diversidade de aranhas (araneae-arachnida) em …© do... · natureza em geral e animais em...

243
i INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA DIVERSIDADE DE ARANHAS (ARANEAE-ARACHNIDA) EM DOIS GRADIENTES ALTITUDINAIS NA AMAZÔNIA, AMAZONAS, BRASIL ANDRÉ DO AMARAL NOGUEIRA Manaus, Amazonas Junho de 2011

Upload: ledung

Post on 11-Feb-2019

224 views

Category:

Documents


0 download

TRANSCRIPT

i

INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA

DIVERSIDADE DE ARANHAS (ARANEAE-ARACHNIDA) EM DOIS

GRADIENTES ALTITUDINAIS NA AMAZÔNIA, AMAZONAS, BRASIL

ANDRÉ DO AMARAL NOGUEIRA

Manaus, Amazonas

Junho de 2011

i

ANDRÉ DO AMARAL NOGUEIRA

DIVERSIDADE DE ARANHAS (ARANEAE-ARACHNIDA) EM DOIS

GRADIENTES ALTITUDINAIS NA AMAZÔNIA, AMAZONAS, BRASIL

ORIENTADOR: DR. EDUARDO MARTINS VENTICINQUE

Co-orientador: Dr. Antonio Domingos Brescovit

Tese apresentada à Coordenação do Programa

de Pós-Graduação do Instituto Nacional de

Pesquisas da Amazônia como parte dos

requisitos para obtenção do titulo de Doutor em

Biologia (Ecologia)

Manaus, Amazonas

Junho de 2011

ii

Bancas examinadoras

Banca avaliadora do trabalho escrito – Avaliadores e parecer

Dra. Carla Rodrigues Ribas (UFLA, Brasil)- Aprovada

Dr. Felipe Rego (UFMA, Brasil) – Aprovado - Aprovada

Dr. Nathan Sanders (Univ. Tennessee, EUA) – Aprovada com correções

Dr. Robert K. Colwell (Univ. Connecticut, EUA) – Aprovada

Dr. Gonçalo Ferraz (INPA/PDBFF, Brasil) – Reprovada

Banca examinadora da defesa oral – Avaliadores e parecer

Dr. Willian Ernest Magnusson (INPA, Brasil) – Aprovada

Dr. Pedro Ivo Simões (INPA, Brasil) – Aprovada

Dr. Thierry Ray Jehlen Gasnier (UFAM, Brasil) – Aprovada

iii

Sinopse:

Nesse trabalho nós estudamos a distribuição altitudinal da comunidade de aranhas

amostrada no Pico da Neblina (AM - Brasil). Nós descrevemos e analisamos os padrões

de riqueza e diversidade beta ao longo do gradiente e testamos o seu ajuste à hipóteses

biogeográficas relacionadas ao tema. Também descrevemos oito espécies novas do

gênero Chrysometa e discutimos a sua biogeografia.

Palavras-chave: Aracnologia, montanhas, macroecologia, Amazônia, gradientes

ambientais, biodiversidade.

N778 Nogueira, Andre do Amaral Diversidade de aranhas (Arachnida-Araneae) em dois gradientes altitudinais na Amazônia, Amazonas, Brasil / Andre do Amaral Nogueira.---

Manaus : [s.n.], 2011. xv, 243 f. : il. color.

Tese (doutorado)-- INPA, Manaus, 2011 Orientador : Eduardo Martins Venticinque Co-orientador : Antônio Domingos Brescovit

Área de concentração : Ecologia de Comunidades

1. Aracnologia. 2. Biodiversidade. 3. Ecologia de comunidades. 4. Neblina, Pico (AM). I. Título.

CDD 19. ed. 595.47

iv

Dedico esta tese à minha filha Gabriela, uma fonte constante

de motivação, alegria e orgulho.

Também dedico à minha mãe Maria Lúcia, e à minha avó,

Maria José, grandes incentivadoras do meu interesse pela

natureza em geral e animais em particular.

v

Agradecimentos

Esse trabalho jamais teria sido realizado sem a ajuda de muitas pessoas e instituições que listo

a partir de agora. Tentarei ser breve, mas é improvável que consiga.

Começo pelo meu orientador, Eduardo Venticinque, o Dadão, ao qual sou agradecido

por vários motivos, da sugestão do tema da pesquisa até as conversas sobre biologia em geral

e aranhas em particular. Sua postura sempre calma e bem humorada também foi muito

importante em alguns momentos difíceis ao longo desse período. Também agradeço meu co-

orientador, Antonio Brescovit, por tudo que aprendi sobre aranhas com ele até hoje, pelas

parcerias em trabalhos e nos campos de futebol.

As viagens de coleta que realizei para esse doutorado foram alguns dos pontos mais

marcantes e agradáveis dessa jornada acadêmica, e por elas sou grato à muitas pessoas.

Agradeço, portanto, aos meus coletores, Ricardo Braga-Neto, o Saci, que participou da

expedição à Serra do Tapirapecó exibindo notável dedicação (pegou até malária!), e Nancy

Lo-Man-Hung e David Candiani, não menos dedicados, (mas sem malária) que coletaram

comigo no Pico da Neblina, a expedição mais bem sucedida (e trabalhosa) realizada durante

esse doutorado. Um muito obrigado mesmo à vocês pelo empenho, não é fácil largar tudo por

dois meses só para ajudar um colega. Agradeço também aos mateiros e demais auxiliares de

campo dessas duas viagens, Domingos e Jorge, no Tapirapecó, e Waldir “Chouriman”

Pereira, Mário e Tomé, pelo trabalho duro e por passarem um pouco de sua experiência e

conhecimento sobre a mata.

Sou também grato à Rodrigo Loyola Dias, por ter liderado à expedição à Serra do

Tapirapecó e também por atender diversos pedidos de ajuda e informações sobre as áreas de

estudo. Agradeço também à Vinicius Carvalho e Lucéia Bonora, pelo grande auxílio na

preparação da expedição para o Pico da Neblina, terreno conhecido dos dois. Ainda sobre as

viagens tenho que agradecer o IBAMA (em especial a equipe da sede do PARNA Pico da

Neblina em São Gabriel da Cachoeira) e a FUNAI, pelas licenças de coleta e autorização para

ingresso em Terra Indigena, o 5° BIS – Batalhão de Infantaria da Selva – de São Gabriel da

Cachoeira e o 5° PEF – Pelotão Especial de Fronteira Maturacá – pelo apoio logístico na

expedição ao Pico da Neblina, à AYRCA (Associação Yanomami do Rio Cauaburis e

Afluentes) e às comunidades Yanomami dos rios Marari, Ariabú e Maturacá, que gentilmente

nos acolheram em suas terras.

vi

A identificação das aranhas coletadas nessas expedições demandou um pequeno

batalhão de taxonomistas e especialistas, aos quais sou imensamente grato. Identifico-os a

seguir, assim como o grupo de sua especialidade: Lina Almeida (Amaurobiidae), David

Candiani e Alexandre Bonaldo (Corinnidae), Daniele Polotow (Ctenidae), Nancy Lo-Man-

Hung (Hahniidae), Rafael Lemos (Linyphiidae), Flávio Yamamoto, Rafael Indicatti e Dr.

Silvia Lucas (Mygalomorphae), Adalberto Santos (Oxyopidae and Pisauridae, Synotaxidae),

Éwerton Machado (Pholcidae), Gustavo Ruiz (Salticidae), Cristina Rheims (Scytodidae and

Sparassidae), João Barbosa (Chrysometa) Erica Buckup and Maria Aparecida Marques

(Theridiidae), Estevam Silva (Trechaleidae). E o Antonio Brescovit também, claro, que

conferiu boa parte do material.

Esse parágrafo será dedicado à agradecer aos colegas de laboratório, e será grande,

uma vez que participei de vários. Primeiro não poderia esquecer os colegas do meu antigo e

marcante laboratório, o LAL. Ricardo Pinto-da-Rocha, Cibele (valeu pelas referências, Ciba!),

Teté (bela figura, Teta!), MBS (valeu pela hospedagem.), Pudim, Sabrina, Zé (formação

clássica), Patrão, Alipío, José, Vivinha (mais ou menos novas aquisições), obrigado pela

agradável e instrutiva convivência nesses anos todos de aracnologia. Ao longo do doutorado,

quando em São Paulo, instalei-me no Instituto Butantan, onde passei parte desses quatro anos

de maneira igualmente agradável e instrutiva. Agradecendo aos numerosos colegas, em ordem

aleatória e tentando não esquecer ninguém, valeu Cris, Dani, Lina, Priscila, Matilde, Camila,

Vanessa, Ju, Tati, Andria, Dr. Irene, Dr. Silvia, Denise, Kelly, Rafa (valeu pelas fotos, Rafa),

Japa (igualmente, Japa), Gustavo, Mamilo (grande co-autor, o rei das Chrysometa), Pãozinho,

Igor, Claudião, Jaú, Cidão, Tulipas, Hilton, Danilo, Gandhi (valeu pelas ajudas de fim de

tese), Paulão, Samuel, Pica-Pau, Carteiro, Robin, Tárik, Babenco, além de outros que já se

foram e dos muitos que por lá passaram...e, infelizmente, não tenho como não deixar uma

nota de pesar ao lembrar do nosso saudoso Laboratório de Artrópodes, destruído no trágico

incêndio de 2010...tempos bons que não voltarão mais....agora temos que encher de aranhas a

nova coleção...

Por fim agradeço aos colegas de laboratório do INPA, com quem não convivi tanto

quanto gostaria, mas o bastante para avaliar o tempo de convivência como agradável e

instrutivo. São eles, entre outros, Brunão, Maíra, Carine, Rosinha, Duka, Fernanda, Gabi...

Continuando no norte, agradeço todos os que me auxiliaram em minhas estadias

amazônicas. Começo pelos numerosos anfitriões que me receberam nas diversas vezes que

vii

estive aqui: Saci, Gabi, Minduim, Thayná, Dé e Catá, Flávia, obrigado por terem facilitado

imensamente minha vida, me fornecendo abrigo, colchão e até ventilador. Isso sem falar na

companhia e amizade, que tornaram todas as minhas estadias manauaras memoráveis. Valeu

gente. Também sou muito grato aos amigos e colegas velhos e novos aí de Manaus, Bogão,

Manô, Ana, Regiane, Erika, Pardal e Ana e filho, Tropico, Angelita, Fumaça, Rato, Alemão e

muitos outros e outras e também todos os colegas da turma de mestrado/doutorado de 2008,

com os quais passei um semestre dos mais instrutivos e agradáveis. Agradeço também ao

curador de invertebrados do INPA Dr. Henrique Augusto, e aos professores da Ecologia, no

geral gostei bastante das aulas. Agradeço também à Claudia, Flávia Costa, Beverly, Rosi e

demais funcionários da PPGEco.

Voltando rapidamente ao tema anfitriões, inesperadamente tive que passar um

tempinho em Natal no fim do doutorado, quando fui então abrigado por Guiga, Dri e Phoeve,

aos quais expressos aqui meus mais sinceros agradecimentos. Foi bem legal, apesar da rotina

massacrante Agradeço também os professores Carlos e Márcio, pela hospitalidade em seu

laboratório na UFRN.

Começando a finalizar, agradeço a outros colegas aracnólogos, como Rodrigo Pirata,

Adalberto, Sidclay e Janael, que me ajudaram de distintas maneiras, além da Prof. Eudóxia,

que me iniciou na aracnologia. Passando para o terreno mais pessoal, agradeço aos amigos de

escola e da biologia (aliás, valeu Matinas pela tese), meus dois principais círculos de amizade,

além de amigos avulsos de outras procedências...mas não resisto e tenho que destacar o

pessoal do futebol de terça e do de quinta (o futebatradiça), pois jogar bola é muito bom, e

ainda mais na companhia de amigos. Agradeço à Aline pela imensa ajuda nesse fim de tese

em várias tarefas, e, muito mais importante, pela companhia, paciência e carinho nesses

últimos meses...

Passando enfim para a família, agradeço à minha filha Gabriela, meu xodó, e à sua

mãe, Marisa, e todo o pessoal de Garça, por cuidarem dela e pelos divertidos fins de semana.

Agradeço meu pai Dalmo, irmãos Paula e Fernando, e avó Cida, por todo o apoio e carinho de

uma vida inteira. À minha mãe Maria Lúcia e avó Maria José, que infelizmente não poderão

ver o trabalho final, mas que certamente estariam felizes e orgulhosas por mim, como sempre

estive delas Finalizo agradecendo aos que financiaram isso tudo, que foram o CNPq, pela

bolsa de doutorado, uma bolsa BECA, do IEB/Fundação Moore e um auxílio da WCS,

utilizados nas expedições de campo.

viii

Resumo

Montanhas devem representar o exemplo mais evidente da influencia do ambiente sobre as

comunidades bióticas. Neste trabalho nós estudamos a distribuição altitudinal de uma

comunidade de aranhas no Pico da Neblina (AM - Brasil). Realizamos a amostragem em seis

altitudes, 100 m, 400 m, 860 m, 2000 m e 2400 m, sendo que em cada altitude três locais

foram amostrados. Os métodos de coleta empregados foram guarda-chuva entomológico

(unidade amostral = 20 batidas), de dia, e procura ativa (unidade amostral = 1 h de procura), à

noite. O número de amostras por altitude foi 54, sendo metade de cada método, o que leva a

um total de 324 amostras. No total nós coletamos 3140 aranhas adultas que foram divididas

em 528 morfoespécies, de 39 famílias. A maioria das espécies é rara, e 197 (37%) foram

representadas por apenas um indivíduo. A riqueza por altitude variou de 224 (a 100 m) a 24 (a

2400 m) espécies e apresentou uma relação negativa com a altitude, diminuindo de maneira

monotônica. O padrão observado não se ajustou ao modelo gerado pelo Efeito do Domínio

Central (MDE em inglês), que prevê uma maior concentração de espécies nas partes mais

centrais do gradiente. Nossos dados também não sustentaram o Efeito Rapoport, que prevê

uma relação positiva entre altitude e amplitude da distribuição altitudinal das espécies. Essas

duas variáveis não estiveram relacionadas, e a maioria das espécies (333 espécies ou 63%) só

foi registrada em uma das altitudes. Apenas 25 espécies (5%) tiveram uma amplitude grande,

ocorrendo em mais da metade do gradiente. A distribuição dos indivíduos ao longo da área de

ocorrência das espécies variou de maneira específica e não se ajustou à hipóteses de efeito

resgate para a maioria da comunidade, teoricamente responsável pelo Efeito Rapoport. A

composição das espécies apresentou uma grande variação ao longo do gradiente e mesmo

entre as áreas amostradas em cada altitude. A beta diversidade calculada para o total do

gradiente altitudinal foi de 3,45 o que significa que a araneofauna do Pico da Neblina

compreende três e meia comunidades distintas. Esse resultado parece ser sustentado por uma

ordenação (NMDS), que aponta a formação de três grupos principais, um formado pelas três

primeiras altitudes, um formado pelas duas últimas, e a quarta altitude (1550 m) aparece numa

posição intermediária entre os dois grupos. Esse resultado mostra que a comunidade de

aranhas não se encaixa na divisão altitudinal proposta para a região do Escudo das Guianas,

onde se insere a área de estudo. A dominância observada na comunidade de aranhas de cada

altitude aumentou drasticamente nas duas últimas altitudes. Por fim nós descrevemos oito

espécies novas do gênero Chrysometa (Tetragnatidae), sete delas coletadas no Pico da

Neblina e uma delas oriunda de outra montanha amostrada na região, a Serra do Tapirapecó

(AM). A diversidade do gênero obtida no Pico da Neblina foi muito alta (12 espécies e 336

indivíduos), e a riqueza e sobretudo a abundância e importância relativa do gênero

aumentaram junto com a altitude. Na Serra do Tapirapecó o gênero teve presença mais

modesta (4 espécies e 40 indivíduos), o que pode ser atribuído à menor altitude dos locais

amostrados nessa última. A análise dos padrões de distribuição altitudinal nos locais de estudo

e em uma escala maior (verificada com o auxílio da literatura) indica que o gênero atinge sua

maior diversidade em locais de grande altitude, e que as espécies desses locais tendem a ter

uma distribuição mais restrita que as de locais mais baixos.

ix

Abstract

Spider (Arachnida-Araneae) diversity at two amazonian altitudinal gradients,

Amazonas, Brazil

Mountains probably represent the most obvious example of environmental influence on biotic

communities. In this work we studied the altitudinal distribution of a spider community at the

Pico da Neblina (AM-Brazil). We sampled six altitudes, 100 m, 400 m, 860 m, 2000 m e 2400

m, and in each of them three sites were investigated. Spiders were sampled with a beating tray

(sampling unit = 20 beating events), during the day, and through active search (sampling unit

= one hour of search), during the night. We obtained 54 samples by altitude, half with each

method, totaling 324 samples for the whole gradient. We collected 3140 spiders, sorted to 528

morphospecies, from 39 families. Most species are rare, and 197 (37%) were represented by

just one individual. Richness by altitude ranged from 224 (at 100 m) to 24 (at 2400 m) species

and presented a negative relation with altitude, decreasing in a monotonic way. The observed

pattern presented a poor fit with that generated by the mid-domain effect (MDE), which

predicts higher richness at intermediate altitudes. Our data didn’t support a Rapoport effect

either, which predicts a positive relation between altitude and altitudinal range size. These two

variables were not related to each other and most species (333 species or 63%) were recorded

at just one altitude. Only 25 species (25%) presented a large range, encompassing more than

half of the altitudinal gradient. The distribution of individuals along the range of each species

varied in a specific way, which is not in accordance with hypothesis based on rescue effects to

explain the occurrence of Rapoport effect. The composition of species presented a great

variation along the gradient and even for the sampling sites within each altitude. Beta

diversity calculated for the whole gradient was 3,45, which means that the spider fauna from

the Pico da Neblina includes three and a half different communities. The result of a NMDS

seems to support this result as it present three main groups, one composed by the three first

altitudes, another by the two highest altitudes and the fourth altitude (1550 m) situated in an

intermediate position between the two groups. This result does not support the altitudinal

division proposed for the Guaiana region, where our study site is located. Dominance pattern

drastically increased at the two last altitudes. Finally, we described eight new species of the

genus Chrysometa (Tetragnathidae), seven from the Pico da Neblina and one from another

mountain sampled in the region, the Serra do Tapirapecó (AM). Diversity obtained at the Pico

da Neblina was very high (12 species and 336 individuals) and its richness and especially

abundance and relative importance increased with altitude. At the Serra do Tapirapecó the

diversity of the genus was much lower (4 species and 40 individuals), which can imputed to

the smaller altitude of the localities sampled there. The analysis of the pattern of altitudinal

distribution at the study areas and in a larger scale (based on the literature), indicates that the

genus reaches its maximum diversity at high altitude sites, and that species from highlands

tend to have a narrower distribution than species from lowlands.

x

Sumário

Folha de rosto .............................................................................................................i

Bancas examinadoras.......................................................................................ii

Ficha catalográfica ......................................................................................................iii

Sinopse............................................................................................................. ......... .iii

Dedicatória .................................................................................................................iv

Agradecimentos ..........................................................................................................v

Resumo .......................................................................................................................viii

Abstract ......................................................................................................................ix

Sumário ......................................................................................................................x

Lista de tabelas ...........................................................................................................xiii

Lista de figuras ...........................................................................................................xv

1 – Introdução geral......................................................................................... ....1

1.1 – Diversidade biológica em gradientes altitudinais,

MDE e Rapoport......................................................................................................1

1.2 – As aranhas.............................................................................................................4

1.3 – O Pico da Neblina.................................................................................................7

2 – Objetivos gerais ..................................................................................................10

Artigo 1 .................................................................................................................. 12

Araneae, Pico da Neblina, state of Amazonas, Brazil

Resumo ....................................................................................................... 14

Introdução ................................................................................................... 14

Materiais e métodos ..................................................................................... 16

Resultados e discussão ................................................................................. 18

xi

Literatura citada ........................................................................................... 23

Tabelas ........................................................................................................ 27

Figuras ........................................................................................................ 49

Artigo 2 .................................................................................................................. 53

Spiders (Arachnida-Araneae) from the Pico da Neblina (AM-Brazil).

Richness patterns along an Amazonian altitudinal gradient,

with a test of MDE and Rapoport effect.

Resumo ....................................................................................................... 55

Introdução ................................................................................................... 56

Materiais e métodos ..................................................................................... 60

Resultados ................................................................................................... 66

Discussão .................................................................................................... 69

Conclusões .................................................................................................. 77

Referências .................................................................................................. 78

Tabelas ........................................................................................................ 86

Figuras ........................................................................................................ 88

Artigo 3 .................................................................................................................. 93

Beta diversity along altitudinal gradients: a study on the composition of

the spider community from the Pico da Neblina (AM, Brazil), and on its

congruence with regional altitudinal zonation.

Sumário ....................................................................................................... 95

xii

Introdução ................................................................................................... 97

Materiais e métodos ............................ 100

Resultados ................................................................................................. 106

Discussão .................................................................................................. 110

Conclusão .................................................................................................. 120

Referências ................................................................................................ 121

Tabelas ...................................................................................................... 131

Figuras ...................................................................................................... 150

Artigo 4 ................................................................................................................ 154

The spider genus Chrysometa (Araneae, Tetragnathidae) from the Pico da Neblina and

Serra do Tapirapecó mountains (Amazonas, Brazil): new species, new records,

diversity and distribution along two altitudinal gradients.

Resumo ..................................................................................................... 156

Introdução ................................................................................................. 157

Materiais e métodos ................................................................................... 158

Taxonomia ................................................................................................ 162

Distribuição altitudinal e diversidade ......................................................... 174

Referências ................................................................................................ 182

Tabelas ...................................................................................................... 187

Figuras ...................................................................................................... 191

3 – Síntese ............................................................................................................ 199

xiii

Referências bibliográficas....................................................................................... 202 .

Lista de tabelas

Artigo 1

Tabela 1 – Lista de espécies de aranha coletadas no Pico da Neblina...................... 27

Tabela 2 – Riqueza e abundância, absolutas e proporcionais, por família............... 46

Tabela 3 – Inventários de araneofauna realizados na Amazônia.............................. 48

Artigo 2

Tabela 1 – Abundância e medidas de riqueza das comunidades de aranha por

altitude...................................................................................................................... 86

Tabela 2 – Resultados da regressão linear múltipla entre a riqueza e as variáveis

preditoras.................................................................................................................. 87

Artigo 3

Tabela 1 – Coordenadas das 18 áreas de amostragem e medidas de diversidade alfa e beta

para as 18 áreas amostradas e para as seis altitudes............................................. 131

Tabela 2 – Matriz de similaridade e proporção de espécies compartilhadas entre as 18 áreas

amostradas............................................................................................................ 132

Tabela 3 – Matriz de similaridade e proporção de espécies compartilhadas entre as seis

altitudes amostradas............................................................................................. 133

Tabela 4 – Matriz de diversidade beta (D) da comunidade de aranhas amostrada nas seis

altitudes............................................................................................................... 134

Tabela 5 – Resultados dos testes de Mantel e Mantel parcial............................. 135

xiv

Tabela 6 – Resultados da análise de espécies indicadoras para as três divisões do

gradiente................................................................................................................... 136

Tabela 7 – Resultados da análise de espécies indicadoras por família para a três divisões do

gradiente................................................................................................................... 137

Material suplementar do Artigo 3

Tabela 1 – Resultados da análise de espécies indicadoras para a partição do gradiente em duas

metades, inferior e superior...................................................................................... 138

Tabela 2 – Resultados da análise de espécies indicadoras para a partição do gradiente em três

partes, de acordo com a divisão da Região das Guianas..............................................142

Tabela 3 – Resultados da análise de espécies indicadoras para a partição do gradiente em seis

partes, por altitude..................................................................................................... 146

Artigo 4

Tabela 1 – Distribuição altitudinal das espécies de Chrysometa coletadas no Pico da

Neblina...................................................................................................................... 187

Tabela 2 – Distribuição altitudinal das espécies de Chrysometa coletadas na Serra do

Tapirapecó................................................................................................................ 189

Tabela 3 – Inventários de araneofauna neotropicais. Diversidade geral de aranhas e do gênero

Chrysometa.............................................................................................................. 190

xv

Lista de figuras

Artigo 1

Figura 1 – Área de estudo...................................................................................... 49

Figura 2 – Vegetação das seis altitudes amostradas.............................................. 50

Figura 3 – Aranhas coletadas no Pico da Neblina.................................................. 51

Figura 4 – Aranhas coletadas no Pico da Neblina.................................................. 52

Artigo 2

Figura 1 – Área de estudo....................................................................................... 88

Figura 2 – Riqueza observada, interpolada, rarefeita e abundância por altitude....89

Figura 3 – Curvas de rarefação para cada altitude.................................................. 89

Figura 4 – Riqueza observada e prevista de acordo com o Efeito do Domínio Central (MDE,

em inglês) para espécies, gêneros e famílias.......................................................... 90

Figura 5 – Distribuição de frequências do tamanho da amplitude altitudinal das espécies, e

amplitude da distribuição altitudinal e ponto médio ponderado (WAM) para cada

espécie..................................................................................................................... 91

Figura 6 – Relação entre altitude e amplitude altitudinal da área de distribuição

(Rapoport)............................................................................................................... 92

Figura 7 – Relação entre ponto médio altitudinal e ponto médio ponderado......... 92

Artigo 3

Figura 1 – Área de estudo..................................................................................... 147

Figura 2 – Curvas de abundância da comunidade para cada altitude................... 148

xvi

Figura 3 – Correlações entre similaridade de Bray-Curtis, diversidade beta, distância

geográfica e diferença altitudinal (Teste de Mantel parcial).............................. 149

Figura 4 – NMDS realizada para a comunidade, para as 18 áreas amostradas. 150

Artigo 4

Figura 1 – Área de estudo................................................................................... 192

Figura 2 – Ilustração da genitália de Chrysometa nubigena............................... 193

Figura 3 – Ilustração da genitália de Chrysometa saci....................................... 194

Figura 4 – Ilustração da genitália de Chrysometa waikoxi................................. 195

Figura 5 – Ilustração da genitália de Chrysometa petrarsierwaldae.................. 196

Figura 6 – Ilustração da genitália de Chrysometa lomanhungae, C. yanomami e C.

santosi.................................................................................................................. 197

Figura 7 – Ilustração da genitália de Chrysometa candianii e C. minuta............ 198

1

INTRODUÇÃO GERAL

DIVERSIDADE BIOLÓGICA EM GRADIENTES ALTITUDINAIS, EFEITO DO DOMÍNIO CENTRAL E

RAPOPORT

Montanhas devem representar o exemplo mais evidente da influencia do ambiente

sobre as comunidades bióticas. As drásticas mudanças observadas na fauna e flora em espaços

relativamente pequenos, que podem ser percorridos em algumas horas, sempre chamaram a

atenção das pessoas interessadas em observar e compreender o mundo natural. A primeira

descrição da divisão da vegetação em zonas ao longo de um gradiente altitudinal foi feita por

Joseph Pitton de Tournefort, após a escalada do Monte Ararat, na Armênia, no começo do

século XVIII (Papavero et al., 1997). Esse autor também associou as mudanças observadas na

flora ao longo da escalada com as observadas na flora da Europa partindo-se da Itália até a

Noruega, tornando-se o primeiro a associar o gradiente altitudinal ao latitudinal.

Suas observações, aliadas ao que na época pareciam ser outras evidências (como a de

que o nível das águas vinha baixando desde o começo da criação), forneceram a base para

Lineu (1744) criar o “Discurso sobre o aumento da terra habitável”, a primeira grande

hipótese biogeográfica moderna (Papavero et al., 1997). O Éden, onde habitavam todas as

formas de vida que haviam sido criadas por Deus, devia ser uma grande montanha em uma

zona equatorial, comportando todos os ecossistemas conhecidos, ao longo do qual se

distribuiriam todas as espécies de acordo com suas adaptações. Conforme baixava o nível das

águas, as espécies foram se dispersando e se distribuindo no globo de acordo com suas

preferências climáticas.

Um raciocínio semelhante foi defendido por Willdenow (1805, apud Papavero et al.

1997) para explicar a distribuição geográfica das espécies de plantas no mundo. Porém, de

maneira um pouco mais realista, ele supôs que as plantas teriam se originado em várias

montanhas ao redor do mundo, ao invés de apenas uma, o que explicaria as diferentes regiões

fitogeográficas. O mesmo autor também fez a ligação fundamental entre clima e tipo de

vegetação (Lomolino, 2001). Ainda no começo do século XIX, a sucessão de comunidades

vegetais ao longo do gradiente altitudinal e seu paralelo com as observadas ao longo do

2

gradiente latitudinal foram novamente abordados, dessa vez com inédita precisão e

detalhamento por Humboldt, durante a ascensão do Monte Chimborazo, imponente vulcão

equatoriano (6.310 m). O autor também formalizou a relação entre a distribuição das plantas

com características físicas do ambiente, como temperatura (vonHumboldt, 1807, apud

Papavero et al. 1997).

As montanhas permaneceram como fonte de inspiração e como laboratório natural

para vários tipos de trabalhos relacionados à ecologia e biogeografia (Lomolino, 2001). As

montanhas Siskiyou e Santa Catalina, nos Estados Unidos, serviram de palco para trabalhos

pioneiros sobre diversidade beta (Whittaker, 1960 e 1965). Outro trabalho influente que pode

ser citado teorizou sobre os efeitos de montanhas como barreira à dispersão, e previu que

estes seriam mais importantes em áreas tropicais devido à menor tolerância a variações

ambientais de suas espécies, uma conseqüência do clima marcado por menor sazonalidade

(Janzen, 1967). Ecossistemas montanos também foram usados para testar várias outras teorias

ecológicas, como biogeografia de ilhas (Vuillemier, 1970; Brown, 1971), a Lei de Bergman

(Brehm e Fiedler, 2004), e a hipótese do gradiente de stress, relacionada à facilitação

(interações positivas entre plantas) (Callaway et al., 2002).

Por fim, montanhas também merecem um lugar de destaque na biologia simplesmente

por sua notável riqueza de espécies. Regiões montanas, em particular as localizadas nos

trópicos, constituem o ambiente que apresenta o maior número de espécies no planeta (Orme

et al., 2005; Rahbek, 2005), uma consequência dos importantes gradientes ambientais a elas

associados. Essa grande variabilidade ambiental em espaços relativamente pequenos também

é responsável por outras características da maioria das biotas montanas, como distribuição

restrita de suas espécies, elevado grau de endemismo e altas taxas de substituição de espécies

(Jetz et al., 2004; Berry e Riina, 2005; Melo et al., 2009).

Em função disso as montanhas parecem uma escolha natural para testar hipóteses

biogeográficas relacionadas à distribuição de espécies, como é o caso de duas teorias

relativamente recentes, a hipótese das restrições geométricas (Colwell e Lee, 2000), ou efeito

do domínio central (MDE, em inglês), e a Lei de Rapoport (Stevens, 1989). Ambos foram

originalmente relacionados ao gradiente latitudinal, mas rapidamente gradientes altitudinais

também passaram a ser utilizados para testar essas teorias, o que seria importante para

verificar a alegada universalidade dessas propostas.

3

A Lei de Rapoport foi proposta como uma possível explicação para o gradiente

latitudinal de riqueza de espécies. A Lei de Rapoport é uma relação positiva entre latitude e

amplitude latitudinal da área de distribuição, e foi nomeada em homenagem à Eduardo

Rapoport, ornitólogo argentino que relatou pela primeira vez esse padrão (Rapoport, 1975).

Stevens hipotetizou que isso seria causado pela maior tolerância climática das espécies que

ocorrem em altas latitudes, o que seria uma conseqüência da importante variação sazonal que

se observa nessas regiões, enquanto nos trópicos, de maneira inversa, as espécies estão

habituadas a uma variação mínima dos fatores climáticos. Uma conseqüência disso seria um

aumento da riqueza das comunidades de latitudes mais baixas devido à migração de espécies

tolerantes de latitudes maiores, enquanto o contrário não seria possível, devido à incapacidade

de espécies tropicais de expandir sua área de distribuição de maneira significativa. Essa

migração assimétrica seria a responsável pelas diferenças em riqueza ao longo do gradiente

latitudinal.

Com base nessas idéias intuitivas e em alguns exemplos que obviamente

corroboravam suas idéias, seu trabalho suscitou muito interesse (Stevens, 1989), e o mesmo

autor defendeu que elas se aplicaram também a qualquer tipo de gradiente natural, como o

altitudinal ou o batimétrico (Stevens, 1992 e 1996). No entanto, a maioria das pesquisas se

concentrou na validade e universalidade da própria Lei de Rapoport, isto é, uma relação

positiva entre tamanho da amplitude da área de distribuição e o gradiente geográfico, do que

na sua influência sobre padrões de riqueza, rapidamente descartada por falta de evidências

(Rhode, 1993).

Um dos trabalhos que refutou o papel da Lei de Rapoport como responsável pela

ocorrência de gradiente de riqueza de espécies deu origem à outra teoria mencionada, a das

restrições geométricas (Colwell e Hurtt, 1994). Os autores mostraram através de simulações,

que a disposição aleatória da amplitude de áreas de distribuição (a partir de dados empíricos)

em domínios fechados, isto é, com limites físicos assumidos como intransponíveis pelas

espécies, necessariamente leva à uma maior sobreposição de espécies na parte central do

gradiente. Esse resultado foi chamado de Efeito do Domínio Central (MDE, sigla em inglês),

e foi possível constatar que os padrões resultantes eram muito semelhantes aos obtidos em

vários trabalhos empíricos realizados em gradientes naturais (Rahbek, 1995), o que levou os

autores a propor que as restrições geométricas tinham um papel central na geração desses

padrões, ou que, ao menos, não podiam ser descartadas (Colwell e Lees, 2000). Ao enfatizar

que os padrões de riqueza de comunidades poderiam ser explicados prescindindo de qualquer

4

variável ambiental ou ecológica, os autores despertaram uma grande atenção por parte da

comunidade científica da área, que estimulou a realização de um grande número de estudos.

Quase duas décadas, e muita polêmica depois (Gaston et al., 1998; Ribas e

Schoereder, 2006; Colwell et al., 2005; Zapata et al., 2005; entre muitos outros), essas teorias

continuam sendo testadas e investigadas e ainda não há consenso a respeito de suas validades.

Já parece claro que ambas são menos universais do que se sustentava previamente, sendo que

inclusive já se propôs o rebaixamento da Lei de Rapoport para “Efeito Rapoport” (Blackburn

e Gaston, 1996). No entanto, trabalhos recentes ainda encontram evidências em seu favor

(Dunn et al., 2007; McCain, 2009a), ainda que talvez restritas a condições específicas.

De qualquer maneira, o grande número de trabalhos recentes relacionados a esses

temas, assim como a maior abrangência de grupos investigados, proporcionou um aumento

significativo no conhecimento dos padrões de riqueza ao longo de gradientes altitudinais. Ao

contrário do que se acreditava inicialmente, quedas monotônicas de riqueza com o aumento

de altitude não representam um resultado universal. Outros padrões, como a existência de um

platô de alta diversidade em baixas altitudes, e principalmente picos de riqueza em altitudes

intermediárias são igualmente ou até mais freqüentes, dependendo do grupo de estudo e de

outros fatores (Rahbek, 2005; McCain, 2007; 2009b).

Neste trabalho, vamos estudar os padrões de riqueza, diversidade e composição de

uma comunidade de aranhas em um gradiente altitudinal na Amazônia.

AS ARANHAS

Não seria exagero ou parcialidade afirmar que as aranhas (Araneae-Arachnida)

fascinam a humanidade desde o começo dos tempos. Isso é atestado pelas inúmeras

referências à esses animais em diversas culturas, como o mito grego de Arachne, o geoglifo

representando uma aranha em Nazcar, a dança da Tarantela na Itália e o papel central das

aranhas na mitologia de várias culturas indígenas das Américas (Silva, 1999). As aranhas

permaneceram como tema de vários tipos de manifestações culturais mais modernas, como

filmes e até mesmo história em quadrinhos (“o Homem-aranha”). Por fim, sua popularidade

também é atestada pela existência de numerosos sítios de internet, documentários e livros

destinados a crianças e ao publico leigo em geral que tem as aranhas como tema.

5

Um motivo óbvio para esse interesse certamente está ligado ao fato que aranhas são

animais potencialmente perigosos. No entanto, embora a grande maioria das aranhas seja

peçonhenta, apenas uma pequena fração delas possui veneno forte o bastante para causar

acidentes graves (Foelix, 1996), e a fatalidade em humanos é extremamente rara (Isbister et

al., 2005). Isso não é, todavia, o bastante para tranquilizar a maioria das pessoas, e as aranhas

devem representar um dos grupos mais temidos (injustamente, na maior parte dos casos),

tanto que o medo de aranhas é uma das fobias mais comuns (Bourdon et al., 1988). Outra

razão para esse interesse (e medo), é que, ao contrário de outros animais perigosos ou

interessantes de alguma maneira, as aranhas estão entre os animais mais familiares ao homem,

sendo muito comuns e conspícuas mesmo em ambientes urbanos.

Essa presença ubíqua é um bom exemplo da capacidade de adaptação do grupo. As

aranhas estão presentes em todos os continentes, com exceção dos pólos, e ocorrem em

virtualmente todo tipo de ecossistema terrestre, além de uma espécie que ocupa ambientes

dulciaquícolas, vivendo em abrigos de seda construídos debaixo d’água (Foelix, 1996). Um

dos prováveis motivos da distribuição ampla do grupo é sua notável capacidade de dispersão.

O método mais eficiente é conhecido como balonismo, no qual a aranha é transportada

passivamente pelo ar suspensa por fios de seda (Bell et al., 2005). A eficiência desse

mecanismo pode ser atestada não só por relatos anedóticos registrando a presença de aranhas

flutuantes em navios a quilômetros da costa (Foelix, 1996), como também pelo fato de que as

aranhas estão entre os primeiros colonizadores de ilhas (Edwards e Thornthon, 2001). Por

fim, a vagilidade do grupo também pode ser inferida em função do grande tamanho da área de

distribuição de muitas espécies. Várias espécies neotropicais da família Araneidae, por

exemplo, ocupam desde a América Central ou mesmo o sul dos estados Unidos até o sudeste

do Brasil ou a Argentina, como Araneus guttatus, Alpaida truncata e Cyclosa caroli (Levi,

1988, 1991 e 1999).

Além de sua ampla distribuição, as aranhas também costumam estar representadas por

um grande número de espécies e indivíduos, tratando-se de um grupo muito diverso.

Atualmente são conhecidas mais de 41.000 espécies agrupadas em 109 famílias (Platnick,

2010), mas o fato de que centenas de espécies novas continuam a ser descritas por ano

(Platnick, 2010) indica que essa quantidade ainda parece longe do numero efetivo de espécies

existentes. Assim como muitos outros grupos, as aranhas atingem sua diversidade máxima em

florestas tropicais, onde milhares de exemplares e centenas de espécies podem ser obtidos em

6

um período de coleta relativamente curto (Coddington et al., 2009), de alguns dias a poucas

semanas, dependendo da quantidade de coletores.

No entanto, a riqueza de aranhas é grande o bastante para dificultar estimativas

precisas em ambientes produtivos. A riqueza observada em inventários realizados em

florestas tropicais costuma variar entre 200 a mais de 500 espécies (Silva e Coddington, 1996;

Bonaldo et al., 2009, Coddington et al., 2009), embora mais de 1.100 espécies já tenham sido

registradas em um levantamento realizado na Amazônia Peruana (Silva, 1996). A variação

pode ser creditada a vários fatores, como esforço amostral e metodologia empregada, além de

diferenças devidas a características particulares das áreas de estudo. Boa parte da variação

também pode ser devida simplesmente ao fato de que as comunidades de aranhas estão sendo

sistematicamente sub-amostradas, e recentemente foi proposto que a grande proporção de

singletons (espécies representadas por apenas um indivíduo) observadas nessas comunidades

(de 30 a 50%) seria um indício dessa situação (Coddington et al., 2009).

Ainda assim, podemos considerar que inventários que apresentem esforço amostral

considerável (alguns milhares de indivíduos) consigam obter uma parcela significativa da

comunidade. Algumas evidências disto seriam o número expressivo de famílias obtidas,

muitas vezes próximo do total de famílias conhecidas para a região amostrada (Silva, 1996;

Bonaldo et al., 2009) e a relativa constância da importância proporcional das principais

famílias. Outro ponto positivo relativo à coleta de aranhas é que os métodos de coleta mais

comuns são relativamente simples e baratos (coletas manuais, guarda-chuva entomológico,

armadilhas de queda) (Álvarez et al., 2004).

Todas as aranhas são carnívoras. Sua dieta é constituída majoritariamente por insetos,

mas outros artŕopodes, como miriápodes e isópodes, também fazem parte deste espectro, bem

como as próprias aranhas (Foelix, 2011). Mais raramente, pequenos vertebrados podem ser

predados por aranhas de grande porte (McCormick e Polis, 1982). A maioria das espécies, no

entanto, tem insetos como principal item alimentar, e alguns trabalhos já mostraram que elas

podem ter um impacto importante sobre suas populações (Turnbull, 1973), o que lhes confere

uma inquestionável importância ecológica.

Apesar dessa aparente homogeneidade relativa à alimentação, as aranhas exibem uma

grande diversidade de estratégias para obter suas presas, desde a procura ativa e a emboscada

até aquele que é o aspecto mais característico das aranhas, o emprego de diversos tipos de

armadilhas de seda, as teias. O tipo de forrageio das espécies, comumente divididas em

7

guildas (Höfer e Brescovit, 2001; Dias et al., 2010), também varia em função de aspectos

como período de atividade e estrato e microhabitats ocupados. Já foi proposto que a estrutura

da vegetação é uma das variáveis mais importantes para as comunidades de aranhas,

sobretudo para as construtoras de teias (Hatley e MacMahon, 1980; Robinson, 1981;

Greenstone, 1984; Halaj et al., 1998), e dessa maneira mudanças na composição podem ser

relacionadas à mudanças no ambiente. Caçadoras ativas de solo da família Ctenidae também

já foram utilizadas como objeto para monitoramentos de fauna em estudos sobre perturbações

e fragmentação, sendo que ao menos parte das espécies respondeu aos fatores analisados

(Jocqué et al., 2005; Rego et al., 2007).

Em suma, por conta de sua diversidade, importância ecológica e diversidade de nichos

e relação com o meio ambiente as comunidades de aranhas parecem constituir um interessante

modelo para estudos ecológicos e biogeográficos. Nesse trabalho vamos analisar a

distribuição altitudinal da comunidade de aranhas do Pico da Neblina, nossa área de estudo.

O PICO DA NEBLINA

O Pico da Neblina, com 2.994 m (IBGE 2010), é a montanha mais alta do Brasil, além

de ser o ponto mais alto da América do Sul fora da cordilheira dos Andes (Willard et al.,

1991). Localizado no norte do estado do Amazonas (00°48’07”N e 66°00’40”W), fica a

poucos quilômetros da fronteira com a Venezuela, e está inserido em duas áreas sobrepostas,

o Parque Nacional do Pico da Neblina (2.260.344 ha) e a Terra Indígena Yanomami

(9.665.000 ha)

O Pico da Neblina faz parte do Escudo das Guianas, um dos locais de origem

geológica mais antiga da terra. As camadas mais basais são formadas por rochas ígneas e

graníticas e datam de 3.6 – 0.8 bilhões de anos (província geológica do Craton Guianês). No

período entre 1.6 -1 bilhão de anos, esse embasamento granítico foi coberto por sucessivas

camadas de areia que deram origem a uma cobertura sedimentar de arenito (província

geológica do Grupo Roraima) que podia atingir até alguns quilômetros de espessura (Huber et

al., 1995). A total ausência de fósseis nessas rochas também atesta sua origem Pré-Cambriana

(McDiarmid et al., 2005). Por fim, o escudo das guianas também conta com rochas intrusivas,

granitos e diábases, de origem mais recente (Paleozóico e Mesozóico) (Huber, 1995).

8

O aspecto mais característico da região é a sua topografia singular, na qual se

destacam os tepuis, montanhas de arenito de formato tabular, com escarpas verticais e topo

achatado. Os tepuis podem alcançar mais de 2.500 m de altitude, se elevando abruptamente da

matriz de terras baixas cobertas por um mosaico de florestas e savanas. As paisagens

impressionantes e a aparência isolada dos tepuis inspiraram o famoso romance “O mundo

perdido”, de sir Arthur Conan Doyle (1912).

Os tepuis são o resultado de sucessivos períodos de soerguimento do embasamento

granítico e de sua cobertura sedimentar de arenito, que ocorreram desde o Cambriano até o

Terciário (McDiarmid et al., 2005). A região também passou por um intenso processo

erosivo iniciado no Cretáceo, que conferiu aos tepuis seu aspecto característico. Embora o

maciço da Neblina, onde se localiza o Pico da Neblina, seja formado por arenito e possua

extensos planaltos de altitude, ele não apresenta o formato típico dos tepuis.

A região pode ser dividida em três grandes conjuntos fisiográficos, as terras baixas

(lowlands), até 500 m de altitude e clima macrotérmico (médias anuais de temperatura >

24°C), as terras médias (uplands) com altitudes entre 500 e 1.500 m e clima submesotérmico

(24° -18°C), e as terras altas (highlands), acima de 1.500 m de altitude e climas mesotérmico

(18°-12°C) e submicrotérmico, em suas porções mais altas (12°-8°C) (Huber, 1995). Na

região de estudo, a média anual de pluviosidade situa-se entre 2.500-3.000 mm/ano e a

umidade relativa do ar entre 85-90%. A pluviosidade aumenta com a altitude até cerca de

1.800 m, quando então é substituída por uma neblina constante, o que eleva a umidade

relativa a até quase 100% (RADAM, 1978).

De maneira geral, a vegetação da região parece se ajustar à divisão fisiográfica

proposta. Na área de estudo as terras baixas são cobertas por florestas ombrófilas densas, que

vão sendo substituídas por florestas montanas nas altitudes intermediárias. De uma maneira

geral, há uma diminuição na biomassa e porte das árvores, especialmente em áreas de

declividade acentuada, devido à solos mais rasos (Pires e Prance, 1985). No Pico da Neblina,

as florestas estendem-se até quase 2.000 m de altitude, quando são substituídas por formações

mais abertas. Esse tipo de vegetação herbácea e de aspecto tundricóide possui várias espécies

com característica xeromórficas, devido ao solo raso e rochoso (Radam, 1978). Entre as

espécies características dessas formações detacam-se espécies das famílias Rapateacea,

Bromeliacea e Theacea, entre outras (Berry e Riina, 2005).

9

As terras altas da região do Escudo das Guianas formam uma província biogeográfica

descontínua, chamada de Pantepuí , termo cunhado por Mayr e Phelps (1967) (Berry et al.,

1995). A flora desses ambientes de grande altitude é renomada por sua diversidade e elevado

grau de endemismo. Ela representa 17% do total de espécies de plantas vasculares conhecidas

para o Escudo das Guianas, embora o Pantepui ocupe apenas 0,5% do total da área. Cerca de

42% dessa flora é endêmica do Pantepui, sendo que 25% tem sua distribuição restrita à apenas

uma montanha. O Maciço da Neblina se destaca nesse conjunto, uma vez que apresenta a

segunda maior riqueza entre todas essas formações montanhosas, com 690 espécies, e o maior

número de espécies endêmicas, com 132 espécies (Berry e Riina, 2005). O grau de

endemismo e o antigo confinamento da flora no topo dos tepuis fizeram com que ela fosse

considerada como relictual. No entanto, essa visão tradicional vem sendo reavaliada em

função de novas evidências, que indicam a ocorrência de migração vertical e contanto entre

floras de diferentes tepuis e até mesmo com a de terras mais baixas, devido as variações

climáticas do Quaternário (Rull, 2004).

A fauna da região é bem menos conhecida. Um inventário da avifauna do Maciço da

Neblina revelou um número de espécies muito pequeno em relação ao observado para

altitudes equivalentes nos Andes (Willard et al., 1991). Os autores atribuíram esse resultado à

menor produtividade dos solos mais arenosos característicos da região e ao maior isolamento

das áreas de altitude do Pantepui, quando comparadas às extensas montanhas andinas. Isso

parece especialmente verdade para o Maciço da Neblina, uma das montanhas mais isoladas do

Escudo das Guianas, localizada na extremidade sul do Pantepui. A herpetofauna do Escudo

das Guianas também é relativamente bem conhecida e apresenta alto grau de endemismo. O

maciço da Neblina apresenta a maior riqueza entre as montanhas amostradas, embora ainda

possa ser considerada como mal amostrada, a exemplo do resto da região (McDiarmid e

Donelly, 2005).

Concluindo, o estudo da fauna dos gradientes altitudinais do maciço da Neblina parece

ser muito proveitoso devido à peculiar biogeografia da região, assim como importante, em

razão do conhecimento ainda incipiente sobre a maior parte da sua fauna. Além disso, a

localização remota do Pico da Neblina, que só foi descoberto em 1953 (Maguire, 1955),

assegura um grau de preservação excepcional, mesmo para as terras baixas no pé da

montanha, uma característica infelizmente incomum na maioria dos estudos sobre gradientes

altitudinais (Nogués-Bravo et al., 2008).

10

OBJETIVOS

O objetivo deste trabalho é estudar a distribuição das espécies de aranhas ao longo do

gradiente altitudinal no Pico da Neblina. Apresentamos abaixo os objetivos específicos e em

quais capítulos da tese eles são abordados. No último capítulo nós também apresentamos

dados sobre outra montanha amostrada na região, a Serra do Tapirapecó.

Capítulo 1 – Lista de espécies

- Apresentar a lista de famílias e espécies de aranhas coletadas no Pico da Neblina.

- Breve discussão sobre a composição no nível famíliar, com comentários sobre

espécies pouco abundantes.

- Compar a riqueza obtida com a de outros inventários de aranhas realizados na

Amazônia.

Capítulo 2 – Riqueza, Efeito do Domínio Central (MDE) e Rapoport

- Descrever o padrão de riqueza das aranhas ao longo do gradiente.

- Testar a relação do padrão observado com duas variáveis preditoras: altitude e a

riqueza prevista pelo MDE (Mid-Domain-Effect, ou Efeito do Dominio Central), também

conhecida como Hipótese das Limitações Geométricas.

- Verificar a relação entre amplitude altitudinal da área de distribuição das espécies e

altitude, de maneira a testar o Efeito Rapoport, que prevê uma relação positiva entre essas

variáveis.

- Verificar a ocorrência de um efeito resgate, o mecanismo teoricamente responsável

pelo Efeito Rapoport.

Capítulo 3 – Padrões de diversidade beta

11

- Descrever os padrões de diversidade beta ao longo do gradiente e entre os locais

amostrados em cada altitude.

- Verificar se o padrão encontrado está de acordo com a divisão altitudinal proposta

para a região da área de estudo

- Descrever os padrões de dominância das comunidades das diferentes altitudes.

- Identificar espécies associadas à diferentes altitudes ou faixas altitudinais, testando o

ajuste das espécies à diferentes divisões altitudinais.

Capítulo 4 – Distribuição altitudinal do gênero Chrysometa (Tetragnathidae) e descrição

de espécies novas

- Descrever o padrão de distribuição altitudinal das espécies do gênero Chrysometa ao

longo do gradiente no Pico da Neblina e na Serra do Tapirapecó.

- Comparar a diversidade do grupo na área de estudo com a relatada em outros

inventários de arenofauna na região tropical.

- Descrever oito espécies novas desse gênero, o macho de uma espécie conhecida

apenas pela fêmea, e novos registros para outras espécies.

12

CAPÍTULO 1

Nogueira, A.A., Venticinque, E.M., Brescovit, A.D.,

Lo-Man-Hung, N.F. & Candiani, D.F. List of species of

spiders (Arachnida, Araneae) from the Pico da Neblina,

state of Amazonas, Brazil. Manuscrito em preparação

para Checklist.

13

Artigo 1

A ser submetido à revista Check List

LS

Araneae, Pico da Neblina, state of Amazonas, Brazil

List of species of spiders (Arachnida, Araneae) from the Pico da Neblina, state of Amazonas,

Brazil

ANDRÉ A. NOGUEIRA1*

, EDUARDO M. VENTICINQUE1,2

, ANTONIO D. BRESCOVIT

3, NANCY F.

LO-MAN-HUNG4 & DAVID F. CANDIANI

5

1Instituto Nacional de Pesquisas da Amazônia, INPA, Programa de Pós-Graduação em

Ecologia. Avenida André Araújo, 2936, Aleixo, CEP 69011-970, Cx. Postal 478, Manaus,

AM, Brazil.

14

2Universidade Federal do Amazonas – WCS Brasil – Wildlife Conservation Society. Prédio

Sauim de Coleira, ICB-UFAM, Estrada do Contorno 3000, CEP-69077-000, Manaus, AM,

Brazil.

3Laboratório de Artrópodes, Instituto Butantan. Av. Vital Brazil 1500, 05503-900, São Paulo,

SP, Brazil.

4Museu de Ciências e Tecnologia da Pontifícia Universidade Católica do Rio Grande do Sul,

Laboratório de Aracnologia, Av. Ipiranga, 6681, Prédio 40, Sala 125, Partenon, CEP 90619-

900, Porto Alegre, RS, Brazil.

5Museu Paraense Emílio Goeldi, Laboratório de Aracnologia, Av. Perimetral 1901, CEP

66077-530, Terra Firme, Belém, Pa, Brazil.

* Corresponding author. Email: [email protected]

ABSTRACT

We present a list of species of spiders collected at the Pico da Neblina, the highest mountain

in Brazil (Amazonas, Brazil). We sampled at six altitudes (100, 400, 860, 1,550, 2,000 and

2,400 m.a.s.l.), through manual active search, during the night and with a beating tray, during

the day. We obtained a total of 3,140 adult individuals, which were assigned to 528 species,

from 39 families. The most species rich families were Theridiidae (108 species), Araneidae

(97 species) and Salticidae (60 species). Most species were rarely collected, accounting for an

average of 0.19% of the total abundance. We briefly compare our results with those from

other spider surveys in the Amazon basin.

15

INTRODUCTION

Spiders (Araneae, Arachnida) are a remarkable group under many aspects. Conspicuous

animals even in urban environments, they represent the most familiar arachnid order and

usually arouse intense reactions from the general public, from the care of tarantula pet owners

to the exaggerated fear of aracnophobics. All spiders are predators (with one single exception

– Meehan et al. 2009), near the top of the invertebrate food chain (Coddington et al. 1991)

and most feed mainly on insects (Turnbull 1973), which gives them an unquestionable

ecological importance. Present in all terrestrial ecosystems (except for the Antarctic

continent), they are a very diverse taxon, with more than 41,000 species currently described

(Platnick 2011), which probably represent only a fraction of the effective number of species

(roughly estimated at up to 170,000 species, Coddington and Levi 1991). Spiders can also be

locally very diverse and abundant, especially in tropical forests, where hundreds of species

and thousands of individuals can be gathered in relatively short periods (Coddington et al.

2009).

Spider surveys, especially short term expeditions, may result in incomplete sampling

of the community, as suggested by the high proportion of rare species usually observed

(Coddington et al. 2009). However, they still provide valuable information on the diversity

and composition of spider communities, and usually also lead to the discovery of new species,

as well as to a better knowledge on the distribution of known species, especially in poorly

sampled regions.

Although the Amazon basin has been the focus of some spiders surveys, the region

can still be considered undersampled, given its immense extent (Höfer and Brescovit 2001;

Brescovit et al. 2002) and diversity of habitats. Most species lists are from Terra Firme forests

(Borges and Brescovit 1996; Höfer and Brescovit 2001; Bonaldo et al. 2009a) and flooded

16

forests (Borges and Brescovit 1996; Silva 1996; Höfer 1997; Rego et al. 2009). Other surveys

sampled a larger number of environments, such as different forests types and open formations

(Silva and Coddington 1996; Ricetti and Bonaldo 2008). Some studies have investigated the

diversity of spiders from some Andean localities (Coddington et al. 1991 - Bolivia, Silva

1992 - Peru), but no species list was provided, which means that Amazonian montane spider

fauna have been completely overlooked so far.

In this study, we present the species list of a spider survey conducted on the Pico da

Neblina, the highest Brazilian mountain (2,994 m). Montane biotas present a high biological

interest and are usually characterized by high diversity (Orme et al. 2005) and endemism

levels (Jetz et al. 2004). Located at the boundary between Brazil and Venezuela, the Pico da

Neblina is part of the Neblina massif, one of the southern mountain ranges of the Guayana

shield, a region of very old geological origin which represents the watershed between the

Amazon and Orinoco basins (RADAM 1978). This region is famous for its peculiar

topography, whose main characteristic is the presence of isolated table-top sandstone

mountains (tepuis), and by its diverse and endemic flora (Berry and Riina 2005). The remote

location of the Pico da Neblina also guarantees an unusual degree of conservation, with

almost pristine environments along the whole altitudinal gradient.

MATERIAL AND METHODS

The study was conducted on the Pico da Neblina (00°48’07” N and 66°00’40” W) (Figure 1),

in the Pico da Neblina National Park, state of Amazonas, Brazil. The park covers an area of

2,260,344 ha, representing one of the largest conservation units in Brazil, and is situated in

the municipality of São Gabriel da Cachoeira. Most of the park, including the Pico da

Neblina, overlaps with the Yanomami Indigenous Land.

17

The Neblina massif is mainly composed of sandstones and is characterized by

extensive high-altitude plateaus, although it does not possess the tipical tepui shape. The

climate of the region is tropical humid and varies little through the year. According to a

division proposed for the Guayana region, the study area can be divided in three main

physiographic units according to temperature and altitude. Lowlands, up to 500 m with

macrothermic climate (> 24°C annual average), uplands from 500 to 1,500 m with

submesothermic climate (18° - 24°C), and highlands from 1,500 to 2,994 m, with

mesothermic (18° - 12°C) and submicrothermic climate (8° - 12°C) (Huber 1995). The annual

average rainfall in the lowlands of the Pico da Neblina, is 3,000 mm/year, without a distinct

dry season, and the humidity is about 85-90% (RADAM 1978). Rainfall increases with

altitude until around 1800 m, being gradually replaced by a constant mist, and the average

humidity reaches almost 100% (RADAM 1978).

Vegetation of the lowlands is composed of tall evergreen forest. Uplands are covered

by montane forests, which present decreasing biomass and tree size, especially when declivity

is accentuated and soils shallow (Pires and Prance 1985). In the highlands, forests are

replaced by more open types of vegetation, such as high altitude scrublands and broad-leaf

meadows, which grow on organic-peat soils and on rocky substrates. Forests formations occur

up to almost to 2,000 m, and their high altitude formations stand out for their diversity and

endemism (Berry et al. 1995). Species from the families Bromeliacea and Rapateacea are

among the most characteristics elements of this flora. Detailed information on the geology

and vegetation of the region can be found in Berry et al. (1995) and Berry and Riina (2005)

(Figure 2).

We collected spiders with two methods, beating tray and manual active search. In the

first method the understory vegetation was sampled during the day (08:00 to 11:00 h) through

the beating of leaves, branches, vines and other parts of the vegetation with a stick, while

18

holding a 1 m2 tray under it. The spiders falling into the tray are collected, and the sampling

unit consisted of 20 of those beating events, in different plants, along a 30 m long transect. In

the second method, employed at night (19:30 to 23:00) spiders from the forest floor and from

the understory were directly collected with the help of tweezers and/or plastic vials. The

sampling unit represents one hour of search along an approximate area of 300 m2 (30 x 10 m).

This method represents a fusion of the methods “looking up” and “looking down”

(Coddington et al. 1991). All spiders collected were fixed in 70% ethanol.

Sampling was carried out by three collectors at six altitudes, 100, 400, 860, 1550,

2000 and 2400 m (Figure 1). At each altitude we investigated three different sites about 100 m

apart from each other. At each site we obtained 18 samples, 9 diurnal and 9 nocturnal, which

represent a total of 54 samples for each altitude (27 of each method) and a final count of 324

samples (162 of each method). The sampling expedition occurred from 22 September 2007 to

13 October 2007, a period with lesser rainfall.

We only identified adult spiders, since allocation of juveniles to species based on

morphology is usually impractical. Specimens were sorted into morphospecies, usually by the

first author, and then identified to the lowest taxonomic level by specialists. Voucher

specimens are deposited in the collection of the Instituto Nacional de Pesquisas da Amazônia,

Manaus (INPA) and duplicates are deposited in the Instituto Butantan, São Paulo (IBSP) and

the Museu Paraense Emílio Goeldi, Belém (MPEG). The material was collected under the

license IBAMA-SISBIO 10560–1.

We compared our results with those obtained in other spider surveys from the Amazon

basin. We excluded studies that focused on only a subset of the community, or a specific kind

of habitat, such as bark.

19

RESULTS AND DISCUSSION

We obtained 3,140 adult spiders (35% of the total number of spiders sampled), representing

528 species from 39 families (Table 1, Figures 3 and 4). The families in which the most

species were collected were Theridiidae, Araneidae and Salticidae, with 110 (20% of total

richness), 97 (18%) and 60 (11%) species (Table 2). Most of the spiders collected were from

14 families: Anyphaenidae, Araneidae, Corinnidae, Ctenidae, Linyphiidae, Mimetidae,

Pholcidae, Salticidae, Sparassidae, Tetragnathidae, Theridiidae, Theridiosomatidae,

Thomisidae and Uloboridae. Those families were the most species rich and abundant in the

samples, and were represented by at least 10 species and 52 individuals. Together, they

account for 89% of total richness and 93% of spiders collected. Fewer species of the

remaining 27 families were collected, although some species , such as Architis tenuis Simon

1898 (Pisauridae, 27 individuals), Amaloxenops sp. (Hahniidae, 25 individuals) and

Orchestina sp. (Oonopidae, 27 individuals) were relatively abundant in samples (Table 2).

Those results are similar to those obtained in other surveys in the Amazon basin

(Table 3). Species richness reported ranges from 102 to 1,140 species, but in most localities

sampled the number of species was around 500. Comparisons must be made with care, as

those results are directly influenced by many factors, such as sampling effort (which can be

estimated from the number of individuals obtained), sampling methods, type of environment

and number of different localities sampled. For example, the fact that our sampling sites were

scattered along an important altitudinal gradient increased the richness, as turnover rates are

higher in strong environmental gradients, such as those represented by mountains (Melo et al.

2009). However, the number of species and families reported at the Pico da Neblina is large,

considering that only two sampling methods were employed, while most of the other surveys

included additional methods, which increeases the coverage of the study. For example, the

litter fauna, usually investigated with pitfall traps, winckler funnels or litter search, was only

20

superficially assessed at the Pico da Neblina. The collecting of specimens from families, such

as Anapidae, Hahniidae, Ochyroceratidae, Symphytognathidae and Oonopidae was

occasional, and the diversity of those families at the Pico da Neblina is certainly

underrepresented.

The presence and relative abundance of families showed little variation among

collections from diferent surveys, indicating that the diversity patterns at the higher taxonomic

level of family are well established. The families Araneidae, Salticidae and Theridiidae

contained most species in collections from all the studies considered, and the 14 above most

common families were recorded in all of those surveys, with few exceptions (families

Pholcidae and Linyphiidae were absent from the lists of Ricetti and Bonaldo 2008 and Rego

et al. 2009, respectively). In fact, most of the families reported in our study, such as

Deinopidae, Lycosidae, Oonopidae, Pisauridae and Scytodidae, are also present in all or at

least most of these studies, but usually represented by few species and individuals.

Nonetheless, characteristics of the habitats may influence the relative contribution of different

families. In the flooded forest, the relative abundance of the families associated with water

bodies, such as Pisauridae and Trechaleidae (Höfer and Brescovit 2001; Bonaldo et al. 2009a)

increases, although their richness remains moderate (Borges and Brescovit 1996; Rego et al.

2009).

Most species were rarely collected. Most (389 - 73%) were represented by up to five

individuals, of which 197 (37% of total richness) were represented by just one individual in

collections. Each species accounted, on average, for only 0.19% of total abundance. This low

abundance in samples seems to be characteristic of very diverse tropical spider communities

(Silva 1996), and is evidence of undersampling. The two most abundant species, with 137

(4.3% of the total abundance) and 96 (3.1%) individuals were new species collected at high

21

altitude from the genus Chrysometa, C. petrasierwaldae Nogueira et al. 2011 and C.

nubigena Nogueira et al.2011.

Only 27.8% of the morphospecies could be identified to species. A similarly low

taxonomic resolution level is shared with other surveys (Silva 1996; Bonaldo et al. 2009a;

Rego et al. 2009), with the exception of the study conducted at the Reserva Ducke (RFAD)

(Höfer and Brescovit 2001), which presents a much higher proportion of identified species

(55%). The better resolution for this area may be a consequence of its proximity to Manaus,

ensuring an unparalleled accessibility to researchers in comparison with the others areas

sampled, which turn the RFAD one of the most studied localities of the Amazon basin.

Moreover, sampling performed by Höfer and Brescovit (2001) were also accompanied by

taxonomic studies, including the description of new species, and as a consequence the RFAD

is the type locality of 38 species of spiders (Bonaldo et al. 2009b). Finally, the species list of

the RFAD is not only the product of sampling over many years, but also from records of the

literature, which means that all species added by this method are necessarily identified to

species.

Nine species collected during this expedition were new to science and have already

been described, one from the genus Architis (Santos and Nogueira 2008), one from the genus

Syntrechalea (Silva and Lise 2010) and seven from the genus Chrysometa (Nogueira et al.

2011). However, the list presented in this study certainly harbors several other new species. It

must be kept in mind that the low level of taxonomic resolution of this list is partially a

consequence of the lack, or unavailability, of taxonomic experts for several of these families

and genera. It is reasonable to suppose that most of the species which could not be identified

to species are undescribed species, although they may have already been collected in other

Amazonian localities. Morphospecies from genera, such as like Eustala, Dipoena and

Tmarus, are reported in almost every survey cited in this study, and at present it is not

22

possible to know the proportion of widespread or endemic species among then. The survey

encountered individuals from several poorly known groups. The specimens of Rhytidiculos

sp. represent the second record of this monotypic genus for Brazil, and the first of a female

(R. Indicatti, pers. com.). Also, the morphospecies Drymusa sp. belongs to the rare family

Drymusidae (15 species) and is probably a new species (Brescovit, pers. com.). Known from

only nine species until recently, none from Brazil, five species have been described since

2004 from surveys in the Brazilian Amazon (Brescovit et al. 2004; Bonaldo et al. 2006). This

is further evidence of the still incipient knowledge of Brazilian-Amazonian arachnids and

reinforces the fundamental importance of faunal surveys, especially in remote regions that

have not yet been sampled, which represent most of the Amazon basin.

ACKNOWLEDGMENTS

We are grateful to the following specialists for the determination of the material: Lina

Almeida (Amaurobiidae), Alexandre Bonaldo (Corinnidae), Daniele Polotow (Ctenidae),

Nancy Lo-Man-Hung (Hahniidae), Rafael Lemos (Linyphiidae), Flávio Yamamoto, Rafael

Indicatti and Silvia Lucas (Mygalomorphae), Adalberto Santos (Oxyopidae, Pisauridae and

Synotaxidae), Éwerton Machado (Pholcidae), Gustavo Ruiz (Salticidae), Cristina Rheims

(Scytodidae and Sparassidae), João Barbosa (Chrysometa) Erica Buckup and Maria Aparecida

Marques (Theridiidae), and Estevam Silva (Trechaleidae). We are also indebted to Tomé,

Mário and Waldir “Chouriman” Pereira, for their invaluable help in the field. The first author

also thanks the PPGEco-INPA, the 5°PEF Maturacá, a frontier squad from the Brazilian army,

the IBAMA/ICMBio and PARNA Pico da Neblina for the collecting licence, and FUNAI and

the Ayrca, a local Yanomami association, for receiving use at the Yanomami Indigenous

Land. A.A. Nogueira was supported by a doctoral fellowship from “Conselho Nacional de

Desenvolvimento Científico e Tecnológico (CNPq)”, a BECA-IEB/Moore Foundation

23

(B/2007/01/BDP/01) fellowship and a grant from Wildlife Conservation Society (WCS). A.D.

Brescovit was supported by CNPq, # 300169/1996-5.

LITERATURE CITED

Berry, P. E., O. Huber and B. K Holst, 1995. Introduction.; p. 161-191 In P. E. Berry, B. K.

Holst & K. Yatskievych, (ed.). Flora of the Venezuelan Guayana. St. Louis: Missouri

Botanical Garden Press.

Berry, P.E. and R. Riina. 2005. Insights into the diversity of the Pantepui flora and the

biogeographic complexity of the Guayana Shield. Biologiske Skrifter 55:145–167.

Bonaldo, A. B., L. S Carvalho, R. Pinto-da-Rocha, A.L. Tourinho, L. T. Miglio, D. F.

Candiani, N. F. Lo Man Hung, N. Abrahim, B. V. B Rodrigues, A. D Brescovit, R. Saturnino,

N. C. Bastos, S. C Dias, B. J. F. J. M. B. Silva, Pereira-Filho, C.A. Rheims, S. M. Lucas, D.

Polotow, G. R. S. Ruiz and R. P. Indicatti. 2009a. Inventário e História Natural dos

Aracnídeos da Floresta Nacional de Caxiuanã, Pará, Brasil; p. 545-588 In Lisboa, P. L. B.

(org.). Caxiuanã: desafios para a conservação de uma Floresta Nacinal da Amazônia,

Belém: Museu Paraense Emílio Goeldi.

Bonaldo, A. B., A. D. Brescovit, H. Höfer, T. R. Gasnier and A. A. Lise. 2009b. A

araneofauna (Arachnida, Araneae) da Reserva Florestal Ducke, Manaus, Amazonas, Brasil; p.

201-222 In C. R. V. Fonseca, C. Magalhães, J. A. Rafael and E. Franklin. (Org.). A Fauna

de Artrópodes da Reserva Florestal Ducke. Estado atual do conhecimento taxonômico e

biológico. 1 ed. Manaus: INPA.

Bonaldo, A.B., C.A. Rheims and A.D. Brescovit. 2006. Four new species of Drymusa Simon

(Araneae, Drymusidae) from Brazilian Oriental Amazonia. Revista Brasileira de Zoologia,

Curitiba 23 (2): 455–359.

24

Borges, S. H. and A. D. Brescovit. 1996. Inventário preliminar da aracnofauna (ARANEAE)

de duas localidades na amazônia ocidental. Boletim do Museu Paraense Emílio Goeldi, série

Zoologia 12(1): 9-21.

Brescovit A.D., A.B. Bonaldo and C.A. Rheims. 2004. A new species of Drymusa Simon,

1891 (Araneae, Drymusidae) from Brazil. Zootaxa 697: 1–5.

Coddington J. and H. Levi. 1991. Systematics and evolution of spiders (Araneae). Annual

Review of Ecology and Systematics 22: 565-592.

Coddington, J.A., I Agnarsson, J.A Miller, M. Kuntner and G. Hormiga. 2009.

Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys.

Journal of Animal Ecology 78: 573–584.

Coddington, J.A.; C.E. Griswold; D. Silva-D’ávila; E. Peñaranda and S.F. Larcher. 1991.

Designing and testing sampling protocols to estimate biodiversity in tropical ecosystems; p.

44-60 In Dudley, E.C. (ed.). The unity of evolutionary biology: proceedings of the Fourth

International Congress of Systematic and Evolutionary Biology. Portland: Dioscorides Press.

Höfer, H. 1997. The spider communities. P. 373-343. In: Junk, W.J. (org). The Central

Amazon Floodplain. Berlin: Springer-Verlag.

Höfer, H. and A. D. Brescovit. 2001. Species and guild structure of a Neotropical spider assemblage

(Araneae) from Reserva Ducke, Amazonas, Brazil. Andrias 15: 99-119.

Huber, O. 1995. Geographical and physical features; p. 1─ 61In P. E. Berry, B. K. Holst and

K. Yatskievych (ed.). Flora of the Venezuelan Guayana, I. Introduction. St. Louis: Missouri

Botanical Garden Press.

Jetz, W., C. Rahbek and R.C.Colwell. 2004. The coincidence of rarity and richness and the

potential signature of history in centres of endemism. Ecology Letters 7: 1180–1191.

25

Melo, A. S., T. F. L. V. B. Rangel and J. A. F. Diniz-Filho. 2009. Environmental drivers of

beta-diversity patterns in New-World birds and mammals. Ecography 32: 226–236.

Meehan, C.J., E.J. Olson, M.W. Reudink, T.K. Kyser and R. L. Curry. 2009. Herbivory in a

spider through exploitation of an ant-plant mutualism. Current Biology 19(19): R892-893.

Nogueira, A.A., J. P.P. Pena-Barbosa, E.M. Venticinque and A.D. Brescovit. 2011.

The spider genus Chrysometa (Araneae, Tetragnathidae) from the Pico da

Neblina and Serra do Tapirapecó mountains (Amazonas, Brazil): new species,

new records, diversity and distribution along two altitudinal gradients. Zootaxa 2772: 33-51.

Orme, C.D.L., R.G. Davies, M. Burgess, F Eigenbrod, N.Pickup and V.A. Olson 2005. Global

hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–

1019.

Pires, J.M. and T.G. Prance. 1985. The vegetation types of the Brazilian Amazon. p:109-145.

In G.T. Prance and T.E. Lovejoy (ed). Key environments: Amazonia. Oxford: Pergamon

Press.

Platnick, N. I. 2011. The world spider catalog, version 11.5. American Museum of Natural

History, online at http://research.amnh.org/entomology/spiders/catalog/index.html

RADAM. 1978. Folha NA19:. Pico da Neblina. Rio de Janeiro: Ministério das Minas e

Energia.

Rego, F.N.A.A., E. M. Venticinque, A. D. Brescovit, C. A. Rheims and A. L. K. M. Albernaz.

2009. A contribution to the knowledge of the spider fauna (Arachnida: Araneae) of the

floodplain forests of the main Amazon River channel. Revista Ibérica de Aracnologia 97: 85-

96.

26

Ricetti, J. and A. B. Bonaldo. 2008. Diversidade e estimativas de riqueza de aranhas em

quatro fitofisionomias na Serra do Cachimbo, Pará, Brasil. Iheringia 98(1): 88-99.

Santos, A. J. and A. A. Nogueira. Three new species, new records and notes on the nursery-

web spider genus Architis in Brazil (Araneae: Pisauridae). Zootaxa 1815: 51-61.

Silva, D. 1992. Observations on the diversity and distribution of the spiders of peruvian

montane forests. Memorias del Museo de Historia Naturales 21: 31-37.

Silva, D. 1996. Species composition and community structure of peruvian rainforest spiders:

A case study from a seasonally inundated forest along the Samiria river. Revue suisse de

Zoologie 597-610.

Silva, D. and J. A.Coddington. 1996. Spiders of Pakitza (Madre de Dios, Perú): species

richness and notes on community structure; p. 253-311 In D. E. Wilson & A. Sandoval (ed.).

Manu-The biodiversity of Southeastern Perú. Washington: Smithsonian Institution Press.

Silva, E.L.C. and A. A. Lise 2010. Two new species and new records of Syntrechalea

(Araneae: Lycosoidea: Trechaleidae) from Brazil. Zoologia 27(3): 408–412.

Turnbull, A.L. 1973. Ecology of the true spiders (Araneomorphae). Annual Review of

Entomology 18: 305-348

27

TABLES

TABLE 1 – List of spider species collected at six altitudes at the Pico da Neblina (AM, Brazil).

We present the abundance by altitude, total abundance, and relative abundance (abundance of

each species in relation to total abundance) for each species.

*species described after specimens obtained in this study

Family Altitudes sampled (m) Total

Species 100 400 860 1.550 2.000 2.400 Abundance

%

Abundance

Amaurobiidae

Amaurobiidae sp.

2

2 0,06

Retiro sp.1

4

4 0,13

Retiro sp.2

1

1 0,03

Anapidae

Anapidae sp.

1

1 0,03

Pseudanapis sp. 2

2 0,06

Anyphaenidae

Anyphenoides aff. xiboreninho

3

3 0,10

Anyphenoides sp.

4 25 29 0,92

Arachosia sp.1

1 3 4 0,13

Arachosia sp.2

1

1 0,03

Bromelina oliola Brescovit, 1993

2

2 0,06

Josa sp.1

12 12 0,38

Josa sp.2

4

4 0,13

Katissa sp.1

1 1 2 0,06

Patrera sp.1

13

13 0,41

Patrera sp.2 2

2 0,06

Patrera sp.3 1 1

2 0,06

28

Patrera sp.4

1 1

2 0,06

Patrera sp.5

2

2 0,06

Patrera sp.6

1

1 0,03

Patrera sp.7 1

1 0,03

Patrera sp.8

1 1 0,03

Patrera sp.9

1

1 0,03

Patrera sp.10 1

2

3 0,10

Wulfila modesta Chickering, 1937

2

2 0,06

Wulfila sp.1

1

1 0,03

Wulfila sp.2

1

1 0,03

Anyphaenidae sp.1 3

3 0,10

Anyphaenidae sp.2

2 2 1 3 8 0,25

Araneidae

Acacesia benigna Glueck, 1994 2

2 0,06

Alpaida antonio Levi, 1988

1

1 0,03

Alpaida negro Levi, 1988 1 1 2

4 0,13

Alpaida septemmammata (O. P.-Cambridge, 1889) 1

1 0,03

Alpaida truncata (Keyserling, 1865) 4 1 3

8 0,25

Alpaida aff. cuyabeno

11 1

12 0,38

Alpaida aff. delicata 9

11

20 0,64

Alpaida aff. iquitos 1

1 0,03

Alpaida sp.1

12

12 0,38

Alpaida sp.2 1 1

2 0,06

Araneus bogotensis (Keyserling, 1864)

1 15 6 22 0,70

Araneus guttatus (Keyserling, 1865)

1

1 0,03

Aspidolasius branicki (Taczanowski, 1879) 1

1 0,03

Bertrana elinguis (Keyserling, 1883) 4

4 0,13

Bertrana sp. 1

1 0,03

Cyclosa caroli (Hentz, 1850)

3 1

4 0,13

Cyclosa fililineata Hingston, 1932 4

1 2

7 0,22

29

Cyclosa inca Levi, 1999 7

3 1

11 0,35

Cyclosa rubronigra Caporiacco, 1947 2

2

4 0,13

Cyclosa tapetifaciens Hingston, 1932 12 1

13 0,41

Cyclosa vieirae Levi, 1999

2

2 0,06

Dubiepeira lamolina Levi, 1991 1

1 0,03

Eriophora fuliginea (C. L. Koch, 1838) 1

1

2 0,06

Eriophora nephiloides (O. P.-Cambridge, 1889) 1 1

2 0,06

Eustala sp.1

22 16

38 1,21

Eustala sp.2 9 1 2

6

18 0,57

Eustala sp.3

5 2

7 0,22

Eustala sp.4 1

5

6 0,19

Eustala sp.5 1 2 3

6 0,19

Eustala sp.6 1 1 1

3 0,10

Eustala sp.7

2 1

3 0,10

Eustala sp.8

1

1 0,03

Eustala sp.9

1

1 0,03

Eustala sp.10

1

1 0,03

Eustala sp.11

6 7

13 0,41

Eustala sp.12

5

5 0,16

Eustala sp.13

2

2 0,06

Eustala sp.14 2

2 0,06

Eustala sp.15 1

1 0,03

Hypognatha aff. putumayo 12 9 2

23 0,73

Kaira altiventer O. P.-Cambridge, 1889

1 1

2 0,06

Mangora amacayacu Levi, 2007 1 2 6

9 0,29

Mangora apaporis Levi, 2007

1 2

3 0,10

Mangora bovis Levi 2007

7

7 0,22

Mangora aff. acre 1

4 15

20 0,64

Mangora sp.1 3

3 0,10

Mangora sp.2 2

2 0,06

30

Mangora uraricoera Levi, 2007

1 2

3 0,10

Manogea porracea (C. L. Koch, 1838)

4

4 0,13

Melychiopharis cynips Simon, 1895

1

1 0,03

Metazygia ducke Levi, 1995 1

1 0,03

Metazygia enabla Levi, 1995 1 1 7

9 0,29

Metazygia laticeps (O. P.-Cambridge, 1889)

2

2 0,06

Metazygia yucumo Levi, 1995

1

1 0,03

Micrathena clypeata (Walckenaer, 1805) 24 3 1

28 0,89

Micrathena cyanospina (Lucas, 1835)

7

7 0,22

Micrathena embira Levi, 1985 1

1 0,03

Micrathena exilinae Levi, 1985 15

15 0,48

Micrathena flaveola (C. L. Koch, 1839)

1

1 0,03

Micrathena kirbyi (Perty, 1833) 9 6

15 0,48

Micrathena pungens (Walckenaer, 1841) 3 1

4 0,13

Micrathena spinosa (Linnaeus, 1758)

2

2 0,06

Micrathena triangularis (C. L. Koch, 1836) 2 6 7 3

18 0,57

Micrathena triangularispinosa (De Geer, 1778) 5

7

12 0,38

Micrathena vigorsi (Perty, 1833) 4 1 2

7 0,22

Micrathena sp.1 4 2 11

17 0,54

Micrathena sp.2 4

4 0,13

Micrepeira fowleri Levi, 1995 1

1 0,03

Micrepeira hoeferi Levi, 1995 1 1

2 0,06

Ocrepeira bispinosa (Mello-Leitão, 1945)

1 1

2 0,06

Ocrepeira covillei Levi, 1993 4 2 1

7 0,22

Ocrepeira sp.1

1

1 0,03

Ocrepeira sp.2

1

1 0,03

Parawixia hypocrita (O. P.-Cambridge, 1889) 2 2

4 0,13

Parawixia kochi (Taczanowski, 1873) 1 2 1

4 0,13

Parawixia monticola (Keyserling, 1892)

1 1

2 0,06

Parawixia rimosa (Keyserling, 1892)

3 3

6 0,19

31

Parawixia tomba Levi, 1992

1

1 0,03

Parawixia velutina (Taczanowski, 1878) 2

1

3 0,10

Pronous nigripes Caporiacco, 1947

6

6 0,19

Rubrepeira rubronigra (Mello-Leitão, 1939)

1

1 0,03

Scoloderus sp. 3 2

5 0,16

Spilasma duodecinguttata Keyserling, 1879

1

1 0,03

Spintharidius rhomboidalis Simon, 1893

1

1 0,03

Taczanowskia striata Keyserling, 1879 1 1

2 0,06

Testudinaria quadripunctata Taczanowski, 1879

1 3

4 0,13

Verrucosa sp.

1

1 0,03

Wagneriana atuna Levi, 1991

1

1 0,03

Wagneriana pakitza Levi, 1991 1

1

2 0,06

Wagneriana aff. neblina 1

1 0,03

Wagneriana aff. silvae 1

1

2 0,06

Wagneriana sp.1 3 1 4

8 0,25

Wagneriana sp.2

5

5 0,16

Wagneriana sp.3

4

4 0,13

Wagneriana sp.4

3 6

9 0,29

Araneidae sp.1 1

1 0,03

Araneidae sp.2

1

1 0,03

Clubionidae

Elaver sp.1 1 1

2 0,06

Elaver sp.2 2

2 0,06

Corinnidae

Castianeira rubicunda Keyserling, 1879

1

1 0,03

Corinna ducke Bonaldo, 2000 10 4 7 2

23 0,73

Corinna gr. capito sp.

1

1 0,03

Corinna gr. ducke sp.1

1

1 0,03

Corinna gr. ducke sp.2

8 7

15 0,48

Corinna gr. ducke sp.3

14 2

16 0,51

32

Corinna gr. ducke sp.4

1

1 0,03

Corinna gr. ducke sp.5

1

1 0,03

Falconina sp.

1 1

2 0,06

Methesis sp. 1

1 0,03

Myrmecium sp.1 1

1 0,03

Myrmecium sp.2 4

4 0,13

Myrmecium sp.3 3 1 2

6 0,19

Myrmecotypus sp. 1 1

2 0,06

Parachemmis hassleri (Gertsch, 1942)

4

4 0,13

Parachemmis sp.1

1

1 0,03

Parachemmis sp.2 1

1 0,03

Simonestus sp. 1

1 0,03

Stethorragus archangelus Bonaldo & Brescovit,

1994

1

1 0,03

Stethorragus duide Gertsch, 1942

1 1

2 0,06

Trachelas sp.1 1

1 0,03

Trachelas sp.2 2

2 0,06

Tupirina aff. trilineata

1

2

3 0,10

gen. aff. apochinomma

1

1 0,03

Corinnidae sp.

2 2 0,06

Ctenidae

Ancylometes rufus (Walckenaer, 1837) 1

1 0,03

Centroctenus auberti (Caporiacco, 1954) 5 1 1

7 0,22

Centroctenus sp.1

1

1 0,03

Centroctenus sp.2

2

2 0,06

Ctenus amphora Mello-Leitão, 1930 11 51 11

73 2,32

Ctenus inaja Höfer, Brescovit & Gasnier, 1994 1

1 0,03

Ctenus villasboasi Mello-Leitão, 1949 6 2 24 3

35 1,11

Ctenus aff. satanas

2 12

14 0,45

Ctenus sp.1

11

11 0,35

33

Ctenus sp.2 6 2 17

25 0,80

Ctenus sp.3

4

4 0,13

Enoploctenus aff. comosus 1

1 0,03

Enoploctenus sp.1

1

1 0,03

Enoploctenus sp.2

1

1 0,03

Enoploctenus sp.3

1

1 0,03

Gephyroctenus portovelho Polotow & Brescovit,

2008 1 2

3 0,10

Phoneutria fera Perty, 1833 1

1 0,03

Ctenidae sp.1

1

1 0,03

Ctenidae sp.2

1 1 2 0,06

Ctenidae sp.3

4

4 0,13

Ctenizidae

Ummidia sp.

1

1 0,03

Cyrtaucheniidae

Rhytidicolus sp.

1

1 0,03

Deinopidae

Deinops sp.1 1 2 6

9 0,29

Deinops sp.2

2

2 0,06

Dipluridae

Diplura sp.

2

2 0,06

Linothele sp.

1

1 0,03

Masteria sp. 1

1 0,03

Drymusidae

Drymusa sp.

1

1 0,03

Gnaphosidae

Zimiromus sp.

2

2 0,06

Hahniidae

Amoloxenops sp.

25

25 0,80

Hersiliidae

34

Ypipuera vittata (Simon, 1887) 2

2 0,06

Linyphiidae

Dubiaranea caeca Millidge, 1991

5 1 6 0,19

Dubiareanea margaritata Millidge, 1991

5 14

19 0,61

Dubiaranea sp.1

7

7 0,22

Dubiaranea sp.2

2

2 0,06

Dubiaranea sp.3

1

1 0,03

Dubiaranea sp.4

3

3 0,10

Dubiaranea sp.5

1

1 0,03

Exocora sp.

2

2 0,06

Novafrontina uncata (F. O. P.-Cambridge, 1902)

1

1 0,03

Sphecozone crassa (Millidge, 1991)

9 7

16 0,51

Lycosidae

Aglaoctenus castaneus (Mello-Leitão, 1942) 6 4 2

12 0,38

Mimetidae

Ero sp.1

6

6 0,19

Ero sp.2

9 9 0,29

Ero sp.3

1

1 0,03

Ero sp.4

1

1 0,03

Ero sp.5

1

1 0,03

Ero sp.6

5 2 2

9 0,29

Ero sp.7 3 2

5 0,16

Ero sp.8

1

1 0,03

Ero sp.9

1

1 0,03

Ero sp.10

1

1 0,03

Gelanor sp.1

8

8 0,25

Gelanor sp.2

6

6 0,19

Gelanor sp.3 1 1

2 0,06

Gelanor sp.4 1

1 0,03

Mysmenidae

35

Mysmenopsis sp. 1

1 0,03

Mysmenidae sp.

1 1

2 0,06

Nephilidae

Nephila clavipes (Linnaeus, 1767) 2

1

3 0,10

Oonopidae

Gamasomorpha sp.

1

1 0,03

Neoxyphinus sp.

1

1 0,03

Oonops sp.

1

1 0,03

Orchestina sp.

3 1 1 22

27 0,86

Oonopidae sp. 1

1 0,03

Oxyopidae

Hamataliwa sp.1 1

1 0,03

Hamataliwa sp.2

1

1 0,03

Schaenicoscelis guianensis Caporiacco, 1947

2

2 0,06

Pholcidae

Carapoia sp.

31 37

68 2,17

Litoporus aff. uncatus

3 7

10 0,32

Mecoloesthus aff. taino

1

1 0,03

Mesabolivar aurantiacus (Mello-Leitão, 1930) 3 10 67

80 2,55

Mesabolivar eberhardi Huber, 2000

3

3 0,10

Mesabolivar aff. aurantiacus

12 8

20 0,64

Mesabolivar aff. huambisa 2

2

4 0,13

Mesabolivar aff. pseudoblechroscelis 3 3 3

9 0,29

Mesabolivar sp.1 2 3

5 0,16

Mesabolivar sp.2

1 2 1 4 0,13

Metagonia mariguitarensis (González-Sponga,

1998)

5

5 0,16

Metagonia sp.1

2

2 0,06

Metagonia sp.2 2 1

3 0,10

Priscula cf. trauma

11 14

4 29 0,92

36

Wanauana sp.

2

2 0,06

Pholcidae sp. 1

1 1

3 0,10

Pisauridae

Architis neblina Santos & Nogueira, 2008 8

8 0,25

Architis tenuis Simon, 1898 18 9

27 0,86

Thaumasia sp.1 3

3 0,10

Thaumasia sp.2

1

1 0,03

Prodidomidae

Prodidomidae sp.

1

1 0,03

Salticidae

Alcmena sp. 1

1 0,03

Amycus sp.1 1

1 0,03

Amycus sp.2 4 3

7 0,22

Beata sp.

1

1 0,03

Breda sp. 1

1 0,03

Corythalia sp. 1

1

1 0,03

Corythalia sp. 2

1

1 0,03

Corythalia sp. 3

2

2 0,06

Cotinusa sp.1

5

5 0,16

Cotinusa sp.2

1

1 0,03

Cylistella sp.1 2

1

3 0,10

Cylistella sp.2

1

1 0,03

Cylistella sp.3

1

1 0,03

Dendryphantinae sp.

2

2 0,06

Erica sp.

2

2 0,06

Euophryinae sp.1 2 2 1

5 0,16

Euophryinae sp.2

1

1

2 0,06

Euophryinae sp.3

5 2 7 0,22

Euophryinae sp.4

1 12

13 0,41

Euophryinae sp.5

1

1 0,03

37

Euophryinae sp.6

1

1 0,03

Euophryinae sp.7

1 1

2 0,06

Euophryinae sp.8 1

1 0,03

Euophryinae sp.9 3

3 0,10

Euophryinae sp.10

1

1 0,03

Euophryinae sp.11

2

2 0,06

Fluda sp.1 3

1

4 0,13

Fluda sp.2

1 1

2 0,06

Freyinae sp.1 2

2 0,06

Hypaeus sp.1 1

1 0,03

Hypaeus sp.2 4

4 0,13

Hypaeus sp.3 1

1 0,03

Hypaeus sp.4

3

3 0,10

Hypaeus sp.5

1

1 0,03

Itata sp. 2

2 0,06

Kalcerrytus sp. 2 1

3 0,10

Lyssomanes sp.1 2

2 0,06

Lyssomanes sp.2 1 2 3

6 0,19

Lyssomanes sp.3 5

5 0,16

Lyssomanes sp.4 1

3

4 0,13

Lyssomanes sp.5

1

1 0,03

Lyssomanes sp.6

1

1 0,03

Mago sp.1 2 8 3

13 0,41

Mago sp.2

3 1 1

5 0,16

Mago sp.3

1

1 0,03

Mago sp.4 1 2

3 0,10

Mago sp.5

1

1 2 0,06

Noegus sp.1 8

1

9 0,29

Noegus sp.2

6 4

10 0,32

Noegus sp.3

2

2 0,06

38

Noegus sp.4

3

3 0,10

Noegus sp.5 4

4 0,13

Noegus sp.6 5

5 0,16

Noegus sp.7 1 5

6 0,19

Psecas sp.

1

1 0,03

Ramboia sp.

1

1 0,03

Scopocira sp. 6 3 1 1

11 0,35

Synemosyna sp.

2

2 0,06

Thiodina sp.

1

1 0,03

cf Zuniga

1

1 0,03

Scytodidae

Scytodes auricula Rheims & Brescovit, 2000

5 1

6 0,19

Scytodes balbina Rheims & Brescovit, 2000

4 13

17 0,54

Scytodes lineatipes Taczanowski, 1874 1

1 0,03

Selenopidae

Selenops sp. 1 1

2 0,06

Senoculidae

Senoculus caniliculatus F. O. P.-Cambridge, 1902

1

1

2 0,06

Senoculus ruficapillus (Simon, 1880) 4

4 0,13

Senoculus aff. iricolor

1

1 0,03

Senoculus sp.

1 7

8 0,25

Sparassidae

Olios velox

1

1 0,03

Olios sp.

1

1 0,03

Pseudosparianthis ravida Simon, 1897 3 3 1

7 0,22

Sparianthis sp. 2 1

3 0,10

Sparassidae sp.1 16 29 18

63 2,01

Sparassidae sp.2

23 2

25 0,80

Sparassidae sp.3 5 3

8 0,25

Sparassidae sp.4

1

1 0,03

39

Sparassidae sp.5 1

1 0,03

Sparassidae sp.6

1

1 0,03

Symphytognathidae

Symphytognatha sp.1

1

1 0,03

Symphytognatha sp.2

1 1 0,03

Synotaxidae

Synotaxus brescoviti Santos & Rheims, 2005 1

1 0,03

Synotaxus waiwai Agnarsson, 2003

1

1 0,03

Tetragnathidae

Azilia histrio Simon, 1895 2 2 4

8 0,25

Azilia sp.1 5

5 0,16

Azilia sp.2

1

1 0,03

Azilia sp.3

2 2 0,06

Chrysometa boraceia Levi, 1986

6

6 0,19

Chrysometa candianii*

3

3 0,10

Chrysometa guttata (Keyserling, 1881)

4

4 0,13

Chrysometa lomanhungae*

2 1 3 0,10

Chrysometa minuta (Keyserling, 1883) 1 2 4

7 0,22

Chrysometa nubigena*

62 34 96 3,06

Chrysometa opulenta (Keyserling, 1881)

1 4 29

34 1,08

Chrysometa petrasierwaldae*

137 137 4,36

Chrysometa santosi*

1

1 0,03

Chrysometa waikoxi*

41

41 1,31

Chrysometa yanomami*

3

3 0,10

Chrysometa sp.

1

1 0,03

Cyrtognatha sp.1

1

1 0,03

Cyrtognatha sp.2 1

1 0,03

Dolicognatha sp.1 1

1

2 0,06

Dolicognatha sp.2 1

1 0,03

Dolicognatha sp.3 1

1 0,03

40

Dolicognatha sp.4 2

2 0,06

Homalometa sp.

4 2

6 0,19

Leucauge sp.1 12

12 0,38

Leucauge sp.2

2 3

5 0,16

Leucauge sp.3 4

4 0,13

Leucauge sp.4

1 2

3 0,10

Leucauge sp.5

4 2

6 0,19

Leucauge sp.6 5 1

6 0,19

Leucauge sp.7

2

2 0,06

Leucauge sp.8

2 2 0,06

Theraphosidae

Avicularia sp.

1

1 0,03

Ephebopus uatuman Lucas, Silva & Bertani, 1992 3 2

5 0,16

Hapalopus sp. 2 1

3 0,10

Ischnocolinae sp.

1

1 0,03

Theraphosa blondi (Latreille, 1804)

1

1 0,03

Theraphosinae sp.1 1

1 0,03

Theridiidae

Achaearanea dea Buckup & Marques, 2006

8

8 0,25

Achaearanea hierogliphica (Mello-Leitão, 1940) 1

1

2 0,06

Achaearanea nigrovittata (Keyserling, 1884) 2 1

3 0,10

Achaearanea tingo Levi, 1963

1

1 0,03

Achaearenea trapezoidalis (Taczanowski, 1873)

1 1

2 0,06

Ameridion sp.1 1

2 1

4 0,13

Anelosimus domingo Levi, 1963

46

46 1,46

Anelosimus eximius (Keyserling, 1884) 12 7

19 0,61

Ariamnes attenuatus O. P.-Cambridge, 1881 4

2

6 0,19

Cerocida ducke Marques & Buckup, 1989 1

1 0,03

Chrosiothes sp.1 8

8 0,25

Chrosiothes sp.2

1

1 0,03

41

Chrosiothes sp.3 1

1 0,03

Chrysso questona Levi, 1962

3

3 0,10

Chrysso sp.1 2

2 0,06

Chrysso sp.2

7

7 0,22

Chrysso sp.3 1

1 0,03

Chrysso sp.4 1

1 0,03

Cryptachaea bellula (Keyserling, 1891)

1

1 0,03

Cryptachaea hirta (Taczanowski, 1873)

1

1 0,03

Cryptachaea maraca (Buckup & Marques, 1991)

2

2 0,06

Cryptachaea schneirlai (Levi, 1959) 1

1 0,03

Cryptachaea taeniata (Keyserling, 1884)

28 8

36 1,15

Cryptachaea sp.1

1 1

2 0,06

Cryptachaea sp.2

4

4 0,13

Cryptachaea sp.3

1 3

4 0,13

Cryptachaea sp.4

1

1 0,03

Cryptachaea sp.5

1

1 0,03

Cryptachaea sp.6

1

1 0,03

Cryptachaea sp.7 3

3 0,10

Dipoena anas Levi, 1963 1

1 0,03

Dipoena duodecimpunctata Chickering, 1943 1

3 14

18 0,57

Dipoena militaris Chickering, 1943

2

2 0,06

Dipoena rubella (Keyserling, 1884)

6

8 2 3 19 0,61

Dipoena tiro Levi, 1963

1

1 0,03

Dipoena sp.1 2 5

6 1

14 0,45

Dipoena sp.2

3 1

4 0,13

Dipoena sp.3 2

2 0,06

Dipoena sp.4 1

1 0,03

Dipoena sp.5 1

1 0,03

Dipoena sp.6 2 2

4 0,13

Dipoena sp.7

1

1 0,03

42

Dipoena sp.8

1 1

2 0,06

Dipoena sp.9

2

2 0,06

Dipoena sp.10

1

1 0,03

Dipoena sp.11

3

3 0,10

Dipoena sp.12

1

1 0,03

Dipoena sp.13

1

1 0,03

Dipoenata balboae (Chickering, 1943)

8

8 0,25

Echinotheridion levii Ramírez & González, 1999 4

4 0,13

Emertonella taczanowskii (Keyserling, 1886)

2

2 0,06

Episinus bicruciatus (Simon, 1895)

1

1 0,03

Episinus malachinus (Simon, 1895)

2

2 0,06

Episinus nebulosus (Simon, 1895)

23

23 0,73

Episinus salobrensis (Simon, 1895) 11 1

1

13 0,41

Episinus sp.1

18

18 0,57

Episinus sp.2 6

6 0,19

Episinus sp.3

1

1 0,03

Episinus sp.4

30

30 0,96

Episinus sp.5 12

12 0,38

Episinus sp.6 1

1 0,03

Episinus sp.7

1 6

7 0,22

Episinus sp.8 1 2

3 0,10

Exalbidion sexmaculatus (Keyserling, 1884)

1

1 0,03

Exalbidion sp.1

1

1 0,03

Exalbidion sp.2

1

1 0,03

Faiditus amplifrons (O. P.-Cambridge, 1880) 21

21 0,67

Faiditus atopus (Chamberlin & Ivie, 1936)

5

5 0,16

Faiditus convolutus (Exline & Levi, 1962) 9

9 0,29

Faiditus sp.1

1

1 0,03

Faiditus sp.2

3 1

4 0,13

Faiditus sp.3 1

1 0,03

43

Faiditus sp.4

5

5 0,16

Faiditus sp.5 3

1

4 0,13

Faiditus sp.6 2

1

3 0,10

Faiditus sp.7

1

1 0,03

Faiditus sp.8

2 4

6 0,19

Helvibis sp.1 9 1

10 0,32

Phoroncidia moyobamba Levi, 1964

2

4

6 0,19

Phoroncidia sp.1

2 1

3 0,10

Phycossoma altum (Keyserling, 1886) 1

1 0,03

Phycossoma sp.1 1

2 4 7 0,22

Rhomphaea metaltissima Soares & Camargo, 1948

1 5

6 0,19

Rhomphaea sp.1 2

2 0,06

Spintharus sp.1

13

13 0,41

Spintharus sp.2 1 10 13 7

31 0,99

Steatoda moesta

1

1 0,03

Stemmops servus 1

1 0,03

Styposis sp.1

6 4

10 0,32

Styposis sp.2

1

1 0,03

Tekellina sp.1

2

2 0,06

Theridion fungosum Keyserling, 1886

2 9 4

15 0,48

Theridion incertissimum (Caporiacco, 1954)

2

2 0,06

Theridion longipedatum Roewer, 1942

33 8

41 1,31

Theridion plaumanni Levi, 1963

1

1 0,03

Theridion sp.1

2 1 3 0,10

Theridion sp.2 1 1

2 0,06

Theridion sp.3

3

3 0,10

Theridion sp.4

1

1 0,03

Theridion sp.5 1

1 0,03

Theridion sp.6

1

1

2 0,06

Theridion sp.7

3

3 0,10

44

Thymoites sp.1

1

1 0,03

Tidarren haemorrhoidale (Bertkau, 1880)

1

1 0,03

Twaitesia bracteata (Exline, 1950) 1 3 2

6 0,19

Wamba sp.1

3

3 0,10

Wamba sp.2

1

1 0,03

Theridiidae sp.1

1

1 0,03

Theridiosomatidae

Chthonos sp.1 1 2

1

4 0,13

Chthonos sp.2 1 1

2 0,06

Chthonos sp.3

1 1

2 0,06

Naatlo fauna (Simon, 1897)

12 38

50 1,59

Naatlo splendida (Taczanowski, 1879) 2 1 3

6 0,19

Naatlo sp.1 7

7 0,22

Naatlo sp.2 9 2 10

21 0,67

Ogulnius sp.1 1

1 0,03

Ogulnius sp.2

1

1 0,03

Theridiossoma sp.1 4 2 1

7 0,22

Theridiossoma sp.2 1

1 0,03

Theridiossoma sp.3

1

1 0,03

Theridiossoma sp.4

1

1 0,03

Theridiosomatidae sp.1

1

1 0,03

Theridiosomatidae sp.2 1

1 0,03

Thomisidae

Acentroscelus sp.

4

4 0,13

Bucranium taurifrons O. P.-Cambridge, 1881

2

2 0,06

Deltocleta sp.

1

1 0,03

Epicadus sp.1 2 1

3 0,10

Epicadus sp.2

2

2 0,06

Onocolus sp. 2

2 0,06

Titidius sp. 2

1

3 0,10

45

Tmarus sp.1 5 1

5

11 0,35

Tmarus sp.2

3

3 0,10

Tmarus sp.3

1

1 0,03

Tmarus sp.4 1

1 0,03

Tmarus sp.5

1

1 0,03

Tmarus sp.6 1

1 0,03

Tmarus sp.7 1

1 0,03

Tmarus sp.8 1

1 0,03

Tmarus sp.9

1

1 0,03

Tmarus sp.10

1

1 0,03

Tmarus sp.11 5 5 3

13 0,41

Thomisidae sp.1

1

1 0,03

Thomisidae sp.2 1

1 0,03

Trechaleidae

Syntrechalea neblina* 1

1 0,03

Syntrechalea sp.

1

1 0,03

Trechalea syntrechaloides (Mello-Leitão, 1941) 3

3 0,10

Uloboridae

Ariston sp.

1

1 0,03

Conifaber sp.1 3 2

5 0,16

Conifaber sp.2

1

1 0,03

Conifaber sp.3

1

1 0,03

Miagrammopes sp.1

26

26 0,83

Miagrammopes sp.2 7 2

9 0,29

Miagrammopes sp.3 1 2

3 0,10

Miagrammopes sp.4 1 4

5 0,16

Miagrammopes sp.5

2

2 0,06

Miagrammopes sp.6 1 3

4 0,13

Philoponella republicana (Simon, 1891) 4

4 5

13 0,41

Philoponella sp.1 3 2 5

10 0,32

46

Philoponella sp.2

4

4 0,13

Philoponella sp.3

1

1 0,03

Uloborus sp.1 7

7 0,22

Uloborus sp.2 8 6 4

18 0,57

Uloborus sp.3

1

1 0,03

Uloborus sp.4

4

4 0,13

Uloborus sp.5 3 1

4 0,13

Uloborus sp.6 1

1 0,03

Uloborus sp.7 2 6 5

13 0,41

Uloboridae sp.1 1

1 0,03

Uloboridae sp.2 1 1 0,03

TABLE 2 – Species richness, abundance, and proportional species richness and abundance by

family of spider collected at the six altitudes (100, 400, 860, 1550, 2000 and 2400 m) at the

Pico da Neblina (AM, Brazil).

Family Richness % richness Abundance % abundance

Amaurobiidae 3 0.57 7 0.22

Anapidae 2 0.38 3 0.10

Anyphaenidae 23 4.36 100 3.18

Araneidae 97 18.37 555 17.68

Clubionidae 2 0.38 4 0.13

Corinnidae 25 4.73 94 2.99

Ctenidae 20 3.79 189 6.02

Ctenizidae 1 0.19 1 0.03

Cyrtaucheniidae 1 0.19 1 0.03

47

Deinopidae 2 0.38 11 0.35

Dipluridae 3 0.57 4 0.13

Drymusidae 1 0.19 1 0.03

Gnaphosidae 1 0.19 2 0.06

Hahniidae 1 0.19 25 0.80

Hersiliidae 1 0.19 2 0.06

Linyphiidae 10 1.89 58 1.85

Lycosidae 1 0.19 12 0.38

Mimetidae 14 2.65 52 1.66

Mysmenidae 2 0.38 3 0.10

Nephilidae 1 0.19 3 0.10

Oonopidae 5 0.95 31 0.99

Oxyopidae 3 0.57 4 0.13

Pholcidae 16 3.03 248 7.90

Pisauridae 4 0.76 39 1.24

Prodidomidae 1 0.19 1 0.03

Salticidae 60 11.36 190 6.05

Scytodidae 3 0.57 24 0.76

Selenopidae 1 0.19 2 0.06

Senoculidae 4 0.76 15 0.48

Sparassidae 10 1.89 111 3.54

Symphytognathidae 2 0.38 2 0.06

Synotaxidae 2 0.38 2 0.06

Tetragnathidae 31 5.87 406 12.93

Theraphosidae 6 1.14 12 0.38

48

Theridiidae 108 20.45 626 19.94

Theridiosomatidae 15 2.84 106 3.38

Thomisidae 20 3.79 54 1.72

Trechaleidae 3 0.57 5 0.16

Uloboridae 23 4.36 135 4.30

Total 528 100 3,140 100

TABLE 3. Amazonian spider inventories. Authors and year of the study, locality, environment,

sampling methods, families and species richness, and abundance. n.i. - no information

available. Methods: NMAS – nocturnal manual active searching, DMAS – diurnal manual

active searching, BT – beating tray, SN – sweeping net, PIT – pitfall trap, LIT – litter

searching, W – winckler extractor, FOG – fogging, GE – ground eclector, TE – trunk eclector,

LITERAT – information from literature.

Richness

Study Localitiy Environment Sampling methods Families Species Abundance

Borges & Brescovit 1996

Mamirauá and Tefé, AM, Brazil

Flooded and terra firme forest NMAS, BT 22 102 649

Silva 1996 Samiria, Peru Flooded Forest NMAS, DMAS, FOG

39 1140 5895

Silva & Coddington 1996

Paktiza, Peru Seven forest types NMAS, DMAS, BT 32 498 2616

Höfer & Brescovit 2001 RF Adolpho Ducke, AM, Brazil

Terra firme Forest NMAS, BT, FOG, PIT, LIT, GE, TE, LITERAT

52 506 n.i.

Ricetti & Bonaldo 2008 Serra do Cachimbo, PA, Brazil

Open rainforest, riparian forest, arboreal savanna, white sand vegetation

NMAS, BT, SN, LIT

37 427 2750

Bonaldo et al. 2009 FLONA de Caxiuanã, PA, Brazil

Terra firme Forest NMAS, BT, SN, PIT, W

42 591 4768

Rego et al. 2009 AM and PA, Brazil Flooded Forest NMAS, BT 34 384 4142

Present study PARNA Pico da Neblina

AM, Brazil

Terra firme forest, montane

forest and high altitude formations

NMAS, BT 39 528 3140

49

FIGURES

FIGURE 1 – Study area. A) South America; B) Northern South America (rectangle of map A

enlarged). The mountain range at the left of the map represents the northern part of the Andes,

and the mountainous region in the center of the map is the Guayana Shield, showing the study

area in its southern part. Dotted yellow line represents the equator; C) Closer view of the

study area (rectangle of map B enlarged), the Pico da Neblina. Letters represent the altitudes

sampled: A – 100 m, B – 400 m, C – 860 m, D – 1,550 m, E – 2,000 m, F – 2,400 m.

50

FIGURE 2 – Aspect of the vegetation at the altitudes sampled at the Pico da Neblina: A – 100

m; B – 400 m; C – 860 m; D – 1,550 m; E – 2,000 m and F – 2,400 m. Photos by André

Nogueira.

51

FIGURE 3 – Spiders present on the list: A – Avicularia sp. (Theraphosidae); B – Ummidia sp.

(Cyrtauchenidae); C – Aglaoctenus sp. (Lycosidae), immature; D – Mesabolivar sp.

(Pholcidae); E – Ancylometes sp. (Ctenidae); F - Rhomphaea sp. (Theridiidae). Specimens

photographed are not from the Pico da Neblina. Photos A, C, E and F by Flávio Yamamoto, B

by Rafael Indicatti and D by Eduardo Fernandez.

52

FIGURE 4 – Spiders recorded at the Pico da Neblina. Species of the family Araneidae. A –

Micrathena clypeata; B – Micrathena embira; C – Micrathena pungens; D – Micrathena

cyanospina; E – Eriophora nephiloides; F – Micrathena spinosa. Specimens photographed

are not from the Pico da Neblina. Photos A, B, C, E and F by Flávio Yamamoto and D by

Rafael Indicatti.

53

CAPÍTULO 2

Nogueira, A.A., Venticinque, E.M. & Brescovit, A.D.

Spider (Arachnida-Araneae) richness patterns along an

Amazonian altitudinal gradient, with a test of the Mid-

Domain Effect and Rapoport Effect. Manuscrito em

preparação para Journal of Biogeography.

54

Artigo 2

A ser submetido à revista Journal of Biogeography

Original article

SPIDERS (ARACHNIDA - ARANEAE) RICHNESS PATTERN ALONG AN

AMAZONIAN ALTITUDINAL GRADIENT, WITH A TEST OF THE MID-DOMAIN

EFFECT AND RAPOPORT EFFECT.

ANDRÉ A. NOGUEIRA1, EDUARDO M. VENTICINQUE

1,2 & ANTONIO

D. BRESCOVIT

3

1 Instituto Nacional de Pesquisas da Amazônia, INPA, Programa de Pós – Graduação em

Ecologia.. Avenida André Araújo, 2936, Aleixo, CEP 69011-970, Cx. Postal 478, Manaus,

AM, Brazil. E-mail: [email protected], [email protected]

2Universidade Federal do Amazonas - WCS Brasil - Wildlife Conservation Society. Prédio

Sauim de Coleira, ICB-UFAM, Estrada do Contorno 3000. CEP-69077-000, Manaus, AM,

Brasil.

3Laboratório de Artrópodes, Instituto Butantan. Av. Vital Brazil 1500, CEP 05503-900, São

Paulo, SP, Brazil. E-mail: [email protected]

55

ABSTRACT

Aim

Our aim was to document the distribution of spider species richness along an altitudinal

gradient in Brazilian Amazonia, and to test the influence of MDE (Mid-Domain Effect) on the

observed pattern. We also investigated the occurrence of a Rapoport effect in our community.

Finally, we studied the distribution of abundance along the range for each species to test the

rescue hypothesis (Rapoport rescue effect and Alternative rescue effect) proposed to explain

the Rapoport effect.

Location

Pico da Neblina, Amazonas state, Brazil.

Methods

We sampled spiders at six different altitudes with a beating tray, during the day, and though

manual active searching, during the night. We used our data to generate a richness pattern

expected by the MDE, using the null model RangeModel (Colwell 2008). The relation of

richness with altitude and the richness estimated by the MDE was evaluated through a

multiple regression analysis, while the relation of range size and altitudinal midpoint

(Rapoport effect) was verified through a simple OLS regression. To investigate the rescue

effect hypotheses we verified the distribution of abundance within the range of the species,

assuming that large deviations from the range center indicate the occurrence of a rescue

effect..

Results

We obtained 3140 adult spiders, which were sorted to 528 species from 197 genera and 39

families. Richness declined continuosly with increasing altitudealong, while the fit with the

56

MDE richness estimates was very weak and not significant. Range size was not related to

altitude, i. e., no Rapoport effect. Finally, the abundance distribution within each species

range varied more specifically, which prevented the occurrence of a rescue effect at the

community level.

Main Conclusions

The richness decreased monotonically along the gradient. The influence of geometric

constraints was extremely low, a consequence of characteristics of our community, as small

range size of most species, and of the inadequacy of altitudinal gradient (at least those from

humid tropical sites) to test geometric constraints hypothesis. Species with short and medium

range were located at all altitudes, preventing a significant relation between range size and

altitude. The distribution of abundance within a species range varied specifically and do not

support a rescue effects hypothesis.

Keywords

Arachnology, geometric constraints, mountain ecology, environmental gradients, biodiversity,

Amazonia, Guayana shield, rescue effect.

INTRODUCTION

Altitudinal gradients have always attracted the attention of scientists, from eighteenth and

nineteenth century naturalists to modern ecologists and biogeographers. Partially relegated for

a certain period (Lomolino, 2001), the study of altitudinal gradients has been experiencing a

recovery of interest, especially during the last decade, with richness patterns being

increasingly well documented, for a larger range of taxa and environments (e.g. Brehm et al.,

2003, Rahbek 2005, McCain, 2005, 2009b, 2010; Dunn et al., 2006; Grau et al., 2007; Liew

et al., 2010). Richness usually decreases with altitude, either monotonically, or after low

57

altitude plateau of high richness, but it may also present a unimodal pattern, peaking at mid

altitudes, which is frequently observed (Rahbek, 2005).

In the last decade, two new biogeographical theories became a recurring subject for empirical

studies on altitudinal gradients, the mid-domain effect (MDE) (Colwell & Lees, 2000a) and

Rapoport’s rule (Stevens, 1989). MDE represented a new and original approach to explain

peaks of species richness at mid altitudes (or latitude, or any other gradient), based on what

was described as the geometric constraints on the placement of species ranges in a bounded

domain. The authors demonstrated through simulations that the reshuffling of species range

inside a domain delimited by hard boundaries (i. e., limits from which no species can expand

its range) results in a larger overlap of species ranges around the center of the domain,

producing a richness distribution pattern very similar to those observed in some empirical

studies.

By explaining observed patterns while dispensing the influence of any ecological or

environmental gradients, the MDE aroused a lot of interest and has been the subject of a

thorough scrutiny (Colwell et al., 2005, Romdal et al., 2005, Zapata et al., 2005, Storch et al.,

2006). Criticisms range from the methodologies employed to test it to its assumptions (Laurie

& Silander, 2002, Zapata et al., 2003, Hawkins et al., 2005, Currie & Kerr, 2008), but recent

studies still advocate its validity as an explanatory hypothesis for certain gradients in species

richness (Carranza et al., 2008, Grytnes et al., 2008, VanDerWal et al., 2008), although

maybe restricted to some limited situations (Dunn et al., 2007).

Rapoport’s rule is a positive relation between range size and latitude and was proposed as an

explanation for latitudinal gradients of species richness (Stevens, 1989). It was hypothesized

that species from higher latitude have broader environmental tolerance, due to greater climatic

variation, and thus could expand their range at lower latitudes, increasing the local richness at

58

these latitudes. But the opposite would not be possible, due to the narrow environmental

tolerance of species from lower latitudes. Stevens (1989) also proposed that the large range

expansion observed for high latitude species would happen through a rescue effect (Brown &

Kodric-Brown, 1977), i. e. the maintenance of populations at unsuitable places through a

continuous migration of individuals from source populations located at places with more

adequate conditions for its existence.

Rapoport’s rule was later extended to altitudinal and bathymetric gradients (Stevens, 1992,

1996) and also raised an intense debate on its validity, causes and consequences. Although the

support to the role of Rapoport’s rule as a driver of species richness gradient is very weak

(Rhode, 1996; Colwell & Lees, 2000; Willig et al., 2003; Bhattarai & Vetaas, 2006), the

positive association between range size and latitude/altitude/depth was actually detected in

several studies (Stevens, 1992; Fleishman et al., 1998; Fortes & Absalão, 2004; Brehm et al.,

2007; Chettri et al., 2010). Nonetheless, since a considerable number of studies failed to

observe this relation its universality was called into question, which led Blackburn & Gaston

(1996) state that the humbler term “effect” would be more appropriate to describe this

phenomenon.

The Rapoport rescue effect has been much less investigated, although it was proposed as the

mechanism responsible for the Rapoport effect (Stevens, 1989). The only study that directly

tried to verify Steven’s prediction, by investigating the relative abundance of species at each

altitude, revealed a pattern opposite to what could be expected by the theory. Large ranged

species were more abundant at lower altitudes and expanded their range upwards (Almeida-

Neto et al., 2006), which the authors called the “alternative rescue effect”.

In this study, we investigated a spider community along an altitudinal gradient in Brazilian

Amazonia.

59

There is little information about spiders along altitudinal gradients. Most of the few

studies about spiders along altitudinal gradients are from temperate localities, usually for a

subset (guilds or families) of the spider community (Otto & Svensson, 1982; Bosmans et al.,

1986; Olson, 1994; Russel-Smith & Stork, 1994; Chatzaki et al., 2005), and most reported a

mid altitudinal richness peak. Only Chatzaki et al. (2005) tested, and supported a Rapoport

effect, in a study on the family Gnaphosidae at Cretan mountains, but Otto & Svensson

(1982) also reported larger altitudinal ranges for species from higher altitudes.

Given the enormous literature available on species richness patterns on altitudinal gradients

spiders are clearly underrepresented, if we consider their high diversity (> 40,000 species –

Platnick, 2010) and ecological importance as a top invertebrate predator (Coddington et al.,

1991). Our focal group is understory and forest floor spiders.

Our study site also offers a high biological interest, since the Pico da Neblina (AM - Brazil) is

the highest mountain in Brazil, and is renowned for its botanical diversity and endemism

levels (Berry & Riina, 2005), while its fauna is much lesser– known (but see Willard et al.,

1991 and McDiarmid & Donnelly, 2005). Moreover, it is located in a remote area still mainly

covered by forest at a very large scale, which guarantees an unusual conservation level even

at lower altitudes, rarely observed in studies on altitudinal gradients (Nogués-Bravo et al.,

2008).

Our aims are: 1 - to record the pattern of spider species distribution along the altitudinal

gradient at the Pico da Neblina and to assess the relation of this pattern with altitude and with

MDE predictions; 2 - to test for the occurrence of a Rapoport effect and 3 - to investigate the

existence of a rescue effect.

60

MATERIALS AND METHODS

Study area

The study was carried out at the Pico da Neblina (00°48’07” N e 66°00’40” W) (Fig. 1), the

highest Brazilian mountain with 2,994 m.a.s.l. (IBGE, 2004). Situated in the municipality of

São Gabriel da Cachoeira, north of the Amazonas state, Brazil, the study site belongs to the

Pico da Neblina National Park, with 2,260,344 ha, and also to the Yanomami Indigenous

Land, which overlaps with the National Park. The Pico da Neblina lies within a mountainous

region that represents the boundary between Brazil and Venezuela (RADAM, 1978). It is also

one of the southern components of the Guayana Region, a region of very old geological origin

(mostly Precambrian rocks) famous for its sandstone mountains with vertical cliffs and table

tops, the tepuis (Steyermark, 1986), as well as for its diverse and endemic biota (Rull, 2005).

Although the Pico da Neblina is also formed by sandstone rocks and harbours extensive high

altitude plateaus (2,000 to 2,400 m), it does not present the typical tepui shape.

According to a division proposed for the Guayana region, the study area can be divided in

three main physiographic units according to the temperature and altitude. Lowlands, up to 500

m and macrothermic climate (> 24°C annual average); uplands, from 500 to 1,500 m and

submesothermic climate (18° - 24°C); and highlands, from 1,500 to 2,994, with mesothermic

(12° - 18°C) and submicrothermic climate (8° - 12°C) (Huber, 1995, Nogués & Rull, 2007).

At the Pico da Neblina, the annual average rainfall in the lowlands is 3,000 mm/year, without

a dry season, and the humidity is about 85-90% (RADAM, 1978). Rainfall increases with

altitude until around 1800 m, being gradually replaced by a constant mist, and the average

humidity reaches almost 100% (RADAM, 1978).

Vegetation in the lowlands is composed by a tall, evergreen forest. Uplands are covered by

montane forests, which present decreasing biomass and tree size, especially when declivity is

61

accentuated, leading to shallower soils (Pires & Prance, 1985). In the highlands, forests are

replaced by more open types of vegetation like high altitude scrublands and broad leave

meadows, which grow on organic peat soils and on rocky substrates. At the Neblina, forests

formation occurs up almost to 2,000 m, and their high altitude formations stand out for their

diversity and endemism (Berry & Riina, 2005). Species from the families Bromeliacea,

Rapateacea and Theacea are among the most characteristics elements of this flora. Detailed

information on the geology and vegetation of the region can be found at Berry et al. (1995)

and Berry & Riina (2005).

Sampling and identification

Spiders were collected with two traditional methods in spider inventories (Coddington et al.,

1991): beating tray and manual active search. In the first method the understory vegetation is

sampled through the beating of leaves, branches, vines and other parts of the vegetation with a

stick, while holding a 1 m2 tray under it. The spiders falling in the tray are collected, and the

sampling unit consisted of 20 of those beating events, in different plants, along a 30 m long

transect. In the second method spiders from the forest floor and from the understory are

directly collected with the help of tweezers and/or plastic vials. The sampling unit represents

one hour of search along an approximate area of 300 m2 (30 x 10 m). The first method was

employed during the day, from 08.00 h to 11.00 h, and the second at night from 19.30 h to

23.00 h. All spiders collected with both methods were immediately fixed in 70% ethanol.

Sampling was carried out by three collectors at six altitudes, 100, 400, 860, 1550, 2000 and

2400 m. At each altitude we investigated three sites, about 100 m apart from each other. We

obtained a total of 54 samples by altitude (27 of each method) resulting in a final count of 324

samples (162 of each method) for the Pico da Neblina. We also measure temperature at each

sampling site, at the beginning and at the end of nocturnal sampled. The sampling expedition

62

occurred from 22 September 2007 to 13 October 2007, the local “dry season”. We identified

only adult spiders. Specimens were sorted into morphospecies usually by the first author and

then identified until the lowest taxonomic level by specialists. Voucher specimens are

deposited at the collection of the Instituto Nacional de Pesquisas da Amazônia (INPA), at

Manaus (AM), and duplicates are deposited at the Instituto Butantan (IBSP), São Paulo (SP)

and at the Museu Paraense Emílio Goeldi (MPEG), Belém (PA).

Richness measures

In this study, we will refer to the number of species captured in our samples as species

richness, and the number of specimens captured in our samples as abundance, although we are

aware that the results of our sampling represent only an estimation of the real richness and

abundance of the community. The species richness for each altitude was calculated as the total

number of species collected in the three sites at each altitude, pooling data from both

sampling methods. We interpolated richness estimates in all analysis, for all taxonomic levels.

Interpolation assumes that a species occurs in all altitudes between its maximum and

minimum altitudinal record, and represents a common procedure in studies on species

richness on altitudinal gradients (Stevens, 1992; Sanders, 2002; Almeida-Neto et al., 2006;

Bhattarai & Veetas, 2006; Grau et al., 2007). It is based on the assumption that the sampling

of biological communities is usually incomplete, which is certain for a community of tropical

arthropods (Coddington et al., 2009), and that altitudinal ranges are continuous. So we believe

that the increase in richness provided by the interpolation represents a realistic contribution to

our data, although it may enhance or even create mid-altitude peaks (Grytnes & Vetaas,

2002). We also compare interpolated richness with other richness measures calculated for

each altitude: observed richness, rarefied richness (individual based rarefaction) and

exponential Shannon-Wiener index, or numbers equivalents (D). Rarefied richness was

selected because it is independent of sample size (Brehm, 2003), and D was selected as a

63

measure of diversity, which take into account the relative abundance of species. Its use over

raw diversity indices has been recommended for allowing a more intuitive interpretation (Jost,

2006), as it possess the doubling propriety (Hill, 1973), i. e. if two equal sized, completely

distinct communities with a diversity D = X are combined, their diversity will be D = 2X. We

also generated rarefactions curves for each altitude. Their comparison provides valuable

information on the richness pattern along the gradient, even when they fail to reach an

asymptote (Gotelli & Colwell, 2001). Finally, we also calculated the proportion of singletons

(species represented by a single individual) for each altitude. Shannon-Wiener index values

were obtained with the software PAST (Hammer et al., 2001) and rarefaction richness values

and curves were obtained with the software Estimates (Colwell, 2009).

Geometric constraints

We used the software RangeModel (Colwell, 2006) to estimate the richness of spider

communities along a one dimensional gradient under the assumption of geometric constraints.

This null model places the empirical altitudinal ranges of each species randomly along the

gradient, without replacement, and richness at each sampling site is counted. This procedure

was repeated 1000 times, without replacement, and the mean estimated richness and its 95%

confidence intervals were calculated. Species recorded in just one altitude represent a

problem, since their range is restricted to a single point, the altitude in which its was recorded.

This decreases drastically the chance of those species being recorded during the

randomization process, leading to an underestimation of richness. A simple solution is to

expand the altitudinal range of the species upslope and downsolpe (Bhattarai & Veetas, 2006;

Brehm et al., 2007), usually to half the distance from the nearest sampling site. In our study,

however, the distance between our sampling sites was too uneven to allow this procedure. To

overcome this problem, we used the discrete domain model, developed by Dunn et al. (2006)

available at RangeModel. In the discrete model the domain is divided into discrete, ordered

64

sampling points, and each empirical species range encompasses the distance from the first to

the last sampling point where that species was recorded. Additional information required is

the ‘fill’, which is the number of sites at wich each species was actually recorded. To perform

the analysis, we just filled the gaps in the fill input data to represent complete interpolation.

The discrete model may be less realistic, since different distances among sampling sites are

artificially standardized. Moreover, probably in order to avoid this situation, it was

recommended for use with datasets gathered at evenly or approximately evenly sampling sites

(Dunn et al., 2006; Colwell, 2008). However, by this approach we were able to obtain

simulations without missing any record and, more important, we believe that we maintained

the main principle of geometric constraints models, which is to randomize observed ranges

along a bounded domain.

Analyzes

We analyzed the variation in interpolated species richness along the gradient through an

ordinary least squares (OLS) multiple regression with mean richness estimates predicted by a

MDE simulation and altitude as explanatory variables. We used the AICc (small sample

corrected Akaike Information Criterion) to select the best model. We used altitude as an

environmental variable because it is usually strongly correlated with other environmental

factors, as temperature and vegetation type (Dunn et al., 2007), and could be used as a

surrogate for environmental variation along the gradient (Bateman et al., 2010). The

temperature measured at our sampling sites was indeed closely related to altitude (R2 = 0.99,

p < 0.001). We tested this relationship for richness at the species, genus and family level.

Geometric constraints are stronger on large ranged taxa (Colwell & Lees, 2000; Dunn et al.,

2006), so we expect that MDE predictions will present a better fit with increasingly higher

taxonomic levels, since the range of the analyzed taxa will greatly increase, especially at the

family level. We analyzed the residuals of the regression through Moran’s I correlogram to

65

assess the occurrence of spatial autocorrelation, but no significant trend was found, which

allowed us to keep our analysis design with OLS regression (Diniz-Filho et al., 2003). The

analysis was performed with SAM software (Rangel et al., 2010).

Rapoport effect was investigated with an OLS regression between recorded range size and the

altitudinal midpoint of each species. We calculated the range as the difference between upper

and lower altitudinal limits, and the midpoint was the average altitude between the range

extremities, i. e., a geometric midpoint. We added 200 m to each ranges, since otherwise

species recorded at just one altitude would have an altitudinal range of 0, which is not very

realistic. However, this approximation does not have any influence in the analyses, unlike

what is observed in the geometric constraints simulations for this study. We also tested the

Rapoport effect for a subset of the community based on a minium abundance criterion. Most

species from our dataset are rare, represented by just a few individuals. They thus have a large

probability of being recorded in just one altitude (which is certain in the case of singletons),

but this may be simply due to undersampling rather than a genuine narrow distribution. Thus,

we removed all singletons and doubletons to perform another OLS regression between range

size and midpoint for the species represented by at least three individuals (243 species or 46%

of total richness), an arbitrary criterion. This allows us to keep in the analysis species present

in just one altitude, but whose distribution is more reliable due to the larger number of

individuals.

We investigated the occurrence of a rescue effect by the following procedure. First we

calculated the weighted average midpoint (WAM) (Almeida-Neto et al., 2006) for each

species. The WAM is obtained by multiplying the number of individuals present at each

altitude by the corresponding altitude, summing up those products from all altitudes and

dividing it by the total abundance of the species. Assuming that a species attains its maximum

abundance in optimal environmental conditions (Whitaker, 1967; Brown, 1984) the WAM

66

can represent more accurately the actual altitudinal preference of a species than the midpoint.

Then we checked the relation between the midpoint and the WAM through an OLS regression

with the midpoint as independent variable. We inspected the graph and considered that any

species placed outside of the 95% CI of its WAM presented a significant rescue effect, i. e.,

its WAM presented a significant deviation from its midpoint. We included only species with

large ranges (defined here as those present in at least four altitudes), since both Rapoport and

Alternative rescue effect are attributed to large range species.

Finally, we present the RSFD (range size frequency distribution) and the altitudinal range

profile of the community. We produced the RSFD by plotting the range size of each species,

ordered by range size. In the altitudinal range profile, species are represented by their range

and WAM and are ordered by their WAM in an increasing manner. Due to the large number

of species, we divided the altitudinal range profile in three groups, according to the range size:

short (present at just one altitude), medium (two to three altitudes), and large (four to six

altitudes).

RESULTS

Richness pattern and sampling completeness

We obtained a total of 3140 adult spiders, which were sorted to 528 morphospecies,

representing 196 genera and 39 families. A complete list is presented in Nogueira et al. (in

preparation. Chap.1).

The species richness of spiders decreased along the gradient. The decrease was monotonic

and was observed for all four richness and diversity measures employed (Table 1). While the

observed and rarefied richness and D showed a more or less gradual decline, the interpolation

greatly increased the number of species of the second altitude (400 m), which became only

67

slightly lower than the richness of the first altitude (Fig. 2). The remaining richness measures

declined monotonically. Abundance also decreased along the gradient but the decline was not

monotonic. Notably, the second altitude presented a relatively low number of individuals.

Nonetheless, abundance remained quite high until the fourth altitude (1550 m), and then

presented a steep decrease, although remaining similar between the two highest altitudes.

Rarefaction curves for each altitude (Fig. 3) indicated that sampling was incomplete, and none

of them reached an asymptote. The two first altitudes (100 and 400 m), the most species rich,

possess a very similar profile and presents the steeper curves, the two following altitudes (860

and 1550 m) present a gradual decline in its inclination, indicating less diverse communities

than those of lower altitudes. The two highest altitudes (2000 and 2400 m) had a low, similar

number of individuals, but the rarefactions curves revealed a different richness pattern, with a

much steeper curve for the 2000 m spider community, while that from the 2400 m almost

reached an asymptote. This difference is also reflected in the proportion of singletons (Table

1). The lowest proportion was recorded at 2400 m (37, %), while at 2000 m 50.7% of species

were singletons, the second highest record. This value is very similar to those observed at the

two lowest, species rich altitudes. However, the most meaningful information provided by the

accumulation curves is that the gradual decline in species richness with increasing altitude,

observed in all richness measures, is not dependent on sampling effort. Even at abundances

lower than 257, the limit used for rarefaction (vertical bar in Fig. 3), the relative position of

the curves is maintained. Thus, although our data are certainly undersampled, we believe that

the differences in species richness along the gradient reported in our study reflect a real

pattern.

Richness at higher taxonomic levels presented a similar pattern to that observed for species,

with decreasing richness along the gradient, but there is an inversion between the two first

altitudes, and a slightly higher number of genus and families is found at 400 m than at 100 m.

68

This is an effect of interpolation, which had already greatly increased species richness at the

second altitude, although not enough to overcome richness at 100 m. It indicates that the

broader distribution of genus and families along the gradient, based on a increasingly higher

number of individuals enhance the possibility of interpolation, in addition to reduce the

differences in richness along the gradient, which make the decrease in richness less steep than

that observed for specific level.

Richness predictors – MDE and altitude

The variation of spider species richness across the gradient (Fig. 4) was largely related to

altitude, negatively, and the contribution of MDE to the observed pattern was negligible

(Table 2). The Altitude model was able to explain 97.9% of the variation, with the lowest

AICc. The MDE model had an extremely weak and non-significant fit with spider species

richness. Altitude was also selected as the best model for genus and family richness, but the

explained variation decrease with increasing taxonomic level, although remaining quite large

(Table 2).

RSFD and Rapoport effect

Most of the species (63%) had small ranges, occurring in just one altitude (Fig. 5), while only

25 species, 5% of the total, had large ranges, encompassing at least half of the domain. The

decrease in species number with increasing altitude for the three range sizes is visible in the

range profile (Fig. 5). Small range species peaked at the first altitude (100 m), and maintained

a relatively high number of species until the fourth altitude (1550 m). With increasing range

size it is possible to see that the richness of mid altitude sites is largely determined by species

from low altitudes. There is little overlap between species from the upper half of the gradient

and those from the much more diverse lower part.

69

The test of the Rapoport effect showed that range size was not related to altitude (R2 =

0.003, p = 0.189). The triangular pattern observed at Fig. 6 show that the largest ranges are

situated at the center of the domain, and they decrease towards the gradient edges. The

relation between range size and altitude performed for the 243 species represented by at least

three individuals were also very weak and not significant (R2 < 0.001, p = 0.666).

Abundance distribution along the range

The WAM and the midpoint presented a significant positive relation (R2 = 0.473, p < 0.001).

The WAM of almost half (12) of the 25 large range species presented a significant deviation

from its midpoint (Fig. 7). Among them, seven had a WAM smaller than the midpoint

(upwards range expansion) and five had a WAM larger than the midpoint (downwards range

expansion).

DISCUSSION

Our study revealed that spider species richness declined monotonically along the altitudinal

gradient at the Pico da Neblina. The negative relation with altitude and the lack of any

apparent influence of the MDE on richness patterns indicates that the distribution of the

species along the gradient is not due to random processes, and lower altitudes represent a

more favorable environment for most species.

Spider species richness at altitudinal gradients

Our results differ from most information available on spiders at altitudinal gradients.

However, differences in important factors, as sampling design, climate or target group

demand a cautious approach when comparing the results. Some studies were performed on

tropical mountains, but focused only on a subset of the community, like orb-weavers

(Ferreira-Ojeda & Flórez-D., 2007) or canopy spiders (Russel-Smith & Stork, 1994), or, in

70

one case, on the fauna of an irrigated rice ecosystem (Sebastian et al., 2005). Moreover, they

were not designed a priori to investigate altitudinal trends in a detailed manner, sampling as

few as three altitudes or presenting very unbalanced designs, biased towards low altitude sites.

As a consequence the high variability observed in the results, reporting a richness peak from

the lowest, mid and even highest altitudes sampled, may be difficult to interpret.

More detailed studies reported a richness peak at mid-altitude sites. Some of them

focused on litter-dwelling spider (Otto & Svensson, 1982; McCoy, 1990; Olson, 1994) and

this pattern was suggested to be a indirect consequence of optimal environmental conditions

at those altitudes for herbivorous arthropods (Olson, 1994), since precipitation often peaks at

mid-altitudes (McCain, 2007). Mid-altitude richness peak are also characteristics of studies

from temperate localities (Otto & Svensson, 1982, Bosmans et al., 1986, Chatzaki et al.,

2005) which may indicate a different and more tolerant response of the temperate fauna to the

decrease in temperature than that of the tropical fauna from our study, or to be a reflex of the

greater environmental zonation at tropical mountains (Wiens & Graham, 2005; Ghalambor,

2006; McCain, 2009b). Additionally, the lower richness at lower altitudes may also be a

consequence of human disturbance (McCoy, 1990, Chatzaki et al., 2005), a problem already

highlighted in others studies (Wolda, 1987; Sanders, 2002; McCain, 2009a and references

therein). Finally, mid-altitude richness peak could, of course, be due to geometric constraints,

but this seems unlikely, as is exposed above.

Geometric constraints and richness predictors

The accumulation of information in the literature and its organization in recent reviews has

challenged the importance of geometric constraints as a driver of richness patterns.

Performance of MDE models as richness predictors has proved poor in several situation for

several taxa (reviews in McCain, 2007a, b, 2009a; Currie & Kerr, 2008), and seems to be

71

restricted to certain situations. Basically, the importance of geometric constraints increases at

biome and regional levels (Jetz & Rahbek, 2001; Bellwood et al., 2005; Dunn et al., 2007; but

see Rangel & Diniz-Filho, 2005) and for large ranged species (Colwell et al., 2004; Dunn et

al., 2007, VanDerWal et al., 2008).

Altitudinal gradients may also be especially inadequate to test MDE predictions. First, altitude

is more closely related to area and temperature than latitude (Dunn et al., 2007). Moreover,

environmental changes along altitudinal gradients are notoriously steep, exhibiting drastic

changes over relatively small spatial scales, which may reduce average range size and, as a

consequence, the influence of geometric constraints (Colwell et al., 2009). Finally, and more

important, the very essence of geometric constraints theories, a domain delimited by hard

boundaries, may be very questionable for altitudinal gradients. Lower limits of altitudinal

domains, unless located at the sea border or small islands, actually lack any evident

geographic barrier. Mountains from arid localities present a sharp climatic transition from dry

lowlands to more humid places at mountain slopes, which may represent an environmental

barrier at the base of the gradient. However, in mountains from humid, tropical localities, as

the Pico da Neblina, the base is covered by the very same lowland forest that surrounds the

gradient (in our case in a very large scale), what was termed as a “soft” (and ineffective)

barrier (Colwell & Hurtt, 1994). Moreover, while simulations clearly show that richness

effectively decrease at the border of domains delimited by hard boundaries (Colwell & Hurtt,

1994; Grytnes & Vetaas, 2002; Rangel & Diniz-Filho, 2005), models assuming soft

boundaries at the gradient base with an underlying decreasing richness trend generates a

pattern of monotonic decrease very similar to that observed in our study (Colwell & Hurtt,

1994 – hybrid model; Grytnes & Vetaas, 2002 – model III).

The application and effectiveness of the assumption of hard boundaries had already been

scrutinized in several aspects (Laurie & Silander, 2002; Zapata et al., 2005), but critics didn’t

72

include the asymmetry of boundaries in altitude gradients, although this characteristic was

already highlighted when geometric constraints models were presented (Colwell & Hurtt,

1994). Curiously, it hasn’t been much take into account since then and is not usually

mentioned as one of the causes of poor performance of MDE models when richness decreases

along the gradient (Almeida-Neto et al., 2006; Sanders et al., 2007; Liew et al., 2010;

McCain, 2010; but see Chettri et al., 2010). Given the above exposed, the lack of fit of MDE

with our data, obtained from a small range community species (average range represents only

15% of domain size) on an altitudinal gradient on a local scale seems perfectly logical, and

geometric constraints can be discarded as a meaningful driver of species richness pattern for

our community.

Richness at higher taxonomic levels presented a small, low altitude, unimodal richness peak,

due to interpolation. It indicates that the broader distribution of genus and families along the

gradient, based on a increasingly higher number of individuals enhances the possibility of

interpolation, in addition to reducing the differences in richness along the gradient, which

makes the decrease in richness less steep than that observed for species level.

Concerning geometric constraints, it is possible to see in Fig. 4 a gradual approach to the

MDE prediction as taxonomic levels increase, although the relation remains small and not

significant. This is a consequence of the great increase in range size (mean average range size

in relation to domain size: genus – 29.1%, family – 55.1%) but it is also a final evidence of

the lack of influence of geometric constraints on our richness patterns, given the already

mentioned positive relation between range size and fit to MDE predictions. This is an

unequivocal evidence of the influence of some strong environmental or historical gradient on

our community.

73

Actually, our data indicates an intimate relation with temperature, the only environmental

factor that continuously decline with altitude (McCain, 2007b, and references therein). The

importance of climatic factors has obviously already been explored in numerous studies and

its influence on altitudinal gradients was synthesized in the climate model proposed by

McCain (2007b). Based on water availability and temperature, it predicts richness peaks at

mid-altitudes in mountains located at arid environments and decreasing richness at mountains

from wet environments, which was corroborated by our study. Temperature was also exerted

the most positive influence on ant species richness (Sanders et al., 2007).

Needless to say, richness patterns are a product of the combined influence of several factors

and other hypothesis are also in accordance with the observed pattern and offer theoretic

support for our results, as for example species-area relationship (SAR). One of the oldest

patterns reported by ecologists (Hawkins, 2001), SAR predicts a positive relation between

area size and richness (Rosenzweig, 1995), and has often be used as an explanatory factor

with several positive results. However, recent studies failed to find significant area effects for

several taxa at altitudinal gradients (Fu et al., 2006; Kluge et al., 2006; McCain, 2007a,

2009a, 2010; Beck & Chey, 2008), and SAR also seems to have a larger influence on richness

patterns at regional rather than at local scales (Lomolino, 2001; McCain, 2005; Romdal &

Grytnes, 2007). This suggests that an eventual bias in our data due to area effects is probably

not very important.

Finally, our results may also represent an example of tropical niche conservatism (Wiens &

Donoghue, 2004). This recent and comprehensive hypothesis includes evolutionary history to

explain biogeographical patterns, and is based on the principle of niche conservatism, which

predicts that “for a given group of organisms, habitats that are radically different from the

ancestral niche will have more limited richness because of the inability of most lineages to

colonize them.” Proposed as an explanation to the latitudinal gradient of species richness,

74

based on the assumption that most clades had a tropical origin, this hypothesis seems

perfectly suited to our study. Although it could only effectively be demonstrated through a

phylogenetic approach, the isolation of the mountains of the Guayana region from other

mountain range (Fig. 1) leaves no alternative to a colonization of montane environments by

tropical ancestors. Thus, the attractiveness of this hypothesis lies in the fact that it is in

accordance with our observed pattern and also provides a theoretical basis for the mechanistic

cause of the richness decrease, i. e. the negative relation between spider richness and

temperature.

Rapoport effect, rescue effect and RSFD

Our data didn’t support a Rapoport effect, as range size was not related to altitude. The

triangular pattern of our data is a product of the geometric constraints on range size (Colwell

& Hurtt, 1994). As range size increases it has fewer possibilities of location and is constrained

to have its midpoint near the center of the domain. This pattern will necessarily arise

whenever large ranges encompass the whole domain. As a consequence, a Rapoport effect

may only be possible in the absence (or occurrence in a proportionally very small number) of

short or/and medium range species at higher and even mid altitudes, or when ranges are small

in relation to the domain, which reduces the geometric restrictions on their location.

Evidences of Rapoport effect at altitudinal gradient are variable. As observed in relation to its

application on the latitudinal gradient (Gaston et al., 1998; Ribas & Schoereder, 2006), a

considerable number of studies failed to find a significant positive relation between range size

and altitude (Vetaas & Grytnes, 2002; Grau et al., 2007; Liews et al., 2010), which reinforces

the impression that it is not a general pattern. Other works, in contrast, presents evidences in

its support (Fleishman et al., 1998; Sanders, 2002; McCain, 2009b), including the only study

that verified its occurrence for spiders, more precisely, for ground dwelling spiders of the

75

family Gnaphosidae in Cretan mountain ranges (Chatzaki et al., 2005). The authors attributed

the results to the high environmental tolerance of this family, as several species, most of them

from lowlands, occupied a large portion of the gradient. At the Pico da Neblina, on the other

hand, most of the spiders had small ranges. This may reflect intrinsic differences between

communities from tropical and temperate environments (although it is observed that

Gnaphosidae seems particularly tolerant) and also may offer evidence of higher biological

zonation on tropical mountains than on temperate ones. This would lead to narrower

altitudinal ranges for tropical species, an old theory (Janzen, 1967) that has recently received

empirical support (Ghalambour et al., 2006; McCain, 2009b).

The only study that assessed Rapoport effect for tropical arachnids investigated the altitudinal

distribution of harvestman (Opiliones) from mountains of the Brazilian Atlantic coastal forest

(Almeida-Neto et al., 2006), with positive results. Most of the large range species were from

low altitudes, but, as their range encompassed most of the domain they also presented most of

the highest midpoints, which produced the positive relation between range size and altitude.

At the Pico da Neblina, most of the large range species were also present at low altitudes

(only four of the 25 large ranged species were not recorded at the first altitude), but an

important number of short and medium range species were recorded at all altitudes,

preventing a Rapoport effect. Logically, the different result may reflect differences in the

biology of spiders and harvestman, such as dispersal capacity, notoriously poor for the latter

group (Mestre & Pinto-da-Rocha, 2004; Pinto-da-Rocha et al., 2005), among many other

factors that vary between the studies. But we can further hypothesized that the lower height of

mountains sampled at the Atlantic Forests (gradient extent of 950 m, against 2400 m for the

Pico da Neblina) allowed a proportionally larger range expansion from lowland species as

well as preventing, with few exceptions, the existence of high altitude specialists (Almeida-

Neto et al., 2006).

76

Although almost half of the large range species presented an important range expansion based

on the form of individual abundance patterns, interpreted as an evidence of rescue effect, the

number of species expanding their range donwards and upwards was similar. This suggests a

more specific variation in the response of species to the environmental changes along the

altitudinal gradient, instead of a rescue effect at the community level, as predicted by both

rescue hypotheses. This result contrasts with those observed for harvestman of the Atlantic

forest (Almeida-Neto et al., 2006) and Gnaphosidae from Crete (Chatzaki et al., 2005). In

both cases results signaled a predominant upwards range expansion (alternative rescue effect),

which may be a consequence of the fact that most of these communities were formed by

lowland species, as mentioned above.

There were no important downwards range expansions either, as expected by a Rapoport

rescue effect. Nonetheless, daily temperature variations at high altitude tropical sites can be

comparable to seasonal temperature variations at higher latitudes (Ghalambour et al., 2006;

McCain, 2009b), characterizing the environmental conditions theoretically responsible for the

occurrence of Rapoport rescue effect as well as Rapoport effect itself. In our case, a

characteristic of our study area may have prevented the occurrence of these phenomena.

Forest formations that occupy the gradient up until around 1800 m are abruptly replaced by

open formations from 2000 m, representing a very different kind of environment. This may

lead to a higher degree of specialization of the spider fauna from these habitats (2000 and

2400 m), as they may be thus unable to expand their range significantly to lower, forested

altitudes. An evidence of this is that most of the species with medium and large range present

at the high altitude sites are more abundant at lower altitudes. If true, it may offer evidence

that broader thermal tolerance does not necessarily leads to a broad environmental tolerance

in a more general way. Instead, broader climatic tolerance could have evolved at the cost of

77

competitive ability to face species from lower altitudes (Ghalambor et al., 2006), or it could

represent just another requirement to the specialization for these high altitude formations.

Although our data supported neither Rapoport effect nor a strong rescue effect, positive

results observed in other studies and the evidence that high altitude environments demands a

broad thermal tolerances indicates that theories based on rescue effects should be tested more

often, as they may clarify the mechanisms responsible for Rapoport effect. We suggest that

the calculation of the weighted altitudinal midpoint (WAM) (Almeida-Neto et al., 2006) may

represent a useful and easily accessible tool for this purpose, as abundance data can be easily

obtained in studies based on sampling at different altitudes.

CONCLUSIONS

Our study represents the most complete spider inventory performed along an altitudinal

gradient on a tropical mountain. Richness declined monotonically with increasing altitude,

suggesting a strong positive relation with temperature, while the influence of geometric

constraints was extremely low. We claim that our results seems in accordance with the current

state of knowledge on richness patterns along altitudinal gradients, and the poor performance

of MDE models is a consequence of the inadequacy of altitudinal gradients (at least at humid

tropical sites) to test geometric constraints hypothesis, which also seem to be supported by the

literature. Our data didn’t corroborate a Rapoport effect either. Actually, most of the species

with large ranges were mainly located from low to mid altitudes, but any significant relation

between range size and altitude was prevented by the fact that medium and small range

species, the vast majority of our community, occurred in all altitudes. Finally, we couldn’t

observe any strong rescue effect at the community level, which means that the direction of

range expansion varied more specifically, and was not related to range size or altitude. By

focusing on an important albeit little studied group, our study represents a contribution to the

78

knowledge of species richness distribution along altitudinal gradient, which is important to

test the universality of the models proposed to predict and explain richness patterns observed

in mountains.

ACKNOWLEDGMENTS

We are grateful to Tomé, Mário, Waldir “Chouriman” Pereira, Nancy Lo-Man-Hung

and David Candiani, for their invaluable help in the field. The first author also thanks the

PPGEco-INPA, the 5°PEF Maturacá, a frontier squad from the Brazilian army for the logistic

help, the IBAMA/ICMBio and PARNA Pico da Neblina for the collecting licence (Ibama-

Sisbio 10560–1), and FUNAI and the Ayrca, a local Yanomami association, for receiving us

at the Yanomami Indigenous Land. A.A. Nogueira was supported by a doctoral fellowship

from “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”, a BECA-

IEB/Moore Foundation (B/2007/01/BDP/01) fellowship and a grant from Wildlife

Conservation Society (WCS). A.D. Brescovit was supported by CNPq, # 300169/1996-5.

REFERENCES

Almeida-Neto, M., Machado, G., Pinto-da-Rocha, R. & Giaretta, A.A. (2006) Harvestman

(Arachnida: Opiliones) species distribution along three Neotropical elevational gradients: an

alternative rescue effect to explain Rapoport’s rule? Journal of Biogeography, 33, 361–375.

Bateman, B.L., Kutt, A.S., Vanderduys, E.P. & Kemp, J.P. (2010) Small-mammal species

richness and abundance along a tropical altitudinal gradient: an Australian example. Journal

of Tropical Ecology, 26, 139–149

Beck, J. & Chey, V.K. (2008) Explaining the elevational diversity pattern of geometrid moths

from Borneo: a test of five hypotheses. Journal of Biogeography, 35, 1452–1464

Bellwood, D. R., Hughes, T. P., Connolly, S. R. & Tanner, J. (2005) Environmental and

geometric constraints on Indo-Pacific coral reef biodiversity. Ecology Letters, 8, 643–651.

Berry, P. E. & Riina, R. (2005) Insights into the diversity of the Pantepui flora and the

biogeographic complexity of the Guayana Shield. Biological. Skrif., 55, 145–167.

79

Berry, P.E., Huber, O. & Holst, B.K. (1995) Introduction. Floristic analysis and

phytogeography. Flora of the Venezuelan Guayana (ed. by Berry, P.E., Holst, B.K.,

Yatskievych, K.). pp. 161–191. Missouri Botanical Garden Press, St Louis, MO.

Bhattarai, K.R. & Vetaas, O.R. (2006) Can Rapoport’s rule explain tree species richness along

the Himalayan elevational gradient, Nepal? Diversity and Distribution, 12, 373–378.

Blackburn, T.M. & Gaston, K.J. (1996) Spatial patterns in the geographical range sizes of bird

species in the New World. Philosophical Transactions of the Royal Society B-Biological

Science, 351, 897–912.kwell Publishing Ltd

Bosmans, R., Maelfait, J.P. & De Kimpe, A. (1986) Analysis of the spider communities in an

altitudinal gradient in the French and Spanish Pyrenees. Bulletin of the British Arachnological

Society, 7, 69–76.

Brehm, G., Colwell, R.K. & Kluge, J. (2007) The role of environment and mid-domain effect

on moth species along a tropical elevational gradient. Global Ecology and Biogeography, 16,

205–219.

Brehm, G., Süssenbach, D. & Fiedler, K. (2003) Unique elevational diversity patterns of

geometrid moths in an Andean montane rainforest. Ecography, 26, 356–366.

Brown, J.H. (1984) On the relationship between abundance and distribution of species.

American Naturalist, 124, 255-279.

Brown, J.H. & Kodric-Brown, A. (1977) Turnover rates in insular Biogeogr: effect of

immigration on extinction. Ecology, 58, 445-449.

Cardelús, C., Colwell, R. K. & Watkins Jr., J. E. (2006) Vascular epiphyte distribution

patterns: explaining the mid-elevation richness peak. Journal of Ecology, 94, 144-156.

Carranza, A., Colwell, R.K. & Rangel, T.F.L.V.B. (2008) Distribution of megabenthic

gastropods along environmental gradients: the mid-domain effect and beyond. Marine

Ecology-Progress Series, 367, 193-202.

Chatzaki, M., Lymberakis, P., Markakis, G. & Mylonas, M. (2005) The distribution of ground

spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: species

richness, activity and altitudinal range. Journal of Biogeography, 32, 813–831.

Chettri, B., Bhupathy, S. & Acharya, B.K. (2010) Distribution pattern of reptiles along an

eastern Himalayan elevation gradient, India. Acta Oecologica, 36, 16–22

Coddington, J.A., Agnarsson, I., Miller, J.A., Kuntner, M. & Hormiga, G. (2009)

Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys.

Journal of Animal Ecology, 78, 573–584.

Coddington, J.A., Griswold, C.E., Silva, D. & Larcher, L. (1991) Designing and testing

sampling protocols to estimate biodiversity in tropical ecosystems. The Unity of Evolutionary

Biology: Proceedings of the Fourth International Congress of Systematic and Evolutionary

Biology, Dioscorides Press, Portland, Oregon. p. 44–60.

80

Colwell, R. K. (2006) Range Model A Monte Carlo simulation tool for assessing geometric

constraints on species richness. Version 5. User's Guide and application.

(http://viceroy.eeb.uconn.edu/rangemodel).

Colwell, R. K. (2008) RangeModel: Tools for exploring and assessing geometric constraints

on species richness (the mid-domain effect) along transects. Ecography, 31, 4-7.

Colwell, R. K. (2009) EstimateS: Statistical estimation of species richness and shared species

from samples. Version 8.2. User's Guide and application. (http://purl.oclc.org/estimates).

Colwell, R. K., Rahbek, C. & Gotelli, N. J. (2004) The middomain effect and species richness

patterns; What have we learned so far? American Naturalist, 163, E1–E23.

Colwell, R. K., Rahbek, C. & Gotelli, N. J. (2005) The middomain effect: there’s a baby in

the bathwater. American Naturalist, 166, 149–154.

Colwell, R.K., Gotelli, N.J., Rahbek, C., Entsminger, G.L., Farrell, C. & Graves, G.R. (2009)

Peaks, plateaus, canyons, and craters: the complex geometry of simple mid-domain effect

models. Evolutionary Ecology Research, 11, 355–370.

Colwell, R.K. & Hurtt, G.C. (1994) Nonbiological gradients in species richness and a

spurious Rapoport effect. American Naturalist, 144, 570–595.

Colwell, R.K. & Lees, D.C. (2000) The mid-domain effect: geometric constraints on the

geography of species richness. Trends in Ecology and Evolution, 15, 70–76.

Currie, D.J. & Kerr, J.T. (2008) Tests of the mid-domain hypothesis: review of the evidence.

Ecological Monographs, 78(1): 3-18.

Diniz-Filho, J. A. F.;. Bini, L. M. & Hawkins, B. A.. (2003) Spatial autocorrelation and red

herrings in geographical ecology. Global Ecology and Biogeography, 12,53–64.

Dunn, R. R., Colwell, R. K. & Nilsson, C. (2006) The river domain: Why are there more

species halfway up the river? Ecography, 29, 251–259.

Dunn, R.R., McCain, C.M. & Sanders, N.J. (2007) When does diversity fit null model

predictions? Scale and range size mediate the mid-domain effect. Global Ecology and

Biogeography, 16, 305–312.

Ferreira-Ojeda, L. & Florez-Daza, E. (2007) Arañas orbitelares (Araneae: Orbiculariae) em

tres formaciones vegetales de la Sierra Nevada de Santa Marta (Magdalena, Colombia).

Revista Ibérica de Aracnologia, 16, 3-16.

Fleishman, E., Austin, G.T. & Weiss, A.D. (1998) An empirical test of Rapoport’s rule:

elevational gradients in montane butterfly communities. Ecology, 79, 2482–2493.

Fortes R.R. & Absalão, R.S. (2004) The applicability of Rapoport’s rule to the marine

molluscs of the Americas. Journal of Biogeography, 31, 1909–1916.

81

Fu, C., Hua, X., Li, J., Chang, Z., Pu, Z. & Chen, J. (2006) Elevational patterns of frog

species richness and endemic richness in the Hengduan Mountains, China: geometric

constraints, area and climate effects. Ecography, 29, 919-927.

Ghalambor, C.K., Huey, R.B., Martin, P.R., Tewksbury, J.J. & Wang, G. (2006) Are

mountain passes higher in the tropics? Janzens hypothesis revisited. Integr. Comparative

Biology, 46, 5–17.

Gotelli, N. & Colwell, R. K. (2001) Quantifying biodiversity: Procedures and pitfalls in the

measurement and comparison of species richness. Ecology Letters, 4, 379-391.

Grau, O., Grytnes, J.A. & Birks, H.J.B. (2007) A comparison of altitudinal species richness

patterns of bryophytes with other plant groups in Nepal, Central Himalaya. Journal of

Biogeography, 34, 1907–1915.

Grytnes, J.A., Beaman J.H., Romdal, T.S. & Rahbek., C. (2008) The mid-domain effect

matters: simulation analyses of range-size distribution data from Mount Kinabalu, Borneo

Journal of Biogeography, 35, 2138–2147.

Grytnes, J.A. & Vetaas, O.R. (2002) Species richness and altitude: a comparison between null

models and interpolated plant species richness along the Himalayan altitudinal gradient,

Nepal. American Naturalist, 159, 294–304.

Hammer, O., Harper, D.A.T. & Ryan, P. D. (2001) PAST: Paleontological Statistics Software

Package for Education and Data Analysis. Palaeontological Electronica, 4(1): 9pp.

Hawkins, B. A. (2001) Ecology’s oldest pattern? Trends in Ecology and Evolution, 16, 470.

Hawkins, B. A., Diniz-Filho, J. A. F. & Weis, A. E. (2005) The middomain effect and

diversity gradients: is there anything to learn? American Naturalist, 166, E140–E143.

Hill, M. O. (1973) Diversity and evenness: a unifying notation and its consequences. Ecology,

54, 427-432.

Höfer, H. & Brescovit, A.D. (2001) Species and guild structure of a Neotropical spider

assemblage (Araneae) from Reserva Ducke, Amazonas, Brazil. Andrias, 15, 99-119.

Huber, O. (1995) Vegetation. In: Berry, P.E., Holst, B.K., Yatskievych, K. (Eds). Flora of

the Venezuelan Guayana. Missouri Botanical Garden Press, St. Louis, p. 67─160.

Janzen, D.H. (1967) Why mountain passes are higher in the tropics? American Naturalist,

101, 233–249.

Janzen, D.H., Ataroff, M., Farinas, M., Reyes, S., Rincon, N., Soler, A., Soriano, P. & Vera,

M. (1976) Changes in the arthropod community along an elevational transect in the

Venezuelan Andes. Biotropica, 8, 193–203.

Jetz, W. & Rahbek, C. (2001) Geometric constraints explain much of the species richness

pattern in African birds. Proceddings of the National Academy of Sciences (USA), 98, 5661–

5666.

82

Jost, L. (2006) Entropy and diversity. Oikos, 113, 363-375.

Kluge, J., Kessler, M. & Dunn, R. R. (2006) What drives elevational patterns of diversity? A

test of geometric constraints, climate and species pool effects for pteridophytes on an

elevational gradient in Costa Rica. Global Ecology and Biogeography, 15, 358–371.

Laurie, H. & Silander, J. A. J. (2002) Geometric constraints and spatial patterns of species

richness: critique of rangebased models. Diversity and Distribution, 8, 351–364.

Liew, T.S., Schilthuizen, M. & Bin Laki, M. (2010) The determinants of land snail diversity

along a tropical elevational gradient: insularity, geometry and niches. Journal of

Biogeography, 37 (6): 1071–1078.

Lomolino, M.V. (2001) Elevation gradients of species-density: historical and prospective

views. Global Ecology and Biogeography, 10, 3–13.

McCain, C.M. (2005) Elevational gradients in diversity of small mammals. Ecology, 86, 366–

372.

McCain, C.M. (2007a) Area and mammalian elevational diversity. Ecology, 88, 76–86.

McCain, C.M. (2007b) Could temperature and water availability drive elevational species

richness patterns? A global case study for bats. Global Ecology and Biogeography, 16, 1–13.

McCain, C.M. (2009a) Global analysis of bird elevational diversity. Global Ecology and

Biogeography, 18, 346–360.

McCain, C.M. (2009b) Vertebrate range sizes indicate that mountains may be higher in the

tropics. Ecology Letters, 12, 550–560

McCain, C.M. (2010) Global analysis of reptile elevational diversity. Global Ecology and

Biogeography, 19, 541 -553.

McCoy, E.D. (1990) The distribution of insects along elevational gradients. Oikos, 58, 313–

322.

McDiarmid, R. W. & Donnelly, M. A., (2005) Herpetofauna of the Guyana Highlands:

Amphibians and Reptiles of the Lost World. Ecology and Evolution in the Tropics - A

Herpetological Perspective. (ed. by Donnelly, M. A., Crother, B. I. ;Guyer, C.;Wake, M.

H. ; White, M. E ). 584 pp. The Univestity of Chicago Press. Chicago, EUA..

Moreno, R.A., Rivadeneira, M.M., Hernández C.E., Sampértegui, S. & Rozbaczylo, N. (2008)

Do Rapoport’s rule, the mid-domain effect or the source–sink hypotheses predict bathymetric

patterns of polychaete richness on the Pacific coast of South America? Global Ecology and

Biogeography, 17, 415–423.

Nogue´s-Bravo, D., Araújo M. B., Romdal, T. & Rahbek, C. (2008) Scale effects and human

impact on the elevational species richness gradients. Nature, 453, 216-220.

Olson, D.M. (1994) The distribution of leaf litter invertebrates along a Neotropical altitudinal

gradient. Journal of Tropical Ecology, 10, 129–150.

83

Otto, C., Svensson, B.S. (1982) Structure of communities of ground-living spiders along

altitudinal gradients. Holarctic Ecoogy.,ogy, 35–47.

Pires, J.M. & Prance, T.G. 1985. The vegetation types of the Brazilian Amazon. In: Prance,

G.T., Lovejoy, T.E. (Eds.). Key environments: Amazonia. Pergamon Press. Oxford. p:109-

145.

Platnick, N.I. (2010) The world spider catalog, version 11.0. American Museum of Natural

History (http://research.amnh.org/entomology/spiders/catalog/index.html).

RADAM. (1978) Folha NA19. Pico da Neblina. Ministério das Minas e Energia. Rio de

Janeiro.

Rahbek, C. (2005) The role of spatial scale and the perception of large-scale species-richness

patterns. Ecology Letters, 8, 224– 239.

Rangel, T.F.L.V.B., Diniz-Filho, J. A.F. & Bini, L.M. (2010) SAM: a comprehensive

application of spatial analyses in ecology. Ecography, 33, 46-50.

Rangel, T.F.L.V.B. & Diniz-Filho, J.A.F. (2005) Neutral community dynamics, the mid-

domain effect and spatial patterns in species richness. Ecology Letters, 8, 783–790.

Ribas, C. R. & Schoereder, J. H. (2006) Is the Rapoport effect widespread? Null models

revisited. Global Ecology and Biogeography, 15, 614–624.

Rohde, K. (1996) Rapoport’s rule is a local phenomenon and cannot explain latitudinal

gradients in species diversity. Biodiversity Letters, 3, 10–13.

Rohde, K., Heap, M. & Heap, D. (1993) Rapoport’s rule does not apply to marine teleosts and

cannot explain latitudinal gradients in species richness. American Naturalist, 142, 1–16.

Romdal, T.S., Colwell, R.K. & Rahbek, C. (2005) The influence of band sum area, domain

extent, and range sizes on the latitudinal mid-domain effect. Ecology, 86, 235–244.

Romdal, T.S. & Grytnes, J.A. (2007) An indirect area effect on elevational species richness

patterns. Ecography, 30, 440-448.

Rosenzweig, M.L. (1995) Species diversity in space and time. Cambridge University Press,

Cambridge.

Rull, V. (2005) Biotic diversification in the Guayana Highlands, a proposal. Journal of

Biogeography, 32, 921–927.

Russel-Smith .H. & Stork, N.E. (1994) Abundance and diversity of spiders from the canopy

of tropical rainforests with particular reference to Sulawesi. Indonesia. Journal of Tropical

Ecology, 10, 545-558.

Sanders, N.J. (2002) Elevational gradients in ant species richness: area, geometry, and

Rapoport’s rule. Ecography, 25, 25–32.

84

Sanders, N.J., Lessard, J.P., Fitzpatrick, M.C. & Dunn, R.R. (2007) Temperature, but not

productivity or geometry, predicts elevational diversity gradients in ants across spatial grains.

Global Ecology and Biogeography, 16, 640 -649.

Scharff, N., Coddington, J.A., Griswold, C.E., Hormiga, G. & Bjorn, P.D.P. (2003) When to

quit? Estimating spider species richness in a northern European deciduos forest. Journal of

Arachnology, 31, 246-273.

Sebastian, P.A., Mathew, M.J., Beevi, S.P., Joseph, J. & Biju, C.R. (2005) The spider fauna of

the irrigated rice ecosystems in Central Kerala, India, across different elevational ranges.

Journal of Arachnology, 33,247–255.

Stevens, G.C. (1989) The latitudinal gradient in geographical range: how so many species

coexist in the tropics. American Naturalist, 133, 240–256.

Stevens, G.C. (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s

latitudinal rule to altitude. American Naturalist, 140, 893–911.

Stevens, G.C. (1996) Extending Rapoport’s rule to marine fishes. Journal of Biogeography,

23, 149–154.

Steyermark, J.A. (1986) Speciation and endemism in the flora of the Venezuelan tepuis. High-

altitude tropical Biogeogr. (Ed. by F. Vuilleumier and M. Monasterio), Oxford University

Press, Oxford. p. 317–373.

Storch, D.;Davies, R.G., Zajicek, S., Orme, C.D.L., Olson, V., Thomas, G.H.;Ding, T.S.,

Rasmussen, P.C., Ridgely, R.S., Bennett, P.M., Blackburn, T.M., Owens, I.P.F. & Gaston,

K.J. (2006) Energy, range dynamics and global species richness patterns: reconciling mid-

domain effects and environmental determinants of avian diversity. Ecology Letters, 9, 1308–

1320.

Turnbull, A.L. (1973) Ecology of the true spiders (Araneomorphae). Annual Review of

Entomology, 18, 305-348.

VanDerWal, J., Murphy, H.T. & Lovett-Doust, J. (2008) Three-dimensional mid-domain

predictions: geometric constraints in North American amphibian, bird, mammal and tree

species richness patterns. Ecography, 31, 435-449.

Watkins, Jr., J.E., Cardelus, C., Moran, R. & Colwell, R. K. (2006) Diversity and distribution

of ferns along an elevational gradient in Costa Rica. American Journal of Botany, 93, 73-83.

Whittaker, R.H. (1967) Gradient analysis of vegetation. Biological Review, 42, 207-264.

Wiens, J.J. & Donoghue, M.J. (2004) Historical Biogeography, ecology and species richness.

Trends in Ecology and Evolution, 19, 639–644.

Wiens, J.J. & Graham, C.H. (2005) Niche conservatism: integrating evolution, ecology, and

conservation biology. Annual Review of Ecology Evolution and Systematics, 36, 519–539.

Willard, D.E., Foster, M.S., Barrowclough, G.F., Dickerman,R.W., Cannell, P.F., Coats, S.L.,

Cracraft, J.L. & O'Neill, J.P. (1991) The Birds of Cerro de la Neblina. Fieldiana, 65, 1-80.

85

Willig, M.R., Kaufman, D.M. & Stevens, R.D. (2003) Latitudinal gradients of biodiversity:

pattern, process, scale and synthesis. Annual Review of Ecology Evolution and Systematics,

34, 273–309.

Wolda, H. (1987) Altitude, habitat and tropical insect diversity. Biological Journal of the

Linnean Society, 30, 313-323.

Zapata, F. A., Gaston, K. J. & Chown, S. L. (2005) The middomain effect revisited. American

Naturalist, 166, 144–148.

Zapata, F.A., Gaston, K.J. & Chown, S.L. (2003) Mid-domain models of species richness

gradients: assumptions, methods and evidence. Journal of Animal Ecology, 72, 677–690.

BIOSKETCH

André A. Nogueira is a PhD student from the INPA (Instituto Nacional de Pesquisas da

Amazônia). His main interest is the ecology of arachnid, especially spiders, communities,

with a focus on the distribution patterns of the species and their relation with natural

gradients.

Eduardo M. Venticinque is a professor at the Universidade Federal do Rio Grande do Norte.

In the past 20 years he has been working with Amazon biodiversity conservation.

Antonio D. Brescovit is a Scientific Researcher from the Laboratório de Artrópodes of the

Instituto Butantan. He works with taxonomy and systematic of Neotropical spiders, mainly

with Dionychia and Haplogynae.

86

TABLES

Table 1 - Abundance and richness measures by altitude. For species we present the

observed richness (S obs), interpolated richness (S int), numbers equivalents (D),

rarefied richness (Raref) and proportion of singletons (% singl). For genera and families

we present observed and interpolated richness.

Species Genera Families

Altitude N S obs S int D Raref % singl S obs S int S obs S int

100 687 224 224 142.74 129 48.21 116 116 30 30

400 591 194 223 98.59 117 51.03 107 125 29 32

860 713 171 185 82.02 100 43.86 87 96 25 28

1550 597 115 120 61.68 79 41.74 71 79 23 25

2000 295 69 71 26.31 63 50.72 45 49 17 18

2400 257 24 24 6.10 24 37.50 22 22 11 11

Total 3140 528 37,31 196 39

87

Table 2 - Results of the multiple regression performed between spider richness and

three explanatory models, altitude, richness estimated by the MDE simulations, and

Altitude + MDE. We present the Akaike Information criterion (AICc), Delta AICc,

coefficient of determination and probability in F test for the three models to the specifc,

generic and familiar level. Models are ordered according to the AICc.

Model AICc Delta AICc R2

p

Species Altitude 63,676 0.979 < 0.001

MDE + Altitude 80.318 16.642 0.998 < 0.001

MDE 86.847 23.171 0.022 0.777

Genus Altitude 61.148 0.941 0.001

MDE 77.811 16.664 0.05 0.669

MDE + Altitude 84.061 22.913 0.982 0.002

Family Altitude 46.069 0.883 0.005

MDE 58.176 12.107 0.117 0.507

MDE + Altitude 62.588 16.52 0.988 1

88

FIGURES

Fig. 1 - Study area. . A) South America; B) Northern South America (rectangle of map

A enlarged). The mountain range at the left of the map represents the northern part of

the Andes, and the mountainous region in the center of the map is the Guayana Shield,

showing the study area in its southern part. The dotted yellow line represents the

equator; C) Closer view of the study area (rectangle of map B enlarged), the Pico da

Neblina. Letters represent the altitudes sampled: A - 100 m, B - 400 m, C - 860 m, D -

1,550 m, E - 2,000 m, F - 2,400 m.

89

Figure 2 - Abundance, observed, interpolated and rarefied species richness of spiders at

six altitudes at the Pico da Neblina (AM – Brazil).

Figure 3 - Individual-based rarefaction curves of spider species richness for each of the

six altitudes sampled at the Pico da Neblina (AM-Brazil). The vertical bar indicates the

minimun abundance used for the calculation of the rarefied richness.

90

Figure 4 - Observed richness (closed circles) and mean richness estimated by the MDE

(open circles) based on 1000 randomization, with 95% confidence intervals (grey lines).

Data include all the spiders sampled at Pico da Neblina (AM - Brazil).

91

Figure 5 - Range size frequency distribution (RSFD) of the spider community sampled

at Pico da Neblina (AM - Brazil), and range profile of the species for three range size

categories. Species in the RSFD graphic are represented by points and are ordered by

increasing range size. Ranges are represented by vertical bars in graphs A, B and C, and

their WAMs (weighted average midpoints) are represented by closed circles. Species are

ordered according to the values of their WAMs and then by range size. Dotted lines at

graphs A, B and C represent the six altitudes sampled.

92

Figure 6 - Relationship between range size and altitudinal midpoint, for all species of

spiders sampled at the Pico da Neblina (AM - Brazil). Each point represents a species,

and several species are overlapping. The dotted lines indicate the three range size

categories, and we also present the number of species from each category.

Figure 7 – Relation between the midpoint and the WAM for the 25 species of spiders

with large ranges. Curved lines are the 95% confidence interval.

93

CAPÍTULO 3

Nogueira, A.A., Venticinque, E.M. & Brescovit, A.D. Beta diversity along an altitudinal

gradient: spider community composition and its congruence with regional altitudinal

zonation. Manuscrito em preparação para Journal of Animal Ecology.

94

Artigo 3

A ser submetido à revista Journal of Animal Ecology

Beta diversity along an altitudinal gradient: spider community composition and

its congruence with regional altitudinal zonation

ANDRÉ A. NOGUEIRA1, EDUARDO M. VENTICINQUE

1,2 & ANTONIO

D. BRESCOVIT

3

1 Instituto Nacional de Pesquisas da Amazônia, INPA, Programa de Pós-Graduação em

Ecologia. Avenida André Araújo, 2936, Aleixo, CEP 69011-970, Cx. Postal 478, Manaus,

AM, Brazil.E-mail: [email protected], [email protected]

2Universidade Federal do Amazonas – WCS Brasil – Wildlife Conservation Society. Prédio

Sauim de Coleira, ICB-UFAM, Estrada do Contorno 3000. CEP-69077-000

3Laboratório de Artrópodes, Instituto Butantan. Av. Vital Brazil 1500, 05503-900, São Paulo,

SP, Brazil. E-mail: [email protected]

95

Summary

1 – Beta diversity is expected to be high along altitudinal gradients. Composition of biotic

communities may change gradually or present more abrupt changes at some specific points,

usually corresponding to important environmental transitions.

2 – We studied a spider community at the Pico da Neblina, an Amazonian mountain which is

one of the southern components of the Guayana region. We sampled at six altitudes and

investigated whether if the patterns of beta diversity correspond to the altitudinal division

proposed for the region, between lowlands (up to 500 m), uplands (500 m to 1,500 m) and

highlands (> 1,500 m).

3 – Patterns of dominance increased with altitude along the gradient, especially at the two

highest altitudes, indicating that changes in composition may be accompanied by changes in

species abundance distribution.

4 – Beta diversity recorded was very high, which can partly attributed to the rarity of most

species, but there were differences in the rate of compositional changes along the gradient.

5 – Analysis of similarity revealed significant differences between the faunas from lowlands,

uplands and highlands, although the two first were relatively similar.

6 – Non-metric Multidimensional Scaling ordination indicates a separation of the community

in three main groups. One is composed by the three lower altitudes and represents a lowland

fauna that extends up to 860 m. The two highest also form a distinct group, while the fourth

altitude, 1,550 m, occupies an isolated and intermediate position. Other measures of

compositional change, such as beta diversity and similarity indices, agree with this pattern,

which is not in accordance with the altitudinal division proposed to the region.

96

7 – Species indicator analysis was performed for three different altitudinal partitions of the

gradient. The most refined partition, by altitude, presented the largest number of indicator

species, due to methodological questions and also to the limited distribution of our species.

However, results concerning the rougher partitions of the gradient (lower and upper half, and

lowlands, uplands and highlands) also support a common lowland fauna for the three first

altitudes, representing another evidence of the non adjustment of the spider community to the

altitudinal division proposed for the Guayana region.

Key-words: Araneae, elevation, Pantepui, biodiversity, community ecology, species turnover,

Arachnida

97

INTRODUCTION

Biotic communities present a great variation in the identity of species that occur at a given

site. Even environments with roughly similar number of species, such as lowland Amazon

forests (Gentry 1988) and premontane rainforests (García-López et al. 2010), usually present

important differences in their species composition. This “extent of change in community

composition, or degree of community differentiation, in relation to a complex-gradient of

environment…” has been termed beta diversity (Whittaker 1960). It represents, along with

alpha diversity (local diversity), one of the two components of the overall diversity (gamma

diversity) of a given region or area under study.

Changes in composition among different sites may be attributed to several factors,

from neutral processes, as stochastic and spatial factors (Hubbel 2001), to changes in

environmental conditions, resulting in habitat specialization. In this latter case, changes in

composition are expected to be higher, especially for steep environmental gradients, such as

altitudinal gradients (Soininen, McDonald & Hillebrand 2007). Altitudinal gradients are

notorious for encompassing drastic differences in climatic conditions over relatively short

distances (Lomolino 2001), thus it is no surprise that the highest records of beta diversity are

observed in regions with important altitudinal variation (Barthlott, Lauer & Placke 1996,

Melo, Rangel & Diniz-Filho 2009).

There is evidence of a gradual compositional change along altitudinal gradients

(Whittaker 1960, Lieberman et al. 1996, Vázquez & Gvinish 1998, Brehm, Homeier &

Fiedler 2003), instead of important and localized discontinuities at a specific point. This could

98

be attributed to the fact that some important environmental factors, such as temperature,

decline continuously with altitude (Ghalambour et al. 2006, McCain 2009). However, there

are some empirical examples of more abrupt changes within altitudinal gradients (Paterson et

al. 1998, Jankowski et al. 2009), an evidence of a well defined altitudinal zonation of biotic

communities. There is also theoretical support to expect that this phenomenon is more

pronounced at tropical localities (Janzen 1967).

In this study we quantify the beta diversity component of a spider community at an

altitudinal gradient in Amazonia. Spiders possess an unquestionable ecological importance,

due to their high abundance and diversity (> 41.000 species described – Platnick 2010),

especially in tropical forests, and to their role as top predators of the invertebrate food chain

(Coddington et al. 1991). However, the study of spider communities has essentially focused

on alpha diversity (Silva & Coddington 1996, Höfer & Brescovit 2001, Scharff et al. 2003,

Bonaldo et al. 2009). Changes in composition between different sites are sometimes assessed

through ordinations or other techniques (Pearce et al. 2004, Lo-Man-Hung et al. 2008, Pinto-

Leite, Guerreiro & Brazil 2008), but few studies have explicitly investigated beta diversity

patterns along a full gradient or at larger scales (Kapoor 2008, Jiménez-Valverde et al. 2010).

Differences in composition have been addressed by some of the few studies on spider

communities along altitudinal gradient, but results are not very conclusive so far. This is

probably due to the low number of altitudes sampled and to unbalanced sampling designs that

may confound spatial and altitudinal effects, as often sites with greater similarity were also

much closer together (Otto & Svensson 1982, Russel-Smith & Stork 1994, Ferreira-Ojeda &

Flórez-D. 2007). The two most detailed studies on the theme were conducted at

Mediterranean localities. In the Pyrénées (Bosmans, Malfait & De Kimpe 1986) the most

important changes in composition were observed between the fauna of forested and that of

non forested habitats, while on Crete (Chatzaki et al. 2005) composition gradually changed

99

along the gradient up to the highest altitude sampled, which exhibited a very different

community. The authors signal that this pattern was not always consistent with the greatest

environmental changes observed at the gradient.

Our study site presents some distinct discontinuities ruptures at certain altitudes. We

sampled the Pico da Neblina (2,994 m), the highest Brazilian mountain, as well as highest

place in South America outside the Andes (Willard et al. 1991). It is part of the Neblina

massif, one of the southern components of the Guayana region. This region is famous for its

remote location, old geological origin (mostly Precambrian rocks) and especially for its

peculiar topography characterized by the Tepuis, isolated table top sandstone mountains with

almost vertical cliffs (Huber 1995). A physiographical division based on altitude and

temperature proposed for the region distinguished three main units, lowlands (up to 500 m, >

24°C annual average), uplands (from 500 to 1,500 m, 18° - 24°C) and highlands (> 1,500 m,

8° - 18°C) (Huber 1995), and the altitudinal distribution of the vegetation seems to support

this division (Huber 1995, Berry & Riina 2005, Rull & Nogué 2007).

Accordingly, our main interest in this study is to verify the patterns of beta diversity of

the spider community along the altitudinal gradient, and to assess if they are in accordance

with the altitudinal division proposed for the Guayana region. We also measure and discuss

beta diversity between different sampling sites at the same altitudes and patterns of

dominance and community structure along the gradient, as there is evidence of a larger

dominance at higher altitudes (Janzen 1976, Vázquez & Givnish 1998, Ferreira-Ojeda &

Florez 2007). Finally, we use species indicator analysis (SIA) to identify the degree of

associations of the species with different altitudes or altitudinal zones, which may represent

an additional test of the fit of our data to the altitudinal division proposed for the region.

100

MATERIAL AND METHODS

Study area

The study was conducted at the Pico da Neblina (00°48’07” N e 66°00’40” W). It belongs to

the Pico da Neblina National Park (municipality of São Gabriel da Cachoeira, state of

Amazonas, Brazil), one of the largest conservations units in Brazil (2,260,344.15 ha), and also

to the Yanomami Indigenous Land, with which the Park overlaps. The Pico da Neblina lies in

a mountain region which represents the watershed between the Amazon and Orenoco basins,

as well as the boundary between Brazil and Venezuela (RADAM 1978).

As mentioned above, the Pico da Neblina is part of one of the southern and more

isolated mountain components of the Guayana region (Figure 1), and is characterized by

extensive high altitude plateaus (2,000 to 2,400 m), although it does not present the typical

tepui shape (Huber 1995). The annual average rainfall at lowlands is 3,000 mm/year, without

a dry season, and the humidity is about 85-90% (RADAM 1978). Rainfall increases with

altitude until around 1800 m, being gradually replaced by a constant mist, and the average

humidity reaches almost 100% (RADAM 1978).

Vegetation in the lowlands is composed by a tall, evergreen forest, and uplands are

covered by montane forests, which present decreasing biomass and tree size, especially when

declivity is accentuated, leading to shallower soils (Pires & Prance 1985). In the highlands,

forests are replaced by more open types of vegetation like high altitude scrublands and broad

leave meadows, which grow on organic peat soils and on rocky substrates. At the Neblina,

forests formation occurs almost up to 2,000 m, and above that altitude their high altitude

formations stand out for their diversity and endemism (Berry & Riina 2005). Species from the

families Bromeliacea, Rapateacea and Theacea are among the most characteristics elements

of this flora. The flora of the region, especially from high altitudes is renowned for its high

diversity and endemism (Berry & Riina 2005). High endemism levels have also been

101

observed for the herpetofauna (McDiarmid & Donnely 2005), one of the few animal groups

studied in more detail. Detailed information on the geology and vegetation of the region can

be found in Berry Huber & Holst (1995) and Berry & Riina (2005).

Sampling methods

Spiders were collected with two traditional methods in spider inventories (Coddington

et al. 1991), beating tray and manual active search. In the first method the understory

vegetation is sampled through the beating of leaves, branches, vines and other parts of the

vegetation with a stick, while holding a 1 m2 tray under it. The spiders falling in the tray are

collected, and the sampling unit consisted of 20 of those beating events, in different plants,

along a 30 m long transect. In the second method spiders from the forest floor and from the

understory are directly collected with the help of tweezers and/or plastic vials. The sampling

unit represents one hour of search along an approximate area of 300 m2 (30 x 10 m). The first

method was employed during the day, from 8:00 to 11:00 h, and the second at night from

19:30 to 23:00 h. All spiders collected with both methods were immediately fixed in 70%

ethanol.

Sampling was carried out by three collectors at six altitudes, 100, 400, 860, 1550,

2000 and 2400 m. At each altitude we investigated three sites, about 100 m apart from each

other. We obtained a total of 54 samples by altitude (27 of each method) resulting in a final

count of 324 samples (162 of each method) for the Pico da Neblina. We also measure

temperature at each sampling site, at the beginning and at the end of nocturnal sampled. The

sampling expedition occurred from 22 September 2007 to 13 October 2007, the local “dry

season”. We only identified adult spiders. Specimens were sorted into morphospecies usually

by the first author and then identified until the lowest taxonomic level by specialists. Voucher

specimens are deposited at the collection of the Instituto Nacional de Pesquisas da Amazônia

102

(INPA), at Manaus (AM), and duplicates are deposited at the Instituto Butantan (IBSP), São

Paulo (SP) and at the Museu Paraense Emílio Goeldi (MPEG), Belém (PA).

Analyses

For each sampled site and for each altitude (considering the pooled data from the three

sites by altitude) we calculated and present the following parameters: species richness,

abundance, diversity, dominance and proportion of singletons. In this study, we will refer to

the number of species captured in our samples as species richness, and the number of

specimens captured in our samples as abundance, although we are aware that the results of

our sampling represent only an estimation of the real richness and abundance of the

community.

As a diversity measure we used the exponential of the Shannon-Wiener Index, also

known as “numbers equivalent” or “effective number of species” of a given community. It

represents the number of equally likely elements needed to produce the value of the diversity

index. The use of numbers equivalents (D) over raw diversity indexes has been recommended

(Jost 2006) as this transformation allows a more intuitive interpretation. Unlike raw diversity

indexes, which are non linear, numbers equivalents possess the doubling propriety (Hill

1973), i.e. if two completely distinct communities of equal size with a diversity D = X are

combined, their diversity will be D = 2X (Jost 2006). Finally, it is convenient to stress the

importance of using a measure of diversity that take into account species abundance. Changes

in relative abundances can be as perceptible as changes in species composition and their study

allow a more accurate picture of the community than just species richness, for which

dominant and rare species, often represented by just one individual, are give the same weight

(Jost 2006, 2007). To measure the dominance we used the Berger-Parker index (Berger &

Parker 1970), which is based on the proportional abundance of the single most dominant

103

species. Dominance patterns by altitude were also assessed by the visual inspections of rank

abundance plots. The proportion of singletons refers to the number of species represented by

just one individual in a given site or altitude, regardless of the species total abundance. We

also present the proportional distribution of absolute singletons, i.e., species represented by

just one individual considering the total inventory, by altitude, in relation to the total number

of singletons.

We calculated the beta diversity for three levels: among the three sampling sites within

the same altitudes; between different altitudes, pooling the communities at each altitude and

generating a distance matrix; and for the total inventory, including all altitudes. We use a beta

diversity based on the numbers equivalents (D), where beta D = gamma D/alpha D (Jost

2007). This procedure allows obtaining independent alpha and beta components, a logical

principle often violated by traditional diversity indices (Jost 2007). The alpha is calculated as

the sum of the weighted Shannon-Wiener index of each community (sites or altitudes), and

the weight represents the proportional abundance of each community in relation to the pooled

abundance of all communities being compared. Gamma diversity is obtained by simply

calculating the Shannon-Wiener index for the pooled community in question. After we

obtained the alpha and gamma diversity, we convert them to its equivalent numbers (D

gamma and D alpha) to calculated the beta diversity, which is expressed in number of

communities, ranging from 1 (when all communities compared are identical) to N, which is

the total number of communities being compared, when they are all completely different (Jost

2007). In our case, the maximum possible beta diversity, N may be two, for pairwise

comparisons between different altitudes, three, for comparisons within altitudes, or six,

considering the six altitudes of the whole gradient.

We used the Bray-Curtis index of similarity to generate a distance matrix for the 18

sampling sites and for the six altitudes sampled. We also constructed a matrix based on the

104

proportion of species shared (in relation to the total richness for the pair of sites or altitudes)

between the 18 sampling sites and the six altitudes. We used the Bray Curtis matrix (18

sampling sites) to perform a NMDS (Kruskal 1964) and checked the stress, a measure of the

fit between the final solution of the analysis and the original distance matrix of the

community. This ordination technique has already been positively evaluated (Fasham 1977,

Kenkel & Orlóci 1986), even for dealing with species rich and undersampled communities

(Brehm & Fiedler 2004).

To assess the relation between beta diversity, similarity, spatial distance and altitude

we generated distances matrices of those parameters for the six altitudes and performed partial

Mantel tests, based on 10,000 permutations for each test (α = 0.05). Partial Mantel tests,

through the Pearson correlation coefficient, assess the relation between two distances

matrices, while controlling for the effect of a third matrix (Smouse, Long & Sokal 1986). We

related the two similarity indices between each other and to the two distance measures (spatial

and altitude), successively controlling for space and altitude, and also without a control factor.

We followed an approach suggested by Legendre (2000) and performed the permutation on

the residuals of a null model assuming the absence of effect of the third factor in a partial

regression.

To verify if the changes in composition are in accordance with the division proposed

for the Guayana region we performed an analysis of similarity (ANOSIM), a non parametric

permutation procedure to test for significant differences in composition among differently

grouped sampling units (Clarke 1993). We compared the fauna of three altitudinal groups,

Lowlands (100 m and 400 m), Uplands (860 m and 1,550 m) and Highlands (2,000 m and

2,400 m). To measure the similarity we used the Bray-Curtis index. Significance levels were

adjusted by a Bonferroni correction.

105

Finally, we used species indicator analysis (SIA) (Dufrêne & Legendre 1997) to verify

the association of the 157 most abundant species (represented by at least five individuals)

with the different altitudes. SIA calculates an indicator value (IV) based on the frequency and

abundance with which a species occur at the sites of a given category, and then tests if the IV

differs significantly from random based on a Monte Carlo permutation (n=1000). The higher

the frequency and exclusivity of distribution in a given category, the higher will be IV of a

species, which ranges from 0 (absence of a category) to 100 (present in all sites of a category).

SIA have the advantages that they treat each species independently and to allow the

comparison of the adequacy of the data to different typologies of the categories being

compared, through the sum of species indicator values (Dufrêne & Legendre 1997).

We analyzed the distribution of species under three different partitions of the gradient,

which ranged from a coarser to a more refined altitudinal typology. This represents another

approach to check the adjustement of our community with the altitudinal division proposed

for the region. The first partition split the gradient in two categories, Lower Half (100 m, 400

m and 860 m) and Upper Half (1,550 m, 2,000 m and 2,400 m). The second, based on the

division proposed for the Guayana region, considered three categories, Lowlands (100 m and

400 m), Uplands (860 m and 1,550 m) and Highlands (2,000 m and ). In the last partition we

considered each altitude as a category. The presence of the species was verified at every

sampling site at each altitude.

We used the software EstimateS (Colwell 2009) to obtain the number of shared

species, and the software PAST (Hammer, Harper & Ryan 2001) to calculate the Bray Curtis

similarity, Shannon-Wiener and Berger Parker Indexes, and also to perform the ANOSIM.

The NMDS was performed with the R program (R Development Core Team 2006), and the

Partial Mantel with the software PASSAGE (Rosenberg 2001). We ran the ISA with the

software PC-ORD (McCune & Mefford 1999).

106

RESULTS

We obtained 3,140 adult spiders, which were assigned to 528 morphospecies from 39

families. A complete list of the species collected at the Pico da Neblina is presented in

Nogueira et al. (in preparation. Cap.1).

Diversity and dominance

Richness, diversity and proportion of absolute singletons decreased with increasing altitude

(Table 1), while the abundance and proportion of singletons by altitude showed a more

variable pattern (Table 1). Dominance increased with altitude, although not monotonically.

Notably, dominance sharply increases in the two highest altitudes, especially the last one, at

2,400 m, where the single most dominant species accounted for more than 50% of the total

abundance (Table 1 and Figure 2). Each altitude presented different dominant species,

although some of them were among the most abundant in more than one altitude, as

Sparassidae sp.1 (Sparassidae), at 100 and 400 m, Carapoia sp (Pholcidae), at 400 m and 860

m, and Chrysometa nubigena Nogueira et al. 2011 (Tetragnathidae), at 2000 m and 2400 m.

The most striking taxonomic pattern related to the abundance distribution is related to the

genus Chrysometa, and its positive association with altitude. The dominant species from the

three highest altitudes sampled belong to this genus, and two of them, Chrysometa

petrasierwaldae Nogueira et al. 2011 (137 ind.) and C. nubigena (96 ind.), were the most

abundant of the whole inventory.

Beta diversity

Beta diversity within altitudes, computed between the three sampled sites from each altitude,

varied from 1.21 to 1.54 (Table 1). The highest beta diversity was recorded at the two lowest

107

altitudes, while the lowest diversity was from the highest altitude, at 2,400 m, which indicates

a more homogeneous spider community at that altitude. This variation in the beta diversity is

also detectable in the similarity and shared species matrix (Table 2). The similarity among

sampling sites from the same altitude is higher for altitudes which presented lower beta

diversity, such as 1,550 m and 2,400 m, while the opposite trend can be observed for the two

lowest altitudes.

Results concerning the composition of spider communities along the gradient reveal

important changes between altitudes, which may occur abruptly at certain places. The mean

similarity among the gradient was low, ranging from 0.35 to 0 between sampling sites from

different altitudes (Table 2) and from 0.33 to 0.002 between the pooled communities of

different altitudes (Table 3). The percentage of shared species accompanied this variation,

ranging from 20.7% to 0% in the case of sampling sites from different altitudes and from

26.7% to 0.4%, for the pooled community of different altitudes. Beta diversity between

different altitudes varied from 1.45 to 1.90 (Table 4), with an average value of 1.73. These

large values indicate an impressive complementarity of communities between different

altitudes, considering that the maximum beta diversity possible when comparing two sites is

2. It is convenient to observe that the values may be similar to those observed in the

comparisons between sites within the same altitude, but it indicates a higher beta diversity, as

we are now comparing two instead of three areas. Consequently, a value of 1.50 represents an

increase of 50% in the total diversity when the two sites are pooled.

The Mantel partial test showed that the beta diversity and Bray Curtis similarity

indexes were highly related, even when controlled for space or altitude (Table 5 and Figure

3). Both indexes were related to altitude in a significant way, as similarity decreased and beta

diversity increased with increasing altitudinal difference between the altitudes sampled,

108

although the relation was stronger with similarity. The relation with differences in spatial

distances, on the other way, was not significant for either index (Table 5).

The NMDS (Stress 5.97) indicates that changes in composition are not continuous

along the gradient (Figure 4). Along the first axis, which accounted for 58% of total variation,

it is possible to observe two main groups of sites, one formed by the three lowest altitudes,

and the other by the two highest altitudes sampled. The fourth altitude, at 1550, is fairly

isolated from both groups and occupies an intermediate position. The disposition along the

second axis (20% of total variation), which opposes the sites at 1,550 m from the remaining

sites, also indicates a closer proximity of the communities from different altitudes within the

low altitude group, when compared with the two altitudes from the second group. It also

indicates a closer similarity of the sites at 1,550 m with those at 860 m and 2,000, their

nearest neighbors.

This pattern can also be perceived simply by the inspection of the similarity/shared

species matrix, which expose a sudden drop in similarity/shared species from the 860 m to the

1550 m altitude, for sampling sites or just altitudes (Tables 2 and 3, respectively). The

similarity between adjacent altitudes, observed in the outer diagonal of Table 3 also shows

that the lowest similarities and proportion of shared species involves the community from

1550 m. The distinctness of the fauna from this altitude is confirmed by the beta diversity

matrix, as it is associated to the highest values observed. The similarity and beta diversity

matrix also indicates a relatively high similarity (and corresponding lower beta diversity)

among the three lower altitudes and among the two highest, although for the latter the fauna

seems to be a little less homogeneous. Finally, the beta diversity calculated for the whole

gradient at the Pico da Neblina was 3.45, which means that the pooled spider communities

from the six altitudes sampled could be roughly divided into three and a half different

communities.

109

The ANOSIM revealed significant differences in the composition of spiders

communities at the Pico da Neblina (R = 0.8362, p < 0.001). The comparison performed

between the three groups of altitudes – lowlands, uplands and highlands – also indicated

significant differences between all of them (p < 0.01 for all comparisons). The magnitude of

the relation was very high when comparing the highlands with the lower groups (R = 1 with

lowlands an R = 0.94 with uplands), but considerably smaller for the lowlands in relation to

the uplands (R = 0.55).

Species indicator analysis

Of the 157 species represented by at least five individuals, 100 were assigned as

indicators for at least one of the three partitions proposed for the data. Table 6 summarizes the

number of indicator species for each category in each partition. The division by altitude

yielded the largest number of indicator species, mean Indicator Value and number of species

with an Indicator Value of 100. For the two coarser partitions, Lower and Upper half and

Guayana region, the absolute and proportional number of indicator species was higher for the

lower parts of the gradients, while for the more refined separation by altitude there is a larger

proportional number of indicator species for the three highest altitudes. Eleven species were

assigned as indicators for the three different partitions and the categories Lower Half,

Lowlands and 100 m were the most frequent combination (n=6). Among the 35 species

selected as indicators for two partitions, the main combination of categories were Lower Half

and Lowlands (n=10), Uplands and 1550 m (n=8), and Uplands and 860 m (n=6). The sum of

IV was much higher (Table 6) for the partition by altitude, while the Lower and Upper Half

partition had a slightly higher total IV than the Guayana region partition.

The distribution of indicator species by families (Table 7) is positively related to its

richness, and the strength of the relation increases with increasing refinement of the partition

110

of the data (Lower and Upper half, R2 = 0.565, p < 0.01; Guayana region, R

2 = 0.717, p <

0.01; Altitude, R2 = 0.962, p < 0.01). The families Anyphaenidae and Tetragnathidae showed

the most consistent association with higher altitude environments, for the three partitions,

while for some other families only the partition by altitude reveal some indicator species.

Lowest and medium altitudes were characterized by indicator species representing a larger

number of families, amongst which stands out Araneidae and Ctenidae. Salticidae and

Theridiidae, two other species rich families, are only represented by a relativly important

number of indicator species (especially the former) when data are partitioned by altitude.

Some genera presented an important number of indicator species (considering together

the three data partitions), such as Chrysometa (Tetragnathidae, 5 indicator species),

Micrathena (Araneidae, 4 ind. spp) and Ctenus (Ctenidae, 4 ind. spp) but its representation

varied according to the type of partition. The number of indicator species of Micrathena, for

example, decreased with increasing refinement of the partition, while the genus Chrysometa

showed the opposite trend, indicating a narrower distribution for most of its species. A similar

situation is observed for species from the genera Mangora (Araneidae), Episinus and Faiditus

(Theridiidae), which were only representative for the partition by altitudes. A complete list of

indicators species is presented as supporting information.

DISCUSSION

Diversity and dominance

The drastic increase in dominance above 1,550 m shows that elevation acts not only on the

number and the identity of species of a community, but also on the distribution of species

abundance, which indicates a different sort of influence of the environmental gradient on the

biotic community. The fewer and mostly different species from higher altitudes also partition

the total abundance in a much more uneven way.

111

An increasing dominance level at higher altitudes has already been observed for other

groups (Janzen et al. 1976, Vazquez & Givnish 1998, Choi & An 2010), including spiders

(Chatzaki et al. 2005, Ferreira-Ojeda & Flórez-D 2007). This pattern could represent an

example of the positive relation between evenness of community species abundance and

productivity (McGill et al. 2007), assuming a negative relation between altitude and

productivity, or other related climatic factors as temperatures and rainfall (McCain 2007,

2009). Evenness can be also positively related with habitat structure (Hurlbert 2004), which

also applies to our study, as forests are structurally more complex than more open types of

vegetation, such as those from the highest altitudes sampled. This seems to be a parallelism

between altitudinal and latitudinal gradients, and, effectively, rank abundance plots of spider

communities from tropical and temperate sites (Scharff et al. 2003, Nogueira, Pinto-da-Rocha

& Brescovit 2006, Lo-Man-Hung et al. 2008) resemble those presented in this study for lower

and higher altitudes. However, the causes of the relation between productivity and dominance

are still far from clear (McGill et al. 2007), and are beyond the scope of our study.

The dominance of the genus Chrysometa at high altitudes had already been observed

at the Colombian Andes (Ferreira-Ojeda & Flórez-D 2007), and is also discussed in Levi

(1986) and Nogueira et al. (2011). It is interesting to observe that the dominance of this genus

with increasing altitude in our study is not due to a single species with a particular adaptation,

but to three different species, which indicates that this affinity with high altitudes

environments represents a widespread characteristic within this genus. This pattern is also

perceivable at larger scales by the high diversity of Chrysometa observed at the Andes

paramos (Levi 1986).

Beta diversity

112

The changes in composition of the spider communities along the gradient have been large, but

it was possible to see that those changes were more intense at some specific altitudes. This

indicates the occurrence of an altitudinal zonation for the spider community of the Pico da

Neblina.

Nonetheless, the patterns of compositional changes observed along the gradient do not

seem to fit the altitudinal division proposed for the Guayana region, in lowlands, uplands and

highlands, despite the significant differences found between these categories by the ANOSIM.

The main differences between the altitudinal division tested and the changes in

composition observed in our data are related to the uplands categories. The third altitude

sampled (860 m) is more similar to the lower sites, from the lowland category, than with the

other altitude (1,550 m) in the upland category, as displayed in the NMDS. The two altitudes

from the upland categories are in fact quite different, as can be observed in the similarities and

beta diversity matrices. This can also explain the relatively low R obtained in the ANOSIM

when comparing the lowland and upland categories, as the fauna from the third altitude would

increase the similarity of the fauna between the two categories. This indicates that the upland

category is heterogeneous and represents an inadequate altitudinal division for the spider

fauna.

Instead, results show that a mainly lowland fauna extends up until the third altitude, at

860 m, and the next altitude, at 1,550 m represents a compositional rupture, although it is still

covered by forests. But important differences in composition are not surprising if we consider

that forest formations at these altitudes, classified as upper montane (1,500 – 2000 m)

(Hubber 1995) exhibit important differences in composition and structure in relation to a

lowland Terra Firme forest, and that the cooler temperatures at those at those altitudes also

represent a meaningful environmental change for a lowland spider. However, it is also

important to note that the abrupt difference in similarity may be due to the large distance

113

which separates it from the lower site, at 860 m. This corresponds to the largest gap in our

gradient and it certainly increased the dissimilarity of the faunas, as the Mantel show a

significant relation between similarity and altitudinal difference. Eventually, the sampling of

an intermediate altitude (at 1,200 m, for example) could turn the compositional differences

more gradual.

The fauna from the 1,550 m is not very similar with that from higher altitudes either,

even with its upper neighbor, at 2,000 m. This is not a surprise, given the drastic differences

in climatic factors and vegetation, which assume an open physiognomy. The structure of the

vegetation is indeed considered as one of the most important environmental factors for spider

communities (Robinson, 1981; Greenstone, 1984; Halaj, Ross & Moldenke 1998), and may

have a large influence on the composition of the communities (Toti, Coyle & Miler 2000,

Nogueira, Pinto-da-Rocha & Brescovit 2006, Lo-Man-Hung et al. 2008). The distinction of

the highland spider community may also reflect the distinction of the flora of these altitudes,

reputed by its endemism (Huber 1995, Berry & Riina 2005) and peculiar formations.

Although the fauna from the two high altitude sites presented an relatively large beta

diversity, larger than that observed among the three lowest altitudes, they were nevertheless

much more similar among then than with the fauna from any other altitude. The dominance

pattern of the highlands fauna is another character that distinguished it from the lower sites,

while the fauna from the fourth altitude, at 1,550, represent again an intermediate condition.

The coincidence of significant ruptures in composition and main vegetation types has

already been reported for other studies performed at altitudinal gradients (Bosmans, Maelfait

& De Kimpe 1986, Davis, Scholtz & Chon 1999, Bach, Kessler & Gradstein 2007, Wu, Yang

& Yang 2010). In other cases, however, changes were more gradual (Brehm, Homeier &

Fiedler 2003) or were not directly associated to predominant patterns of the vegetation, as

observed for ground-dwelling spiders (Chatzaki et al. 2005). In this later study conducted at

114

Cretan mountains, the highest compositional change were observed above the timberline, and

separated the community from the summit to those from lower sites, which presents a gradual

dissimilarity with altitude among them. The authors observed that for families more

dependent on the vegetation than their studied group, as web builders and vegetation hunters

the timberline represented a more abrupt compositional transition.

We can conclude that the altitudinal division proposed for the Guayana region does

not fit well with our data because communities from lowlands extend higher than expected.

The spiders from the highlands sites effectively represent a distinct compositional group and

the changes from forested sites to open vegetation coincide with the largest ruptures observed

across our gradient. Finally, the isolation of the fourth altitude from the lower sites may

represent the existence of a different, more exclusively montane fauna, but may also be due to

a sampling effect (large distance between sites).

Results of the SIA furnish additional evidence regarding the low fit of the differences

in spider composition and the altitudinal division proposed for the Guayana region. There are

more indicator species of a “larger” lowland (42 species), composed by the three first

altitudes, than for the lowland defined for the Guayana region, comprising only the 100 m and

400 m altitudes (22 species). This suggests the existence of a well defined community with

common distributional limits, and also seems to reproduce the pattern displayed by the

NMDS, in which the three lower sites are clearly associated.

Nevertheless, changes in composition have been considerably large all along the

gradient. Beta diversity usually increases with altitudinal variation (Barthlott, Lauer & Placke

1996, Melo, Rangel & Diniz-Filho 2009), which seems a logical consequence of the

important environmental gradients associated. Beta diversity also presents a negative relation

with the scale of the study (Mac Nally et al. 2001, Soininen, McDonald & Hillebrand 2007)

and at local scales, as in our study, a great variation in composition is expected.

115

However, high beta diversity may also be a consequence of undersampling (Colwell &

Coddington 1994, Jiménez-Valverde et al. 2010). The differences in composition among

communities formed by several rare species, such as ours, may be simply due to the fact that

rare species are not collected more often and in more sites by chance. Our inventories shows

signs of undersampling, as is usually the case in tropical arthropod inventories (Coddington et

al. 2009) and the simple fact that 37% of our species were singletons (Nogueira et al. in

preparation-cap.2) already guarantee a considerable level of dissimilarity. So, undersampling

is probably responsible by at least part of the compositional changes observed in our study,

especially for those within altitudes, for which no large environmental differences are

expected.

Beta diversity among sites within the same altitude seemed to roughly decrease with

altitude, except for an inversion between the fourth (1,550 m) and fifth (2,000 m) altitudes.

Similar results have already been reported for vascular plants (Vazquez & Givnish 1998) and

birds (Jankowski et al. 2009). This represents an evidence of a more homogeneous fauna at

higher altitudes, but the reasons are not clear, and may be dependent on a biological

characteristic of those communities. However, they also may be simply a consequence of a

smaller species pool coupled with a smaller proportion of rare species, which reduces

variation at random while sampling the community, resulting in more similar samples.

Finally, we think it is opportune to make a few remarks on the beta diversity measure

used in our study (beta D, based on equivalent numbers – Jost 2007). By weighting the

communities based on their size, results produced by beta D may be a little different than

those obtained by more traditional methods of assessing similarity. For example, the

communities from altitudes 100 m and 2,400 m share only one species but have lower beta

diversity than the pair 100 m – 1,550 m, with 17 species in common and a much more similar

species abundance distribution (Beta D values of 1.79 and 1.90, respectively). This result

116

may sound counter intuitive and is different from those obtained by the Bray-Curtis Index and

proportion of shared species, which indicates a gradual decrease along the gradient. However

beta D estimates in fact how many communities, a measure of diversity at the community

level, are represented in a pair or pool of sites being compared. So, in relation to the fauna

from the first altitude (100 m), the addition of a community of 115 species as that sampled at

1,550 m, with many exclusive species, will represent a larger contribution for the overall

diversity than the addition of the 24 species from the 2,400 m community, even if the first

combination share more species.

Thus, beta D is capable of capturing in a more accurate way the total sum of

diversities of a given number of sites than similarity or shared species measures, and this

quality may be useful for studies or conservation purposes, if the goal is to protect the

maximum of diversity. In other cases, however, a community may represent a particular

interest regardless of its size and in this situation beta D may not be the most adequate

measure of similarity to be employed, as it may obscure less divers but more unique

communities. In these cases beta D could be combined with other, more direct measure of

composition, as proportion of shared species.

Species and families association with altitudes

Several species were selected as indicators, and the indicator values (IV) reported are larger

then usually observed in other studies (Bakker 2008, Pinzon & Spencer 2010) or suggested as

an evidence of a strong indicator value (> 25, Dufrêne & Legendre 1987). This may reflect a

great affinity of spider species with a given altitude or altitudinal zone, but we also believe

that this may be partly consequence of the low number of sites by category (from three to

nine) in our study. As the analysis is based on the frequency of occurrences in a given

category, our sampling design probably had an influence on the large IV observed. The

117

fidelity of a species to a category, i.e. no or few specimens occurring outside of it, also result

in large IVs, and was probably also influenced by another characteristic of our study. In this

case, the environmental steepness of the altitudinal gradient probably restrained the

distribution of species along the gradient by chance, diminishing the chance of a penalization

on its IV, as well as the occurrence of inconsistent indicators (sensu Bakker 2008).

The partition of the gradient by altitude yielded the largest number and proportion of

indicator species, the highest total as well as average IV and much more indicator species

with a IV = 100. But, given the methodological reasons exposed above, it is logical that more

detailed partitions will result in a larger number of indicator species with stronger associations

with its sites of occurrence. This is also probably a consequence of the restricted distribution

of most of our species, as 28% of the species used in the analysis were present in just one

altitude. This aggregate distribution, however, may indeed represent a biological characteristic

of our community, as many of these species confined to a single altitude were relatively

abundant (including the most abundant species of the inventory, Chrysometa petrasierwaldae,

with 137 individuals), and thus their exclusive distribution cannot be imputed to rarity.

Similar patterns, with species occurring in only a small fraction of a gradient are often

observed in studies performed in mountains (epiphytes - Cárdelus et al. 2006, ferns – Watkins

et al. 2006, reptiles - Chettri et al. 2010, land snails - Liew et al. 2010). This constitutes an

evidence of the important environmental changes observed across those gradients, which are

stronger in tropical mountains, due to the narrower climatic tolerance of tropical biotas when

compared with temperate ones (Janzen 1967, Ghalambor et al. 2006, McCain 2009). In other

words, methodological issues probably enhanced the number and intensity of response of

indicator species, but their altitudinal distribution ultimately reflects their environmental

adaptation. Although dispersion may be a crucial factor related to species distribution, a study

conducted in a regional scale with spiders couldn’t find any significant pattern related to

118

dispersal capacity (Jiménez-Valverde et al. 2010), which suggests that at local scales, such as

in our study it probably doesn’t represent a limiting factor for the colonization of the different

parts of the gradient, unlike environmental constraints. Climatic factors, especially

temperature are obvious candidates among the most important environmental variables at

altitudinal gradients (McCain 2007b, Sanders 2007), and a study on the distribution of moths

along an altitudinal transect at the Andes indicated temperature as “the main driving force

behind species turnover rates” (Brehm, Homeier & Fiedler 2003).

The distribution of indicator species among families furnishes the identity of the main

components of the faunas from each altitude. The lowlands are dominated by species from

several families, the main contributors being Ctenidae, Pholcidae, Sparassidae, Uloboridae,

and especially Araneidae. All of those families and several others contributed with indicator

species for the three partitions, which indicates that even within families the range of

altitudinal distribution presents a great variation. It is worth mentioning that the proportion of

indicator species by partition is very unbalanced for some families, as Salticidae and

Theridiidae, whose species designed as indicators are concentrated in the more refined

partition by altitude. It may indicate that species from these families are characterized by short

altitudinal ranges and more specific habitat requirements.

Species selected as indicators of the upper half of the gradient should represent the

portion of the lowland fauna with a broader distribution, responsible for the pattern observed

at the NMDS and other similarity measures. Some of the species with higher IV, as Ctenus

amphora Mello-Leitão, 1930 (Ctenidae), Mesabolivar aurantiacus (Mello-Leitão, 1930) (Pholcidae),

Corinna ducke Bonaldo, 2000 (Corinnidae), Architis tenuis Simon, 1898 (Pisauridade) and

Micrathena clypeata (Walckenaer 1805) (Araneidae) are widespread in Terra Firme forest and

are usually recorded in spider inventories through the Amazon basin (Höfer & Brescovit

2001, Bonaldo et al. 2009, Bonaldo & Dias 2010). Some of those species presented higher

119

IVs in other partitions, as Micrathena clypeata, with a more concentrated distribution at 100

m, resulting in a higher IV for this category from the partition by altitude. There are also

many morphospecies among indicators, signaling that even species not previously described

can be locally widespread, although it also reflects the still insufficient taxonomic resolution

of tropical spider diversity (Bonaldo et al. 2009).

Species designed as indicators of the higher altitudes, considering the categories from

the three partitions (Upper half, Highlands, 2,000 m and 2,400 m), belonged to only 10

families. All of those species were web builders or hunters occupying the vegetation, which

signals the absence of ground dwelling spider, as the Ctenidae, as significant components of

these environments. Even families usually associated to the ground or leaf litter, as Hahniidae

and Oonopidae (Höfer & Brescovit 2001), were represented by species occurring on the

vegetation at 2,000 m (pers. comm.). The family Anyphaenidae, with four species and two

species of the genus Chrysometa were the most characteristic elements of that fauna.

The dominance of the orb weaver genus Chrysometa at higher altitudes, mentioned

above and discussed in Nogueira (et al. 2011) contrasted with the distribution of species of

Araneidae, the most species rich orb weaver family. The altitudinal replacement among these

groups have already been noticed at the Colombian Andes (Ferreira-Ojeda & Flórez-D 2007

and references), and constitutes an evidence that flying insects, the target of this kind of web

(Turnbull 1973), are still an available resource at higher altitudes. This suggests that

Chrysometa species can tolerate climatic conditions that represent a constraint to Araneidae

species distribution. Araneus bogotensis (Keyserling, 1864) (Araneidae) constitute a notable

exception, as it was selected as an indicator of high altitude sites for the three partitions. This

species possess a widespread although disjoint distribution, occurring also at the Andes and at

mountain ranges at southeastern Brazil (Levi 1991), indicating its strong association with high

altitude environments.

120

Finally, the fauna of fourth altitude sampled, at 1,500 m presented the highest

proportion of indicator species (36% of total species from that altitudes) and the second

highest average IV for the altitude partition. This restricted community, enlarged by species

coming from lower and upper altitudes resulted in the isolated and intermediate position of

this altitude at the NMDS and other compositional measures.

CONCLUSIONS

The spider fauna found at lowlands and highlands at the Pico da Neblina was distinguished by

compositional similarity and dominance patterns, which increased along the gradient,

especially from 2,000 m. Changes in beta diversity varied among the gradient. The three first

altitudes were considerably similar and shared several species. The two highest altitudes also

formed a distinct community, much more similar among them than with any other altitude.

The fourth altitude, at 1,500 m, represented an intermediate fauna between those groups,

although also composed by several exclusive species. This pattern is not in accordance with

the division proposed for the Guayana region due to an extension of the lowland fauna in our

study up to almost 900 m, against the limit of 500 m, observed for the vegetation. The

highlands, in the other hand, harbors a species poor but very different spider fauna, and our

data support the distinction and biological interest of the highlands of the Guayana region.

ACKNOWLEDGMENTS

We are grateful to Tomé, Mário, Waldir “Chouriman” Pereira, Nancy Lo-Man-Hung

and David Candiani, for their invaluable help in the field. The first author also thanks the

PPGEco-INPA, the 5°PEF Maturacá, a frontier squad from the Brazilian army for the logistic

help, the IBAMA/ICMBio and PARNA Pico da Neblina for the collecting licence (Ibama-

Sisbio 10560–1), and FUNAI and the Ayrca, a local Yanomami association, for receiving us

121

at the Yanomami Indigenous Land. A.A. Nogueira was supported by a doctoral fellowship

from “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”, a BECA-

IEB/Moore Foundation (B/2007/01/BDP/01) fellowship and a grant from Wildlife

Conservation Society (WCS). A.D. Brescovit was supported by CNPq, # 300169/1996-5.

REFERENCES

Bach, K. M., Kessler & Gradstein, S. R. (2007) A simulation approach to determine

statistical significance of species turnover peaks in a species-rich tropical cloud forest.

Diversity and Distributions, 13, 863–870

Barthlott, W., Lauer, W. & Placke, A. (1996) Global distribution of species diversity in

vascular plants: towards a world map of phytodiversity. Erdkunde 50, 317–327.

Berger, W.H. & Parker, F.L. (1970) Diversity of planktonic foraminifera in deep-sea

sediments. Science 168,1345–134

Berry, P. E. & Riina, R. (2005) Insights into the diversity of the Pantepui flora and the

biogeographic complexity of the Guayana Shield. Biological Skrif., 55, 145–167.

Berry, P.E., Huber, O. & Holst, B.K. (1995) Introduction. Floristic analysis and

phytogeography. Flora of the Venezuelan Guayana. (eds. Berry, P.E., Holst, B.K.

&Yatskievych, K.) Vol 1. p. 161–191. Missouri Botanical Garden Press, St Louis, MO.

Bonaldo, A. B., Carvalho, L. S., Pinto-da-Rocha, R., Tourinho, A. L., Miglio, L. T., Candiani,

D. F., Lo Man Hung, N. F., Abrahim, N., Rodrigues, B. V. B., Brescovit, A. D., Saturnino, R.,

Bastos, N. C., Dias, S. C., Silva, B. J. F., Pereira-Filho, J. M. B., Rheims, C.A., Lucas, S. M.,

Polotow, D., Ruiz, G. R. S. & Indicatti, R. P. (2009). Inventário e História Natural dos

Aracnídeos da Floresta Nacional de Caxiuanã, Pará, Brasil. In: Lisboa, P. L. B. (Org.)

122

Caxiuanã: desafios para a conservação de uma Floresta Nacinal da Amazônia, Museu

Paraense Emílio Goeldi, Belém, pp. 545-588.

Bosmans, R., Maelfait, J.P. & De Kimpe, A. (1986) Analysis of the spider communities in an

altitudinal gradient in the French and Spanish Pyrenees. Bulletin of the British Arachnological

Society, 7, 69–76.

Bonaldo, A.B. & Dias, S.C. (2010). A structured inventory of spiders (Arachnida, Araneae) in

natural and artificial forest gaps at Porto Urucu, western Brazilian Amazonia. Acta

Amazonica, 40, 357-372.

Brehm, G., Homeier, J. & Fiedler, K. (2003) Beta diversity of geometrid moths (Lepidoptera:

Geometridae) in an Andean montane rainforest. Diversity and Distribution, 9, 351–366.

Brehm, G., Süssenbach, D. & Fiedler, K. (2004) Unique elevational diversity patterns of

geometrid moths in an Andean montane rainforest. Journal of Tropical Ecology, 20, 165–172.

Cardelús, C., Colwell, R. K., Watkins Jr.; J. E. (2006). Vascular epiphyte distribution

patterns: explaining the mid-elevation richness peak. Journal of Ecology, 94, 144-156.

Chatzaki, M., Lymberakis, P., Markakis, G. & Mylonas, M. (2005) The distribution of ground

spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: species

richness, activity and altitudinal range. Journal of Biogeography 32, 813–831.

Chettri, B., Bhupathy, S., & Acharya, B.K. 2010. Distribution pattern of reptiles along an

eastern Himalayan elevation gradient, India. Acta Oecologica, 36, 16–22

Choi, S. W. & Jeong-Seop, N.A. (2010) Altitudinal distribution of moths (Lepidoptera) in Mt.

Jirisan National Park, South Korea. European. Journal of Entomology, 107, 229–245.

Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community

structure. Australian Journal of Ecology, 18, 117– 143.

123

Coddington, J.A., Agnarsson, I., Miller, J.A., Kuntner, M. & Hormiga, G. (2009)

Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys.

Journal of Animal Ecology, 78, 573–584

Coddington, J.A., Griswold, C.E., Silva, D., Larcher, L. (1991) Designing and testing

sampling protocols to estimate biodiversity in tropical ecosystems. The Unity of Evolutionary

Biology: Proceedings of the Fourth International Congress of Systematic and Evolutionary

Biology, Dioscorides Press, Portland, Oregon. p. 44–60.

Colwell, R. K. (2009) EstimateS: Statistical estimation of species richness and shared species

from samples. Version 8.2. User's Guide and application. (http://purl.oclc.org/estimates).

Acesso: 11/(2010)

Colwell, R.K. & Coddington, J.A. (1994) Estimating terrestrial biodiversity through

extrapolation. Philosophical Transactions of the Royal Society, London B, 345, 101–118.

Davis, A.L.V., Scholtz, C.H. & Chown, S.L. (1999) Species turnover, community boundaries

and biogeographical composition of dung beetle assemblages across an altitudinal gradient in

South Africa. Journal of Biogeography, 26, 1039–1055.

Dufrêne, M. & Legendre, P. (1997) Species assemblages and indicator species: the need for a

fl exible asymetrical approach. Ecological Monographs, 67, 345–366.

Fasham, M.J.R. (1977) A comparison of nometric multidimentsional scaling, principal

components and reciprocal averaging for the ordination of simulated coenoclines, and

coenoplanes. Ecology 58, 551-561.

Ferreira-Ojeda, L. & Florez-Daza, E. (2007) Arañas orbitelares (Araneae: Orbiculariae) em

tres formaciones vegetales de la Sierra Nevada de Santa Marta (Magdalena, Colombia).

Revista Ibérica de Aracnologia, 16, 3-16.

124

García-López A., Micó, E., Numa, C & Galante, E. (2010) Spatiotemporal Variation of

Scarab Beetle Assemblages (Coleoptera: Scarabaeidae: Dynastinae, Melolonthinae,

Rutelinae) in the Premontane Rain Forest in Costa Rica: A Question of Scale. Annals of the

American Entomological Society 103, 956-964.

Gentry, A.H. (1988) Changes in plant community diversity and floristic composition on

environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75, 1–

34.

Ghalambor, C.K., Huey, R.B., Martin, P.R., Tewksbury, J.J. & Wang, G. (2006) Are

mountain passes higher in the tropics? Janzens hypothesis revisited. Integr. Comparative

Biology, 46, 5–17.

Greenstone, M.H. (1984) Determinants of web spider species diversity: vegetation structural

diversity vs. prey availability. Oecologia, 62, 299 – 304.

Halaj, J., Ross, D.W. & Moldenke, A. R. (1998) Habitat structure and prey availability as

predictors of the abundance and community.

Hammer, O., Harper, D.A.T. & Ryan, P. D. (2001) PAST: Paleontological Statistics Software

Package for Education and Data Analysis. Palaeontological Electronica 4(1), 9pp.

Höfer, H. & Brescovit, A.D. (2001) Species and guild structure of a Neotropical spider

assemblage (Araneae) from Reserva Ducke, Amazonas, Brazil. Andrias, 15, 99-119.

Hubbell, S.P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography.

Monographs in Population Biology 32. Princeton University Press, Princeton, NJ.

Huber, O. (1995) Geographical and physical features. Flora of the Venezuelan Guayana.

(eds. Berry, P.E., Holst, B.K. & Yatskievych, K.). p. 1-60.Missouri Botanical Garden Press,

St. Louis,

125

Hurlbert, A. H. (2004) Species–energy relationships and habitat complexity in bird

communities. Ecology Letters, 7, 714–720

Jankowski, J.E., Ciecka, A.L., Meyer, N.Y. & Rabenold, K.N (2009) Beta diversity along

environmental gradients: implications of habitat specialization in tropical montane landscapes

Journal of Animal Ecology, 78, 315–327

Janzen, D.H. (1967) Why mountain passes are higher in the tropics? American Naturalist,

101: 233–249.

Janzen, D.H., Ataroff, M., Farinas, M., Reyes, S., Rincon, N., Soler, A., Soriano, P., Vera, M.

1976.Changes in the arthropod community along an elevational transect in the Venezuelan

Andes. Biotropica, 8, 193–203.

Jill , E. Jankowski, A., Ciecka, C., Meyer , N. Y. & Rabenold, K. N. (2009) Beta diversity

along environmental gradients: implications of habitat specialization in tropical montane

landscapes. Journal of Animal Ecology 2009, 78 , 315–327

Jiménez-Valverde, A., Baselga, A.S., Melic, A. & Txasko, N . (2010) Climate and regional

beta-diversity gradients in spiders: dispersal capacity has nothing to say? Insect Conservation

and Diversity , 3, 51–60.

Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology

88, 2427-2439.

Kapoor V. (2008) Effects of rainforest fragmentation and shade-coffee plantations on spider

communities in the Western Ghats, India. Jornal of Insect Conservation, 12, 53–68

Kenkel, N. C. & Orlóci, L. (1986) Applying metric and nonmetric multidimensional scaling

to ecological studies: some new results. Ecology, 67,919–928.

Kruskal J.B. (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika

29, 115-129.

126

Levi, H.W. (1986) The Neotropical orb-weaver genera Chrysometa and Homalometa

(Araneae: Tetragnathidae). Bulletin of the Museum of Comparative Zoology., Harvard

University, 151, 91–215.

Levi, H.W. (1991) The neotropical and mexican species of the orb-weaver

genera Araneus, Dubiepeira, and Aculepeira (Araneae: Araneidae). Bulletim of the Museum

of Comparative Zoology, 152, 167-315.

Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G.S. (1996) Tropical forest structure

and composition on a largescale altitudinal gradient in Costa Rica. Journal of Ecology, 84,

137–152.

Liew, T.S., Schilthuizen, M., Bin & Laki, M. (2010). The determinants of land snail diversity

along a tropical elevational gradient: insularity, geometry and niches. Journal of

Biogeography, 37, 1071–1078.

Lo-Man-H., N. F., Gardner, T. A., Ribeiro-Júnior, M.A., Barlow, J. & Bonaldo, A.L. (2008)

The value of primary, secondary, and plantation forests for Neotropical epigeic arachnids. The

Journal of Arachnology 36, 394–401.

Lomolino, M.K. (2001) Elevation gradients of species-density: historical and prospective

views. Global Ecology and Biogeography, 10, 3-13.

MacNally, R., Fleishman, E., Bulluck, L.P. & Betrus, C.J. (2004) Comparative influence of

spatial scale on beta diversity within regional assemblages of birds and butterflies. Journal of

Biogeography, 31, 917–929.

McCain, C.M. (2005) Elevational gradients in diversity of small mammals. Ecology, 86: 366–

372.

McCain, C.M. (2007a) Area and mammalian elevational diversity. Ecology, 88: 76–86.

127

McCain, C.M. (2007b) Could temperature and water availability drive elevational species

richness patterns? A global case study for bats. Global Ecologu and Biogeography, 16, 1–13.

McCain, C.M. (2009) Vertebrate range sizes indicate that mountains may be higher in the

tropics. Ecology Letters, 12, 550–560

McCune, B. & Mefford, M.J. (1999) PC-ORD: Multivariate Analysis of Ecological Data.

Version 5·12. MjM Software, Gleneden Beach, OR, USA.

McDiarmid, R. W. & Donnelly, M. A. (2005) Herpetofauna of the Guyana Highlands:

Amphibians and Reptiles of the Lost World. Ecology and Evolution in the Tropics - A

Herpetological Perspective. (eds. Donnelly, M. A., Crother, B. I.,Guyer, C., Wake, M. H. &

White, M. E.). 584 pp. The Univestity of Chicago Press. Chicago, EUA.

McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K.,

Dornelas, M., Enquist, B. J., Green, J. L., He F., Hurlbert, A. H., Magurran, A. E., Marquet,

P. A. & White E. P. (2007) Species abundance distributions: moving beyond single prediction

theories to integration within an ecological framework. Ecology Letters, 10, 995–1015

Melo, A. S., Rangel, T. F. L. V. B. & Diniz-Filho. J. A.F. (2009) Environmental drivers of

beta-diversity patterns in New-World birds and mammals. Ecography, 32, 226–236.

Nogueira, A. A., Pinto-da-Rocha, R. & Brescovit, A. D. (2006) Comunidade de aranhas

orbitelas (Arachnida-Araneae) na região da Reserva Florestal do Morro Grande, Cotia, São

Paulo, Brasil. Biota Neotropica, 6(2), 1-24.

Otto, C. & Svensson, B.S. (1982) Structure of communities of ground-living spiders along

altitudinal gradients. Holarctic Ecology, 5, 35–47.

Patterson, B.D., Stotz, D.F., Solari, S. & Fitzpatrick, J.W. (1998) Contrasting patterns of

elevational zonation for birds and mammals in the Andes of southeastern Peru. Journal of

Biogeography, 25, 593–607.

128

Pearce, J.L., Venier, L.A., Eccles, G., Pedlar, J., McKenney, D. (2004) Influence of habitat

and microhabitat on epigeal spider (Araneae) assemblages in four stand types. Biodiversity

and Conservation, 13, 1305–1334.

Pinto-Leite, C.M., Guerrero,A.C.& Brazil, T.K. (2008) Non-random patterns of spider species

composition in an Atlantic rainforest. The Journal of Arachnology 36,448–452.

Pires, J.M. & Prance, T.G. (1985) The vegetation types of the Brazilian Amazon. Key

environments: Amazonia. (eds. Prance, G.T., Lovejoy, T.E.). p:109-145.Pergamon Press.

Oxford.

Platnick, N.I. (2010) The world spider catalog, version 11.0. American Museum of Natural

History (http://research.amnh.org/entomology/spiders/catalog/index.html). Acesso: 10/(2010)

RADAM. (1978) Folha NA19. Pico da Neblina. Ministério das Minas e Energia. Rio de

Janeiro.

Robinson, J.V. (1981) The effect of architectural variation in habitat on a spider community: an

experimental fiel study. Ecology. 62 (1), 73-80.

Rosenberg, M. S. (2001) PASSAGE. Pattern Analysis, Spatial Statistics, and Geographic

Exegesis. Version 1.0. Department of Biology, Arizona State University, Tempe, AZ.

Rull, V. & Nogué S. (2007) Potential migration routes and barriers for vascular plants of the

Neotropical Guyana Highlands during the Quaternary. Journal of Biogeography, 4, 1327–

1341.

Russel-Smith .H. & Stork, N.E. (1994) Abundance and diversity of spiders from the canopy

of tropical rainforests with particular reference to Sulawesi. Indonesia. Journal of Tropical

Ecology, 10, 545-558.

129

Sanders, N.J., Lessard, J.P., Fitzpatrick, M.C. & Dunn, R.R. (2007) Temperature, but not

productivity or geometry, predicts elevational diversity gradients in ants across spatial grains.

Global Ecology and Biogeography, 16, 640 -649.

Scharff, N., Coddington, J.A., Griswold, C.E., Hormiga, G. & Bjorn, P.D.P. (2003) When to

quit? Estimating spider species richness in a northern European deciduos forest. Journal of

Arachnology, 31, 246-273.

Silva, D. & Coddington, J. A. (1996) Spiders of Pakitza (Madre de Dios, Perú): species

richness and notes on community structure. Manu-The biodiversity of Southeastern Perú.

(eds. Wilson, D. E. & Sandoval, A.) pp- 253-311. Smithsonian Institution Press, Washington,

Smouse, P.E., Long, J.C. & Sokal, R.R. (1986) Multiple regression and correlation extensions

of the Mantel test of matrix correspondence. Systematic Zoology, 35, 627–632.

Soininen, J., McDonald, R. & Hillebrand, H. (2007a) The distance decay of similarity in

ecological communities. Ecography, 30, 3–12.

Toti, D.S., Coyle, F.A. & Miller, J.A. (2000) A structured inventory of Appalachian grass

bald and heath bald spider asemlages and a test of species richness estimator performance.

Journal of Arachnology, 28, 329-345.

Turnbull, A.L. (1973) Ecology of the true spiders (Araneomorphae). Annual Revue of

Entomology, 18, 305-348.

Vazquez, J. A. and Givnish, T. J. (1998) Altitudinal gradients in tropical forest composition,

structure, and diversity in the Sierra de Manantla´n. Journal of Ecology, 86, 999-1020.

Watkins, Jr., J.E., Cardelus, C., Colwell, R. K. & Moran, C. (2006). Diversity and distribution

of ferns along an elevational gradient in Costa Rica. American Journal of Botany, 93, 73-83.

130

Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California.

Ecological Monography, 30, 279-338.

Willard, D.E., Foster, M.S., Barrowclough, G.F., Dickerman,R.W., Cannell, P.F., Coats, S.L.,

Cracraft, J.L. & O'Neill, J.P. (1991) The Birds of Cerro de la Neblina. Fieldiana, 65, 1-80.

Wu, F., Yang, X. J., & Yang, J. X. (2010) Additive diversity partitioning as a guide to

regional montane reserve design in Asia: an example from Yunnan Province, China. Diversity

and Distributions, 16, 1022–1033.

131

TABLES

Table 1 – Geographical coordinates of the sampling sites and diversity measures of the spider community from the Pico da Neblina (AM, Brazil). S - richness,

N - individuals, D - exponential Shannon-wiener or numbers equivalent, β alt - beta diversity within altitudes, % singl - proportion of singletons, BP dom -

Berger-Parker dominance index, S (%S) - richness and proportional richness, N(%N) - abundance and proportional abundance, %singl/S alt - proportion of

singletons in relation to the richness of each altitude, % singl/ tot singl - proportion of singletons in relation to total number of singletons.

Results for sampling sites

Results for altitudes

% singl/ % singl/

Sampling sites Latitude Longitude S N D (sampling site) β alt % singl BP dom S (% S) N (% N)

D (altitude) S alt tot singl BP dom

100-1 00°39'51.51"N 65°56'14.67"W 113 216 90.11

58.4 0.04

100-2 00°39'56.30"N 65°56'07.72"W 131 230 101.90 1.54 66.4 0.05

224 (42.4) 688 (21.9) 142.74 48.21 32.49 0.03

100-3 00°40'01.88"N 65°56'08.34"W 121 242 87.01 65.3 0.05

400-1 00°41'46.78"N 65°55'37.45"W 96 191 65.56

65.6 0.08

400-2 00°41'54.96"N 65°55'40.44"W 93 207 61.56 1.53 59.1 0.07

194 (36.7) 590 (18.8) 98.59 51.03 24.87 0.09

400-3 00°41'47.68"N 65°55'42.24"W 105 192 66.09 75.2 0.12

860-1 00°44'58.95"N 65°58'10.56"W 85 196 53.95

54.1 0.11

860-2 00°44'59.89"N 65°58'20.60"W 100 288 56.43 1.44 54.0 0.10

171 (32.4) 713 (22.7) 82.02 43.86 16.75 0.09

860-3 00°45'02.05"N 65°58'15.96"W 98 229 60.28 61.2 0.12

1550-1 00°47'14.74"N 65°59'58.70"W 70 184 48.67

47.1 0.09

1550-2 00°47'06.39"N 66°00'02.41"W 73 219 53.62 1.33 42.5 0.06

115 (21.8) 597 (19) 61.68 41.74 14.21 0.07

1550-3 00°47'11.50"N 65°59'56.07"W 61 194 37.71 49.2 0.08

2000-1 00°47'26.01"N 66°01'23.52"W 30 95 16.96

50.0 0.18

2000-2 00°47'15.82"N 66°01'25.21"W 33 88 16.89 1.42 57.6 0.25

69 (13.1) 295 (9.4) 26.31 50.72 10.66 0.21

2000-3 00°47'18.31"N 66°01'17.50"W 40 112 21.63 55.0 0.27

2400-1 00°48'15.30"N 66°00'45.18"W 15 85 5.10

26.7 0.61 2400-2 00°48'07.74"N 66°00'40.71"W 12 73 5.09 1.21 58.3 0.38

24 (4.5) 257 (8.2) 6.10 37.5 1.02 0.53

2400-3 00°48'03.42"N 66°00'40.39"W 14 99 5.00 35.7 0.58

132

Table 2 – Matrix of distance based on the similarity of the spider community of the 18 sites sampled at the Pico da Neblina (AM, Brazil). Bray-

Curtis similarity index is presented at the lower side of the middle diagonal, and the proportional number (in relation to pooled abundance of the

pair) number of shared species is on the upper side of the middle diagonal. Similarity and proportional shared species values within altitudes are

shaded in gray.

100-1 100-2 100-3 400-1 400-2 400-3 860-1 860-2 860-3 1550-1 1550-2 1550-3 2000-1 2000-2 2000-3 2400-1 2400-2 2400-3

100-1 35.6 32.2 15.5 14.4 13.5 15.1 13.3 13.4 2.8 2.2 2.4 0.0 2.1 1.3 0 0 0

100-2 0.46

34.8 15.8 13.1 16.3 12.5 13.8 14.5 4.7 4.6 4.3 0.6 1.9 0.6 0 0.7 0.7

100-3 0.42 0.46

16.7 16.3 16.5 13.8 10.0 12.9 3.2 2.1 2.2 0.0 0.7 1.3 0 0 0

400-1 0.18 0.19 0.24

25.2 28.0 20.7 18.8 15.5 3.1 4.3 5.4 1.6 1.6 1.5 0.9 0.9 0

400-2 0.21 0.18 0.24 0.49

27.7 21.1 20.6 16.5 3.8 5.7 5.5 1.7 1.6 1.5 0.9 1.0 0

400-3 0.17 0.24 0.23 0.44 0.45

18.0 17.1 15.3 2.9 4.7 2.5 0.7 2.2 1.4 0 0 0

860-1 0.19 0.17 0.19 0.33 0.34 0.27

34.1 35.6 6.2 9.7 10.6 0.9 0.9 0.8 1.0 0 1.0

860-2 0.16 0.16 0.14 0.26 0.29 0.25 0.47

34.7 10.4 10.2 9.5 0.0 0.8 2.2 0.9 0.9 1.8

860-3 0.17 0.17 0.15 0.24 0.22 0.21 0.51 0.46

8.4 9.6 12.8 1.6 1.6 2.2 0.9 0.9 1.8

1550-1 0.04 0.04 0.03 0.04 0.05 0.05 0.09 0.12 0.13

43.0 33.7 7.5 7.3 8.9 3.7 2.5 3.7

1550-2 0.02 0.04 0.03 0.04 0.06 0.04 0.11 0.12 0.12 0.58

44.1 8.4 8.2 6.6 2.3 2.4 1.2

1550-3 0.02 0.04 0.02 0.05 0.04 0.03 0.11 0.09 0.10 0.51 0.58

9.6 8.0 7.4 2.7 2.8 2.7

2000-1 0 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.08 0.11 0.08

28.6 25.0 9.8 10.5 12.8

2000-2 0.02 0.03 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.08 0.12 0.07 0.55

25.9 9.1 9.8 9.3

2000-3 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.11 0.10 0.08 0.43 0.52

12.2 13.0 14.9

2400-1 0 0 0 0.01 0.01 0.00 0.01 0.02 0.02 0.04 0.03 0.02 0.08 0.08 0.10

35.0 38.1

2400-2 0 0.01 0 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.15 0.31 0.35 0.54

44.4

2400-3 0 0.01 0 0 0 0 0.01 0.01 0.01 0.02 0.01 0.02 0.14 0.13 0.16 0.74 0.57

133

Table 3 – Matrix of distance for the spider community sampled at 6 altitudes at the Pico da

Neblina (AM, Brazil). Bray-Curtis similarity index is presented at the lower side of the

middle diagonal, and the proportional number of shared species (in relation to pooled

abundance of the pair) is on the upper side of the middle diagonal. Comparisons between

adjacent altitudes are shaded in gray.

100 400 860 1550 2000 2400

100

26.7 20.1 5.3 2.1 0.4

400 0.30

24.6 5.8 1.5 0.5

860 0.23 0.33

13.0 2.6 1.0

1550 0.05 0.06 0.14

12.2 4.5

2000 0.02 0.02 0.02 0.12

17.7

2400 0.002 0.01 0.01 0.03 0.21

134

Table 4 – Matrix of beta diversity expressed in numbers equivalents (D beta) of the spider

community sampled at six altitudes at the Pico da Neblina (AM, Brazil). Comparisons between

adjacent altitudes are shaded in gray.

100 400 860 1550 2000

400 1.50

860 1.60 1.45

1550 1.90 1.89 1.71

2000 1.80 1.85 1.80 1.65

2400 1.79 1.84 1.76 1.79 1.62

135

Table 5 – Results of Mantel and partial Mantel tests performed for the spider community from

the Pico da Neblina (AM, Brazil). Comparison – matrix being compared; control - matrix

controlled or partial factor; R – Pearson correlation coefficient; P – significance level of the

result. BCS - Bray Curtis Similarity index

Comparsion Control R P

(Partial)

β diversity x BCS space -0.896 0.0051

β diversity x BCS altitude -0.824 0.0018

β diversity x BCS -0.921 0.002

β diversity x

Altitude

space 0.554 0.0507

β diversity x

Altitude

0.727 0.0102

β diversity x Space 0.576 0.0532

BCS x Altitude space -0.829 0.0028

BCS x Altitude -0.797 0.0014

BCS x Space -0.494 0.0964

136

Table 6 – Number of indicator species of spiders, designated by the species indicator analysis,

for the three partitions of the gradient, at the Pico da Neblina (AM, Brazil): Lower and Upper

half; Guayana region and Altitudes. IS -number of species assigned as significant (p < 0.05)

indicators; S - total richness of the category;% IS – proportional number of indicator species

in relation to richness of categories; aver IV – average indicator value; IV 100 - species with

indicator value of 100; Total IV – sum of indicator values for the each partition.

Partition Category IS S % IS Aver IV IV 100 Total IV

Lower and LH 42 110 38.2 68 3

upper half UH 6 62 9.7 64.9 0

Total 48 157 30.6 68.2 3 3272.6

Guayana region Lowlands 22 96 22.9 72.1 1

Uplands 15 103 14.6 78.8 1

Higlands 3 24 12.5 92.9 1

Total 40 157 25.5 75.9 3 3034.5

Altitudes 100 21 72 29.2 89.2 12

400 9 72 12.5 82.3 4

860 12 80 15.0 80.5 3

1550 19 52 36.5 90.9 9

2000 6 20 30.0 81.7 2

2400 4 12 33.3 96.6 3

Total 71 157 45.2 87.1 33 6183.1

137

Table 7 – Results of species indicator analysis by families. Number of indicator species of

spiders for the three partitions of the gradient at the Pico da Neblina (AM, Brazil), by

families. Categories: Partition 1, LH – lower half, UH – upper half; Partition 2, L – lowlands,

U – uplands, H – highlands. IS – indicator species; S – richness of the families considering

only species included in the analysis (at least five individuals).

Partition 1

Partition 2 Partition 3

Family

Category

Category

Category

IS (S) LH UH IS (S) L U H IS (S) 100 400 860 1550 2000 2400

Anyphaenidae 1 (4)

1 1 (4)

1 3 (4)

1

2

Araneidae 13 (35) 12 1 7 (35) 5 1 1 14 (35) 4 4 3 2 1

Corinnidae 2 (4) 2

1 (4)

1

1 (4)

1

Ctenidae 4 (6) 4

4 (6) 2 2

4 (6)

2 1 1

Deinopidae 1 (1) 1

1 (1)

1

Hahniidae

1 (1)

1

Linyphiidae 1 (4)

1 1 (4)

1

2 (4)

1 1

Lycosidae 1 (1) 1

1 (1) 1

Mimetidae

3 (6)

2

1

Oonopidae

1 (1)

1

Pholcidae 4 (8) 4

4 (8) 2 2

3 (8)

1 2

Pisauridae 1 (2) 1

1 (2) 1

2 (2) 2

Salticidae 3 (15) 3

2 (15) 1 1

5 (15) 2 1

1 1

Scytodidae

1 (2)

1

1 (2)

1

Senoculidae

1 (1)

1

1 (1)

1

Sparassidae 3 (4) 3

3 (4) 3

2 (4) 1

1

Tetragnathidae 3 (13) 2 1 3 (13)

2 1 6 (13) 2

2 1 1

Theridiidae 3 (32) 2 1 5 (32) 2 3

15 (32) 6 1 3 5

Theridiosomatidae 3 (5) 2 1 1 (5) 1

3 (5) 2

1

Thomisidae 1 (2) 1 1 (2) 1

Uloboridae 4 (9) 4 3 (9) 3 3 (9) 2 1

138

SUPORTING INFORMATION

Table 1 – Result of the species indicator analysis performed for the spider community at the

Pico da Neblina (AM, Brazil), for the first partition of the gradient, Lower and Upper half.

Shaded species are significant indicators. IV – indicator value, p – level of significance.

Categories: LH – lower half, UH – upper half.

Lower and Upper half

Family Species Category IV p

Ctenidae Ctenus amphora LH 100 0.001

Pholcidae Mesabolivar aurantiacus LH 100 0.001

Sparassidae Sparassidae sp.1 LH 100 0.001

Araneidae Hypognatha aff. putumayo LH 88.9 0.001

Pholcidae Mesabolivar aff. pseudoblechroscelis LH 88.9 0.001

Uloboridae Uloborus sp.2 LH 88.9 0.001

Uloboridae Uloborus sp.7 LH 77.8 0.002

Uloboridae Philoponella sp.1 LH 88.9 0.003

Corinnidae Corinna ducke LH 81.2 0.005

Thomisidae Tmarus sp.13 LH 77.8 0.005

Ctenidae Ctenus sp.2 LH 66.7 0.008

Sparassidae Pseudosparianthis ravida LH 66.7 0.008

Theridiosomatidae Naatlo sp.2 LH 77.8 0.01

Deinopidae Deinops sp.1 LH 66.7 0.01

Salticidae Mago sp.1 LH 66.7 0.01

Tetragnathidae Azilia histrio LH 66.7 0.01

Araneidae Mangora amacayacu LH 66.7 0.011

Pisauridae Architis tenuis LH 66.7 0.011

Araneidae Wagneriana sp.1 LH 66.7 0.012

Araneidae Micrathena clypeata LH 66.7 0.013

Theridiosomatidae Theridiossoma sp.1 LH 66.7 0.013

Araneidae Eustala sp.1 LH 66.7 0.014

Araneidae Eustala sp.11 LH 66.7 0.014

Araneidae Wagneriana sp.4 LH 66.7 0.014

Pholcidae Carapoia sp. LH 66.7 0.014

Araneidae Ocrepeira covillei LH 55.6 0.026

139

Ctenidae Ctenus villasboasi LH 71.1 0.028

Corinnidae Corinna gr. ducke sp.2 LH 55.6 0.028

Araneidae Micrathena kirbyi LH 55.6 0.029

Araneidae Alpaida truncata LH 55.6 0.029

Araneidae Micrathena triangularis LH 64.8 0.03

Ctenidae Centroctenus alberti LH 55.6 0.03

Sparassidae Sparassidae sp.3 LH 55.6 0.03

Lycosidae Aglaoctenus castaneus LH 55.6 0.032

Uloboridae Miagrammopes sp.2 LH 55.6 0.032

Araneidae Metazygia enabla LH 55.6 0.034

Tetragnathidae Chrysometa minuta LH 55.6 0.034

Theridiidae Spintharus sp.2 LH 60.2 0.036

Salticidae Lyssomanes sp.2 LH 55.6 0.036

Pholcidae Litoporus aff. uncatus LH 55.6 0.038

Theridiidae Ariamnes attenuatus LH 55.6 0.038

Salticidae Scopocira sp.1 LH 60.6 0.04

Araneidae Araneus bogotensis UH 77.8 0.003

Tetragnathidae Chrysometa sp.1 UH 66.7 0.01

Theridiidae Theridion longipedatum UH 66.7 0.011

Theridiosomatidae Naatlo fauna UH 66.7 0.011

Linyphiidae Sphecozone crassa UH 55.6 0.025

Anyphaenidae Anyphenoides sp. UH 55.6 0.035

Araneidae Eustala sp.5 LH 44.4 0.063

Araneidae Micrathena vigorsi LH 44.4 0.075

Araneidae Cyclosa tapetifaciens LH 44.4 0.076

Araneidae Micrathena sp.1 LH 44.4 0.077

Theridiidae Twaitesia bracteata LH 44.4 0.078

Araneidae Alpaida aff. delicata LH 44.4 0.079

Araneidae Alpaida aff. cuyabeno LH 44.4 0.079

Corinnidae Myrmecium sp.3 LH 44.4 0.079

Salticidae Euophryinae sp.1 LH 44.4 0.079

Theridiidae Helvibis sp.1 LH 44.4 0.081

Uloboridae Conifaber sp.1 LH 44.4 0.083

Theridiosomatidae Naatlo splendida LH 44.4 0.085

Araneidae Micrathena triangularispinosa LH 44.4 0.086

Pholcidae Mesabolivar sp.1 LH 44.4 0.088

Salticidae Noegus sp.2 LH 44.4 0.094

Theridiidae Faiditus sp.9 LH 44.4 0.094

Araneidae Cyclosa inca LH 50.5 0.096

Araneidae Eustala sp.2 LH 44.4 0.159

Theridiidae Episinus salobrensis LH 41 0.182

Araneidae Micrathena exilinae LH 33.3 0.191

Pisauridae Architis neblina LH 33.3 0.191

Salticidae Faiditus amplifrons LH 33.3 0.191

Salticidae Noegus sp.6 LH 33.3 0.191

Tetragnathidae Leucauge sp.1 LH 33.3 0.191

140

Tetragnathidae Azilia sp.1 LH 33.3 0.191

Theridiidae Episinus sp.5 LH 33.3 0.191

Theridiidae Faiditus convolutus LH 33.3 0.191

Theridiidae Chrosiothes sp.1 LH 33.3 0.191

Theridiidae Episinus sp.7 LH 33.3 0.191

Theridiidae Episinus sp.2 LH 33.3 0.191

Theridiosomatidae Naatlo sp.1 LH 33.3 0.191

Uloboridae Uloborus sp.1 LH 33.3 0.191

Mimetidae Ero sp.7 LH 33.3 0.193

Araneidae Mangora bovis LH 33.3 0.2

Araneidae Wagneriana sp.2 LH 33.3 0.2

Ctenidae Ctenus sp.1 LH 33.3 0.2

Tetragnathidae Leucauge sp.6 LH 33.3 0.2

Theridiidae Episinus sp.4 LH 33.3 0.2

Scytodidae Scytodes auricula LH 33.3 0.201

Salticidae Noegus sp.1 LH 33.3 0.203

Salticidae Amycus sp.2 LH 33.3 0.208

Araneidae Eustala sp.3 LH 33.3 0.212

Araneidae Eustala sp.4 LH 33.3 0.212

Salticidae Noegus sp.7 LH 33.3 0.213

Araneidae Scoloderus sp. LH 33.3 0.22

Linyphiidae Dubiaranea sp.1 LH 33.3 0.221

Theridiidae Anelosimus domingo LH 33.3 0.221

Theridiidae Faiditus atopus LH 33.3 0.221

Araneidae Cyclosa fililineata LH 31.7 0.285

Mimetidae Ero sp.6 LH 34.6 0.313

Corinnidae Corinna gr. ducke sp.3 LH 29.2 0.331

Salticidae Lyssomanes sp.3 LH 22.2 0.454

Uloboridae Miagrammopes sp.4 LH 22.2 0.456

Theridiidae Anelosimus eximius LH 22.2 0.463

Theraphosidae Ephebopus uatumam LH 22.2 0.469

Theridiidae Chrysso sp.2 LH 22.2 0.482

Theridiidae Faiditus sp.5 LH 22.2 0.482

Araneidae Pronous nigripes LH 22.2 0.486

Araneidae Micrathena cyanospina LH 22.2 0.501

Theridiidae Cryptachaea taeniata LH 25.9 0.571

Thomisidae Tmarus sp.1 LH 24.2 0.614

Theridiidae Dipoena sp.1 LH 27.8 0.923

Uloboridae Philoponella republicana LH 13.7 1

Pholcidae Mesabolivar aff. aurantiacus LH 13.3 1

Tetragnathidae Leucauge sp.5 LH 7.4 1

Theridiidae Dipoena rubella UH 53.2 0.067

Tetragnathidae Homalometa sp. UH 44.4 0.073

Araneidae Parawixia rimosa UH 44.4 0.08

Theridiidae Styposis sp.1 UH 44.4 0.08

Sparassidae Sparassidae sp.2 UH 44.4 0.081

141

Theridiidae Theridion fungosum UH 48.1 0.095

Salticidae Euophryinae sp.3 UH 33.3 0.186

Linyphiidae Dubiaranea caeca UH 33.3 0.196

Hahniidae Amoloxenops sp. UH 33.3 0.202

Salticidae Cotinusa sp.1 UH 33.3 0.202

Anyphaenidae Patrera sp.1 UH 33.3 0.211

Araneidae Alpaida sp.1 UH 33.3 0.211

Mimetidae Gelanor sp.1 UH 33.3 0.211

Mimetidae Ero sp.1 UH 33.3 0.211

Tetragnathidae Chrysometa sp.7 UH 33.3 0.211

Theridiidae Episinus nebulosus UH 33.3 0.211

Theridiidae Spintharus sp.1 UH 33.3 0.211

Theridiidae Dipoenata balboae UH 33.3 0.211

Uloboridae Miagrammopes sp.1 UH 33.3 0.211

Salticidae Euophryinae sp.4 UH 30.8 0.211

Anyphaenidae Josa sp.1 UH 33.3 0.225

Mimetidae Ero sp.2 UH 33.3 0.225

Tetragnathidae Chrysometa sp.2 UH 33.3 0.225

Ctenidae Ctenus aff. satanas UH 28.6 0.309

Oonopidae Orchestina sp. UH 37.9 0.329

Anyphaenidae Anyphaenidae sp.2 UH 33.3 0.337

Theridiidae Phycossoma sp.1 UH 28.6 0.349

Senoculidae Senoculus sp. UH 29.2 0.353

Linyphiidae Dubiareanea margaritata UH 24.6 0.421

Pholcidae Priscula cf. taruma UH 34.5 0.424

Scytodidae Scytodes balbina UH 25.5 0.431

Theridiidae Episinus sp.1 UH 22.2 0.453

Mimetidae Gelanor sp.2 UH 22.2 0.459

Pholcidae Metagonia maritaguariensis UH 22.2 0.459

Tetragnathidae Chrysometa boraceia UH 22.2 0.459

Theridiidae Achaearanea dea UH 22.2 0.459

Araneidae Eustala sp.12 UH 22.2 0.47

Araneidae Mangora aff. Acre UH 25 0.564

Tetragnathidae Chrysometa opulenta UH 28.4 0.622

Theridiidae Dipoena duodecimpunctata UH 25.9 0.638

Theridiidae Rhomphaea metaltissima UH 18.5 0.736

Theridiidae Phoroncidia moyobamba UH 14.8 1

Tetragnathidae Leucauge sp.2 UH 13.3 1

Salticidae Mago sp.2 UH 8.9 1

142

Table 2 – Result of the species indicator analysis performed for the spider community at the

Pico da Neblina (AM, Brazil), for the second partition of the gradient, Guayana region.

Shaded species are significant indicators. IV – indicator value; p – level of significance.

Categories: L – lowlands, U – uplands, H – highlands.

Guayana region

Family Species Category IV P

Pisauridae Architis tenuis L 100 0.001

Araneidae Hypognatha aff. putumayo L 91.3 0.001

Uloboridae Uloborus sp.2 L 77.8 0.002

Ctenidae Ctenus amphora L 84.9 0.003

Sparassidae Sparassidae sp.3 L 83.3 0.003

Uloboridae Miagrammopes sp.2 L 83.3 0.003

Sparassidae Sparassidae sp.1 L 71.4 0.003

Araneidae Micrathena clypeata L 80.4 0.004

Araneidae Micrathena kirbyi L 83.3 0.006

Sparassidae Pseudosparianthis ravida L 71.4 0.008

Theridiosomatidae Theridiossoma sp.1 L 71.4 0.008

Pholcidae Mesabolivar sp.1 L 66.7 0.015

Uloboridae Conifaber sp.1 L 66.7 0.016

Salticidae Scopocira sp.1 L 68.2 0.017

Araneidae Cyclosa tapetifaciens L 66.7 0.017

Theridiidae Helvibis sp.1 L 66.7 0.018

Thomisidae Tmarus sp.13 L 64.1 0.024

Lycosidae Aglaoctenus castaneus L 55.6 0.03

Theridiidae Episinus salobrensis L 61.5 0.04

Araneidae Ocrepeira covillei L 57.1 0.046

Ctenidae Centroctenus alberti L 57.1 0.05

Pholcidae Mesabolivar aff. pseudoblechroscelis L 55.6 0.05

Theridiidae Cryptachaea taeniata U 100 0.001

Tetragnathidae Chrysometa opulenta U 97.1 0.001

Theridiidae Dipoena duodecimpunctata U 94.4 0.001

Pholcidae Priscula cf. taruma U 86.2 0.001

Ctenidae Ctenus aff. satanas U 83.3 0.002

143

Linyphiidae Dubiareanea margaritata U 83.3 0.003

Corinnidae Corinna gr. ducke sp.3 U 83.3 0.004

Araneidae Mangora aff. acre U 79.2 0.004

Pholcidae Mesabolivar aff. aurantiacus U 66.7 0.009

Ctenidae Ctenus villasboasi U 77.1 0.01

Salticidae Euophryinae sp.4 U 66.7 0.011

Senoculidae Senoculus sp. U 66.7 0.011

Scytodidae Scytodes balbina U 66.7 0.013

Tetragnathidae Leucauge sp.2 U 66.7 0.014

Theridiidae Spintharus sp.2 U 53.8 0.043

Tetragnathidae Chrysometa sp.1 H 100 0.001

Araneidae Araneus bogotensis H 95.5 0.001

Anyphaenidae Anyphenoides sp. H 83.3 0.007

Salticidae Mago sp.1 L 51.3 0.051

Corinnidae Corinna ducke L 50.7 0.058

Mimetidae Ero sp.7 L 50 0.06

Salticidae Noegus sp.7 L 50 0.067

Araneidae Micrathena exilinae L 50 0.071

Pisauridae Architis neblina L 50 0.071

Salticidae Faiditus amplifrons L 50 0.071

Salticidae Noegus sp.6 L 50 0.071

Tetragnathidae Leucauge sp.1 L 50 0.071

Tetragnathidae Azilia sp.1 L 50 0.071

Theridiidae Episinus sp.5 L 50 0.071

Theridiidae Faiditus convolutus L 50 0.071

Theridiidae Chrosiothes sp.1 L 50 0.071

Theridiidae Episinus sp.2 L 50 0.071

Theridiosomatidae Naatlo sp.1 L 50 0.071

Uloboridae Uloborus sp.1 L 50 0.071

Araneidae Mangora bovis L 50 0.072

Araneidae Wagneriana sp.2 L 50 0.072

Ctenidae Ctenus sp.1 L 50 0.072

Theridiidae Episinus sp.4 L 50 0.072

Araneidae Alpaida aff. cuyabeno L 45.8 0.072

Tetragnathidae Leucauge sp.6 L 50 0.074

Salticidae Amycus sp.2 L 50 0.075

Araneidae Scoloderus sp. L 50 0.079

Uloboridae Philoponella sp.1 L 41.7 0.085

Theridiidae Dipoena sp.1 L 41.7 0.167

Thomisidae Tmarus sp.1 L 36.4 0.18

Salticidae Euophryinae sp.1 L 40 0.181

Uloboridae Uloborus sp.7 L 41 0.243

Araneidae Eustala sp.2 L 37 0.248

Corinnidae Myrmecium sp.3 L 33.3 0.251

Theridiidae Twaitesia bracteata L 33.3 0.251

Araneidae Micrathena vigorsi L 35.7 0.256

144

Araneidae Eustala sp.5 L 25 0.267

Araneidae Eustala sp.1 L 28.9 0.268

Theraphosidae Ephebopus uatumam L 33.3 0.281

Salticidae Lyssomanes sp.3 L 33.3 0.292

Araneidae Pronous nigripes L 33.3 0.294

Scytodidae Scytodes auricula L 27.8 0.312

Uloboridae Miagrammopes sp.4 L 33.3 0.316

Theridiidae Anelosimus eximius L 33.3 0.317

Theridiosomatidae Naatlo sp.2 L 34.9 0.334

Araneidae Alpaida truncata L 31.2 0.339

Theridiidae Ariamnes attenuatus L 33.3 0.347

Araneidae Cyclosa fililineata L 28.6 0.463

Araneidae Cyclosa inca L 31.8 0.48

Salticidae Noegus sp.1 L 29.6 0.509

Salticidae Lyssomanes sp.2 L 25 0.536

Araneidae Eustala sp.3 L 23.8 0.548

Araneidae Alpaida aff. delicata L 22.5 0.568

Araneidae Wagneriana sp.1 L 25 0.693

Tetragnathidae Azilia histrio L 25 0.723

Salticidae Noegus sp.2 L 20 0.727

Theridiosomatidae Naatlo splendida L 16.7 0.926

Uloboridae Philoponella republicana U 46.2 0.053

Anyphaenidae Patrera sp.1 U 50 0.062

Araneidae Alpaida sp.1 U 50 0.062

Mimetidae Gelanor sp.1 U 50 0.062

Mimetidae Ero sp.1 U 50 0.062

Tetragnathidae Chrysometa sp.7 U 50 0.062

Theridiidae Episinus nebulosus U 50 0.062

Theridiidae Spintharus sp.1 U 50 0.062

Theridiidae Dipoenata balboae U 50 0.062

Uloboridae Miagrammopes sp.1 U 50 0.062

Theridiidae Rhomphaea metaltissima U 50 0.075

Linyphiidae Dubiaranea sp.1 U 50 0.091

Theridiidae Anelosimus domingo U 50 0.091

Theridiidae Faiditus atopus U 50 0.091

Araneidae Micrathena triangularis U 46.3 0.117

Sparassidae Sparassidae sp.2 U 46 0.122

Theridiidae Theridion longipedatum U 40.2 0.145

Pholcidae Litoporus aff. uncatus U 35 0.203

Araneidae Wagneriana sp.4 U 33.3 0.204

Araneidae Metazygia enabla U 38.9 0.205

Theridiidae Theridion fungosum U 36.7 0.211

Tetragnathidae Leucauge sp.5 U 33.3 0.275

Theridiidae Chrysso sp.2 U 33.3 0.282

Theridiidae Faiditus sp.5 U 33.3 0.282

Pholcidae Mesabolivar aurantiacus U 41.9 0.291

145

Theridiidae Episinus sp.1 U 33.3 0.294

Deinopidae Deinops sp.1 U 33.3 0.302

Mimetidae Gelanor sp.2 U 33.3 0.302

Pholcidae Metagonia maritaguariensis U 33.3 0.302

Tetragnathidae Chrysometa boraceia U 33.3 0.302

Theridiidae Achaearanea dea U 33.3 0.302

Araneidae Micrathena cyanospina U 33.3 0.308

Mimetidae Ero sp.6 U 29.6 0.308

Araneidae Mangora amacayacu U 33.3 0.312

Theridiidae Episinus sp.7 U 28.6 0.313

Ctenidae Ctenus sp.2 U 34 0.376

Pholcidae Carapoia sp. U 27.2 0.417

Tetragnathidae Chrysometa minuta U 28.6 0.46

Corinnidae Corinna gr. ducke sp.2 U 23.3 0.471

Araneidae Eustala sp.11 U 26.9 0.483

Salticidae Mago sp.2 U 26.7 0.515

Araneidae Eustala sp.4 U 27.8 0.53

Araneidae Micrathena sp.1 U 21.6 0.584

Anyphaenidae Anyphaenidae sp.2 U 25 0.71

Tetragnathidae Homalometa sp. U 22.2 0.724

Araneidae Micrathena triangularispinosa U 19.4 0.739

Theridiidae Phoroncidia moyobamba U 22.2 0.744

Theridiidae Styposis sp.1 U 20 0.754

Theridiidae Faiditus sp.9 U 22.2 0.763

Araneidae Parawixia rimosa U 16.7 0.905

Theridiidae Dipoena rubella U 21.1 0.949

Anyphaenidae Josa sp.1 H 50 0.071

Linyphiidae Dubiaranea caeca H 50 0.071

Mimetidae Ero sp.2 H 50 0.071

Tetragnathidae Chrysometa sp.2 H 50 0.071

Hahniidae Amoloxenops sp. H 50 0.09

Salticidae Euophryinae sp.3 H 50 0.09

Salticidae Cotinusa sp.1 H 50 0.09

Theridiidae Phycossoma sp.1 H 42.9 0.13

Oonopidae Orchestina sp. H 40.7 0.191

Theridiosomatidae Naatlo fauna H 38 0.212

Araneidae Eustala sp.12 H 33.3 0.309

Linyphiidae Sphecozone crassa H 21.9 0.514

146

Table 3 – Result of the species indicator analysis performed for the spider community at the

Pico da Neblina (AM, Brazil), for the third partition of the gradient, by Altitude. Shaded

species are significant indicators. IV – indicator value, p – level of significance. The numbers

in the category column represent the altitudes.

Altitude

Family Species Category IV P

Salticidae Faiditus amplifrons 100 100 0.006

Araneidae Micrathena exilinae 100 100 0.006

Theridiidae Episinus sp.5 100 100 0.006

Tetragnathidae Leucauge sp.1 100 100 0.006

Theridiidae Faiditus convolutus 100 100 0.006

Pisauridae Architis neblina 100 100 0.006

Theridiidae Chrosiothes sp.1 100 100 0.006

Theridiosomatidae Naatlo sp.1 100 100 0.006

Uloboridae Uloborus sp.1 100 100 0.006

Theridiidae Episinus sp.2 100 100 0.006

Tetragnathidae Azilia sp.1 100 100 0.006

Salticidae Noegus sp.6 100 100 0.006

Araneidae Cyclosa tapetifaciens 100 92.3 0.006

Theridiidae Helvibis sp.1 100 90 0.006

Araneidae Micrathena clypeata 100 85.7 0.012

Theridiidae Episinus salobrensis 100 84.6 0.018

Pisauridae Architis tenuis 100 66.7 0.018

Uloboridae Miagrammopes sp.2 100 77.8 0.022

Araneidae Ocrepeira covillei 100 57.1 0.035

Sparassidae Sparassidae sp.3 100 62.5 0.036

Theridiosomatidae Theridiossoma sp.1 100 57.1 0.047

Ctenidae Ctenus amphora 400 69.9 0.001

Theridiidae Episinus sp.4 400 100 0.003

Ctenidae Ctenus sp.1 400 100 0.003

Araneidae Mangora bovis 400 100 0.003

Araneidae Wagneriana sp.2 400 100 0.003

Araneidae Alpaida aff. Cuyabeno 400 91.7 0.003

Araneidae Eustala sp.1 400 57.9 0.013

147

Pholcidae Mesabolivar sp.1 400 60 0.026

Salticidae Mago sp.1 400 61.5 0.035

Corinnidae Corinna gr. ducke sp.3 860 87.5 0.005

Pholcidae Mesabolivar aurantiacus 860 83.7 0.009

Theridiidae Anelosimus domingo 860 100 0.01

Linyphiidae Dubiaranea sp.1 860 100 0.01

Theridiidae Faiditus atopus 860 100 0.01

Araneidae Wagneriana sp.4 860 66.7 0.01

Theridiidae Cryptachaea taeniata 860 77.8 0.019

Araneidae Metazygia enabla 860 77.8 0.023

Ctenidae Ctenus villasboasi 860 68.6 0.027

Pholcidae Litoporus aff. Uncatus 860 70 0.029

Araneidae Mangora amacayacu 860 66.7 0.033

Deinopidae Deinops sp.1 860 66.7 0.035

Ctenidae Ctenus aff. Satanás 1550 85.7 0.002

Tetragnathidae Chrysometa sp.7 1550 100 0.011

Uloboridae Miagrammopes sp.1 1550 100 0.011

Theridiidae Episinus nebulosus 1550 100 0.011

Anyphaenidae Patrera sp.1 1550 100 0.011

Theridiidae Spintharus sp.1 1550 100 0.011

Araneidae Alpaida sp.1 1550 100 0.011

Theridiidae Dipoenata balboae 1550 100 0.011

Mimetidae Gelanor sp.1 1550 100 0.011

Mimetidae Ero sp.1 1550 100 0.011

Salticidae Euophryinae sp.4 1550 92.3 0.011

Tetragnathidae Chrysometa opulenta 1550 85.3 0.011

Theridiidae Theridion longipedatum 1550 80.5 0.011

Theridiidae Dipoena duodecimpunctata 1550 77.8 0.011

Araneidae Mangora aff. acre 1550 75 0.014

Linyphiidae Dubiareanea margaritata 1550 73.7 0.016

Senoculidae Senoculus sp. 1550 87.5 0.02

Sparassidae Sparassidae sp.2 1550 92 0.024

Scytodidae Scytodes balbina 1550 76.5 0.033

Hahniidae Amoloxenops sp. 2000 100 0.003

Salticidae Cotinusa sp.1 2000 100 0.003

Oonopidae Orchestina sp. 2000 81.5 0.003

Araneidae Araneus bogotensis 2000 68.2 0.01

Theridiosomatidae Naatlo fauna 2000 76 0.016

Tetragnathidae Chrysometa sp.1 2000 64.6 0.039

Tetragnathidae Chrysometa sp.2 2400 100 0.011

Anyphaenidae Josa sp.1 2400 100 0.011

Mimetidae Ero sp.2 2400 100 0.011

Anyphaenidae Anyphenoides sp. 2400 86.2 0.011

Araneidae Eustala sp.2 100 50 0.052

Ctenidae Centroctenus alberti 100 71.4 0.054

Theridiidae Ariamnes attenuatus 100 66.7 0.054

148

Araneidae Cyclosa fililineata 100 57.1 0.056

Corinnidae Corinna ducke 100 43.5 0.057

Araneidae Hypognatha aff. putumayo 100 52.2 0.065

Araneidae Cyclosa inca 100 63.6 0.077

Thomisidae Tmarus sp.1 100 45.5 0.095

Uloboridae Uloborus sp.2 100 44.4 0.095

Salticidae Lyssomanes sp.3 100 66.7 0.115

Salticidae Scopocira sp.1 100 54.5 0.125

Araneidae Micrathena kirbyi 100 40 0.154

Thomisidae Tmarus sp.13 100 38.5 0.159

Salticidae Noegus sp.1 100 59.3 0.237

Tetragnathidae Leucauge sp.6 100 55.6 0.237

Araneidae Alpaida aff. delicata 100 45 0.245

Salticidae Amycus sp.2 100 38.1 0.325

Araneidae Micrathena vigorsi 100 38.1 0.328

Uloboridae Conifaber sp.1 100 40 0.335

Mimetidae Ero sp.7 100 40 0.34

Araneidae Alpaida truncata 100 33.3 0.349

Lycosidae Aglaoctenus castaneus 100 33.3 0.378

Corinnidae Myrmecium sp.3 100 33.3 0.503

Salticidae Euophryinae sp.1 100 26.7 0.644

Theridiidae Anelosimus eximius 100 21.1 1

Theraphosidae Ephebopus uatumam 100 20 1

Sparassidae Sparassidae sp.1 400 46 0.076

Sparassidae Pseudosparianthis ravida 400 42.9 0.097

Scytodidae Scytodes auricula 400 55.6 0.099

Araneidae Pronous nigripes 400 66.7 0.125

Mimetidae Ero sp.6 400 37 0.179

Araneidae Eustala sp.3 400 47.6 0.225

Salticidae Noegus sp.7 400 55.6 0.247

Araneidae Scoloderus sp. 400 26.7 0.342

Salticidae Noegus sp.2 400 40 0.347

Pholcidae Mesabolivar aff. pseudoblechroscelis 400 33.3 0.37

Theridiidae Twaitesia bracteata 400 33.3 0.553

Araneidae Eustala sp.5 400 22.2 0.592

Uloboridae Miagrammopes sp.4 400 26.7 1

Uloboridae Philoponella sp.1 860 50 0.051

Corinnidae Corinna gr. ducke sp.2 860 46.7 0.055

Pholcidae Carapoia sp. 860 54.4 0.057

Ctenidae Ctenus sp.2 860 68 0.066

Tetragnathidae Chrysometa minuta 860 57.1 0.067

Araneidae Eustala sp.11 860 53.8 0.071

Theridiosomatidae Naatlo sp.2 860 47.6 0.097

Theridiidae Chrysso sp.2 860 66.7 0.106

Theridiidae Faiditus sp.5 860 66.7 0.106

Theridiidae Spintharus sp.2 860 41.9 0.11

149

Theridiidae Episinus sp.7 860 57.1 0.116

Araneidae Wagneriana sp.1 860 50 0.123

Araneidae Micrathena cyanospina 860 66.7 0.133

Tetragnathidae Azilia histrio 860 50 0.133

Uloboridae Uloborus sp.7 860 38.5 0.175

Araneidae Micrathena triangularis 860 38.9 0.221

Araneidae Eustala sp.4 860 55.6 0.233

Araneidae Micrathena sp.1 860 43.1 0.238

Theridiidae Faiditus sp.9 860 44.4 0.331

Pholcidae Mesabolivar aff. aurantiacus 860 40 0.345

Araneidae Micrathena triangularispinosa 860 38.9 0.359

Salticidae Lyssomanes sp.2 860 33.3 0.473

Theridiosomatidae Naatlo splendida 860 33.3 0.503

Tetragnathidae Leucauge sp.5 860 22.2 1

Salticidae Mago sp.2 860 20 1

Theridiidae Dipoena sp.1 1550 42.9 0.083

Pholcidae Priscula cf. taruma 1550 48.3 0.094

Theridiidae Episinus sp.1 1550 66.7 0.106

Theridiidae Achaearanea dea 1550 66.7 0.125

Tetragnathidae Chrysometa boraceia 1550 66.7 0.125

Mimetidae Gelanor sp.2 1550 66.7 0.125

Pholcidae Metagonia maritaguariensis 1550 66.7 0.125

Theridiidae Dipoena rubella 1550 42.1 0.14

Uloboridae Philoponella republicana 1550 38.5 0.162

Theridiidae Theridion fungosum 1550 40 0.201

Theridiidae Rhomphaea metaltissima 1550 55.6 0.23

Theridiidae Phoroncidia moyobamba 1550 44.4 0.309

Theridiidae Styposis sp.1 1550 40 0.316

Tetragnathidae Homalometa sp. 1550 44.4 0.333

Tetragnathidae Leucauge sp.2 1550 40 0.34

Araneidae Parawixia rimosa 1550 33.3 0.53

Linyphiidae Sphecozone crassa 2000 43.7 0.075

Araneidae Eustala sp.12 2000 66.7 0.106

Linyphiidae Dubiaranea caeca 2000 55.6 0.106

Salticidae Euophryinae sp.3 2000 47.6 0.221

Theridiidae Phycossoma sp.1 2400 38.1 0.346

Anyphaenidae Anyphaenidae sp.2 2400 25 0.764

150

FIGURES

Fig. 1. Study area. A) South America; B) Northern South America (rectangle of map A

enlarged). The mountain range at the left of the map represents the northern part of the Andes,

and the mountainous region in the center of the map is the Guayana Shield, showing the study

area in its southern part, and dotted yellow line represents the equator; C) Closer view of the

study area (rectangle of map B enlarged), the Pico da Neblina. Letters represent the altitudes

sampled: A – 100 m, B – 400 m, C – 860 m, D – 1,550 m, E – 2,000 m, F – 2,400 m.

151

Fig. 2. Rank abundance plot of the spider community for each altitude. Species are ordered by

decreasing abundance.

152

Fig. 3. Results of the partial Mantel test. a) Relation between altitudinal difference and beta

diversity, controlled by spatial distance; b) Relation between altitude and Bray Curtis

similarity index, controlled by spatial distance; c) Relation between Bray Curtis similarity

index and beta diversity, controlled by spatial distance; d) Relation between Bray Curtis

similarity index and beta diversity, controlled by altitudinal difference.

153

Fig. 4. Graphic representation of the first two axes of a NMDS performed for all species of

spiders at the 18 sites sampled, in six different altitudes. First axis explained 58% of total

variation and second axis 20% Stress = 5,97.

154

CAPÍTULO 4

Nogueira, A.A., Barbosa, J.P.P.P., Venticinque, E.M. & Brescovit, A.D. 2011. The spider

genus Chrysometa (Araneae, Tetragnathidae) from the Pico da Neblina and Serra do

Tapirapecó mountains (Amazonas, Brazil): new species, new records, diversity and

distribution along two altitudinal gradients. Zootaxa. 2772: 33-51.

155

Artigo 4

Submetido à revista Zootaxa

The spider genus Chrysometa (Araneae, Tetragnathidae) from the Pico da Neblina and

Serra do Tapirapecó mountains (Amazonas, Brazil): new species, new records, diversity

and distribution along two altitudinal gradients

ANDRÉ A. NOGUEIRA1, JOÃO P.P. PENA-BARBOSA

2,3, EDUARDO M. VENTICINQUE

1,4 &

ANTONIO D. BRESCOVIT

2

1 Instituto Nacional de Pesquisas da Amazônia, INPA, Programa de Pós-Graduação em

Ecologia. Avenida André Araújo, 2936, Aleixo, CEP 69011-970, Cx. Postal 478, Manaus,

AM, Brazil.E-mail: [email protected], [email protected]

2Laboratório de Artrópodes, Instituto Butantan. Av. Vital Brazil 1500, CEP 05503-900, São

Paulo, SP, Brazil. E-mail: [email protected], [email protected]

3Pós-graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, São

Paulo, SP, Brazil.

4 Universidade Federal do Amazonas – WCS Brasil – Wildlife Conservation Society. Prédio

Sauim de Coleira, ICB-UFAM, Estrada do Contorno 3000, CEP69077-000, Manaus, AM,

Brazil.

156

Abstract

Eight new species of the spider genus Chrysometa Simon, 1894 (Araneae, Tetragnathidae) are

described and illustrated. Chrysometa nubigena n. sp., C. waikoxi n. sp., C. petrasierwaldae

n. sp., C. santosi n. sp., C. yanomami n. sp., C. candianii n. sp., C. lomanhungae n. sp., and

C. saci n. sp. Those species were collected in a study on the diversity of spider communities

along altitudinal gradients in Brazilian Amazonia. C. saci was captured at the Serra do

Tapirapecó (Barcelos), while all the other species are from the Pico da Neblina (São Gabriel

da Cachoeira), the highest mountain in Brazil. We provide new records for C. boraceia, C.

flava, C. guttata, C. minuta and C. opulenta, and we describe the male of C. minuta for the

first time. We also present the first results on the diversity and altitudinal distribution of the

species of Chrysometa at the Pico da Neblina and Serra do Tapirapecó. We sampled the first

locality at six different elevations, and obtained 336 specimens distributed in 12 species.

Richness and abundance, as well as relative importance peaked at the highest sites sampled

(2,000 and 2,400 m). The three most abundant species showed a segregated distribution,

being dominant or exclusively distributed in different altitudes. At the Serra do Tapirapecó,

sampling at four different elevations up to 1200 m, we only obtained 40 individuals divided in

four species, and there was no clear relation to altitude. Most of the new species were found at

mid and high altitude sites, while species from lower altitude sites represented widespread

species. The comparison with other neotropical spiders inventories highlights the high

diversity recorded at Pico da Neblina, which could be assigned to the large environmental

variation covered in this work and to the sampling of high-altitude environments. Inventories

in the Andean region and other information in the literature also seem to support the

association of Chrysometa with high altitude environments.

Key words: spiders, taxonomy, biodiversity, Araneoidea, orbweavers, Neotropical region

157

Introduction

Spiders from the genus Chrysometa Simon, 1895 are neotropical orb-weavers of the

family Tetragnathidae. The genus was proposed by Simon in 1894 for a specimen described

by Keyserling (1863) as Tetragnatha tenuipes. Levi (1986) examined the specimen and

concluded that it was not C. tenuipes, but a new species, designated as Chrysometa eugeni.

Levi (1986) also considered Capichameta Soares and Camargo, 1955, and Pseudometa

F.O.P.-Cambridge, 1903, to be junior synonyms of Chrysometa.

Adults of most Chrysometa species are small (from 3 to 5 mm) and have an oval

abdomen, with silver or white spots and dark pigmentation. Males have longer legs, but

slightly smaller bodies than females (Levi 1986). In his revision on the genus, Levi (1986)

indicates as the most characteristic features of Chrysometa males the presence of a terminal

apophysis on the bulb and of an apophysis at the dorsal face of the cymbium of the palp. For

females, the diagnostic characters are a flat epigynum, usually without projections, and also

fertilization ducts in most species more sclerotized than the connecting ducts. A recent

hypothesis on the phylogeny of Tetragnathidae (Álvarez-Padilla, 2007) supported the

monophyly of the genus, but since Chrysometa was represented by only six species a larger

taxon sample is necessary to confirm this result. In this latter study the monophyly of

Chrysometa was supported by three female synapomorphies: long fertilization ducts (1),

following a straight path (2), from an anterior origin (3).

There are currently 130 species of Chrysometa, distributed from Mexico to Chile,

including some Caribbean islands (Platnick, 2010). The most peculiar feature of their

distribution is the apparent association of several species with high altitude environments.

Nevertheless several species may occur in low elevation sites, always in forests; their

diversity increases with increasing elevation, reaching its maximum at and above timberline

(Levi 1986). Not surprisingly, the Andean region harbors the largest number of species. Levi

158

(1986) also noticed that the group was unexpectedly rich in higher altitudes, and that several

species are known after a single individual, which suggests that their distribution is still

poorly known and that several species remains to be discovered.

In this work we describe eight new species of Chrysometa from two mountains in

Brazilian Amazonia, the Serra do Tapirapecó and the Pico da Neblina, both located on the

northern border of the state of Amazonas. We also provide new records for species already

described, and describe for the first time the male of C. minuta (Keyserling), 1883. Finally,

we document, and comment on, the diversity and distribution of Chrysometa at the sampled

sites, and compare our results to those of other Neotropical spider inventories. The results

presented here are part of a study about spider communities in altitudinal gradients (Nogueira

et al., in preparation – cap.2).

Material and Methods

Study area

The Serra do Tapirapecó (1°17’N, 64º39W) and the Pico da Neblina (00°46’N e

66º00’W) are located in Yanomami Indigenous Land and Pico da Neblina National Park

(overlapping with Yanomani Indigenous Land), respectively. Both areas are located on the

northern border of the Brazilian state of Amazonas (Fig. 1), a mountain region located at the

boundary between Brazil and Venezuela, as well as the watershed between the Orinoco and

Amazonas basins (RADAM 1978). These formations are in the southern part of the Guyana

Shield, a region of very old geological origin (mostly from the Precambrian, ranging from 3.6

to 1.6 billion years ago), and whose main characteristic is the presence of sandstone

mountains, with vertical cliffs and table tops, known as “tepuis” (Huber 1995a). The Serra do

Tapirapecó is basically constituted by granitic rocks, and reaches its highest altitude at the

Pico do Tamacuari, with an altitude of 2,400 m. The Pico da Neblina (2,994 m). Is the highest

159

Brazilian mountain, as well as the highest place in South America outside the Andes. Mainly

formed by sandstone rocks, the Neblina massif is also characterized by extensive high-altitude

plateaus (2,000 - 2,400 m). although it does not have the typical tepui shape (Huber 1995a).

The climate of the region is tropical humid, with an annual average rainfall 3,000

mm/year, an average temperature of 25°C, 85-90% humidity and little variation through the

year. Both rainfall and humidity increase with the elevation, while the temperature decreases.

In the highlands (> 1,800 m) the rainfall decreases and is replaced by a constant mist, with

humidity reaching almost 100%. In those altitudes, temperature can drop to an average of 10°

in the coolest month (RADAM 1978).

Vegetation of the lowlands is mainly composed by a tall, evergreen forest, gradually

replaced by submontane (400 to 800 m), montane (800 to 1,500 m) and upper-montane forest

(1,500 to 2,000 m) (Huber 1995b). Higher elevations have more open types of vegetation,

such as high-altitude meadows and grasslands. Those formations are composed of a highly

endemic flora (Berry et al. 1995), with several species with sclerophyllous characteristics.

Some species of Rapateacea and Bromeliaceae dominate these communities, which are also

characterized by the presence of several species of Eriocaulaceae, Xyridaceae and Cyperaceae

(Huber 1995b).

The Pico da Neblina will be referred to as Neblina and the Serra do Tapirapecó as

Tapirapecó throughout this paper.

Collecting methods and sampling design

Spiders were collected using a beating tray during the day and manually during the

night. The sample unit of the first method corresponds to the investigation, with a beating

tray, of 20 small trees, or shrubs, or other components of the vegetation. The sample unit of

160

the second method correspond to one hour of searching along a 30 m long transect. All

spiders collected using these two methods were preserved in 70% ethanol.

At Neblina we sampled at six different altitudes , 100, 400, 860, 1,550, 2,000 and

2,400 m, and at each altitude we investigated three different sites. In each site the sampling

effort corresponded to nine diurnal and nine nocturnal samples, which resulted in 54 samples

at each elevation (27 diurnal and 27 nocturnal). The final count for Neblina was 324 samples

(162 diurnal and 162 nocturnal). At the Tapirapecó we only sampled four altitudes, 180, 400,

800 and 1,200 m. Sampling effort was lower in this expedition, with 6 diurnal and 6 nocturnal

samples by site, which correspond to 18 of each method by altitude; although in the last two

elevations sampling could not be completed, resulting in 16 nocturnal samples at 800 and 12

at 1,200 m. To complete these samplings or even to collect in higher altitudes was impossible

due to a malaria outbreak among the expedition members. We sampled Tapirapecó in

September/October 2006, and Neblina in September/October 2007, during the period

corresponding to the regional “dry” season.

We calculated the altitudinal weighted average midpoint (WAM) (Almeida-Neto et al.

2006) for the Chrysometa communities. This parameter is obtained by multiplying the

number of individuals found in each altitude by the corresponding elevation. Those values are

summed up, and divided by the total abundance. Assuming that a species reaches its

maximum abundance in optimal environmental conditions, we consider that this method may

represent in an accurate manner the actual altitudinal preference of the species along the

gradient. We calculated the WAM for each species and also for all species together, but for

the two data sets (Neblina and Tapirapecó) separately. Finally we also calculated the relative

importance of the genus Chrysometa, which is the ratio of Chrysometa abundance and

richness in relation to those parameters for the whole spider community (unpublished data).

161

However, for the Tapirapecó dataset we only investigated the relative abundance, since we

did not identified the others spiders captured there, and so we could not assess the total

richness (528 species and 3140 individuals at the Neblina and 1623 individuals at the

Tapirapecó, unpublished data).

We compared our results with those of 19 other Neotropical spider inventories (Table

3). We selected only those that also used manual active searching as a sampling method,

since this was by far the most efficient method to capture Chrysometa specimens, obtaining

91% of the individuals collected at Neblina and 95% collected at Tapirapecó.

We recorded in the inventory results an additional new species found at Pico da

Neblina. This species is not described here because the only specimen available was lost

during the tragic fire that destroyed most of the Instituto Butantan’s arachnological collection

in May 2010. This species will be referred to as Chrysometa sp.

The specimens examined in this study are deposited in the following collections

(abbreviations and curators in parenthesis): Instituto Nacional de Pesquisas da Amazônia,

Amazonas (INPA, A. Henriques), Instituto Butantan, São Paulo (IBSP, I. Knysak) and Museu

Paraense Emílio Goeldi, Pará (MPEG, A. B. Bonaldo).

The material was examined and illustrated on a stereomicroscope Olympus SZX12 equipped

with a camera lucida. The description format follows Levi (1986) and all measurements are in

millimetres.

The following abbreviations used in the text and figures follow Levi (1986) and

Álvarez-Padilla et al. (2009): C, conductor; CA, cymbial apophysis; CD, copulatory duct;

CEBP, ecto-basal cymbial process; CEMP, ecto-median cymbial process; CMP, cymbial

membranous projection; CO, copulatory openings; E, embolous; H, hematodocha; LP, lateral

plates; LwP, lower prong of paracymbium; MEA, “metine” embolic apophysis; ML, median

162

lobe; MP, median plate; Sp, spermatheca; St, septum; P, paracymbium; PT; paracymbium

tips; T, tibia; Te, tegulum; UpP, upper prong of paracymbium.

Taxonomy

Family Tetragnathidae Menge, 1866

Genus Chrysometa Simon, 1895

Chrysometa nubigena new species

Figures 2A-E

Type material. Holotype: Male from Pico da Neblina (2,000m), São Gabriel da Cachoeira,

(00°46'N 66º00'W), Amazonas, Brazil, X.2007, A.A. Nogueira et al. coll. (INPA-AR 6144).

Paratypes: six males and seven females from the same locality and date (INPA-AR 6145 (1

male), 6146 (1 male) 6147 (1 female), 6148 (1 female), 6149 (1 female); IBSP 160448 (1

male), 160451 (1 female), 160453 (1 male), 160474 (1 female); MPEG 15666 (1 female),

15667 (1 female), 15668 (1 male), 15672 (1 male)).

Additional Material examined: Brazil: Amazonas: São Gabriel da Cachoeira, Pico da

Neblina, (0°46'N 66º00'W), 31 males and 53 females, X.2007, A.A. Nogueira et al., coll.

(INPA-AR 6191-6220; IBSP 160449, 160450, 160452, 160454, 160455; MPEG 15669-

15671, 15673).

Etymology. The specific epithet is a Latin word that means “born on the clouds”, since this

species was only collected at high altitudes at the Pico da Neblina, a place constantly covered

by mist, a characteristic which gave the mountain its name (“peak of the mist”).

Diagnosis. Males of C. nubigena differ from all other species of the genus by the long

cymbial apophysis with a small hump near the tip; paracymbium with thin lower prong in

163

ventral view (Fig. 2A); cymbial membranous projection posteriorly curved rounded tip in

ventral view (Figs. 2A), being subtriangular in retrolateral view (Fig. 2B).

Females of C. nubigena differ from all other species by the posteriorly pointed “V”-shaped

projection of the median lobe over the lateral plates, and the oval-shaped copulatory openings,

on ventral view (Fig. 2C). On posterior view, epiginal lateral plates with anteriorly projected

rounded tip; median plate right behind the lateral plates, creating two arches (Fig. 2D).

Description.

Male (holotype). Carapace yellow; Sternum, chelicerae, labium and endites brown. Legs

yellow. Dorsum of the abdomen grey, with some transversal black lines. Sides with some

white to silver spots. Venter black, with two white spots. Spinnerets black. Total length 2.6;

Carapace 1.2 long, 1.1 wide. Leg I length: femur 2.4; patella+tibia 2.8; metatarsus 2.1; tarsus

0.9. Patella+tibia II 1.5; III 0.8; IV 1.0. Palp: Paracymbium “M”-shaped, with upper prong

more enlarged and shorter than lower prong, on ventral view (Fig. 2A); and 'metine' embolic

apophysis curved on apical region (Fig. 2A).

Female (paratype, INPA-AR 6147). Colour as in male. Total length 3.4; carapace 1.3 long,

1.1 wide. Leg I length: femur 1.3; patella+tibia 1.9; metatarsus 1.8; tarsus 0.7. Patella+tibia II

1.4; III 0.6; IV 1.1. Epigynum: Spermatechae apical, with copulatory ducts right below (Fig.

2E).

Distribution. Only known from the type locality.

Chrysometa saci new species

Figures 3A-E

Type material. Holotype: Male from Serra do Tapirapecó (1,200m), Barcelos (1°17'N

64º39'W), Amazonas, Brazil, X.2006, A.A. Nogueira & R. Braga-Neto coll. (INPA-AR

6156).

164

Paratypes: one male and six females from the same locality and date (INPA-AR 6157 (1

female), 6268 (2 females); IBSP 160490 (1 female), 160491 (1 male), 160492 (1 female),

160493 (1 female)).

Etymology. The species epithet is taken as a noun in apposition honoring mycologist Ricardo

Braga-Neto, nicknamed “Saci”, for his help in the field throughout the Serra do Tapirapecó

expedition.

Diagnosis. Males of C. saci differ from all other species of the genus by the paracymbial

lower prong well developed, extending away from the palp in ventral direction (ventral and

retrolateral views) (Figs. 3A, B); and the paracymbium with the paracymbial tip pointed

retrolaterally with a horn shape, on ventral and retrolateral views (Fig. 3A, B). Males of C.

saci are similar to C. cambara Levi, 1986, figs.: 622, 623.

Females of C. saci differ from all other species by the vessel-shaped septum, with the

posterior half membranous, on ventral view (Fig. 3C). The membranous area is partially

covered by the lateral plates, creating a median groove with two humps on each side, on

ventral and posterior views (Figs. 3C, D). Females of C. saci are similar to C. chica Levi,

1986, figs.: 382-385.

Description.

Male (holotype). Carapace yellow, with cephalic region brown; Sternum, chelicerae, labium

and endites brown. Legs yellow, with many dark spots. Dorsum of the abdomen grey, with

white spots and some transversal black lines. Venter grey with a black longitudinal line on

middle. Spinnerets grey. Total length 4.8; Carapace 2.4 long, 2.2 wide. Leg I length: femur

5.4; patella+tibia 6.7; metatarsus 6.1; tarsus 1.7. Patella+tibia II 4.5; III 1.8; IV 3.0. Palp:

Ecto-median cymbial process pointed ventrally, ecto-basal cymbial apophysis pointed

retrolaterally (Fig. 3B).

165

Female (paratype, IBSP 160490). Colour as in male, with the venter of abdomen with a

black, longitudial line on center with white spots around. Total length 6.3; Carapace 2.3 long,

2.0 wide. Leg I length: femur 3.3; Patella+tibia 4.0; metatarsus 3.0; tarsus 1.1. Patella+tibia II

3.1; III 1.5; IV 2.4. Epigynum: internally with spermathecae apical, with copulation ducts

coiled and basal openings of the ducts, near the septum (Fig. 3E).

Distribution. Only known from the type locality.

Chrysometa waikoxi new species

Figures 4A-E

Type material. Holotype: Male from Pico da Neblina (1,550m), São Gabriel da Cachoeira,

(0°46'N 66º00'W), Amazonas, Brazil, X.2007, A.A. Nogueira et al. coll. (INPA-AR 6159).

Paratypes: four males and six females from the same locality and date (INPA-AR 6160 (1

female), 6161 (1 female), 6162 (1 female), 6163 (1 female); IBSP 160466 (1 female), 160467

(1 male), 160470 (1 male), 160471 (1 female); MPEG 15682 (1 male), 15684 (1 female)).

Additional material examined. Brazil: Amazonas: São Gabriel da Cachoeira, Pico da

Neblina, (0°46'N 66º00'W), three males and 27 females, X.2007, A.A. Nogueira et al., coll.

(INPA-AR 6269-6278; IBSP 160468, 160469, 160472, 160477; MPEG 15683).

Etymology. The species epithet is taken from the Yanomami word for spider, a noun in

apposition, and represents a tribute to the Yanomami people, since the places sampled in our

expeditions are located at the Yanomami Indigenous Land, and also for the help received in

the field from some members of the tribe.

Diagnosis. Males of Chrysometa waikoxi differs from all other species of the genus by a

projection on the middle of the cymbial apophysis turned posteriorly, and the tip turned to the

ventral, on ventral and retrolateral views (Figs. 4A, B); and the conical cymbial membranous

166

projection (Figs. 4A, B). Males of C. waikoxi are similar to C. alajuela Levi, 1986, figs.: 716,

717 and C. harmata (Bryant) on Levi, 1986, fig.: 58.

Females of C. waikoxi differ from other species by the curved shape of the anterior edge of

the copulatory opening, producing a curved projection on each side, on ventral view (Fig.

4C). Females of C. waikoxi are similar to C. troya Levi, 1986, figs.: 413-416.

Description.

Male (holotype). Carapace yellow, with a longitudinal black line on the thoracic region;

sternum, chelicerae, labium and endites brown. Legs yellow, with black spots. Dorsum of the

abdomen grey, with transverse black lines. Sides with some white to silver spots. Venter

black, with two white spots. Spinnerets black. Total length 2.5; Carapace 1.1 long, 0.9 wide.

Leg I length: femur 2.5; patella+tibia 3.0; metatarsus 3.0; tarsus 0.8. Patella+tibia II 1.6; III

0.6; IV 1.0. Palp: Paracymbium “M”-shaped in ventral view, with the lower prong with the

same size of the upper prong (Fig. 4A).

Female (paratype, INPA-AR 6161). Colour as in male. Total length 3.1; Carapace 1.2 long,

1.0 wide. Leg I length: femur 2.2; patella+tibia 2.3; metatarsus 1.8; tarsus 0.6. Patella+tibia II

1.5; III 0.6; IV 1.1. Epigynum: Lateral plates subrectangular in shape; copulatory openings

subtriangular(Fig. 4D). Spermathecae apical with copulatory ducts right below (Fig. 4E).

Distribution. Only known from the type locality.

Chrysometa petrasierwaldae new species

Figures 5A-E

Type material. Holotype: Male from Pico da Neblina, São Gabriel da Cachoeira, (0°46'N

66º00'W), Amazonas, Brazil, X. 2007, A.A. Nogueira et al. coll. (INPA-AR 6150).

Paratype: six males and seven females from the same locality and date (INPA-AR 6151 (1

female), 6152 (1 female), 6153 (1 male), 6154 (1 male), 6155 (1 female); IBSP 160456 (1

167

female), 160458 (1 male), 160459 (1 female), 160463 (1 male); MPEG 15674 (1 female),

15676 (1 female), 15680 (1 male), 15681 (1 male)).

Additional material examined. Brazil: Amazonas: São Gabriel da Cachoeira, Pico da

Neblina, (00°46'N 66º00'W), 33 males and 93 females, X. 2007, A.A. Nogueira et al., coll.

(INPA-AR 6240-6267; IBSP 160457, 160460-160462, 160475, 160476; MPEG 15675,

15677-15679, 15683).

Etymology. The species epithet is a patronym in honor of arachnologist Petra Sierwald, for

her contribuitions to the arachnological society and, also for her scientific contributions for

the second author.

Diagnosis. Males of C. petrasierwaldae differ from all other species by the bifid cymbial

apophysis, with rounded tips (Fig. 5A); conductor with a bifid tip, on retrolateral view (Fig.

5B). Males of C. petrasierwaldae are similar to C. nigroventris (Keyserling) Levi, 1986, figs.:

145, 146.

Females of C. petrasierwaldae differ from all other species of the genus by median lobe

projected posteriorly, with a “W”-shaped tip (Fig. 5C); copulatory openings ellipitical in

ventral view (Fig. 5C); in posterior view, median lobe as an arch, enlarged on its basis (Fig

5D). Copulatory ducts large and apically twisted, with membranous spermathecae on dorsal

view (Fig. 5E).

Description.

Male (holotype). Carapace yellow, with a longitudinal black line on the thoracic region;

sternum, chelicerae, labium and endites brown. Legs yellow, with many black spots. Dorsum

of abdomen grey, with transversal black lines. Sides with white to silver spots. Venter black,

with two white spots. Spinnerets black. Total length 2.4; Carapace 1.1 long, 0.9 wide. Leg I

length: femur 1.7; Patella+tibia 2.1; metatarsus 1.8; tarsus 0.6. Patella+tibia II 1.2; III 0.6; IV

168

1.0. Palp. Paracymbium subrectangular, with a cymbial membranous projection not so

pronunciated as observed in C. waikoxi (Fig. 5A).

Female (paratype, INPA-AR 6151). Carapace yellow, with a single shield-shaped black spot

on cephalic region. Chelicerae yellow. Labium, endites and sternum brown. Dorsum of

abdomen grey with white spots and transversal black lines. Venter grey with two white spots.

Total length 2.6; Carapace 1.0 long, 0.9 wide. Leg I length: femur 1.5; patella+tibia 1.8;

metatarsus 1.3; tarsus 0.6. Patella+tibia II 1.1; III 0.6; IV 0.9. Epigynum: Lateral plates

subrectangular (Fig. 5D); copulatory openings right below the median lobe, internally with

copulatory ducts large and apically twisted; spermathecae as two hyaline balloons (Fig. 5E).

Distribution. Only known from the type locality.

Chrysometa lomanhungae new species

Figures 6A-C

Type material. Holotype: Female from Pico da Neblina (2,000m), São Gabriel da Cachoeira

(00°46'N 66º00'W), Amazonas, Brazil, X.2007, A.A. Nogueira et al. coll. (INPA-AR 6142).

Paratypes: two females from the same locality and date (INPA-AR 6143 (1 female); IBSP

160465 (1 female)).

Etymology. The species epithet is a patronym in honor of arachnologist Nancy Lo Man

Hung, recognising her help through the Pico da Neblina sampling expedition.

Diagnosis. Females of Chrysometa lomanhungae are similar to C. obscura (Bryant) in the

large size of the copulatory openings (Levi, 1986, fig: 249), but differ by the septum covered

by two humps of the median lobe (Fig. 6A), the presence of two pointed distal tips on the

lateral plates, on posterior view (Fig. 6B). Females of C. nubigena are similar to C. obscura

(Bryant) Levi, 1986, figs.: 247-250.

Description.

169

Male. Unknown.

Female (holotype). Carapace yellow; sternum, chelicerae, labium and endites brown. Legs

yellow, with brown annuli. Dorsum of abdomen grey, with white spots and transversal black

lines. Venter grey with two white spots. Spinnerets grey. Total length 4.6; Carapace 2.0 long,

1.5 wide. Leg I length: femur 4.0; patella+tibia 4.6; metatarsus 3.9; tarsus 1.3. patella+tibia II

2.9 III 1.4; IV 2.0. Epigynum: internally with spermathecae globose and copulatory ducts

opening near the septum (Fig. 6C).

Distribution. Only known from the type locality.

Chrysometa yanomami new species

Figures 6D-F

Type material. Holotype: Female from Pico da Neblina (2,000m), São Gabriel da Cachoeira,

(00°46'N 66º00'W), Amazonas, Brazil, X.2007, A.A. Nogueira et al., coll. (INPA-AR 6140).

Paratype: two females from the same locality and date (INPA-AR 6141 (1 female); IBSP

160473 (1 female)).

Etymology. The specific epithet, a noun in apposition, is a tribute to the Yanomami people

since the places sampled in our expeditions are located on the Yanomami Indigenous Land,

and in gratitude for the help received in the field from some members of the tribe.

Diagnosis. Females of C. yanomami differ from all other species of the genus by the “T”-

shaped median plate on posterior view (Fig. 6E). Females of C. yanomami are similar to C.

satulla (Keyserling) Levi, 1986, figs.: 175-179 and also similar to C. machala Levi, 1986,

figs.: 515-518.

Description.

Male. Unknown.

170

Female (holotype). Carapace yellow, with a single black spot at the cephalic region;

Sternum, chelicerae, labium and endites brown. Legs yellow. Dorsum of the abdomen grey,

with some white spots. Venter grey, with two longitudinal line of white spots. Spinnerets

grey. Total length 3.6; Carapace 1.3 long, 1.0 wide. Leg I length: femur 2.1; patella + tibia I

2.4; metatarsus 1.9; tarsus 0.4. Patella + tibia II 1.6; III 0.5; IV 1.1. Epigynum: Median plate

vessel shaped, with posterior region membranous and septum enlarged (Fig. 6D); copulatory

openings circular (Fig. 6D); lateral plates with lateral membranes (Fig. 6E). Internally with

copulatory ducts enlarged and apically coiled, with spermathecae right above, on dorsal view

(Fig. 6F).

Distribution. Only known from the type locality.

Chrysometa santosi new species

Figures 6G-I

Type material. Holotype: Female from Pico da Neblina (2,000m), São Gabriel da Cachoeira,

(00°46'N 66º00'W), Amazonas, Brazil, X.2007, A. A. Nogueira et al. coll. (INPA-AR 6158).

Etymology. The species epithet is a patronym in honor of Adalberto J. Santos, for his

contributions to arachnology and to the academic development of the first two authors.

Diagnosis. Females of Chrysometa santosi differ from other species of the genus by the

depression of the copulatory opening longer than wide, on ventral view (Fig. 6G). Lateral

plates covering half of the basal region of the median plate, on posterior view (Fig. 6H);

median plate racket-shaped in posterior view (Fig. 6H), and copulatory ducts opening on the

top of the genitalia, while the fertilization ducts opens on the basal region (Fig. 6I). Females

of C. santosi are similar to C. banos Levi, 1986, figs.: 170-174.

Description.

Male. Unknown.

171

Female (holotype). Carapace yellow, with cephalic region brown; sternum, chelicerae,

labium and endites brown. Legs yellow, with brown rings. Dorsum of abdomen grey, with

some white spots and some black transversal lines. Venter grey. Spinnerets yellow. Total

length 7.4; Carapace 2.8 long, 2.1 wide. Leg I length: femur 4.4; patella + tibia 5.5;

metatarsus 4.7; tarsus 1.5. Patella+tibia II 3.6; III 1.2; IV 2.3. Epigynum: Lateral copulatory

ducts enlarged averagely (Fig. 6H).

Distribution. Only known from the type locality.

Chrysometa candianii new species

Figures 7A, B

Type material. Holotype: Male from Pico da Neblina (860m), São Gabriel da Cachoeira,

(0°46'N 66º00'W), Amazonas, Brazil, X.2007, A.A. Nogueira et al. coll. (INPA-AR 6138).

Paratype: two males from the same locality and date (INPA-AR 6139 (1 male); IBSP 160464

(1 male)).

Etymology. The species epithet is a patronym in honor of the arachnologist David Candiani,

in gratitude for his help in the field through the Pico da Neblina expedition.

Diagnosis. Males of Chrysometa candianii differs from all other species of the genus by the

lower prong of paracymbium with three projections, on retrolateral views (Fig. 7B), with the

distance between the tips longer than the size of the tips (Fig. 7B); and by a basal projection

of the ecto-median cymbial apophysis, like a lobe of an ear (Fig. 7B). Males of C. candianii

are similar to C. guttata (Keyserling) Levi, 1986, figs.: 559, 560.

Description.

Male (holotype). Carapace, sternum, chelicerae, labium, endites and legs yellow. Dorsum of

abdomen grey, with white spots. Venter grey. Spinnerets grey. Total length 3.8; Carapace 2.0

long, 1.6 wide. Leg I length: femur 3.4; patella+tibia 3.9; metatarsus 3.4; tarsus 1.1. Patella +

172

tibia II 3.0; III 1.2; IV 2.0. Palp: tegulum with a prolateral projection (Fig. 7A), upper prong

of paracymbium with a retrolateral depression (Fig. 7A), and lower prong trifid, median tip

longer than others (Fig. 7B). Cymbial membranous projection ventrally directed (Figs. 7A,

B). ecto-basal cymbial apophysis curved and pointed ventrally (Figs. 7A, B).

Female. Unknown.

Distribution. Only known from the type locality.

Chrysometa minuta (Keyserling, 1883)

Figures 7C, D

Meta minuta Keyserling, 1883: 206, pl. 15, fig. 100 (Holotype female from “Province

Amazonas”, Brazil deposited in Hope Entomological Collection, Oxford, not examined).

Argyroepeira minuta: Keyserling, 1893: 321, pl. 16, fig. 236.

Chrysometa minuta: Levi, 1986: 168, figs. 435-440, Platnick, 2010.

Material examined. Brazil: Amazonas: Barcelos, Serra do Tapirapecó, (1°17'N, 64º39'W), 1

male and 4 females, X.2006, A.A. Nogueira & R. Braga-Neto coll. (INPA-AR 6181 (1

female), 6182 (1 male), 6183 (1 female), 6184 (1 male), 6185 (1 female); IBSP 160441 (1

female)); São Gabriel da Cachoeira, Pico da Neblina, (00°46'N 66º00'W), 4 females, X.2007,

A.A. Nogueira et al. coll. (INPA-AR 6187 (1 female), 6188 (1 female), 6189 (1 female), 6190

(1 female)).

Diagnosis. Males of Chrysometa minuta are similar to C. cebolleta Levi, 1986 (figs. 547-551)

by the “L”-shaped paracymbial apophysis on retrolateral view and a ventral pointed ecto-

basal cymbial process, on ventral and retrolateral views. They differ from C. cebolleta males

the cymbial apophysis folded ventrally on ventral view (Fig. 7C), and curved on retrolateral

173

view (Fig. 7D). The lower prong of paracymbium has a basal hump (Figs. 7C, D), not

observed on C. cebolleta.

Description.

Male (INPA-AR 6182). Carapace, sternum, labium, endites and legs yellow. Chelicerae

brown. Dorsum of abdomen grey, with some white spots and two sets of black transversal

lines, with nine lines each one. Venter grey. Spinnerets grey. Total length 3.4; Carapace 1.6

long, 1.3 wide. Leg I length: femur 2.5; patella+tibia 2.7; metatarsus 2.4; tarsus 0.8.

Patella+tibia II 2.1; III 0.9; IV 1.5. Palp: paracymbium with external face covered with

bristles; lower prong of paracymbium with a lateral groove (Fig. 7D).

Note. Males are matched to females collected in the same place based on similarities of size

and body colour pattern. Seven females and four males were found in the same altitudes (400

and 800 m.a.s.l., Table 2) at the Tapirapecó, and in one case they were collected together,

during a nocturnal sample.

Female. See Levi (1986: 168).

New records

Chrysometa boraceia Levi, 1986

Material examined. Brazil: Amazonas: São Gabriel da Cachoeira, Pico da Neblina, (00°46'N

66º00'W), 2 males and 4 females, X.2007, A.A. Nogueira et al. coll. (INPA-AR 6164, 6165;

IBSP 160437, 160438).

Chrysometa flava (O. P.-Cambridge, 1894)

Material examined. Brazil: Amazonas: Barcelos, Serra do Tapirapecó, (1°17'N, 64º39'W), 2

females, X.2006, A.A. Nogueira & R. Braga-Neto coll. (INPA-AR 6166; IBSP 160478).

174

Chrysometa guttata (Keyserling, 1881)

Material examined. Brazil: Amazonas: Barcelos, Serra do Tapirapecó, (1°17'N, 64º39'W), 7

males and 12 females, X.2006, A.A. Nogueira & R. Braga-Neto coll. (INPA-AR 6167-6175,

6180; IBSP 160479-160484); São Gabriel da Cachoeira, Pico da Neblina, (00°46'N

66º00'W), 2 males and 4 females, X.2007, A.A. Nogueira et al. coll. (INPA-AR 6176-6179;

IBSP 160439, 160440).

Chrysometa minuta (Keyserling, 1883)

Material examined. Brazil: Amazonas: Barcelos, Serra do Tapirapecó, (1°17’N, 64º39W), 4

males and 7 females, X.2006, A.A. Nogueira & R. Braga-Neto coll. (INPA-AR 6181-6186;

IBSP 160485-160489); São Gabriel da Cachoeira, Pico da Neblina, (00°46'N 66º00'W), 7

females, X.2007, A.A. Nogueira et al. coll. (INPA-AR 6187-6190; IBSP 160441, 160443).

Chrysometa opulenta (Keyserling, 1881)

Material examined. Brazil: Amazonas: São Gabriel da Cachoeira, Pico da Neblina, (00°46'N

66º00'W), 4 males and 30 females, X.2007, A.A. Nogueira et al. coll. (INPA-AR 6221-6239;

IBSP 160444-160447).

ALTITUDINAL DISTRIBUTION AND DIVERSITY

Results

The two expeditions yielded 376 adult specimens of Chrysometa, belonging to 14

species, but each produced very different results. The fauna of Neblina was very diverse and

abundant, with 336 specimens distributed in 12 species (Table 1), eight of them new. At

Tapirapecó we obtained 40 specimens of four species of Chrysometa , one of them new. Only

two species, C. guttata and C. minuta were collected at both localities (Table 2).

175

At Neblina the richness and abundance of Chrysometa species increased along the altitudinal

gradient. Richness peaked at 2,000 m, with five species, and abundance at 2.400 m, with 172

individuals (Table 1). The WAM (weighted average midpoint) of each of the 12 species

ranged from 620 to 2,400 m, and the WAM for all species combined was 2,032 m. The

relative importance of the genus also presented a sharp increase along the gradient, especially

the abundance (Table 1), indicating that Chrysometa are more associated with high altitude

environments than are most other spider groups.

Most species were recorded at just one altitude, and those that were present at more

than one usually showed an aggregate distribution, with most individuals concentrated at one

altitude (Table 1). The three most abundant species (81% of the total abundance) were

distributed in a rather exclusionary way, with C. petrasierwaldae n. sp., being dominant at

2400 m, C. nubigena sp. nov. at 2000 m, and C. waikoxi n. sp. at 1,550 m. At this last

altitude, however, dominance was shared with a slightly less abundant species, C. opulenta.

The remaining species were much rarer, representing at most 2% of the total abundance of the

genus (Table 1).

Chrysometa distribution at Tapirapecó presented a different pattern. The four species

were more evenly distributed among the four altitudes investigated. The WAM of the four

species varied from 459 to 1,200 m, and the WAM from all species combined was 633 m. The

relative importance of the genus was also very low at all sampled altitudes, not exceeding 4%

of the total abundance (Table 2).

Discussion

The results seem to confirm the association of Chrysometa with high altitude, a

characteristic already pointed out by Levi (1986) in his revision. But our data set, based on

standardized sampling along an altitudinal gradient, combined with information available in

176

the literature, allows us to assess in a more detailed manner the influence of altitude in the

composition and diversity of Chrysometa communities.

- Diversity

The 12 species of Chrysometa recorded at Neblina represent the highest richness yet

reported for this genus in a single locality, since the fauna recorded in other neotropical

inventories range from none to ten species (Table 3). This result seems to confirm the high

diversity of the Neblina massif, a fact already highlighted in floristic surveys (Berry et al.

1995), but we also believe that our sampling design was especially effective to capture

specimens of this genus, for the following reasons. First, we sampled six different altitudes

along a 2300 m gradient, which represent a greater environmental variation than that present

in most other studies. Table 1 shows that the number of species by altitude varied from one, at

100 m, to five, at 2000 m, and that most species were recorded at just a few altitudes, which

means that their distribution presented little overlap, and, as a consequence, a high species

turnover. If we had sampled just one or two altitudes we would have missed species, the

number of species recorded at our study site would be much lower and similar to the richness

reported in other inventories (usually between 1 to 3 species). Second, we sampled high

altitude environments, where Chrysometa are expected to reach its maximum diversity (Levi

1986), which was indeed confirmed by our results. Only four species were present in the

lower half of our gradient (at 100, 400 and 860 m), against nine in the upper half (1550, 2000

and 2400 m). Moreover, the highest values of richness and abundance are reached in the last

two altitudes (2000 and 2400 m), characterized by more open types of vegetation, which is

again in agreement with observations made by Levi (1986), who claimed that the genus

attained its maximum diversity “…at and above timberline”.

177

The association of Chrysometa with high altitude environments also becomes evident

by two parameters presented in Table 1, the WAM and the relative importance of the genus.

The WAM of two thirds of our species is located in the second half of our gradient. The four

remaining species were distributed in mid altitudes, ranging from 600 to 1400 m. i.e. not a

single species occurred preferably at low altitude sites. Also, the increase in the relative

importance in species richness and especially of the abundance of Chrysometa with

increasing elevation highlights that this distribution pattern represents a characteristic of this

genus, different from the pattern exhibited from most other spiders groups. The analysis of the

nineteen Neotropical inventories (Table 3) seems to support our results. Chrysometa reaches

its highest richness, abundance and relative importance in studies conducted in Andean

localities. It must be noted that most of those studies (Table 3 - Andes) were restricted to orb-

weavers while most of the studies from other regions (Table 3 - remaining regions) include all

spider groups, which automatically decrease the relative importance of Chrysometa. However,

the differences observed in abundance make it clear that Chrysometa are more common at the

Andes, especially at high altitudes. Chrysometa also reach a significant diversity and

abundance at RF Morro Grande, at southeastern Brazil, a place of intermediate altitude

covered by montane Atlantic forest. At low altitude sites the genus, when recorded, presented

a low abundance and relative importance, even in sites with considerable richness, like

Pakitza, in Peru, with six species (Silva & Coddington 1996). Five species were recorded at

the Reserva Florestal Adolpho Ducke. Located near Manaus, Brazil (Höfer & Brescovit

2001), it was sampled in many occasions with several methods, but data on the abundance of

the spiders is not available (Table 3).

The much lower richness obtained at Tapirapecó could seem unexpected as those

localities are relatively close (about 140 km ) and belong to the same mountain range, but this

is probably a consequence of the fact that in this case we sampled only the lower half of the

178

gradient. The highest altitude investigated was at 1200 m and all the sampled sites were

covered by forests, at most montane. In this sense, the results of the Tapirapecó expeditions

are in fact quite similar to the ones from the Neblina at corresponding altitudes. Although at

Neblina Chrysometa were already abundant at 1550 m, an altitude still covered by forests, this

formation is classified as upper-montane forest (Huber 1995b) and have some significant

differences from montane forests in its physiognomy as well as in abiotic factors, mainly

temperature. We measured this variable every sampling night, and the average temperature at

1550 m is closer to that one found at the open sites, at 2000 m and 2400 m (16.3°±0.5,

14.2°±0.5 and 11.8°±1, respectively) than to the average temperature of the lower sites

(25.5°±0.6, 23°±1 and 21.5°±0.3 for 100 m, 400 m and 860 m, respectively).

Species distribution at the study site

Besides the high diversity, the fauna of Chrysometa from the Neblina is remarkable

for the distribution of its species along the altitudinal gradient. The community seems to be

structured by this variable, presenting important changes in its composition in different

altitudes (Table 1). It should be taken into account that great differences in composition could

be expected since most species are present in just one altitude. But most species are rare,

represented by one or just a few individuals, and so their presence or absence in a sample

should not be considered very informative. However, the fact that the four most abundant

species also occur exclusively, or predominantly, at just a single altitude is an evidence of its

strong influence on Chrysometa communities, and also that those species have different

environmental/climatic preferences.

The greatest discontinuity observed in the composition separates the species occurring

from low to mid altitude, up to 1,550 m, from species occurring above, at 2,000 and 2,400 m,

179

since no species is shared between those two elevational groups. This pattern seems correlated

to the greatest environmental discontinuity observed at our gradient. Forest formations that

occur from 100 to 1550 m are replaced above this by open formations, which not only differ

in their floristic composition and physiognomy, but also in their environmental conditions,

notably the lower temperature. Another striking characteristic of the Chrysometa from

Neblina is the segregated distribution of the three most abundant species (Table 1), which

resembles a classical example of spatial niche separation.

Unlike the results from Neblina, at Tapirapecó we couldn’t observe any clear

influence of altitude on the composition of the community, with the possible exception of C.

saci n. sp., which occurred exclusively at 1,200 m. Maybe the environmental differences

between the four sites sampled at this locality, which corresponded only to half of the gradient

sampled at Neblina, were not large enough to produce important shifts in species

composition.

Species distribution at the regional level

Mountain biotic communities are reputed to present at their upper parts a high degree

of speciation and endemism (Brown 2001, Lomolino 2001, Vetaas & Grytnes 2003), and the

species of Chrysometa from the Neblina seem to provide a good example of this

phenomenon. Almost all the new species found at Neblina are from the upper half of the

mountain, i.e, from 1,500 m to above, while the four previously known species occur from the

first to the fourth altitude (100-1,550 m).

The apparent endemism of the species here described may be due to the fact that the

spider fauna from the Amazon is still poorly known, and only a few areas have been

intensively sampled (Silva & Coddington 1996, Höfer & Brescovit 2001, Ricetti & Bonaldo

2008, Bonaldo et al. 2009). However, we believe that the Chrysometa fauna from high

180

altitude environments may have very narrow distribution ranges, and thus the new species

from Neblina probably have a restricted distribution as well

Most species of Chrysometa are from montane environments in Central America and

in the Andean region, but the distribution of those species is usually small, from a few nearby

localities or even just the type locality (Levi 1986). As mentioned before, undersampling is

certainly responsible for at least part of this apparently highly endemic distribution since

several species are described based on just one individual, being thus necessarily “endemic”.

But species recorded at more than one locality usually present a small distribution, and among

the high altitude specialists (occurring at least at 1800 m) only C. schneblei Levi and C.

zelotypa Levi have relatively large ranges, encompassing more than 1,000 km (Levi 1986).

On the other hand, species from lower altitudes often present ranges of that size or

larger, including the five already known species collected in our study, C. boraceia and C.

opulenta (Neblina), C. flava (Tapirapecó) and C. guttata and C. minuta (both localities).

Recorded from low to intermediate altitudes up to 1600 m (except for C. opulenta, which can

be found up to 3800 – Levi 1986), those species are relatively widespread in the Amazon

region, C. flava extending its range to Mexico and C. guttata to southeastern Brazil (Levi

1986). The presence of C. boraceia was a bit surprising since this species, although relatively

common and widespread, was restricted to southeastern Brazil (Levi 1986).

The absence of the high altitude species from Neblina at the relatively nearby

Tapirapecó could be more evidence of a high endemism level for this group, but this

comparison may be misleading since those species were recorded from 1,550 to 2,400 m, and

those altitudes have not been sampled at Tapirapecó. Anyway, it is worth noting that the only

new species from this place was exclusively found at 1200 m, the highest altitude investigated

in this expedition, while two of the three species from lower altitudes were also found at

Neblina.

181

The pattern reported in our work indicates that Chrysometa communities along

altitudinal gradients are characterized by widespread species occupying low and intermediate

altitudes, replaced by small-ranged, possibly endemic species at higher altitudes. As

documented above, the distribution of other species of the genus suggests that this pattern

may be common for Chrysometa communities in mountain regions.

Similar patterns are relatively common for taxa whose distributions encompass

mountain regions (birds - Bates & Zink 1994, Fjeldsa & Rahbek 2006, beetles - Cook 2002,

Escobar et al. 2006, and butterflies - Hall 2005), and quite a few hypotheses have been

proposed or even tested to explain the origin of mountain biota. Hypotheses proposed range

from colonization process through long distance dispersal (Lobo & Halffter 2000, Escobar et

al. 2006) to passive transportation to higher altitudes by mountain uplifts (Hall 2005, Ribas et

al. 2007), with speciation being a consequence of the isolation of higher altitude populations,

either by migration or simply by vicariance. It is also worth noting that the high diversity of

Chrysometa at high altitude environments, with several sympatric species is unusual and at

least partly in disagreement with both models, which predict a smaller richness at higher

altitudes (colonization model), or an allopatric distribution of high altitude species (passive

transportation and vicariance model). But, once again, those questions cannot be assessed

with distributional data, and a phylogenetic approach would be necessary to accordingly

unveil the evolutionary history of the genus as well as the process responsible for the

observed distribution of Chrysometa. Anyway, it seems to reinforce the fact that the genus

posses a great affinity to high altitude environments, probably based on a higher tolerance to

colder climates, an unusual feature for most neotropical spiders.

As a final remark, we can note that the large number of new species reported in our

study, as well as the fact that only two species of Chrysometa were previously known for the

Guayana Shield highlights that the spider fauna from this region is extremely undersampled.

182

Renowned for the high degree of endemism of its flora (Berry et al. 1995), the peculiar

geography of the Guayana Shield, with several high altitude habitats (the tepuis and other

mountain ranges) isolated from each other by lowland forests and savanna, seems especially

suitable to harbor a very diverse and endemic fauna of Chrysometa, and new expeditions will

certainly provide several new species of this interesting genus.

Acknowledgments

We are grateful to Adalberto Santos and Charles Griswold for their relevant comments

on early versions of the manuscript. We are also indebted to Ricardo Braga-Neto, Nancy Lo-

Man-Hung and David Candiani, for their invaluable help in the field. The first author is

grateful to Humberto Yamaguti, for his help preparing the study area map, and to Aline

Benetti, for help with the literature. The first author also thanks the PPGEco-INPA, the 5°PEF

Maturacá, a frontier squad from the Brazilian army, the IBAMA/ICMBio and PARNA Pico

da Neblina for the collecting license, and FUNAI and the Ayrca, a local Yanomami

association, for receiving use at the Yanomami Indigenous Land. A.A. Nogueira was

supported by a doctoral fellowship from “Conselho Nacional de Desenvolvimento Científico

e Tecnológico (CNPq)”, a BECA-IEB/Moore Foundation (B/2007/01/BDP/01) fellowship

and a grant from World Conservation Society (WCS). Fernando Alvarez-Padilla, Alexandre

B. Bonaldo and Gustavo Hormiga made valuable comments and correction to an earlier

version of this paper.

References

Almeida-Neto, A., Machado, G., Pinto-da-Rocha, R. & Giaretta, A.A. (2006) Harvestman

(Arachnida:Opiliones) species distribution along three Neotropical elevational gradients: an

alternative rescue effect to explain Rapoport’s rule? Journal of Biogeography, 33, 361-375.

183

Alvarez-Padilla, F. (2007) Systematics of the spider genus Metabus O. P.-Cambridge, 1899

(Araneoidea: Tetragnathidae) with additions to the tetragnathid fauna of Chile and comments

on the phylogeny of Tetragnathidae. Zoological Journal of the Linnean Society, 151, 285–

335.

Álvarez-Padilla, F., Dimitrov, D., Giribet, G., Hormiga, G. (2009). Phylogenetic relationships

of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA

sequence data. Cladistics, 25, 109-146.

Avalos, G., Damborsky, M. P., Bar, M. E., Oscherov E. B. & Porcel, E. (2009) Composición

de la fauna de Araneae (Arachnida) de la Reserva provincial Iberá, Corrientes, Argentina.

Revista de Biología Tropical, 57 (1-2), 339-351.

Baldissera, R., Ganade, G. & Fontoura, S. B. (2004) Web spider community response along

an edge between pastures and Araucaria forest. Biological Conservation, 118, 403-409.

Bates, J. M. & Zink, R. M. (1994) Evolution into the Andes: molecular evidence for species

relationships in the genus Leptopogon. Auk, 111, 507–515.

Berry, P. E., Huber, O. & Holst, B. K. (1995) Introduction. In: Berry, P. E., Holst, B. K. &

Yatskievych, K. (Eds.) Flora of the Venezuelan Guayana, 1, Missouri Botanical Garden

Press, St. Louis, 161-191.

Blanco-Vargas, E., Amat-Garcia, G. D. & Florez-Dáza, E. (2003) Araneofauna orbitelar

(Araneae: Orbiculariae) de los Andes de Colombia: comunidades en habitats bajo

regeneración. Revista Ibérica de Aracnología, 7, 189-203.

Bonaldo, A. B., Carvalho, L. S., Pinto-da-Rocha, R., Tourinho, A. L., Miglio, L. T., Candiani,

D. F., Lo Man Hung, N. F., Abrahim, N., Rodrigues, B. V. B., Brescovit, A. D., Saturnino, R.,

Bastos, N. C., Dias, S. C., Silva, B. J. F., Pereira-Filho, J. M. B., Rheims, C.A., Lucas, S. M.,

Polotow, D., Ruiz, G. R. S. & Indicatti, R. P. (2009) Inventário e História Natural dos

Aracnídeos da Floresta Nacional de Caxiuanã, Pará, Brasil. In: Lisboa, P. L. B. (Org.)

Caxiuanã: desafios para a conservação de uma Floresta Nacinal da Amazônia, Museu

Paraense Emílio Goeldi, Belém, 545-588.

Borges, S. H. & Brescovit, A. D. (1996) Inventário preliminar da aracnofauna (ARANEAE)

de duas localidades na amazônia ocidental. Boletim do Museu Paraense Emílio Goeldi, série

Zoologia, 12(1), 9-21.

Brescovit, A. D., Bertani, R., Pinto-da-Rocha, R. & Rheims, C. A. (2004) Aracnídeos da

Estação Ecológica Juréia–Itatins: inventário preliminar e história natural. In: Marques, O. A.

V. & Duleba, W. (Eds.) Estação Ecológica Juréia-Itatins: Ambiente físico, flora e fauna.

Holos, Ribeirão Preto, 198-221.

Brown, J. (2001) Mammals on mountainsides: elevational patterns of diversity. Global

Ecology and Biogeography, 10, 101–109.

Cook, J. (2002) A revision of the neotropical genus Cryptocanthon Balthasar (Coleoptera:

Scarabaeidae: Scarabaeinae). The Coleopterist Society Monographs, Patricia Vaurie Series

56, 1–96.

184

Dias, S. C., Brescovit, A. D., Couto E. C. G. & Martins C. F. (2006) Species richness and

seasonality of spiders (Arachnida, Araneae) in an urban Atlantic Forest fragment in

Northeastern Brazil. Urban Ecosystems 9, 323–335.

Escobar, F., Lobo, J. M. & Halffter, G. (2006) Assessing the origin of Neotropical mountains

dung beetle assemblages (Scarabaeidae: Scarabaeinae): the comparative influence of vertical

and horizontal colonization. Journal of Biogeography, 33, 1793-1803.

Fjeldsa, J. & Rahbek, C. (2006) Diversification of tanagers, a species rich bird group, from

lowlands to montane regions of South America. Integrative and Comparative Biology, 46 (1),

72-81.

Ferreira-Ojeda, l. & Florez-Daza, E. (2007) Arañas orbitelares (Araneae: Orbiculariae) em

tres formaciones vegetales de la Sierra Nevada de Santa Marta (Magdalena, Colombia).

Revista Ibérica de Aracnología,16, 3-16

Ferreira-Ojeda, L., Florez-Daza, E. & Sabogal-Gonzalez, A. (2009) Bosque húmedo

subtropical de La Sierra Nevada de Santa Marta (Magdalena, Colombia). Caldasia 31(2),

381-391.

Hall, J. P. W. (2005) Montane speciation patterns in Ithomiola butterflies (Lepidoptera:

Riodinidae): are they consistently moving up in the world? Proceedings of the Royal Society

B, 272, 2457–2466.

Höfer, H. & Brescovit, A. D. (2001) Species and guild structure of a Neotropical spider assemblage (Araneae) from Reserva Ducke, Amazonas, Brazil. Andrias, 15, 99-119.

Huber, O. (1995a) Geographical and physical features. In: Berry, P. E., Holst, B. K. &

Yatskievych, K. (Eds.) Flora of the Venezuelan Guayana, I. Introduction. Missouri Botanical

Garden Press, St. Louis, 1─ 61.

Huber, O. (1995b) Vegetation. In: Berry, P.E., Holst, B.K. & Yatskievych, K. (Eds) Flora of

the Venezuelan Guayana, I. Introduction. Missouri Botanical Garden Press, St. Louis, pp.

67─160.

Keyserling, E. (1863) Beschreibungen neuer Spinnen. Verhandlungen der Zoologisch-

Botanischen Gesellschaft in Wien, 13, 369-382.

Levi, H.W. (1986) The Neotropical orb-weaver genera Chrysometa and Homalometa

(Araneae: Tetragnathidae). Bulletin of the Museum of Comparative Zoology, Harvard

University, 151, 91–215.

Lobo, J. M. & Halffter, G. (2000) Biogeographical and ecological factors affecting the

altitudinal variation of mountainous communities of coprophagous beetles (Coleoptera,

Scarabaeoidea): a comparative study. Annals of the Entomological Society of America, 93,

115–126.

Lomolino, M.K. (2001) Elevation gradients of species-density: historical and prospective

views. Global Ecology and Biogeography, 10: 3-13.

185

Moritz, C., Patton, J. L., Schneider, C. J. & Smith, T. B. (2000) Diversification of rainforest

faunas: an integrated molecular approach. Annual Review of Ecology and Systematics, 31,

533–563.

Nogueira, A. A., Pinto-da-Rocha, R., & Brescovit, A. D. (2006) Comunidade de aranhas

orbitelas (Arachnida-Araneae) na região da Reserva Florestal do Morro Grande, Cotia, São

Paulo, Brasil. Biota Neotropica, 6(2), 1-24.

Peres, M. C. L., Silva, J. M. C. & Brescovit, A. D. (2007) The influence of treefall gaps on

the distribution of web-building and ground hunter spiders in an Atlantic Forest remnant,

northeastern Brazil. Studies on Neotropical Fauna and Environment, 42(1), 49–60.

Platnick, N. I. (2010) The world spider catalog, version 10.5. American Museum of Natural

History. Available from: http://research.amnh.org/entomology/spiders/catalog/index.html

Podgaiski, L. R., Ott, R., Rodriguez, E. N. L., Buckup, E. H. & Marquez, M. A. L. (2007)

Araneofauna (Arachnida: Araneae) do Parque Estadual do Turvo, Rio Grande do Sul, Brasil.

Biota Neotropica, 7(2).

RADAM (1978) Folha NA19. Pico da Neblina. Ministério das Minas e Energia. Rio de

Janeiro.

Raizer, J., Japyassu, H. F., Indicatti, R. P. & Brescovit, A. D. (2005) Comunidade de aranhas

(Arachnida, Aranea) do Pantanal do Norte (Mato Grosso, Brasil) e sua similaridade com a

araneofauna amazônica. Biota Neotropica, 5(1a).

Rego, F. N. A. A., Venticinque, E. M., Brescovit, A.D., Rheims, C. A. & Albernaz, A. L. K.

M. (2009) A contribution to the knowledge of the spider fauna (Arachnida: Araneae) of the

floodplain forests of the main Amazon River channel. Revista Ibérica de Aracnologia 97, 85-

96.

Ribas, C. C., Moyle, R. G. , Miyaki, C. Y. & Cracaft, J. (2007) The assembly of montane

biotas: linking Andean tectonics and climatic oscillations to independent regimes of

diversification in Pionus parrots. Proceedings of the Royal Society B, 274, 2399–2408.

Ricetti, J. & Bonaldo, A. B. (2008) Diversidade e estimativas de riqueza de aranhas em quatro

fitofisionomias na Serra do Cachimbo, Pará, Brasil. Iheringia, v. 98(1), 88-99.

Romo, M. I. & Florez-Daza, E. (2009) Comunidad de arañas orbitelares (Araneae:

Orbiculariae) asociada al bosque altoandino Del santuário Flora y Fauna Galeras, Nariño,

Colombia. Boletín Científico Museo de Historia Natural, 13 (1), 114 - 126

Silva, D. & Coddington, J. A. (1996) Spiders of Pakitza (Madre de Dios, Perú): species

richness and notes on community structure. In: Wilson, D. E. & Sandoval, A. (Eds.) Manu-

The biodiversity of Southeastern Perú. Smithsonian Institution Press, Washington, 253-311.

Simkova, A., Gelnar, M. & Sasal, P. (2001) Aggregation of congeneric parasites

(Monogenea: Dactylogyrus). Parasitology, 123, 599-607.

186

Simon, E. (1895) Histoire naturelle des araignées. Paris, 1: 761-1084

Valencia, J. C. & Florez-Daza, E. (2007) Arañas tejedoras: uso de difeentes microhábitats em

um bosque andino de Colombia. Revista Ibérica de Aracnologia, 14, 39-48.

Veetas, O. R. & Grytnes, J. A. (2002) Distribution of vascular plants species richness and

endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and

Biogeography, 11, 291–301.

187

Tables

Altitude (m.a.s.l.) 100 400 860 1550 2000 2400 Total by specie and WAM N° altitudes

relative abudance(%) m.a.s.l. present

Species Chrysometa petrasierwaldae sp.nov. 137 137 (40.8) 2400 1

Chrysometa nubigena sp.nov. 62 34 96 (28.6) 2142 2

Chrysometa lomanhungae sp.nov. 2 1 3 (0.9) 2133 2

Chrysometa sp. sp.nov. 1 1 (0.3) 2000 1

Chrysometa santosi sp.nov. 1 1 (0.3) 2000 1

Chrysometa ericclaptoni sp.nov. 3 3 (0.9) 2000 1

Chrysometa waikoxi sp.nov. 41 41 (12.2) 1550 1

Chrysometa Boracéia 6 6 (1.8) 1550 1

Chrysometa opulenta 1 4 29 34 (10.1) 1435 3

Chrysometa guttata 4 4 (1.2) 860 1

Chrysometa candianii sp.nov. 3 3 (0.9) 860 1

Chrysometa minuta 1 2 4 7 (2.1) 620 3

Total by altitude

Abundance 1 3 15 76 69 172 336

Richness 1 2 4 3 5 3 12 mean WAM

Relative importance (%)

Chrysometa 2032

Abundance 0.15 0.51 2.10 12.54 23.39 66.93 10.67 All spiders 765

Richness 0.61 0.71 2.29 3.45 9.09 15.00 2.52

Table 1. Chrysometa species from the Pico da Neblina. Distribution of species in six altitudes, weighted average altitudinal midpoint (WAM)

and number of altitudes in which each species were recorded. We also present the relative abundance of each species in relation to the total

abundance of the genus, and the relative importance of the richness and abundance of the genus in relation to the total spider richness and

188

abundance (unpublished data), for each altitude. Species have been ordered in decreasing way based in their WAM. In the lower right corner we

also present the mean WAM of the genus and the WAM of the total spider community (unpublished data).

189

Table 2. Chrysometa species from the Serra do Tapirapecó. Distribution of species in four

altitudes, weighetd average altitudinal midpoint (WAM) and number of altitudes in which

each species were recorded. We also present the relative abundance of each species in relation

to the total abundance of the genus, and the relative importance of the abundance of the genus

in relation to the total spider abundance (unpublished data), for each altitude. Species have

been ordered in decreasing way based in their WAM. In the lower right corner we also present

the mean WAM of the genus

Altitude (m .a .s .l.) 1 8 0 4 0 0 8 0 0 1 2 0 0 Tota l by WAM N° a ltitudes

s pec ie pres ent

S pec ies 8 8 1 2 0 0 1

C hry s om e ta m inuta 7 4 1 1 5 4 5 2

C hry s om e ta flav a 1 1 2 4 9 0 2

C hry s om e ta guttata 4 1 1 3 1 1 9 4 5 9 4

Tota l by a ltitude

Abunda nce 5 1 8 8 9 4 0

R ichnes s 2 2 3 2 4 m ea n WAM

R ela tive im porta nce (% ) C hry s om e ta 6 3 3

Abunda nce 0 ,9 5 4 ,0 1 2 ,5 6 2 ,6 8 2 ,4 6

C hry s om e ta s ac ii n. s p.

190

Chrysometa

Study Localitiy Environment N° sites

sampled

Altitude (m.a.s.l.) Sampling methods * Focal group N of

adults

Richness Abundance (% of

total abundance)

Andes

Blanco-Vargas et al. 2003 EED El Rasgón Santander,

Colombia

oak and riparian, Andean forests 2 High (2200-2400) NMAS, DMAS Orb-weavers 2608 10 357 (13.7)

Ferreira-Ojeda & Florez 2007 Sierra Nevada de Santa Marta,

Magdalena, Colombia

Tropical very dry forest,

Subtropical humid forest,

Subtropical very humid forest

3 Low to

intermediate (100,

900 and 1300)

NMAS, BT, SN Orb-weavers 1755 3 145 (8.3)

Valencia & Florez-Daza 2007 PNN Chingaza, Cundinamarca,

Colombia

Andean upper-montane forest 1 High (3130) NMAS, EMAS, BT,

SN

Web-spiders 1354 1 352 (26)

Ferreira-Ojeda et al. 2009 Sierra Nevada de Santa Marta,

Magdalena, Colombia

Subtropical humid forest 1 Intermediate (900) NMAS, DMAS, BT,

SN

Orb-weavers 496 1 49 (9.9)

Romo & Florez 2009 SFFG, Nariño, Colombia Forest, Shrubs, Grasslands 3 High (3320-3470) NMAS, DMAS Orb-weavers 453 4 288 (63.6)

Amazon Lowlands

Borges & Brescovit 1996 Mamirauá and Tefé, AM, Brazil Flooded and Terra Firme forest 2 Low NMAS, BT All spiders 649 none none

Silva & Coddington 1996 Paktiza, Peru Seven forest types 7 Low (356) NMAS, DMAS, BT Understory

spiders

2616 6 15 (0.6)

Höfer & Brescovit 2001 RF Adolpho Ducke, AM, Brazil Terra Firme Forest n.i. Low (80-140) NMAS, BT, FOG, PIT,

LIT, GE, TE,

LITERAT

All spiders n.i. 5 n.i.

Ricetti & Bonaldo 2008 Serra do Cachimbo, PA, Brazil Open rainforest, Riparian forest,

Arboreal savanna, White sand

vegetation

4 Intermediate (700) NMAS, BT, SN, LIT All spiders 2750 none none

Bonaldo et al. 2009 FLONA de Caxiuanã, PA, Brazil Terra Firme Forest 14 low (<100) NMAS, BT, SN, PIT,

W

All spiders 4768 1 1 (0.02)

Rego et al. 2009 AM and PA, Brazil Flooded Forest 26 low (<100) NMAS, BT All spiders 4142 none none

South and southeastern Brazil

Northern Argentina

Baldissera et al. 2004 FN São Francisco de Paula, RS,

Brazil

Pasture, border and Araucaria

forest

1 Low DMAS Web-spiders 836 1 3 (0.4)

Brescovit et al. 2004 ESEC Juréia, SP, Brazil Coastal Atlantic Forest 3 Low NMAS, BT, PIT, LIT All spiders n.i. 3 n.i.

Nogueira et al. 2006 RF Morro Grande, SP, Brazil Mature and secondary, Montane

Atlantic forest

16 Intermediate (850-

1100)

NMAS Orb-weavers 3148 6 351 (11.1)

Podgaiski et al. 2007 PE do Turvo, RS, Brazil Subtropical decidous, Atlantic

Forest

2 Low NMAS, BT, PIT, W All spiders 2946 2 37 (1.2)

Avalos et al. 2009 Iberá province reserve,

Corrientes, Argentina

Grassland, Hygrophilous

woodland

3 Low NMAS, BT, SN, PIT,

LIT

All spiders 3808 2 n.i.

Central and northeastern Brazil

Raizer et al. 2005 North Pantanal, MT, Brazil Riparian forest, Secondary forest 6 Low NMAS, BT All spiders 601 2 2 (0.3)

Dias et al. 2006 Mata do Buraquinho, PB, Brazil Atlantic Forest 1 Low NMAS, BT, PIT All spiders 1681 1 n.i.

Peres et al. 2007 RESEC Dois Irmãos, PE, Brazil Atlantic forest, Treefall gaps 1 Low DMAS, PIT All spiders 1996 2 3 (0.1)

191

Table 3. Neotropical spider inventories. Authors and year of the study, locality, environment, number and altitude of sites sampled, collecting

methods, focal group, total spider abundance, and richness and abundance of Chrysometa. In brackets we present the relative abundance of the

genus in relation with total abundance. n.i. No information available. *Methods: NMAS – nocturnal manual active searching, DMAS – diurnal

manual active searching, EMAS – manual active searching on epyphytics, BT – beating tray, SN – sweeping net, PIT – pitfall trap, LIT – litter

searching, W – Winkler extractor, FOG – canopy fogging, GE – ground eclector, TE – trunk eclector, LITERAT – information from literature.

192

Figures

FIGURES 1. Study area. A) South America; B) Northern South America (rectangle of map A

enlarged). The mountain range at the left of the map represents the northern part of the

Andes, and the mountainous region in the center of the map is the Guayana Shield,

showing the study area in its southern part; C) Closer view of the study area (rectangle

of map B enlarged), showing the two sampled sites, the Pico da Neblina (red circle)

and the Serra do Tapirapecó (blue triangule). The white line represents the boundary

between Brazil and Venezuela.

193

FIGURES 2A-E. Chrysometa nubigena n. sp. A. Male palpus, ventral view. B. Same,

retrolateral view. C. Epigynum, ventral view. D. Same, posterior view. E. Same, dorsal

view. Scale bars: AB, 0.3 mm; CDE, 0.1 mm.

194

FIGURES 3A-E. Chrysometa saci n. sp. A. Male palpus, ventral view. B. Same, retrolateral

view. C. Epigynum, ventral view. D. Same, posterior view. E. Same, dorsal view. Scale

bars: AB, 0.3 mm; CDE, 0.5 mm.

195

FIGURES 4A-E. Chrysometa waikoxi n. sp. A. Male palpus, ventral view. B. Same,

retrolateral view. C. Epigynum, ventral view. D. Same, posterior view. E. Same, dorsal

view. Scale bars: AB, 0.3 mm; CDE, 0.1 mm.

196

FIGURES 5A-E. Chrysometa petrasierwaldae n. sp. A. Male palpus, ventral view. B. Same,

retrolateral view. C. Epigynum, ventral view. D. Same, posterior view. E. Same, dorsal

view. Scale bars: AB, 0.3 mm; CDE, 0.1 mm.

197

FIGURES 6A-I. Chrysometa spp. A-C. Chrysometa lomanhungae n. sp. A. Epigynum,

ventral view. B. Same, posterior view. C. Same, dorsal view. D-F. Chrysometa

yanomami n. sp. D. Epigynum, ventral view. E. Same, posterior view. F. Same, dorsal

view. G-I. Chrysometa santosi n. sp. G. Epigynum, ventral view. H. Same, posterior

view. I. Same, dorsal view. Scale bars: A-C, 0.1 mm; D-F, 0.1 mm; G-I, 0.3 mm.

198

FIGURES 7A-D. Chrysometa spp. AB. Chrysometa candianii n. sp. A. Male palpus, ventral

view. B. Same, retrolateral view. CD. Chrysometa minuta (Keyserling). C. Male

palpus, ventral view. D. Same, retrolateral view. Scale bars: AB, 0.5mm; CD, 0.5 mm.

199

SÍNTESE

O nosso estudo representa a pesquisa mais completa realizada sobre a distribuição de

aranhas ao longo de um gradiente altitudinal tropical, devido ao número de altitudes

amostradas, ao esforço amostral, e à abrangência do grupo estudado, uma vez que

trabalhamos com toda a fauna de solo e subosque, o que inclui a maioria das espécies de

aranha.

Os nossos resultados apresentaram algumas características já observadas em trabalhos

similares com outros grupos taxonômicos e que são consideradas típicas de faunas montanas,

como uma grande diversidade alfa e beta ao longo do gradiente. Em outros casos, nossos

resultados revelaram padrões inesperados, e todas as hipóteses testadas baseadas em teorias

biogeográficas, como o Efeito do Domínio Central e o Efeito Rapoport foram refutadas. Outro

achado que pode ser considerado surpreendente foi que, ao menos em alguns casos, as

mudanças na composição da fauna de aranhas ao longo do gradiente não estiveram

diretamente relacionadas às mudanças observadas na vegetação.

De maneira sintética, nosso trabalho aponta como principais características da

comunidade de aranhas amostrada no Pico da Neblina uma grande riqueza e diversidade. E,

no que diz respeito à distribuição das espécies e indivíduos ao longo do gradienete, o principal

resultado foi a relação negativa entre esses parâmetros da comunidade e a altitude.

A queda monotônica da riqueza com a altitude esteve longe de se ajustar ao previsto

pela Hipótese das Restrições Geométricas (Efeito do Domínio Central), que espera uma maior

riqueza nas partes intermediárias do gradiente. Isso também representa um padrão encontrado

recorrentemente na literatura, o que inclui os principais trabalhos realizados até então com

aranhas ao longo de gradientes altitudinais. No entanto, acreditamos que nossos resultados

podem ser mais representativos da distribuição altitudinal de aranhas devido à sua maior

abrangência taxonômica e desenho amostral mais detalhado. Também é necessário comentar

que alguns dos trabalhos sobre aranhas mencionados acima foram realizados em ambientes

temperados, o que também pode explicar a diferença em relação aos nossos resultados,

obtidos em uma localidade tropical.

Nossos resultados também se ajustam a um modelo climático altitudinal que ressalta a

importância do ambiente no padrão altitudinal da distribuição da riqueza. De acordo com esse

modelo, em montanhas localizadas em locais úmidos, como no caso do presente estudo,

200

espera-se uma diminuição gradual da riqueza com o aumento da altitude. Embora o modelo

tenha sido baseado nos resultados de um grande número de trabalhos com vertebrados, o

ajuste com nossos dados mostra que ele pode ser mais abrangente.

Uma outra característica marcante da comunidade por nós amostrada foi a pequena

distribuição altitudinal da maioria das espécies, que só foi encontrada em uma ou duas

altitudes. Consideramos que essa distribuição restrita foi diretamente responsável por uma

série de resultados do trabalho, uma vez que as distribuições previstas tanto pela Hipótese das

Restrições Geométricas quanto pelo Efeito Rapoport parecem ocorrer com maior freqüência

em comunidades cujas espécies possuam em média uma maior área de distribuição.

A pequena distribuição das espécies também teve como conseqüência grandes

mudanças na composição, como pôde ser observado nos altos valores de diversidade beta.

Como gradientes altitudinais representam gradientes acentuados, com mudanças ambientais

importantes em distâncias relativamente pequenas, biotas amostradas em gradientes

altitudinais realmente costumam apresentar grandes mudanças na composição.

O agrupamento das altitudes amostradas em função da composição de sua fauna de

aranhas revelou três grupos principais, um de locais mais baixos que incluía as três primeiras

altitudes, um formado pelas duas localidades mais altas, e a quarta altitude ficou disposta em

uma posição isolada e intermediária entre esses dois grupos. Esse resultado não está

totalmente de acordo com a divisão altitudinal proposta para a região da área de estudo, uma

vez que nossa comunidade de áreas baixas distribui-se além do limite proposto.

Por fim, o gênero Chrysometa, estudado em maior detalhe, forneceu alguns exemplos

dos padrões mais gerais relatados ao longo do trabalho. A maioria das espécies teve

distribuições restritas ao longo do gradiente, e pudemos observar mudanças importantes na

composição. Os maiores valores de diversidade beta estiveram relacionados à maior ruptura

ambiental existente no gradiente, entre a quarta e a quinta altitude, quando se passa de

ambientes florestais para formações vegetais mais abertas.

A análise da distribuição altitudinal desse gênero, no local de estudo e também em

uma escala maior, com o auxílio da literatura, indicam que as espécies que ocorrem em maior

altitude possuem uma distribuição mais restrita que as espécies de locais mais baixos. Isso

sugere um maior grau de endemismo para as espécies da parte superior do gradiente, um

padrão já ressaltado para outros grupos estudados em ambientes montanos. A teoria também

201

prevê maiores taxas de especiação no alto de gradientes altitudinais, e, embora nossos dados

não permitam testar essa afirmação diretamente, nós efetivamente coletamos um grande

número de espécies novas desse gênero, e a maioria delas estava nas partes mais altas da

montanha.

Em suma, nosso trabalho revelou uma comunidade rica e diversa, e bastante sensível

as mudanças do gradiente. A grande diversidade beta indica que a maioria das espécies está

adpatada à uma faixa restrita e específica do gradiente, sendo que a quantidade de espécies

que consegue ocupar as partes mais altas da montanhas vai caindo gradualmente.

202

REFERÊNCIAS BIBLIOGRÁFICAS

Albernaz, A. L. K. M. 2009. A contribution to the knowledge of the spider fauna (Arachnida:

Araneae) of the floodplain forests of the main Amazon River channel. Rev. Ibérica Aracnol.

97: 85-96.

Almeida-Neto, M.; Machado, G.; Pinto-da-Rocha, R.; Giaretta, A.A. 2006. Harvestman

(Arachnida: Opiliones) species distribution along three Neotropical elevational gradients: an

alternative rescue effect to explain Rapoport’s rule? J. Biogeogr.; 33: 361–375.

Álvares, E. S. S. E, Machado, O.; Azevedo C. S. De-Maria, M.. 2004. Composition of the

spider assemblage in a urban forest reserve in Southeastern Brazil and evalution of a two

sampling method protocols of species richness estimates. Rev. Ibérica Aracnol.; 10: 185-194.

Alvarez-Padilla, F. 2007. Systematics of the spider genus Metabus O. P.-Cambridge, 1899

(Araneoidea: Tetragnathidae) with additions to the tetragnathid fauna of Chile and comments

on the phylogeny of Tetragnathidae. Zool. J. Linn. Soc. 151: 285–335.

Álvarez-Padilla, F.; Dimitrov, D.; Giribet, G.; Hormiga, G. 2009. Phylogenetic relationships

of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA

sequence data. Cladistics, 25: 109-146.

Avalos, G.; Damborsky, M. P.; Bar, M. E.; Oscherov E. B.; Porcel, E. 2009. Composición de

la fauna de Araneae (Arachnida) de la Reserva provincial Iberá, Corrientes, Argentina. Rev.

Biol. Trop.; 57 (1-2): 339-351.

Bach, K.; Kessler, M.; Gradstein, S.R. 2007. A simulation approach to determine statistical

significance of species turnover peaks in a species-rich tropical cloud forest.Diversity

Distrib.; 13: 863–870

Baldissera, R.; Ganade, G.; Fontoura, S. B. 2004. Web spider community response along an

edge between pastures and Araucaria forest. Biol. Conserv. 118: 403-409.

Barthlott, W.; Lauer, W.; Placke, A. 1996. Global distribution of species diversity in vascular

plants: towards a world map of phytodiversity. Erdkunde, 50: 317–327.

Bateman, B.L.; Kutt, A.S.; Vanderduys, E.P.; Kemp, J.P. 2010. Small-mammal species

richness and abundance along a tropical altitudinal gradient: an Australian example. J. Trop.

Ecol.; 26: 139–149

203

Bates, J. M.; Zink, R. M. 1994. Evolution into the Andes: molecular evidence for species

relationships in the genus Leptopogon. Auk, 111: 507–515.

Beck, J.; Chey, V.K. 2008. Explaining the elevational diversity pattern of geometrid moths

from Borneo: a test of five hypotheses. J. Biogeogr.; 35: 1452–1464

Bellwood, D. R.; Hughes, T. P.; Connolly, S. R.; Tanner, J. 2005. Environmental and

geometric constraints on Indo-Pacific coral reef biodiversity. Ecol. Lett.; 8: 643–651.

Berger, W.H.; Parker, F.L. 1970. Diversity of planktonic foraminifera in deep-sea sediments.

Science 168:1345–134

Berry, P. E.; Riina, R. 2005. Insights into the diversity of the Pantepui flora and the

biogeographic complexity of the Guayana Shield. Biol. Skrif.; 55: 145–167.

Berry, P.E.; Huber, O.; Holst, B.K. 1995. Introduction. In: Berry, P.E.; Holst, B.K.;

Yatskievych, K. (Eds.) Floristic analysis and phytogeography. Flora of the Venezuelan

Guayana.; Vol 1. Missouri Botanical Garden Press, St Louis, MO. p. 161–191.

Bhattarai, K.R.; Vetaas, O.R.; 2006. Can Rapoport’s rule explain tree species richness along

the Himalayan elevational gradient, Nepal? Divers. Distrib. 12: 373–378.

Blackburn, T.M.; Gaston, K.J. 1996. Spatial patterns in the geographical range sizes of bird

species in the New World. Phil. Trans. Royal Society (Series B), 351: 897–912.kwell

Publishing Ltd

Blanco-Vargas, E.; Amat-Garcia, G. D.; Florez-Dáza, E. 2003. Araneofauna orbitelar

(Araneae: Orbiculariae) de los Andes de Colombia: comunidades en habitats bajo

regeneración. Rev. Ibérica Aracnol. 7: 189-203.

Bonaldo, A. B.; Carvalho, L. S.; Pinto-da-Rocha, R.; Tourinho, A. L.; Miglio, L. T.;

Candiani, D. F.; Lo Man Hung, N. F.; Abrahim, N.; Rodrigues, B. V. B.; Brescovit, A. D.;

Saturnino, R.; Bastos, N. C.; Dias, S. C.; Silva, B. J. F.; Pereira-Filho, J. M. B.; Rheims, C.A.;

Lucas, S. M.; Polotow, D.; Ruiz, G. R. S.; Indicatti, R. P. 2009. Inventário e História Natural

dos Aracnídeos da Floresta Nacional de Caxiuanã, Pará, Brasil. In: Lisboa, P. L. B. (Org.)

Caxiuanã: desafios para a conservação de uma Floresta Nacinal da Amazônia, Museu

Paraense Emílio Goeldi, Belém, pp. 545-588.

Bonaldo, A.B.; Dias, S.C. 2010. A structured inventory of spiders (Arachnida, Araneae) in

natural and artificial forest gaps at Porto Urucu. Western Br. Amazonia. 40(2): 357-372.

204

Bonaldo, A.B.; Rheims, C.A.; Brescovit, A.D. 2006. Four new species of Drymusa Simon

(Araneae, Drymusidae) from Brazilian Oriental Amazonia. Rev. Br. Zool. 23 (2): 455–359.

Borges, S. H.; Brescovit, A. D. 1996. Inventário preliminar da aracnofauna (ARANEAE) de

duas localidades na amazônia ocidental. Bol. M. Paraense Emílio Goeldi, série Zoologia,

12(1): 9-21.

Bosmans, R.; Maelfait, J.P.; De Kimpe, A. 1986. Analysis of the spider communities in an

altitudinal gradient in the French and Spanish Pyrenees. Bull British Arachnol. Soc.; 7: 69–76.

Bourdon, K.H.; Boyd, J.H.; Era, D.S.; Burns, B.J.; Thompson, J.W.; Locke, B.Z. 1988

Gender differences in phobias: results of the ECA community survey. J. Anxiety

Disorders.2(3):227–241.

Brehm, G.; Colwell, R.K.; Kluge, J. 2007. The role of environment and mid-domain effect on

moth species along a tropical elevational gradient. Global Ecol. Biogeogr, 16: 205–219.

Brehm, G.; Homeier, J. Fiedler, K. 2003. Beta diversity of geometrid moths (Lepidoptera:

Geometridae) in an Andean montane rainforest. Div. Distr., 9: 351–366.

Brehm, G.; Süssenbach, D.; Fiedler, K. 2003. Unique elevational diversity patterns of

geometrid moths in an Andean montane rainforest. Ecography, 26: 356–366.

Brehm, G.; Süssenbach, D.; Fiedler, K. 2004. Unique elevational diversity patterns of

geometrid moths in an Andean montane rainforest. J. Trop. Ecol., 20: 165–172.

Brescovit A.D.; Bonaldo, A.B.; Rheims, C.A. 2004. A new species of Drymusa Simon, 1891

(Araneae, Drymusidae) from Brazil. Zootaxa 697: 1–5.

Brescovit, A. D.; Bertani, R.; Pinto-da-Rocha, R.; Rheims, C. A. 2004. Aracnídeos da Estação

Ecológica Juréia–Itatins: inventário preliminar e história natural. In: Marques, O. A. V.;

Duleba, W. (Eds.) Estação Ecológica Juréia-Itatins: Ambiente físico, flora e fauna. Holos,

Ribeirão Preto, 198-221.

Brown, J.H 2001. Mammals on mountainsides: elevational patterns of diversity. Global Ecol.

Biogeogr.10: 101–109.

Brown, J.H. 1984. On the relationship between abundance and distribution of species. Am.

Nat.; 124: 255-279.

Brown, J.H.; Kodric-Brown, A. 1977. Turnover rates in insular Biogeogr: effect of

immigration on extinction. Ecology, 58: 445-449.

205

Callaway, R. M.; Brooker, R. W.; Choler, P.; Kikvidze, Z.; Lortiek, C. J.; Michalet, R.;

Paolini, L.; Pugnaireq, F. I.; Newingham, B.; Aschehoug, E.T.; Armasq, C.; Kikodze, D.;

Cook, B. J. 2002. Positive interactions among alpine plants increase with stress. Nature, 417:

844-848.

Cardelús, C.; Colwell, R. K.; Watkins Jr.; J. E. 2006. Vascular epiphyte distribution patterns:

explaining the mid-elevation richness peak. J. Ecology, 94: 144-156.

Carranza, A.; Colwell, R.K.; Rangel, T.F.L.V.B. 2008. Distribution of megabenthic

gastropods along environmental gradients: the mid-domain effect and beyond. Mar Ecol-Prog

Ser.; 367: 193-202.

Chatzaki, M.; Lymberakis, P.; Markakis, G.; Mylonas, M. 2005. The distribution of ground

spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: species

richness, activity and altitudinal range. J. Biogeogr, 32: 813–831.

Chettri, B.; Bhupathy, S.; Acharya, B.K. 2010. Distribution pattern of reptiles along an

eastern Himalayan elevation gradient, India. Acta Oecol.; 36: 16–22

Choi, S. W.; Jeong-Seop, N.A. 2010. Altitudinal distribution of moths (Lepidoptera) in Mt.

Jirisan National Park, South Korea. Eur. J. Entomol. 107: 229–245

Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure.

A. J. Ecol. 18:117– 143.

Coddington J.; Levi. H. 1991. Systematics and evolution of spiders (Araneae). Ann. Rev Ecol.

Syst. 22: 565-592.

Coddington, J.A.; Agnarsson, I.; Miller, J.A.; Kuntner, M.; Hormiga, G. 2009. Undersampling

bias: the null hypothesis for singleton species in tropical arthropod surveys. J. Anim. Ecol.;

78: 573–584

Coddington, J.A.; Griswold, C.E.; Silva, D.; Larcher, L. 1991. Designing and testing

sampling protocols to estimate biodiversity in tropical ecosystems. The Unity of Evolutionary

Biology: Proceedings of the Fourth International Congress of Systematic and Evolutionary

Biology, Dioscorides Press, Portland, Oregon. p. 44–60.

Colwell, R. K. 2006. RangeModel A Monte Carlo simulation tool for assessing geometric

constraints on species richness. Version 5. User's Guide and application.

(http://viceroy.eeb.uconn.edu/rangemodel). Acesso: 11/2010.

206

Colwell, R. K. 2008. RangeModel: Tools for exploring and assessing geometric constraints on

species richness (the mid-domain effect) along transects. Ecography, 31: 4-7.

Colwell, R. K. 2009. EstimateS: Statistical estimation of species richness and shared species

from samples. Version 8.2. User's Guide and application. (http://purl.oclc.org/estimates).

Acesso: 11/2010.

Colwell, R. K.; Rahbek, C.; Gotelli, N. J. 2004. The middomain effect and species richness

patterns; What have we learned so far? Am. Nat.; 163: E1–E23.

Colwell, R.K.; Coddington, J.A. 1994. Estimating terrestrial biodiversity through

extrapolation. Phil. Trans. Royal Soc., B, 345: 101–118.

Colwell, R.K.; Gotelli, N.J.; Rahbek, C.; Entsminger, G.L.; Farrell, C.; Graves, G.R. 2009.

Peaks, plateaus, canyons, and craters: the complex geometry of simple mid-domain effect

models. Evol. Ecol. Res.; 11: 355–370.

Colwell, R.K.; Hurtt, G.C. 1994. Nonbiological gradients in species richness and a spurious

Rapoport effect. Am. Nat.; 144: 570–595.

Colwell, R.K.; Lees, D.C. 2000. The mid-domain effect: geometric constraints on the

geography of species richness. Trends Ecol. Evol.; 15: 70–76.

Cook, J. 2002. A revision of the neotropical genus Cryptocanthon Balthasar (Coleoptera:

Scarabaeidae: Scarabaeinae). The Coleopterist Society Monographs, Patricia Vaurie Series

56: 1–96.

Currie, D.J.; Kerr, J.T. 2008. Tests of the mid-domain hypothesis: review of the evidence.

Ecol. Monogr.; 78(1): 3-18.

Davis, A.L.V.; Scholtz, C.H. Chown, S.L. 1999. Species turnover, community boundaries

and biogeographical composition of dung beetle assemblages across an altitudinal gradient in

South Africa. J. Biogeogr, 26: 1039–1055.

Deza, M.; Andia, J.M. 2009. Diversity and species richness of the family Araneidae

(Arachnida, Araneae) in Cicra (Madre de Dios – Peru). Ecología Aplicada, 8(2): 81-90.

Dias, S. C.; Brescovit, A. D.; Couto E. C. G.; Martins C. F. 2006. Species richness and

seasonality of spiders (Arachnida, Araneae) in an urban Atlantic Forest fragment in

Northeastern Brazil. Urban Ecos. 9: 323–335.

207

Diniz-Filho, J. A. F.;. Bini, L. M; Hawkins, B. A.. 2003. Spatial autocorrelation and red

herrings in geographical ecology. Global Ecol. Biogeogr, 12:53–64.

Doyle, A.C. 1912. The Lost World. Hodder Stoughton, New York.

Dufrêne, M.; Legendre, P. 1997. Species assemblages and indicator species: the need for a fl

exible asymetrical approach. Ecol. Monogr. 67: 345–366.

Dunn, R. R.; Colwell, R. K.; Nilsson, C. 2006. The river domain: Why are there more species

halfway up the river? Ecography, 29: 251–259.

Dunn, R.R.; McCain, C.M.; Sanders, N.J. 2007. When does diversity fit null model

predictions? Scale and range size mediate the mid-domain effect. Global Ecol. Biogeogr, 16:

305–312.

Edwards, J.S.; Thornton, W.B. 2001. Colonization of an island volcano, Long Island, Papua

New Guinea, and an emergent island, Motmot, in its caldera lake. VI. The pioneer arthropod

community of Motmot. J. Biogeog.; 28: 1379–1388.

Escobar, F.; Lobo, J. M.; Halffter, G. 2006. Assessing the origin of Neotropical mountains

dung beetle assemblages (Scarabaeidae: Scarabaeinae): the comparative influence of vertical

and horizontal colonization. J. Biogeogr.33: 1793-1803.

Fasham, M.J.R. 1977. A comparison of nometric multidimentsional scaling, principal

components and reciprocal averaging for the ordination of simulated coenoclines, and

coenoplanes. Ecology 58: 551-561

Ferreira-Ojeda, L.; Florez-Daza, E. 2007. Arañas orbitelares (Araneae: Orbiculariae) em tres

formaciones vegetales de la Sierra Nevada de Santa Marta (Magdalena, Colombia). Rev.

Ibérica Aracnol.; 16: 3-16.

Ferreira-Ojeda, L.; Florez-Daza, E.; Sabogal-Gonzalez, A. 2009. Bosque húmedo subtropical

de La Sierra Nevada de Santa Marta (Magdalena, Colombia). Caldasia 31(2): 381-391.

Fjeldsa, J.; Rahbek, C. 2006. Diversification of tanagers, a species rich bird group, from

lowlands to montane regions of South America. Integrative and Comparative Biology, 46 (1):

72-81.

Fleishman, E.; Austin, G.T.; Weiss, A.D. 1998. An empirical test of Rapoport’s rule:

elevational gradients in montane butterfly communities. Ecology, 79: 2482–2493.

Foelix, R.F. 1996. Biology of spiders. Oxford University Press, Oxford.

208

Fortes R.R.; Absalão, R.S. 2004. The applicability of Rapoport’s rule to the marine molluscs

of the Americas. J. Biogeogr, 31: 1909–1916.

Fu, C.; Hua, X.; Li, J.; Chang, Z.; Pu, Z.; Chen, J. 2006. Elevational patterns of frog species

richness and endemic richness in the Hengduan Mountains, China: geometric constraints, area

and climate effects. Ecography, 29: 919-927.

García-López A.; Micó, E.;Numa, C.; Galante, E. 2010. Spatiotemporal Variation of Scarab

Beetle Assemblages (Coleoptera: Scarabaeidae: Dynastinae, Melolonthinae, Rutelinae) in the

Premontane Rain Forest in Costa Rica: A Question of Scale. Ann. Entomol. Soc. Am. 103(6):

956-964.

Gaston, K.J.; Blackburn, T.M.; Spicer, J.I. 1998. Rapoport’s rule: time for an epitaph? Trends

Ecol. Evol.n, 13: 70–74.

Gentry, A.H. 1988. Changes in plant community diversity and floristic composition on

environmental and geographical gradients. Ann,.Missouri Bot. G., 75: 1–34.

Ghalambor, C.K.; Huey, R.B.; Martin, P.R.; Tewksbury, J.J.; Wang, G. 2006. Are mountain

passes higher in the tropics? Janzens hypothesis revisited. Integr. Comp. Biol.; 46: 5–17.

Gotelli, N.; Colwell, R. K. 2001. Quantifying biodiversity: Procedures and pitfalls in the

measurement and comparison of species richness. Ecol. Lett.; 4: 379-391.

Grau, O.; Grytnes, J.A.; Birks, H.J.B. 2007. A comparison of altitudinal species richness

patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J. Biogeogr.; 34:

1907–1915.

Greenstone, M.H. 1984. Determinants of web spider species diversity: vegetation structural

diversity vs. prey availability. Oecologia, 62: 299 – 304.

Grytnes, J.A.; Beaman J.H.; Romdal, T.S.; Rahbek.; C. 2008. The mid-domain effect matters:

simulation analyses of range-size distribution data from Mount Kinabalu, Borneo J. Biogeogr,

35: 2138–2147.

Grytnes, J.A.; Vetaas, O.R. 2002. Species richness and altitude: a comparison between null

models and interpolated plant species richness along the Himalayan altitudinal gradient,

Nepal. Am. Nat.; 159: 294–304.

Halaj, J.; Ross, D.W.; Moldenke, A. R. 1998. Habitat structure and prey availability as

predictors of the abundance and community.

209

Hall, J. P. W. 2005. Montane speciation patterns in Ithomiola butterflies (Lepidoptera:

Riodinidae): are they consistently moving up in the world? P. Roy. Soc. B, 272: 2457–2466.

Hammer, O.; Harper, D.A.T.; Ryan, P. D. 2001. PAST: Paleontological Statistics Software

Package for Education and Data Analysis. Palaeontol Electronica 4(1): 9pp.

Hatley, C.L.; MacMahon, J.A. 1980. Spider community organization: seasonal variation and

the role of vegetation architecture. Envir. Entomol. 9: 632-639.

Hawkins, B. A. 2001. Ecology’s oldest pattern? Trends Ecol. Evol.; 16: 470.

Hawkins, B. A.; Diniz-Filho, J. A. F.; Weis, A. E. 2005. The middomain effect and diversity

gradients: is there anything to learn? Am. Nat.; 166: E140–E143.

Hill, M. O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology,

54: 427-432.

Höfer, H.; Brescovit, A.D. 2001. Species and guild structure of a Neotropical spider

assemblage (Araneae) from Reserva Ducke, Amazonas, Brazil. Andrias, 15: 99-119.

Höfer, H.; Brescovit, A.D.; Gasnier, T. 1994. The wandering spiders of the genus Ctenus

(Ctenidae, Araneae) of Reserva Ducke, a rainforest reserve in central Amazonia. Andrias

13:81–98.

Hubbell, S.P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography.

Monographs in Population Biology 32. Princeton University Press, Princeton, NJ.

Huber, O. 1995. Geographical and physical features. In: Berry, P.E.; Holst, B.K.;

Yatskievych, K. (Eds). Flora of the Venezuelan Guayana. Missouri Botanical Garden Press,

St. Louis, p. 1-60.

Huber, O. 1995. Vegetation. In: Berry, P.E.; Holst, B.K.; Yatskievych, K. (Eds). Flora of the

Venezuelan Guayana. Missouri Botanical Garden Press, St. Louis, p. 67─160.

Huber, O. 1995a. Geographical and physical features. In: Berry, P. E.; Holst, B. K.;

Yatskievych, K. (Eds.) Flora of the Venezuelan Guayana, I. Introduction. Missouri Botanical

Garden Press, St. Louis, pp. 1─ 61.

Huber, O. 1995b. Vegetation. In: Berry, P.E.; Holst, B.K.; Yatskievych, K. (Eds) Flora of the

Venezuelan Guayana, I. Introduction. Missouri Botanical Garden Press, St. Louis, pp.

67─160.

210

Hurlbert, A.H. 2004. Species–energy relationships and habitat complexity in bird

communities. Ecol. Lett., 7: 714–720

IBGE, 2010. Instituto Brasileiro de geografia e Estatística. In: http://www.ibge.gov.br

Jankowski, J.E.; Ciecka, A.L.; Meyer, N.Y. & Rabenold, K.N (2009) Beta diversity along

environmental gradients: implications of habitat specialization in tropical montane landscapes

J. Anim. Ecol.; 78: 315–327

Janzen, D.H. 1967. Why mountain passes are higher in the tropics? Am. Nat.; 101: 233–249.

Janzen, D.H.; Ataroff, M.; Farinas, M.; Reyes, S.; Rincon, N.; Soler, A.; Soriano, P.; Vera, M.

1976.Changes in the arthropod community along an elevational transect in the Venezuelan

Andes. Biotropica, 8: 193–203.

Jetz, W.; Rahbek, C. 2001. Geometric constraints explain much of the species richness pattern

in African birds. Proc. Nat. Ac. Sciences (USA), 98: 5661–5666.

Jetz, W.; Rahbek, C.;.Colwell, R.C. 2004. The coincidence of rarity and richness and the

potential signature of history in centres of endemism. Ecol. Lett. 7: 1180–1191.

Jill, E.; Jankowski, A. L.; Ciecka, N.; Meyer, Y.; Rabenold, K.N. 2009. Beta diversity along

environmental gradients: implications of habitat specialization in tropical montane

landscapes. J. An. Ecol. 78 , 315–327

Jiménez-Valverde, A.; Baselga, A.S.; Melic, A.; Txasko, N . 2010. Climate and regional beta-

diversity gradients in spiders: dispersal capacity has nothing to say? Insect Conserv. Div. 3:

51–60

Jocqué, R,; Samu, F.; Bird, T. 2005. Density of spiders (Araneae: Ctenidae) in Ivory Coast

rainforests. J. Zool.; Lond266: 105–110

Jost, L. 2006. Entropy and diversity. Oikos, 113: 363-375.

Jost, L. 2007. Partitioning diversity into independent alpha and beta components. _ Ecology

88: 2427-2439.

Kapoor, V. 2008. Effects of rainforest fragmentation and shade-coffee plantations on spider

communities in the Western Ghats, India. J Insect Conserv, 12:53–68

Kenkel, N. C. Orloci, L. 1986. Applying metric and nonmetric multidimensional scaling to

Ecol. studies: some new results. Ecology 67:919–928.

211

Keyserling, E. 1863; Beschreibungen neuer Spinnen. Verhandlungen der Zoologisch-

Botanischen Gesellschaft in Wien, 13: 369-382.

Kluge, J.; Kessler, M.; Dunn, R. R. 2006. What drives elevational patterns of diversity? A test

of geometric constraints, climate and species pool effects for pteridophytes on an elevational

gradient in Costa Rica. Global Ecol. Biogeogr, 15: 358–371.

Koleff, P. 2003a. Measuring beta diversity for presence and absence data. J. Anim. Ecol. 72:

367_382.

Kruskal J.B. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika

29: 115-129.

Laurie, H.; Silander, J. A. J. 2002. Geometric constraints and spatial patterns of species

richness: critique of rangebased models. Divers. Distrib.; 8: 351–364.

Levi, H.W. 1986. The Neotropical orb-weaver genera Chrysometa and Homalometa

(Araneae: Tetragnathidae). B. M. Comp. Zool.; Harvard University, 151: 91–215.

Levi, H.W. 1988. The neotropical orb-weaving spiders of the genus Alpaida (Araneae:

Araneidae). Bull. Mus. Comp. Zool. 151: 365-487.

Levi, H.W. 1991. The neotropical and mexican species of the orb-weaver

genera Araneus, Dubiepeira, and Aculepeira (Araneae: Araneidae). Bull. Mus. Comp. Zool.

152: 167-315.

Levi, H.W. 1999. The neotropical and mexican orb weavers of the genera Cyclosa and

Allocyclosa (Araneae: Araneidae). Bull. Mus. Comp. Zool. 155: 299-379.

Levi, H.W. 1992. Spiders of the orb-weaver genus Parawixia in America (Araneae:

Araneidae). Bull. Mus. Comp. Zool. 153: 1-46.

Lieberman, D.; Lieberman, M.; Peralta, R. Hartshorn, G.S. 1996. Tropical forest structure

and composition on a largescale altitudinal gradient in Costa Rica. J. of Ecology, 84: 137–

152.

Liew, T.S.; Schilthuizen, M.; Bin Laki, M. 2010. The determinants of land snail diversity

along a tropical elevational gradient: insularity, geometry and niches. J. Biogeogr, 37 (6):

1071–1078.

212

Lobo, J. M.; Halffter, G. 2000. Biogeographical and Ecol. factors affecting the altitudinal

variation of mountainous communities of coprophagous beetles (Coleoptera, Scarabaeoidea):

a comparative study. Ann. Entomol. Soc. Am. 93: 115–126.

Lo-Man-Hung,N. F.; Gardner, T.B.; Ribeiro-Júnior, M.A.:Barlow, J.; Bonaldo, A.B.. 2008.

The value of primary, secondary, and plantation forests for Neotropical epigeic arachnids. J.

Arachnol. 36:394–401

Lomolino, M.K. 2001. Elevation gradients of species-density: historical and prospective

views. Global Ecol. Biogeogr.10: 3-13.

MacNally, R.; Fleishman, E.; Bulluck, L.P. Betrus, C.J. 2004. Comparative influence of

spatial scale on beta diversity within regional assemblages of birds and butterflies. J.

Biogeogr, 31: 917–929.

Maguire, B. 1955. Cerro de la Neblina, Amazonas, Venezuela: A newly discovered sandstone

mountain. Geogr. Rev.; 45: 27-51.

Manhart, C. 1994. Spiders on bark in a tropical rainforest (Panguana, Peru). St. N. Fauna

Environ. 29(1): 49-53.

McCain, C.M. 2005. Elevational gradients in diversity of small mammals. Ecology, 86: 366–

372.

McCain, C.M. 2007a. Area and mammalian elevational diversity. Ecology, 88: 76–86.

McCain, C.M. 2007b. Could temperature and water availability drive elevational species

richness patterns? A global case study for bats. Global Ecol. Biogeogr.; 16: 1–13.

McCain, C.M. 2009a. Global analysis of bird elevational diversity. Global Ecol. Biogeogr.;

18: 346–360.

McCain, C.M. 2009b. Vertebrate range sizes indicate that mountains may be higher in the

tropics. Ecol. Lett.; 12: 550–560

McCain, C.M. 2010. Global analysis of reptile elevational diversity. Global Ecol. Biogeogr.;

19: 541 -553.

McCormick, S.; Polis, G. A. 1982. Arthropods that prey on vertebrates. Biol. Rev. Cambridge

Phil. Soc. 57:29‐58.

McCoy, E.D. 1990. The distribution of insects along elevational gradients. Oikos, 58: 313–

322.

213

McCune, B.; Mefford, M.J. 1999. PC-ORD: Multivariate Analysis of Ecol. Data. Version

5·12. MjM Software, Gleneden Beach, OR, USA.

McDiarmid, R. W.; Donnelly, M. A. 2005. Herpetofauna of the Guyana Highlands:

Amphibians and Reptiles of the Lost World. In: Donnelly, M. A.; Crother, B. I.;Guyer, C.;

Wake, M. H.; White, M. E. (Eds.). Ecology and Evolution in the Tropics - A Herpetological

Perspective. The Univestity of Chicago Press. Chicago, EUA. 584 pp.

McGill, B. J.; Etienne, R. S.; Gray, J. S.; Alonso, D.; Anderson, M. J.; Benecha, H. K.;

Dornelas, M.; Enquist, B. J.; Green, J. L.; He F.; Hurlbert, A. H.; Magurran, A. E.; Marquet,

P. A.; White E. P. 2007. Species abundance distributions: moving beyond single prediction

theories to integration within an Ecol. framework. Ecol. Lett, 10, 995–1015.

Melo, A. S.; Rangel, T. F. L. V. B.; Diniz-Filho. J. A.F. 2009. Environmental drivers of beta-

diversity patterns in New-World birds and mammals. Ecography, 32: 226–236.

Moreno, R.A.; Rivadeneira, M.M.; Hernández C.E.; Sampértegui, S.; Rozbaczylo, N. 2008.

Do Rapoport’s rule, the mid-domain effect or the source–sink hypotheses predict bathymetric

patterns of polychaete richness on the Pacific coast of South America? Global Ecol.

Biogeogr.; 17: 415–423.

Moritz, C.; Patton, J. L.; Schneider, C. J.; Smith, T. B. 2000. Diversification of rainforest

faunas: an integrated molecular approach. Annu. Rev. Ecol. Syst.; 31: 533–563.

Nogue´s-Bravo, D.; Araújo M. B.; Romdal, T.; Rahbek, C. 2008. Scale effects and human

impact on the elevational species richness gradients. Nature, 453: 216-220.

Nogueira, A. A.; Pinto-da-Rocha, R.; Brescovit, A. D. 2006. Comunidade de aranhas

orbitelas (Arachnida-Araneae) na região da Reserva Florestal do Morro Grande, Cotia, São

Paulo, Brasil. Biota Neotropica, 6(2): 1-24.

Olson, D.M. 1994. The distribution of leaf litter invertebrates along a Neotropical altitudinal

gradient. J. Trop. Ecol.; 10: 129–150.

Orme, C.D.L.; Davies, R.G.; Burgess, M.; Eigenbrod, F.; Pickup, N.; Olson, V.A. 2005.

Global hotspots of species richness are not congruent with endemism or threat. Nature,

436:1016–1019.

Otto, C.; Svensson, B.S. 1982. Structure of communities of ground-living spiders along

altitudinal gradients. Holarctic Ecol.; 5: 35–47.

214

Patterson, B.D.; Stotz, D.F.; Solari, S.; Fitzpatrick, J.W. 1998. Contrasting patterns of

elevational zonation for birds and mammals in the Andes of southeastern Peru. J. Biogeogr,

25: 593–607.

Pearce, J.L.; Venier, L.A.; Eccles, G.; Pedlar, J.; McKenney, D. 2004. Influence of habitat and

microhabitat on epigeal spider (Araneae) assemblages in four stand types. Biodivers. Conserv.

13: 1305–1334.

Peres, M. C. L.; Silva, J. M. C.; Brescovit, A. D. 2007. The influence of treefall gaps on the

distribution of web-building and ground hunter spiders in an Atlantic Forest remnant,

northeastern Brazil. Stud Neotrop. Fauna E.; 42(1): 49–60.

Pinto-da-Rocha, R.; Bragagnolo, C.; DaSilva, M.B. 2005. Faunistic similarity and historic

biogeography of the harvestmen of southern and southeastern Atlantic Rain Forest of Brazil. J

Arachnol, 33(2): 290-299.

Pinto-Leite, C. M.; Guerrero, A.C.; Brazil, T.K. 2008. Non-random patterns of spider species

composition in an Atlantic rainforest. J. Arachnol. 36:448–452

Pires, J.M.; Prance, T.G. 1985. The vegetation types of the Brazilian Amazon. In: Prance,

G.T.; Lovejoy, T.E. (Eds.). Key environments: Amazonia. Pergamon Press. Oxford. p:109-

145.

Platnick, N.I. 2010. The world spider catalog, version 11.0. American Museum of Natural

History (http://research.amnh.org/entomology/spiders/catalog/index.html). Acesso: 10/2010.

Podgaiski, L. R.; Ott, R.; Rodriguez, E. N. L.; Buckup, E. H.; Marquez, M. A. L. 2007.

Araneofauna (Arachnida: Araneae) do Parque Estadual do Turvo, Rio Grande do Sul, Brasil.

Biota Neotropica, 7(2).

RADAM. 1978. Folha NA19. Pico da Neblina. Ministério das Minas e Energia. Rio de

Janeiro.

Rahbek, C. 2005. The role of spatial scale and the perception of large-scale species-richness

patterns. Ecol. Lett.; 8: 224– 239.

Raizer, J.; Japyassu, H. F.; Indicatti, R. P.; Brescovit, A. D. 2005. Comunidade de aranhas

(Arachnida, Aranea) do Pantanal do Norte (Mato Grosso, Brasil) e sua similaridade com a

araneofauna amazônica. Biota Neotropica, 5(1a).

215

Rangel, T.F.L.V.B.; Diniz-Filho, J. A.F.; Bini, L.M. 2010. SAM: a comprehensive

application of spatial analyses in ecology. Ecography, 33: 46-50.

Rangel, T.F.L.V.B.; Diniz-Filho, J.A.F. 2005. Neutral community dynamics, the mid-domain

effect and spatial patterns in species richness. Ecol. Lett.; 8: 783–790.

Rapoport, E. H. 1975. Areografia: estrategias geograficas de las especies. Fondo de Cultura

Economica, Mexico.

Rego, F, N. A. A.; Venticinque, E. M.; A. D. Brescovit. 2007. Effects of forest fragmentation

on fourCtenus spider populations (Araneae: Ctenidae) in central Amazonia, Brazil. Stud.

Neotrop. Fauna E.; 42(2): 137–144.

Rego, F.N.A.A.; Venticinque, E.M.; Brescovit, A.D.; Rheims, C.A.; Albernaz, A.L.K.M.

2009. A contribution to the knowledge of the spider fauna (Arachnida: Araneae) of the

floodplain forests of the main Amazon River channel. Rev. Ibérica Aracnol. 97: 85-96.

Ribas, C. C.; Moyle, R. G. , Miyaki, C. Y.; Cracaft, J. 2007. The assembly of montane biotas:

linking Andean tectonics and climatic oscillations to independent regimes of diversification in

Pionus parrots. P. Roy. Soc. B, 274:2399–2408.

Ribas, C. R.; Schoereder, J. H. 2006. Is the Rapoport effect widespread? Null models

revisited. Global Ecol. Biogeogr.; 15: 614–624.

Ricetti, J.; Bonaldo, A. B. 2008. Diversidade e estimativas de riqueza de aranhas em quatro

fitofisionomias na Serra do Cachimbo, Pará, Brasil. Iheringia, 98(1): 88-99.

Robinson, J.V. 1981. The effect of architectural variation in habitat on a spider community:

an experimental fiel study. Ecology. 62 (1): 73-80.

Rohde, K. 1996. Rapoport’s rule is a local phenomenon and cannot explain latitudinal

gradients in species diversity. Biodivers. Lett.; 3: 10–13.

Rohde, K.; Heap, M.; Heap, D. 1993. Rapoport’s rule does not apply to marine teleosts and

cannot explain latitudinal gradients in species richness. Am. Nat.; 142: 1–16.

Romdal, T.S.; Grytnes, J.A. 2007. An indirect area effect on elevational species richness

pattern.s Ecography, 30: 440-448.

Romdal, T.S.; Colwell, R.K.; Rahbek, C. 2005. The influence of band sum area, domain

extent, and range sizes on the latitudinal mid-domain effect. Ecology, 86: 235–244.

216

Romo, M. I.; Florez-Daza, E. 2009. Comunidad de arañas orbitelares (Araneae: Orbiculariae)

asociada al bosque altoandino Del santuário Flora y Fauna Galeras, Nariño, Colombia. Boletín

Científico Museo de Historia Natural, 13 (1): 114 – 126.

Rosenberg, M. S. 2001. PASSAGE. Pattern Analysis, Spatial Statistics, and Geographic

Exegesis. Version 1.0. Department of Biology, Arizona State University, Tempe, AZ.

Rosenzweig, M.L. 1995. Species diversity in space and time. Cambridge University Press,

Cambridge.

Rull, V. 2004. An evaluation of the Lost World and the vertical displacement hypotheses in

the Chimant´a massif, Venezuelan Guayana. Global Ecol. Biogeogr. 13: 141–148.

Rull, V. 2005. Biotic diversification in the Guayana Highlands, a proposal. J. Biogeogr. 32:

921–927.

Rull, V.; Nogué S. 2007. Potential migration routes and barriers for vascular plants of the

Neotropical Guyana Highlands during the Quaternary. J. Biogeogr.34: 1327–1341.

Russel-Smith .H.; Stork, N.E. 1994. Abundance and diversity of spiders from the canopy of

tropical rainforests with particular reference to Sulawesi. Indonesia. J. Trop. Ecol.; 10: 545-

558.

Sanders, N.J. 2002. Elevational gradients in ant species richness: area, geometry, and

Rapoport’s rule. Ecography, 25: 25–32.

Sanders, N.J.; Lessard, J.P.; Fitzpatrick, M.C.; Dunn, R.R. 2007.Temperature, but not

productivity or geometry, predicts elevational diversity gradients in ants across spatial grains.

Global Ecol. Biogeogr.; 16: 640 -649.

Santos, A. J.; Nogueira, A. A. 2010. Three new species, new records and notes on the

nursery-web spider genus Architis in Brazil (Araneae: Pisauridae). Zootaxa, 1815: 51-61.

sbister, G.K.; White, J.; Currie, B.J.; Bush, S.P.; Vetter, R.S.; Warrel, D.A. 2005. Spider

bites: addressing mythology and poor evidence. A. J. Trop. Medicine Hygiene, 72(4):361-

367.

Scharff, N.; Coddington, J.A.; Griswold, C.E.; Hormiga, G.; Bjorn, P.D.P. 2003. When to

quit? Estimating spider species richness in a northern European deciduos forest. J. Arachnol.

31: 246-273.

217

Scharff, N.; Coddington, J.A.; Griswold, C.E.; Hormiga, G.; Bjorn, P.D.P. 2003. When to

quit? Estimating spider species richness in a northern European deciduos forest. J. Arachnol.

31: 246-273.

Sebastian, P.A.; Mathew, M.J.; Beevi, S.P.; Joseph, J.; Biju, C.R. 2005.The spider fauna of

the irrigated rice ecosystems in Central Kerala, India, across different elevational ranges. J.

Arachnol.; 33:247–255.

Silva, D. 1996. Species composition and community structure of peruvian rainforest spiders:

A case study from a seasonally inundated foresta long the Samiria river. Revue suisse de

Zoologie 597-610.

Silva, D.; Coddington, J. A. 1996. Spiders of Pakitza (Madre de Dios, Perú): species richness

and notes on community structure. In: Wilson, D. E.; Sandoval, A. (Eds.) Manu-The

biodiversity of Southeastern Perú. Smithsonian Institution Press, Washington, 253-311.

Silva, E.L.C.; Lise, A.A. 2010. Two new species and new records of Syntrechalea (Araneae:

Lycosoidea: Trechaleidae) from Brazil. Zoologia 27(3): 408–412.

Silva, W.A. 1999. Lendas e mitos dos índios brasileiros. São Paulo: FTD.

Simkova, A.; Gelnar, M.; Sasal, P. 2001. Aggregation of congeneric parasites (Monogenea:

Dactylogyrus). Parasitology, 123: 599-607.

Simon, E. 1895. Histoire naturelle des araignées. Paris, 1: 761-1084

Smouse, P.E.; Long, J.C.; Sokal, R.R .1986. Multiple regression and correlation extensions of

the Mantel test of matrix correspondence. Syst. Zool, 35: 627–632.

Soininen, J.; McDonald, R.; Hillebrand, H. 2007a. The distance decay of similarity in Ecol.

communities. Ecography, 30: 3–12.

Stevens, G.C. 1989. The latitudinal gradient in geographical range: how so many species

coexist in the tropics. Am. Nat.; 133: 240–256.

Stevens, G.C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport’s

latitudinal rule to altitude. Am. Nat.; 140: 893–911.

Stevens, G.C. 1996. Extending Rapoport’s rule to marine fishes. J. Biogeogr.; 23: 149–154.

Steyermark, J.A. 1986. Speciation and endemism in the flora of the Venezuelan tepuis. High-

altitude tropical Biogeogr. F. Vuilleumier and M. Monasterio (Eds.), Oxford University

Press, Oxford. p. 317–373.

218

Storch, D.;Davies, R.G.; Zajicek, S.; Orme, C.D.L.; Olson, V.; Thomas, G.H.;Ding, T.S.;

Rasmussen, P.C.; Ridgely, R.S.; Bennett, P.M.; Blackburn, T.M.; Owens, I.P.F.; Gaston, K.J.

2006. Energy, range dynamics and global species richness patterns: reconciling mid-domain

effects and environmental determinants of avian diversity. Ecol. Lett.; 9: 1308–1320.

Toti, D.S.; Coyle, F.A.; Miller, J.A. 2000. A structured inventory of Appalachian grass bald

and heath bald spider asemlages and a test of species richness estimator performance. J.

Arachnol. 28: 329-345.

Turnbull, A.L. 1973. Ecology of the true spiders (Araneomorphae). Ann. Rev. Ent.; 18: 305-

348.

Valencia, J. C.; Florez-Daza, E. 2007. Arañas tejedoras: uso de difeentes microhábitats em um

bosque andino de Colombia. Rev. Ibérica Aracnol.14: 39-48.

VanDerWal, J.; Murphy, H.T.; Lovett-Doust, J. 2008. Three-dimensional mid-domain

predictions: geometric constraints in North American amphibian, bird, mammal and tree

species richness patterns. Ecography, 31: 435-449.

Vazquez, J. A. ; Givnish, T. J. 1998. Altitudinal gradients in tropical forest composition,

structure, and diversity in the Sierra de Manantla´n. J. Ecol. 86: 999-1020.

Veetas, O. R.; Grytnes, J. A. 2002. Distribution of vascular plants species richness and

endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol. Biogeogr.11:

291–301.

von Humboldt A.1807. Essai sur la geographie de plantes. Paris

von Linnaeus, C. 1743. On the growth of the habitable earth. Select Dissetations from the

Amoenitates Academicae, I. London.

Vuilleumier, F. 1970. Insular biogeography in continental regions. Am.Nat. 104: 373 – 383.

Watkins, Jr.; J.E.; Cardelus, C.; Moran, R.; Colwell, R. K. 2006. Diversity and distribution of

ferns along an elevational gradient in Costa Rica. Am. J. Bot.; 93: 73-83.

Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol.

Monogr. 30: 279-338.

Whittaker, R. H.; Niering, W.A. 1965. Vegetation of the Santa Catalina Montains, Arizona: A

gradient analysis of the South Slope. Ecology, 46(4): 429-452.

Whittaker, R.H. 1967. Gradient analysis of vegetation. Biol. Rev.; 42: 207-264.

219

Wiens, J.J.; Donoghue, M.J. 2004. Historical Biogeogr, ecology and species richness. Trends

Ecol. Evol.; 19: 639–644.

Wiens, J.J.; Graham, C.H. 2005. Niche conservatism: integrating evolution, ecology, and

conservation biology. Annu. Rev. Ecol. Evol. S.; 36: 519–539.

Willard, D.E.; Foster, M.S.; Barrowclough, G.F.; Dickerman,R.W.; Cannell, P.F.; Coats, S.L.;

Cracraft, J.L.; O'Neill, J.P. 1991. The Birds of Cerro de la Neblina. Fieldiana, 65: 1-80.

Willdenow, K.L. 1805. The principles of botany and vegetable physiology. Blackwood,

Cadell and Davies, London.

Willig, M.R.; Kaufman, D.M.; Stevens, R.D. 2003. Latitudinal gradients of biodiversity:

pattern, process, scale and synthesis. . Annu. Rev. Ecol. Evol. S.; 34: 273–309.

Wolda, H. 1987. Altitude, habitat and tropical insect diversity. Biol. J. Linn. Soc.; 30: 313-

323.

Wu, F.; Yang, X. J.; Yang, J. X. 2010. Additive diversity partitioning as a guide to regional

montane reserve design in Asia: an example from Yunnan Province, China. Diversity Distrib

,16: 1022–1033

Zapata, F. A.; Gaston, K. J.; Chown, S. L. 2005. The middomain effect revisited. Am. Nat.;

166: E144–E148.

Zapata, F.A.; Gaston, K.J.; Chown, S.L. 2003. Mid-domain models of species richness

gradients: assumptions, methods and evidence. J. Anim. Ecol.; 72: 677–690.

220

Apêndice 1 – Ata da aula de qualificação

221

Apêndice 2 – Fichas de avaliação da banca examinadora do trabalho escrito

Dra. Carla Rodrigues Ribas (UFLA, Brasil) – Aprovada

222

Dr. Felipe Rego (UFMA, Brasil) – Aprovada

223

Dr. Nathan Sanders (Univ. Tenessee, EUA) – Aprovada com correções

224

Dr. Robert K. Colwell (Univ. Connecticut, EUA) – Aprovada

225

Dr. Gonçalo Ferraz (INPA/PDBFF, Brasil) – Reprovada

226

Apêndice 3 – Ata da defesa presencial