1] na década de 50, é o dispositivo mais propenso a ser utilizado na primeira

usina de energia a fusão. Tokamaks localizados em diversas partes do planetas [2] vêm sendo

construídos ao longo de décadas, após a segunda guerra mundial, com a nalidade de promover

a pesquisa em física de plasmas com o objetivo de superar os desaos que impedem a obtenção

de energia por meio de fusão.

O processo para obtenção de energia elétrica por meio fusão nuclear, ilustrado na gura 1.1,

consiste em produzir e connar um plasma constituído por deutério (D) e Trítio (T), isótopos

do hidrogênio, mantendo-o a determinados valores de temperatura e de densidade, mas ainda

assim, de maneira estável, de forma que possa ocorrer com frequência a seguinte reação:

D + T→ 4He (3.5 MeV) + n(14.1 MeV). (1.1)

Em uma fase inicial do desenvolvimento de reatores a fusão, por ser uma das reações nu-

cleares mais simples de se realizar, a reação expressa em (1.1) seria utilizada ao invés de outras

mais efetivas. A razão da maior facilidade desta reação reside no valor mínimo da temperatura

para vencer a barreira coulombiana e, por esta razão, uma vez que a elevação da temperatura no

plasma implica em maior diculdade para estabilizá-lo, o uso da reação entre deutério e trítio é

justicada no início da nova era da tecnologia de fusão.

Nêutrons energéticos provenientes do plasma, ao atingirem a camada de Lítio (Li), que

2O nome tokamak é proveniente de toroidalnaya kamera magnitnaya katushka, que em russo signicaCâmera toroidal envolvida por bobinas magnéticas.

2

Page 14: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

reveste as paredes internas do tokamak, transfeririam sua energia, na forma de calor, a uma

tubulação de água corrente com a produção de vapor a alta pressão como consequência deste

processo. Este vapor seria então utilizado para acionar um gerador de eletricidade que, por sua

vez, abasteceria a rede elétrica das cidades. A função da camada de Li no tokamak, disposta

em uma manta, é fornecer átomos de trítio ao plasma, de acordo com a reação:

6Li + n→ 4He + T + 5 MeV. (1.2)

De maneira global, neste processo de várias etapas de transformação de energia, o resultado

líquido seria transformar a energia nuclear contida nos átomos de deutério e de trítio em energia

elétrica e, liberando como resíduo desta transformação gás Hélio, que poderia ser liberado ao

meio ambiente sem o prejuízo de nenhum impacto ambiental, uma vez que este gás é inerte

e estável. Apesar da enorme quantidade de energia que poderia ser conseguida com baixas

quantidades de Deutério e de Lítio, abundantes na natureza, o risco de acidentes nucleares é

baixo e o impacto ambiental praticamente inexiste.

O maior desao, no entanto, consiste em conseguir manter o plasma connado nas condições

necessárias para que reações de fusão possam ocorrer. Diversas instabilidades e processos de

dissipação, que ocorrem durante o processo de connamento do plasma, impedem que este con-

namento dure tempo suciente para que o tokamak possa ser usado como um reator nuclear. Em

particular, há o mecanismo de transporte, no qual partículas e energia do plasma são perdidas

rapidamente, degradando, assim, o connamento. A diculdade de manter o plasma connado

por longos períodos, entre outros aspectos, é a principal razão que impede o prosseguimento do

programa de energia à fusão e, por esta razão, uma intensa atividade de pesquisa vem sendo

desenvolvida com o intuito de superar estas diculdades.

1.2 O connamento do plasma no tokamak

1.2.1 O princípio de connamento magnético

O plasma permanece connado no tokamak quando ocorre o equilíbrio entre a força devida

ao gradiente de pressão cinética e a força magnética3, de acordo com a equação

∇p = J×B, (1.3)

onde p é a pressão cinética do plasma e J = µ−10 ∇ × B é a corrente produzida pelo campo

magnético (B) e pelo gradiente de pressão. A primeira força, devida a pressão do plasma, é

uma consequência natural do comportamento de gás apresentado pelo plasma e ocorre devido

às frequentes colisões a que estão sujeitas as partículas que compõem o plasma. Em oposição

3É comum também utilizar a formulação em termos da pressão magnética (B2/2µ0)

3

Page 15: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

D

T

n

Fusao

Energia

He

Tokamak

Plasma

Gerador

Transformador

Águalíquida

Vapor de águaRede elétrica

Figura 1.1: Esquema de obtenção de energia por meio de fusão termonuclear controladaem um futuro reator a fusão baseado no tokamak.Obs: Adaptação a partir das guras originais provenientes das seguintes fontes:http://iter.rma.ac.be/en/sustain/FusionPlant/index.php (Acessado em 14/05/2014)http://www.infoescola.com/quimica/quimica-nuclear/(Acessado em 14/05/2014)

a esta, a força magnética, que age no sentido de connar o plasma, é produzida pela interação

entre o campo magnético e a corrente que percorre o plasma.

No parágrafo que se segue, o mecanismo de connamento do plasma, a partir da criação

deste, bem como os principais campos magnéticos, correntes e dispositivos mais importantes,

os quais também são mostrados na gura 1.2.1, são descritos.

Em um primeiro momento, o plasma é produzido a partir da ionização do gás neutro (nor-

4

Page 16: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Campo magnéticopoloidal (BP )

Bobinatoroidal

Bobinavertical

Campo magnéticotoroidal (BT )

Corrente deplasma (Ip)

aθR0

Colunade

plasma

Figura 1.2: Esquema de um tokamak

malmente hidrogênio ou deutério) contido na câmera de vácuo, que ocorre devido à alta tensão

induzida pela transferência da energia contida em um conjunto de capacitores de alta potência

para o enrolamento central. Note que o tokamak age como um transformador, onde a coluna

de plasma, em forma de anel, atua como enrolamento secundário. Após a ionização do gás,

ocorre então uma queda brusca na resistividade deste, momento em que o plasma é produzido,

passando a circular, então, uma intensa corrente no plasma, a corrente de plasma (Ip). De-

vido ao efeito Joule o plasma é aquecido a temperaturas estrelares, condição indispensável para

que reações de fusão nuclear, como a mostrada na eq. (1.1), possam ocorrer com frequência.

Nesta etapa do processo, para conter o efeito da forte pressão cinética, que aumenta com a

temperatura, forçando o plasma a se expandir e dicultando, portanto, o connamento, a força

magnética desempenha um papel essencial. Esta força surge em decorrência da interação entre

as correntes que circulam no plasma e o campo magnético nele presente. Para que haja con-

namento é necessário que este campo magnético apresente duas componentes: uma na direção

toroidal, BT , produzida externamente pelo enrolamento toroidal, e a outra na direção poloidal,

BP , criada pela própria corrente de plasma. Além da corrente de plasma, na direção toroidal, o

comportamento coletivo do plasma permite o surgimento de uma outra corrente neste, porém,

na direção poloidal. Esta corrente surge em consequência da deriva diamagnética devido à ex-

istência de um gradiente (radial) de densidade. Por m, há ainda um outro efeito indesejável

5

Page 17: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

ao connamento, o qual justica a utilidade das bobinas verticais. A coluna de plasma tende

a aumentar seu raio maior em direção à câmera de vácuo, similar ao que ocorre em um anel

de corrente imerso em um campo magnético [3]. Este problema, porém, pode ser facilmente

corrigido por meio de uma corrente controlável que atravessa as bobinas verticais, as quais

foram implementadas com o objetivo de criar um campo magnético vertical capaz de controlar

a posição do plasma.

Na literatura há inúmeras referências a respeito da teoria de tokamaks, nas quais detalhes

importantes, do ponto de vista físico, sobre o processo pelo qual o plasma é connamento

em tokamaks são apresentados. Uma exposição didática, simples e qualitativa, que trata não

somente da física de tokamaks mas também de muitas questões relacionadas à área de energia,

pode ser encontrada em [4]. Para um estudo mais aprofundado, que envolve detalhes algébricos,

algumas das referências mais tradicionais, [2, 3, 5], são recomendadas.

1.2.2 Degradação do connamento em tokamaks

Após o connamento do plasma em um primeiro momento, há ainda outros obstáculos, dos

quais mencionamos apenas dois, a serem vencidos para que se possa tornar uma realidade e,

portanto, proporcionar um enorme avanço cientíco à possibilidade de obtenção de energia por

meio de fusão nuclear.

Primeiramente, há de se considerar a impossibilidade de o tokamak agir como transformador

por muito tempo, o que manteria a corrente de plasma (essencial para o connamento), pois,

para isso, o valor da tensão aplicada ao enrolamento central teria que crescer constantemente

por um longo período, o que é impossível do ponto de vista prático. Entretanto é essencial a

presença da corrente de plasma para o connamento, o que requer uma solução alternativa para

o problema. Constitui uma das linhas de pesquisa em plasmas de tokamaks o desenvolvimento

de mecanismos capazes de manter a corrente de plasma e aquecer o plasma. Tais mecanismos

se baseiam na excitação de ondas no plasma e na transferência de partículas neutras a este

por meio de dispositivos auxiliares. Em particular, com a descoberta de ondas de Alfvén [6], a

geração de corrente e o aquecimento do plasma têm sido uma área de pesquisa ativa em muitos

tokamaks e, especialmente, faz parte dos projetos do TCABR4 [7].

Um outro grande obstáculo para a área de plasmas de fusão é o transporte de partículas,

energia e calor que ocorre no plasma, degradando rapidamente o connamento. Especial ênfase

deve ser dada ao transporte anômalo (ou turbulento), o qual é muito maior do que o transporte

clássico que ocorre em gases neutros. Entretanto, com a descoberta de um novo regime de

connamento, também conhecido como modo H5 [8], houve uma signicativa contribuição para

4O Tokamak Chauage Alfvén Brasilien (TCABR) ca localizado no Instituto de Física (IF) daUniversidade de São Paulo (USP), no Brasil.

5High (connement)

6

Page 18: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

o desenvolvimento de tokamaks, em especial o ITER6 [9]. No modo H, forma-se um forte

gradiente de pressão em certa região do plasma, também conhecido como barreira de transporte

(TB7), pois o transporte turbulento é signicativamente reduzido nesta região. Com relação ao

processo de turbulência no plasma, que contribui signicativamente para o transporte anômalo,

descobriu-se a ocorrência de determinados modos no plasma, os modos acústicos geodésicos

(GAM), também conhecidos por uxos zonais (ZF) de alta frequência, que são capazes de

suprimir um tipo especial de turbulência: turbulência de ondas de deriva (DWT8). A excitação

e identicação experimental de GAM em tokamaks, bem como a compreensão do processo de

auto-organização responsável pela supressão de turbulência, tem sido alvo de intensa pesquisa

teórica e experimental [10,11].

1.3 Motivação para o estudo de modos geodésicos e

resultados obtidos

Modos geodésicos de baixas frequências, em especial GAM, têm sido alvo de intensa inves-

tigação, teórica e experimental, não somente devido ao seu papel na supressão de transporte

turbulento em tokamaks [10,12], mas também devido a sua relação com auto-modos de Alfvén

induzidos pela pressão (BAE9) [1317]. A observação da atividade magneto-hidrodinâmica

(MHD10) devido a modos geodésicos pode ter também aplicações diagnósticas, especialmente

no que se refere à espectroscopia em MHD [18]. O estudo de BAE é de fundamental importância

na investigação da turbulência de fundo, na geração de turbulência e, em espectroscopia MHD,

para diagnosticar o fator de segurança, q, [19, 20]. No que se refere à vericação experimental

dos GAM, importantes experimentos em diferentes tokamaks [2124] não só conrmaram a sua

existência mas também revelaram aspectos crucias com relação a sua localização e intensidade.

A principal motivação desta tese reside no objetivo de contribuir, ainda que indiretamente,

com resultados teóricos, qualitativos e quantitativos, que ajudem a compreender melhor o com-

portamento de GAMs e o mecanismo de supressão de turbulência em tokamaks. A compreensão

deste mecanismo, bem como o estudo de transporte anômalo pertencem a um conjunto de de-

saos cientícos a serem superados para o desenvolvimento do primeiro reator a fusão nuclear e,

por isso, podem desempenhar um papel de importância econômica, social e ecológica em escala

global no futuro.

Neste sentido, por considerarmos um tema muito importante, investigamos diversos efeitos

6O International Thermonuclear Experimental Reactor (ITER) é o primeiro reator a fusão (em con-strução ainda) baseado na tecnologia de tokamaks. Localizado em Cadarashe, na França, ele esta sendoprojetado para produzir 500 MW de potência.

7Transport Barrier8Drift wave turbulence9Beta induced Alfvén Eigen-modes10Magnetohydrodynamics

7

Page 19: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

nos GAM [25], os quais, pelo fato de estarem diretamente ligados à DWT, têm sido alvo de

intensa pesquisa teórica e experimental em tokamaks. Segue abaixo uma breve discussão sobre

estes efeitos e os principais resultados decorrentes que obtivemos:

• Rotação de equilíbrio: Causada pela presença de um campo elétrico radial de equilíbrio

e gradientes de temperatura e densidade, tem sido investigada principalmente devido a

sua ocorrência durante a formação da barreira de transporte (TB) no regime de conna-

mento melhorado (ou modo H) [8]. Investigamos a inuência de rotação poloidal e toroidal

na frequência dos modos GAM (capítulo 3) a partir do modelo da MHD ideal (resistivi-

dade nula) para um uido. Foram considerados três tipos de equilíbrio: adiabático,

isotérmico e isométrico (ou isocórico), os quais são descritos abaixo:

Equilíbrio adiabático: Por estar no regime característico da propagação de ondas

de som, não somente em plasma mas também em uidos neutros, assim como es-

perado, inuencia diretamente a frequência dos GAM, no sentido de aumentar esta,

conforme a eq. (3.121)), não importando o sentido da rotação. Apenas para o caso

especíco em que há rotação poloidal é importante mencionar a inexistência de

equilíbrios com rotação puramente poloidal há uma segunda solução, mostrada na

eq. (??), que corresponde ao ramo sonoro de íons, e cuja frequência normalizada, da

ordem do inverso do fator de segurança (q−1) em relação à frequência dos GAM, se

encontra no valor intermediário entre o ramo dos GAM e dos ZF. Este último ramo,

de frequência nula normalmente, não tem sua frequência alterada exclusivamente

para este equilíbrio, o que indica que o uxo de calor (q) desempenha um papel

importante no mecanismo de formação dos ZF.

Equilíbrio isotérmico: É o mais coerente com a realidade de plasmas em toka-

maks, pois, devido à pequena massa dos elétrons, qualquer variação de temperatura

em superfície magnética é rapidamente anulada por eles. O aparecimento de ZF

estáveis, porém de frequência nita, quando há rotação poloidal, é a principal con-

sequência deste tipo de equilíbrio, no qual uxo de calor perpendicular, devido ao

gradiente radial de temperatura, deve ser considerado.

Equilíbrio isométrico (ou isocórico): Permite a presença de uxos zonais (ZF)

instáveis, mesmo para o caso de rotação exclusivamente toroidal [26], o que, de

certa forma, conrma a relação destes com uxos imcompressíveis no plasma. Uma

das inovações desta tese foi investigar o efeito do equilíbrio isométrico com rotação

poloidal nos ZF.

Em resumo, ao considerarmos diferentes equilíbrios com rotação encontramos três soluções,

com valores de frequências distintos e característicos de fenômenos físicos diferentes que

ocorrem no plasma. Tais fenômenos decorrem de características peculiares do plasma e

8

Page 20: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

do tokamak, as quais estão relacionadas à curvatura geodésica do campo magnético no

tokamak, à propagação de ondas típica de uidos, ao importante parâmetro do tokamak

conhecido como fator de segurança e à condição de compressibilidade ou incompressibili-

dade que o plasma assume.

• Efeitos diamagnético (ou efeitos de derivas11): Efeitos causados por gradientes

de densidade e temperatura de equilíbrio em modos geodésicos de baixas frequências,

foram investigados nesta parte (capítulos 3 e 4). Nossos objetivos são apresentar os

mecanismos físicos envolvidos nas oscilações dos GAM, expor o conteúdo da forma mais

simples e compreensível possível e incluir efeitos cinéticos. Para atingir tais objetivos

utilizados dois modelos, o modelo de uidos e o modelo giro-cinético, de forma que a

consistência física proporcionada pelo modelo de uido e a maior generalidade do modelo

cinético contribuam para nossa meta. Ao considerar o efeito da deriva diamagnética

e o efeito de rotação de equilíbrio nos GAM, pudemos observar que estes efeitos estão

relacionados. Aspectos relativos a esses dois modelos e os resultados decorrentes de seu

uso são mostrados a seguir:

Modelo de dois uidos: Este modelo é diferente do modelo da MHD ideal, con-

siderado anteriormente, por duas razões: primeiro, os dois uidos característicos,

de íons e de elétrons, são considerados em regimes distintos e, segundo, devido à

interação entre as partículas do plasma e o campo magnético macroscópico pre-

sente neste, a diferença entre a pressão paralela e a perpendicular (relativamente ao

campo magnético de equilíbrio), deve ser considerada, com a inclusão do tensor de

viscosidade paralela [27], por exemplo, para a obtenção de resultados condizentes

com a teoria cinética. Em favor da simplicidade e do didatismo, na exposição do

capítulo 3 consideramos o limite q →∞, enfatizando, assim, apenas duas questões:

o efeito dos gradientes de densidade e de temperatura nos modos correspondentes

ao ramo geodésico (GAM) e ao ramo de mais baixa frequência (ZF) e, devido à

anisotropia da pressão perturbada, a correção do coeciente adiabático efetivo do

uido de íons(γ(ef)i = 5/3→ 7/4).

Modelo giro-cinético: Tem como metodologia, assim como qualquer modelo

cinético, obter a função distribuição das partículas que compõem o plasma a partir

da resolução da equação de Vlasov (sem o termo de colisões) [28]. Porém, especi-

camente para este modelo, a presente equação é desenvolvida previamente a sua

resolução a partir da teoria giro-cinética [29], que é apresentada no capítulo 2 e

aplicada, na forma deste modelo, no capítulo 4. Com a utilização desse modelo

para incluir efeitos diamagnéticos em modos de baixas frequências, obtivemos três

soluções similares às obtidas pela incorporação de rotação de equilíbrio no modelo

11Drift eects

9

Page 21: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

da MHD ideal (capítulo 3), de forma que propomos, nesta tese, uma alternativa,

em princípio, para o estudo de efeitos da rotação de equilíbrio em modos de baixas

frequências, quando este estudo for complexo em modelos cinéticos. A solução no

ramo sonoro, obtida quando se considera q nito, assim como o amortecimento de

Landau dos modos pertencentes aos três ramos foram obtidos no capítulo 4. Entre

as principais consequências causadas pelo amortecimento de Landau, está a de-

formação da função distribuição de íons e a diminuição do potencial eletrostático

perturbado com o tempo, impactando negativamente no connamento com a ex-

tinção dos GAM. Descoberto por L. D. Landau [30], o mecanismo de amortecimento

ou crescimento exponencial de uma onda eletromagnética, mesmo em plasmas não

colisionais, também conhecido como amortecimento de Landau, é uma consequência

da interação onda-partícula que ocorre no plasma devido à presença de partículas

com velocidades próximas às da velocidade de fase da onda.

1.4 Frequência dos modos acústicos geodésicos (GAMs)

A primeira expressão analítica para a frequência dos GAM [25], a qual foi obtida a partir do

modelo da MHD ideal, no qual se considera o plasma como um uido único de índice adiabático

γ = 5/3, pode ser escrita como:

ω2gam(MHD) =

(2 +

1

q2

)γT

mi, (1.4)

onde T = Ti + Te é a temperatura do plasma, Ti e Te são, respectivamente, a temperatura de

íons e de elétrons e mi é a massa dos íons (no caso de plasma de hidrogênio).

Posteriormente, em estudos hidrodinâmicos [31], estes modos também foram encontrados

e, após algumas décadas, a partir da teoria cinética [17, 32, 33], considerando efeitos adicionais

(explicado ao longo desta tese), a expressão cinética obtida para a frequência dos GAM foi:

ω2gam(K) = 2

(γ(ef)i + γe

TeTi

+O(q−2)

)Timi, (1.5)

onde γ(ef)i = 7/4 é o índice adiabático efetivo para íons e γe = 1 é o índice adiabático para

elétrons. Uma derivação alternativa, [34], a partir da teoria de dois uidos, considerando íons

no regime de uido (γi = 5/3) e elétrons no regime adiabático e isotérmico, com γe = 1,

mostrou ser possível recobrar o resultado cinético (eq. (1.5)) a partir da teoria de dois uidos.

Em tal resultado a diferença entre os coecientes adiabáticos efetivos de íons e de elétrons se

deve à enorme diferença entre as massas destas duas espécies, a qual faz com que a resposta

dos elétrons às perturbações seja imediata enquanto os íons, por responderem mais lentamente,

cam sujeitos ao efeito da inomogeneidade da pressão devido a presença do campo magnético. O

10

Page 22: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

efeito da anisotropia de pressão em questão pode ser descrito por meio do tensor de viscosidade

paralela (π‖) nas equações de uido [27,34,35], conforme explicado nos capítulos 2 e 3.

1.5 Organização desta tese

1.5.1 Capítulos

Esta tese é composta por 5 capítulos e 8 apêndices cujos assuntos são sucintamente descrito

a seguir. No capítulo 2 os principais modelos físicos, provenientes da teoria de uidos e teoria

cinética aplicadas a plasmas magnetizados, são revisados, frequências e comprimentos caracterís-

ticos fundamentais e parâmetros de plasmas em tokamaks são denidos e, por m, um breve

resumo sobre a teoria de transporte em tokamaks é apresentado. A generalidade do conteúdo,

que precede a especicidade dos próximos capítulos, é uma característica deste capítulo que tem

por objetivo a revisão de conceitos fundamentais importantes. Em seguida, a partir do modelo

da MHD ideal e do modelo de dois uidos, no capítulo 3, apresentamos o estudo de modos

acústicos geodésicos (GAM) e uxos zonais (ZF). Rotação de equilíbrio e efeitos diamagnéticos

são considerados neste capítulo. Já a investigação cinética, principal tema desta tese, de efeitos

diamagnéticos e a inuência do amortecimento de Landau nos GAM são o conteúdo do capítulo

4. Por m, no (último) capítulo 5 apresentamos as conclusões cientícas desta tese, propostas

para continuação da presente linha de pesquisa e breves projetos para trabalhos futuros.

1.5.2 Apêndices

Os apêndices A e A.2, destinados à consulta, contêm, respectivamente, algumas constantes

fundamentais da física e medidas das principais grandezas de tokamaks de nosso interesse:

TCABR, JET12 e ITER. Identidades importantes, deduções de expressões úteis e longos cálculos

algébricos, utilizados principalmente no capítulo 3, são apresentados nos apêndices B, D e D.4,

respectivamente. Referentes ao capítulo 4, seguem os apêndices ?? e F, que compreendem a

dedução de longas expressões e o cálculo de integrais relacionadas à função Maxwelliana e à

função dispersão de plasma. Com o intuito de facilitar a leitura, mostramos no apêndice ??

as siglas utilizadas ao longo desta tese, bem como seus signicados originais em inglês e a

respectiva tradução para o português. Estas siglas são frequentemente utilizadas na literatura

cientíca da área e, por esta razão e para encurtar o texto, primamos pelo seu uso. Finalmente,

no apêndice G, eventos (conferências, encontros, escolas, etc...), colaborações e publicações

realizados durante o período de pós-graduação (Mestrado e Doutorado), na área de física de

plasmas, são resumidamente descritos.

12Joint European Torus (JET) é o maior tokamak em operação. Localiza-se em Oxfordshire, no ReinoUnido.

11

Page 23: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Capítulo 2

Física de tokamaks

Este capítulo destina-se a discussão de alguns dos tópicos da física de tokamaks, cujo con-

teúdo será aplicado aos modos especícos de que tratamos nos próximos capítulos. Apresenta-

mos um texto de referência, de caráter mais geral, no sentido em que as teorias aqui tratadas,

já bem estabelecidas na área de física de plasmas, são capazes de descrever inúmeros processos

e mecanismos físicos que ocorrem em plasmas. Uma descrição e as denições de grandezas fun-

damentais do plasma, tais como comprimentos e tempos característicos, como ponto de partida

para este capítulo, antecedem temas de fundamental importância para a compreensão desta

tese, os quais se referem a estrutura do campo magnético e ao mecanismo de transporte de

partículas e de energia em tokamaks. A teoria cinética de partículas carregadas e a formu-

lação macroscópica de uidos, descrita em termos de modelos utilizados posteriormente a este

capítulo, são apresentados em seguida.

Por questões de simplicidade, consideramos apenas plasmas de hidrogênio, não levando em

conta reações de fusão, de forma que Z = 1 é adotado ao longo de toda a tese. O plasma é

composto por apenas dois (duas) uidos (espécies de partículas), indexados(as) por α = i, e

(íons, elétrons). Também, como é comum em grande parte da literatura em física de plasmas,

adotamos a prática de suprimir a constante de Boltzmann (k), cujo valor é mostrado no apêndice

A, de forma que a substituição: kT → T foi utilizada ao longo desta tese.

2.1 Comprimentos e tempos característicos do plasma

A seguir, discutimos e denimos alguns dos comprimentos e tempos característicos (ou seus

inversos, as frequências características) presentes em plasmas de tokamak. Uma discussão mais

detalhada dos assuntos tratados aqui é apresentada por F. F. Chen [36].

12

Page 24: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Iniciamos nossa discussão pela frequência ciclotrônica , a qual pode ser denida1 como

ωcα =eB

mα, (2.1)

onde e é a carga elementar, mα é a massa da partícula do tipo α e B é o campo magnético. A

frequência ciclotrônica é uma medida média da rapidez do movimento das partículas em torno

das linhas de força. É importante notar que, como me mi, ωce = (mi/me)ωci ωci .

Adotando a concepção de uidos de íons e de elétrons, caracterizados por temperaturas

próprias, Ti e Te, é conveniente denir a velocidade térmica2:

v2Tα =

2Tαms

, (2.2)

onde vTe vTi , pois normalmente Ti ∼ Te e vTe = (Te/Ti)(mi/me)vTi .

A velocidade térmica e a frequência ciclotrônica se relacionam por meio de uma grandeza

conhecida como raio de giração ou raio de Larmor , que representa o comprimento car-

acterístico dos raios das orbitas de partículas em torno das linhas de força, o qual é denido

como:

ρα =vTαωcα

. (2.3)

Como ρe ∼√me/miρi ρi, o efeito de raio de Larmor nito (FLR3) para elétrons não de-

sempenha um papel importante em modos de baixas frequências e, por esta razão, consideramos

ρe ∼ 0 nos capítulos 3 e 4.

Além da velocidade térmica, há duas outras velocidades de particular interesse para o estudo

de modos de baixas frequências em plasmas magnetizados. A primeira delas é a velocidade de

Alfvén ,

cA ≈B√

µ0nimi, (2.4)

presente no estudo de ondas de Alfvén (AW4) [6], que possui importantes aplicações em plasmas,

entre elas a determinação da geometria do campo magnético [37]. Estes tipos de onda, que

possuem uma ampla gama de classicação, surgem devido a perturbações do campo magnético,

que também são referidas e classicadas na literatura como tensão (compressão ou torção das

1Alguns autores adotam a denição alternativa: ωcα = eαB/mα, de forma que, para elétrons, ee =−e, a frequência ciclotrônica torna-se negativa. Ao optarmos pela convenção de frequências semprepositivas, ressaltamos, entretanto, a necessidade de maior atenção nos cálculos algébricos.

2Denimos a temperatura em termos da energia cinética média, Kα = mαv2Tα/2 = Tα, porém a

denição v2Tα= Tα/mα também é bastante empregada na literatura.

3Finite Larmor Radius4Alfvén Waves

13

Page 25: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

linhas de força). A segunda velocidade de interesse, que é bastante utilizada ao longo desta tese,

é a velocidade de som no plasma, que se relaciona à temperatura, densidade (ρ) e pressão (p)

por:

cs ≈√γiTi + γeTe

mi=

√γp

ρ∼ vTi , (2.5)

onde γi e γe são os coecientes adiabáticos de íons e de elétrons. Devido a naturesa da massa

destas partículas, a atribuição de valor mais razoável para estes coecientes é γi = 5/3 e γe = 1,

entretantanto valores diferentes destes também podem ser considerados. O uso de γ, o índice

adiabático total, é feito dentro do contexto da teoria de um uído, a qual é discutida mais

adiante em 2.6.2.

A razão quadrática entre as velocidades de som e de Alfvén possui a mesma ordem de

grandeza de um importante parâmetro para o connamento de plasmas em tokamaks, o fator

beta , que é denido como a razão entre as pressões cinética (p) e magnética(B2/2µ0), ou seja,

c2s

c2A

∼ β

2γ, β =

2µ0p

B2. (2.6)

Em muitos modelos, como os que apresentamos nesta tese, considera-se regimes de baixa

pressão, caracterizado por β = O(ε2), onde ε = r/R0 é a razão entre a posição radial e o raio

maior do tokamak. Em tais regimes, no modelo MHD ideal é justicável desprezar perturbações

magnéticas no estudo de modos de baixas frequências [25,38,39]. Também é pertinente consid-

erar, neste tipo de estudo, a condição de quasi-neutralidade, a qual se aplica a fenômenos de

comprimentos característicos muito maiores do que o comprimento de Debye , que pode ser

denido como:

λ2Dα =

ε0Tαnαe2

. (2.7)

Em comprimentos menores do que λDα ocorrem oscilações de elétrons/íons em resposta à

presença de campo elétrico e o plasma deixa de ser neutro localmente. A frequência destas

oscilações é conhecida como frequência de plasma e, neste contexto, é denida como:

ω2pα =

nαe2

ε0ms. (2.8)

Note que λDαωpα ∼ vTα , de forma que para frequências ω ∼ vTi/R0, como R0 λDα , ω ωpα

e, neste caso, aplica-se a condição de quasi-neutralidade.

A seguir, uma breve discussão sobre os principais tempos (frequências) característicos(as)

referentes a processos de colisões é apresentada. Em colisões Coulombianas, conforme os modelos

utilizados em [4043], provenientes da teoria cinética de gases, espera-se que a frequência de

colisões elétron-íon seja νei ∼ niσvTe , onde σ = πb2, é a seção de choque transversal e b é o

14

Page 26: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

parâmetro de impacto. A maior diculdade na determinação desta frequência reside no cálculo

de b. Como referência, adotamos, para o tempo caracteristico de colisão íon-íon e elétron-

íon, os valores mostrados em [43], que, quando considerada a condição de quasi-neutralidade

(ni ≈ ne = n), são dados respectivamente por:

τii =12π3/2ε2

0

ln Λe4nm

1/2i T

3/2i , τei =

1√2

m1/2e

m1/2i

T3/2e

T3/2i

τii. (2.9)

Nestas expressões, Λ ∼ nλ3D é o número médio de partículas dentro de uma esfera de Debye

e ln Λ é um termo conhecido como logaritmo coulombiano [28, 37, 43], cujo valor numérico se

encontra entre 10 e 30.

Neste contexto, o maior dos tempos característicos é o período de colisão íon-elétron,

τie ∼ τeq, onde

τeq =mi

2meτei, (2.10)

dentro do qual ocorre o equilíbrio térmico entre íons e elétrons [37,43]. Observe que existe uma

hierearquia entre as frequências de colisão, νie νii νei.

2.2 Campo magnético e equilíbrio no tokamak

No tokamak, o campo magnético de equilíbrio pode ser representado por [44]

B = F∇φ+ ∇φ×∇Ψ, (2.11)

onde F e Ψ são funções, desconhecidas em princípio, relacionadas com a componente toroidal

(φ) do campo magnético e com o uxo magnético poloidal (θ). Note que a condição ∇ ·B = 0

é automaticamente satisfeita por (2.11).

Quando não há rotação de equilíbrio (V = 0), F = F (Ψ), p = p(Ψ) e a condição de estabil-

idade do plasma pode ser escrita como

J×B = ∇p, (2.12)

onde J = µ−10 ∇ ×B é a densidade de corrente no plasma. De forma equivalente, (2.12) pode

ser representada pela equação de Grad-Shafranov [45,46],

∆∗Ψ + µ0R2 dp

dΨ+

1

2

dF

dΨ= 0, ∆∗Ψ = R2∇ ·

(∇Ψ

R2

), (2.13)

na qual ∆∗ é um operador elíptico conhecido como operador de Shafranov [44].

A razão entre o raio maior e o raio menor do tokamak é importante parâmetro conhecido

15

Page 27: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

como razão de aspecto,

A =R0

a≤ 1

ε, ε =

r

R0. (2.14)

Em tokamaks de secção circular e alta razão de aspecto (ε 1), a dependência com a posição

poloidal (θ) de Ψ pode ser determianda analiticamente através de (2.13), mas não a dependencia

radial [39,44]. De forma aproximada, obtém-se que Ψ(r, θ) ≈ Ψ0(r)[1 + (∆s(r)/R0) cos θ], onde

∆s(r), ou deslocamento de Shafranov, é uma medida do quando as superfícies magnéticas

se deslocam em relação ao centro da coluna de plasma.

Na presença de rotação de equilíbrio [39], caso que consideramos no capítulo 3, o termo

ρ(V ·∇)V deve ser adicionado ao lado direito de (2.12), o que resulta na equação de Grad-

Shafranov modicada [47,48],

(1− µ0κ

2

ρ

)∆∗Ψ + µ0R

2

(dp

)

R

+1

2

(dF 2

)

R

− µ0κ∇Ψ ·∇(κ

ρ

)+

µ0ρ

2

d

(κ2

ρ2|∇Ψ|2

)

R

= 0, (2.15)

onde κ = κ(Ψ) é uma função de uxo proporcional à velocidade de rotação poloidal e o índice R

indica que as derivadas com relação a Ψ devem ser calculadas a R constante. Se não levarmos

em conta injeção ou perda de partículas do plasma, a velocidade de equilíbrio pode ser expressa

como

V =κ

ρB− dΦ

dΨR2∇φ, (2.16)

onde Φ = Φ(Ψ) é o potencial eletrostático de equilíbrio.

A relação entre a componente poloidal e a toroidal do campo magnético é descrita por

um parâmetro amplamente presente em muitos modos importantes do tokamak, o fator de

segurança , que pode ser denido como [42,44,47]:

q = q(Ψ) =B ·∇φ

B ·∇θ=

∫dθdφ

dθ. (2.17)

Este parâmetro é uma medida da helicidade das linhas de força no plasma e está diretamente

ligado à estabilidade do plasma, que requer que o limite de Kruskal-Shafranov (KS) [49,50],

q > 1, seja satisfeito pelo menos no centro da coluna de plasma. Em tokamaks, o fator de

segurança costuma ser maior na borda (q ∼ 3 ou até mesmo q ∼ 5) do que no centro (q ∼ 1).

Uma outra grandeza importante à estabilidade, diretamente relacionada a este parâmetro, é o

cisalhamento magnético,

s(r) =r

q

dq

dr, (2.18)

16

Page 28: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

que adimensionalmente expressa a variação de q com a posição radial. A medida desta grandeza

tem importância fundamental na área de diagnósticos para a determinação do perl radial de

q.

No estudo analítico de modos de baixas frequências, assim como em modelos neoclássicos,

é possível em muitos casos utilizar a aproximação:

B =B

1 + ε cos θ

q(r)eθ + eφ

), (2.19)

onde eθ e eφ são versores na direção poloidal e torodial, respectivamente. Em modelos locais,

como é o caso desta tese, em muitos casos podemos desconsiderar o efeito de cizalhamento

magnético.

Note que o campo magnético mostrado em (2.2) é simétrico com relação a φ, mas anti-

simétrico com relação ao ângulo poloidal (θ), sendo maior na parte interna do tokamak (HFS5)

do que na parte externa (LFS6). Apsesar de pequena, esta diferênça, ∆B/B ∼ ε, desempenha

um impacto signicativo nos valores dos coecientes de transporte. No estudo de transporte, os

coecientes clássicos de transporte, provenientes da teoria de gases neutros e de plasmas mag-

netizados em sistemas simétricos, devem ser substituidos pelos coecientes neoclássicos, muito

maiores que, em muitos casos, pode chagar a uma ordem de magnitude. Uma breve discussão

sobre transporte em tokamaks é apresentada na seção seguinte.

2.3 Difusão e transporte em tokamaks

Um dos desaos mais importantes da física de plasma connados magneticamente é o de

reduzir a perda de partículas e energia em tokamaks. Com esta nalidade foram desenvolvidas

teorias de transporte, que consistem essencialmente em determinar os coecientes D e κ refer-

entes aos uxos de partículas e de calor, respectivamente, os quais dependem de gradientes de

densidade e de temperatura, ou seja,

Γ ≈ −D∇⊥n e q ≈ −κ∇⊥T. (2.20)

Em (2.20), D é o coeciente de difusão e κ é a condutividade térmica. As leis de convservação

de partículas e energia podem ser enunciadas como

∂n

∂t+ ∇ · Γ = Spart,

3

2

∂T

∂t+ ∇ · q = Scal, (2.21)

5High eld side6Low Field Side

17

Page 29: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

onde Spart e Scal representam fontes externas de partículas e de calor. Os uxos Γ e q são quan-

tidades macroscópicas do plasma que, experimentalmente, são medidos por meio de diagnósticos

e, teoricamente, podem ser estimados. Para o coeciente de difusão, por exemplo, através de

análise dimensional, podemos estimar D:

D ∼ ν(∆r)2, (2.22)

onde ν é a frequência de colisões e ∆r é o comprimento característico.

A teoria de transporte clássico, que se à geometrica cilíndrica, é discutida em detalhes por

R. Balescu [51]. Já no tokamak, devido ao efeito da geometria deste no campo magnético de

equilíbrio, não há simetria poloidal, fato este ao qual nos referimos como efeito neoclássico e,

desta forma, a teoria de transporte neoclássico [52, 53] deve ser aplicada neste caso. No caso

cilíndrico o raio de Larmor (ρ) representa o comprimento característico para a quanticação da

difusão perpendicular, ou seja,

D⊥ ∼ νρ2, κ⊥ ∼ nνρ2. (2.23)

Em contrapartida, devido a liberdade de locomoção das partículas ao longo do campo magnético,

limitada apenas por colisões, é possível estimar o coeciente de condutividade de calor paralelo

como,

κ‖ ∼ nνλ2 ∼ ω2c

ν2κ⊥, (2.24)

onde λ = vTα/ν é o livre caminho médio. Como ωc/ν 1 para plasmas magnetizados, é

possível concluir que o calor se difunde muito mais facilmente ao longo do campo magnético

e, quando o plasma se torna mais colisional, a condutividade paralela diminui enquanto que a

condutividade perpendicular aumenta, fazendo com que o plasma tenda a perder mais energia.

Os parágrafos anteriores não levam em conta a assimetria poloidal do campo magnético, o

que o torna mais intenso no lado interno da coluna de plasma (HFS7) do que no lado externo

(LFS8). Essa assimetria tem inuência no movimento do centro guia das partículas, conforme

descrito qualitativamente em [4] e quantitativamente em [42, 53]. Em consequência algumas

partículas, cuja velocidade paralela é relativamente baixa, não conseguem vencer a barreira

do poço magnético, ∆B/B ∼ ε e, em consequência retornam, porém, em outra superfície

magnética. O resultado desse processo que se repete por alguns ciclos, é que essas partícu-

las apresentam órbitas irregulares, conhecidas como órbitas de banana, com um deslocamento

efetivo estimado por ∆r ∼ (q/√ε)ρ ρ. Para o cálculo dos coecientes de transporte é

necessário levar em conta não somente o movimento das partículas afetando seu deslocamento

7High eld side - lado de campo maior8Low Field Side - lado de menor campo

18

Page 30: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

característico, mas também sua frequência efetiva de colisões.

Essencialmente, há três regimes fundamentais a ser considerado:

• Prsch-Schlüter: Neste regime, também conhecido como regime colisional ou regime de

uídos, o tempo necessário para que as partículas possam completar uma órbita é maior

do que o tempo de colisão, de forma que as órbitas das partículas são constantemente

interrompidas por colisões. Desta forma, este regime é descrito pela condição: ν/ωtr 1,

onde ωtr = vT /qR0 é a frequência de circulação. Este regime descreve bem a borda da

coluna de plasma e o coeciente de difusão perpendicular pode ser estimado como [42,54]:

D(PS)⊥ ∼ q2νρ2, (2.25)

ou seja, da ordem de q2 maior do que o esperado pela teoria clássica.

• Plateau: Neste regime, ε3/2 ν/ωtr 1 e as equações de uído não se aplicam, sendo

necessário o uso da equação cinética de deriva. Trata-se de uma condição intermediária

entre o regime Prsch-Schlüter e o regime de banada que se aplica ao centro centro da

coluna de plasma e tem, como coeciente de difusão, a expressão:

D(P )⊥ ∼ ωtr

νq2νρ2, (2.26)

ou seja, tal coeciente é bem maior do que no caso anterior, pois ωtr/ν 1.

• Banana: É o regime não colisional as partículas têm tempo suciente de completar

suas órbitas antes de colidirem com outras. Entretanto, devido ao grande comprimento

característico destas órbitas, a colisão ocorre fora de suas superfícies magnética de origem,

o que acarreta uma grande contribuição para o transporte radial. A frequência de colisão

é descrita por ν/ωtr ε3/2 e a estimativa para o coeciente de difusão resulta em

D(B)⊥ =

q2

ε3/2νρ2, (2.27)

e, portanto, o fator multiplicativo q2/ε3/2 em relação ao valor clássico para o coeciente

de difusão faz com este possa ser de até uma ordem de magnitude maior. O modelo a ser

adotado também se baseia na equação cinética de deriva de forma que o modelo de uído

também não se aplica neste regime.

Importantes trabalhos publicados sobre transporte neoclássico [53, 55, 56] e, até mesmo,

livros que tratam o assunto com bastante riqueza de detalhes [52,57] têm a nalidade de fornecer

uma boa compreensão sobre efeitos neoclássicos e seus impactos no connamento de plasma.

Entretanto, em regiões dominadas por processos turbulentos, o coeciente de difusão é ainda

maior do que os descritos pelos modelos neoclássicos. Neste caso, ocorre o que chamamos de

19

Page 31: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

difusão de Bohm [58] e, na área de transporte turbulento (ou transporte anômalo), uma discussão

compreensível sobre este tipo de transporte é feita por R. Balescu [38], como continuação de

seus trabalhos iniciais [51,52].

Embora não seja o foco desta tese tratar sobre transporte turbulento, uma simples es-

timativa, de acordo com [42], para o coeciente de difusão anômala é útil a título de com-

paração com os coecientes neoclássicos. Para elétrons, D⊥e = (∆r)2/τ , podemos estimar

∆r/τ ∼ vE ∼ Φ/∆rB e eΦ/T = k, onde vE é a velocidade de deriva fundamental (E × B).

Segue, portanto, que

D(Bohm)⊥e = k

T

eB∼ ωcρ2. (2.28)

Note que, como ωc q2ν/ε3/2, D(Bohm)⊥e D

(B)⊥e .

Historicamente tal coeciente foi descrito comoD(Bohm)e = T/16eB, onde a razão para o fator

1/16 até hoje permanece obscura [4]. Trata-se de um difícil problema não-linear a determinação

de k, sendo que k < 1 [42]. Para concluir esta seção, observamos que o valor do coeciente de

difusão anômala para elétrons excede o valor clássico em aproximadamente kωceτei 1 e, por

isso, impedir a degradação do connamento devido ao transporte anômalo é considerado um

dos maiores desaos da física de tokamaks.

2.4 Movimento de partículas e velocidade do centro

guia

Partículas carregadas imersas em um campo eletromagnético, como as que compôem o

plasma, cam submetidas à ação da força de Lorentz, de acordo com a equação:

dv

dt=

e

m

[E(r, t) + v×B(r, t)

], (2.29)

onde, v = dr/dt é a velocidade destas partículas que estão localizadas na posição r. Note

que nesta equação, bem como nas próximas desta seção, omitimos o índice α, o qual deve ser

subentendido.

A velocidade em (2.29) pode ser expressa na forma

v = v‖b+ v⊥, v⊥ = v⊥(cos γe1 − sin γe2), (2.30)

onde γ = − tan−1(v · e1/v · e2) é o ângulo de giração e (b, e1, e2) formam, nesta ordem, uma

base ortonormal convencionalmente orientada, na qual b = B/B.

De forma similar, a posição das partículas em um plasma magnetizado pode ser expressa

20

Page 32: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

como:

r = rg + ρ, ρ =b× v⊥ωc

, (2.31)

onde ρ é o raio de Larmor vetorial e rg é a posição do centro guia , o ponto central da

órbita aproximadamente circular das partículas. O campo magnético provoca um movimento

circular em íons e elétrons de sentidos opostos, que é composto por outros movimentos tornando

a dinâmcia relativamente complicada de ser descrita. O nosso principal interesse nesta seção

está na obtenção da velocidade do centro guia, a qual é obtida derivando com relação ao tempo

(2.31) e, em seguida, tomando a média em relação ao ângulo de giração a mesma equação. Para

a média de uma grandeza genérica, X, atribuimos a denição:

〈X〉 =1

∫ 2π

0dγX. (2.32)

Ao observar que 〈v〉 = v‖b e 〈ρ〉 = 0, obtem-se

vg =

⟨drgdt

⟩= v‖b−

⟨dρ

dt

⟩(2.33)

onde o cálculo de 〈dρ/dt〉, que é relativamente longo, pode ser visto em [53,57,59,60].

Antes de apresentarmos a velocidade do centro guia, é conveniente denir o momento

magnético e a energia de uma partícula,

µα =mαv

2⊥

2Be Eα = eαΦ + µαB +

mαv2‖

2, (2.34)

que, em primeira ordem em ρ/L, onde L representa genéricamente o comprimento característico

do gradiente de qualquer quantidade macroscópica do plasma, são constantes de movimento, da

mesma forma que o momento canônico paralelo [55,61].

Em primeira ordem em δρ = ρi/L, a velocidade do centro guia pode ser expressa como

vgα = v‖αb+ vE + vBα + vκα, (2.35)

onde

vE =E ×BB2

, (2.36)

é a deriva E ×B, que pode ser de ordem δ0ρ (MHD), assim como v‖, ou de ordem δ1

ρ (drift),

conforme discutido na próxima seção. Esta deriva possui o mesmo sentido para íons e elétrons,

pois independe da carga da partícula. A deriva magnética,

vBα =µαeαb×∇ lnB, (2.37)

21

Page 33: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

surge devido à inomogeneidades do campo magnético e, por estar relacionada ao movimento

ciclotrônico, possui sentidos opostos para cargas positiva e negativa e, nalmente,

vκ =eα|eα|

v2‖

ωcαb× κ, (2.38)

que também tem seu sentido de movimento dependente da carga da partícula, é a deriva resul-

tande da curvatura do campo magnético, κ = (b ·∇)b.

No geral, as velocidades de deriva podem ser expressas na forma

vdα =1

Fα ×BB2

, (2.39)

onde Fα representa as diversas forças que agem na partícula, ou seja, elétrica, magnética de

curvatura, etc...

2.5 Teoria cinética

Um dos objetivos da teoria cinética é determinar a função distribuição (fα) para cada espécie

de partícula, pois a partir do cálculo de momentos desta função, isto é, da integral com relação

às coordenadas da velocidade da função distribuição multiplicada por potências da velocidade,

obtém-se grandezas macroscópicas do plasma, as quais podem ser comparadas com valores

experimentais. As equações de uído, obtidas a partir desta metodologia, conforme discutido

em 2.6.1, descrevem importantes leis físicas no que se refere a conservação de mensuráveis

macroscópicos do plasma.

Em princípio considera-se que a função distribuição é da forma, fα = fα(t, r,v), porém, em

muitos modelos, como o modelo girocinético, utilizado no capítulo 4, a forma f (g)α = f

(g)α (t, rg, µ, E , γ)

é mais conveniente. A última forma é utilizada na derivação da equação girocinética, mostrada

na seção 2.5.2. Entretanto, para estimar ordens de grandeza de termos da equação de Boltza-

mann, utilizamos a primeira forma.

2.5.1 Análise da equação de Boltzmann

De uma forma geral, as equações cinéticas podem ser expressas como

df

dt=

6∑

i=0

dxidt

∂f

∂xi= C(f), (2.40)

onde f = f(x0, x1, x2, x3, x4, x5, x6) é a função distriuição de partículas no espaço de fase de-

scrito pelas variáveis xi, x0 = t e C(f) é o termo de colisões. A equação de Boltzmann ,

cuja obtenção a partir de leis mais gerais e sua interpretação física são apresentadas de forma

22

Page 34: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

compreensível e abrangente em [28], é o caso particular em que x1, x2, x3 são as coordenadas

espaciais da localização instantânea da partícula e x4, x5, x6 são as componentes da velocidade

desta. Esta equação, que normalmente é utilizada na obtenção do tensor dielétrico [33], é

expressa como

∂fα∂t

+ v · ∂fα∂r

+ aα ·∂fα∂v

= Cα(f), (2.41)

onde aα é a aceleração da partícula to tipo α com velocidade v localizada em r que, para plasmas

de laboratório, é bem descrita pela expressão

aα =eαmα

(E + v×B). (2.42)

No contexto da física de tokamaks, o plasma é considerado magnetizado quando ρi/LB 1,

onde LB é o comprimento característico referente ao gradiente do campo magnético de equi-

líbrio no plasma. Além disso, consideramos, nesta tese, fenômenos de baixas frequências quando

comparadas com a frequência de ciclotron e admite-se, na análise desta seção, que o compri-

mento de onda perpendicular (λ⊥) das perturbaçoes possam ser da ordem do raio de Larmor,

característico de violentas instabilidades [57].

As informações do parágrafo anterior podem ser expressas da seguinte forma:

δρ =ρiL 1, δk = k⊥ρe 1, δω =

ωtωci 1 (2.43)

onde L é o maior dos comprimentos característicos referentes aos gradientes de quantidades

macroscópicas de equilíbrio e ωtr ≤ vTe/L é a frequência de circulação relacionada a variação

temporal da função distribuição. Consideramos, ainda, que a frequência de colisão é pequena

se comparada com a frequência ciclotrônica, ν/ωc ∼ δρ 1 e, de fato, para simplicar, na

derivação da equação girocinético não levamos o operador de colisão.

Antes de discutir sobre a equação cinética de deriva9 e a equação girocinética10, as

quais são largamente utilizada no estudo de modos de baixas frequências [6264], é conveniente

estimar a ordem de grandeza dos termos da equação de Boltzamann, conforme o fazemos a

seguir:

∂f

∂t∼ δρωcf,

e

m(v×B) · ∂f

∂v∼ ωcf, C(f) ∼ νf ∼ δρωc, (2.44)

e

mE‖b ·

∂f

∂v∼E‖/B

vTωcf ∼ δρωcf e

e

mE⊥ ·

∂f

∂v∼ vEvTωcf. (2.45)

9drift kinetic equation10gyrokinetic equation

23

Page 35: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Em (2.45), vE = |E ×B|/B2 e E‖/B ∼ δρvTi próximo do equilíbrio [57].

Quanto à anlalise do termo convectivo, v · ∇f , considera-se que a função distribuição é

composta por duas partes, f ∼ F + G. Enquanto que a primeira varia suavemente no es-

paço (|∇F | ∼ F/L), a segunda consiste de perturbações de pequenos comprimentos de onda

(|∇G| ∼ G/λ), onde a condição λ ∼ ρi é possível. Normalmente as equações cinéticas são

resolvidas de forma perturbativa, considerando que G ∼ δkF , de forma que

v ·∇f ∼ ωF + ωcG ∼ (δρ + δk)ωcf, (2.46)

e, consequentemente há dois parâmetros independentes a ser analisado, δρ 1 e δk 1. Tal

análise inclui três casos de bastante interesse para tokamaks:

• Ordem de deriva: Considera-se δk = 0 e vE ∼ δρvTi , de forma que v ≈ v‖b, e normal-

mente utiliza-se a equação cinética de deriva como ponto de partida para modelos.

Este tipo de ordem é largamente aplicado para descrever processos de transportes e di-

versos tipos de instabilidades.

• Ordem MHD: Neste caso δk = 0 mas vE ∼ vTi , ou seja, v ≈ v‖b+ vE . A teoria

de uidos (veja a seção 2.6), que é bastante compreensível do ponto de vista físico,

pode ser utilizada em fenômenos que envolvam este tipo de ordem, tais como violentas

instabilidades MHD.

• Ordem de giração: É o caso em que, embora vE ∼ δρvTi admite-se a possibilidade de

perturbações com grandes variações espaciais (δk ∼ δρ). A equação girocinética deve

ser utilizada neste caso.

2.5.2 A equação girocinética

A seguir, baseado na refs. [29, 57], apresentamos os principais passos para a obtenção da

equaçõa girocinética, a qual é utilizada no capítulo 4.

É conveniente considerar a mudança de variáveis (t, r,v)→ (t, rg, µ, Eα, γ) em relação às

variáveis da equação de Boltzmann, de forma que a eq. (2.41) possa ser escrito como

∂f

∂t+drgdt· ∂f∂rg

+dµ

dt

∂f

∂µ+dEαdt

∂f

∂Eα+dγ

dt

∂f

∂γ= 0. (2.47)

O procedimento para obtenção da equação girocinética consiste em calcular a média de (2.47)

com relação a γ considerando, para este cálculo, que rg = rg(r,v), µ = µ(rg,v), Eα = Eα(rg,v)

e γ = γ(rg,v).

Para o densenvolvimento analítico nas próximas etapas, adota-se a aproximação eikonal com

24

Page 36: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

relação a coordeada do centro guia,

X(r) = Xg(rg)eik⊥·r, (2.48)

onde X representa de forma genérica qualquer vetor. Ao tomar a média de (2.48) obtemos

〈X(r)〉 = J0(k⊥ρ)Xg(rg)eik⊥·rg , (2.49)

onde Jn(x) é a função de Bessel de ordem n e de argumento x e, em (2.49), foi utilizada a

relação⟨eik⊥·ρ

⟩= J0(k⊥ρ) [29, 57]. A partir de (2.31), (2.33) e (2.34) obtem-se [57]:

⟨drgdt

⟩= vg +

[J0(k⊥ρ)(Φ− v‖A‖) + 2

J1(k⊥ρ)

k⊥ρ

µ

eB‖

]ik⊥ × b

B,

⟨dµ

dt

⟩≈ 0,

⟨dEdt

⟩=

∂t

[J0(k⊥ρ)e(Φ− v‖A‖) + 2

J1(k⊥ρ)

k⊥ρµB‖

],

(2.50)

onde a notação X = X(rg, t) com X = Φ, A‖, B‖ identica as perturbações.

A função distribuição pode ser decomposta em três partes,

fα = Fα + Gα + G(γ)α , (2.51)

onde Fα é a contribuição de equilíbrio, Gα + G(γ)α = (O(δρ) +O(δk))Fα é a perturbação e G(γ)

α é

a parte dependente de γ. Em primeira ordem em δρ e δk, o cálculo da média de (2.47) resulta

na equação girocinética,

(∂

∂t+ vgα ·∇

)gα =

(∂Fα∂Eα

∂t+b×∇Fαmαωcα

· ik⊥)[J0(k⊥ρα)

(Φ− v‖A‖

)+ 2

J1(k⊥ρα)

k⊥ρα

µαeαB‖

]. (2.52)

onde os gradientes são avaliados nas coordenadas do centro guia (rg). Em tokamaks, a aproxi-

mação B‖ ≈ 0 pode ser considerada na maiorida dos modelos [65] e, de fato, é considerada no

capítulo 4.

É importante observar que gα não representa integralmente a parte perturbada da função

distribuição, a qual é obtida pela expansão de fα em torno da energia de equilíbrio, Eα0 =

eαΦ + mαv2/2, onde Φ é o potencial eletrostático de equilíbrio11, Eα = Eα0 + Eα1 é a energia

total e Eα1 = eαΦ é a perturbação da energia. Conforme a equação (2.51), segue que

fα ≈ Fα(Eα0) + Eα1∂FMα

∂Eα|Eα=Eα0 + G(γ)

α , (2.53)

11Conforme mostrado no capítulo 3, este potencial existe se, e somente se, há rotação de equilíbrio.

25

Page 37: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

onde G(γ)α é a contribuição dependente de γ e proveniente da equação girocinética, (2.52), ou

seja,

fα = Fα + fα, fα = eαΦ∂FMα

∂Eα+ gαe

ik⊥·ρα . (2.54)

No capítulo 4, utilizamos a substituição ∇→ i(k⊥ + bk‖) para resolver (2.52), onde

k⊥ ≈ erkr + eθ1

r

∂θ, k‖ =

1

qR0

(∂

∂θ+ q

∂φ

). (2.55)

2.5.3 Equação cinética de deriva

Trata-se de uma equação que aparece principalmente em estudos sobre transporte neoclássico

mas, também, pode ser utilizada na investigação de modos acústicos geodésicos (GAM), como

em [66], por exemplo. Esta equação, que pode ser obtida de forma recursiva [53,57,67] através

do processo de giro-média, pode ser escrita como

∂fα∂t

+ vgα ·∇fα +

(eαvgα · E + µα

∂B

∂t

)∂fα∂Kα

= 0, (2.56)

onde Kα = Eα − eαΦ é a energia cinética de partículas do tipo α e E ≈ −∇Φ− (∂A‖/∂t)b é o

campo elétrico perturbado. Uma derivação mais didática desta equação, baseada no trabalho

original de R. D. Hazeltine [67], pode ser encontrada em [60].

2.6 Teoria de uidos

A teoria de uidos e a metodologia para obtenção de suas equações a partir da equação de

Boltzmann são apresentados nesta seção. Apresentamos a teoria de dois uidos e a teoria da

magneto-hidrodinâmica (MHD), ambas utilizadas no capítulo 3.

2.6.1 Teoria de dois uidos e as equações de Braginskii

O cálculo de momentos da equação de Boltzmann, (2.41), isto é, da integral de tal equação

multiplicada por potências de combinações vetoriais da velocidade no espaço de velocidades,

permite a obtenção das equações de uidos ou equações de Braginskii . As equações de

uidos descrevem a evolução temporal de importantes quantidades macroscópicas do plasma

que são discutidas a seguir.

Primeiramente, o cálculo do momento de ordem nula da função distribuição resulta na

densidade de partículas,

nα = nα(r, t) =

v

fα(r,v, t)d3v, (2.57)

26

Page 38: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

a qual, quando combinada com as cargas dos diferentes tipos de partículas, permite a obtenção

da densidade de carga ,

ρc =∑

α

eαnα. (2.58)

O momento de primeira ordem fornece o uxo de partículas, nαvα, o qual permite denir a

velocidade do uido do tipo α,

vα =1

v

vfα(r,v, t)d3v, (2.59)

e, de forma similar à densidade de carga, a densidade de corrente é obtida:

j =∑

α

eαnαvα. (2.60)

Quando calculado no referencial do uido, o segundo momento, fornece o tensor de pressão,

que pode ser decomposto na pressão escalar cinética (pα) e no tensor de viscosidade (π),

conforme mostrado abaixo:

pα = pαI+ πα =

v

mα(v− vα)(v− vα)fα(r,v, t)d3v. (2.61)

O tensor de viscosidade é normalmente dividido em três partes,

πα = π‖α + πgα + π⊥α, (2.62)

denominadas viscosidade paralela , giro-viscosidade e viscosidade perpendicular . Fi-

nalmente, também calculado no referencial do uido, o próximo e último momento de fα que

consideramos nesta tese fornece o uxo de calor ,

qα =

v

1

2mα[(v− vα) · (v− vα)](v− vα)fα(r,v, t)d3v. (2.63)

Momentos da função distribuição de ordens mais alta não tem tanta importância do ponto de

vista físico, apenas algébrico e, por esta razão e devido a sua pouca utilização nos modelos mais

importantes, não os mostramos nesta tese. A seguir, apresentamos as quantidades dissipativas,

que são calculadas a partir de momentos do operador de colisões, Cα(f). As duas quantidades

de maior interesse para tokamaks são a força de fricção e o termo de transferência de

calor , denidos, respectivamente por:

Rα =

v

mαvαCα(f)d3v, (2.64)

27

Page 39: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Qα =

v

1

2mα(v− vα) · (v− vα)Cα(f)d3v. (2.65)

As equações de Braginskii (ou equações de dois uidos)

Trata-se das das equações obtidas a partir do cálculo de momentos da equação de Boltza-

mann, (2.41), e descrevem importantes leis física de conservação de massa, momento e ener-

gia [27]. A seguir postulamos tais equações, cuja obtenção é mostrada de forma clara e detalhada

nas Refs. [28, 37].

Inicialmente consideramos as equações que descrevem conservação de massa, momento e

energia, respectivamente,

dαnαdt

+ nα∇ · vα = 0, (2.66)

mαnαdαvαdt

+ ∇pα + ∇ · πα − eαnα(E + vα ×B) = Rα, (2.67)

dαpαdt

+ γpα∇ · vα + (γ − 1)(πα : ∇vα + ∇ · qα) = (γ − 1)Qα, (2.68)

onde dα/dt = ∂/∂t+ vα ·∇ é a derivada convectiva ou derivada material e γ é o coeciente

de Poisson ou coeciente adiabático.

O sistema composto pelas equações (2.66)(2.68) é incompleto, pois para resolve-lo são

necessárias informações sobre o operador de colisões, responsáveis pelos termos Rα e Qα, além

das equações de evolução temporal para π e q. Apesar de que em muitos modelos seja possível

desconsiderar tais grandezas, como no modelo da magnetohidrodinâmica ideal, há casos em

que é necessário o cálculo dos próximos momento da equação de Boltzamann para obter tais

grandezas. No capítulo 3 consideramos o efeito da anisotropia de pressão, descrito pelo tensor

de viscosidade paralela (π‖). Este tensor é calculado através da equação de evolução de π,

dπαdt

+ (∇ · vα)πα + [πα ·∇vα + (πα ·∇vα)T − (γ − 1)(πα : ∇vα)I]−

ωcαK(πα) + p[∇vα + (∇vα)T − (γ − 1)(∇ · vα)I] +

(1− 1/γ)[∇qα + (∇qα)T − (γ − 1)(∇ · qα)I] + ∇ · τ = Cπα , (2.69)

que foi obtida primeiramente em [68,69] no contexto de gases neutros e, posteriormente, adap-

tada para aplicações em física de plasmas [35,70,71]. Nesta equação, o índice T em sobrescrito

representa a transposta da matriz que se obtém na representação do termo a que este índice se

refere na forma matricial, τ e Cπα são tensores provenientes de momentos de mais alta ordem

da função distribuição e do operador de colisões, os quais não são considerados nesta tese e K

28

Page 40: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

é um operador que, de acordo com a denição em [72,73], satisfaz as seguintes propriedades:

K(A) = A× b− b×A e

K−1

(A) =1

4

[b×A · (I+ 3bb)] + [b×A · (I+ 3bb)]T

, (2.70)

para qualquer tensor simétrico A, de acordo com a denição é qualquer tensor simétrico.

O tensor de viscosidade paralela de íons, o qual consideramos no capítulo 3, é calculado pela

seguinte expressão

π‖i =π‖i

γi − 1

(bb− 1

3I

)(2.71)

2.6.2 Teoria da magneto-hidrodinâmica (MHD) ideal

Para justicar o uso das equações da MHD ideal, é necessário considerar alguns comprimen-

tos e tempos característicos importantes, conforme mostrados a seguir:

LMHD ∼ a, τMHD =a

vTi, ωMHD ∼

1

τMHD, λα = vTαταα (2.72)

Em (2.72), LMHD é o comprimento característico relativo a grandientes de quantidades macroscópi-

cas, ωMHD é a frequência associada a modos MHD e λα é o livre caminho médio, o qual depende

da velocidade térmica e do tempo de colisões de partículas de mesmto tipo.

Apesar de que a teoria da MHD, do ponto de vista teórico, se aplique somente nas seguintes

circunstâncias:

(mi

me

)1/2ωMHD

νii 1 (plasma altamente colisional),

ρia 1 (raio de Larmor muito pequeno),

(ρia

)2(mi

me

)1/2 νiiωMHD

1 (plasma de baixa resistividade), (2.73)

que raramente pertencem a realidade de plasmas de tokamak, o seu uso em inumeros modelos

que violam tais circunstâncias reproduz resultados resultados condizentes com experimentos [44]

e, portanto, embora a teoria da MHD e da MHD ideal sejam teorias relativamentes simples, elas

possuem um inúmeras aplicações importantes [37,44].

Normalmente na teoria da MHD considera-se que o plasma é um uido de densidade de

massa ρ, densidade de carga ρc (que no caso de caso de tokamaks é practicamente nula), pressão

p, temperatura T e corrente j. Estas grandezas que caracterizam esse uido, respeitam deter-

minadas relações com as grandezas pertencentes aos uidos de íons e de elétrons, as quais são

29

Page 41: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

mostradas a seguir:

ρ =∑

α

mαnα ≈ mini, ni = n ≈ ne, me mi (2.74)

ρc =∑

α

eαnα = e(ni − ne) ≈ 0, (2.75)

v =

∑αmαnαvα

ρ≈ vi, (2.76)

J =∑

α

eαnαvα ≈ ne(vi − ve), (2.77)

p =∑

α

pα = niTi(1 + τe), τe =TeTi. (2.78)

Note que a correspondencia inversa, referente as velocidades de íons e de elétrons, pode ser

escrita na forma:

vi ≈ v e ve ≈ v− J

en. (2.79)

A resistividade do plasma, que é um importânte parâmetro na teoria da MHD, depende

principamente da frequência de colisões elétron-íon e, normalmente, é denida como [37]:

η =meνeie2n

. (2.80)

Combinações lineares das equações das equações (2.66)(2.68) ponderadas por grandezas

características de íons ou elétrons, cujos detalhes algébricos podem ser encontrados em [28,

37, 44], permitem obter o conjunto de equações da MHD, que são apresentadas e discutidas

separadamente nos parágrafos que se seguem.

Primeiramente, consideramos a equação referente a conservação de massa,

dt+ ρ∇ · v = 0, (2.81)

cuja equação análoga, mas para conservação de carga elétrica é

∂ρc∂t

+ ∇ · J = 0. (2.82)

Na maior parte dos processos em MHD a condição de quasi-neutralidade se aplica, de forma

30

Page 42: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

que ρc ≈ 0, e consequentemente

∇ · J = 0. (2.83)

A equação de conservação de momento pode ser escrita da seguinte forma:

ρdv

dt+ ∇p− J×B+ ∇ · (πi + πe)− ρcE +

me

e2n[∇ · (JJ)− JJ ·∇ lnn] = 0, (2.84)

na qual alguns comentários são pertinentes para justicar simplicações que permitem aplicá-la

efetivamente em modelos MHD. Primeiramente, mesmo sem considerar a razoável aproximação

|vi − ve| = |J/en| |v|, assumindo que tais termos são de mesma ordem, observa-se que em

(2.84) os dois últimos termos são desprezíveis com relação ao primeiro por um fator me/mi,

visto que |ρdv/dt| ∼ ρv2/a e |me∇ · (JJ)/e2n| ∼ (me/mi)ρv2/a, a menos que ocorra um forte

gradiente de densidade, |∇ lnn| ∼ (mi/me)/a, o que geralmente não ocorre em experimentos.

Com relação ao tensor de viscosidade, cujo termo dominante é a viscosidade paralela (pois

ωcατei 1 para plasmas magnetizados) de íons, visto que, πe‖ ∼ (me/mi)1/2πi‖, a compara-

ção |∇ · πi|/|∇p| ∼ ωMHD/νii, em que |πi‖| ∼ piωMHD/νii, justica desprezar os efeitos de

viscosidade em plasmas altamente colisional. Por m, em se tratando de modos de baixas fre-

quências, a condição de quasi-neutralidade pode ser considerada. Com base nestes argumentos

a eq. (2.84) pode ser aproximada para a seguinte forma:

ρdv

dt+ ∇p− J×B = 0. (2.85)

Analogamente, a partir de (2.68) obtém-se a lei de Ohm generalizada ,

E + v×B =1

en(J×B−∇pe −∇ · πe +Re) +

me

e2n

[∂J

∂t+ ∇ · (Jv+ vJ− JJ/en)

]. (2.86)

Nesta equação, primeiramente, podemos comparar o termo de Hall, J × B/en com os termos

entre colchetes, dos quais os três primeiros são de mesma ordem e o quarto é muito menor do

que estes, pois J/en v, uma vez que β−1ρe/LMHD 1 mesmo em sistemas de baixa pressão

(β ∼ ε2). Desta forma, a próxima comparação a ser feita é |me(∂J/∂t)/e2n|/|J × B/en| ∼

ωMHD/ωce = ρe/a 1, o que mostra que os termos entre colchetes podem ser desprezados.

Portanto a análise agora se restringe ao termo de Hall (J × B/en), ao termo diamangético

(∇pe/en) e ao termo de fricção (Re/en). Os dois primeiros são de mesma ordem, pois ∇pe ∼J×B no equilíbrio, e podem ser desprezados na ordemMHD (vE ∼ vTi), pois |∇pe/en|/|v×B| ∼ρi/a 1. Mesmo na ordem de deriva (vE ∼ δρvTi), o termo J×B−∇pe pode ser muito pequeno,

de forma que desprezar os termos de Hall e diamagnético simultaneamente pode ser justicável.

Quanto ao termo de viscosidade de elétrons (∇ ·πe), como Ti ∼ Te e, de acordo com argumentos

31

Page 43: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

anteriores, tal termo pode ser desconsiderado. Resta, nalmente, em (2.86) o termo de fricção

a ser analisado, o qual pode ser expresso como:

Re

en= η(0, 51j‖ + j⊥)− 1

2

TeTivTiBρi

(b∇‖ lnTe +

3

2

b×∇ lnTeωceτei

). (2.87)

Em (2.87), os termos em parenteses podem ser desprezados quando comparados com v × B,

pois eles são de ordem ρi/λe ∼ νei/ωci 1 e (ρi/a)/ωceτei 1, respectivamente.

A lei de Ohm com resistividade pode, então ser aproximada para

E + v×B = η(0, 51j‖ + j⊥), (2.88)

porém, para fenômenos que envolvam tempos característicos inferiores ao tempo de difusão do

campo magnético (τB = µ0a2/η) o efeito da resistividade pode ser desprezada. Esta condição é

satisfeita em muitos caso, pois |ηJ|/|v×B| ∼ (νei/ωMHD)(ρ2e/a

2), ou seja, ela só é violada em

fenômenos de frequências muito baixas em plasmas altamente colisionais. Caso isto não ocorra,

a lei de Ohm pode ser aproximada por

E + v×B = 0. (2.89)

Finalmente, resta analisar a última equação,

dp

dt+ γp∇ · v− J · (∇pe − γpe∇ ln ρ)

en+

(γ − 1)

[(πi + πe) : ∇v+ ∇ · (qi + qe)− πe : ∇(J/en)− J ·Re

en

]= 0, (2.90)

que corresponde à lei de conservação de energia. Em condições normais, γpe∇ ln ρ ∼∇pe, para

tokamaks e, como |J ·∇pe/en|/|dp/dt| ∼ ρi/a 1, justica-se desprezar o termo que engloba

os parênteses na primeira linha de (2.90). Ao considerarmos que πe πi e J/en v, analoga-

mente à análise de (2.84), a comparação (|πi : ∇v|/|dp/dt| ∼ ωMHD/νii nos leva a concluir que

o termo de viscosidade pode ser desprezado em plasmas altamente colisionais. Com relação à

analise da componente paralela do uxo de calor, q‖α ≈ −κ‖α∇‖Tα, como κ‖i/κ‖e ∼ (me/mi)1/2 1

e |∇ · qe|/|dp/dt| ∼ νei/ωMHD podemos desprezar tal componente em fenômenos de considerável

frequência em regimes não-colisionais. Neste trabalho, consideramos apenas plasmas sem resis-

tividades de forma que a força de fricção pode ser desprezada em (2.90) e, com relação ao uxo

de calor, apenas a componente12

q× =p

eB2B×∇T, (2.91)

12Em inglês, esta componente é conhecida como Cross heat ux

32

Page 44: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

que é sensível ao gradiente de temperatura é utilizada na equação da energia, a qual se reduz a

dp

dt+ γp∇ · v+ (γ − 1)∇ · q× = 0. (2.92)

As eqs. (2.81), (2.83), (2.85), (2.89), (2.92) constituem um sistema de 9 equações escalares

com 16 variáveis representadas pelo conjunto de grandezas escalares (ρ, p, T ) e vetoriais (v, J,

B e E). Desta forma, a determinação deste sistema requer mais 7 equações indepdendentes.

Seis destas equações são as componentes vetoriais das seguintes equações de Maxwell:

∇×E = −∂B∂t, (2.93)

∇×B = µ0J. (2.94)

Note que a equação de Maxwell que expressa a ausência de monopolo magnético,

∇ ·B = 0, (2.95)

não pode ser considerada uma equação independente, assim como ∇ ·E = 0, pois (2.95) pode

ser obtida pelo cálculo do divergente dos dois lados de (2.93) e pelo uso da identidade (B.4).

No entanto, a equação (2.95) possui importância fundamental em física de plasmas para a

determinação do campo magnético de equilíbrio, pois estabelece condições algébricas e vetoriais

para o cálculo de B [44], conforme discutido em 2.2.

A última equação necessário para completar o sistema descrito acima é a relação entre densi-

dade, pressão e temperatura que, conforme as denições anteriores das quantidades macroscópi-

cas para um uido, pode ser expressa como

p ≈ ρ

miT. (2.96)

Em muitos casos, assim como no presente trabalho desta tese, é conveniente expressar E e

B em termos de potênciais, ou seja,

E = −∇Φ− ∂A

∂t, B = ∇×A. (2.97)

33

Page 45: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Capítulo 3

Modelo de uido para uxos zonais e

modos acústicos geodésicos

Neste capítulo utilizamos a teoria da magneto-hidrodinâmica (MHD) ideal e um modelo de

dois uidos que inclui viscosidade paralela de íons para obter a frequência de modos geodésicos

de baixas frequências. A dinâmica destes modos, pioneiramente descobertos por N. Winsor

et. al [25] é descrita na seção 3.4. Ao investigar o equilíbrio com rotação poloidal e toroidal,

tendo como base o trabalho desenvolvido por V. N. Ilgisonis [47], obtivemos relações entre o

gradiente de temperatura e a rotação poloidal. Considerando a contribuição do uxo de calor

proveniente do gradiente radial de temperatura obtivemos, no regime isotérmico, além das duas

soluções correspondentes a modos acústicos geodésicos (GAMs) e o modo acústico de íon (SWs),

a correção para a frequência dos uxos zonais (ZFs), a qual é sensível à rotação poloidal, mas

não à rotação toroidal. Tal resultado foi publicado recentemente [74]. Com relação ao modelo

de dois uidos, primeiramente estudamos o efeito de anisotropia de pressão de íons através

da equação de evolução temporal da viscosidade paralela. Este efeito, quando considerado

na dinâmica dos GAMs, produz uma sensível diferença no valor para a frequência destes [32,

34]. Posteriormente incluímos neste modelo efeitos diamagnéticos, os quais são provenientes de

gradientes de temperatura de íons e de densidade. As condições para instabilidade dos GAMs,

devido a estes gradientes, as quais foram publicadas recentemente em 2013 [75], são descritas na

seção 3.7. Apresentamos, no nal, como proposta para trabalhos futuros, uma breve discussão

sobre efeitos eletromagnéticos nos GAMs. Esta discussão é feita dentro do contexto da teoria

de dois uidos.

3.1 Modelo da magnetohidrodinâmica (MHD) ideal

Como ponto de partida para este capítulo, utilizamos a teoria da MHD ideal considerando o

plasma como sendo composto por um único uído, que, por sua vez, tem sua dinâmica governada

34

Page 46: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

pelas equações (2.81), (2.83), (2.85), (2.89) e (2.92) apresentadas anteriormente na seção 2.6.2.

Abaixo, para facilitar a leitura, repetimos tais equações, porém, acrescentando o índice Σ, que

indica a soma das partes de equilíbrio (estacionária) e perturbada (dependente do tempo) das

grandezas macroscópicas do plasma:

EΣ + vΣ ×BΣ = 0, (3.1)

ρΣdvΣ

dt+ ∇pΣ − JΣ ×BΣ = 0, (3.2)

dpΣ

dt+ γpΣ∇ · vΣ + (γ − 1)∇ · qΣ = 0, (3.3)

dρΣ

dt+ ρ∇ · vΣ = 0, (3.4)

∇ · JΣ = 0. (3.5)

O índice Σ é utilizado para simplicar a notação do conteúdo que se segue após a lineariza-

ção das equações (3.1)(3.5) por meio da teoria de perturbações. Nesta teoria, as grandezas

macroscópicas do plasma, pΣ, ρΣ e as componentes vetoriais de EΣ, BΣ, JΣ, vΣ e qΣ são con-

sideradas como sendo compostas por uma parte estacionária e por uma pequena perturbação,

em módulo, dependente do tempo, de forma que,

XΣ = XΣ(r, t) = X(r) + X(r)e−iωt,|X||X| 1, (3.6)

onde XΣ representa qualquer grandeza macroscópica (ou uma de suas componentes vetoriais)

do plasma. Adotamos também o símbolo ˜ para indicar as quantidades perturbardas.

Restringimos o estudo desta seção ao caso de plasmas com β = O(ε2) e com velocidade de

equilíbrio subsônica, |V|2 c2s, de forma que perturbações do campo magnético, B = O(βB),

podem ser desprezadas na análise de primeiros harmônicos, m = ±1, referentes ao número

poloidal. Sendo assim, apenas o potencial eletrostático é considerado em nossa análise de modos

de baixas frequências, ou seja, EΣ = −∇Φ−∇Φ.

35

Page 47: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

3.2 Equilíbrio com rotação

Considerando a ordem MHD (vE ∼ vTi), de forma que o efeito Hall e a deriva diamagnética

podem ser desprezados na lei de Ohm, o equilíbrio é descrito pelas equações:

V×B = −∇Φ, (3.7)

V ·∇ρ+ ρ∇ ·V = 0, (3.8)

V ·∇p+ γp∇ ·V+ (γ − 1)∇ · q = 0, (3.9)

ρV ·∇V+ ∇p− J×B = 0, (3.10)

onde

q =γ

γ − 1

pB×∇T

eB2, (3.11)

é a parte dominante do uxo de calor no caso não colisional, a qual deve ser considerada no

estudo de ZF e na investigação de efeitos causado pelo gradiente de temperatura.

Assumimos que o campo magnético é simétrico em relação ao ângulo toroidal (φ), de forma

que

B = F∇φ+ ∇φ×∇Ψ, ∇Ψ ·∇φ = 0, (3.12)

J =∇×Bµ0

=(R2∆∗Ψ∇φ−∇φ×∇F )

µ0, ∆∗Ψ = ∇ · (∇Ψ/R2), (3.13)

conforme mostrado em C.1.

Das eqs. (3.7) e (3.8) segue que

V =κ(Ψ)

ρB− Ω(Ψ)R2∇φ, Ω =

dΨ, (3.14)

onde κ é uma função de uxo desconhecida, porém que está diretamente relacionada à rotação

poloidal de equilíbrio. Com a substituição de V em (3.9), segue que

κ

ρB ·∇p+ γpB ·∇

ρ

)+ (γ − 1)∇ · q = 0 (3.15)

e, portanto, observa-se que na ausencia de rotação poloidal (κ = 0), o uxo de calor tem

36

Page 48: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

divergência nula, ou seja, em média não há troca de calor entre as superfícies magnétcias.

A relação entre pressão, densidade e temperatura, p = ρT/mi, pode ser convenientemente

expressa, para uso futuro, como:

B ·∇ρ

ρ− B ·∇p

p+B ·∇T

T= 0. (3.16)

O método algébrico pelo qual os resultados anteriores e os próximos foram obtidos é apre-

sentado no apêndice C, cujo principal objetivo é elucidar a obtenção das expressões algébricas

para as componentes ∇φ, B e ∇Ψ da equação de momento. Tais componentes, identicamente

nulas, são obtidas pelo cálculo do produto escalar de ∇φ, B e ∇Ψ com a eq.(3.10), e podem

ser expressas como:

B ·∇[F

(1− µ0κ

2

ρ

)+ µ0κΩR2

]= 0, (3.17)

B ·∇(κ2B2

2ρ2− Ω2R2

2

)+B ·∇p

ρ= 0, (3.18)

(1− µ0κ

2

ρ

)∆∗Ψ +

1

2

∇Ψ ·∇F 2

|∇Ψ|2 +µ0R

2

|∇Ψ|2∇Ψ ·∇p+µ0ρR

2

[∇Ψ

|∇Ψ|2 ·∇(κ2

ρ2

|∇Ψ|2R2

)− ∇Ψ

R2·∇(κ2

ρ2

)−(

Ω− κF

ρR2

)2∇Ψ ·∇R2

|∇Ψ|2]

= 0, (3.19)

onde ∆∗Ψ = R2∇ · (∇Ψ/R2) é o operador de Shafranov.

Observando que se B ·∇f = 0, para qualquer função escalar f independente de φ, implica

em f = f(Ψ), conclui-se que somente na ausência de rotação poloidal (κ = 0), de acordo com

(3.17), então F = F (Ψ). Ainda, neste mesmo contexto, se considerarmos o caso de rotação

exclusivamente toroidal, de acordo com (3.18), B · ∇p = ρΩB · ∇R2/2. Entretanto, como

B ·∇R2 6= 0, conclui-se que p não pode ser uma função de uxo, ao contrário do que ocorre em

plasmas sem rotação, nos quais p = p(Ψ).

O próximo passo é a utilização de teoria de perturbação para resolver as eqs. (3.15)(3.18).

Nos baseamos no método apresentado na Ref. [47], na qual as grandezas de equilíbrio são

decompostas na forma: Q = Q0(Ψ) +Q1(Ψ, θ), com |Q1/Q0| 1, onde Q representa p, ρ, T

ou F . Denimos, então, por conveniencia, a grandeza:

∆Q =(B ·∇Q1)/Q0

(B ·∇R2)/R20

. (3.20)

37

Page 49: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

A frequência angular de rotação poloidal e toroidal é calculada por:

ΩP = ∇θ ·V =κF

ρqR2, ΩT = ∇φ ·V = qΩP − Ω, (3.21)

onde q é o fator de segurança, que é denido por

q = q(Ψ) =∇φ ·B∇θ ·B =

F

JR2, J = ∇θ · (∇φ×∇Ψ). (3.22)

Por conveniencia, nas equações que se seguem, introduzimos as seguintes denições:

MP =qΩP0R0

cs, MT =

ΩT0R0

cs, Mth =

R0

ecs

dT0

dΨ, c2

s =γp0

ρ0, (3.23)

ΩP0 =κF0

ρ0qR20

, ΩT0 = qΩP0 − Ω, B0 =µ0ρ0c

2sR

20

F 20

∼ β. (3.24)

que são relativas aos números de Mach poloidal, toroidal e térmico e ao parâmetro β.

A partir de (3.20), (3.23) e (3.24) e do cálculo da divergência do uxo de calor,

∇ · q = Mth

[1−∆F + ∆p − (1 +Rρ −RF +RR2)∆T

(γ − 1)F0/R0

]B ·∇R2

R20

ρ0c3s, (3.25)

RF =T0

F0

dF0/dΨ

dT0/dΨ, Rρ =

T0

ρ0

dρ0/dΨ

dT0/dΨ, RR2 =

T0

R20

∇Ψ ·∇R2

∇Ψ ·∇T0, (3.26)

que é efetuado em C.3, podemos reescrever o sistema (3.15) (3.18) da seguinte forma:

∆ρ −∆p + ∆T = 0 (3.27)

(1− B0M2P )∆F + B0M

2P∆ρ = B0MP (MT −MP ), (3.28)

M2P∆F −M2

P∆ρ +∆p

γ=M2T

2−MPMT +M2

P , (3.29)

Mth∆F +MP∆ρ − (MP /γ +Mth)∆p + (1 +Rρ −RF +RR2)Mth∆T = Mth. (3.30)

Referente a equação de Grad-Shafranov modicada, (3.19), podemos reescreve-la como:

∆∗Ψ +

[B0R2

γR20

(1 +Rρ) +RF]F 2

0

T0

dT0

dΨ+ T (κ,Ω,Ψ), (3.31)

38

Page 50: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

onde T = O(B20F0/LT ) é o termo proveniente da rotação de equilíbrio, o qual pode ser aproxi-

mado por

T ≈ −B0M2P∆∗Ψ +

[∇Ψ ·∇p1

∇Ψ ·∇p0

B0R2

γR20

(1 +Rρ)+(∇Ψ ·∇F1

∇Ψ ·∇F0− F1

F0

)RF +

B0

2

( |∇Ψ|2F 2

0

M2PRΨ2 −M2

T

)]F 2

0

T0

dT0

dΨ,

RΨ2 =T0

|∇Ψ|4∇Ψ ·∇(|∇Ψ|2)

dT0/dΨ∼ T0

|∇Ψ|2∂|∇Ψ|2/∂Ψ

dT0/dΨ. (3.32)

A menos que ocorra um forte cizalhamento radial do campo magnético poloidal, ou seja, se

∂2Ψ/∂r2 (∂Ψ/∂r)2, é condizente com a realidade de tokamaks em regimes de baixa pressão

(β ∼ ε2), estimar as grandezas apresentadas em (3.31) da seguinte forma:

B0 ∼ ε2, ∆∗Ψ ∼ B0F 2

0

T0

dT0

dΨ∼√B0F0

LT,

1

LT=

1

T0

∂T0

∂r(3.33)

o que implica em RF ∼ B0 e Rρ ≈ η−1 ∼ 1, onde η = Lρ/LT , Lρ = ρ−10 ∂ρ0/∂r. Com relação

ao termo RR2 , denido em (3.26), para a estimativa de sua ordem de grandeza, consideramos

tokamaks de seção circular, como o TCABR, por exemplo, de forma que ∂Ψ/∂θ r∂Ψ/∂r.

Ainda, neste contexto, quando LT ≤ r, ou seja, quando há um considerável gradiente radial de

temperatura no tokamak, o que é totalmente realístico na prática, segue que

RR2 =T0

R20

∂R2/∂Ψ

dT0/dΨ≈ 2

LTR0

cos θ ∼ ε 1. (3.34)

Quanto maior for gradiente de temperatura, mais justicável se torna a aproximação (3.34), o

que viabiliza e simplica o desenvolvimento de um modelo analítico.

3.2.1 Rotação toroidal

Para o caso particular de rotação puramente toroidal, MP = 0, considerando as aprox-

imações mencionadas acima, o sistema composto pelas equações (3.27) (3.29) apresenta a

seguinte solução:

∆F = 0, ∆p =γ

2M2T , ∆ρ = ∆p −∆T (3.35)

Com relação a análise da eq. (3.30), é necessário ter em mente as eqs. (3.15) e (3.25),

que permitem concluir que ∇ · q = 0 quando não há rotação poloidal (κ = 0). Porém, de

acordo com (3.25), isto só ocorre em dois casos, ∆T = (1 + ∆p)/(1 + Rρ) ou Mth = 0. O

primeiro caso, implicaria que no limite sem rotação de equilíbrio (MT → 0), tanto a temper-

atura quanto a densidade de equilíbrio dependeriam fortemente com a posição poloidal, pois

39

Page 51: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

∆ρ = −∆T = −(1 +Rρ)−1 ∼ 1, em desacordo com o equilíbrio sem rotação, no qual ∆p = ∆ρ = ∆T = 0

[25]. O segundo caso, entretatanto, implica que, pelo menos em primeira ordem, a temperatura é

constante em superfícies magnéticas diferentes, de acordo com (3.23), o que também não ocorre

em tokamaks (a temperatura é máxima no centro e nula na borda). Uma forma de conciliar

esta inconsistência é assumir que Mth ∝ MP , ou, de forma equivalente, que a rotação poloidal

de equilíbrio é uma consequência direta da existência de gradientes radiais de temperatura.

Portanto, neste modelo, concluímos que a não existência de rotação poloidal só é possível lo-

calmente e, se isso ocorrer em determinada posição radial, há uma indicação clara de que nesta

posição ocorre um perl plano no perl da temperatura.

Os seguintes regimes de particular interesse podem ser considerados neste caso:

• Adiabático: Neste caso, a quantidade S = pρ−γ , que representa a entropia do sistema,

é uma função de uxo, de forma que a relação ∆p − γ∆(S)ρ = 0 se verica. A solução

correspondente a este regime é:

∆p =γ

2M2T , ∆(S)

ρ =1

2M2T , ∆

(S)T = (γ − 1)M2

T . (3.36)

• Isotérmico: Caracterizado por ser o regime mais realístico, ocorre quando ∆(T )T = 0, o

que implica na solução

∆(T )ρ = ∆p. (3.37)

• Isométrico: Este regime, caracterizado por ∆(V )ρ = 0, embora não seja comum em ex-

perimentos, tem certa importância por ser o único regime característico ZFs instáveis,

conforme elucidado mais adiante. A solução correspondente é:

∆(V )T = ∆p. (3.38)

3.2.2 Rotação poloidal e toroidal

Com a resolução do sistema (3.27)(3.30), considerando B0 ∼ ε2 1, Rρ ≈ 1/η eM2P,T 1,

de forma que ∆F = O(B0M2P,T ) pode ser desprezado, obtemos a seguinte solução:

∆ρ =N∆

D∆

[1 +

(1

N∆− γ

η

)Mth

MP

], (3.39)

∆p = γN∆

D∆

[1 +

(M2P

N∆− η + 1

η

)Mth

MP

], (3.40)

40

Page 52: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

∆T = (γ − 1)N∆

D∆

[1−

(1− γM2

P

(γ − 1)N∆+

γ

γ − 1

)Mth

MP

], (3.41)

onde

N∆ =M2T

2+MP (MP −MT ), D∆ = 1−M2

P −η + 1

η

Mth

MP+γ

ηMPMth. (3.42)

Assim como no caso de rotação exclusivamente toroidal, neste caso, também é conveniente

analisar os três regimes principais mencionados anteriormente:

• Adiabático: Considera-se, neste regime, M (S)th = 0, o que resulta em

∆(S)p = γ∆(S)

ρ , ∆(S)T = (γ − 1)∆(S)

ρ , ∆(S)ρ =

N∆

D(S)∆

, D(S)∆ = 1−M2

P . (3.43)

• Isotérmico: As soluções são obtidas pela substituição ∆T = 0 em (3.39), (3.40) e (3.41),

de forma que, para MP ≥ 0,

M(T )th =

(γ − 1)MPN∆

1 + γ(N∆ −M2P )

> 0. (3.44)

• Isométrico: De forma análoga ao regime anterior, a partir da condição ∆ρ = 0, para

MP ≥ 0, obtém-se:

M(V )th =

−MPN∆

1− (γ/η)N∆< 0. (3.45)

Para o tokamak TCABR, de acordo com recente relatório [76], mostramos na gura 3.2.2 o

perl radial da rotação de equilíbrio obtido experimentalmente. A partir desta gráco podemos

estimar os valores de MP e MT com o intuito de obter uma estimativa para a frequência dos

GAMs, SWs e ZFs.

É interessante observar o que ocorre no limite MT → 0, ou seja, de acordo com a gura

3.2.2, próximo de r = 0.7a. Neste limite observa-se que

M(V )th = −M3

P , M(S)th = 0, M

(T )th = (γ − 1)M3

P . (3.46)

Considerando nalmente, tokamaks de secção circular de alta razão de aspecto, é possível

encontrar as grandezas de equilíbrio. Para uma grandeza genérica Q, simétrica em relação a φ,

segue da denição de ∆Q, (3.20), que

B ·∇Q = ∆QQ0B ·∇R2

R20

(3.47)

pode ser desenvolvido considerando Ψ ≈ Ψ(r), ou seja, B ≈ F (r)R−1eφ + (Rr)−1(dΨ/dr)eθ.

41

Page 53: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Vel. toroidalVel. poloidal

Velocidade

(km/s)

Perfil radial de rotação do plasma

Figura 3.1: Gráco do perl radial da velocidade de rotação poloidal (tracejado) e toroidal(linha cheia) como função da posição radial normalizada (r/a) no tokamak TCABR.Observação: Este gráco foi extraído e adaptado de [76].

Resulta então, da substituição de B em (3.47), a seguinte equação integrável,

∂Q

∂θ= −2ε∆QQ0 sin θ +O(ε2Q) (3.48)

cuja solução aproximada determina Q = Q(r, θ):

Q(r, θ) = Q0(r) + 2ε∆Q(r)Q0(r) cos θ. (3.49)

A partir de (3.39), (3.40), (3.41) e (3.49) a dependência poloidal das quantidades de equilíbrio

42

Page 54: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

podem ser determinadas, ou seja,

ρ = ρ0(1 + 2ε∆ρ cos θ), p = p0(1 + 2ε∆p cos θ),

T = T0(1 + 2ε∆T cos θ) =mic

2s

γ[1 + 2ε(∆p −∆ρ) cos θ],

V = VP eθ + VT eφ, VP = ΩP r, VT = ΩTR,

VP ≈ε

qMP cs, VT = (MT + ∆V ε cos θ)cs, ∆V = MT − 2MP (1 + ∆ρ). (3.50)

3.3 Sistema de equações perturbadas e relação de dis-

persão

Considerando agora perturbações temporais, os modos de oscilação de baixas frequências

no plasma são obtidos a partir da resolução do seguinte sistema:

ρ0

∂v‖

∂t+∇‖p+ F‖ = 0, (3.51)

∂(ρ+ R)

∂t+ ρ0∇ · v = 0 (3.52)

∂(p+ P )

∂t+ γp0∇ · v = 0 (3.53)

onde

v = vE + v‖b, vE =b×∇Φ

B, (3.54)

é a velocidade perturbada proveniente da deriva E ×B e da componente paralela. Os termos

F‖, R e P são as contribuições devida a rotação de equilíbrio, denidos de forma conveniente

por

F‖ = ρ0(bv : ∇V+ bV : ∇v) + ρbV : ∇V, (3.55)

∂R

∂t= V ·∇ρ+ v ·∇ρ0 + ρ∇ ·V, (3.56)

∂P

∂t= V ·∇p+ v ·∇p0 + γp∇ ·V+ (γ − 1)∇ · q, (3.57)

43

Page 55: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

e calculadas no apêndice (G.1). Neste cálculo levamos em conta apenas os termos dominantes

com relação ao fator ε = r/R0 1, que são devido a contribuição dos primeiros harmonicos.

Para a obtenção da relação de dispersão é necessária a utilização da equação do momento

linearizada:

ρ∂v

∂t+ ∇p− j×B+ F = 0, F = ρ(V ·∇v+ v ·∇V) + ρV ·∇V, (3.58)

a qual, quando multiplicada vetorialmente por B resulta na expressão analítica para a densidade

de corrente:

j =j‖

BB+

ρB

B2× ∂v

∂t+

B

B2×∇p+

B

B2× F. (3.59)

A relação de dispersão é proveniente da condição de quasi-neutralidade do plasma, que pode

ser expressa pela equação ∇ · j = 0. A metodologia analítica padrão é baseada no cálculo da

média de tal equação sobre uma superfície magnética. Podemos calcular D tomando a média

com relação ao volume,

D =

∫V dV∇ · j∫

V dV= 0, dV = (R0 + r cos θ)rdrdθdφ, (3.60)

e, através do teorema da divergência de Gauss, obtemos:

D =

∫S j · dS∫V dV

= 0, dS = (R0 + r cos θ)rdθdφer. (3.61)

3.4 Fluxos zonais (ZFs) e modos acústicos geodésicos

(GAMs)

A seguir descrevemos o modelo mais simples para explorar a dinâmica básica das os-

cilações eletrostáticas conhecidas como GAMs. Nesta parte desconsideramos rotação de equi-

líbrio por motivos didáticos e com a nalidade de enfatizar o mecânismo físico de formação

dos GAMs. Inicialmente, utilizamos a substituição F‖ = P = R = 0 em (3.51)(3.53) e, como

apenas os primeiros harmônicos desempenham um papel relevante na dinâmica básica dos

GAMs eletrostáticos [25], consideramos soluções da forma:X = Xs sin θ + Xc cos θ para as per-

turbações. Ademais, em se tratando de uma análise linear, X ∝ e−iωt, de forma que a substi-

tuição ∂/∂t→ −iω em (3.51)(3.53) pode ser empregada.

O termo∇·v têm sua expressão desenvolvida no apêndice D e, de acordo com as eqs. (D.38)

e (D.13), pode ser escrito na forma:

∇ · v = −2ωE sin θ + k‖∂v‖

∂θ, ωE =

ikrΦ0

B0R0=i

2

eΦ0

Tikrρiωi, ωi =

vTiR0

. (3.62)

44

Page 56: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Tal termo é substituído em (3.53), resultando na relação entre p e v‖:

p = iρ0c2s

(−2

ωEω

sin θ −k‖

ω

∂v‖

∂θ

), (3.63)

que, por sua vez, é substituída em (3.51). Consequentemente, a seguinte equação diferencial

para v‖ em θ é obtida:

(1 +

k2‖c

2s

ω2

∂2

∂θ2

)v‖ = 2

k‖c2s

ω2ωE cos θ. (3.64)

A solução correspondente a(3.64),

v‖ =2k‖c

2s

ω2 − k2‖c

2s

ωE cos θ, (3.65)

quando inserida em (3.62) dene completamente o termo ∇ · v, que, após ser substituído em

(3.52) e (3.53), completa o conjunto de soluções com

∇ · v = − 2ω2

ω2 − k2‖c

2s

ωE sin θ, (3.66)

ρ = iρ0

(2ω

ω2 − k2‖c

2s

)ωE sin θ, p = ρc2

s. (3.67)

Ao analisarmos as equações (3.65), (3.66) e (3.67), é possível extrair duas conclusões im-

portantes. Primeiramente, a solução ω = 0 não é uma solução trivial, pois, para este caso,

v‖ = −2ωE cos θ/k‖ 6= 0. Conforme explicado mais adiante, esta solução corresponde aos uxos

zonais. A incompressibilidade do plasma, de acordo com (3.66), bem como a ausência de cor-

rentes diamagnéticas, pois p = 0, é uma característica fundamental destes uxos estacionários.

A segunda característica importante é com relação ao fator de segurança. Note que para q →∞,

v‖ → 0 no caso de GAMs (ω 6= 0) e v‖ →∞ para ZFs, pois k‖ = 1/qR0.

É interessante observar também o que ocorre se ωE = 0, ou seja, na ausência do campo

elétrico. De acordo com a equação (3.62), a divergência da velocidade é proporcional à variação

da velocidade paralela com relação ao ângulo poloidal (θ), o que induz uma perturbação na

pressão, de acordo com (3.63). Adotando o mesmo procedimento, obtém-se uma equação similar

à eq. (3.64),

(1−

k2‖c

2s

ω2

)v‖ = 0 (3.68)

que possui duas soluções. A primeira, trivial, v‖ = ρ = p = 0 e portanto não importante e a

45

Page 57: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

segunda, ω2 = k2‖c

2s, que corresponde a ondas acústicas. Note que a segunda solução não permite

a determinação das perturbações (v‖, ρ e p) neste modelo simples.

A corrente perturbada é composta por duas partes fundamentais para estes modos, a con-

tribuição inercial e diamagnética, cujas expressões analíticas para suas componentes radiais

são:

jIr =

(ρB

B2× ∂v

∂t

)· er ≈ i

R0

B0ρ0ωωE , (3.69)

jpr =

(B

B2×∇p

)· er ≈

−1

εB0R0

∂p

∂θ(1 + ε cos θ), (3.70)

Note que em (3.70) mantivemos o termo ε cos θ, que é proveniente de B ≈ B0(1− ε cos θ),

pois este termo é relevante no cálculo da média em uma superfície magnética.

A partir do desenvolvimento de (E.73), mostrado no apêndice ??, resulta a relação de

dispersão:

D = −i2R0ρ0

rB0

(1 +

ipsρ0ωωER2

0

)ωωE = KD(0) = 0, (3.71)

onde K = −2iR0ρ0ωE/rB0 é um termo importante no estudo de auto-modos. No contínuo, a

equação

D(0) = ω

[ω2 − (2c2s/R

20 + k2

‖c2s)

ω2 − k2‖c

2s

]= 0, (3.72)

fornece as soluções para asfrequências ZFs e GAMs,

ωZF = 0, ω2GAM =

(2 +

1

q2

)c2s

R20

. (3.73)

Na realidade, para ZFs, como não foram considerados termos de ordem superior, em princípio,

a solução é melhor descrita por ωZF ≈ 0.

Note que, em ordem dominante, há também uma componente poloidal da corrente diamag-

nética, cuja expressão é

jpθ =ikrpB0

. (3.74)

Utilizando (D.19) e considerando kr r−1, obtemos uma relação de dispersão como forma

alternativa à eq. (3.71):

∇ · j ≈ ikr jIr − 2jpθsin θ

R0+ k‖

∂j‖

∂θ= 0, (3.75)

46

Page 58: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

que, quando desenvolvida algebricamente, resulta em

−ρ0R0krωEB0

ω

(1− 2c2

s/R20

ω2 − k2‖c

2s

)− ρ0R0krωE

B0

2ωc2s/R

20

ω2 − k2‖c

2s

cos(2θ) + k‖∂j‖

∂θ= 0. (3.76)

Como para qualquer θ a equação (3.76) deve ser satisfeita, o termo contido no primeiro

parêntes dessa equação deve se anular, resultando, assim, nas soluções mostradas na equação

(3.73). Uma vantagem do uso de (3.76) é a de obtenção da corrente paralela,

j(GAM)‖ =

√2q2 + 1

4

ρ0R0

B0krωE sin(2θ), j

(ZF)‖ = 0, (3.77)

a qual se mostra dependente de segundos harmônicos, representados pelo termo sin(2θ). Note

que, principalmente no limite q 1, a contribuição da corrente paralela, j‖ ∝ q, é signicativa,justicando, em princípio considerar efeitos eletromagnéticos, pois j‖ = b ·∇× B. Além disso,

em muitos experimentos GAMs são detectados através da análise de segundas harmônicas,

de forma que a corrente paralela perturbada desempenha um papel importante neste tipo de

oscilação.

A seguir, uma descrição simplicada do mecanismo físico envolvido nas oscilações presentes

nos GAMs é apresentada. Para simplicar as expressões e o raciocínio lógico deste mecanismo,

consideramos o limite q →∞, ou seja, ωGAM =√

2cs/R0. Supomos que, inicialmente, em t = 0,

exista um campo elétrico máximo, que é da forma E = ωEB0R0er, onde ωE = |ωE | cos(ωt),

|ωE | =1

2

e|Φ0|Ti

krρiωi, Φ0 = Φ0(r, t), (3.78)

e consideramos krρi > 0 por simplicidade1. As partículas do plasma, inuenciadas por este

campo elétrico, bem como pelo campo magnético toroidal de equilíbrio, B ≈ B0(1 − ε cos θ),

sofrem um movimento de deriva to tipo E ×B, o que produz um uxo poloidal compressível,

que é da forma

vE = |ωE |R0(1 + ε cos θ) cos(ωt)eθ, v‖ ≈ 0, (3.79)

ou seja, de intensidade diferente nos lados de campo forte e de campo fraco, HFS2 e LFS3,

conforme ilustra a gura 3.4 (a). Em decorrência desta diferença de intensidade, o plasma é

comprimido, na razão

∇ · v = −2|ωE | sin θ cos(ωt), (3.80)

1Nada impede que krρi < 0, pois a dependência radial de Φ e, consequentemente, de sua derivadaradial, são desconhecidas em princípio.

2High Field Side3Low Field Side

47

Page 59: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

o que ocasiona uma perturbação na densidade e, consequentemente, na pressão,

p =√

2|ωE |ρ0csR0 sin θ sin(ωt), (3.81)

Com o movimento de deriva E × B do plasma, surge uma corrente inercial, que é radial

e aproximadamente constande, que tende a anular o campo elétrico inicial pelo transporte de

carga positiva para fora da superfície magnética de referência. Entretanto, em decorrencia do

gradiente poloidal de pressão, causada pela perturbação desta, surge também, uma corrente

diamagnética, que em determinadas posições supera fortemente a primeira. O tempo em que

é máxima a amplitude da corrente radial total e a expressão analítica das correntes inercial e

diamagnética são mostrados, respectivamente, na gura 3.4 (b) e na equação (3.82), abaixo:

jIr =√

2ρ0csB0|ωE | sin(ωt), jpr = −jIr

(1

2+

1

εcos θ +

1

2cos(2θ)

). (3.82)

Em média, neste momento, é máximo o transporte de cargas positivas para fora da superfície

magnética (em laranja na gura 3.4), o que anula o campo elétrico radial e, consequentemente

a velocidade de deriva E ×B. Entretanto, devido a inércia de íons e à corrente diamagnetica

ainda presentes, o campo elétrico inverte seu sentido e, em t = π/ωGAM , a velocidade de deriva é

maxima e no sentido anti-poloidal, conforme ilustra a gura 3.4 (c). Em t = 3π/2ωGAM o campo

elétrico é nulo novamente e a corrente é máxima, porém no sentido favorável ao transporte de

carga positiva para a superfície magnética em questão, conforme a gura 3.4 (d). Finalmente,

em t = 2π/ωGAM a dinâmica descrita acima se repete. Uma investigação experimental tanto

do valor da densidade perturbada como de sua posição poloidal de máximo valor absoluto é

apresentada por A. Krämer-Fleken et. al. [77].

No caso dos ZFs a dinâmica é consideravelmente mais simples. Ao se comportar de forma

compressível, devido a um uxo de retorno na direção paralela a B,

v‖ = −2qωER0 cos θ, ωE = |ωE | (3.83)

o plasma não permite perturbações da densidade (pressão) e, em consequência, apenas um uxo

estacionário poloidal e outro toroidal, normalmente de amplitude bem maior que o primeiro,

podem coexistir. Normalmente a componente poloidal destes uxos possuem cisalhamento

radial, invertendo de sentido com a posição radial em um intervalo espacial correspondente ao

comprimento de onda radial. Este cisalhamento permite o controle de turbulência causada por

ondas de deriva [10].

48

Page 60: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

(HFS)

(LFS)

(HFS)

(LFS)

(HFS)

(LFS)

(HFS)

(LFS)

R0

r

θ

vE = E×BB2

∇ · vE = −2vE · κ ∝ sin θ cos(ωGAM t)

p ∝∫dt∇ · vE

Er ∝ cos(ωGAM t)

BTBT

κ

κ = b · ∇b

Superfıcies magneticas

a) Instante inicial t = 0

Er > 0→ max.

vE > 0

jr = 0

c) Instante t = π/ωGAM

Er < 0→ min.

vE < 0

jr = 0

BTBT

κ

κ

BTBT

jprjpr

= 0

p max

p min

b) Instante t = π/2ωGAM

Er = 0

∂Er

∂t < 0

vE = 0

|jr| → max.

BTBT

jprjpr= 0

d) Instante t = 3π/2ωGAM

Er = 0

∂Er

∂t > 0

vE = 0

|jr| → max.

p min

p max

Figura 3.2: Dinâmica de modos acústicos geodésicos (GAMs) em tokamaks.

49

Page 61: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

3.5 Efeito de rotação nos GAMs e ZFs

Pelo fato de o sistema (3.51)(3.53) ser linear, podemos escrever as quantidades perturbadas

como combinações das contribuições fundamentais (0), toroidal (T) e poloidal (P), de acordo

com a forma:

X = X(0) + X(T ) + X(P ), (3.84)

onde X(0) é a solução obtida quando MP = MT = 0, X(T ) é a contribuição toroidal (quando se

considera apenas rotação toroidal) e o X(P ) é a contribuição poloidal. Ressaltamos, no entanto,

que, quando os dois tipos de rotação são considerados, nos termos ∆ρ e ∆p contidos em X(T ) e

X(P ), é necessário considerar MP 6= 0.

Na parte restante desta seção, assim como no apêndice ??, consideramos a normalização

Ω =ω

k‖cs, ΩE =

ωEk‖cs

, (3.85)

e, neste apêndice, obtemos a relação de dispersão, a qual é mostrada a seguir:

2ΩE

Ω2 − 1(D(0) +D(T) +D(P)) = 0, (3.86)

onde

D(0) =Ω

2q2(−Ω2 + 2q2 + 1), (3.87)

D(T) =M2T

Ω

[(1 +

1

2

∆V

MT+

1

γ

∆p

M2T

+1

2∆ρ

)Ω2 +

1

2

(∆p

γ−∆ρ

)], (3.88)

D(P) =N p

+1(P)

D+1(P)− N

p−1

(P)

D−1(P)

+MT

[N v+1

(P)

D+1(P)− N

v−1

(P)

D−1(P)

+MT

2

(N ρ+1

(P)

D+1(P)− N

ρ−1

(P)

D−1(P)

)], (3.89)

D±1(P) ≈ (MP ∓ Ω)(Ω + 1∓MP )(Ω− 1∓MP ) + [2γ(Ω∓MP )2 − 1]Mth. (3.90)

Antes de prosseguir com o desenvolvimento algébrico de (3.87)(3.89), cujos extensos detal-

hes são apresentados no apêndice ??, é conveniente calcular as singularidades em D(P) e, para

isso, considera-se queMth ∼M3P de forma a tornar possível, por meio de aproximações, resolver

analiticamente D±1(P) = 0. Os valores das singularidades, considerandoMP ≥ 0, são mostrados

gracamente na gura 3.5.

Finalmente, apresentamos a seguir a relação nal proveniente do desenvolvimento algébrico

50

Page 62: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Ω(0)SW+

Ω(0)SW−

Ω(S)SW+

Ω(T )SW+

Ω(V )SW+

Ω(S)SW+

Ω(T )SW+

Ω(V )SW+

Ω(S)ZF +

Ω(T )ZF +

Ω(V )ZF +

1

0

Adiabático Isotérmico IsométricoSem rotaçãopoloidal

--

-

Figura 3.3: Singularidades do denomindador de D(P) para MP ≥ 0

de (3.87)(3.89),

D(0) = Ω

(− Ω2

2q2+ 1 +

1

2q2

), (3.91)

D(T) =M2T

Ω

[2(1 +M2

P )

(1− MP

MT+

1

2

M2P

M2T

)+

(1

4− MP

MT

)M2T+

(1

2− MP

MT+M2P

M2T

)Mth

MP

]Ω2 − 1

2

Mth

MP

(3.92)

D(P) =MP

(Ω2 − 1)5

4∑

k=0

K2k+1Ω2k+1,

(3.93)

51

Page 63: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

onde os coecientes K2k+1 = K2k+1(MP ,MT ,Mth) são mostrados no apêndice ??. A resolução

analítica de (3.86), tendo em vista as expressões acimas, é efetuada feita mediante a seguinte

aproximação assimptótica:

• Ramo acústico geodésico (GAM): Ω 1.

• Ramo sonoro de íon (SW): Ω ∼ 1.

• Fluxos zonais(ZF): Ω ∼MP 1.

No primeiro e no terceiro caso, o polinômio (3.93) têm seu grau reduzido quando o desenvolvemos

em uma série de potência em Ω considerarmos apenas os três termos mais dominantes. O

segundo caso pode ser analisado, ao assumirmos soluções da forma Ω2 ≈ 1 +O(M2P ), de modo

que o denominador de (3.93) torna-se pequeno e, portanto, podemos considerar D(P) ≈ 0,

obtendo, assim, a solução no ramo sonoro.

A seguir analisamos separadamente o caso com rotação apenas toroidal e o caso em que a

rotação se desenvolve em ambas as direções.

3.5.1 Efeito da rotação toroidal

Com a susbstituição MP = 0 em (3.86) e (3.93) obtemos apenas duas soluções:

ω2GAM

c2s/R

20

= 2 +1

q2+ 4M2

T +

(2q2 ∆ρ

M2T

+1

2

)M4T

2q2 + 1, (3.94)

ω2ZF

c2s/R

20

=

(∆ρ −

∆p

γ

)M2T

2q2 + 1, ∆p = γ

M2T

2, (3.95)

que correspondem, respectivamente a GAM e a ZF. Na tabela 3.1, os valores das frequências

relativas a estes modos são mostradas nos três regimes mais importantes: adiabático, isotérmico

e isométrico.

3.5.2 Efeito da rotação poloidal e toroidal

A seguir consideramos os regimes adiabático e isotérmico na análise do efeito de rotação

poloidal e toroidal nos GAMs e ZFs. No ramo geodésico e no ramo acústico de íons, as corre-

spondentes frequências são comuns nestes dois regimes e, para q 1, podem ser aproximadas

por:

ω2GAM

c2s/R

20

≈ 2 +1

q2+M2

P + (MP − 2MT )2, (3.96)

52

Page 64: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Tabela 3.1: Comparação entre os quadrados das frequências normalizadas (por cs/R0)dos GAMs e dos ZFs nos regimes isométrico, adiabático e isotérmico.

Regime GAM (R20ω

2GAM/c

2s) ZF (R2

0ω2ZF/c

2s)

Isométrico 2 +1

q2+ 4M2

T +M4

T

4q2 + 2− M4

T

4q2 + 2

Adiabático 2 +1

q2+ 4M2

T +M4

T

20

Isotérmico 2 +1

q2+ 4M2

T + (2γq2 + 1)M4

T

4q2 + 2(γ − 1)

M4T

4q2 + 2

ω2SW

c2s/R

20

≈ 1

q2+

(3MP − 4MT )

q2MP . (3.97)

Em se tratando de ZFs, no regime adiabático a frequência não se altera ao contrário do que

ocorre no regime isotérmico, no qual, devido ao efeito do uxo de calor (q),

ω2ZF

c2s/R

20

≈ M2P

q2. (3.98)

A expressão (3.98) é aproximada e válida apenas no limite q 1, M2P 1 e M4

T M2P .

Historicamente, os resultados mostrados em (3.96) e (3.97) nos GAM devido ao efeito de

rotação poloidal foram obtidas primeiramente por V. I. Ilgisonis et. al. [47] considerando o

regime adiabático. A partir do estudo deste trabalho, considerando o efeito de uxo de calor,

no regime isotérmico, obtivemos a correção dos uxos zonais [74]. Há ainda o regime isométrico

a ser analisado, o que pretendemos fazer em um trabalho futuro.

3.6 Discussão sobre o índice adiabático

Antes do início da próxima seção, é conveniente expressar ωGAM em termos da velocidade

térmica de íons. Esta conveniência se deve ao intuito de comparar a teoria de um uído com a

teoria de dois uidos, cujos resultados coincidem com a teoria cinética (quando o amortecimento

de Landau não é levado em conta). Desta forma, conforme (3.73), a frequência dos GAMs pode

53

Page 65: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

ser expressa como:

ω2GAM =

(2 +

1

q2

)γp0

ρ0= γ

(1 +

1

2q2

)(1 +

TeTi

)v2Ti

R20

, (3.99)

onde as relações: p0 ≈ n0(Ti + Te) e ρ0 ≈ n0mi foram utilizadas. A teoria de um uido não

considera a diferença entre os índices adiabáticos (γ) de íons e de elétron. De fato, conforme a

teoria cinética, a suposição mais realista para plasmas de tokamak é γi = 5/3 ≈ 1, 7 e γe = 1.

Esta discrepância de valores se deve à grande diferença entre a massa de íons e de elétrons,

de forma que, por apresentarem inércia muito menor os elétrons são capazes de rapidamente

entrarem em equilíbrio térmico entre si. Desta forma, para efeitos de comparação entre as duas

teorias, é conveniente utilizar a substituição:

γ → γ(correto) =γi + γeTe/Ti

1 + Te/Ti, (3.100)

onde, para Te = Ti, γ(correto) ≈ 1, 3 < 5/3 ≈ 1, 7, representando um erro de aproximadamente

25%.

Na próxima seção, além de derivarmos uma relação mais precisa para a frequência dos GAMs

com relação ao índice adiabático, consideramos também o efeito da anisotropia de pressão, ou

seja, p⊥ 6= p‖. Este efeito resulta em um aumento do índice adiabático efetivo para íons

(γi = 5/3→ γ(efetivo)i = 7/4). Para simplicar o modelo, nos restringimos ao limite q → ∞.

Porém, no próximo capítulo, no qual tratamos a respeito da teoria cinética, consideramos cor-

reções de O(q−2) na frequência dos GAMs.

3.7 Modelo de dois uidos com viscosidade paralela

Nesta seção partimos do sistema (2.66)(2.69) para descrever plasmas no qual efeitos de

gradientes de densidade e de temperatura devem ser considerados, porém, não levamos em

conta no equilíbrio rotação e nem uxo de calor, de acordo com modelo apresentado em [34].

Desta forma, tal sistema é composto pelas seguintes equações:

∂ni∂t

+ ∇ · (n0vi) = 0, (3.101)

∂pi∂t

+ vi ·∇p0i + γp0i∇ · vi = 0, (3.102)

∂π‖i∂t

+ p0i

[−2vi ·∇ lnB − (γi − 1)∇ · vi

]= 0, (3.103)

54

Page 66: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

min0∂vi∂t

+ ∇pi + ∇ · π‖i− en0(E + vi ×B) = 0, (3.104)

men0∂ve∂t

+ ∇pe + en0(E + ve ×B) = 0, (3.105)

∇ · (ji + je) = 0. (3.106)

A seguir focamos nos objetivos didático do presente modelo, de forma que inicialmente não

levamos em conta efeitos de gradientes de densidade e de temperatura. Contudo, tais efeitos

são considerados posteriormente, ainda neste capítulo.

3.7.1 Efeito de anisotropia de pressão nos GAMs

Inicialmente, a partir do desenvolvimento algébrico de (3.101) (3.103) no limite q 1,

considerando vi ≈ vE ,

∂ni∂t− 2n0vE ·∇ lnB = 0, (3.107)

∂pi∂t− 2γip0i vE ·∇ lnB = 0, (3.108)

∂π‖i

∂t− 2(2− γi)p0i vE ·∇ lnB = 0. (3.109)

obtemos as seguintes relações:

ni±1 = ± i2

ωdiω

eΦ0

Tin0, pi = γiTini, π‖i = (2− γi)Tini. (3.110)

Para elétrons, a dinâmica é consideravelmente diferente, pois estes, devido a sua pequena

inércia, são considerados no regime adiabático e isotérmico. Desta forma, como me mi, a

partir de (3.105), obtemos a componente paralela da equação de momento,

∇‖pe + en0E‖ = 0, E‖ = −∇‖Φ, (3.111)

que, quando utilizada em conjunto com equações similares a (3.107) e (3.108), porém para

elétrons, fornece relações similares às obtidas em (3.110):

pe = Tene, ne±1 =en0

TeΦ±1, Te = 0. (3.112)

55

Page 67: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

É importante ter em mente que, ao contrário de v‖i, mesmo no limite q 1, ve não pode ser

desprezado. Informação sobre a velocidade paralela de íons e elétrons podem ser obtidas das

equações que não mencionamos acima, porém este é um tema para trabalhos futuros. Para a

presente análise, é importante é observar que devido a fato de que γe = 1, conforme (3.112),

elétrons não contribuem para a anisotropia da pressão (π‖e ≈ 0).

Da condição de quasi-neutralidade, e(ni − ne) = 0, obtemos

Φ±1 = ±iτe2

ωdiω

Φ0, τe =TeTi, (3.113)

ou, na forma trigonométrica,

Φs = τe(ωi/ω)krρiΦ0, Φc = 0, ωi =vTiR0

. (3.114)

Note que em (3.114) utilizamos a substituição ωdi = krρiωi, a qual tem por intuito mostrar que

Φs ∼ krρiΦ0, onde, ao longo desta tese, consideramos krρi 1.

A partir de (3.104) e (3.105), conforme mostrado anteriormente, obtém-se a densidade de

corrente:

j⊥α = jIα + jpα + jπα + jEα, (3.115)

onde

jIi =min0

Bb× dvE

dt, jpα =

b×∇pαB

, α = i, e, jπi =b×∇ · πi

B, (3.116)

são as contribuições importantes que devem ser calculadas para a obtenção da relação de disper-

são. Note que referente ao movimento de deriva E×B, há um cancelamento, pois jEi + jEe = 0,

com relação aos elétrons, a contribuição da corrente inercial é pequena, ou seja, jIe = (me/mi)jIi ,

podendo ser desprezada e, também, jπe ≈ 0. Desta forma, apenas as contribuições mencionadas

em (3.116) são importantes para o cálculo da densidade de corrente total,

j⊥ =∑

α=i,e

j⊥α. (3.117)

Ao procedermos de forma similar ao procedimento adotado na seção 3.3, a partir da eq.

(E.73), obtemos a relação de dispersão,

eΦ0

Tikrρiω +

(pisn0Ti

+pesn0Ti

+1

4

π‖isn0Ti

)ωi = 0, (3.118)

56

Page 68: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

cujo desenvolvimento é proveniente dos seguintes resultados:

JIr = −krρ2i

2

eΦ0

Tien0ω, Jpr + Jπ‖r = −ρi

2

ωiε

e

Ti

[∂

∂θ

(p−

π‖

2

)+ 3επ‖ sin θ

]. (3.119)

Finalmente, com a substituição de (3.110), (3.112) e (3.113) em (3.118), obtemos a relação

k2rρ

2i

[ω − ω2

i

ω

(γi + γeτe +

2− γi4

)]eΦ0

Ti= 0 (3.120)

e, a partir desta, a frequência dos GAMs

ω2GAM

v2Ti/R2

0

= γi + γeτe +2− γi

4= γ

(e)i + γeτe, (3.121)

onde γ(e)i = 3γi/4 + 1/2 é o índice adiabático efetivo para íons.

Considerando γi = 5/3 (íons no regime de uido) e γe = 1 (elétrons no regime adiabático e

isotérmico), segue que γ(e)i = 7/4 e, consequentemente, segue que

ωGAM =

(7

4+TeTi

)1/2 vTiR0

, (3.122)

conforme observado anteriormente [34]. Observa-se que o efeito da anisotropia da pressão de

íons, presente no termo π‖i, representa, teoricamente, um pequeno aumento na frequência dos

GAM. Este aumento é de aproximadamente de aproximadamente 3, 0% para τe = 1 e, para

τe 1, o efeito é ainda menor (próximo de 1, 7%, considerando γ = γ(correto), conforme (3.100).

3.7.2 Efeitos diamagnéticos nos GAM

A seguir consideramos efeitos diamagnéticos (ou efeitos de deriva) nos modos GAM. Para

simplicar as expressões, consideramos desde início as substituições γi = 5/3 e γe = 1. Efeitos

de deriva são provenientes de termos tais como vE ·∇n0 e vE ·∇Ti0, ou seja, ocorrem devido a

gradientes radiais de densidade e temperatura de equilíbrio. Se comparadas com as eqs. (3.107)

e (3.108), as equações a serem resolvidas neste caso, agora, apresentam termos adicionais:

∂ni∂t− 2n0vE ·∇ lnB + vE ·∇n0 = 0, (3.123)

3

2

∂pi∂t− 5p0i vE ·∇ lnB +

3

2vE ·∇p0i = 0, (3.124)

o que não ocorre com a eq. de evolução da viscosidade paralela, que permanece inalterada.

57

Page 69: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

A solução para a densidade e pressão perturbadas de íons, neste caso,

ni±1 =

(± i

2

ωdiω

Φ0 ∓ω∗iω

Φ±1

)en0

Ti,

pi±1 =

(±5

3

i

2

ωdiω

Φ0 ∓ (1 + ηi)ω∗iω

Φ±1

)en0 (3.125)

podem ser contrastadas com os resultados apresentados em (3.110), onde observa-se que os

termos adicionais em (3.125) são provenientes de gradientes de densidade e de temperatura de

equilíbrio. Os termos denidos como ω∗i = Ti/erBLN e ω∗e = Te/erBLN , onde L−1N = dn0/dr

são conhecidos como frequências de dervia de íons e de elétrons, respectivamente. Também

é comum encontrar, na literatura da área, a frequência diamagnética, que, no caso de íons, é

denida como ω∗pi = (1 + ηi)ω∗i, onde ηi = LN/LTi e L−1Ti

= dTi/dr.

A dinâmica de elétrons não se altera pela presença de efeitos diamagnéticos eletrostáticos,

porém, quando consideramos efeitos eletromagnéticos, conforme discutido em 3.8, o gradiente

da temperatura de elétrons desempenha um papel fundamental nesta dinâmica.

Novamente, consideramos a condição de quasi-neutralidade, ni = ne, para obter a relação

entre os harmônicos do potêncial eletrostático:

Φ±1 = ± i2

τeωdiω ± ω∗e

Φ0, (3.126)

de forma que, na presença de efeitos diamagnéticos, as componentes seno e cosseno (não nula

na presença de efeitos diamagnéticos) do potencial eletrostático são dadas por

Φs =τeωiω

ω2 − ω2∗ekrρiΦ0, Φc = −i τeωiω∗e

ω2 − ω2∗ekrρiΦ0 = −iω∗e

ωΦs. (3.127)

Analogamente ao caso anterior, sem efeito diamagnético, o termo principal para o desen-

volvimento algébrio é a componente sin θ da quantidade p+ π‖/4, cujo cálculo fornece

(p+

π‖

4

)

s

= −ωdiω

(7

4+τeω

2 + (1 + ηi)ω2∗e

ω2 − ω2∗e

)en0Φ0. (3.128)

Conforme o procedimento anterioriormente apresentado, o cálculo da média em uma super-

fície magnética das componente radial da densidade de corrente inercial e diamagnética fornece

a relação de dispersão, que é uma equação quadrática em ω2 com soluções:

ω2GAM± =

1

2

(ω2GAM + ω2

∗e ±√

(ω2GAM + ω2

∗e)2 + (4ηi − 3)ω2

∗eω2i

), (3.129)

onde ω2GAM = (7/4 + τe)ω

2i , da mesma forma como denido anteriormente.

Estas soluções que obtivemos, as quais foram publicadas em [75], podem ter suas expressões

58

Page 70: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

simplicadas se aproximadas no limite ω∗e ωi:

ω2GAM+ = ω2

GAM +1 + τe + ηi7/4 + τe

ω2∗e e ω2

GAM− =3/4− ηi7/4 + τe

ω2∗e (3.130)

Observa-se que gradientes de densidade e temperatura causam um aumento na frequência

dos GAM, que é proporional à frequência de deriva de elétrons. Para ηi = 0, 75, a segunda

solução (-) possui frequência próxima à dos ZF, o que pode desempenhar um papel importante

na dinâmica que governa a turbulência de ondas de deriva devido à interação não linear entre

estas duas frequências. Quantod ηi > 0, 75, este modelo prevê uma instabilidade. É possível

concluir que há claras indicações de que gradientes de temperatura ionica tendem a desestabilizar

o plasma ao passo que gradientes de densidade contribume para estabilizá-lo, de acordo com a

análise do valor de ηi na solução negativa de (3.130).

3.8 Discussão sobre GAMs eletromagnético

Com o intuito de apresentar opções para aprimoramento dos modelos para os GAM, dis-

cutimos a seguir o efeito causado pelo campo magnético perturbado perpendicular ao campo

magnético de equilíbrio. Tais efeitos são descritos pelo potencial vetor paralelo, A‖, de forma

que os campos elétrico e magnético perturbados são dado por

E = −∇Φ−∂A‖

∂t, B = ∇× (A‖b) (3.131)

A densidade de corrente paralela pode ser relacionada com o potencial vetor por meio do

uso da lei de Àmpere,

(∇× B) · b = µ0J‖ =⇒ J‖ =k2r

µ0A‖, (3.132)

onde utilizamos as relações (D.34) e (D.36). Também é útil relacionar esta densidade com a

velocidade, ou seja,

J‖ = J‖i + J‖e, J‖α = eαn0v‖α, (3.133)

de forma que é necessário determinar a componente paralela da velocidade de íons e de elétrons

para relacionar A‖ com Φ.

A pressão e, consequentemente, a densidade de elétrons, são obtidas a partir da componente

paralela da equação de momento, (3.104), porém, é necessário considerar a contribuição de B

neste cálculo. A equação resultante, então, ca,

∇‖pe + ∇‖pe0 + en0E‖ = 0 (3.134)

59

Page 71: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

onde ∇‖ = (B/B) ·∇ é um operador cuja expressão é mostrada em (D.35) no apêndice D.4

e E‖ = −∇‖Φ + iωA‖ é a componente paralela do campo elétrico mostrado em (3.131). Note

que, devido ao segundo termo de (3.134), que só esta presente no caso eletromagnético (conf.

eq. (3.111)), surge ηe = LN/LTe e, portanto, é provável que a dinâmica de elétrons desempenhe

um papel importante no caso eletromagnético. Neste caso, devido ao gradiente de temperatura

de elétron.

Com relação a dinâmica de íons, cam inalteradas as grandezas π‖i e pi com relação a ni

calculadas anteriormente. Entretanto no caso magnético é necessário considerar as velocidades

paralelas de elétrons e de íons nas suas respectivas equações da continuidade, (3.101)

Com o prosseguimento dos cálculos provenientes das equações e condições descritas acima,

surgirá o importante termo K2⊥ = k2

‖k2rλ

2Dec2/ω2 adimensional, onde λDe =

√ε0Te/n0e2 é o

comprimento de Debye para elétrons. O limite puramente eletrostático é obtido considerando

K⊥ → ∞, porém, por outro lado, quando K⊥ < 1 efeitos eletromagnéticos passam a ser

importantes da dinâmica dos GAM. Esta questão é discutida de forma mais geral em [78], onde

o parâmetro K⊥ foi denido. Em [66], partindo da equação cinética de deriva, é mostrado que

o modo poloidal m = 2 é importante no estudo de efeitos eletromagnéticos nos GAM.

3.9 Sumário e discussão

Neste capítulo, a partir da teoria da MHD ideal e do modelo de dois uidos, no a anisotropia

da pressão perturbada de íons é considerada, obtivemos expressões analíticas para três impor-

tantes ramos de baixas frequências: uxos zonais, acústico de íons e acústico geodésico.

A distinção da ordem de grandeza das frequências pertencentes a estes ramos pode ter aplicações

importantes se comparadas as expressões analíticas com valores experimentais das respectivas

frequências. Ao passo que algumas aplicações possuem objetivos diagnósticos, tais como obter

o perl radial do fator de segurança, q(r), e da temperatura, T (r), outras se direcionam para

a análise da estabilidade de uxos zonais e modos acústicos. Identicar as condições em que

ocorrem instabilidades pode ajudar a evitar a degradação do connamento causado pelo trans-

porte anômalo. Fluxos zonais e modos acústicos(ZFs, SWs e GAMs) são capazes de reduzir

a turbulência causada por ondas de deriva por meio de um processo de auto-organização que

ocorre no plasma, o qual ainda não é muito bem compreendido [4, 10] mas possui um forte

impacto na área de controle de difusão de energia e partículas e, portanto, obter a frequência

destes modos e as condições de instabilidade quando outros efeitos do plasma são considerados

é importante.

Inicialmente, partindo das equações da MHD ideal, investigamos o equilíbrio com rotação

poloidal e toroidal. Nesta investigação constatamos que o gradiente radial de temperatura e,

consequentemente, o uxo de calor de equilíbrio por ele causado, estão relacionados à rotação

poloidal. Entretanto, no regime adiabático, no qual não há uxo de calor localmente, é possível

60

Page 72: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

encontrar um equilíbrio com rotação poloidal não nula. A inversão de sentido do gradiente de

temperatura do plasma (tal situação é possível apenas localmente, pois a temperatura é maior

no centro do que na borda) indicaria que houve uma mudança de regime, do regime adiabático

para o isométrico, o que poderia causar instabilidade nos ZFs. O detalhamento deste estudo,

que se iniciou pelo trabalho de V. P. Lakhin [26], é uma das propostas para trabalhos futuros.

Próximo à região r = 0.7a, observamos que o gradiente radial de temperatura é proporcional

ao cubo da velocidade poloidal (Mth ∝ M3P ). Utilizando o modelo da MHD ideal e a teoria de

dois uidos no equilíbrio, é possível, pelo menos de forma aproximada, obter o perl radial da

temperatura de íons, o que do ponto de vista experimental é complicado de ser feito. Para isso

é necessário ter informações sobre o perl radial da velocidade de rotação poloidal e toroidal, o

qual foi obtido experimentalmente para o tokamak TCABR [76].

Para a obtenção das frequências decorrentes de perturbações eletrostática, desenvolvemos

um método iterativo para um equilíbrio de regime arbitrário. Este método é desenvolvido em três

etapas consecutivas baseadas nas seguintes condições de equilíbrio: Sem rotação (MP = MT = 0),

com rotação unicamente toroidal (MP = 0, MT 6= 0) e, nalmente, com rotação poloidal e

toroidal (MP 6= 0, MT 6= 0). Este método é justicável pelo fato de que o sistema a ser re-

solvido é linear e, portanto, o princípio da superposição pode ser aplicado. A motivação para

este método é proveniente do estudo realizado por G. N. Throumoulopoulos [79], a respeito da

inexistência de equilíbrio com rotação unicamente poloidal. Com relação a este tema, há ainda

questões em aberto, pois, de acordo com a análise da gura (3.2.2), observa-se que em r ≈ 0.7a

o valor da velocidade poloidal é próximo do máximo e a velocidade toroidal se anula nesta

posição. Neste região também ocorre a inversão de sentido da rotação toroidal, o que ainda não

é bem compreendida do ponto de vista teórico mas pode ter um forte impacto na formação da

barreira de transporte [8] e, consequentemente, no transporte turbulento. No centro da coluna

de plasma a resistividade é muito baixa e o plasma pode ser considerado não-colisional, porém,

conforme nos aproximamos da borda da coluna de plasma, este se torna colisional e, portanto, o

estudo nesta região requer, em princípio, um modelo de uido mais abrangente, capaz de incluir

viscosidade, resistividade e contribuições colisionais para o uxo de calor.

Através do estudo da dinâmica de modos geodésicos de baixas frequências na seção 3.4,

observamos que há três frequências típicas correspondentes a ZFs (ω ∼ 0), SWs (ω ∼ vTi/qR0)

e GAMs (ω ∼ 2vTi/R0). O tipo de modo associado a cada uma destas frequências é importante

porque descreve o processo físico envolvido. O primeiro, ZF, ocorre quando o plasma responde

de maneira incompressível à perturbação eletrostática, em contraste com os outros dois tipos,

caracterizados por compressibilidade do plasma. Ondas de som (SWs) só podem ocorrer em duas

situações, na ausência de perturbações eletrostáticas (Φ0 = const.) e quando há rotação poloidal

de equilíbrio. Ainda não há na literatura uma compreensão detalhada sobre as razões físicas

para o comportamento do plasma em relação às perturbações eletrostáticas ou eletromagnéticas.

Como não ocorre uma transição suave entre os valores das frequências destes três tipos de modos,

61

Page 73: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

ocorre lacunas (gaps) no espectro de frequência e, portanto, a relação entre modos geodésicos e

modos Alfvenicos [33] é uma importante área de investigação, principalmente no que se referre a

diagnósticos, em especial, para a obtenção do perl radial de q(r) e da massa efetiva no plasma.

Ao incluir a componente do uxo de calor decorrente do gradiente radial de temperatura

na equação de conservação de energia, obtivemos a correção na frequência dos ZFs, a qual, na

presença de rotação poloidal assume valor não nulo e proporcional aMP /q [74]. Este importante

resultado que obtivemos (publicado em 2011) e a expressão analítica detalhada para a frequência

dos ZFs é uma das contribuições desta tese.

O efeito da anisotropia de pressão de íons foi considerado no contexto da teoria de dois uídos

neste capítulo. Com a suposição de que a pressão ao longo das linhas de campo e perpendicular

a estas, para íons, são diferentes, obtivemos o índice adiabático efetivo (γ(efetivo) = 7/4) para a

frequência dos GAMs. Entretanto, a correção devida a anisotropia de pressão iônica não é muito

signicativa, da ordem de 5% no máximo. O efeito de rápida termalização de elétrons, ou seja,

devido a sua pequena massa, estes se comportam isotermicamente e adiabaticamente, fazendo

com que a temperatura de elétrons se torne constante em uma dada superfície magnética e, por

esta razão, o efeito da anisotropia de elétrons pode ser desprezado. Para íons, no entanto, pelo

fato de estes possuírem inércia muito maior, eles são incapazes entrarem em equilíbrio térmico

no tempo característico de modos geodésicos.

Com relação a efeitos diamagnéticos, ou seja, efeitos causados por gradientes radiais de

densidade e de temperatura de íons, os quais expressamos por meio dos comprimentos carac-

terísticos LN e LTi , respectivamente, obtivemos dois GAMs eletrostáticos. O primeiro apresenta

um aumento de frequência devido a presença de gradiente de densidade. Em contraste, quando

há fortes gradientes de temperatura, especicamente, ηi = LN/LTi > 3/4, o segundo modo

se torna instável e não oscilatório. A taxa de crescimento desta instabilidade é proporciona a

frequência de deriva de elétrons (ω∗e = Te/erBLN ) e, portanto, trata-se de um efeito do raio de

Larmor nito (FLR), porém com relação aos íons. Este resultado, publicado recentemente [75],

também é uma das principais contribuições desta tese. No capítulo seguinte, mostramos que

em regiões de fator de segurança menor esta instabilidade é suprimida.

Na seção 3.2 mostramos que gradientes de temperatura e rotação poloidal estão relacionados

e, desta forma, considerar efeitos diamagnéticos (ou efeitos de deriva), ao invés de rotação de

equilíbrio, pode ser uma alternativa conveniente para investigar a estabilidade de GAMs. Esta

conveniência reside na maior facilidade de utilização do modelo cinético, o qual descreve, entre

outros efeitos exclusivos da teoria cinética, o amortecimento de Landau, o qual é discutido no

próximo capítulo.

Considerar efeitos eletromagnéticos e efeitos diamagnéticos simultaneamente pode esclarecer

questões importantes, entre elas, a discrepância no valor de baixas frequências obtidas experi-

mentalmente com os valores teóricos das frequências de modos Alfvenicos e GAMs. Além disso,

o efeito do gradiente da temperatura de elétrons em modos geodésicos está ligado a pertur-

62

Page 74: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

bações magnéticas perpendiculares, descritas pela componente paralela do potencial vetor (A‖).

Para a investigação de GAMs eletromagnéticos [78] é necessário considerar segundos harmônicos

(m = ±2) nos modos poloidais, os quais desempenham um papel importante por contribuirem

para a corrente paralela (j‖) [66].

Incluir simultaneamente rotação de equilíbrio, efeitos diamagnéticos e eletromagnéticos no

estudo de GAMs é uma proposta fora do escopo desta tese por levar a cálculos muito extensos,

porém pretendemos levar adiante este estudo um trabalho futuro a partir da metodologia de-

scrita nesta tese. Também pretendemos considerar uxo de calor na teoria de dois uidos para

analisar modos de frequências menores, em especial, uxos zonais (ZFs).

63

Page 75: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Capítulo 4

Investigação de modos acústicos

geodésicos (GAMs) pelo modelo

girocinético

Tendo em vista o que foi exposto nos capítulos 2 e 3, nos quais a discussão sobre o modelo

giro-cinético e a aplicação do modelo de uídos ao estudo de efeitos diamagnéticos nos modos

acústicos geodésicos (GAMs) são apresentados, investigamos, neste capítulo, efeitos diamagnéti-

cos e amortecimento de Landau nos GAMs utilizando a teoria giro-cinética.

4.1 Estudo de GAMs a partir do modelo girocinético

Nesta seção, para facilitar a compreensão do modelo girocinétcio aplicado à dinâmica de

GAMs, por simpliscidade, não levamos em conta gradientes de densidade e de temperatura.

Inicialmente, consideramos a função distribuição (fα), que, conforme (2.54), é representada

pela expressão

fα = eαΦ∂FMα

∂Eα+ gαe

ik⊥·ρα , ρα =v⊥ × bωcα

, (4.1)

onde gα tem sua dinâmica governada pela equação girocinética, (2.52), a qual, quando despreza-

dos perturbações do campo magnético (B ≈ 0) e gradientes de densidade e de temperatura

(∇FMα ≈ 0), pode ser escrita como

∂gα∂t

+ (vgα ·∇)gα = −eα∂FMα

∂Eα∂Φ

∂tJ0(k⊥ρα). (4.2)

A velocidade do centro guia, conforme (2.35), (2.37) e (2.38), quando não há rotação de equilíbrio

64

Page 76: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

(Φ0 = 0), é obtida pela expressão:

vgα = v‖b+b

ωcα×(v2⊥2∇ lnB + v2

‖κ

), (4.3)

que, em regimes de baixa pressão, ou seja, quando β = O(ε2), e, para tokamaks de alta razão

de aspecto (ε 1), pode ser aproximada por

vgα ≈ v‖b−1

ωcαR0

(v2⊥2

+ v2‖

)(sin θer + cos θeθ). (4.4)

Para desenvolver algebricamente (4.2) adotamos as seguintes substituições:

∂t→ −iω, ∇ = ik,

∂FMα

∂Eα= −FMα

Tα(4.5)

onde FMα é a função Maxwelliana que, em termos da energia da partícula (Eα), é representadapor (F.7) e k = erkr + bk‖. Os operadores diferenciais (identicados por ˆ), que constituem

as componentes vetoriais de k, são denidos por:

kr = −i ∂∂r, k‖ = b · (eθkθ + eφkφ) = −ik‖

(∂

∂θ+ q

∂φ

),

kθ = −ikθ∂

∂θ, kφ ≈

1

R0

∂φ, kθ =

1

r, k‖ =

1

qR0. (4.6)

Da mesma forma como no capítulo 3, consideramos a condição kr kθ, condizente com

a ordem MHD, o que justica a aproximação k⊥ ≈ kr no argumento da função de Bessel,

J0(k⊥ρα), em (4.2). Segue, então, que a eq. (4.2) pode ser aproximada para

[ω − k‖v‖ +

(v2⊥2

+ v2‖

)sin θ

ωcαR0kr

]gα = ω

eαTαJ0(krv⊥/ωcα)ΦFMα . (4.7)

Com relação as variáveis θ e φ, a função gα pode ser expandida em série de Fourier,

gα =∑

m,n

g(α)mn(r)ei(mθ−nφ), (4.8)

onde m e n são, respectivamente, os modos poloidal e toroidal. Para GAMs, n = 0, de forma

que a eq. (4.7) pode ser escrita como

∞∑

m=−∞

[iΩdα

2g

(α)m−1 + (1−mΩtrα)g(α)

m − iΩdα

2g

(α)m+1 − FMαJ0α

eαT

Φm

]eimθ = 0, (4.9)

65

Page 77: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

onde J0α = J0(krρα), g(α)m = g

(α)m0(r),

Ωdα =

(1

2

v2⊥

v2Tα

+v2‖

v2Tα

)ωdαω, ωdi = krρiωi, ωde = −τeωdi, ωi =

vTiR0

, (4.10)

Ωtrα =v‖

vTα

ωtrαω

, ωtri = k‖vTi = ωi/q, ωtre =√τe(mi/me)ωtri ωtri. (4.11)

Em (4.11), ωtrα é a frequência de circulação, que está associada ao movimento ao longo das

linhas de campo magnético. O comprimento de onda relativo ao movimento paralelo pode ser

representando pela expressão:λ‖ = 2πqR0/|m−nq|, onde observa-se que λ‖ →∞ nas superfícies

magnéticas racionais em que q = m/n. Superfícies magnéticas racionais são aquelas em que

as linhas de campo se fecham sobre sí mesmas (q racional) e, por serem caracterizadas por

instabilidades devidas a ressonâncias que nelas ocorrem, tem relevada importancia em diversos

fenômenos em física de tokamaks.

Para resolver (4.9), em uma primeira aproximação, podemos considerar gm = 0 para |m| ≥ 2,

ou seja, levando em conta apenas o efeito de primeiros harmônicos. Com o uso desta aproxi-

mação, que é válida para krρi 1, obtemos a solução:

g(α)0 =

(J0αeα/Tα)FMα

1− Ω2trα − Ω2

dα/2

[(1− Ω2

trα)Φ0 − iΩdα

2(Φ1 − Φ−1)− iΩdαΩtrα

2(Φ1 + Φ−1)

], (4.12)

g(α)±1 =

1

1∓ Ωtrα

(±iΩdα

2g

(α)0 + J0α

eαT

Φ±1FMα

), (4.13)

na qual o denominador de (4.12) pode ser aproximado por

1

1− Ω2trα − Ω2

dα/2=

1

1− Ω2trα

+1

2

Ω2dα

(1− Ω2trα)2

+O(Ω4dα). (4.14)

Na forma trigonométrica, as eqs. (4.12) e (4.13), a partir do uso das relações g(α)s = −i(g(α)

1 − g(α)−1 )

e g(α)c = g

(α)1 + g

(α)−1 , podem ser expressas como:

g(α)0 =

J0αeα/Tα1− Ω2

trα

[(1 +

Ω2dα

2− Ω2

trα

)Φ0 +

Ωdα

2Φs + i

ΩdαΩtrα

2Φc

]FMα , (4.15)

g(α)s =

J0αeα/Tα1− Ω2

trα

(ΩdαΦ0 + Φs + iΩtrαΦc

)FMα , (4.16)

g(α)c =

J0αeα/Tα1− Ω2

trα

[−iΩdαΩtrαΦ0 − iΩtrαΦs + Φc

]FMα . (4.17)

66

Page 78: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Ao longo desta tese, consideramos este modelo para a obtenção de modos de frequências no

intervalo ωtri < ω ωtre. Não levamos em conta o efeito nito da massa de elétron, ou seja,

me/mi ≈ 0, de forma que ωtre → ∞. A seguir investigamos os efeitos do movimento paralelo

das partículas, os quais estão relacionados com o valor da frequência ωtri. A metodologia

que adotamos para o estudo deste movimento segue uma ordem gradativa de diculdade com

relação ao desenvolvimento algebrico. Desta forma, primeiramente consideramos q → ∞ ou,

seja, ωtri = 0, entretatanto a condição mi/qme → ∞ deve ser considerada simultaenamente, o

que se traduz para ωtre →∞. Em um segundo passo, ωtri/ω 1 é considerado, assumindo que

ω é real, o que nos permite obter correções O(q−2) para a frequência dos GAMs. Mesmo com

esta consideração, ainda não estariamos levando em conta um importante efeito, a dissipação

não colisional conhecida por amortecimento de Landau [30], o qual é incluido no nal desta

seção na terceira etapa. Nesta etapa, ω é visto como uma frequência complexa em princípio, e,

em termos da função de dispersão de plasma [80], Z(x), o resultado para ωtri ∼ ω é obtido.

4.1.1 Limite de uido com k‖vTi = 0 (q →∞)

Antes de iniciar o cálculo algebrico a partir da aproximação k‖vTi = 0, discutimos a respeito

da densidade de partículas, a qual é utilizada na obtenção da relação de dispersão. A densi-

dade de partículas, por sua vez, é obtida pela integração, no espaço de velocidades, da função

distribuição, ou seja,

nα =⟨fα

⟩= n(C)

α + n(G)α , (4.18)

onde, para uma grandeza genérica da forma Xα = Xα(t, r, v⊥, v‖, γ), denimos 〈〉 como

X(macroscópico)α (r, t) = 〈X〉 =

vd3vX(partícula)

α , d3v = dγdv‖dv⊥v⊥. (4.19)

Em (4.18), n(C)α e n(G)

α representam, respectivamente, as contribuições cilíndrica (simétrica em

relação a θ) e geodésica (sensível a curvatura geodésica do campo magnético e não simétrica em

relação a θ) para a densidade de partículas. De acordo com (4.1), segue que

n(C) = eαΦ

⟨∂FMα

∂Eα

⟩= −eαΦ

TαFMα , n(G) =

⟨gαe

ik⊥·ρα⟩. (4.20)

Para elétrons, como ωtre → ∞, Ωtre → ∞ pode ser considerado em (4.15), (4.16) e (4.17),

de forma que

g(e)0 =

−eΦ0

TeFMe e g(e)

s = g(e)c = 0, (4.21)

67

Page 79: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

e, consequentemente,

n(C)e =

en0

Te(Φ0 + Φs sin θ + Φc cos θ), n(G)

e ≈ −en0

TeΦ0. (4.22)

Note que 〈FMe〉 = 〈FMi〉 = n01 e, com relação a contribuição geodésica, utilizamos a relação

〈exp(−ik⊥ · ρe〉 = J0(k⊥ρe) ≈ 1, pois podemos desprezar o efeito de raio de Larmor nito (FLR)

para elétrons.

A contribuição cilíndrica para íons é analoga a de elétrons, ou seja, a densidade tem uma

resposta de Boltzmann,

n(C)i

n(C)e

= −τe, τe =TeTi. (4.23)

No entanto, com relação à contribuição geodésica, a resposta é completamente diferente. Con-

sideramos a seguir o caso ωtri/ω = 0 e, consequentemente Ωtri = 0, de acordo com (4.11), de

forma que o resultado para ni(G) pode ser expresso como:

n(G)i =

en0

Ti

[(I

(i)0 +

I(i)2

2

)Φ0 +

I(i)0

2Φs

]+

[I

(i)1 Φ0 + I

(i)0 Φs

]sin θ + I

(i)0 Φc cos θ

, (4.24)

onde as integrais I(i)n =

⟨J2

0i(Ωdi/ω)n⟩, n = 0, 1, 2 são calculadas em F.2 e podem ser aprox-

imadas por: I(i)0 = 1 − k2

rρ2i /2, I

(i)1 = krρi/Ω e I(i)

2 = (7/4)k2rρ

2i /Ω

2 em (4.24). Note que,

analogamente ao capítulo anterior, consideramos a frequência normalizada, mas denida de

forma diferente aqui, ou seja,

Ω =ω

ωi=ωR0

vTi. (4.25)

Segue, portanto, que o cálculo da densidade perturbada total de íons e de elétrons, em primeira

ordem, resulta em

nien0/Ti

=1

2

[(−Ω2 + 7/4)

k2rρ

2i

Ω2Φ0 +

krρiΩ

Φs

]+

krρiΩ

Φ0 sin θ,

neen0/Ti

= τi(Φs sin θ + Φc cos θ), τi =TiTe. (4.26)

Para obter a frequência dos GAMs, empregamos a condição de quasi-neutralidade,

e(ni − ne) = 0, (4.27)

na qual substitimos os valores das densidades perturbadas de íons e de elétrons mostrados em

1Este resultado é imediato se observarmos que a integral do primeiro momento da função distribuiçãoé a densidade de partículas (n0) e se considerarmos a condição de quasi-neutralidade, ni = ne = n0.

68

Page 80: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

(4.26), o que resulta na equação:

1

2

[(−Ω2 +

7

4

)k2rρ

2i Φ0 + ΩkrρiΦs

]+

(ΩkrρiΦ0 − τiΩ2Φs

)sin θ − τiΩ2Φc cos θ = 0, (4.28)

que é válida para Ω 6= 0 e é satisfeita para θ arbitrário se, e somente se,

Φc = 0, Φs = τekrρiΩ

Φ0,

(−Ω2 +

7

4+ τe

)k2rρ

2i Φ0 = 0. (4.29)

Note que (4.28) e (4.29) sugerem a relação Φm = O(kmr ρmi )Φ0, a qual pode ser utilizada em

modelos que mais abrangentes. A última relação em (4.29) resulta na frequência dos GAMs,

ωGAM = Ωg0vTiR0

, Ω2g0 =

7

4+TeTi. (4.30)

a qual concorda com o valor obtido pela teoria de dois uidos com viscosidade paralela, conforme

(3.122).

A seguir, considerando k‖vTi nito, porém k‖vTi ω, obtemos correções de O(q−2) para a

frequência mostrada em (4.30).

4.1.2 Limite de uido com k‖vTi nito (q 1)

No limite de uido, utilizamos a seguinte expansão em série,

1

1− Ω2tri

= 1 + Ω2tri +O(Ω4

tri), (4.31)

em (4.15), (4.16) e (4.17) e, ao desprezar termos de O(Ω3tri), a relação de dispersão, escrita na

forma matricial, ca

e2n0

Ti

(1 sin θ cos θ

)R00 R0s R0c

Rs0 Rss RscRc0 Rcs Rcc

Φ0

Φs

Φc

= 0, (4.32)

onde os elementos da matriz central são denidos pelas seguintes expressões:

R00 = I(i)00 − 1 +

1

2(I

(i)20 + I

(i)22 ) =

1

2

[−Ω2 +

7

4+

23

8

1

q2Ω2

]k2rρ

2i

Ω2,

R0s =1

2Rs0 =

1

2(I

(i)10 + I

(i)12 ) =

1

2

(1 +

1

q2Ω2

)krρiΩ

,

Rss = Rcc = I(i)02 − τi =

1

2q2Ω2− τi,

R0c = −1

2Rc0 =

i

2I

(i)11 = 0, Rsc = −Rcs = iI

(i)01 = 0, (4.33)

69

Page 81: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

onde as integrais da forma I(i)ab =

⟨J2

0iΩadiΩ

btri

⟩, com a, b = 0, 1, 2, são computadas em F.2. Para

que não haja a solução trivial, impõem-se que o determinante da matriz central de (4.32) seja

nulo, ou seja,

R2ss

(R00 − 2

R20s

Rss

)= 0. (4.34)

Da condição Rss = 0 obtemos a frequência sigular no ramo acústico de íons:

ωsw0 = Ωs0vTiR0

= k‖cse, Ω2s0 =

τe2q2

, (4.35)

onde cse =√Te/mi é a velocidade do som no limite de íons frios (Ti Te), pois c2

s =√(γiTi + γeTe)/mi e γe = 1.

Para Rss 6= 0, segue que

(−Ω2 +

7

4+ τi

23

4

Ω2s0

Ω2+τe + 4Ω2

s0/Ω2

1− Ω2s0/Ω

2

)k2rρ

2i

Ω2= 0. (4.36)

Note que no limite Ωs0 → 0 (q → ∞), a solução mostrada em (4.30) é obtida. Considerando

krρi 6= 0, as soluções de (4.36) em Ω2 são obtidas a partir da seguinte equação bi-cúbica:

Ω6 − (Ω2g0 + Ω2

s0)Ω4 −

(23

4τi +

9

4

)Ω2s0Ω

2 +23

4τiΩ

4s0 = 0, τi =

TiTe. (4.37)

Pelo fato de não levarmos em conta gradientes de densidade e de temperatura (fontes de in-

stabilidades) e efeitos cinéticos nesta seção, as únicas soluções de (4.37) com signicado físico

são as positivas. Estas soluções podem ser determinadas analiticamente de forma aproximada,

pois elas possuem ordens de gradezas distintas:Ω1 ∼ 1 e Ω2 ∼ Ωs0, onde Ωs0 1. Para a

determinação da primeira, podemos desprezar o último termo do lado esquerdo em (4.37), que é

de O(Ω4s0). Com relação a segunda solução, podemos desprezar Ω6 em (4.37), obtendo também

uma equação bi-quadrática. No primeiro caso, a equação a ser resolvida é dada por:

Ω4 − (Ω2g0 + Ω2

s0)Ω2 −

(23

4τi +

9

4

)Ω2s0 = 0. (4.38)

Das soluções de (4.38),

Ω2 =Ω2g0

2

[1 +

(7

4+ τe

)Ω2s0

Ω2g0

][1±

√1 +

(23τi + 9)Ω2s0/Ω

2g0

(1 + Ω2s0/Ω

2g0)

2

](4.39)

a única com signicado físico, que representa GAMs com correções em q, é a solução positiva,

70

Page 82: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

a qual pode ser aproximada quando Ωs0/Ωg0 1, ou seja,

ωGAM =

(Ω2g0 +

Ω2s1

Ω2g0

)1/2 vTiR0

+O(q−4)vTiR0

, (4.40)

onde

Ωs1 =

(23

4τi + 4 + τe

)1/2

Ωs0. (4.41)

Admitindo Ω ∼ Ωs0, a eq. (4.37) pode ser aproximada para

Ω4 +

(23

4τi +

9

4

)Ω2s0

Ω2g0

Ω2 − 23

4τi

Ω2s0

Ω2g0

Ω2s0 = 0, (4.42)

cuja solução válida, que representa SWs, é dada por

ωSW =

[√1 +

4(7 + 4τe)τe23(1 + 9τe/23)2

− 1

]1/2(23

8τi +

9

8

)1/2 Ωs0

Ωg0

vTiR0

. (4.43)

Note que no limite de íons frios, τe → ∞, ΩSW → 1/q, em acordo com a teoria da MHD ideal

se considerado γe = 1. No entanto, para τi nito, ΩSW < 1/q, de forma que, no espectro de

frequência, esta solução esta abaixo da frequência acústica de ions.

Com a substituição dos valores de Ωg0, Ωs0 e Ωs1 em (4.40), obtemos a forma nal da

frequência de GAMs,

ωGAM =

[(7

4+TeTi

)+

1

q2

(23

8+ 2

TeTi

+1

2

T 2e

T 2i

)(7

4+TeTi

)−1]1/2 vTiR0

, (4.44)

que está de acordo com o resultado obtido anteriormente em [64,78] (veja, nestas Refs., as eqs.

(6) e (46) respectivamente).

No limite de íons frios (Ti Te), a solução apresentada em (4.44) converge para o valor

obtido pelo modelo da MHD ideal [25], se considerarmos γe = 1, de acordo com (3.99) e (3.100).

Esta observação foi feita anteriormente por A. I. Smolyakov [78], e, neste caso, a frequência

pode ser aproximada por:

ωGAM ≈(

2 +1

q2

)1/2 cseR0, cse =

√Temi. (4.45)

A partir de (4.32), (4.33) e (4.44) segue que

Φc = 0, Φs = −2R0s

RssΦ0 =

τeΩ2 + 2Ω2

s0

Ω2 − Ω2s0

krρiΩ

Φ0, (4.46)

71

Page 83: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

onde observa-se que Ω = Ωs0, assim como em (4.36), representa uma singularidade.

4.1.3 Dissipação de Landau em GAMs (ω > k‖vTi)

Para valores baixos de q, a expansão em série, em (4.31), não pode ser utilizada, de forma

que ao desenvolver as equações os resultados dependerão da função de dispersão de plasma [80],

que é denida como:

Z(ζ) =1√π

∫ ∞

−∞dx

e−x2

x− ζ , (4.47)

onde x é real e ζ complexo, com sua parte imaginária, Im(ζ), podendo assumir valores positivo,

negativo ou nulo, mediante o método de prolongamento analítico. Para a obtenção de resultados

analíticos, considera-se |Im(ζ)| |Re(ζ)|, de forma que este modelo se aplica exclusivamente

ao estudo de modos fracamente instáveis ou amortecidos.

O cálculo dos termos da matriz central de (4.32) resulta, em termos da função dispersão,

resulta em:

R00 = L(i)0 − 1 +

1

2L(i)

2 − L(i)02 = −1

2

3

2ζ2α + ζ4

α +

(1

2ζα + ζ3

α + ζ5α

)[Z(ζα)− i√πe−ζ2i ]

k2rρ

2i

Ω2,

R0s =1

2Rs0 =

1

2L(i)

1 = −1

2

ζ2i +

(1

2ζi + ζ3

i

)[Z(ζi)− i

√πe−ζ

2i ]

krρiΩ

,

Rss = Rcc = L(i)0 − 1− τi = −

1 + τi + ζi[Z(ζi)− i

√πe−ζ

2i ],

R0c = −1

2Rc0 =

i

2L(i)

11 ∝ e−ζ2i , Rsc = −Rcs = iL(i)

01 ∝ e−ζ2i , (4.48)

onde ζi = qΩ e Ω = ΩR + iΓ. Em (4.48) utilizamos as seguintes denições:

L(α)a =

⟨J2

0αΩadα

1− Ω2trα

⟩e L(α)

ab =

⟨J2

0αΩadαΩb

trα

1− Ω2trα

⟩, a, b = 0, s, c, (4.49)

cujos cálculos são efetuados em F.3 e F.4.

A relação de dispersão,

R2ss

[(1 +R2sc

R2ss

)R00 − 2

(R20s −R2

0c)

Rss− 4R0sR0cRscR2ss

]= 0, (4.50)

é obtida a partir de (4.32) e (4.48), onde os valores de Rab são calculados considerando-se a

forma aproximada de Z(ζi), conforme (F.24), para ζi 1. Com este procedimento, a partir da

72

Page 84: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

substituição dos termos dominantes em (4.50),

R00 =1

2

[−Ω2 +

(7

4+

23

8

1

ζ2i

+ i(σ − 1)√πζ5

i e−ζ2i + i(σ − 1)

√πζ3

i e−ζ2i)]

k2rρ

2i

Ω2,

R0s =1

2

(1 +

1

ζ2i

+ i(σ − 1)√πζ3

i e−ζ2i)krρiΩ

, Rss = −(τi −

1

2ζ2i

+ i(σ − 1)√πζie

−ζ2i). (4.51)

em (4.50), não levando em conta termos de ordem e−2ζ2i , resulta a forma nal:

−Ω2 + Ω2g0 +

Ω2s1

Ω2+ i(σ − 1)

[1 + 2(2 + τi)

Ω2s0

Ω2

]√πq5Ω5e−q

2Ω2= 0. (4.52)

Note que para σ = 1 retomamos o limite de uido, cujos resultados foram apresentados ante-

riormente. Com a escolha correta, σ = 2, que representa o caso em ocorre amortecimento de

Landau, obtemos a relação correta.

A razão física para que estes modos sejam amortecidos está baseada no fato de o integrando

da integral com relação a velocidade paralela é uma função gaussiana e, portanto, o número de

partículas com velocidades inferiores a velocidade de fase da onda (vph), a qual está localizada

na cauda da distribuição, é maior do que o número de partículas com velocidades superiores

a vph. Em consequência, há mais partículas que recebem energia da onda do que partículas

que cedem energia a ela, de forma que, com a perda de energia, a onda é amortecida devido a

interação onda-partícula média, ou efeito de Landau [30].

Nesta seção, pelo fato de estarmos interessados nos valores de frequências e taxas de amortec-

imento somente em primeira ordem, os quais são apresentados incluindo a próxima ordem na

seção 4.3, considerando Ω = ΩR + iΓ, com Γ < 0 e |Γ| |ΩR|, a equação a ser resolvida pode

ser aproximada por:

D(Ω) = F(Ω) + iK(Ω) = 0,

F ≈ Ω2 − (7/4 + τe), K ≈ √πq5Ω5e−q2Ω2

. (4.53)

Para resolver (4.53), utilizamos um procedimento iterativo baseado na expansão em série de

Taylor para Ω = ΩR em primeira ordem. Inicialmente consideramos a aproximação em série:

D(Ω) ≈ F(ΩR) + iK(ΩR) + iΓ

(∂F∂Ω

+ i∂K∂Ω

)∣∣∣∣Ω=ΩR

= 0. (4.54)

Posteriormente, isolando parte real de imaginária em (4.54), onde ambas devem se anular,

obtemos as relações:

F (ΩR) = 0, (4.55)

73

Page 85: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Γ = − K(ΩR)

F ′(ΩR), F ′ = ∂F

∂Ω, (4.56)

nas quais desprezamos o termo −ΓK′(ΩR) em (4.55) por ser muito pequeno. O último passo,

consiste em resolver (4.55) para obter ΩR e, nalmente, substitui-lo em (4.56), o que permite a

obtenção de Γ.

Em uma primeira aproximação, segue que

ΩR ≈√

7

4+ τe, Γ ≈ −

√π

2q5Ω4

Re−q2Ω2

R . (4.57)

É possível avaliar o modelo por meio do cálculo numérico de Γ/ΩR. Para q = 1 e τe = 3, ou

seja, próximo do centro da coluna de plasma, |Γ|/ΩR ≈ 0.17. Conforme nos aproximamos da

borda, este valor diminui drasticamente. Por exemplo, supondo q = 2, τe = 1, |Γ|/ΩR ∼ 10−4.

Concluímos, portanto, que o amortecimento de GAMs é importante apenas para q baixo, o

que normalmente ocorre no centro da coluna de plasma e, a partir deste modelo, o efeito do

amortecimento de Landau para íons é teoricamente descrito com bastante precisão. O resultado

que obtivemos para Γ concorda com o obtido em [64,81].

4.2 Discussão sobre aplicações do modelo girocinético

na forma mais geral

A seguir apresentamos uma discussão mais detalhada sobre o modelo girocinético, no qual

consideramos o gradiente radial da função Maxwelliana e o potencial vetor paralelo perturbado

(A‖), o qual descreve perturbações magnéticas perpendiculares. Neste contexto, a equação

girocinética a ser desenvolvida é expressa por:

∂gα∂t

+ (vgα ·∇)gα = eα

(−∂FMα

∂Eα∂

∂t+b×∇FMα

mαωcα· ik⊥

)J0α(Φ− v‖A‖), (4.58)

ao invés da versão apresentada em (4.2). Entretanto fα, em termos de gα, permanece inalterada

e, de acordo com (4.1), é expressa como:

fα = eαΦ∂FMα

∂Eα+ gαe

ik⊥·ρα . (4.59)

Com a utilização de (F.8) e (F.10) em (4.58) resulta que para qualquer m e n, deve ser satisfeita

a seguinte equação:

−iΩdα

2g

(α)m−1,n + [1− (m− nq)Ωtrα]g(α)

m,n + iΩdα

2g

(α)m+1,n = (1−mΩ∗)Ψ

(α)m,n, (4.60)

74

Page 86: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

onde

Ψ(α)m,n = J0α(Φm,n − v‖A‖m,n)

eαTαFMα , (4.61)

Ω∗α =eαe

ω∗αω

[1 + ηα

(v2⊥

v2Tα

+v2‖

v2Tα

− 3

2

)], ω∗α =

TαeBrLN

∼ ρi/LNr/R0

vTiR0

. (4.62)

A relação entre A‖ e Φ é obtida pela lei de Ampère, ou seja, considerando kr r−1, resulta

que

J‖ =∑

α=i,e

⟨v‖fα

⟩≈ k2

r

µ0A‖, (4.63)

onde fα = fα(Φ, A‖) no caso mais geral.

A equação (4.60), em conjunto com a relação (4.63), é o ponto de partida para a investigação

de inúmeros tipos de modos Alfvênicos e geodésicos e seus correspondentes automodos. Com

estas equações podemos tratar diversos efeitos, tais como efeitos eletromagnéticos (A‖ 6= 0),

efeitos de deriva (ω∗α 6= 0), amortecimento de Landau, etc. No entanto, seguindo o foco

desta tese, consideramos apenas efeitos de deriva e amortecimento de Landau, os quais são

apresentados na próxima seção. Em futuros trabalhos pretendemos desenvolver os outros tópicos

mencionados.

4.3 Efeitos diamagnéticos e amortecimento de Landau

em GAMs

Se considerarmos apenas primeiros harmônicos no regime eletrostático, incluindo gradientes

de temperatura e de densidade provenientes do gradiente da função distribuição de equilíbrio,

as soluções de (4.60) se resumem a

g(α)0 =

J0αeαFMα/Tα1− Ω2

trα − Ω2dα/2

[iΩdα

2(1− Ωtrα)(1 + Ω∗α)Φ−1+

(1− Ω2trα)Φ0 − i

Ωdα

2(1 + Ωtrα)(1− Ω∗α)Φ1

], (4.64)

g(α)±1 =

1

1∓ Ωtrα

[±iΩdα

2g

(α)0 + J0α

eαTαFMα(1∓ Ω∗α)Φ±1

], (4.65)

75

Page 87: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

ou, de forma alternativa, em componentes senoidais e cossenoidais,

gα0 =eαFMα

TαJ0α

[(1 +

1

2

Ω2dα

1− Ω2trα

)Φ0 −

1

2

(Ωdα

1− Ω2trα

− ΩdαΩtrαΩ∗α1− Ω2

trα

)Φs −

i

2

(ΩdαΩtrα

1− Ω2trα

− ΩdαΩ∗α1− Ω2

trα

)Φc

], (4.66)

gαs =eαFMα

TαJ0α

[− Ωdα

1− Ω2trα

Φ0 +

(1

1− Ω2trα

− ΩtrαΩ∗α1− Ω2

trα

)Φs +

i

(Ωtrα

1− Ω2trα

− Ω∗α1− Ω2

trα

)Φc

](4.67)

gαc =eαFMα

TαJ0α

[iΩdαΩtrα

1− Ω2trα

Φ0 − i(

Ωtrα

1− Ω2trα

− Ω∗α1− Ω2

trα

)Φs +

(1

1− Ω2trα

− ΩtrαΩ∗α1− Ω2

trα

)Φc

]. (4.68)

A partir da integração no espaço de velocidades de (4.66), (4.67) e (4.68), obtemos os elementos

da matriz central, de acordo com a representação matricial em (4.32). Este cálculo, quando

feito em detalhes, resulta nas seguintes expressões:

R00 = L(i)0 +

1

2L(i)

2 − 1, Rss = Rcc = L(i)0 − L

(i)011 − 1− τi,

R0s = −1

2L(i)

1 +1

2L(i)

111, Rs0 = −L(i)1 , Rsc = −Rcs = iL(i)

01 − iL(i)001,

R0c = − i2L(i)

11 +i

2L(i)

101, Rc0 = iL(i)11 , (4.69)

que, com o uso de (F.36), ao separar partes reais (F) de imaginárias (K), podem ser desenvolvi-

das da seguinte forma:

R(F)00 =

1

2

(−Ω2 +

7

4+

23

8q2Ω2+

9

8q4Ω4

)k2rρ

2i

Ω2,

R(K)00 = −i

√π

2

(1 +

1

q2Ω2+

1

2q4Ω4

)k2rρ

2i

Ω2q5Ω5e−q

2Ω2, (4.70)

R(F)0s = −1

2

(1 +

1

q2Ω2+

9

4q4Ω4

)krρiΩ

+

R(K)0s = i

√π

2

[1 +

1

2q2Ω2−(ηiq

2Ω2 + 1 +1 + ηi/2

2q2Ω2

)Ω∗i

]krρiΩ

q3Ω3e−q2Ω2

(4.71)

76

Page 88: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

R(F)0c = −

√π

2

[1

q2Ω2+

1

q4Ω4−(ηi +

1

q2Ω2+

1 + ηi/2

2q4Ω4

)Ω∗i

]krρiΩ

q5Ω5e−q2Ω2

,

R(K)0c =

i

2

(1 + ηi +

1 + 2ηiq2Ω2

+9 + 3ηi/4

4q4Ω4

)krρiΩ

Ω∗i, (4.72)

R(F)s0 = −

(1 +

1

q2Ω2+

9

4q4Ω4

)krρiΩ

, R(K)s0 = i

√π

(1 +

1

q2Ω2

)krρiΩ

q3Ω3e−q2Ω2

(4.73)

R(F)ss = −τi +

1

2q2Ω2+

3

4q4Ω4, R(K)

ss = −i√π[− 1

q2Ω2+

(ηi +

1− ηi2q2Ω2

)Ω∗i

]q3Ω3e−q

2Ω2, (4.74)

R(F)c0 =

√π

(1 +

1

2q2Ω2

)krρiΩ

q3Ω3e−q2Ω2

, (4.75)

onde Rab = R(F)ab +R(K)

ab (a, b→ 0, s, c).

Em ordem dominante, desconsiderando termos quadráticos da função exponencial, o deter-

minante da matriz central em (4.32), o qual pode ser aproximado por

Rss(RssR00 −R0sRs0 −R0cRc0) = 0, (4.76)

ao ser desenvolvido, resulta na seguinte relação de dispersão:

F(Ω) + iK(Ω) = 0, F(Ω) ≈3∑

j=0

C(F)2j Ω2j , K(Ω) ≈ √πΩ5

4∑

j=0

C(K)j Ωje−q

2Ω2,

C(F)0 = (Ω2

s2 + Ω2*s)Ω

2s0, C

(F)2 = 2Ω2

g0Ω2s0 + Ωs1 + Ω2

*d, C(F)4 = −(Ω2

g0 + 2Ω2s0 + Ω2

∗e),

C(F)6 = 1, C

(K)0 = (3ηi − 2)ηiΩ∗iΩ∗eΩ

2s0, C

(K)1 = (1 + τe)(3ηi − 2)Ω∗iΩ

2s0,

C(K)2 = 2(1 + τi)Ω

2s0 + (ηi − 1)Ω2

∗e, C(K)3 = −1, C

(K)4 = 1. (4.77)

As frequências utilizadas em (4.77) são denidas na tabela 4.1, a qual também mostra os valores

aproximados destas frequências no centro e na borda da coluna de plasma.

77

Page 89: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Tabela 4.1: Frequências típicas normalizadas (por vTi/R0) relacionadas a efeitosgeodésicos, acústicos de íons e diamagnéticos.

Frequência Expressão analítica τe = 1, q = 3.5 (borda) τe = 3, q = 2 (centro)

Ω2g0

7

4+ τe 2.75 4.75

Ω2s0

τe2q2

2.04× 10−2 1.88× 10−1

Ω2s1

(23

4τi + 4 + τe

)Ω2s0 2.19× 10−1 1.68

Ω2*g (1 + τe + ηi)Ω

2∗e (1 + 0.5ηi)

ρ2i /L

2N

R20/r

2(2 + 0.5ηi)

ρ2i /L

2N

R20/r

2

Ω2*d

(3

4− ηi

)Ω2∗e

Ω2s2

(15

2τi +

9

4

)Ω4s0

Ω2*s τi

(η2i +

9

2ηi −

17

4

)Ω2∗e

4.3.1 Soluções no limite de uido

O limite de uido é obtido considerando e−q2Ω2 → 0 em (4.77), ou seja, através da resolução

de F(Ω) = 0. Por se tratar de uma equação bi-cúbica e, portanto, difícil de ser solucionada

analiticamente, utilizamos a forma a aproximada desta equação, a qual fornece as soluções

assimptóticas, considerando que as três soluções possuem as seguintes ordens de grandeza:

Ω1 ∼ Ωg0 ∼ 1, Ω2 ∼ Ωs0 ∼ δ 1 e Ω3 ∼ Ω*e ∼ δ 1.

• Primeira solução (GAMs): Por se tratar da frequência de valor mais alto, Ω1 ∼ 1,

podemos desprezar C(F)0 = O(δ4). de forma que F = 0 torna-se uma equação quadrática

em Ω2 cuja solução positiva fornece como solução a frequência dos GAMs corrigida pelo

78

Page 90: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

fator de segurança (q) e por efeitos diamagnéticos:

Ω2GAM = Ω2

g0 +Ω2s1

Ω2g0

+Ω2*g

Ω2g0

(4.78)

• Segunda solução (SWs): Neste caso, como a solução é Ω2 ∼ δ, o termo Ω6 pode ser

desprezado em (4.77). Admitindo a condição Ωs0 Ω∗e obtemos assimptoticamente a

frequência de SWs corrigida por efeitos diamagnéticos:

Ω2SW =

(1 +

7

4τ2i

)Ω2s0 −

[η2i +

(1

2+ τe

)ηi −

3

4

(5

3+ τe

)]Ω2∗i (4.79)

• Terceira solução (efeito diamagnético): Esta solução corresponde ao caso em que

Ω∗e Ωs0 e, nos regimes em que ηi 3/4 ou ηi 3/4 ela pode ser aproximada por:

Ω2dia =

Ω2*d

Ω2g0

+ fdia(ηi, τe)Ω2s0

Ω2g0

, (4.80)

onde

f(ηi, τe) =

(ηi −

3

4

)−1[Ω4g0η

2i +

(Ω4g0 +

Ω2g0

2− 29

16

)ηi −

(3

4Ω4g0 +

5

4Ω2g0 −

87

64

)]. (4.81)

Com relação aos limites assimptóticos de fdia, há dois casos a ser considerado:

Regime de fraco gradiente de temperatura (ηi 1): A solução é estável e

pode ser aproximada por

Ωdia =3

4

Ω2∗e

Ω2g0

+

(Ω4g0 +

5

3Ω2g0 −

29

16

)Ω2s0

Ω2g0

(4.82)

Regime de forte gradiente de temperatura (ηi 1): Este caso se caracteriza

por ser instável e não oscilatório se ocorrer fortes gradientes de densidade, ou seja,

se Ω∗e &√

2Ωg0/2q. A taxa de crescimento desta instabilidade pode ser aproximada

por

Γinst =√ηi

(Ω2∗e

Ω2g0

− τiΩ2s0

)1/2

(4.83)

79

Page 91: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

4.3.2 Efeito cinético em modos geodésicos (amortecimento de

Landau)

Para o cálculo da taxa de amortecimento das soluções mostradas em (4.78), (4.79) e (4.82),

utilizamos as expressões (4.56) e (4.77), o que resulta nos seguintes valores:

ΓGAM = −q5Ω4g0

√π

2

[1 +

(5Ω2

g0 −9

2+

29

16Ω2g0

)Ω2s0

Ω2g0

+ ηiΩ∗eΩg0

+

(1 + ηi −

Ω2*d

Ω2g0

)Ω2∗e

Ω2g0

]e−q

2Ω2GAM , (4.84)

ΓSW = −qΩ2s0

√π

2

[τe −

3

4+ τi + g

(1)sw∗

Ω∗eΩs0− g(2)

sw∗qΩ2∗e

Ω2s0

]e−q

2Ω2SW ,

g(1)sw∗ =

(ηi2− 1

)τe + 3− 5

4ηi +

17ηi − 57

8τi, g

(2)sw∗ =

ηi − 1

4τe +

3

4η2i −

3

2ηi + 1, (4.85)

Γdia = −(1 + τe)

√π

2

Ω4∗e

Ω4g0

[(3

4

Ω∗eΩ2g0

)2

− 3

2

(Ω2g0 −

√3Ωg0 −

55

24− 87

32Ω2g0

)τi

Ω2s0

Ω2g0

]e−q

2Ω2dia . (4.86)

4.4 Sumário e discussão

Neste capítulo, mostramos, essencialmente, a importância da aplicação do modelo girocinético

ao estudo de modos de baixas frequências. A partir deste modelo, inicialmente apresentado no

capítulo 2, inúmeros fenômenos que ocorrem em modos de baixas frequências podem ser anal-

isados, entre eles: efeitos diamagnéticos, amortecimento de Landau, efeitos eletromagnéticos,

efeitos de partículas aprisionadas e automodos relacionados a modos Alfvenicos e a GAMs. O

maior destaque deste modelo, no entando, se deve à possibilidade de obter a taxa de amorteci-

mento não colisional (amortecimento de Landau) e de investigar efeitos de partículas aprision-

adas em modos geodésicos, o que não é possível a partir de modelos de uidos por se tratar de

efeitos puramente cinéticos.

Quanto a metodologia adotada neste capítulo, com a nalidade de elucidar a utilização do

modelo girocinético, dividimos este capítulo em etapas. Primeiramente consideramos k‖vTi = 0,

k‖vTe → ∞ e ∇FMα = 0, o que torna o cálculo analítico consideravelmente mais simples e

permite obter os termos essenciais da frequência de GAMs. Com estas considerações é possível

entender mais facilmente a dinâmica básica de GAMs pelo modelo girocinético. Em seguida,

considerando k‖vTi nito, porém não levando em conta ainda o amortecimento de Landau, o

qual é importante para baixos valores de q, além de correções de ordem q−2 para a frequência

dos GAMs, também obtivemos a solução para SWs. Observamos, nesta parte, que a fre-

quência ω =√Te/miq2R2

0, representa uma singularidade, pois os denominadores da relação

de dispersão e da componente seno do potencial eletrostático se anulam nesta frequência. O

amortecimento de Landau é então considerado de forma aproximada (com objetivos didáti-

80

Page 92: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

cos) na subseção 4.1.3. Na seção 4.3 discutimos brevemente a forma mais geral da equação

girocinética, a qual permite a análise de efeitos diamagnéticos além de outros efeitos em modos

geodésicos e Alfvenicos, os quais pretendemos estudar em trabalhos futuros. Na última seção,

obtivemos as expressões analíticas para a frequência de GAMs e SWs levando em conta cor-

reções assimptóticas decorrentes de gradientes radiais de densidade e temperatura de íons, ou

seja, ∇FMα 6= 0 é considerado. Taxas de amortecimento correspondentes a estas frequências,

as quais são importantes quando k‖vTi . vTi/R0 também foram calculadas nesta seção.

As expressões analíticas para a frequência dos GAMs que obtivemos ao considerar amortec-

imento de Landau concorda com os valores obtidos em trabalhos anteriores [33,64,78,81]. Ape-

nas no limite de íons frios, Ti Te, considerando elétrons no regime adiabático e isotérmico

(γe = 1), o que é razoável para tokamaks [82], a expressão cinética para a frequência de GAMs

concorda com a expressão obtida pelo modelo da MHD ideal [25,31]. Conclui-se, portanto, que a

dinâmica de elétrons não é inuenciada por efeitos cinéticos e pode ser bem descrita pela teoria

de uidos. A correção devido ao efeito da anisotropia da pressão perturbada para íons, com

relação às componentes perpendicular e paralela, é da ordem de 5% e, portanto não desempenha

um papel muito signicativo no valor da frequência dos GAMs.

As expressões analíticas para a frequência de GAMs e SWs foram analisadas nos limites as-

simptóticos de maior interesse em cada caso. A solução que corresponde a GAMs na presença de

efeitos diamagnéticos, de acordo com (4.78), tem sua frequência aumentada devido ao gradiente

de densidade e de temperatura. Este fato pode ser utilizado, em conjunto com a investigação de

outros efeitos em GAMs, para explicar e possivelmente identicar alguns tipos de modos MHD

detectados recentemente no TCABR [83]. No limite Te Ti e 1 q qmax, que normalmente

ocorre em posições relativamente próximas do centro da coluna de plasma, a expressão (4.79)

pode ser utilizada para o cálculo aproximado da frequência de SWs, desde que não ocorram

fortes gradientes de densidade. No extremo oposto, quando q ∼ qmax e há fortes gradientes de

densidade, a solução correspondente a SWs é afetada por efeitos diamagnéticos e, neste caso, a

expressão (4.80) deve ser utilizada para o cálculo da frequência. Para o caso especíco em que

ηi 3/4, cuja solução é mostrada em (4.83), estes modos (SWs) se tornam instáveis na presença

de fortes gradientes de densidade e de temperatura. É possível concluir que a estabilidade deste

tipo de modo geodésico depende, não somente da relação entre os gradientes de densidade e

de temperatura de íons, mas também da relação entre o fator de segurança e o gradiente de

densidade. Esta última condição pode ser utilizada em experimentos para a obtenção do perl

radial de q a partir de medidas da frequência deste tipo de modo.

Em trabalhos futuros pretendemos estudar efeitos eletromagnéticos causados por pertur-

bações do campo magnético perpendicular (em relação ao campo magnético de equilíbrio),

conforme investigado anteriormente em [62, 78]. Trata-se de um modelo cujos cálculos são

mais extensos principalmente devido à necessidade de incluir modos toroidais n 6= 0 e modos

poloidais m = ±2, conforme discutido em [66]. É interessante considerar simultaneamente

81

Page 93: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

efeitos eletromagnéticos e efeitos diamagnéticos em GAMs e BAEs (Beta-induced Alfvén Eigen-

modes), conforme discutido em [78], pois outras correções para a frequência de modos geodésicos

são necessárias para a conrmação experimental destes modos [83]. Além disso, ao considerar

efeitos eletromagnéticos, os quais estão relacionados à dinâmica de elétrons, o efeito de gradi-

entes de temperatura de elétrons pode ser quanticado, conforme discutido no capítulo 3.

82

Page 94: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Capítulo 5

Conclusões e direções futuras

Neste capítulo, apresentamos, primeiramente, uma discussão sobre os modelos de uido e

girocinético e conclusões sobre os resultados obtidos quanto à abrangência e validade destes

modelos e quanto à aplicação destes retultados no tokamak. Em seguida, opções para o desen-

volvimento de modelos mais abrangentes são discutidas e propostas para trabalhos futuros são

apresentadas.

5.1 Modelo de uidos

No modelo de uidos partimos das equações de Braginskii que descrevem a evolução das

grandezas macroscópicas do plasma: pressão (p), viscosidade paralela (π‖), densidade (n) e ve-

locidade (v), as quais são medidas por meio de diagnósticos no tokamak, para estudar equilíbrio

MHD com rotação poloidal e toroidal e modos geodésicos de baixas frequências na presença de

rotação de equilíbrio e gradientes de densidade e temperatura. Pelo fato de tratar-se de um

modelo mais acessível para a compreensão física dos fenômenos envolvidos e por permitir um

tratamento mais simples de modelos não lineares, a teoria de uidos possui importantes apli-

cações em física de plasmas. Os modelos considerados e a metodologia utilizada foram baseados

principalmente em dois trabalhos anteriores: [34,47].

Ao considerarmos equilíbrio com rotação poloidal e toroidal e o termo de uxo de calor no

modelo da MHD ideal, obtivemos correções analíticas em termos do número de Mach poloidal

e toroidal para a frequência de uxos zonais (ZFs), ondas de som (SWs) e modos acústicos

geodésicos (GAMs). Observamos um aumento no valor da frequência destes modos, que é

devido à rotação do plasma. Quando há perturbações eletrostáticas no plasma (Φ 6= 0), no

contexto da teoria da MHD ideal, SWs só ocorrem quando há rotação poloidal de equilíbrio.

Entretanto, a partir do modelo girocinético mostramos que há SWs mesmo quando rotação

poloidal não é considerada.

Ao contrário do que ocorre com GAMs e SWs, que são modos acústicos e, portanto, com-

83

Page 95: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

pressíveis, observa-se que ZFs (modos incompressíveis) são fortemente inuenciados pela com-

ponente binormal (perpendicular ao campo magnético de equilíbrio e normal às superfícies

magnéticas) do uxo de calor, a qual depende do gradiente radial de temperatura. Ao con-

siderarmos uxo de calor nas equações da MHD ideal obtivemos a expressão analítica para a

frequência dos ZFs, a qual torna-se não nula devido ao efeito do uxo de calor e da rotação

poloidal de equilíbrio [74].

Ao observarmos que no regime isométrico com rotação unicamente toroidal os ZFs são in-

stáveis [26], observamos a necessidade de considerar também rotação poloidal neste regime, o

que, pelo fato de levar a contas extensas e fugir do escopo desta tese, pretendemos fazer em

um trabalho futuro. A análise dos resultado produzidos por este trabalho, em conjunto com

a análise do modelo de dois uidos, no qual observamos que gradientes de temperatura são

responsáveis por modos geodésicos instáveis, é promissora pois, como a rotação poloidal está

relacionada com gradientes de temperatura, poderíamos obter informações adicionais sobre o

perl radial da temperatura de íons, além de entender melhor as condições de estabilidade de

ZFs, SWs e GAMs.

Com relação a análise do equilíbrio MHD, consideramos três tipos de equilíbrio: adiabático,

isotérmico e isométrico. A partir do perl radial da velocidade de rotação poloidal e toroidal

obtido experimentalmente no tokamak TCABR [76], observa-se que uma mudança de regime de

equilíbrio com a posição radial, do isotérmico para o isométrico, implicaria em uma mudança de

sentido do gradiente de temperatura do plasma, considerando que não haja inversão de sentido

do campo magnético poloidal e com base no resultado experimental obtido para a rotação

poloidal no TCABR. No regime adiabático observa-se que o gradiente de temperatura é nulo e,

portanto, este regime é possível apenas localmente, pois a temperatura decresce do centro para

a borda da coluna de plasma. No que se refere a inversão de sentido da velocidade de rotação

toroidal na posição r ≈ 0.7a, o que ainda não é bem compreendido do ponto de vista teórico, é

necessário considerar outros termos no modelo da MHD ideal e no modelo de dois uidos. Estes

termos são devido a colisões, pois próximo à borda da coluna de plasma o plasma se torna mais

colisional e, portanto, resistivo.

Efeitos diamagnéticos provenientes de gradientes radiais de densidade e de temperatura

foram considerados no modelo de dois uidos, no qual íons são considerados no regime de

uidos (adiabático) e elétrons, devido a sua pequena massa, são considerados simultaneamente

no regime adiabático e isotérmico. Devido à enorme diferença de massa entre estas partículas,

é coerente considerar viscosidade paralela apenas para íons, o que equivale a levar em conta o

efeito da anisotropia de pressão: a componente perpendicular é diferente da componente paralela

para a pressão perturbada de íons. Assumindo o gradiente de temperatura na mesma direção do

gradiente de densidade, o que é mais razoável com relação ao que se observa em experimentos,

concluímos que a instabilidade dos GAMs é proveniente do gradiente de temperatura e que o

gradiente de densidade, de certa forma, tende a estabilizar o plasma. Mais precisamente, quando

84

Page 96: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

L−1Ti

> 3L−1N /4, ocorrem modos instáveis [75]. A instabilidade e a correção da frequência dos

GAMs devido a efeitos diamagnéticos (ou efeitos de deriva) são proporcionais à frequência

diamagnética de elétrons, ω∗e = Te/eBrLN . Este tema está relacionado ao estudo de ondas de

deriva (DW1) [84] e modos de gradiente de temperatura de íons (ITG2) [43].

As principais conclusões provenientes do capítulo 3 sobre modelos de uidos podem ser

resumidas como:

• Devido a curvatura geodésica do campo magnético de equilíbrio no tokamak, o que acar-

reta na quebra de simetria poloidal do sistema, surgem modos geodésicos no plasma que,

por desempenharem um papel importante no controle de turbulência e por terem apli-

cações na obtenção do perl radial de parâmetros do plasma, são dignos de uma intensa

investigação teórica e experimental. Informações sobre as frequências destes modos po-

dem ser utilizadas tanto para estudar os fenômenos físicos envolvidos como para aplicações

em diagnósticos.

• A anisotropia da pressão iônica, descrita pelo tensor de viscosidade paralela (π‖), altera

o valor do coeciente adiabático efetivo (γ(efetivo)) de 5/3 para 7/4, fazendo com que a

frequência de GAMs tenha um pequeno aumento (menor do que 5%).

• O fato de a rotação de equilíbrio e os gradientes de temperatura e densidade produzirem

um aumento de frequência no ramo de maior frequência dos GAMs pode ser utilizado

para tentar explicar e identicar modos recentemente medidos no tokamak TCABR [83].

• A investigação do efeito de rotação de equilíbrio e de efeitos diamagnéticos em ZFs re-

quer que o uxo de calor seja levado em conta e, portanto, gradientes de temperatura

desempenham um papel fundamental na dinâmica de uxos zonais.

• Tanto a obtenção expressões analíticas para a frequência de modos geodésicos quando

rotação de equilíbrio e/ou efeitos diamagnéticos são considerados, como o estudo de equi-

líbrio MHD com rotação em diferentes regimes, aliados a resultados experimentais obtidos

em tokamaks, podem ser utilizados em conjunto para a obtenção dos perl radial da tem-

peratura de íons e do fator de segurança, o que tem ampla aplicação para a orientação de

futuros experimentos no ITER.

• O gradiente de temperatura de íons é a fonte de energia responsável pela instabilidade de

GAMs e a condição para esta instabilidade, que é proporcional a frequência diamagnética

de elétrons, ω∗e = Te/eBrLN , e também depende do gradiente de densidade, em regiões

em que q é muito grande pode ser expressa de forma assimptótica (q → ∞) por: ηi =

(∂ lnTi/∂r)/(∂ lnn0/∂r) > 3/4 e, portanto, observa-se que o gradiente de densidade

contribui para a estabilidade de GAMs.

1Drift Waves2Ion Temperature Gradient

85

Page 97: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

5.2 Modelo girocinético

Do ponto de vista quantitativo, a utilização do modelo girocinético no capítulo 4 teve dois

objetivos: obter expressões analíticas para as frequências de GAMs e SWs na presença de efeitos

diamagnéticos considerando, simultaneamente, termos de O(q−2) e investigar o amortecimento

de Landau destes modos, que surge devido a interação onda-partícula e, por isso, requer um

tratamento cinético. Por questões didáticas, até mesmo porque modelos apresentam maior di-

culdade de compreensão física se comparados com modelos de uidos, descrevemos separada-

mente cada efeito antes de considera-lo em conjunto.O estudo do amortecimento de Landau

de modos geodésicos apresentado nesta tese foi baseado na Ref. [81] cujos resultados estão em

acordo com os nossos.

Para determinar a taxa de amortecimento não colisional dos modos geodésicos em questão,

conforme ilustrado na seção 4.1.3, utilizamos um método iterativo no qual, primeiramente, no

limite de uido, ou seja, não levando em conta o amortecimento de Landau, obtemos uma

equação bi-cúbica cuja solução fornece as frequências destes modos. Posteriormente, estas

soluções são consideradas nas expressões cinéticas, as quais são expandidas em série de Taylor,

considerando, nesta expansão, a taxa de amortecimento de Landau como parâmetro de baixo

valor. Para a solução analítica da equação bi-cúbica, partindo do conhecimento prévio obtido

pelo modelo da MHD ideal e de dois uidos da ordem de grandeza das soluções, desprezamos

termos de menor ordem para aproximá-la por uma equação bi-quadrática. Obtivemos, assim,

as três frequências nos limites assimptóticos, que correspondem, respectivamente a: GAMs de

alta frequência, SWs, e GAMs de baixas frequências (instáveis sob certas condições), cujas ex-

pressões analíticas são mostradas em (4.78), (4.79) e (4.80), respectivamente [85]. Com relação

ao modo instável, cujo limite de maior interesse é q ∼ qmax, L−1Ti L−1

N e Ti Te, observamos

que, conforme mostrado em (4.83), o gradiente de temperatura iônica aliado ao gradiente de

densidade constituem fontes para a instabilidade de GAMs em regiões onde o fator de segurança

é alto, ou seja, normalmente na borda da coluna de plasma. Esta informação pode ser explorada

experimentalmente: a partir de medidas destas frequências podemos obter uma relação entre o

valor de q e de LN e o valor de ηi = LN/LTi , ou seja, como LN pode ser obtido experimental-

mente de maneira mais simples, podemos determinar o perl radial da temperatura de íons e de

q. Da mesma forma, como a taxa de amortecimento de Landau depende de q, a determinação

da amplitude do potencial eletrostático associado a estes modos em função do tempo pode ser

utilizada para a determinação do perl radial de q.

Além de aplicações em diagnósticos na determinação do perl radial de q(r) e de Ti(r), a

expressão cinética para a frequência de GAMs obtida no capítulo 4 pode ser utilizada na com-

paração e identicação de modos observados no TCABR [83] com mais precisão, pois levamos

em conta termos de O(q−2). Com relação a taxa de amortecimento, esta pode ter aplicações em

fenômenos de transporte, pois é provável que haja uma relação entre taxa de amortecimento do

potencial eletrostático e o aumento do transporte.

86

Page 98: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

5.3 Propostas para trabalhos futuros

Pretendemos dar continuidade à linha de pesquisa iniciada nesta tese. Um dos tópicos

não mencionado anteriormente o qual pretendemos investigar é a inuência em GAMs, SWs,

e ZFs da população de partículas aprisionadas no plasma. O efeito da assimetria do campo

magnético em partículas, cuja velocidade paralela é relativamente baixa, faz com que estas

sejam aprisionadas e, devido a movimentos de deriva magnética, estas partículas descrevem

movimentos especiais conhecidos como órbitas de banana [42] que, por sua vez, são indiretamente

responsáveis pelo transporte neoclássico [52, 53], o qual, ainda que em menos intensidade do

que o transporte anômalo, degrada o connamento do plasma. Por outro lado, há também

partículas com velocidade paralela relativamente alta, as partículas passantes (ou circulantes),

que conseguem vencer o poço magnético e, por não descreverem órbitas tão espaçosas contribuem

menos com o transporte. Para modos de baixas frequências, tipicamente menor do que a

frequência de circulação de íons, ωtri =√

2Ti/mi/qR0, onde Ti e mi são a temperatura e a

massa dos íons e R0 é o raio maior do tokamak, a dinâmica de íons e elétrons aprisionados

são relevantes e portanto devem ser levados em consideração no modelo para descrever tais

modos [8688]. O efeito de partículas aprisionadas no contínuo de ondas de Alfvén cisalhadas

(SAW3) de baixa frequência foi investigado analiticamente em [89] utilizando o modelo giro-

cinético. De acordo com [89], para que seja possível um tratamento analítico, é necessário que

haja a distinção entre partículas totalmente aprisionadas e partículas totalmente circulantes a

serem consideras no modelo. As principais referências para o estudo da relação entre modos

geodésicos e a dinâmica de partículas aprisionadas que recomendamos são [8992]. Parte da

teoria envolvida neste estudo é discutida de forma mais acessível em [42,57].

Em um momento inicial os assuntos tratados nesta tese podem ser expandidos em dois

ramos: o estudo de GAMs eletromagnéticos na presença de efeitos diamagnéticos e a investi-

gação automodos acústicos geodésicos. Seguindo a linha de pesquisa desta tese, pretendemos

investigar em paralelo estes dois assuntos e depois considerá-los em conjunto. Baseado nas

Refs. [62, 78], o efeito do gradiente de temperatura de elétrons em modos geodésicos de baixas

frequências, descrito pela quantidade, ηe = LN/LTe , pode ser quanticado quando se considera

perturbações paralela do potencial vetor (A‖ 6= 0). Neste estudo, considerar a inuência de

segundos harmônicos poloidais (m = ±2) é essencial, de acordo com [93], pois efeitos eletro-

magnéticos atuam principalmente em elétrons que constituem a corrente paralela, a qual possui

dependência em sin(2θ). Da mesma forma, o estudo de automodos geodésicos exige que sejam

levados em contas termos relacionados a m = ±2. Automodos geodésicos ocorrem em regiões

onde a frequência de GAMs (contínuo) é praticamente constante com a posição radial e, por

permitir obter informações sobre o potencial eletrostático perturbado (Φ(r, t)) e por ter apli-

cações diagnósticas: Espectroscopia em GAM [94,95], em especial para obter o perl radial da

3Shear Alfvén Waves

87

Page 99: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

temperatura de íons, possui um amplo interesse na área de fusão nuclear.

Há ainda inúmeras questões em aberto quanto aos GAM e, em particular, outros efeitos

e a consideração de termos de ordem menor nos GAM podem ajudar a esclarecer algumas

destas questões. A inclusão de termos de O(k4rρ

4i ), por exemplo, além de necessária para o

estudo de automodos geodésicos, permite a determinação da dependência radial da frequência

dos GAM [24]. No modelo de uídos esses termos de ordem menor podem ser incluídos se

considerados giro-viscosidade e uxo de calor [35, 96].

88

Page 100: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Apêndice A

Cálculo numérico de parâmetros e

grandezas características do TCABR

A.1 Constantes da Física

Símbolo Grandeza física Valor numérico Unidades (SI)me Massa de repouso do elétron 9, 11× 10−31 kgmp Massa de repouso do próton 1, 67× 10−27 kge Carga elétrica elementar 1, 60× 10−19 Cε0 Permitividade no vácuo 8, 85× 10−12 Fm−1

µ0 Permeabilidade no vácuo 4π × 10−7 Hm−1

h Constante de Planck 6, 63× 10−34 Jsk Constante de Boltzmann 1, 38× 10−23 JK−1

89

Page 101: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

A.2 Parâmetros do tokamak TCABR

Tabela A.1: Parâmetros do TCABR no Instituto de Física da Universidade de São Paulo(IFUSP)

Nome do parâmetro Simbolo ValorRaio maior R0 0,61 mRaio do plasma a 0,18 mCampo magnético toroidal BT 1,2 TCorrente de plasma IP 9.104 AFator de segurança no centro q0 1Fator de segurança na borda qa 3.5Densidade de íons no centro ni0 3.1019m−3

Densidade de íons na borda nia 1.1018m−3

Temperatura de elétrons no centro kBTe0 500 eVTemperatura de elétrons na borda kBTea 15 eV

A.3 Grandezas características do tokamak TCABR

Tabela A.2: Valor numérico aproximado da frequência de giração, da velocidade térmicae do raio de Larmor para o tokamak TCABR

Parametro Valor numérico

ωci 1.2× 108 rad/s

ωce 2.2× 1011 rad/s

vTi 5.4× 104 m/s

vTe 2.3× 106 m/s

ρi 4.5× 10−4 m

ρe 1.0× 10−5 m

90

Page 102: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Apêndice B

Identidades e relações vetoriais

Neste apêndice apresentamos identidades e relações vetoriais de fundamental importância

para os cálculos do apêndice D e do capítulo 3. Tais relações muitas vezes envolve o operador

gradiente, ∇, que na maioria dos casos é conveniente escrito em termos de coordenadas quasi-

toroidais. As relações e identidades aqui apresentadas podem ser encontradas em [39,97,98].

B.1 Identidades vetoriais

(A×B) ·C = (B×C) ·A = (C ×A) ·B (B.1)

A× (B×C) = (A ·C)B− (A ·B)C (B.2)

(A×B) · (C ×D) = (A ·C)(B ·D)− (A ·D)(B ·C) (B.3)

B.2 Identidades e teoremas fundamentais

∇ · (∇×A) = 0, ∇× (∇f) = 0 (B.4)

V∇ ·AdV =

SA · dS,

S(∇×A) · dS =

lA · dl (B.5)

91

Page 103: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

B.3 Identidades envolvendo o operador ∇

∇ · (fA) = f∇ ·A+A ·∇f (B.6)

∇× (fA) = f∇×A+ ∇f ×A (B.7)

∇ · (A×B) = (∇×A) ·B− (∇×B) ·A (B.8)

∇× (A×B) = (∇ ·B)A− (∇ ·A)B+ (B ·∇)A− (A ·∇)B (B.9)

A× (∇×B) +B× (∇×A) = ∇(A ·B)− (A ·∇)B− (B ·∇)A (B.10)

∇× (∇×A) = ∇(∇ ·A)−∇2A (B.11)

∇ · (AB) = (∇ ·A)B+ (A ·∇)B (B.12)

B.4 Gradiente, Divergente, Rotacional e Laplaciano

em coordenadas cilíndricas

∇Ψ =∂Ψ

∂ReR +

1

R

∂Ψ

∂ϕeϕ +

∂Ψ

∂ZeZ (B.13)

∇ ·B =1

R

∂(RBR)

∂R+

1

R

∂Bϕ∂ϕ

+∂BZ∂Z

(B.14)

∇×B =

[1

R

∂BZ∂ϕ− ∂Bϕ

∂Z

]eR +

[∂BR∂Z− ∂BZ

∂R

]eϕ +

1

R

[∂(RBϕ)

∂R− ∂BR

∂ϕ

]eZ (B.15)

∇2Ψ =1

R

∂R

(R∂Ψ

∂R

)+

1

R2

∂2Ψ

∂ϕ2+∂2Ψ

∂Z2(B.16)

92

Page 104: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

B.5 Gradiente, Divergente e Rotacional em coorde-

nadas quasi-toroidais

∇Ψ =∂Ψ

∂rer +

1

r

∂Ψ

∂θeθ +

1

R

∂Ψ

∂φeφ, (B.17)

∇ ·B =1

Rr

[∂

∂r(RrBr) +

∂θ(RBθ) + r

∂Bφ∂φ

]e (B.18)

∇×B =

1

R

[(1

r

∂(RBφ)

∂θ− ∂Bθ

∂φ

)er +

(∂Br∂φ− ∂(RBφ)

∂r

)eθ +

R

r

(∂(rBθ)

∂r− ∂Br

∂θ

)eφ

]

. (B.19)

∇2Ψ =1

Rr

[∂

∂r

(Rr

∂Ψ

∂r

)+

∂θ

(R

r

∂Ψ

∂θ

)+

∂φ

(r

R

∂Ψ

∂φ

)](B.20)

B.6 Derivativos de versores em coordenadas cilíndricas

∂eR∂R

=∂eϕ∂R

=∂eR∂R

= 0,∂eZ∂ϕ

= 0,∂eR∂Z

=∂eϕ∂Z

=∂eZ∂Z

= 0, (B.21)

∂eR∂ϕ

= eϕ,∂eϕ∂ϕ

= −eR. (B.22)

B.7 Derivativos de versores em coordenadas quasi-toroidais

∂er∂r

=∂eθ∂r

=∂eφ∂r

= 0,∂eφ∂θ

= 0, (B.23)

∂er∂θ

= eθ,∂eθ∂θ

= −er, (B.24)

93

Page 105: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

∂er∂φ

= − cos θeφ,∂eθ∂φ

= − sin θeφ,∂eφ∂φ

= − cos θer + sin θeθ. (B.25)

É conveninete observar a seguinte relação entre os sistemas de coordenadas apresentados acima:

eR = cos θer − sin θeθ, eϕ = −eφ, eZ = sin θer + cos θeθ. (B.26)

94

Page 106: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Apêndice C

Obtenção das expressões analíticas

referentes à análise de equilíbrio com

rotação

O principal intuito deste apêndice mostrar a metodologia para obtenção das equações (3.17)

(3.19), que descrevem o equilíbriio MHD com rotação poloidal e toroidal.

C.1 Relações envolvendo B e J

Inicialmente, a partir do campo magnético de equilíbrio [47],

B = F∇φ+ ∇φ×∇Ψ, (C.1)

a densidade de corrente a ele associado pode ser obtida pelo uso das identidades (B.7) e (B.9),

resultando em

J = µ−10 ∇×B = µ−1

0 [−∇φ×∇F + (∇ ·∇Ψ)∇φ+ (∇Ψ ·∇)∇φ− (∇φ ·∇)∇Ψ], (C.2)

Para o desenvolvimento algébrico de (C.2), podemos escrever os dois últimos termos do lado

direito em coordenadas cilíndricas, de acordo com (B.13), considerando para isso φ = −ϕ, ouseja, de forma explícita segue que

(∇Ψ ·∇)∇φ− (∇φ ·∇)∇Ψ =

∂Ψ

∂R

∂R

(−eϕR

)+

1

R2

∂ϕ

(∂Ψ

∂ReR

)=

2

R2

∂Ψ

∂Reϕ = R2

[∇(

1

R2

)·∇Ψ

]∇φ. (C.3)

Com o uso de (C.3) e de (B.6) torna-se conveniente expressar a densidade de corrente em termos

95

Page 107: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

do operador de Shafranov, ∆∗Ψ = ∇ · (∇Ψ/R2), de forma que

J = µ−10 (R2∆∗Ψ∇φ−∇φ×∇F ). (C.4)

A partir das expressões analítica para B e J apresentadas acima, obtem-se

∇φ×B = −∇Ψ

R2, (∇φ×∇Ψ)×B =

F

R2∇Ψ,

∇Ψ×B = |∇Ψ|2∇φ− F (∇φ×∇Ψ) = B2R2∇φ− FB, B2 =F 2 + |∇Ψ|2

R2, (C.5)

∇φ× (∇×B) =∇F

R2, (∇φ×∇Ψ)× (∇×B) = −(∆∗Ψ)∇Ψ− (B ·∇F )∇φ,

∇Ψ× (∇×B) = −R2∆∗Ψ(∇φ×∇Ψ)− (∇Ψ ·∇F )∇φ, (C.6)

onde foram utilizadas as identidades (B.2) e, com relação a simetria azimutal, ∇φ ·∇f = 0

(para qualquer função f) em (C.5) e (C.6).

O termo devido a força magnétcia é calculado abaixo utilizando (C.6),

J×B = − 1

µ0R2

[(∆∗Ψ)∇Ψ +

1

2∇F 2 − (B ·∇F )R2∇φ

], (C.7)

C.2 Relações para V

Propriedades importantes da velocidade de equilíbrio podem ser determinadas a partir da

lei de Ohm e a equação da continuidade,

E +V×B = 0, (C.8)

∇ · (ρV) = 0, (C.9)

onde, na primeira, desconsideramos o efeito diamagnético, condizente com a ordem MHD.

De (C.8), segue que V = V′ + CB, com V′ ⊥ B, é uma solução possível, onde V′ pode ser

determinado a partir do produto de B/B2 com (C.8),

V′ =E ×BB2

=F∇φ×∇Φ− (∇Ψ ·∇Φ)∇φ

B2. (C.10)

Como E ·B = −∇Φ · (∇φ ×∇Ψ) = 0 e ∇Φ ·∇Ψ = 0, por simetria azimutal, conclui-se que

E está na direção de ∇Ψ, ou, de forma equivalente,

E = −Ω∇Ψ, Ω = Ω(Ψ) =dΦ

dΨ, (C.11)

96

Page 108: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

o que permite desenvolver (C.10), de acordo com

V′ = −ΩR2∇φ+FΩ

B2B, (C.12)

e, consequentemente, podemos expressar a velocidade V como

V = C ′B− ΩR2∇φ, C ′ = C +FΩ

B2. (C.13)

Esta, quando substituida em (C.9), com o auxílio de (B.6), ∇ ·B = 0 e (B.16) leva a seguinte

equação:

∇ · (ρCB)−∇ · (ρΩR2∇φ) = B ·∇(ρC) = 0, (C.14)

que pode ser traduzida para C = κ(Ψ)/ρ, pois B ·∇f = 0 implica que f = f(Ψ), para qualquer

função f simetrica em φ. Fica, portanto, determinada a velocidade de equilíbrio em função das

grandezas κ(Ψ), Ω(Ψ), F e Ψ:

V =κ

ρB− ΩR2∇φ, (C.15)

onde κ = κ(Ψ) é uma função arbitrária de uxo diretamente relacionanda com a velocidade

poloidal.

Da mesma forma como foram obtidos (C.5) e (C.6), é conveniente obter relações envolvendo

o produto vetorial com (C.15):

∇φ×V = − κ

ρR2∇Ψ, B×V = −Ω∇Ψ,

∇Ψ×V =κ|∇Ψ|2

ρ∇φ+

(ΩR2 − κF

ρ

)(∇φ×∇Ψ) (C.16)

A próxima etapa é o cálculo da força Centrífuga e de Coriollis devido a rotação do plasma

na equação de momento. Para este cálculo, é conveniente utilizar a seguinte identidade

V ·∇V = ∇(V 2

2

)−V× (∇×V), (C.17)

obtida a partir de (B.10), que é mais geral. Para evitar expressões muito extensas, é conveniente

calcular as componentes de (C.17) na direção de um vetor arbritário U, de acordo com a

identidade

UV : ∇V = U · (V ·∇V) = U ·∇(V 2

2

)− (U×V) · (∇×V). (C.18)

proveniente do uso de (B.1). A este vetor arbritário, atribuiremos U = ∇φ, U = B e U = ∇Ψ,

97

Page 109: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

para obter as equações (3.17)(3.19).

Para o desenvolvimento de (C.18) é necessário, primeiramente, efetuar os seguintes cálculos:

V 2

2=

1

2

κ2B2

ρ2+

1

2Ω2R2 − κFΩ

ρ, (C.19)

∇×V =

ρ∆∗Ψ + ∇Ψ ·∇

ρ

)]∇φ+ ∇φ×∇

(ΩR2 − κF

ρ

), (C.20)

onde o segundo, de considerável extensão algébria, foi feito a partir da relação (C.4) e das

identidades (B.1) e (B.7).

De (C.16), (C.18) e (C.20) obtemos as componentes da força inercial devido à rotação:

ρ∇φV : ∇V =1

R2B ·∇

(κ2F

ρ− κΩR2

), (C.21)

ρBV : ∇V = ρB ·∇(κ2B2

2ρ2− Ω2R2

2

), (C.22)

ρ∇ΨV : ∇V =|∇Ψ|2R2

[−κ

2

ρ∆∗Ψ− ρ∇Ψ ·∇

(κ2

2ρ2

)+

ρ

|∇Ψ|2∇Ψ ·∇(κ2

ρ2|∇Ψ|2

)]+

(κFΩ

ρ− ΩR2

2− κ2B2

2ρ2

)∇Ψ ·∇R2, (C.23)

as quais, para obtenção das eqs. (3.17)(3.19), devem ser somadas e subtraidas, respectivamente,

às componentes do gradiente de pressão e da força magnética. É conveniente para este cálculo,

portanto, utilizar os seguintes resultados:

∇φ · (J×B) =B ·∇F

µ0R2, (C.24)

∇Ψ · (J×B) = −|∇Ψ|2µ0R2

(∆∗Ψ +

1

2

∇Ψ ·∇F 2

|∇Ψ|2), (C.25)

obtidos a partir de (C.7). As referidas equações, após o desenvolvimento algébrico das compo-

nentes da equação de momento,

ρUV : ∇V+U ·∇p−U · (J×B) = 0, U = ∇φ,B,∇Ψ, (C.26)

podem ser expressas na forma:

98

Page 110: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

• Componente ∇φ:

B ·∇[F

(1− µ0κ

2

ρ

)+ µ0κΩR2

]= 0. (C.27)

• Componente B:

B ·∇(κ2B2

2ρ2− Ω2R2

2

)+B ·∇p

ρ= 0. (C.28)

• Componente ∇Ψ:

(1− µ0κ

2

ρ

)∆∗Ψ + µ0R

2∇Ψ ·∇p

|∇Ψ|2 +1

2

∇Ψ ·∇F 2

|∇Ψ|2 − µ0ρ

2∇Ψ ·∇

(κ2

ρ2

)+

µ0ρ

2|∇Ψ|2∇Ψ ·∇(κ2

ρ2|∇Ψ|2

)+

µ0R2

|∇Ψ|2(κFΩ

ρ− ΩR2

2− κ2B2

2ρ2

)∇Ψ ·∇R2. (C.29)

C.3 Cálculo de ∇ · q de equilíbrio

Para fechar o sistema, é necessário o cálculo de ∇ · q, presente na eq. (3.15), que pode ser

efetuado a partir da aplicação da identidade (B.6) na equação da denição de uxo de calor,

(3.11), o que resulta em

∇ · q =γ

γ − 1

[p

eB2∇ · (B×∇T ) + (B×∇T ) ·∇

(p

eB2

)]. (C.30)

No que se refere ao primeiro termo entre colchetes, o uso de (B.8) e (C.4) permite obter a

relação aproximada,

∇ · (B×∇T ) = (∇φ×∇T ) ·∇F ≈ dT0

dΨB ·∇F − dF0

dΨB ·∇T, (C.31)

onde, além da aplicação de (B.1), a teoria de perturbação atemporal foi utilizada na última

passagem, que emprega a aproximação: |T1(Ψ, θ)| T0(Ψ) e |F1(Ψ, θ)| |F0(Ψ)|.De forma similar, o segundo termo entre colchetes em (C.30) pode ser desenvolvido de acordo

com a expressão

(B×∇T ) ·∇(

p

eB2

)≈ F0

e

[dT0

dΨB ·∇

(p

B2

)− d

(p

B2

)B ·∇T

]≈

p0R20

eF0

dT0

[B ·∇p

p0− 2B ·∇F

F0+B ·∇R2

R20

]−[

1

p0

dp0

dΨ− 2

F0

dF0

dΨ+

1

R20

dR2

]B ·∇T

, (C.32)

onde foi considerado que |∇Ψ| |F |, |B ·∇(|∇Ψ|)| |B ·∇F | e d|∇Ψ|/dΨ |dF/dΨ|.Com as denições introduzidas pelas eqs. (3.20), (3.23), (3.24) e (3.26), as equações (C.31)

99

Page 111: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

e (C.32) podem ser expressas na forma

p

eB2∇ · (B×∇T ) = Mth(∆F −RF∆T )

p0csF0

B ·∇R2

R0, (B×∇T ) ·∇

(p

eB2

)=

Mth

[1− 2∆F + ∆p −

(1 +Rρ − 2RF +

T0

R20

∂R2/∂Ψ

dT0/dΨ

)∆T

]p0csF0

B ·∇R2

R0. (C.33)

Em resumo, ao assumir que as grandezas de equilíbrio são da forma: X = X0(Ψ)+ZX1(Ψ, θ)

com |X1| |X0| e ao desprezarmos o termo |∇Ψ|2/F 20 e suas derivadas e gradientes, pudemos

desenvolver a expressão da divergência do uxo de calor e obter o seguinte resultado:

∇ · q = Mth

[1−∆F + ∆p −

(1 +Rρ −RF +

T0

R20

∂R2/∂Ψ

dT0/dΨ

)∆T

]γp0csR0

(γ − 1)F0

B ·∇R2

R20

, (C.34)

o qual é utilizado em 3.2.

100

Page 112: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Apêndice D

Derivação de fórmulas usadas no

capítulo 3

Expressões algébricas para o divergente da velocidade, do tensor de viscosidade paralela

e da densidade de corrente e a equação de evolução do tensor de viscosidade paralela, ambas

bastante utilizadas no capítulo 3, são obtidas neste apêndice. O índice α = i, e das quantidades

macroscópicas do plasma é suprimido nas expressões para simplicar a notação, contudo, eles

devem car subentendidos. Os resultados aqui apresentados são válidos, em sua maiorida, para

sistemas de baixa pressão (β ∼ ε2).

D.1 Relações para B

Para a obtenção de futuras relações, é conveniente separar as componentes paralela e per-

pendciular (com relação a b = B/B) do operador ∇, ou seja,

∇‖ = b ·∇ e ∇⊥ = ∇− b∇‖, (D.1)

de forma que, a partir de (B.6) e (B.7) obtém-se

∇ · b = ∇‖ lnB, ∇× b = µ0J

B+ b×∇ lnB ≈ b×∇ lnB, (D.2)

se considerarmos J‖ ∼ J⊥, pois ∇p ≈ J×B e, consequentemente,

|µ0J⊥/B||∇× b| ∼ β, b · (∇× b) = µ0

J‖

B∼ β

L. (D.3)

Utilizando (B.2) e (D.2), obtém-se a seguinte aproximação

κ = ∇‖b = −b× (∇× b) ≈∇⊥ lnB, (D.4)

101

Page 113: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

para o vetor de curvatura do campo magnético (κ).

Para os cálculos da próxima seção é conveniente denir G = fB×∇g1, cujo cálculo do

divergente, efetuado a partir de (B.6) e (B.8), resulta em

∇ ·G ≈ G ·∇ ln f. (D.5)

Em particular, para f = B−1, ∇ ·G = (b× κ) ·∇g e, neste caso, obtém-se2:

vD =b×∇g

B, ∇ · vD = −2vD ·∇ lnB. (D.6)

D.2 Cálculo da divergência de π, v, J e q

Iniciamos esta seção apresentando a denição de viscosidade paralela:

π‖ =3

2π‖

(bb− 1

3I

), (D.7)

cujo cálculo de seu divergente, obtido a partir de (B.12) e (B.6) e das relações apresentadas na

seção anterior, resulta em

∇ · π‖ =3

2

[(b∇‖ lnB + κ)π‖ + b∇‖π‖

]− 1

2∇π‖. (D.8)

Note também que

b ·∇ · π‖ =3

2π‖∇‖ lnB +∇‖π‖, (D.9)

b×∇ · π‖ =3

2π‖(b× κ)− 1

2b×∇⊥π‖, (D.10)

e, utilizando (B.8),

∇ · (b×∇ · π‖) = (b× κ) ·∇π‖. (D.11)

D.2.1 Relações para velocidades (v)

Utilizando (D.6) e (B.6), obtemos um primeiro desenvolvimento algébrico para o divergente

das principais velocidades de deriva em uidos. Neste desenvolvimento consideramos a ordem

MHD (vE ∼ vTi) e não levamos em conta o termo de giroviscosidade (πg) e viscosidade perpen-

1Aqui, G é um vetor arbitrário, mais adiante utilizado para representar v, J, etc.2Note que vD possui a forma de uma velocidade de deriva.

102

Page 114: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

dicular (π⊥), os quais são de ordem superior em ρi/L. A seguir apresentamos tais resultados:

vE =b×∇Φ

B, vp =

b×∇p

enB, vπ =

b×∇ · πenB

, vI ≈b

ωc× dvE

dt, (D.12)

∇ · (nvE) = vE ·∇n− 2nvE ·∇ lnB, (D.13)

∇ · (nvp) = −2nvp ·∇ lnB, (D.14)

∇ · (nvπ) = nvπ ·∇ lnB, (D.15)

∇ · (nvI) = vI ·∇n− nvI ·∇ lnB +1

ωc∇ ·

(b× dvE

dt

)(D.16)

∇ · (v‖b) = ∇‖v‖ − v‖∇‖ lnB. (D.17)

D.2.2 Relações para a densidade de corrente (j)

De forma similar à subseção anterior, obtemos as expressões as principais componentes da

densidade de corrente e seus respectivos divergentes:

jp =b×∇p

B, jπ =

b×∇ · π‖B

, jI ≈mn

Bb× dvE

dt, (D.18)

∇ · jp = −2jp ·∇ lnB, (D.19)

∇ · Jπ = Jπ ·∇ lnB, (D.20)

∇ · jI ≈ jI ·∇ ln

(n

B

)− mn

B

[∂

∂t∇ ·

(∇⊥Φ

B

)+ ∇ · (b× vE ·∇vE)

]. (D.21)

D.3 Equação de evolução de π‖

Primeiramente observamos que o termo Tijk = ei · [(ej ·∇)ek], i, j, k = 0, 1, 2, satisfaz gener-

icamente as seguintes relações:

Tijk = −Tikj + ei · [(∇× ej)× ek] + ei · [(∇× ek)× ej ], (D.22)

103

Page 115: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

T00k = −T0k0 − Tk00, e0 = b. (D.23)

Como b · db/dt = 0, b · ∂b/∂t = 0 e b · κ = 0, seque que

b · dbdt

= b ·(∂b

∂t+ (v⊥ ·∇)b+ v‖κ

)= bv⊥ : ∇b = 0 (D.24)

e, consequentemente, como v⊥ = v⊥1e1 + v⊥2e2,

v⊥1T010 + v⊥2T020 = 0. (D.25)

Desta forma, de acordo com (D.4), (D.23) e (D.25), ao notar que, na forma matricial, as

componentes de ∇v e o termo bb : ∇v podem ser expressos respectivamente como:

Mij = (ei ·∇)vj +2∑

m=0

vmTijm,∑

i,j

biMijbj = b0M00b0 = M00 (D.26)

onde v0 = v‖, v1 = v⊥1 e v2 = v⊥2, obtém-se a relação:

bb : (∇v)T = bb : ∇v = ∇‖v‖ − v⊥ ·∇ lnB. (D.27)

Consideramos agora a equação de evolução do tensor viscosidade [35,71],

dt+ π∇ · v+

[π ·∇v+ (π ·∇v)T − (γ − 1)I(π : ∇v)

]+ ωc(b× π − π × b) +

[p∇v+ p(∇v)T − (γ − 1)p∇ · v

]+γ − 1

γ

[∇q+ (∇q)T − (γ − 1)I∇ · q

]+ ∇ · τ = 0, (D.28)

onde τ é um dos próximos momentos da função distribuição, que é considerado nulo neste

contexto, e consideramos o caso não colisional.

Considerando também apenas o efeito de viscosidade paralela, ou seja, π ≈ π‖ = π‖(bb− I/3),

de acordo com (D.24), obtem-se:

bb :dπ

dt=dπ‖

dt− db

dt· (b · π)− b ·

(db

dt· π)

=dπ‖

dt. (D.29)

Desta forma, no regime linear, para o caso adiabático (q = 0) em que não há rotação de

equilíbrio, a partir de (D.27), (D.28) e (D.29), segue que

dπ‖

dt+ p

[2∇‖v‖ − 2v⊥ ·∇ lnB − (γ − 1)∇ · v

]= 0. (D.30)

104

Page 116: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

D.4 Aproximação para tokamaks de superfícies mag-

néticas concentricas

D.4.1 Campo magnético de equilíbrio

Em tokamaks de superfíces magnéticas aproximadamente concentricas, conforme descrito

no capítulo 2, o campo magnético de equilíbrio pode ser aproximado por

B = Bb, B ≈ B0(1− ε cos θ), b =ε

qeθ + eφ ≈ eφ, ε 1. (D.31)

e, convenientemente, representado no sistema de coordenadas quasi-toroidais (r, θ, φ). Conse-

quentemente, considerando apenas termos dominantes, o desenvolvimento algébrico dos oper-

adores ∇‖ e ∇⊥ e do vetor de curvatura (κ) resulta em:

∇‖ = k‖

(∂

∂θ+ q

∂φ

), ∇⊥ = er

∂r+ eθkθ

∂θ, κ = − eR

R0, (D.32)

onde k‖ = 1/qR0, kθ = 1/r e, de acordo com (B.26), eR = cos θer− sin θeθ. Também observa-se

que, para q 1,

∇× b ≈ b× κ = − eZR0, ∇ · b ∼ b · (∇× b) = O(εk‖) ∼ 0, (D.33)

onde eZ = sin θer + cos θeθ.

D.4.2 Campo magnético perturbado

Derivamos a seguir algumas relações para o campo magnético perturbado considerando que

B = B⊥ = ∇× (A‖b), onde A é o potencial vetor. Segue, portanto, que

B = −b×∇A‖ + A‖(b× κ) ≈ −1

r

∂A‖

∂θer + ikrA‖eθ (D.34)

A partir de (D.34) obtém-se

∇‖ =B

B·∇ ≈ 1

rB

(ikrA‖

∂θ−∂A‖

∂θ

∂r

), (D.35)

∇× B ≈ ikrk‖∂A‖

∂θer + k2

rA‖b. (D.36)

105

Page 117: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

D.4.3 Velocidade e densidade de corrente.

A partir das relações

v2Ti =

2Timi

, ρi =vTiωci

,1

B=vTiρi

2

e

Ti, ρi/r krρi 1 (D.37)

considerando o potêncial eletrostático perturbado (Φ), bem como a pressão (p) e a viscosidade

paralela (π‖), utilizamos (D.12) e (D.13) para obter:

vE = ωER0

(eθ + i

ρi/r

krρi

∂ln Φ

∂θer

), ωE =

ikrΦB

=ikrρi

2

Ti

vTiR0

, (D.38)

jp =i

2

e

TiωdiR0

(peθ + i

ρi/r

krρi

∂p

∂θer

), ωdi = krρi

vTiR0

(D.39)

jπ = − i4

e

TiωdiR0

(π‖ieθ + i

ρi/r

krρi

∂π‖i

∂θer

), (D.40)

jI = ienωER0ω

ωcer. (D.41)

106

Page 118: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Apêndice E

Solução iterativa das equações

perturbadas da MHD ideal

E.1 Equações iniciais e solução de equilíbrio

Neste apêndice apresentamos um método iterativo para resolver o sistema composto pelas

eqs. (3.51) (3.53), as quais são repedidas a seguir para facilitar a leitura:

ρ0

∂v‖

∂t+∇‖p+ F‖ = 0, (E.1)

∂(ρ+ R)

∂t+ ρ0∇ · v = 0, (E.2)

∂(p+ P )

∂t+ γp0∇ · v = 0, (E.3)

v = vE + v‖b, vE ≈ ωER0(1 + ε cos θ)eθ, (E.4)

F‖ = ρ0(bv : ∇V+ bV : ∇v) + ρbV : ∇V, (E.5)

R =

∫(V ·∇ρ+ v ·∇ρ+ ρ∇ ·V)dt, (E.6)

P =

∫(V ·∇p+ v ·∇p0 + γp∇ ·V+ (γ − 1)∇ · q)dt. (E.7)

107

Page 119: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Para se obter a relação de dispersão, é necessário calcular a componente poloidal da força

F, ou seja,

Fθ = ρ0(eθv : ∇V+ eθV : ∇v) + ρeθV : ∇V. (E.8)

As expressões algébricas para as grandezas denidas por (E.5)(E.8) são obtidas a partir do

equilíbrio, que é descrito por:

ρ = ρ0(1 + 2ε∆ρ cos θ), (E.9)

p = p0(1 + 2ε∆p cos θ), (E.10)

V = VP eθ + VT eφ,

VP ≈ε

qMP cs, VT = (MT + ∆V ε cos θ)cs, ∆V = MT − 2(1 + ∆ρ)MP . (E.11)

O método iterativo que utilizamos para resolver as eqs. (E.1)(E.3) nas variáveis v‖, ρ e p

e para a obtenção da relação de dispersão é justicado por se tratar de um modelo linear, no

qual o princípio da superposição se aplica. Tal método consiste em decompor as quantidades

perturbadas na forma:

X = X(0) + X(T) + X(P), (E.12)

onde 0, T e P indicam as contribuições para as quantidades perturbadas devido a dinâmica

sem rotação, com rotação exclusivamente toroidal e com rotação poloidal e toroidal, respecti-

vamente. O problema inicial é, então, dividido em três partes: Primeiramente, sem incluir ro-

tação de equilíbrio, encontra-se a solução mais simples. Posteriormente, a partir desta solução,

determina-se a solução proveniente da rotação toroidal e, nalmente, ao incluir rotação poloidal,

encontra-se a solução completa.

E.2 Cálculo de F‖, R e P .

E.2.1 Termos de convecção e derivadas angulares

O cálculo dos termos convectivos, efetuados a partir das eqs. (E.4), (E.11) e (B.17), resulta

nas seguintes relações:

VP ·∇ = MPk‖cs∂

∂θ, vE ·∇ =

ωEε

∂θ, (E.13)

108

Page 120: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

VT ·∇ = qMTk‖cs∂

∂φ, v‖b ·∇ =

v‖

R0

∂φ. (E.14)

Além dos termos convectivos, também é necessário, para o restante dos cálculos desta seção,

obter as derivadas das velocidades com relação aos ângulos poloidal e toroidal, que, de acordo

com (B.23)(B.25) são:

∂VP

∂θ= −ε

qMP cser,

∂VT

∂θ= −ε∆V cs sin θeφ, (E.15)

∂VP

∂φ≈ 0,

∂VT

∂φ≈MT cs(− cos θer + sin θeθ) (E.16)

∂vE∂θ

= −ωER0er,∂(v‖b)

∂θ=∂v‖

∂θeφ (E.17)

∂vE∂φ

= −ωER0 sin θeφ,∂(v‖b)

∂φ= v‖(− cos θer + sin θeθ). (E.18)

E.2.2 Cálculo de F‖ e Fθ

Com a substituição de V = 0, V = VT e de V = VP em (E.5) obtém-se:

F(0)‖ = 0, (E.19)

F(T)‖ = ρ0(bVT : ∇vE + bvE : ∇VT ) = −ρ0ωEcs(MT + ∆V ) sin θ, (E.20)

F(P)‖ ≈ ρ0bVP : ∇(v‖b) = MPρ0k‖cs

∂v‖

∂θ, (E.21)

e, de forma similar, com relação a Fθ, segue que

F(0)θ = 0, F

(T)θ = ρ0[eθVT : ∇(v‖b) + v‖eθb : ∇VT ] + (eθVT : ∇VT )ρ =

qMTk‖cs(2ρ0v‖ +MT csρ) sin θ, F(P)θ = 0. (E.22)

E.2.3 Cálculo de R

De acordo com (C.15), podemos desprezar o termo

∇ ·V = B ·∇(κ

ρ

)≈MPk‖csρ0

∂ρ−1

∂θ≈ −2εMP∆ρk‖cs sin θ = O(εMP∆ρε), (E.23)

109

Page 121: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

que não contribui em primeira ordem para o cálculo de R, o qual é de (E.6) e resulta em:

R(0) = 0, (E.24)

R(T) =

∫dtvE ·∇ρ = −2i∆ρ

ωEωρ0 sin θ, (E.25)

R(P) =

∫dtVP ·∇ρ = iMP

k‖cs

ω

∂ρ

∂θ. (E.26)

E.2.4 Cálculo de ∇ · q

Através da expressão para o uxo de calor total,

qΣ =γ

γ − 1

eB2(B×∇TΣ), pΣ = p+ p, TΣ = T + T , (E.27)

obtém-se o uxo de calor perturbado em primeira ordem,

q =p

pq+

γ

γ − 1

p

eB2(B×∇T ), (E.28)

e, consequentemente,

∇ · q = ∇ ·(p

pq

)+

γ

γ − 1

[(B×∇T ) ·∇

(p

eB2

)+

p

eB2(∇×B) ·∇T

]. (E.29)

Como ∇ · q = O(εMthp0k‖cs) é um termo de segunda ordem, segue que

∇ ·(p

pq

)≈ q ·∇

(p

p

)≈ γ

γ − 1

R20

eF0B ·∇p ≈ γ

γ − 1Mthk‖cs

∂p

∂θ. (E.30)

De forma similar, os outros termos de (E.29) podem ser desenvolvidos, resultando nas relações

(B×∇T ) ·∇(

p

eB2

)≈ R2

0

eF0

dp

dΨB ·∇T = Mthk‖csp0

∂θ

(T

T0

)∼∇ ·

(p

pq

), (E.31)

p

eB2(∇×B) ·∇T ≈ p0R

20

eF 20

dF0

dΨB ·∇T = RFMthk‖cs

∂θ

(T

T0

)= O(B0)∇ ·

(p

pq

). (E.32)

O uso da relação aproximada entre a pressão, densidade e temperatura perturbadas,

p ≈ p0T

T0+ p0

ρ

ρ0, (E.33)

110

Page 122: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

permite combinar as expressões em (E.30) e (E.31) e obter a expressão nal para ∇ · q:

∇ · q =Mthk‖cs

γ − 1

(2γ∂p

∂θ− c2

s

∂ρ

∂θ

). (E.34)

E.2.5 Cálculo de P

Ao assumirmos que limMP→0Mth = 0, obtém-se, analogamente cálculo de R, que:

P (T) =

∫dtvE ·∇p = −2i

∆p

γ

ωEωρ0c

2s sin θ (E.35)

P (P) =

∫dt[VP ·∇p+ (γ − 1)∇ · q] = i

k‖cs

ω

[(MP + 2γMth)

∂p

∂θ−Mthc

2s

∂ρ

∂θ

]. (E.36)

E.3 Solução sem rotação (primeira iteração)

Com as substituições F‖ = R = P = 0 e v = v(0) = vE + v(0)‖ b em (E.1) (E.3) e o uso da

normalização

Ω =ω

k‖cs, ΩE =

ωEk‖cs

, (E.37)

conforme explicitado na seção 3.4, obtém-se:

∇ · v(0)

k‖cs= −2ΩE sin θ +

∂θ

v(0)‖

cs, (E.38)

v(0)‖ = v

(0)‖c cos θ, v

(0)‖c =

2ΩE

Ω2 − 1cs, (E.39)

ρ(0)s

ρ0=

p(0)s

ρ0c2s

= iΩv

(0)‖c

cs, ρ(0)

c = p(0)c = 0. (E.40)

E.4 Solução com rotação toroidal (segunda iteração)

:

Desconsiderando em (E.1)(E.3) a solução obtida em na seção anterior, obtemos o sistema:

−iΩv

(T)‖

cs+

∂θ

p(T)

ρ0c2s

+F

(T)‖

ρ0k‖c2s

= 0, (E.41)

111

Page 123: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

−iΩ(ρ(T)

ρ0+R(T)

ρ0

)+

∂θ

v(T)‖

cs= 0, (E.42)

−iΩ(p(T)

ρ0c2s

+P (T)

ρ0c2s

)+

∂θ

v(T)‖

cs= 0, (E.43)

que apresenta como solução

v(T)‖ =

i

2

Ω

ΩE

(∂

∂θ

P (T)

ρ0c2s

−F

(T)‖

ρ0k‖c2s

)v

(0)‖c = v

(T)‖s sin θ + v

(T)‖c cos θ, (E.44)

ρ(T) = −[

1

2ΩE

(P (T)

c2s

+∂

∂θ

F(T)‖

k‖c2s

) v(0)‖c

cs+ R(T)

]= ρ(T)

s sin θ + ρ(T)c cos θ, (E.45)

p(T) =1

2ΩE

(Ω2P (T) +

∂θ

F(T)‖

k‖

) v(0)‖c

cs= p(T)

s sin θ + p(T)c cos θ. (E.46)

Mediante o uso dos resultados anteriores em (E.44) (E.46), segue, nalmente, que

v(T)‖s = iΩ

(MT + ∆V )

2v

(0)‖c , v

(T)‖c =

∆p

γv

(0)‖c , (E.47)

ρ(T)s =

i

Ω

[∆p

γ+ (Ω2 − 1)∆ρ

] v(0)‖c

csρ0, ρ(T)

c =(MT + ∆V )

2

v(0)‖c

csρ0, (E.48)

p(T)s = iΩ

∆p

γρ0csv

(0)‖c , p(T)

c = ρ(T)c c2

s. (E.49)

E.5 Rotação poloidal e toroidal (terceira iteração)

Primeiramente, substitui-se (E.47)(E.49) em (E.21), (E.26) e (E.36) para obter

F(P)‖

ρ0k‖c2s

= MP∂

∂θ

v(P)‖

cs+MP

[−(

1 +∆p

γ

)sin θ +

2(MT + ∆V ) cos θ

] v(0)‖c

cs. (E.50)

R(P)

ρ0=iMP

Ω

∂θ

ρ(P)

ρ0− MP

Ω2

i

2Ω(MT + ∆V ) sin θ +

[Ω2 +

∆p

γ+ (Ω2 − 1)∆ρ

]cos θ

v(0)‖c

cs,(E.51)

112

Page 124: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

P (P)

ρ0c2s

= iMP

Ω

∂θ

[(1 + 2γ

Mth

MP

)p(P)

ρ0c2s

− Mth

MP

ρ(P)

ρ0

]+MP

Ω

i

[1 + (2γ − 1)

Mth

MP

]sin θ+

∆p

γ+

(2γΩ− 1

Ω

)Mth

MP+ 2Ω∆p

Mth

MP+

(1

Ω− Ω

)∆ρ

Mth

MP

]cos θ

v(0)‖c

cs, (E.52)

que, por sua vez, são inseridos no sistema:

v(P)‖ =

Ω2 − 1

(∂

∂θ

P (P)

ρ0cs−

F(P)‖

ρ0k‖cs

), (E.53)

ρ(P) = −R(P) − 1

Ω2 − 1

(P (P)

c2s

+∂

∂θ

F(P)‖

k‖c2s

), (E.54)

p(P) = − 1

Ω2 − 1

(Ω2P (P) +

∂θ

F(P)‖

k‖

), (E.55)

cujas equações são similares às eqs. (E.44)(E.46).

Para resolver este sistema, devido ao acoplamento das equações, é conveniente utilizar a

formulação exponencial ao invés da trigonométrica, de acordo com as relações:

X = Xs sin θ + Xc cos θ = X+1eiθ + X−1e

−iθ,

Xs = i(X+1 − X−1), Xc = X+1 + X−1, X±1 =1

2(Xc ∓ iXs). (E.56)

A forma exponencial é adotada por duas razões: Primeiramente, devido à praticidade no cálculo

da derivada, ou seja, ∂/∂θ → im, m = ±1. A segunda é devido a possibilidade de análise

individual dos harmônicos m = 1,−1 que a forma exponencial proporciona.

Nesta condições, de acordo com (E.21), (E.26) e (E.36), utilizando (E.56), segue que

F(P)‖±1

ρ0k‖cs= ±iMP

v(P)‖±1

cs+i

2MP

[±(MT + ∆V )

2Ω + 1− ∆p

γ

] v(0)‖c

cs, (E.57)

R(P)±1

ρ0= ∓MP

Ω

ρ(P)±ρ0− MP

2

[1 + ∆ρ ±

1

2

(MT + ∆V )

Ω+

(∆p/γ −∆ρ)

Ω2

] v(0)‖c

cs, (E.58)

113

Page 125: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

P(P)±1

ρ0c2s

= ∓MP

Ω

[(1 + 2γ

Mth

MP

)p

(P)±1

ρ0c2s

− Mth

MP

ρ(P)±1

ρ0

]−

MP

2

1 +

∆p

γ+ (2γ − 1)

Mth

MP± 1

2

[1 + (2γ − 1)

Mth

MP

](MT + ∆V )

Ω

v(0)‖c

cs, (E.59)

e, com a substituição de (E.57), (E.58) e (E.59) em (E.53), (E.54) e (E.55), obtemos um sistema

6× 6, que pode ser representado na forma matricial:

C(±)11 C12 C13

C21 C(±)22 C(±)

23

C31 C(±)32 C(±)

33

v(P)‖±1/cs

ρ(P)±1 /ρ0

p(P)±1 /ρ0c

2s

=1

2

MP v(0)‖c

Ω2 − 1

K(±)v

K(±)ρ

K(±)p

, (E.60)

onde

C(±)11 = 1± C31Ω

Ω2 − 1, C12 =

Mth

Ω2 − 1, C13 = C21 + 2γC12,

C21 =−C31

Ω2 − 1, C(±)

22 = 1±(C12 + C31

Ω

), C(±)

23 = ∓C13

Ω,

C31 = −MP , C(±)32 = ±C12Ω, C(±)

33 = 1∓ C13Ω, (E.61)

K(±)v = ±(MT + ∆V )

2Ω2 +

[1− ∆p

γ±(

1 +∆p

γ+ (2γ − 1)

Mth

MP

)]Ω +

(MT + ∆V )

2

(1 + (2γ − 1)

Mth

MP

), (E.62)

K(±)ρ = (1 + ∆ρ)Ω

2 + (1± 1)(MT + ∆V )

2Ω±

(1− ∆p

γ

)+ 2

(∆p

γ−∆ρ

)+

(2γ − 1)Mth

MP± (2γ − 1)

(MT + ∆V )

2

Mth

MP

1

Ω+

(∆ρ −

∆p

γ

)1

Ω2, (E.63)

K(±)p =

(1 +

∆p

γ+ (2γ − 1)

Mth

MP

)Ω2 +

(MT + ∆V )

2

(1± 1± (2γ − 1)

Mth

MP

±(

1− ∆p

γ

). (E.64)

114

Page 126: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

A solução deste sistema pode ser representada pelas seguintes relações:

v(P)‖±1

cs=N v±1

(P)

D±1(P)

(P)±1

ρ0=N ρ±1

(P)

D±1(P)

,p

(P)±1

ρ0c2s

=N p±1

(P)

D±1(P)

, (E.65)

onde

D±1(P) ≈ (MP ∓ Ω)(Ω + 1∓MP )(Ω− 1∓MP ) + [2γ(Ω∓MP )2 − 1]Mth, (E.66)

N v±1

(P) = MP

3∑

k=0

C(v)k,±1Ωk, C(v)

0,±1 =MP

2

(−MP +

MT

2+MP∆V

2

),

C(v)1,±1 = ∓1

2

(1 +M2

P )(MT + ∆V )

2− 3MP

(1 +

∆p

γ

)+

[(2γ − 1)

(MT + ∆V )

2MP− 4γ

]Mth

,

C(v)2,±1 = −

(1 +

∆p

γ

)+

(MT + ∆V )

2MP −

(γ − 1

2

)Mth

MP, C(v)

3,±1 = ∓(MT + ∆V )

4,(E.67)

N ρ±1

(P)=MP

Ω

4∑

k=0

C(ρ)k,±1Ωk, C(ρ)

0,±1 = ∓1

2

(∆ρ −

∆p

γ

),

C(ρ)1,±1 =

MP

2

[1− 2∆ρ + 3

∆p

γ−MP

(MT + ∆V )

2

]+

[1− (2γ − 1)

(MT + ∆V )

4MP

]Mth,

C(ρ)2,±1 = ∓1

2

[1− 2∆ρ + 3

∆p

γ− 3

2MP (MT + ∆V ) +M2

P + (2γ − 1)Mth

MP

],

C(ρ)3,±1 = −MT + ∆V

2+ (1 + ∆ρ)MP + γMth, C(ρ)

4,±1 = ∓1

2(1 + ∆ρ), (E.68)

N p±1

(P)= MP

3∑

k=0

C(ρ)k,±1Ωk, C(p)

0,±1 =MP

2

[1 +

∆p

γ− (MT + ∆V )

2MP

]+Mth

2,

C(p)1,±1 = ∓1

2

(1 +

∆p

γ− 3

2(MT + ∆V )MP +M2

P

),

C(p)2,±1 =

(1 +

∆p

γ

)MP −

(MT + ∆V )

2+

[2γ − 1

2− (2γ − 1)

(MT + ∆V )

4MP

]Mth,

C(p)3,±1 = ∓1

2

(1 +

∆p

γ+ (2γ − 1)

Mth

MP

). (E.69)

E.6 Relação de dispersão

Para a obtenção da relação de dispersão é necessário invocar a equação do momento,

ρ∂v

∂t+ ∇p− J×B+ F = 0, F = ρ(V ·∇v+ v ·∇V) + ρV ·∇V, (E.70)

115

Page 127: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

a qual, quando multiplicada vetorialmente por B permite a obtenção da expressão analítica

para a densidade de corrente,

J =j‖

BB+

ρB

B2× ∂v

∂t+

B

B2×∇p+

B

B2× F. (E.71)

A relação de dispersão é proveniente da condição de quasi-neutralidade do plasma, que pode ser

expressa pela equação ∇ · J = 0. A metodologia analítica padrão é baseada no cálculo da média

de tal equação sobre uma superfície magnética. De forma similar, podemos tomar a média da

equação mencionada com relação a um volume arbitrario de plasma, ou seja,

D =

∫V dV∇ · J∫

V dV= 0, dV = (R0 + r cos θ)rdrdθdφ, (E.72)

O cálculo do numerador de D, em (E.72), e efetuado a partir do uso do teorema da divergência

de Gauss, (B.5), de forma que

D =

∮S J · dS∫V dV

= 0, dS = (R0 + r cos θ)rdθdφer. (E.73)

D(0) ≈ K(r)

2iπ

[−i ΩE

q2Ω

∫ 2π

0dθ + 2

∫ 2π

0dθ

∂θ

(p(0)

ρ0c2s

)cos θ

], (E.74)

D(T) ≈ K(r)

2iπ

[2

∫ 2π

0dθ

∂θ

(p(T)

ρ0c2s

)cos θ +

1

q

∫ 2π

0dθ

F(T)θ

ρ0k‖c2s

], (E.75)

D(P) ≈ K(r)

2iπ

[2

∫ 2π

0dθ

∂θ

(p(P)

ρ0c2s

)cos θ +

1

q

∫ 2π

0dθ

F(P)θ

ρ0k‖c2s

], (E.76)

onde K(r) ≈ 2iγp0(r)/rF0(r). Com a substituição dos resultados anteriores obtidos nesta seção

nas expressões (E.74) (E.76), obtemos os resultados mostrados em (3.87) (3.89).

116

Page 128: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Apêndice F

Cálculo de integrais da função

distribuição

F.1 Relações envolvendo a distribuição maxwelliana

Em problemas envolvendo a função distribuição Maxwelliana, a qual é denida por

FMα =n0

π3/2v3Tα

exp

(−v2⊥ + v2

v2Tα

), (F.1)

é comum aparecer integrais do tipo:

I(a, b) =

∫ 2π

0dγ

∫ ∞

−∞dv‖

∫ ∞

0dv⊥v⊥

(v⊥vTα

)a( v‖

vTα

)bFMα , a, b ≥ 0 (F.2)

que podem ser simplicadas a partir das mudanças de variável: x = v⊥/vTα e y = v‖/vTα ,

I(a, b) =2n0√πI⊥(a)I‖(b). (F.3)

As soluções para I⊥(a) e I‖(b), de forma genérical, são dadas por:

I⊥(n) =

∫ ∞

0xn+1e−x

2dx =

2−1(n/2)! para n par

2−(n+1)/2n!!√π para n impar

, (F.4)

I‖(n) =

∫ ∞

−∞xne−αx

2dx =

√π para n = 0

0 para n impar

2−n/2(n− 1)!!√π para n ≥ 2 e n par

, (F.5)

117

Page 129: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

A partir da energia e da velocidade térmica de partículas do tipo α,

Eα = eαΦ +1

2mαv

2, v2Tα =

2Tαmα

(F.6)

onde v2 = v2⊥ + v2

‖, podemos expressar a função Maxwelliana como:

FMα =n0m

3/2α

(2πTα)3/2exp

(−Eα − eαΦ

). (F.7)

Segue, portanto, que

∂FMs

∂Eα= −FMs

Tα, (F.8)

∇FMα =

[∇ lnn0 +

(Eα − eΦTα

− 3

2

)∇ lnTα +

e∇Φ

]FMα , (F.9)

Para o caso particular em que Φ = 0, n0 ≈ n0(r) e Tα ≈ Tα(r), o qual consideramos nesta tese,

a eq. (F.9) pode ser simplicada, resultando em:

∇FMα ≈ ern0

LN

[1 + ηα

(v2⊥

v2Tα

+v2‖

v2Tα

− 3

2

)]FMα , (F.10)

onde

L−1N =

∂lnn0

∂r, L−1

Tα=∂lnTα∂r

e ηα =LNLT

. (F.11)

F.2 Cálculo das integrais na aproximação de uido

A partir da integral no espaço de velocidades da grandeza arbitrária, Xα = Xα(r, v⊥, v‖, γ),

a qual é denotada por

〈Xα〉 =1

n0

vd3vFMαXα =

1

π

∫ 2π

0dγ

∫ ∞

0dv⊥v⊥

e−v2⊥/v

2Tα

v2Tα

1√π

∫ ∞

−∞dv‖

e−v2‖/v

2Tα

vTαXα, (F.12)

nesta seção mostramos os resultados das seguintes quantidades:

I(α)a =

⟨J2

0αΩadα

⟩, I

(α)ab =

⟨J2

0αΩadαΩb

trα

⟩, I

(α)abc =

⟨J2

0αΩadαΩb

trαΩc∗α

⟩, (F.13)

onde

J0α = J0(krv⊥/ωcα) ≈ 1− 1

2

v2⊥

v2Tα

k2rρ

2α +

3

32

v4⊥

v4Tα

k4rρ

4α +O(k6

rρ6α), (F.14)

118

Page 130: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Ωdα =ωdαω

(1

2

v2⊥

v2Tα

+v2‖

v2Tα

), Ωtrα =

ωtrαω

v‖

vTα, Ω∗α =

ω∗αω

[1 + ηα

(1

2

v2⊥

v2Tα

+v2‖

v2Tα

)]. (F.15)

Para o cálculo das integrais em (F.13), observando que Ωdα, Ωtrα e Ω∗α são independentes

de γ, é conveniente, primeiramente integrar nesta variável, posteriormente em v⊥ e, por m,

em v‖. A partir de (F.4), (F.5) e das mudanças de variáveis indtroduzidas anteriormente,

v⊥/vTα = x e v‖/vTα = y, para krρi 1, em termos das frequências normalizadas, Ω = ωR0/vTi

e Ω∗α = ω∗αR0/vTi , são obtidos os seguintes resultados:

I(α)0 =

⟨J2

⟩= 1− 1

2k2rρ

2α +

3

16k4rρ

4α,

I(α)1 =

⟨J2

0αΩdα

⟩≈(

1− 3

4k2rρ

)krρα

Ω,

I(α)2 =

⟨J2

0αΩ2dα

⟩≈(

7

4− 13

8k2rρ

)k2rρ

Ω2, (F.16)

I(α)02 =

⟨J2

0αΩ2trα

⟩=

(1

2− 1

4k2rρ

)1

q2Ω2,

I(α)12 =

⟨J2

0αΩdαΩ2trα

⟩=

(1− 5

8k2rρ

)krραq2Ω3

,

I(α)22 =

⟨J2

0αΩ2dαΩ2

trα

⟩=

(23

8− 23

16k2rρ

)k2rρ

q2Ω4, (F.17)

I(α)001 =

⟨J2

0αΩ∗α⟩

=

[1− (1 + ηα)

2k2rρ

]Ω∗αΩ,

I(α)101 =

⟨J2

0αΩdαΩ∗α⟩

=

[1 + ηα −

3

4(1 + 2ηα)k2

rρ2α

]Ω∗αkrρα

Ω2,

I(α)121 =

⟨J2

0αΩdαΩ2trαΩ∗α

⟩=

[1 + 2ηα −

5

8(1 + 3ηα)k2

rρ2α

]Ω∗αkrραq2Ω4

,

I(α)021 =

⟨J2

Ω2trαΩ∗αω3

⟩=

[1

2(1 + ηα)− 1

4(1 + 2ηα)k2

rρ2α

]Ω∗αq2Ω3

, (F.18)

I(α)abc =

⟨J2

0αΩadαΩb

trαΩc∗α

⟩= 0, se b for impar. (F.19)

F.3 Função dispersão de plasma

Para a função dispersão de plasma,

Z(ζ) =1√π

∫ ∞

−∞dx

e−x2

x− ζ , Im(ζ) > 0, (F.20)

119

Page 131: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

são satisfeitas as seguintes propriedades:

Z(−ζ) = 2i√πe−ζ

2 − Z(ζ), (F.21)

dZ

dζ= −2[1 + ζZ(ζ)]. (F.22)

Se |Im(ζ)| 1, mediante o prolongamento analítico para incluir o caso Im < 0, as seguintes

aproximações assimptótica podem ser feitas:

Z(ζ) ≈ i√πe−ζ2 − 2ζ +4

3ζ3 +O(ζ5), (F.23)

para |ζ| 1 e

Z(ζ) ≈ iσ√πe−ζ2 −[

1

ζ+

1

2ζ3+

3

4ζ5+

15

8ζ7+O(ζ−9)

], σ =

σ = 0 para Im(ζ) > 0

σ = 1 para Im(ζ) = 0

σ = 2 para Im(ζ) < 0

, (F.24)

para |ζ| 1.

Para simplicar a notação, denimos Z(k) = dkZ/dζk. Para os cálculos que se seguem, é

conveniente, a partir de (F.22), calcular as seguintes derivadas:

Z(1) = −2− 2ζZ,

Z(2) = 4ζ + (−2 + 4ζ2)Z,

Z(3) = 8− 8ζ2 + (12ζ − 8ζ3)Z,

Z(4) = −40ζ + 16ζ3 + (12− 48ζ2 + 16ζ4)Z,

Z(5) = −64 + 144ζ2 − 32ζ4 + (−120ζ + 160ζ3 − 32ζ5)Z, (F.25)

Com relação a seguinte função relacionada a Z(ζ),

Zn(ζ) =1√π

∫ ∞

−∞dζxne−x

2

x− ζ , n ≥ 0, (F.26)

120

Page 132: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

utilizando (F.25), obtemos os seguintes resultados:

Z0(ζ) = Z(ζ),

Z1(ζ) = −1

2Z(1) = 1 + ζZ(ζ),

Z2(ζ) =1

4[2Z + Z(2)] = ζ + ζ2Z(ζ),

Z3(ζ) = −1

8[6Z(1) + Z(3)] =

1

2+ ζ2 + ζ3Z(ζ),

Z4(ζ) =1

16[12Z + 12Z(2) + Z(4)] =

1

2ζ + ζ3 + ζ4Z(ζ),

Z5(ζ) = − 1

32[60Z(1)(ζ) + 20Z(3)(ζ) + Z(5)(ζ)] =

3

4+

1

2ζ2 + ζ4 + ζ5Z(ζ), (F.27)

Finalmente, é conveniente denir a seguinte função diferença:

Dn(ζα) = Zn(−ζα)− Zn(ζα), ζα =ω

ωtrα, (F.28)

a qual, pela utilização de F.21 a F.27, resulta nos seguintes valores:

D0(ζα) = 2[i√πe−ζ

2α − Z(ζα)],

D1(ζα) = −2ζαi√πe−ζ

2α ,

D2(ζα) = −2ζα + ζ2αD0(ζα),

D3(ζα) = −2ζ3αi√πe−ζ

2α ,

D4(ζα) = −ζα − 2ζ3α + ζ4

αD0(ζα),

D5(ζα) = −2ζ5αi√πe−ζ

2α . (F.29)

F.4 Cálculo das integrais com efeitos cinéticos

Inicialmente apresentamos as integrais cinéticas:

L(α)a =

⟨J2

0αΩadα

1− Ω2trα

⟩, L(α)

ab =

⟨J2

0αΩadαΩb

trα

1− Ω2trα

⟩, L(α)

abc =

⟨J2

0αΩadαΩb

trαΩc∗α

1− Ω2trα

⟩, (F.30)

onde, para seu cálculo, é conveniente observar que

1

1− Ω2trα/ω

2=ζα2

(1

v‖/vTα + ζα− 1

v‖/vTα − ζα

), ζα =

ω

ωtrα, (F.31)

pois esta observação nos permite obter a seguinte relação:

1√π

∫ ∞

−∞

dv‖

vTα

(v‖/vTα)ne−v2‖/v

2Tα

1− Ω2trα

=ζα2Dn(ζα). (F.32)

121

Page 133: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Segue, portanto, que

L(α)0 =

ζα2D0(ζα)

(1− 1

2k2rρ

), L(α)

1 =ωdαω

ζα2

[1

2D0(ζα) +D2(ζα)

],

L(α)2 =

ω2dα

ω2

ζα2

[1

2D0(ζα) +D2(ζα) +D4(ζα)

], (F.33)

L(α)01 =

1

2D1(ζα), L(α)

02 =1

2ζαD2(ζα), L(α)

11 =ωdαω

1

2

[1

2D1(ζα) +D3(ζα)

], (F.34)

L(α)001 =

ω∗αω

ζα2

[(1− ηα

2

)D0(ζα) + ηαD2(ζα)

],

L(α)101 =

ωdαω∗αω2

ζα2

[(1

2+ηα4

)D0(ζα) +D2(ζα) + ηαD4(ζα)

],

L(α)011 =

ω∗αω

1

2

[(1− ηα

2

)D1(ζα) + ηαD3(ζα)

],

L(α)111 =

ωdαω∗αω2

1

2

[(1

2+ηα4

)D1(ζα) +D3(ζα) + ηαD5(ζα)

], (F.35)

e, nalmente, com a substituição dos valores mostrados em F.29, resulta:

L(α)0 = −ζα[Z(ζα)− i√πe−ζ2α ]

(1− k2

rρ2α

2

),

L(α)1 = −

ζ2α +

(1

2ζα + ζ3

α

)[Z(ζα)− i√πe−ζ2α

]krραΩ

,

L(α)2 = −

3

2ζ2α + ζ4

α +

(1

2ζα + ζ3

α + ζ5α

)[Z(ζα)− i√πe−ζ2α

]k2rρ

Ω2, L(α)

01 = −ζαi√πe−ζ

2α ,

L(α)02 = −[1 + ζαZ(ζα)]

(1− k2

rρ2α

2

), L(α)

11 = −(

1

2ζα + ζ3

α

)krρα

Ω

√πe−ζ

2α ,

L(α)001 = −

ηαζ

2α +

[(1− 1

2ηα

)ζα + ηαζ

] [Z(ζα)− i√πe−ζ2α

]Ω∗αΩ,

L(α)101 = −

(1 +

1

2ηα

)ζ2α + ηαζ

4α +

[(1

2+

1

4ηα

)ζα + ζ3

α + ηαζ5α

] [Z(ζα)− i√πe−ζ2α

]Ω∗αkrραΩ2

,

L(α)011 = −

[(1

2− 1

2ηα

)ζα + ηαζ

]Ω∗αΩi√πe−ζ

2α ,

L(α)111 = −

[(1

2+

1

4ηα

)ζα + ζ3

α + ηαζ5α

]Ω∗αkrρα

Ω2i√πe−ζ

2α . (F.36)

122

Page 134: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

F.5 Obtenção do limite de uido a partir das integrais

com efeitos cinéticos

No limite |ζi| → ∞, o termo e−ζ2i pode ser desprezado e, ao utilizar o limite assimptótico de

Z(ζi), mostrado em F.24, obtemos a partir de (F.36) o limite de uido:

L(i)0 ≈ I

(i)0 + I

(i)02 ≈

(1− 1

2k2rρ

2i

)(1 +

1

2q2Ω2

), L(i)

1 = I(i)1 + I

(i)12 =

(1 +

1

q2Ω2

)krρiΩ

,

L(i)2 = I

(i)2 + I

(i)22 =

(7

4+

23

8

1

q2Ω2

)k2rρ

2i

Ω2, L(i)

11 = I(i)11 = 0,

L(i)101 = I

(i)101 + I

(i)121 =

[1 + ηi +

1 + 2ηiq2Ω2

]Ω∗ikrρi

Ω2, L(i)

111 = I(i)111 = 0, L(i)

011 = I(i)011 = 0,

L(i)001 = I

(i)001 + I

(i)021 =

[1 +

1 + ηi2q2Ω2

− 1

2

(1 + ηi +

1 + 2ηi2q2Ω2

)k2rρ

2i

]Ω∗iΩ,

(F.37)

123

Page 135: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Apêndice G

Participação em eventos cientícos

G.1 Cursos internacionais:

• 8th Carolus Magnus Summer School on Plasma Physics and Fusion Science

[99]: Este curso de curta duração, que ocorreu de 3 a 14 de setembro de 2007 em Bad

Honnef na Alemanha, consistiu de inúmeros seminários sobre os principais tópicos a re-

speito de Física de Plasma e Fusão Nuclear (Magnetohidrodinâmica, Teoria cinética,

Aquecimento, Transporte, etc...) com ênfase em aplicações para o ITER. Os seminários,

que foram ministrados por pesquisadores e professores especialistas em cada área, foram

publicados no formato de artigo breve em [100].

G.2 Produção bibliográca

• Drif eects on geodesic acoust modes: Foi aceito em 2012 e publicado na versão

nal em 2013 [75]. Este trabalho foi, em grande parte, resultado da colaboração com

Prof. Dr. A. I. Smolyakov pertencente a Universidade de Saskatchewan e é a base para

propostas de trabalhos futuros que pretendemos realizar.

• Rotation eect on geodesic and zonal ow modes in tokamak plasmas with

isothermal magnetic surfaces: O tema deste trabalho foi o alvo da pesquisa do

mestrado precedente ao presente doutorado [39] e do início deste doutorado. Na forma

nal, considerando uxo de calor e equilíbrio com superfícies magnéticas isotérmicas, este

trabalho foi publicado em 2011 [74].

124

Page 136: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

G.3 Conferências e encontros cientícos

• 40th European Physical Society Conference on Plasma Physics [101]: Trata-

se de uma conferência em física de plasmas que ocorreu de 1 a 5 de julho de 2013 na

Finlândia. Apresentamos nesta conferência um poster entitulado como Diamagnetic

eects and Landau Damping on geodesic acoustic modes e um artigo no tamanho máximo

permitido (4 páginas) [85]. Este trabalho é a base para o captítulo 4 desta tese e, a partir

dele, pretendemos, no futuro, submeter um artigo com maior detalhamento algébrico em

alguma revista internacional adequada ao tipo de trabálho.

• 12Encontro Brasileiro de Física de Plasmas [102]: Foi um evento cientíco na-

cional que correu de 1 a 5 de Dezembro de 2013 na Universidade de Brasília (UnB) em

Brasília (DF). Neste evento apresentamos, na forma de poster, a metodologia parra um

estudo sobre automodos acústicos geodésicos, cuja aplicação de maior impácto imediato

está na determinação do perl radial da temperatura de íons em tokamaks por meio de

um novo tipo de diagnóstico em desenvolvimento: Espectroscopia com GAM. Trata-se

de um tema que pretendemos desenvolver melhor em um trabalho futuro, no entanto, os

conceitos iniciais e a metodologia para o desenvolvimento deste trabalho foram apresen-

tados no poster e no resumo entitulados Geodesic acoustic eigenmodes in the presence

of diamagnetic eects (P023) [103].

125

Page 137: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

Referências Bibliográcas

[1] I. E. Tamm and A. D. Sakharov. Plasma Physics and the Problem of Controlled Ther-

monuclear Reactions. edited by M.A. Leontovich (Pergamon Press, Oxford), 1961.

[2] J. Wesson. Tokamaks. Claredon Press, Oxford, 2004.

[3] J. P. Freidberg. Plasma physics and fusion energy. Cambridge University Press, New

York, 2007.

[4] F. F. Chen. An Indispensable Truth: How Fusion Power Can Save the Planet. Springer,

2011.

[5] R. B. White. Theory of Tokamak Plasma. (North-Holland, Amsterdam), 1989.

[6] H. Alfvén. Existence of electromagnetic-hydrodynamics waves. Nature, 3805:405, 1942.

[7] A. G. Elmov, A. S. de Assis, C. A. de Azevedo, N. I. Grishanov, F. M. Nekrasov, I. F.

Potapenko, and V. S. Tsypin. Braz. J. Phys., 12:062304, 1995.

[8] F. Wagner and et. al. Regime of improved connement and high beta in. neutral-beam-

heated discharges of the asdex tokamak divertor. Phys. Rev. Lett., 49:1408, 1982.

[9] http://www.iter.org/.

[10] P. H. Diamond, S. I. Itoh, K. Itoh, and T. S. Hahm. Zonal ows in plasma - a review.

Plasma Phys. Control. Fusion, 47(5):R35R161, 2005.

[11] M. N. Rosenbluth and F. L. Hinton. Poloidal ow driven by ion-temperature-gradient

turbulence in tokamaks. Physical Review Letters, 80(4):724, 1998.

[12] K. Itoh, K. Hallatschek, and S. I. Itoh. Plasma Phys. Control. Fusion, 47(3):451, 2005.

[13] A. D. Turnbull, E. J. Strait, W. W. Heidbrink, M. S. Chu, H. H. Duong, J. M. Greene, L. L.

Lao, T. S. Taylor, and S. J. Thompson. Global alfven modes: Theory and experiment.

Phys. Fluids B, 6:2546, 1993.

[14] W. W. Heidbrink, E. J. Strait, M. S. Chu, and A. D. Turnbull. Phys. Rev. Lett., 71(6):855,

1993.

126

Page 138: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

[15] W. W. Heidbrink, E. Ruskov, E. M. Carolipio, J. Fang, M. A. van Zeeland, and R. A.

James. Phys. Plasmas, 6:1147, 1999.

[16] W. W. Heidbrink. Phys. Plasmas, 15:055501, 2008.

[17] F. Zonca, L. Chen, and R.A. Santoro. Kinetic theory of low-frequency alfven modes in

tokamaks. Plasma Phys. Control. Fusion, 38(11):20112028, 1996.

[18] A. Fasoli, D. Testa, S. Sharapov, H. L. Berk, B. Breizman, A. Gondhalekar, R. F. Heeter,

M. Mantsinen, and Workprogramme E. J. Plasma Phys. Contrl. Fusion, 44:B159, 2002.

[19] S. E. Sharapov, D Testa, D Alper, and 3et al. Phys. Lett. A, 289(3):127, 2001.

[20] A. G. Elmov. Phys. Plasmas, 16(3):034501, 2009.

[21] G. D. Conway, C. Troster, B. Scott, and K. Hallatschek. Frequency scaling and localization

of geodesic acoustic modes in asdex upgrade. Plasma Phys. Control. Fusion, 50(5):055009,

2008.

[22] A. Fujisawa. A review of zonal ow experiments. Nuclear Fusion, 49(1):013001, 2009.

[23] G. R. McKee, D. K. Gupta, R. J. Fonck, D. J. Schlossberg, M. W. Shafer, and P. Gohil.

Structure and scaling properties of the geodesic acoustic mode. Plasma Physics and

Controlled Fusion, 48(4):S123S136, 2006.

[24] A. V. Melnikov, V. A. Vershkov, L. G. Eliseev, S. A. Grashin, A. V. Gudozhnik, L. I.

Krupnik, S. E. Lysenko, V. A. Mavrin, S. V. Perlov, D. A. Shelukhin, S. V. Soldatov,

M. V. Umtsev, A. O. Urazbaev, G. Van Oost, and L. G. Zimeleva. Investigation of

geodesic acoustic mode oscillations in the T-10 tokamak. Plasma Physics and Controlled

Fusion, 48(4):S87S110, 2006.

[25] N. Winsor, J. L. Johnson, and J. M. Dawson. Geodesic acoustic waves in hydromagnetic

systems. Phys. Fluids, 11(11):2448, 1968.

[26] V. P. Lakhin, V. I. Ilgisonis, and A. I. Smolyakov. Geodesic acoustic modes and zonal

ows in toroidally rotating tokamak plasmas. Phys. Lett. A, 374:4872, 2010.

[27] S. I. Braginskii. Reviews of Plasma Physics, volume 1. edited by M.A. Leontovich (Con-

sultants Bureau, New York), 1965.

[28] J. A. Bittencourt. Fundamentals of Plasma Physics. New York, Pergamon Press, 1995.

[29] P. J. Catto, W. M. Tang, and D. E. Baldwin. Generalized gyrokinetics. Plasma Phys.,

23(7):639, 1981.

[30] L. D. Landau. On the vibration of the electronic plasma. J. Phys. USSR, 10:25, 1946.

127

Page 139: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

[31] A. B. Mikhajlovskii. Nucl. Fusion, 13(2):259, 1973.

[32] V. B. Lebedev et. al. Phys. Plasmas, 3:3023, 1996.

[33] A. G. Elmov. Phys. Plasmas, 17(3):022102, 2010.

[34] A. I. Smolyakov, X. Garbet, G. Falchetto, and M. Ottaviani. Multiple polarization of

geodesic curvature induced modes. Physics Letters A, 372(45):67506756, 2008.

[35] A. I. Smolyakov. Gyroviscous forces in a collisionless plasma with temperature gradients.

Canadian J. Phys., 76(4):321331, 1998.

[36] F. F. Chen. Introduction to plasma physics and controlled fusion. Springer, 2nd ed edition,

1984.

[37] H. Goedbloed and S. Poedts. Principles of Magnetohydrodynamics. Cambridge, 2004.

[38] R. Balescu. Aspect of anomalous transport. North-holland, amsterdam edition, 2005.

[39] R. J. F. Sgalla. Efeito de rotação nos uxos zonais e modos acústicos geodésicos. Master's

thesis, IFUSP, 2010.

[40] B. A. Trubnikov. Reviews of Plasma Physics, volume 1. edited by M.A. Leontovich

(Consultants Bureau, New York), 1965.

[41] D. V. Sivukhin. Reviews of Plasma Physics, volume 4. edited by M.A. Leontovich (Con-

sultants Bureau, New York), 1966.

[42] P Helander and D. J. Sigmar. Collisional Transport in Magnetized Plasmas. Cambridge

Monographs on Plasma Physics, 2002.

[43] R. J. Goldston and P. H. Rutherford. Introduction to plasma physics. IOP Publishing

Ltd, 1995.

[44] J. P. Freidberg. Ideal Magnetohydrodynamics. Plenum Press, New York and London,

1987.

[45] H. Grad and H. Rubin. Hydromagnetic equlibria and force-free elds. In Proceedings of

the 2nd UN Conf. on the Peaceful Uses of Atomic Energy (IAEA, Geneva), volume 31,

page 190, 1958.

[46] V. D. Shafranov. Plasma equilibrium in a magnetic eld. Reviews of Plasma Physics,

2:103, 1966.

[47] V. I. Ilgisonis and et al. Plasma Phys. Control. Fusion, 53(6):065008, 2011.

[48] V. I. Ilgisonis and I. Pozdnyakov Yu. Plasma Phys. Rep., 28:83, 2002.

128

Page 140: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

[49] M Kruskal and J. L. Tuck. Proc. R. Soc. London., Ser. A 245:222, 1958.

[50] V Shafranov. At. Energy, 5:38, 1956.

[51] R. Balescu. Transport Processes in a Plasma, volume 1. North-holland, amsterdam

edition, 1988.

[52] R. Balescu. Transport Processes in a Plasma, volume 2. North-holland, amsterdam

edition, 1988.

[53] F. L. Hinton and R. D. Hazeltine. Theory of plasma transport in toroidal connement

systems. Rev. Mod. Phys., 48(2):239308, 1976.

[54] S. P. Hirshman and D. J. Sigmar. Nucl. Fusion, 21:1079, 1977.

[55] A. A. Galeev and R. Z. Sagdeev. Reviews of Plasma Physics, volume 7. edited by M.A.

Leontovich (Consultants Bureau, New York), 1979.

[56] S. P. Hirshman and D. J. Sigmar. Neoclassical transport of impurities in tokamak plasmas.

Nuclear Fusion, 21(9):10791201, 1981.

[57] R. D. Hazeltine and J. D. Meiss. Plasma Connement. Addison-Wesley Publishing Com-

pany, 1992.

[58] D. Bohm. The characteristics of electrical discharges in magnetic elds. New York:

McGraw-Hill, ed. a. guthrie and r. k. wakerling edition, 1949.

[59] A. I. Morozov and L. S. Solov'ev. Reviews of Plasma Physics, volume 2. edited by M.A.

Leontovich (Consultants Bureau, New York), 1966.

[60] http://fap.if.usp.br/~renee/NOTAS/gyro_segundo.pdf.

[61] R. D. Hazeltine and F.L. Waelbroeck. The Framework of Plasma Physics. Westview,

Boulder CO, 2004.

[62] A. I. Smolyakov, C. Nguyen, and X. Garbet. Kinetic theory of electromagnetic geodesic

acoustic modes. Plasma Phys. Control. Fusion, 50(11):115008, 2008.

[63] A. B. Mikhailovskii and S. E. Sharapov. Plasma Phys. Reports, 25(11):838, 1999.

[64] F. Zonca and L. Chen. Europhys. Lett., 83(3):35001, 2008.

[65] G. Y. Fu and C. Z. Cheng. Theory of a high n toroidicityinduced shear alfvén eigenmode

in tokamaks.

[66] D. Zhou. Electromagnetic geodesic acoustic modes in tokamak plasmas. Phys. Plasmas,

14:104502, 2007.

129

Page 141: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

[67] R.D. Hazeltine. Recursive derivation of drift-kinetic equation. Plasma Phys., 15:77, 1973.

[68] H. Grad. On the kinetic theory of rareed gases. Communications on Pure and Applied

Mathematics, 2(4):331407, 1949.

[69] H. Grad. Phys. Fluids, 10:137, 1967.

[70] J. P. Wang and J. D. Callen. Phys. Fluids B, 4:1139, 1992.

[71] A. B. Mikhailovskii and V. S. Tsypin. Transport equations of plasma in a curvilinear

magnetic eld. Beitrage Plasma Physik, 24(4):335, 1984.

[72] C. T. Hsu, R. D. Hazeltine, and P. J. Morrison. A generalized reduced uid model with

nite ion-gyroradius eects. Physics of Fluids, 29(5):14801487, 1986.

[73] A. I. Smolyakov, X. Garbet, and C Bourdelle. On the parallel momentum balance in low

pressure plasmas with an inhomogeneous magnetic eld. Nucl. Fusion, 49:125001, 2009.

[74] A. G. Elmov, R. M. O. Galvao, and R. J. F. Sgalla. Plasma Phys. Control. Fusion,

53(10):105003, 2011.

[75] R. J. F. Sgalla, A. I. Smolyakov, A. Elmov, and M. F. Bashir. Drift eects on geodesic

acoustic modes. Phys. Lett. A, 377:303, 2013.

[76] Amador C. H. S. Galvão, R. M. O and, W. A. H. Baquero, F. Borges, I. L Caldas, N. A. M

Cuevas, V. N. Duarte, A. G. Elmov, J. I. Elizondo, A. M. N Fonseca, T. M Germano,

Jeronimo J. L. Guimarães-Filho, Z. O. and, YuK Kuznetsov, M. A. M. Manrique, I. C.

Nascimento, C. J. A. Pires, P. G. P. Puglia, G. Reis, A. P. and Ronchi, L. F. Ruchko,

W. P. de Sá, R. J. F. Sgalla, E. K. Sanada, J. H. F. Severo, V. C. Theodoro, and D. L.

Toufen. Report on recent results obtained in tcabr. 2014.

[77] A. Krämer-Flecken, S. Soldatov, Koslowski H. R., O. Zimmermann, and TEXTOR Team.

Properties of Geodesic Acoustic Modes and the Relation to Density Fluctuations. Phys.

Rev. Lett., 97:045006, (2006).

[78] A. I. Smolyakov, C. Nguyen, and X. Garbet. Electromagnetic eects on geodesic acoustic

and beta-induced alfvén eigenmodes. Nucl. Fusion, 50(5):054002, 2010.

[79] G. N. Throumoulopoulos, H. Weitzner, and H. Tasso. On nonexistence of tokamak equi-

libria with purely poloidal ow. Phys. Plasmas, 13:122501, 2006.

[80] B. D. Fried and S. D. Conte. The Plasma Dispersion Function. Academic Press, New

York, 1961.

[81] H. Sugama and T. H. Watanabe. Collisionless damping of geodesic acoustic modes. J.

Plasma Phys., 72(1):825828, 2006.

130

Page 142: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

[82] Private communication with A. Hirose in 2012.

[83] Yu. K. Kuznetsov and et. al. Long-distance correlations in tcabr biasing experiments.

[84] W Horton. Drift waves and transport. Rev. Mod. Phys., 71:735, 1999.

[85] R. J. F. Sgalla, A. G. Elmov, and A. I. Smolyakov. Diamagnetic eects and landau

damping on geodesic acoustic modes. 40th EPS Conference on Plasma Physics, P2.183,

2013.

[86] F. Zonca, L. Chen, A. Botrugno, P. Buratti, A. Cardinali, R. Cesario, V. Pericoli Ridolni,

and Jet-Efda Contributors. Nucl. Fusion, 49(8):085509.

[87] Ph. Lauber and S. Gunter. Nucl. Fusion, 48:084002, 2008.

[88] Ph Lauber, M. Bruedgam, D. Curran, V. Igochine, K. Sassenberg, S. Guenter,

M. Maraschek, M. Garcia-Munoz, N. Hicks, and Asdex Upgrade Team.

[89] I. Chavdarovski and F. Zonca. Eects of trapped particle dynamics on the structures

of a low-frequency shear alfvén continuous spectrum. Plasma Phys. Control. Fusion,

51:115001, 2009.

[90] F. M. Nekrasov, A. G. Elmov, V. S. Tsypin, C. A. de Azevedo, and A. S. de Assis.

The parallel permitivity of magnetized toroidal plasmas with elliptic magnetic surfaces.

Czechoslovak J. Phys., 46:565, 1996.

[91] E. S. Cheb-Terrab and A. G. Elmov. The permittivity tensor and bounce resonance

eects on wave dissipation in toroidal plasmas. Czechoslovak J. Phys., 46:595, 1996.

[92] F. M. Nekrasov, A. G. Elmov, C. A. de Azevedo, and A. S. de Assisb. The coulomb

scattering eect on trapped particles bounce-resonance dissipation in magnetized toroidal

plasmas. Phys. Plasmas, 6:1547, 1999.

[93] D. Zhou. Zonal ow modes in a tokamak plasma with dominantly poloidal mean ows.

Phys. Plasmas, 17:102505, 2010.

[94] K. Itoh, S-I Itoh, P. H. Diamond, A. Fujisawa, M Yagi, T. Watari, Y. Nagashima, and

A. Fukuyama. Geodesic acoustic eigenmodes.

[95] S-I Itoh, K. Itoh, M Sasaki, A. Fujisawa, T. Ido, and Y. Nagashima. Geodesic acoustic

mode spectroscopy.

[96] I. O. Pogutse, A. I. Smolyakov, and A. Hirose. Magnetohydrodynamic equations for

plasmas with nite-larmor-radius eects. Journal of Plasma Physics, 60:133149, 1998.

131

Page 143: Investigação cinética de modos geodésicos de baixas frequências …fap.if.usp.br/~renee/SENHA/tese_doutorado.pdf · 2015. 3. 17. · deriva, amortecimento de Landau, uxos zonais,

[97] W. D. D' haeseleer, W. N. G. Hitchon, J. D. Callen, and J. L. Shohet. Flux coordinates and

magnetic eld structure: A guide to a fundamental tool of plasma theory. Springer-Verlag

Berlin Heidelberg, 1991.

[98] J. D. Huba. NRL Plasma formulary. Supported by The Oce of Naval Research Labo-

ratory, 2009.

[99] http://www.carolusmagnus.net/.

[100] 8th Carolus Magnus Summer School. Fusion Sci. Techn., 53:2T, 2008.

[101] http://eps2013.aalto.fi/.

[102] http://www.sbfisica.org.br/~ebfp/xii/.

[103] http://www.sbf1.sbfisica.org.br/eventos/ebfp/12/programa/lista_trabalho.

asp?sesId=11&str=Sgalla.

132