conceitos e aplicações de estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/livro...

79
WAGNER MARCELO POMMER Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 1ª edição SÃO PAULO 2013

Upload: others

Post on 08-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

WAGNER MARCELO POMMER

Conceitos e Aplicações de Estatística

para cursos de Ciências Gerenciais:

Uma abordagem introdutória.

1ª edição

SÃO PAULO

2013

Page 2: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem
Page 3: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

WAGNER MARCELO POMMER

Conceitos e Aplicações de Estatística

para cursos de Ciências Gerenciais:

Uma abordagem introdutória.

SÃO PAULO

2013

Page 4: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE LIVRO ELETRÔNICO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E ENSINO, DESDE QUE CITADA A FONTE.

Catalogação

Pommer, Wagner Marcelo.

Conceitos e Aplicações de Estatística para cursos de Ciências

Gerenciais: Uma abordagem introdutória, 2013. 79 p. ils.: Tabs

ISBN 978-85-914891-0-7

1. Estatística. 2.Ciências Gerenciais.

Page 5: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

SUMÁRIO

Apresentação da Estatística 7

CAPÍTULO I : Amostragem Estatística

I- Introdução ........................................................................................................... 9

II- População e Amostra ......................................................................................... 10

III- Amostragem ...................................................................................................... 11

III.1- Amostragem Aleatória Simples (AAS) ............................................. 12

III.2- Amostragem Proporcional Estratificada ............................................ 13

III.3- Amostragem Sistemática ................................................................... 14

III.4- Amostragem Aleatória por Conglomerados (Clusters) ..................... 15

III.5- Amostragem por Estágios Múltiplos ................................................. 15

IV- Exercícios ......................................................................................................... 16

CAPÍTULO II: As Distribuições de Freqüências

I- Conceitos iniciais ................................................................................................ 21

I.1- Dados brutos, tabela primitiva, rol e amplitude total ........................... 21

I.2- Distribuição de freqüências .................................................................. 21

I.3- Freqüência relativa e acumulada .......................................................... 22

I.4- Exercícios ............................................................................................. 23

II- Os gráficos das distribuições de freqüências ..................................................... 23

III- Distribuição de Freqüências com Intervalo de Classes .................................... 25

IV- Exercícios ........................................................................................................ 28

V- Aplicações envolvendo gráficos ........................................................................ 31

CAPÍTULO III: Medidas de Tendência Central e de Posição (sem Intervalo de Classes)

I- Média, Moda e Mediana. 37

I.1- A Média ................................................................................................ 37

I.2- A Moda ................................................................................................. 38

I.3- A Mediana ............................................................................................ 38

I.4- Outros exemplos e aplicações .............................................................. 38

I.5- Exercícios ............................................................................................. 41

Page 6: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

II- Média Ponderada e Média Geométrica .............................................................. 42

II.1- A Média Ponderada ............................................................................. 42

II.2- A Média Geométrica ........................................................................... 43

III- Aplicações .......................................................................................................... 43

IV- Medidas de Posição: Percentis e Quartis 48

IV.1- Os Quartis .......................................................................................... 48

IV.2- Os Percentis ....................................................................................... 49

CAPÍTULO IV: Medidas de Tendência Central e de Posição (com Intervalo de Classes)

I- Medidas de Tendência Central: Média, Moda, Mediana..................................... 51

I.1- A Média em Distribuições com Intervalo de Classes............................... 51

I.2- A Moda em Distribuições com Intervalo de Classes................................ 52

I.3- A Mediana em Distribuições com Intervalo de Classes........................... 52

I.4- Exercícios Resolvidos .......................................................................... 53

II- Medidas de Posição: Quartis e Percentis .......................................................... 55

II.1- Exemplos ............................................................................................ 56

CAPÍTULO V: Medidas de dispersão ou de variabilidade

V.1- Medidas de dispersão ou de variabilidade em distribuições sem Intervalo

de Classes ............................................................................................................... 59

V.2- Medidas de dispersão ou variabilidade em distribuições com Intervalo

de Classes ............................................................................................................... 61

V.3- Exercícios ....................................................................................................... 62

CAPÍTULO VI: Aplicações dos Princípios Estatísticos

VI.1- Testes (2ª Bateria) ......................................................................................... 65

VI.2- Testes (2ª Bateria) ......................................................................................... 67

VI.3- Aplicações ..................................................................................................... 69

REFERÊNCIAS BIBLIOGRÁFICAS ................................................................... 73

ANEXOS .................................................................................................................... 75

Page 7: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

APRESENTAÇÃO

É indiscutível o papel que a Estatística representa no mundo atual. Uma visão já

estabelecida pela Estatística a associa como uma importante ferramenta de coleta de dados,

de processamento da informação e da análise decorrente dos diversos conceitos que

contribuem no campo de trabalho e no meio científico.

Porém, o entendimento destes conceitos está além de uma simples instrumentalização

por meio de fórmulas. Alguém que tenha o domínio operacional da estatística possui um

conhecimento prático que permite obter vários indicadores estatísticos, mas o significado

deste ramo requer que o indivíduo compreenda os conceitos envolvidos e consiga realizar

uma interpretação apropriada, o que faz do ensino da Estatística algo mais do que o limitado

treino de cálculos e fórmulas.

Este livro tem a intenção de apresentar aos universitários, que não sejam

necessariamente da área de exatas, uma abordagem estatística mais prática e centrada nos

princípios essenciais de um curso introdutório em nível universitário, porém que inicie um

processo de significação dos conceitos essenciais desta área.

No decorrer da obra não buscamos enfatizar a linguagem formal matemática, mas

antes introduzir os conceitos mais básicos em linguagem acessível a alunos não-

matemáticos, de modo que a escrita matemática não seja um empecilho ao primeiro acesso a

esta área de conhecimento.

Outro ponto a se destacar é a utilização de contextos embasados na área de Ciências

Gerenciais. Minha experiência em ensino de Estatística nas diversas subáreas das Ciências

Gerenciais me despertou a atenção para situações próprias desta área. Visto que os alunos de

áreas não exatas podem se beneficiar por uma abordagem menos formal, apresentamos no

decorrer dos capítulos e, em especial, no Capítulo 6, situações que enfatizam a operação de

transferência do conhecimento estatístico para algumas dentre os inúmeros contextos de

aplicabilidade.

Page 8: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

8

Page 9: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo I- Amostragem Estatística I- Introdução.

A Estatística é um ramo da Matemática Aplicada que pode estar presente tanto no campo de

trabalho como no dia-a-dia do cidadão. Torna-se importante conhecer conceitos como médias,

desvios, taxas, porcentagens, dentre outros e as diversas formas de representação através de leitura,

interpretação, confecção de tabelas e gráficos.

O termo Estatística apareceu pela primeira vez no século XVIII, sugerida pelo alemão

Gottfried Achemmel (1719-1772), sendo derivada do latim statu (estado).

Corresponde a um ramo da matemática aplicada que investiga os processos de obtenção

(coleta), organização, descrição e análise de dados sobre uma população ou uma amostra (coleção

de elementos representativa de uma população), de modo a abrir a possibilidade de tirar conclusões

ou predições com base nesses dados.

Pode-se subdividir o estudo da Estatística em:

- Estatística Descritiva (etapas de coleta, organização e descrição dos dados);

- Estatística Inferencial ou Indutiva (etapas de análise e interpretação de dados).

Figura 1: O contexto de estudo da Estatística. [Fonte: IME-USP]

O Método Estatístico estuda as mudanças que ocorrem nas diversas variáveis da população

(ou amostra), registrando e determinando suas influências no fenômeno em estudo. Mas o que é

uma variável?

Variável é o conjunto de todos os valores possíveis que um evento pode assumir. A

Estatística estuda as variáveis quantitativas, que se subdividem em discretas e contínuas.

Se a variável quantitativa expressar elementos relativos a contagens é conhecida como

variável discreta e se puder assumir qualquer valor real é denominada variável contínua.

Page 10: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 1: Amostragem Estatística 10

São exemplos de variáveis discretas: o número de gols marcados por um time num

campeonato, o número de clientes de um banco, o número de contribuintes do Imposto de Renda.

São exemplos de variáveis contínuas: as alturas dos alunos de uma escola, a produção nacional de

soja e a taxa de juros do cheque especial.

Se a variável for um atributo ela é denominada variável qualitativa. Como exemplos de

qualidades ou atributos têm-se a cor da pele, a cor dos olhos, a cor dos cabelos, a preferência por

um time de futebol ou uma determinada religião.

Exercício 1: Classifique as variáveis abaixo segundo o código abaixo. Q = Variável Qualitativa D = Variável Quantitativa Discreta. C = Variável Quantitativa Contínua. a) Jogando-se um dado, o ponto obtido: _____ b) O comprimento de um lápis: _____ c) O número de erros cometidos por um caixa num certo dia: ______ d) A quantidade de dinheiro que um cliente de banco movimenta num certo dia: ____ e) Ao preencher a ficha de cadastro de um emprego, no item que se refere ao sexo :

Masculino ou Feminino: _____ f) Nº de ações negociadas na Bolsa de Valores: ____

Resposta: a) D; b) C; c) D; d) C; e) Q; f) D. Observação: As variáveis qualitativas podem ser subdivididas em: - Variável dicotômica: existem só duas possibilidades; Exemplos: certo/errado; verdadeiro/falso; sim/não; corrupto/não-corrupto. - Variável categórica: existe a possibilidade de mais de duas respostas; Exemplos: raça, escolaridade. classe econômica-social, credo. Existe outro critério de subdivisão das variáveis qualitativas: - nominal: sexo, cor dos olhos; - ordinal: classe social; grau de instrução. II- População e Amostra

Um dos conceitos-chave da área de Estatística são população e amostra.

População: é o conjunto dos elementos que se deseja estudar, contendo pelo menos uma característica em comum observável no universo do estudo.

Amostra: é um subconjunto da população, sendo obtido pela escolha ou extração de alguns elementos da população, de modo a viabilizar a estimativa de propriedades da própria população.

Exemplos:

A- POPULAÇÃO: moradores de uma metrópole. AMOSTRA: moradores de um bairro da metrópole em questão. B- POPULAÇÃO: Eleitores brasileiros AMOSTRA: os eleitores de algum estado ou de alguma cidade.

Page 11: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 11

Uma população pode ser finita ou infinita. No caso da população finita, esta consiste de um

número finito ou fixo de elementos, medidas ou observações. Temos como exemplos os alunos de

um curso de administração, os funcionários de uma empresa ou os eleitores brasileiros.

Por outro lado, a denominada população infinita deve possuir incontáveis elementos. Em

verdade, dificilmente uma população do mundo cotidiano contém infinitos elementos. Nesse

sentido mundano, de modo aproximado e num viés simplificador, uma população considerada

infinita seria o número de nascimentos em um determinado país ou a produção mensal de parafusos

de uma grande multinacional.

Para inicialmente localizar os contextos onde se estuda Estatística, vamos colocar algumas

questões: Em que condições, quando e por que as pesquisas eleitorais sobre alguns milhares de

eleitores em potencial podem ou não predizer o resultado de uma eleição? Como as pesquisas de

audiência da TV podem ser autênticas se são coletadas informações de alguns lares?

Refletindo um pouco sobre as questões acima, as mesmas possuem um ponto em comum: Em

que condições devem-se efetuar estudos ou escolher uma população ou uma amostra?

Utilizando como exemplo o censo demográfico, que faz um exame das características dos

elementos de certa população, sua utilização pode ser viável quando: (a) a população é pequena (ou

ainda, quando o tamanho da amostra seria grande em relação às dimensões da população); (b)

quando se necessita um resultado o mais próximo possível do valor verdadeiro; (c) se já estão

disponíveis os dados da população.

De modo complementar, ao invés de censo, que recai sobre uma determinada população, o uso de amostras se torna viável dependendo de alguns fatores, como:

• Menor gasto para a obtenção de dados e realização das análises (mote financeiro); • Menor tempo operacional (questão temporal); • Uma boa qualidade nos dados levantados (obter precisão); • População muito grande ou de difícil acesso (restrição operacional); • Mais fácil, com resultados satisfatórios para o que se pretende estudar (valor aproximado). III- Amostragem

A escola de amostras se caracteriza quando há restrições econômicas, de tempo, de espaço,

operacional ou qualquer outro motivo. Neste caso, torna-se fundamental a escolha de alguns

elementos da população, mas que a representem o mais fielmente possível. Este subconjunto finito

de uma população é denominado amostra e é por meio dela que se procura estabelecer, estimar ou

inferir as propriedades e características dessa população, conforme se representa na figura 2.

Figura 2: Representação da relação população e amostra.

Page 12: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 1: Amostragem Estatística 12

A técnica para se escolher uma amostra é denominada amostragem. Em Estatística as

principais técnicas são a amostragem probabilística e a amostragem não probabilística.

Na amostragem probabilística (ou aleatória), a probabilidade de um elemento da população ser

escolhido é ao acaso e pode ser determinada ou estimada por cálculos probabilísticos. Para a

formação da amostragem aleatória existe um procedimento de selecção dos elementos ou grupo de

elementos. e um modo tal que dá a cada elemento da população uma probabilidade de inclusão na

amostra calculável e diferente de zero.

Por outro lado, na amostragem não probabilística (não aleatória), não se conhece a

probabilidade de um determinado elemento da população. A seleção dos elementos da amostra é

subjetiva ou por julgamento. Neste curso, estudaremos somente a amostragem probabilística.

III.1- Amostragem Aleatória Simples (AAS), Acidental, Casual ou Randômica.

Quando se deseja escolher uma amostra simples de uma população homogênea basta efetuar

um sorteio. Esta é uma técnica bem simples, garantindo as mesmas chances de escolha, devido à

seleção aleatória de indivíduos. Neste tipo de amostra supõe-se que cada indivíduo da população

tem a mesma probabilidade de ser escolhido para compor a amostra.

Existe uma tabela denominada Tabela dos Números Aleatórios que facilita esta operação de

sorteio, que se encontra em calculadoras científicas. O acesso aos números aleatórios é realizado ao

se acionar a tecla Shift + RAN#. No visor da calculadora surge um número entre 0 e 1. Se for

multiplicado por mil, é possível uma rápida escolha aleatória de um número entre um e mil.

Exemplo: Sejam as idades de trinta alunos de uma escola, indicadas na tabela abaixo.

25 18 42 35 31 39 29 17 48 32 19 27 62 31 43 53 22 38 25 15 55 41 36 21 39 43 24 39 63 14

Pode-se obter, sem reposição, uma amostra aleatória simples (AAS) de tamanho n = 5,

utilizando-se da tabela de números aleatórios, dada no anexo II (ao final do livro).

A amostragem aleatória simples exige uma relação completa de todos os N elementos da

população, que no exemplo seria de trinta valores. A tabela fornecida possui 1500 elementos, pois

tem 100 linhas e 15 colunas. Para adaptar a tabela de números aleatórios a esta condição, uma das

possibilidades é inicialmente sortear a linha e a coluna para dar início a escolha. Suponha que um

sorteio tenha sido feito e obtido a 2ª linha e 1ª coluna, que está representada abaixo:

9 8 0 6 4 4 2 1 8 0 3 4 9 8 1 2 8 8 3 0 7 8 2 2 7 5 4 7 3 6

1ª 2ª 3ª 4ª 5ª 6ª 7ª 8ª 9ª 10ª 11ª 12ª 13ª 14ª 15ª

Como se deseja uma amostra de 5 elementos, dentro os 30 fornecidos, descartam-se os valores

acima de 30. Deste modo, resultam os valores: 06; 21; 12; 30; 22. Estes valores correspondem aos

alunos das posições 2ª; 4ª, 8ª, 10ª e 12ª. Estas posições, na tabela dada no em enunciado,

corresponde, respectivamente, as idades: 18 anos; 35 anos; 17 anos; 32 anos; 27 anos.

25 18 42 35 31 39 29 17 48 32 19 27 62 31 43 53 22 38 25 15 55 41 36 21 39 43 24 39 63 14

Page 13: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 13

Caso fosse escolhida a 18ª linha temos os seguintes números (da esquerda para a direita):

4 6 3 9 8 2 7 3 2 8 0 2 1 2 9 2 2 6 9 5 3 1 2 5 0 0 0 5 9 6

Nessa situação teríamos os números 28; 02; 12; 26; 25, com idades 31; 39; 29; 48; 27 anos. III.2- Amostragem Proporcional Estratificada

É utilizada quando se dispõe de uma população heterogênea que pode ser subdivida em

estratos (ou camadas), onde cada estrato apresenta grande homogeneidade. É muito utilizada, pois a

maioria das populações tem estratos bem definidos.

Dentre as várias possibilidades, ilustramos três populações com estratos bem definidos: a

distribuição de homens e mulheres na população brasileira; as diferentes distribuições econômicas

entre as nações (1° mundo e 3° mundo); os clientes de um banco pela faixa de renda bruta.

Na amostragem estratificada a idéia básica consiste em se especificar quantos itens da amostra

serão retirados de cada estrato. Considerando N o número total de elementos da população, i o

número de estratos, Ni o número de elementos do estrato i e n o tamanho da amostra a ser

elaborada, obtemos as seguintes relações:

N ... N N N L21 +++= ; N

n f = ... fração de amostragem

.fN A ii = ... número de elementos amostrais representantes de cada estrato.

Exemplo: Numa sala de aula com 70 alunos, cinquenta são mulheres. Obtenha uma amostra

proporcional estratificada com 10 alunos.

Solução: Temos dois estratos: homens e mulheres.

N1 = n° de mulheres = 50 N2 = n° de homens = 70 – 50 = 20

Note que N = N1 + N2, pois N = 50 + 20 = 70, conforme o enunciado.

f = n/N = 10/ 70 = 1/7 = 0,1429

O número de elementos amostrais representando cada estrato é:

A1 = N1.f = 50. 0,1429 = 7,145 e A2 = N2.f = 20. 0,1429 = 2,858

Como o número de elementos amostral representando cada estrato deve ser um número inteiro

positivo, utilizamos a seguinte regra de aproximação: décimo menor que cinco, mantém o inteiro;

décimo igual ou maior a cinco, acrescenta-se uma unidade a parte inteiro do número (ver Anexo 1).

Daí: A1 = 7 e A2 = 3, totalizando dez (10) elementos da amostra.

Representando os resultados, temos:

População Cálculos/Amostra Amostra

Homens 20 2,858 3

Mulheres 50 7,145 7

TOTAL 70 10 10

Page 14: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 1: Amostragem Estatística 14

III.3 - Amostragem Sistemática.

Suponha uma população onde um elemento qualquer tenha igual chance de pertencer a

determinada amostra. Se nesta população for necessária uma coleta de dados por um longo período

de tempo, pode-se escolher um ritmo para a tomada de amostras.

Assim, numa população cujos elementos são todos conhecidos e que se apresentam

ordenados, a amostragem sistemática faz retiradas periódicas (em termos matemáticos, a cada k

elementos, um é escolhido).

Exemplo: Seja uma população de mil peças diárias numa linha de produção. O setor de

controle de qualidade escolhe para análise uma a cada cem peças produzidas. Como proceder para

escolher uma amostra sistemática para o Controle de Qualidade?

Se em cada cem peças uma é tomada como amostra, ao final do dia serão analisadas dez

peças, pois a produção diária é de mil peças.

N = População diária = 1 000 peças.

n = Tamanho da Amostra = 10 peças.

Intervalo = .10010

1000

n

N I ===

Escolhe-se um número aleatoriamente, por sorteio ou pela tabela de números aleatórios (por

amostragem aleatória simples) entre 1 e 100, que chamaremos de k. Por exemplo, obteve-se por

sorteio k = 25.

A amostra sistemática, com dez elementos, será composta pelas seguintes peças:

25ª, 125ª, 225ª, 325ª, 425ª, 525ª, 625ª, 725ª, 825ª, 925ª. De maneira geral, na Amostragem Sistemática deve-se:

- conhecer N = População total. - conhecer n = tamanho da amostra.

- calcular nN I = , como sendo o intervalo constante (regular) entre as posições que serão

retiradas as amostras. - obter, por método aleatório, um número k situado entre 1 e I. A seguir obtenha uma

sequência de elementos efetuando a adição de k com I (progressão aritmética de razão I e a1 = k) (k, k + I; k + 2I; k + 3I: ... )

Uma grande vantagem da amostragem sistemática em relação as duas já estudadas é a grande

facilidade de execução. Como no caso estudado da Amostragem Aleatória Simples, a Amostragem

Sistemática também requer uma lista completa dos elementos da população.

Observações:

1) Há casos onde o tamanho da população é desconhecido. Neste caso não é possível se determinar o valor de I. O problema terá um encaminhamento mais intuitivo, pois será necessário se estipular um valor para I.

Page 15: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 15

2) Em certas ocasiões, a Amostragem Sistemática é mais adequada dentre as existentes, pela enorme facilidade de execução. Por exemplo, suponha que você deve realizar uma rápida pesquisa com clientes de um ‘shopping center’ sobre a percepção a respeito de determinado produto. Você pode optar por entrevistar uma a cada cem pessoas que entram numa no local. Uma técnica bem propícia é a sistemática, devido à facilidade da operação. Imagine-se fazendo sorteios a cada cem pessoas que entrasse na loja: você teria que pará-los, pedir todos os nomes dos cem clientes, colocar numa urna e sortear. Um pouco inconveniente, não acha.

III.4- Amostragem Aleatória por Conglomerados (Clusters).

Existem casos onde é inviável ou não é possível estabelecer uma lista com todos os elementos

da população, sendo que esta pode ser agrupada em pequenos estratos (ou conglomerados), com

homogeneidade entre os elementos internos dos estratos (conglomerados). Por consequência, o

número de conglomerados (clusters) é muito grande, pois não se conhece o tamanho da população.

Inicialmente, na amostragem aleatória por conglomerados, se possível, deve-se estabelecer os

conglomerados apropriados, seguindo o critério de uniformidade de seus elementos. A seleção dos

conglomerados é feita por amostragem aleatória simples, sendo que os elementos dos

conglomerados escolhidos podem ser analisados na parte ou no todo.

Exemplo: Considere a seguinte situação. Numa pequena cidade, um grupo de estudantes

deseja saber a intenção de voto num candidato X. Não há condição de entrevistar todos os

moradores da cidade. A utilização de um processo aleatório (por sorteio) e por estratos fica

comprometido, pela dificuldade em se conhecer toda a população (listagem de nomes).

A melhor escolha recai na amostragem por conglomerado. Escolhem-se os quarteirões como

conglomerados (clusters), sorteiam-se alguns deles, e efetua-se a pesquisa in-loco dos moradores

das casas dos quarteirões sorteados.

Mas qual a diferença entre conglomerados e estratos. Na amostragem por estratos, cada

camada possui elementos semelhantes e, além disso, cada camada tem elementos escolhidos

proporcionalmente à população. Na amostragem por conglomerados sorteiam-se alguns

conglomerados e são entrevistados parte ou todos os elementos do conglomerado escolhido. Isto em

decorrência de alguma impossibilidade de fazer um levantamento de todos os cidadãos e também

eleger um critério para reuni-los em estratos, devido ao caráter heterogêneo dos clusters escolhidos.

Resumindo, a amostragem por conglomerados pode ser usada quando a população pode ser

dividida em um grande número de conglomerados (subpopulações) heterogêneos representativos da

população global. Deste modo, a amostragem é feita sobre os conglomerados, e não mais sobre os

indivíduos da população. A amostragem por conglomerados tem como vantagens a facilidade

administrativa e econômica, assim como não exige uma lista completa da população.

III.5- Amostragem por Estágios Múltiplos.

São aqueles casos onde se efetua uma combinação de dois ou mais das técnicas mostradas

acima. No exemplo mencionado no item da amostragem por conglomerados, após o sorteio inicial

dos conglomerados, poderíamos ter novamente sorteado alguns elementos dentro do conglomerado.

Page 16: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 1: Amostragem Estatística 16

Um exemplo interessante para ilustrar a composição dos diversos tipos de amostragem pode ser encontrado em uma reportagem disponível em http://www.unama.br/PRINCIPAL/Comunicado/noticias/1270/not1011. html. Uma empresa de ônibus encomendou uma pesquisa inédita junto a uma Universidade local para se conhecer a preferência dos usuários em transporte coletivo de uma determinada cidade do Brasil, pretendendo avaliar a preferência e os gostos associados aos aspectos sóciocultural e econômico da população.

A contratante tinha observado uma diminuição da demanda do transporte coletivo, e a crescente utilização de bicicletas e deslocamento a pé, o que é bom para a saúde dos usuários, mas não conveniente para os negócios da empresa. A pesquisa pretendia diagnosticar o motivo da troca do ônibus pelos meios alternativos (a pé ou de bicicleta).

A metodologia utilizada foi a modelagem matemática de comportamento, relacionando o número de viagens e atributos do modo de transporte. A pesquisa teve a duração de seis meses, utilizando dez alunos de cursos diversos devidamente preparados. A fase da coleta dos dados constou de entrevistas em 430 domicílios sorteados localizados em 14 macro-zonas. Para o critério da estratificação utilizou-se como variáveis:

- renda (9 faixas salariais, de menos de R$ 260 até maior ou igual a R$ 4.940); - faixa etária (4 faixas, de 16 a 65 anos); - gênero (masculino e feminino).

IV- Exercícios:

1- Uma indústria possui em sua linha 4 produtos, cuja produção diária está indicada na tabela abaixo. O controle de qualidade escolhe algumas peças para análise, correspondendo a 0,01% da produção diária de cada produto. Obter o número de elementos da amostra de cada produto, considerando a Amostragem Proporcional Estratificada.

Produto Produção

diária Amostra

1 41 000 2 26 000 3 29 000 4 47 000

Total

2- Uma pequena escola possui somente as quatro primeiras séries. A tabela abaixo representa o número de alunos dos dois sexos. Obtenha o número de elementos da amostra de cada série, para um total amostral de 10 alunos. Considere a Amostragem Proporcional Estratificada.

ESCOLA Nº de alunos Amostra 1ª série 30 2ª série 26 3ª série 24 4ª série 27 Total

3- Uma pequena cidade resolveu fazer uma pesquisa de opinião através de técnicas de

amostragem. Os entrevistados serão cidadãos entre 18 e 60 anos, representados no quadro abaixo e discriminados em função do sexo. Obter o número de elementos da amostra de cada distrito, sendo que se deseja entrevistar mil cidadãos. Considere a Amostragem Proporcional Estratificada

Page 17: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 17

Bairros Eleitores Masculinos

Eleitores Femininos

AMOSTRA Eleitores

Masculino

AMOSTRA Eleitores Feminino

A 800 900 B 620 580 C 710 750 D 930 1100 E 1 500 1750 F 2 500 2400

Total

4- (UFMG) Num estudo sobre estado nutricional dos estudantes da rede escolar de uma cidade, decidiu-se complementar os dados antropométricos com alguns exames laboratoriais. Como não se podia exigir que o estudante fizesse estes exames, decidiu-se estratificar a população por nível escolar (1º grau e 2º grau) e por tipo de escola (pública e privada), selecionando-se voluntários em cada estrato, até completar as cotas. Com base nos dados da tabela abaixo, qual deve ser a cota a ser amostrada em cada estrato, considerando que se deseja uma amostra de 200 estudantes?

Nível escolar Tipo de escola

pública privada

1º grau 48% 14%

2º grau 26% 12%

5- Num banco, um fiscal observa que há vários caixas, cada qual movimentando uma

quantidade de dinheiro. Em termos de variáveis, é correto afirmar que:

a) a quantidade de caixas é uma variável contínua e a quantia de dinheiro movimentada é uma variável discreta.

b) a quantidade de caixas é uma variável discreta e a quantia de dinheiro movimentada é uma variável contínua.

c) a quantidade de caixas e a quantia de dinheiro movimentada representam variável discreta. d) a quantidade de caixas e a quantia de dinheiro movimentada representa uma variável

contínua.

e) a quantidade de caixas é uma variável qualitativa e a quantia de dinheiro movimentada é uma variável discreta

Respostas:

1) Produto Produção diária Amostra

1 41 000 4 2 26 000 3 3 29 000 3 4 47 000 5 Total 143 000 15 Note que 0,01% de 143 000 não coincide com o tamanho da amostra.

2) ESCOLA Nº de alunos Amostra

1ª série 30 300/107=2,80= 3 2ª série 26 260/107 = 2,43 = 2 3ª série 24 240/107 = 2,24 = 2 4ª série 27 270/107 = 2,52 = 3 Total 107 10

Page 18: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 1: Amostragem Estatística 18

3-

Bairros Eleitores Masculinos

Eleitores Femininos

AMOSTRA Eleitores

Masculino

AMOSTRA Eleitores Feminino

A 800 900 800x486/7060=55 900x514/7480= 62 (61,84) B 620 580 620x486/7060=43 580x x514/7480=40 (39,86) C 710 750 710x486/7060=49 750x514/7480=52 (51,54) D 930 1 100 930x486/7060=64 1100x514/7480=76 (75,59) E 1 500 1 750 1500x486/7060=103 1750x514/7480=120 (120,25) F 2 500 2 400 2500x486/7060=172 2400x514/7480=164* (164,92)

Totais 7 060 7 480 486 514 7 060 + 7 480 = 14 540 → 7060 000/ 14 540 = 485,56 = 486 eleitores masculinos 7480 000/ 14 540 = 514,44 = 514 eleitores masculinos 1 000 eleitores Verificando a soma dos elementos da amostra, nota-se que a Amostra Feminina possui soma

515 eleitores. Como a amostra deve possuir 514 eleitores, é necessário corrigir este problema que surge devido as aproximações. Não existe método. Um conselho aos alunos é seguir o lema ‘Retire do elemento com maior quantidade (mais rico) ou acrescente para o elemento com menor quantidade (mais pobre)’. No caso, mudei 165 para 164 (*)

4-

Nível escolar Tipo de escola

pública privada

1º grau 48% (96 alunos) 14% (28 alunos)

2º grau 26% (52 alunos) 12% (24 alunos)

48% + 14% + 26% + 12% = 100% 48% de 200 = 0,48x 200 = 96 alunos 14% de 200 = 0,14 x 200 = 28 alunos 26% de 200 = 0,26x 200 = 52 alunos 12% de 200 = 0,12x 200 = 24 alunos 100% de 200 = 1 x 200 = 200 alunos 5- B

Para saber mais: Um pesquisador que deseja realizar uma pesquisa estatística deverá traçar um Plano de

Amostragem, que deverá conter: • os objetivos da pesquisa; • a população a ser amostrada; • os parâmetros a serem estimados; • a unidade de amostragem; • a forma de seleção da amostra; • o tamanho da amostra; • o custo do levantamento; • a confiabilidade desejada. Idealize uma pesquisa. Escolha algum tema relacionado ao seu curso, explique o motivo que o

levou a essa escolha (o objetivo). A seguir, descreva a população a ser estudada, as características da amostra e o método da amostragem. Escreva os procedimentos na forma de um texto.

Page 19: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 19

Extras

1- Numa escola existem 250 alunos, sendo 35 na 1ª série, 32 na 2ª, 30 na 3ª, 28 na 4ª, 35 na 5ª, 32 na 6ª, 31 na 7ª e 27 na 8ª. Obtenha uma amostra de 40 alunos e preencha o quadro seguinte.

Séries População Cálculo Proporcional Amostra Final

1ª 35 5,6 2ª 3ª 4ª 5ª 6ª 7ª 8ª

Totais 2- Uma cidade apresenta o seguinte quadro relativo às suas escolas de 1º grau. Obtenha uma

amostra de 120 alunos. Sugestão: Primeiramente, você terá que saber qual é o tamanho de amostra das estudantes do

sexo feminino e qual a amostra masculina, de um total de 120 alunos. Então, tome os totais de estudantes homens (876) e mulheres (955): 876 + 955 = 1831 estudantes, e calcule qual é a amostra de homens e mulheres.

ESCOLAS Nº de estudantes

Masculino Nº de estudantes Feminino

A 80 95 B 102 120 C 110 92 D 134 228 E 150 130 F 300 290

Totais 876 955 3- Numa empresa com 600 funcionários, deseja-se estimar a percentagem de funcionários

favoráveis a certo programa de treinamento. Qual deve ser a percentagem de funcionários a participar da amostra, de tal forma que se garanta, com alto nível de confiança, um erro amostral não superior a 4%?

4- Numa eleição, deseja-se estimar a quantidade da amostra a ser pesquisada com relação a

intenção de voto. A meta é obter uma margem de confiança de 95%, ou seja, uma margem de erro de 2,5 pontos percentuais (para mais ou para menos). Qual o tamanho da amostra?

Page 20: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 1: Amostragem Estatística 20

Respostas: 1- Séries População Cálculo Proporcional Amostra

1ª 35 5,6 6 2ª 32 5,1 5 3ª 30 4,8 5 4ª 28 4,5 4 5ª 35 5,6 6 6ª 32 5,1 5 7ª 31 5,0 5 8ª 27 4,3 4

Totais 250 40 2-

ESCOLAS Nº de estudantes Masculino

Nº de estudantes Feminino

Amostra de Estudantes Masculino

Amostra de Estudantes Feminino

A 80 95 5 6 B 102 120 7 8 C 110 92 7 6 D 134 228 9 15 E 150 130 10 9 F 300 290 19 19

Totais 876 955 57 63

3- Resposta: 62504,0

11220 ===

En funcionários. Como se conhece a população, efetua-se a

correção do tamanho da amostra: 0

0

.n Nn

N n=

+=

600625

600.625

+, que resulta cerca de 306 funcionários.

Daí, o percentual de funcionários é de 306/600 = 0,51 = 51%.

4- Segundo o critério aproximado delineado acima: .1600025,0

11220 ===

En

Existe outro critério, dado pela expressão: ,100

5,2

.2

96,1 =n

expressão que resulta n = 1573

eleitores.

Page 21: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo II - Distribuições de Frequências

Nas aplicações cotidianas, geralmente ocorre que o conjunto a ser estudado apresenta um

grande número de dados, o que implica na necessidade de um modo de representação mais

simplificado e ágil. A Distribuição de frequências é uma técnica estatística usada para representar

uma coleção de objetos em forma de tabelas, de modo a sistematizar alguns indicadores estatísticos.

I- Conceitos iniciais.

I.1- Dados brutos, tabela primitiva, rol e amplitude total.

Os dados brutos são aqueles obtidos sem qualquer tipo de organização. Eles podem ser

organizados linearmente, escritos numa sequência numérica ou na forma denominada tabela

primitiva. Os dados brutos podem ser organizados segundo algum critério. Em se tratando de dados

numéricos, que serão trabalhados neste livro, a ordenação poderá ser de modo crescente ou

decrescente. Esta organização de dados brutos é denominada rol. Do rol, podemos obter a amplitude

total, que é a diferença entre o maior e o menor valor do rol.

Por exemplo, imagine uma situação onde um dado comum foi lançado oito vezes, tendo sido

obtidos os seguintes resultados (os dados brutos): 2; 4; 6; 5; 6; 3; 2; 1. Organizando estes dados

brutos em ordem crescente (que será a opção deste livro, salvo orientação em contrário), teremos o

seguinte rol de dados brutos: 1; 2; 2; 3; 4; 5; 6; 6. No presente exemplo, a amplitude total é dada por

AT = 6 – 1 = 5.

I.2- Distribuição de frequências.

O termo frequência provém do latim frequentia, representando intuitivamente um contexto de

repetição de fatos ou acontecimentos. Em Estatística, a frequência indica o número de vezes que um

valor ou um subconjunto de valores do domínio de uma variável aleatória aparece numa experiência

ou observação de caráter estatístico.

Denomina-se distribuição de frequências a representação do rol na forma de uma tabela de

dupla entrada. Através de uma entrada da tabela primitiva são representados os dados da variável em

estudo e em outra entrada a frequência simples (ou absoluta) dos dados. Denomina-se frequência

simples (ou absoluta) ao número de vezes que ocorre um fenômeno. Estaremos adotando para a

frequência a letra f (minúscula).

No exemplo do lançamento de um dado oito vezes, exposto logo acima, temos a seguinte

distribuição de frequências simples.

Page 22: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 2 - Distribuições de Frequências

22

22

N° obtido f

1 1

2 2

3 1

4 1

5 1

6 2

Total ∑ f = 8

Note que o total de dados obtidos sempre coincide com a somatória de frequências (cujo

símbolo é ∑f). No caso, ∑ f = 8.

No caso do exemplo dado, a frequência acumulada é representada por FAC (3ª coluna). Para se

obter cada valor da frequência acumulada basta adicionar o valor da FAC da linha anterior com a

frequência simples, conforme indicado no esquema abaixo. Note que o último valor de FAC coincide

com a somatória das frequências simples (∑ f).

N° obtido f FAC

1 1 1

2 2 3

3 1 4

4 1 5

5 1 6

6 2 8

Total ∑ f = 8

I.3- Frequência relativa e acumulada

Também é possível expressar os valores das frequências em percentagens, conhecidas como

frequência relativa (símbolo fr), que pode ser obtida por: (%)100.

f

ff r

∑=

N° obtido frequência simples (f)

frequência relativa (fr)

1 1 1x 100/8=12,5 % 2 2 2 x 100/8=25% 3 1 1 x 100/8=12,5 % 4 1 1 x 100/8=12,5 % 5 1 1 x 100/8=12,5 % 6 2 2 x 100/8=25%

Total 8 8 x 100/8= 100%

Page 23: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória.

23

Ainda, outro conceito é o de frequência acumulada. Representa o total de todas as frequências

até uma determinada ordem e seu símbolo é Fac. No exemplo acima temos:

N° obtido frequência simples (f)

frequência relativa (fr)

frequência acumulada (Fac)

1 1 12,5 % 1 2 2 25% 1 + 2 = 3 3 1 12,5 % 1 + 2 + 1 = 4 4 1 12,5 % 1 + 2 + 1 + 1 = 5 5 1 12,5 % 1 + 2 + 1 + 1+ 1 = 6 6 2 25% 1 + 2 + 1 + 1+ 1 + 2 = 8

Total 8 100% ---------- I.4- Exercícios: 1- Os resultados do lançamento de um dado foram alocados na tabela primitiva abaixo.

Organize o rol e faça a distribuição de frequências simples (f). Também, determine a frequência relativa (fr) e acumulada (Fac). Utilize uma ordenação crescente de dados.

6 5 2 6 4 3 6 2 6 5 1 6 3 3 5 1 3 6 3 4 2 4 6 5 3 2 1 3 5 6

Resolução:

Números f fr(%) Fac 1 3 10 3 2 4 13,3 7 3 7 23,3 14 4 3 10 17 5 5 16,7 22 6 8 26,7 30

Totais 30 100 Exercício 2- Elabore uma coleta de dados envolvendo vinte de seus colegas de turma

envolvendo três itens (variáveis): alturas, peso e idade. Para cada variável, organize os dados em ordem crescente e elabore uma tabela de distribuição de frequências (sem intervalo de classes). Também, determine a frequência relativa (fr) e acumulada (Fac).

II- Os gráficos das distribuições de frequências.

As distribuições de frequência podem ser expressas tanto na forma de tabela como na forma

gráfica. Estudaremos a seguir como você transforma do registro em tabela para o gráfico.

O Histograma é uma representação gráfica de uma distribuição de frequência com intervalo de

classe. Nele, as frequências são representadas por retângulos verticais, onde a área do retângulo é

proporcional a sua frequência, ou seja, no eixo y teremos representa a frequência da variável e no

eixo x as representações da variável.

Vamos fazer uma aproximação, considerando os dados discretos obtidos no exercício 1 acima

e traçando o histograma.

Page 24: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 2 - Distribuições de Frequências

24

24

Números f 1 3 2 4 3 7 4 3 5 5 6 8

Totais 30

Neste caso, poderemos escolher uma escala 1: 1, para ambos os eixos. O histograma ficará:

0

2

4

6

8

10

1 2 3 4 5 6

f

0

2

4

6

8

10

1

f

Você pode elaborar o histograma no Excel. Digite a tabela de frequência, selecione a coluna de

frequências, clique na barra de ferramentas no ícone ‘Assistente de gráficos’, selecione colunas (no

tipo de gráfico), clique em avançar, escolha a opção linha ou coluna; clique em avançar; preencha as

opções dos significantes dos eixos; clique em avançar e clique em concluir.

Obs.: Mais rigorosamente, quando se trabalha com dados discretos, como, por exemplo, nos

números obtidos nos lançamentos de um dado, o Histograma não é a representação mais indicada.

Deveríamos estar lidando o gráfico em bastão. Nele, cada barra (retângulo = figura plana) fica

reduzida a um bastão (linha). É o mesmo procedimento do histograma, porém somente se indicam as

linhas.

O Polígono de frequência simples é outra forma de representação gráfica de uma distribuição

de frequência. Nele, as frequências são indicadas no eixo y e no eixo x as representações da variável.

Unindo-se os pontos dados por suas coordenadas (x;y) teremos o polígono de frequência simples.

Com os dados obtidos no exercício 1, podemos traçar o seguinte polígono de frequência simples:

Page 25: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória.

25

0

2

4

6

8

10

1 2 3 4 5 6f

Também pode ser feito no Excel. Na etapa de seleção de tipo de gráfico, escolha a opção linha

e siga os outros passos do histograma.

Por último, existe o polígono de frequência acumulada, onde no eixo y temos a representação

das frequências acumuladas.

Números f Fac

1 3 3

2 4 7

3 7 14

4 3 17

5 5 22

6 8 30

Totais 30

0

5

10

15

20

25

30

35

1 2 3 4 5 6

f

III- Distribuição de Frequências com Intervalo de Classes.

Existem ocasiões onde a coleta de dados revela valores reais. Neste caso, é costume separá-las

em grupos de valores e juntamos as frequências obtidas.

Seja uma coleta de dados com as notas dos alunos de uma turma com 20 alunos. Os dados

colocados são ordenados por ordem alfabética da turma (tabela primitiva):

Nº 1 2 3 4 5 6 7 8 9 10 Nota 7,0 6,5 6,0 5,5 7,5 8,5 8,0 4,5 6,0 7,0 Nº 11 12 12 14 15 16 17 18 19 20 Nota 3,5 9,5 5,0 6,5 7,0 5,5 4,5 2,5 8,0 6,0

Para se obter o rol devemos ordenar as notas de modo crescente. Então, temos:

2,5 3,5 4,5 4,5 5 5,5 5,5 6 6 6 6,5 6,5 7,0 7,0 7,0 7,5 8,0 8,0 8,5 9,5

A tabela de frequências simples, sem intervalos de classes fica:

Page 26: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 2 - Distribuições de Frequências

26

26

Nota frequência 2,5 1 3,5 1 4,5 2 5 1

5,5 2 6 3

6,5 2 7,0 3 7,5 1 8,0 2 8,5 1 9,5 1

Total 20

Neste caso, é mais comum o agrupamento de notas em intervalos, denominados intervalos de

classe. Por exemplo, poderíamos agrupar as notas de 2 em 2 pontos. Assim teríamos a distribuição

de frequências com intervalo de classes. Em Estatística, o símbolo ‘⌐’ indica um intervalo de

números. No caso de 0 ⌐ 2, este símbolo indica que os números entre 0 e 2 deverão ser

contabilizados, exceto o 2 que será contado no próximo intervalo; 2 ⌐ 4 significa que todas notas

entre 2 e 4 são contadas, exceto a nota 4. No último intervalo 8 ⌐ 10, o 10 será incluído. Com isto se

evita repetir contagens.

Classes Intervalo de notas

Frequência simples

(f)

Frequência relativa

(fr)

frequência acumulada

(Fac) 1 0 ⌐ 2 0 0 0 2 2 ⌐ 4 2 10% 2 3 4 ⌐ 6 5 25% 7 4 6 ⌐ 8 9 45% 16 5 8 ⌐ 10 4 20% 20

----- Total 20 100% ---------

Vamos estudar os elementos que compõe uma distribuição de frequências com intervalo de

classes. No nosso exemplo, observamos que agrupamos os dados em 5 intervalos, que são

denominadas classes. Cada intervalo de classe tem um limite inferior (li) e um limite superior (Li).

Cada intervalo de classe tem uma amplitude, denominada amplitude de intervalo de classe, que

é definida por h = Li - li . No nosso caso, h = 2.

Além disso, a tabela apresenta uma amplitude total (AT), definida pela diferença do maior

valor do limite superior e do menor valor do limite inferior. No exemplo: AT = 10 – 0 = 10, apesar

dos valores 0 e 10 não fazerem parte da amostra.

Também, define-se amplitude amostral (AM) a diferença entre o maior e o menor valores da

amostra. No exemplo: AM = 9,5 – 2,5 = 7. Note que AT ≠ AM (nem sempre AT = AM).

Por último, define-se ponto médio de uma classe ao valor xi dado pela média dos limites

superior e inferior de cada classe, ou seja, xi = (Li + li )/2. O gráfico do histograma seria:

Page 27: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória.

27

Histograma

0

2

4

6

8

10

0 ¬ 2 2 ¬ 4 4 ¬ 6 6 ¬ 8 8 ¬ 10

nota s

freq

üên

cia

sim

ple

s

Para a elaboração do polígono de frequência simples, no caso de intervalos de classes,

deveremos determinar o ponto médio do intervalo de cada classe.

Classes Intervalo de notas

Frequência simples (f)

frequência relativa (fr)

frequência acumulada

(Fac)

Ponto médio (xi)

Pares ordenados

1 0 ⌐ 2 0 0 0 1 (1;0) 2 2 ⌐ 4 2 10% 2 3 (3;2) 3 4 ⌐ 6 5 25% 7 5 (5;5) 4 6 ⌐ 8 9 45% 16 7 (7;9) 5 8 ⌐ 10 4 20% 20 9 (9;4)

----- Total 20 100% --------- -------- ------

Para localizar os pontos no gráfico, devemos localizar os pares ordenados (xi; f). No Excel,

deveremos entrar com a tabela abaixo:

Ponto

médio (xi)

Frequência

simples (f)

1 0

3 2

5 5

7 9

9 4

1

Polígono de freqüência simples

0

2

4

6

8

10

0 2 4 6 8 10

xi

f

Para o caso do polígono de frequências acumuladas, o traçado deverá ser realizado com o par

ordenado (Limite superior; valor da frequência acumulada), ou seja, (Li ; f). No caso:

Page 28: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 2 - Distribuições de Frequências

28

28

1

Limite superior da classe (Li)

Frequência acumulada

(FAC)

2 0

4 2

6 7

8 16

10 20 1

Polígono de freqüência acumulada

0

5

10

15

20

25

0 2 4 6 8 10 12

xi

f

IV- Exercícios. 1- Complete os dados da tabela de distribuição de frequências.

Nº da Classe Classe f fr(%) Fac

Nº da Classe Classe f fr(%) Fac 1 0 ⌐ 3 4 6,67 2 3 ⌐ 11 6 ⌐ 9 13 ⌐ 12 19 12 ⌐ 55 15 ⌐ 5 60

TOTAIS 60 100

2- A tabela abaixo apresenta uma distribuição de frequência do saldo médio de clientes de um

pequeno banco num determinado mês.

Saldo médio (R$) 1100 ⌐ 1200 ⌐ 1300 ⌐ 1400 ⌐ 1500 Nº de Clientes 600 500 350 250

Pede-se:

a) A Amplitude Total da distribuição: __________ b) O limite superior da 3ª classe: ____________ c) O limite inferior da 2ª classe: ____________ d) A amplitude da 4ª classe: ____________ e) A frequência relativa simples percentual da 4ª classe: ________ f) A frequência acumulada da 3ª classe: ______ g) O número de clientes que não atingem R$ 1 400,00 : _______ h) A percentagem de clientes que não atingem R$ 1 300,00._______ i) Até que classe estão incluídos 60% dos clientes? ______ j) O histograma. k) O Polígono de frequências.

Indicar a escala nos padrões adequados. Utilizar régua.

Page 29: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória.

29

3- Complete os dados da tabela de distribuição de frequências.

Nº da Classe Classe f fr(%) Fac 1 0 ⌐ 2 4 2 2 ⌐ 4 8 4 ⌐ 6 30 6 ⌐ 8 27 15 72 83 10 93 14 ⌐ 16 100

TOTAIS 4- A tabela abaixo apresenta uma distribuição de frequência de áreas de loteamentos de uma

empresa construtora em um determinado mês. ÁREAS (M2) 100 ⌐ 200 ⌐ 300 ⌐ 400 ⌐ 500 ⌐ 600 ⌐ 700 ⌐ 800 NÚMERO DE LOTES 60 50 35 20 12 2 1 Pede-se: j) A Amplitude Total da distribuição: __________ k) O limite superior da 3ª classe: ____________ l) O limite inferior da 5ª classe: ____________ m) A amplitude da 4ª classe: ____________ n) A frequência relativa simples percentual da 6ª classe: ________ o) A frequência acumulada da 3ª classe: ______ p) O número de lotes que não atinge 600 m2: _______ q) A percentagem de lotes cuja área não atinge 400 m2._______ r) Até que classe estão inclusos 60% dos lotes? ______ s) A classe do 68º lote: _________ k) O histograma. l) O Polígono de frequências. m) O Polígono de frequências acumuladas.

Indicar a escala nos padrões adequados. Utilizar régua.

Respostas: 1-

Nº da Classe Classe f fr(%) Fac 1 0 ⌐ 3 4 6,67 4 2 3 ⌐ 6 7 11,67 11 3 6 ⌐ 9 13 21,67 24 4 9 ⌐ 12 19 31,66 43 5 12 ⌐ 15 12 20 55 6 15 ⌐ 18 5 8,33 60

TOTAIS 60 100 2- a) A Amplitude Total da distribuição: R$ 400,00.

b) O limite superior da 3ª classe: R$ 1 400,00. c) O limite inferior da 2ª classe: R$ 1 200,00. d) A amplitude da 4ª classe: R$ 100,00. e) A frequência relativa simples percentual da 4ª classe: 14,71% f) A frequência acumulada da 3ª classe: 1 450 clientes g) O número de clientes que não atingem R$ 1 400,00: 1450 clientes h) A percentagem de clientes que não atingem R$ 1 300,00: 64,7%

Page 30: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 2 - Distribuições de Frequências

30

30

i) Até que classe estão incluídos 60% dos clientes? 2ª classe. j) O histograma. k) O Polígono de frequências simples.

Classe Intervalo f Fr(%) fac fac (%)

1 1100 ⌐ 1200 600 35,29 600 33,3 2 1200 ⌐ 1300 500 29,41 1100 61 3 1300 ⌐ 1400 350 20,59 1450 80,4 4 1400 ⌐ 1500 250 14,71

1700 91,5

Totais 1700 100 ------

Histograma

0

200

400

600

800

1 2 3 4 5

Classes

de

clie

nte

s

Polígono de freqüências simples

0

200

400

600

800

0 2 4 6

Classes

de

clie

nte

s

3- Complete os dados da tabela de distribuição de frequências.

Nº da Classe Classe f fr(%) Fac 1 0 ⌐ 2 4 4 4 2 2 ⌐ 4 8 8 12 3 4 ⌐ 6 18 18 30 4 6 ⌐ 8 27 27 57 5 8 ⌐ 10 15 15 72 6 10 ⌐ 12 11 11 83 7 12 ⌐ 14 10 10 93 8 14 ⌐ 16 7 7 100

TOTAIS 100 100 4- a) 700 m2 b) 400 m2 c) 500 m2 d) 100 m2 e) 1,11% f) 145 g) 177 h) 80,4% i) 2ª classe j) 2ª classe

Classe Intervalo f Fr(%) fac fac (%) 1 100 ⌐ 200 60 33,3 60 33,3 2 200 ⌐ 300 50 27,7 110 61 3 300 ⌐ 400 35 19,4 145 80,4 4 400 ⌐ 500 20 11,1 165 91,5 5 500 ⌐ 600 12 6,7 177 98,2 6 600 ⌐ 700 2 1,1 179 99,3 7 700 ⌐ 800 1 0,7 180 100

Totais 180 100

Page 31: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória.

31

V- Aplicações envolvendo gráficos

1- A tabela a seguir mostra as áreas, em milhões de milhas quadradas, dos oceanos.

Representar os dados graficamente através de: (a) Histograma (Gráfico de Barras); (b) Polígono de

frequência simples (Gráfico de linhas); (c) Gráfico de setores.

Oceano Pacífico (1) Atlântico (2) Índico (3) Antártico (4) Ártico (5) Área

( 2milhas de milhões ) 70,8 41,2 28,5 7,6 4,8

2- Segundo as estimativas do U.S. Geological Survey, as reservas mundiais de ouro em 2000

podem ser representadas pela tabela abaixo. Represente-a em: (a) Histograma (Gráfico de Barras);

(b) Polígono de frequência simples (Gráfico de linhas); (c) Gráfico de setores.

Utilize os valores em múltiplos de 1.000 t

Discriminação Reservas (t)

Países 2000(p) Partic. (%)

Brasil 1.800 3,7

África do Sul 19.000 39,5 Estados Unidos 5.600 11,6

Austrália 4.000 8,3 Canadá 1.500 3,1

Indonésia 1.800 3,7

China ... ...... Rússia 3.000 6,2 Peru 200 .....

Uzbequistão 5.300 11,0 Outros Países 5.900 12,3

TOTAL 48.100 100,0

[Fontes: DNPM-DIRIN, USGS e GFMS. site: http://www.dnpm.gov.br/dnpm_legis/suma2001/OURO.doc].

3- Elaborar o histograma pelos dados estatísticos fornecidos pelo Tribunal Superior Eleitoral

relativo a participação feminina nas candidaturas às Eleições de 2002:

Cargo Feminino Masculino

Senador 8 46

Deputado Federal 42 471

Deputado Estadual 129 906

Deputado Distrital 5 19

Page 32: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 2 - Distribuições de Frequências

32

32

4- Ainda segundo as estimativas do U.S. Geological Survey, a produção mundial de ouro no

período 1999-2000 pode ser representada pela tabela abaixo. Represente-a em um Gráfico em

colunas ou Barras Múltiplas.

.Discriminação Produção (t) Países 1999 2000p)

Brasil 50 52

África do Sul 450 440

Estados Unidos 340 330

Austrália 300 300

Canadá 155 150

Indonésia 130 120

China 170 170

Rússia 104 105

Peru 128 140

Uzbequistão 80 -

Outros Países 614 638

TOTAL 2.512 2.445

Site: http://www.dnpm.gov.br/dnpm_legis/suma2001/OURO.doc Fontes: DNPM-DIRIN, USGS e GFMS Notas: (p) Preliminar (...) Não disponível, incluído em outros. 5- Represente na forma de histograma a série histórica:

a) do Produto interno bruto; b) da Renda nacional bruta; c) da Renda disponível bruta;

Principais agregados macroeconômicos

1999 2000 2001 2002 2003

Produto interno bruto valor (1.000.000 R$)

963 846 1 101 255 1 198 736 1 346 028 1 556 182

Renda per capita (R$) 5 771 6 430 6 896 7 631 8 694

Renda nacional bruta (1.000.000 R$)

939 739 1 068 658 1 153 452 1 294 084 1 501 032

Renda disponível bruta (1.000.000 R$)

942 766 1 071 448 1 157 318 1 301 351 1 509 785

Poupança bruta (1.000.000 R$)

150 238 190 793 200 817 249 212 317 172

Fonte: IBGE, Diretoria de Pesquisa, Departamento de Contas Nacionais Sistema de Contas Nacionais 1999-2003.

[Fonte: http://www.ibge.gov.br]

Page 33: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória.

33

Respostas: 1-

1-(a)

0

20

40

60

80

1 2 3 4 5

Oceanos

Áre

a co

ber

ta p

elo

s o

cean

os

1-(b)

1

2

3

4

5

1-(c)

1-c) Cálculos:

(1) °→

→360

9,1528,70

x

°=→=→= 70,166254889,152360.8,709,152 xxx

(2) °→

→360

9,1522,41

y°=→=→ 97148329,152 yy

(3) °→

→360

9,1525,28

z°=→=→ 10,67102609,152 yz

(4) °→

→360

9,1526,7

w°=→=→ 89,1727369,152 ww

(5) °=−=→+++−= 31,1169,348360)89,1710,679770,166(360 tt

2-

02.0004.0006.0008.000

10.00012.00014.00016.00018.00020.000

Brasil

Ãfrica do S

ul

Estados U

nidos

Austrália

Canadá

Indonésia

Rússia

Peru

Uzbequist

ão

Outros P

aíses

Países

Re

ser

va

s d

e o

uro

(t)

05.000

10.00015.00020.000

Brasilà fri.

.Es...

Aus...Ca...

Ind...Rúss

iaPeru

Uz...

Out...

Páises

Re

serv

a em

Ou

ro (

t)

Área Coberta pelos Oceanos

0

50

100

1 2 3 4 5

Oceano

Áre

a C

ob

ert

a

Page 34: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 2 - Distribuições de Frequências

34

34

Brasil

África do Sul

Estados Unidos

Austrália

Canadá

Indonésia

Rússia

Peru

Uzbequistão 3-

0 0 0 08 42129

546

471

906

19

0

100

200

300

400

500

600

700

800

900

1000

Cargo

Feminino

Masculino

4-

0100200300400500600700

Brasil

África

do S

ul

Estados

Unid

os

Austráli

a

Canadá

Indon

ésiaChina

Rússia

Peru

Uzbequ

istão

Outros

Paíse

s

Pro

du

ção

Ou

ro (

t) 1

999/

200

0

Page 35: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória.

35

5- a)

1999 2000 2001 2002 2003

9638461101255 1198736

13460281556182

0

500000

1000000

1500000

2000000

Ano

PIB

Ano

PIB

5-b)

1999 2000 2001 2002 2003

9397391068658 1153452

12940841501032

0

500000

1000000

1500000

2000000

Ano

Renda nacional bruta

5- c)

1999 2000 2001 2002 2003

94276610714481157318

13013511509785

0

500000

1000000

1500000

2000000

Ano

Renda disponível bruta

Page 36: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem
Page 37: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo III

Medidas de Tendência Central e de Posição (sem Intervalo de Classes)

Neste capítulo definiremos as medidas de tendência central - as médias, a mediana, a

moda - assim como as medidas de posição usuais - os quartis e os decentis. Também,

apresentamos algumas aplicações e orientamos na escolha da medida de tendência central

mais conveniente, de acordo com as características intrínsecas as respectivas definições.

I- Média, Moda, Mediana.

I.1- A Média

Para dados numéricos reais, o valor médio é geralmente simbolizado pela letra −x e

representa a soma de todos os valores divido pelo número total de dados, ou seja: n

xx ii

∑=

−.

Por exemplo, se um aluno tirou notas 5,0 e 8,0 em duas avaliações, o valor médio das

avaliações é de .5,62

85

221 =+=

+=

− xxx

Exemplo: 1- Considerando-se o conjunto de dados abaixo, determine a média (−x ).

(a) 15, 18; 20; 13; 10; (b) 2, 0, 1, 0, 5, 18; (c) 1, 2, 3, 4, 2, 1, 3, 5, 0, 3.

Resolução: (a) Quando se está calculando a média não é necessário organizar o rol de

dados em ordem crescente.

Daí: .2,155

.76

5

1013201815

554321 ==++++=

++++=

− xxxxxx

(b) .33,46

.26

6

1850102

6654321 ==+++++=

+++++=

− xxxxxxx

(c) .4,210

24

10

3053124321 ==+++++++++=−x

Para dados numéricos de natureza discreta, porém com repetição de elementos, pode-se simplificar o cálculo. Por exemplo, no item (c) do exemplo dado logo acima, poderíamos escrever:

.4,210

24

10

1.51.423.32.22.11.0

10

3053124321 ==++++++=+++++++++=−x

De modo mais geral, observe na resolução acima que cada valor de x é multiplicado pela

frequência correspondente. Se optarmos pela representação em forma de tabela, tem-se:

x f f .x Em síntese, no caso de distribuição

discretas com repetição de dados, a

expressão para o cálculo é:

.4,210

24. ==∑

∑=−

f

xfx

0 1 0.1 = 0

1 2 1.2 = 2

2 2 2.2 = 4

3 3 3.3 = 9

4 1 4.1 = 4

5 1 5.1 = 5

Total .24. =∑ xf

Page 38: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 3: Medidas de Tendência Central e de posição (sem Intervalo de Classes). 38

I.2- A Moda

A Moda, uma ideia bem próxima do conceito intuitivo, é o valor da sequência que tem

maior frequência. Por exemplo, na distribuição (2,5,3,8,9,4,2,1,5,4,8,9,0,2), o valor da moda é

Mo=2, pois o número 2 ressurge por três vezes, que é a maior frequência.

Caso a distribuição seja (2,5,3,3,9,4,2), a mesma é bimodal, pois apresenta duas modas,

ou seja, Mo1= 2 e Mo2= 3.

Um exemplo de distribuição trimodal é (1,0,1,2,0,1,2,3,4,2,4,4), com modas 1, 2 e 4.

I.3- A Mediana

O conceito de Mediana é o valor que divide uma distribuição em duas partes com a

mesma quantidade de valores. Neste caso, torna-se necessário fazer uma ordenação dos dados,

ou seja, montar o rol em ordem crescente ou em ordem decrescente (neste livro estaremos

realizando o rol em ordem crescente, a menos de qualquer indicação contrária).

Por exemplo, seja determinar o valor da mediana da sequência (2,5,3,3,9,4,2). Em

primeiro lugar, deve-se organizar o rol: (2,2,3,3,4,5,9). Como a distribuição tem sete valores

(uma ordem ímpar), o termo mediano é o 3, destacado em negrito.

Em uma sequência de ordem par, o valor mediano será a média dos dois valores situados

ao meio da distribuição. No exemplo (1,0,1,2,0,1,2,3,4,2,4,4), com doze valores, o rol em

ordem crescente é (0, 0, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4). Note que os dois valores centrais tem o

mesmo valor, que resulta na mediana igual a Md = 2.

Em outra situação, para a distribuição (2, 0, 1, 0, 5, 18), o rol fica (0, 0, 1, 2, 5, 18), com

valor mediano dado por .5,12

21 =+=dM

I.4- Outros exemplos e aplicações.

1- As notas de Estatística de um aluno universitário foram: 8,4; 9,1; 7,2; 6,8; 8,7 e 7,2. Determine a nota média, a nota mediana e a nota modal desse aluno.

Resposta: Organizando o ROL em ordem crescente (6, 8; 7,2; 7,2; 8,4; 8,7; 9,1). Média = 7,9; Mediana = ( 7,2 + 8,4 )/2 = 7,8; Moda = 7,2

2- A tabela adiante apresenta o levantamento das quantidades de peças defeituosas para cada lote de 109 unidades fabricadas em uma linha de produção de autopeças, durante um período de 30 dias úteis. Considerando S a série numérica de distribuição de frequências de peças defeituosas por lote de 109 unidades, julgue os itens abaixo.

(A) A moda da série S é 5.

(B) Durante o período de levantamento desses dados, o percentual de peças defeituosas ficou, em média, abaixo de 3,7%.

(C) Os dados obtidos nos 10 primeiros dias do levantamento geram uma série numérica de distribuição de frequências com a mesma mediana da série S.

Page 39: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 39

Resolução: . Para a série S de 30 valores temos: Defeituosas fi FAC x.f

1 4 4 1.4 = 4 2 5 9 2.5 = 10 3 6 15 3.6 = 18 4 5 20 4.5 = 20 5 5 25 5.5 = 25 6 3 28 6.3 = 18 7 2 30 7.2 = 14

TOTAL 30 --- .109. =∑ xf

(A) Falsa, pois a moda é 3.

(B) CORRETA, pois a média da distribuição é: 109/ 30 = 3,63 %

(C) CORRETA, pois os 10 primeiros termos da série são:

6 + 4 + 3 + 4 + 2 + 4 + 3 + 5 + 1 + 2

Em ordem crescente, temos:

1, 2, 2 , 3, 3 , 4 , 4 , 4, 5, 6 – mediana = 3,5

3- Um dado foi lançado 50 vezes. A tabela a seguir mostra os seis resultados possíveis e as suas respectivas frequências de ocorrências:

Resultado 1 2 3 4 5 6 Frequência 7 9 8 7 9 10

A frequência de aparecimento de um resultado ímpar foi de: a) 2/5 b) 11/25 c) 12/25 d) 1/2 e) 13/25 As frequências aparecimento de um resultado ímpar são: 7 + 8 + 9 = 24 A somatória das frequências é 50. Resposta C: 24/ 50 = 12/25 4- O Departamento de Comércio Exterior do Banco X possui 30 funcionários com a distribuição salarial em reais visualizada na tabela abaixo. Quantos funcionários que recebem R$3.600,00 devem ser demitidos para que a mediana desta distribuição de salários seja de R$ 2.800,00? a) 8 ; b) 11 ; c) 9 ; d) 10 ; e) 7

N° de funcionários

Salários (R$)

Fac

10 2 000,00 10 12 3 600,00 22 Classe mediana

5 4 000,00 27 3 6 000,00 30

Resposta D: Este é um exercício que exige uma interpretação conceitual.

Page 40: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 3: Medidas de Tendência Central e de posição (sem Intervalo de Classes). 40

A atual mediana é .152

30

2

. ==∑ xf → que corresponde a Mediana de R$ 3.600,00

Uma das propriedades da mediana, é que quando o cálculo de ∑ fi / 2 coincide com a frequência acumulada, a mediana é a média aritmética do valor de xi e xi + 1..

Para que a mediana se torna R$ 2 800,00, que é a média de 2 000 e 3 600, tem-se que:

.102

20

2

. ==∑= xfFAC Colocando estes resultados em uma nova tabela:

Número de

funcionários Salários em R$ Fac

10 2 000,00 10 2 3 600,00 12 5 4 000,00 17 3 6 000,00 20

20 ---

Portanto, tem-se que demitir 10 funcionários com salário de 3 600 reais. Verificando: ∑ fi = 20 = 10 → mediana = 2 000 + 3 600 000 = 2 800 Reais 2 2 2

5- Num curso de iniciação à informática, a distribuição das idades dos alunos, segundo o sexo, é dada pelo gráfico abaixo. Com base nos dados do gráfico, pode-se afirmar que: a) o número de meninas com, no máximo, 16 anos é maior que o número de meninos nesse mesmo intervalo de idades. b) o número total de alunos é 19. c) a média de idade das meninas é 15 anos. d) o número de meninos é igual ao número de meninas. e) o número de meninos com idade maior que 15 anos é maior que o número de meninas nesse mesmo intervalo de idades.

Resposta: a) Alternativa falsa, pois: O número de meninas com no máximo 16 anos é 1 + 2 + 1 = 4 e o n° de meninos coma te 16 anos é 2 + 1 + 4 = 7 b) Alternativa falsa, pois o número total de alunos e alunas é 20.

c) Alternativa falsa, pois: Meninas: (14.1 + 15.2 + 16.1 + 17.3 + 18.3 )/ 10 = 16,5 d) Alternativa correta, pois n° de meninos: 2 + 1 + 4 + 2 + 1 = 10 meninos e n° de meninas é :1 + 2 + 1 + 3 + 3 = 10 meninas. e) Alternativa falsa, pois n° de meninos com idade maior que 15 anos é: 4 + 2 + 1 = 7 meninos e o n° de meninas com idade maior que 15 anos é: 1 = 3 + 3 = 7 meninas

Page 41: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 41I.5- Exercícios. 1- Considerando-se o conjunto de dados abaixo, determine a média (x), a moda (Mo) e a

mediana (Md). Lembre-se de organizar os dados em ordem crescente. a) 15, 18; 20; 13; 10; 16; 14. b) 2, 3, 1, 2, 5, 7, 6, 5, 7, 4, 3, 2, 5, 9. c) 1, 4, 4, 5, 6, 7, 10.

2- Os resultados do lançamento de um dado foram os dados abaixo da tabela primitiva. Organize o ROL de dados brutos e faça a distribuição de frequências simples (f), frequência relativa simples percentual (fr) e frequências acumuladas (Fac). Utilize uma ordenação crescente de dados.

4 5 2 6 4 3 6 2 6 5 1 6 3 2 5 1 3 6 3 4

Pede-se: a) Organizar e completar a tabela abaixo de distribuição de frequência sem intervalo de classe,

calculando a frequência simples (f); (b) Determine o valor da Moda e da Mediana; (c) Elabore o polígono de frequência, o polígono de frequência acumulada e o histograma para a distribuição.

Dados Resultados f Fac

3- Calcular a média aritmética, a mediana (Md) e a Moda (M0) dos conjuntos abaixo: a) A = {2, 5, 8, 9}. b) B = {10; 14; 13; 15; 16; 18; 12} c) C = {17; 18; 19; 20; 20; 20; 20; 21; 22; 23; 23; 24}. d) D = {2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 9}. e) E = {5, 13, 10, 2, 18, 15, 6, 16, 9}. f) F = {3, 5, 2, 6, 5, 9, 5, 2, 8 ,6}. g) G = {20; 9; 7; 2; 12; 7; 20; 15; 7}. h) H = {15; 18; 20; 13; 10; 16; 14}.

Respostas: 1- a) média= 15,1 ; Amodal; Mediana= 15

b) média= 4,36 ; Bimodal= 2 e 5; Mediana= 4,5 c) Média= 5,29 ; Moda= 4; Mediana= 5 . 2-

Resultados f Fac

1 2 2

2 3 5

3 4 9

4 3 12

5 3 15

6 5 20

Totais 20

Moda = 6 ( a maior frequência simples) Mediana = 4, pois a sequência dada em forma de tabela pode ser traduzida para a forma (1, 1, 2, 2, 2, 3, 3, 3, 3, 4,

4, 4, 5, 5, 5, 6, 6, 6, 6, 5), com valores centrais 4 e 4, cuja média é 4.

Outro modo: Primeiramente, você deve reconhecer a classe mediana. Como a somatória das frequências simples é Σ fi = 20, a classe mediana fica na metade deste valor, ou seja, 10. Procure, então a frequência acumulada imediatamente superior, que no caso é 12 (4ª classe). Logo, a mediana é 4.

Page 42: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 3: Medidas de Tendência Central e de posição (sem Intervalo de Classes). 42

3- a) −x = 6; Md=6,5 e Amodal.

b) Ordenando: (10; 12; 13; 14; 15; 16; 18) Valores: −x 14; Md= 14 e amodal.

c) −x =20,58 ; Md= 20; Mo= 20.

d) −x =5,5; Md=5,5; Bimodal (modas 4 e 7).

e) Ordenando: (2, 5, 6, 9, 10, 13, 15, 16, 18). −x =10,44; Md=10; Amodal.

f) −x = 5,1; Md = 5; Mo = 5.

g) −x = 11; Md = 9, Mo = 7.

h) 15,1; 15; Amodal. II- A Média Ponderada e a Média Geométrica.

II.1- A Média Ponderada.

Considere uma distribuição formada por n números x1 , x2 , x3 , ..., xn. Anteriormente

definimos a média aritmética entre esses n números como a soma dos mesmos dividida por n,

isto é: n

xxxxx n++++

=− ...321 .

No cálculo da média está implícito que cada valor xi tem igual importância (ou peso) que

os demais. Nenhum ‘vale mais’ ou ‘é mais importante’ que o outro, de modo que há uma

equidade de contabilização.

Isto não ocorre na média ponderada, onde a importância ou contribuição de uma

determinada variável é maior ou menor, dependendo do contexto. Num contexto de inflação,

por exemplo, o peso do aumento do valor do litro da gasolina é muito maior para o trabalhador

do que o aumento do valor do ingresso para ir ao estádio de futebol.

Em termos matemáticos, considere uma distribuição formada por n números reais x1 , x2

, x3 , ..., xn. A média ponderada entre esses n números, de acordo com pesos p1 , p2 , p3 , ..., pn

é dada por:

n

nn

pppp

pxpxpxpxx

++++++++

=−

...

....

321

332211

.Um grupo de 100 funcionários de uma empresa XNADA, com salários mensais

distribuídos de acordo com a tabela abaixo, pede-se determinar o valor do salário médio.

Valor do salário (R$) Nº de funcionários

1.000,00 40

3.000,00 30

5.000,00 20

10.000,00 10

Page 43: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 43

Resolução:

Os números de funcionários representam os pesos, ou seja, p1 = 40, p2 = 30, p3 = 20 e

p4 = 10. Os valores da variável salário são x1 = R$ 1.000,00, x2 = R$ 3.000,00,

x3 = R$ 5.000,00 e x4 = R$ 10.000,00. Então, o valor da média (ponderada) é:

.00,300.3$100

330000

10203040

10.1000020.500030.300040.1000..

4321

44332211 Rpppp

pxpxpxpxx ==

++++++=

++++++

=−

Note que os maiores valores do salário de R$ 1.000,00 e R$ 2.000,00 tiveram grande

peso na média, apesar de existirem 10 funcionários que ganham R$ 10.000,00. II.2- A Média Geométrica.

Em relação a média geométrica de uma coleção de valores reais x1 , x2 , x3 , ..., xn, esta é determinada pela expressão n

nxxxxG ......... 321= . Seja o exemplo da distribuição (4, 5, 6, 7,

10). A média geométrica é dada por: .093,6840010.7.6.5.4..... 55554321 ==== xxxxxG

A média geométrica entre 12, 14 e 16 é .90,13268816.14.12.. 333321 ==== xxxG

A média geométrica é utilizada em administração e economia para determinar as taxas médias de variação, de crescimento, ou em razões médias.

Obs.: A média geométrica é sempre menor que a média aritmética. No 1º exemplo, a

distribuição (4, 5, 6, 7, 10) tem média aritmética 4,6=−x ,maior que G = 6,093. No 2º exemplo,

a distribuição (12, 14, 16) tem média aritmética ,14=−x maior que G = 13,90.

III- Aplicações

(ENEM- modificado) Um sistema de radar é programado para registrar automaticamente a velocidade de todos os veículos trafegando por uma avenida, onde passam em média 300 veículos por hora, sendo 55 km/h a máxima velocidade permitida. Um levantamento estatístico dos registros do radar permitiu a elaboração da distribuição percentual de veículos de acordo com sua velocidade aproximada.

1- O valor médio das velocidades dos veículos que trafegam nessa avenida é de:

(A) 35 km/h (B) 44 km/h (C) 55 km/h; (D) 76 km/h; (E) 85 km/h.

Resolução: O valor médio das velocidades representa a média ponderada, onde os pesos são

o número de veículos. Assim:

1364030155

80.170.360.650.4040.3030.1520.5

++++++++++++=MP

Page 44: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 3: Medidas de Tendência Central e de posição (sem Intervalo de Classes). 44

./44100

4440

100

8021036020001200450100hkmMP ==++++++=

2- As notas de um aluno na disciplina de matemática numa escola que tem ano letivo dividido em 3 trimestres são: 1° Trimestre 8,0 e 2° Trimestre 5,0. Determine a nota que ele necessita obter no 3° Trimestre, dado que a média anual na escola é:

a) 6,0; b) 6,0, mas os pesos nos trimestre são dados por: Trimestre 1° trimestre 2° trimestre 3° trimestre

Pesos 2 3 4 Solução: a) A média a ser utilizada aqui é a aritmética.

3

58321 x

notasdeQuantidade

trimestredoNotatrimestredoNotatrimestredoNotaMA

++=°+°+°=

Mas a média anual deve ser igual a 6,0. Então:

5181363

x13 =→=+→=+xx

b) A média a ser utilizada aqui é a ponderada, onde os pesos dados na tabela. Assim:

321

321 3.2.1.

ppp

trimestredoNotaptrimestredoNotaptrimestredoNotapMP

++°+°+°=

9

.431

9

.41516

432

.45.38.2 xxxMP

+=++=++++=

Mas a média é 6,0. Então:

23431544544316.943169

.431 =⇒−=⇒=+⇒=+⇒=+xxxx

x

75,54

23: ==xEntão . Assim, o aluno deve tirar 5,75 ou mais.

3- Uma fábrica de chocolates utiliza vários tipos de embalagens. No último ano o quadro mostra a saída de chocolates nos diversos tipos de embalagens. a) Qual o valor médio das embalagens, em gramas? b) Se a empresa decidir padronizar as embalagens em um só tipo, qual seria a melhor escolha.

Tipos de embalagens

N° de embalagens

100g 100 000 200g 80 000 250g 70 000 500g 50 000 1 kg 20 000

Resolução: a) O valor médio é dado pela média ponderada, onde os pesos são dados pela massa das

embalagens. Chamando de pi a massa de cada embalagem e de Ni o número de embalagens correspondente, temos:

embalagensden

NpNpNpNpNpMP

°Σ++++= 5544332211 ....

00020000500007000080000100

00020.100000050.50000070.25000080.200000100.100

++++++++=MP

gMP 56,276000320

0088500

000320

0000002000000025000500170000006100000010 ==++++= 0

b) A de 100g, por dois motivos: Por ser a moda, que possui a maior venda. E por poder ser utilizada para empacotar qualquer quantidade.

Page 45: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 45 4- (FUVEST/G.V. 92) Num determinado país a população feminina representa 51% da população total. Sabendo-se que a idade média (média aritmética das idades) da população feminina é de 38 anos e a da masculina é de 36 anos. Qual a idade média da população? a) 37,02 anos; b) 37,00 anos; c) 37,20 anos; d) 36,60 anos; e) 37,05 anos

Solução: Considere a seguinte organização de dados: População feminina População masculina

51% 49% 38 anos 36 anos

Como o exercício solicita a idade média da população, os pesos são os percentuais: p1= 51% e p2= 49%.

anospp

NpNpMP 02,37

100

3702

100

17641938

4951

36.4938.51..

21

2211 ==+=++=

++=

5- Em um conjunto de 100 observações numéricas, podemos afirmar que: a) a média aritmética é maior que a mediana. b) a mediana é maior que a moda. c) 50% dos valores estão acima da média aritmética. d) 50% dos valores estão abaixo da mediana. e) 25% dos valores estão entre a moda e a mediana.

Resposta correta: d)

6- Julgue o item (coloque V ou F). O sistema de avaliação de uma escola consiste da realização de quatro provas parciais e uma prova geral. Sendo MP a média aritmética simples das provas parciais, a média final MF é obtida calculando-se a média aritmética simples de MP e a prova geral. Neste caso, o peso da prova geral, em relação às provas parciais, no cômputo de MF é igual a 4. ( ). Justifique Solução: Verdadeira, pois:

Seja PPi as notas das provas parciais e PG a nota da prova geral. Como são 4 notas de PPi,

então a média simples dela, .4

PP PP iΣ= A média final MF é dada por:

.4,,8

48

4

8

4

824

4

42

42

4321i

i

ii

PPcadaarelaçãoempesotemPGsejaouPGPPPPPPPP

MF

PGPPPGPP

PGPPPG

PP

PGPPMF

++++=

+Σ=+Σ=+Σ

=+Σ

=+=

7- (F.C.Chagas) A média aritmética de 11 números é 45. Se o número 8 for retirado do conjunto, a média aritmética dos números restantes será: a) 48,7 b) 48 c) 47,5 d) 42 e) 41,5.

Solução:

Seja M11 a média das 11 medidas, dada por: 4511

11

111 == ∑ ix

M

Podemos reescrevê-la como:

4511

8:,45

11

810

10

111 =

+=

+= ∑

Xaindaou

xM

i

onde: X10 é a soma dos 10 números restantes, exceto o oito que foi retirado.

Page 46: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 3: Medidas de Tendência Central e de posição (sem Intervalo de Classes). 46 Resolvendo-a, temos:

487495845.1184511

8101010

10 =→=+→=+→=+

XXXX

Daí, a média dos 10 números pedida é: 487/10= 48,7

8- Calculamos a média aritmética de dois números, somando-os e dividindo o resultado por 2. A média aritmética das raízes da equação 2x2-4x-11=0 é: a) 2 b) –2 c) 1 d) –1 e) n.d.a

Solução:

12.2

4

.2:

.22.

2.2

2

2.2

2.2.2

2

:

.2.2;

.2

:soluçõestem 011-4x-2xgrau2de equaçãoA

_

21_

21

21

2

==−=

−=

=

=

∆−−∆+−

=

∆−−+∆+−

=+

=

∆−−=∆+−=±−=

a

bsejaOu

a

ba

b

a

b

a

bb

a

b

a

b

xx

pordadaéxexraízesduasdestasaritméticamédiaA

a

bxe

a

bxonde

a

deltabx

x

x

9- As notas de um candidato em suas provas de um concurso foram: 8,4; 9,1; 7,2; 6,8; 8,7 e 7,2. A nota média, a nota mediana e a nota modal desse aluno, são respectivamente: a) 7,9; 7,8; 7,2 ; b) 7,2; 7,8; 7,9 ; c) 7,8; 7,8; 7,9 ; d) 7,2; 7,8; 7,9 ; e) 7,8; 7,9; 7,2

Resposta: A

10- Sabe-se que a média aritmética de 5 números inteiros distintos, estritamente positivos, é 16. O maior valor que um desses inteiros pode assumir é a) 16 b) 20 c) 50 d) 70 e) 100

Solução:

165

54321 =++++ xxxxx

O valor de x5 será máximo quando os outros quatro valores de x forem mínimos. Como os xi são inteiros positivos, temos: x1=1, x2 = 2, x3=3 e x4 = 4, nesta, ou em qualquer ordem. Substituindo, vem:

.708010165

432155

5 =→=+→=++++xx

x

11- Define-se a média aritmética de n números dados como o resultado da divisão por n da soma dos n números dados. Sabe-se que 3,6 é a média aritmética de 2,7; 1,4; 5,2; e x. O número x é igual a: a) 2,325 b) 3,1 c) 3,6 d) 5,1 e) 6,12

Solução: .1,53,94,144,143,96,34

x5,2 4,12,7 =−=→=+→=+++xx

12- O gráfico representa, em milhares de toneladas, a produção no Estado de São Paulo de um determinado produto agrícola entre os anos de 1990 e 1998. Analisando o gráfico, observa-se que a produção a) foi crescente entre 1992 e 1995. b) teve média de 40 mil toneladas ao ano. c) em 1993 teve acréscimo de 30% em relação ao ano anterior. d) a partir de 1995 foi decrescente. e) teve média de 50 mil toneladas ao ano.

Page 47: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 47

Resposta: E

13- Observe o demonstrativo do consumo de energia elétrica: Para conhecimento, demonstramos a seguir a evolução do consumo de energia elétrica nos últimos meses. Considere que o consumo médio, de agosto/98 a dezembro/98, foi igual ao que ocorreu de janeiro/99 a abril/99. O consumo no mês de abril de 99, em kWh, foi igual a: a) 141 b) 151 c) 161 d) 171

Solução: O consumo médio entre agosto/98 e dez/98 é dado por:

.2065

1030

5

248215182150235 ==++++=x

O consumo médio entre janeiro/99 e abril/99 é dado por:

1418246832064

683206

4

25715868=→=+→=+→=

+++aa

aabrilemconsumo2

14- Observe os gráficos a seguir, que representam, em reais, as vendas e os lucros anuais de uma empresa no período de 1990 a 1995. De acordo com os gráficos, calcule: a) a média, em milhões de reais, das vendas dessa empresa no período considerado; b) a razão entre o lucro e a venda em 1992.

Page 48: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 3: Medidas de Tendência Central e de posição (sem Intervalo de Classes). 48

Solução: a) Vendas: .36

18

6

213642milhôesx ==+++++=

b) Lucros: 67,6663666

0002002

6

500000300000200000600000400000200000 ==+++++=y

Razão lucro/venda: %22,121222,00000003

67,666366=====

x

y

venda

lucroRazão

Para finalizar as medidas de tendência central (média, moda e mediana), colocamos um

critério para comparação entre estas medidas de tendência central.

Critério Média Mediana Moda

Frequência de uso Mais comum/mais

familiar Uso cotidiano Às vezes

Existência Sempre Sempre Pode não haver

Unicidade Sim Sim Não, pois pode haver mais de uma moda.

Afetada pelos extremos?

Sim Não Não

Vantagem

Maior estabilidade e adequada para

cálculos, Tratamento algébrico ulterior e métodos estatísticos

Não é influenciada por valores extremos ou

erro de alguma medida, que

afetariam a média.

Valor mais típico em variáveis qualitativas;

Medida rápida e aproximada.

IV- Medidas de Posição: Percentis e Quartis

IV.1- Os Quartis.

As Medidas de posição – os percentis e os quartis – não são medidas de posição central, mas representam medidas importantes do modo como a distribuição de frequências se comporta.

Os quartis representam as frações de ¼ de uma distribuição, ou seja, como se situa o primeiro quarto (1º quartil), o segundo quarto (o 2º quartil) e o terceiro quarto (3º quartil), conforme indicado na tabela abaixo.

Separatriz 1º quartil 2º quartil 3º quartil

Fração 1/4 2/4 ou 1/2 3/4 Como o 2º quartil (2/4) corresponde a fração ½, então o 2º quartil corresponde a

mediana da distribuição, ou seja, o valor que divide uma distribuição em duas partes iguais. Os quartis são denominados separatrizes, pois demarcam duas partes de uma

distribuição, conforme pode ser visualizado na tabela acima.

Page 49: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 49 Exemplo: 1- A distribuição dos salários de uma empresa é dada na tabela a seguir:

a) Qual é a mediana dos salários dessa empresa? b) Determine o 1° quartil; (c) Determine o 3° quartil.

Salário (R$) N° de funcionários

500.000,00 10 1.000.000,00 5 1.500.000,00 1 2.000.000,00 10 5.000.000,00 4

10.500.000,00 1 Total 31

Resolução:

Salário (R$) n° de funcionários FAC 500,00 10 10 classe do 1º quartil

1.000,00 5 15

1.500,00 1 16 classe mediana

2.000,00 10 26 classe do 3º quartil

5.000,00 4 30 10.000,00 1 31

Total 31 ----

(a) Como a classe mediana se situa em ,5,152

31

2==∑ f o salário que divide a distribuição

ao meio é de R$ 1.500,00. Isto pode ser obtido construindo a frequência acumulada e observar o valor mais próximo superior a 15,5, no caso, 16, que corresponde a classe mediana.

(b) Como ,75,7

4

31

4==∑ f o salário que divide a distribuição no primeiro quarto é de R$

500,00. Isto pode ser obtido construindo a frequência acumulada e observar o valor mais próximo superior a 7,75, no caso, 10, que corresponde a classe do 1º quartil.

(c) Como ,25,23

4

31.3

4

.3 ==∑ f o salário que divide a distribuição no terceiro quarto é de

R$ 2.000,00. Isto pode ser obtido construindo a frequência acumulada e observar o valor mais próximo superior a 22,25, no caso, 26, que corresponde a classe do 3º quartil.

IV.2- Os Percentis.

De modo análogo aos quartis, os percentis não são medidas de posição central, mas

representam medidas importantes do modo como a distribuição de frequências se comporta.

Os percentis representam as frações de 100

1 nas distribuições de freqüência. Por

exemplo, o percentil P90 representa o ponto onde uma distribuição reparte 90% dos valores e

os outros 10% restantes.

Page 50: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 3: Medidas de Tendência Central e de posição (sem Intervalo de Classes). 50

No caso do exemplo dado acima, resolvido em relação aos quartis, o percentil P90 corresponderia a ,9,27

100

31.90

100

.90 ==∑ f com um salário que corresponde a R$ 5.000,00. Isto

pode ser obtido construindo a frequência acumulada e observar o valor mais próximo superior a 27,9, no caso, 30, que corresponde a classe P90.

Salário (R$) n° de funcionários FAC 500,00 10 10

1.000,00 5 15

1.500,00 1 16

2.000,00 10 26

5.000,00 4 30 classe P90 10.000,00 1 31

Total 31 ----

Caso a situação fosse determinar o percentil P38, de ,78,11100

31.38

100

.38 ==∑ f obtém-se um

salário de R$ 1.000,00, dado que a frequência acumulada imediatamente superior é 15.

Page 51: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo IV

Medidas de Tendência Central e de Posição (com Intervalo de Classes).

No capítulo anterior definimos as medidas de tendência central e as medidas de posição para

distribuições discretas. No presente capítulo estenderemos o estudo das médias, da mediana, da moda, assim como dos quartis e dos decentis para o caso das distribuições contínuas

I- Medidas de Tendência Central: Média, Moda, Mediana.

IV.1- A Média em Distribuições Contínuas

A média é dada pela expressão f

xfx m

∑=− .

, onde xm representa o ponto médio de cada classe.

Exemplo: Considere a distribuição de freqüências abaixo, com iguais amplitudes de intervalo.

a) Complete os dados da tabela de distribuição de freqüências. b) Determine a média.

Nº da Classe Classe f Fac

1 0 ⌐ 2 3

2 2 ⌐ 4 8

4 ⌐ 6 8

6 ⌐ 8 22

26

30

TOTAIS

Solução:

Nº da Classe

Classe f xi f. xi

1 0 ⌐ 2 3 1 3

2 2 ⌐ 4 5 3 15

3 4 ⌐ 6 8 5 40

4 6 ⌐ 8 6 7 42

5 8 ⌐ 10 4 9 36

6 10 ⌐ 12 4 11 44

TOTAIS 30 180

630

180.==

∑=

f

xfx m

(xi = ponto médio do intervalo de classe).

IV.2- A Moda em Distribuições com Intervalo de Classes.

==

−=−=

++=

alclassedaerioritel

alamplitudeh

posteriorffD

anteriorffD

ondehDD

DlM

al

al

o

modinflim

mod

)(

)(

,.

*

mod2

mod1

*

21

1*

Page 52: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 3: Medidas de Tendência Central e de posição (com Intervalo de classes). 52

No exemplo anterior, vamos determinar a moda.

A classe modal é aquela que possui a maior freqüência simples. No caso, é a 3ª classe (com

intervalo defino por 4 ⌐ 6). O valor da freqüência modal é f*= 8, o valor da freqüência anterior a

classe modal é f(ant) = 5, o valor da frequência posterior a classe modal é f(post) = 6 e o limite

inferior da classe é l*= 4.

D1 = f* - f(anterior) = 8 – 5 = 3

D2 = f* - f(posterior) = 8 – 6 = 2

.2,55

642.

23

34. *

21

1* =+=+

+=+

+= hDD

DlM o

IV.3- A Mediana em Distribuições com Intervalo de Classes.

==

===

−+=

.

.

.inflim

,.

]2

[

*

*

*

*

*

*

medianaclassedafrequênciaf

medianaclassedaamplitudeh

medianaclasseaanterioracumuladaFrequenciaF

medianaclassedaacumuladaFrequenciaF

medianaclassedaerioritel

ondehf

FF

lMantAC

TOTALACanteriorACACTOTAL

d

Continuando com os dados do exemplo anterior, vamos determinar a mediana.

Nº da Classe

Classe f FAC

1 0 ⌐ 2 3 3

2 2 ⌐ 4 5 8

3 4 ⌐ 6 8 16

4 6 ⌐ 8 6 22

5 8 ⌐ 10 4 26

6 10 ⌐ 12 4 30

TOTAIS 30

Primeiramente, você deve reconhecer a classe mediana. Como a somatória das freqüências

simples é Σ fi = 30, a classe mediana fica na metade deste valor, ou seja, 15. Procure, então a

freqüência acumulada imediatamente superior, que no caso é 16 (3ª classe). Então, l* = 4. O valor

de FAC TOTAL = 30; h* = amplitude amostral da classe mediana é 2; f* = freqüências simples da

classe mediana= 8

.75,52.8

]815[4.

]2

[

*

* =−+=−

+= hf

FF

lManteriorAC

ACTOTAL

d

Page 53: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 53

I.4- Exercícios Resolvidos

1- Dada a distribuição de freqüências de clientes que utilizam a operação de depósito de

cheques no terminal eletrônico de uma determinada agência de banco com intervalo de classes,

pede-se: (a) O valor da Média (x); (b) O valor da Moda (Mo); (c) O valor da mediana (Md)

Número de clientes

freqüência simples (f)

freqüência relativa (%)

Freqüência acumulada

0 ⌐ 5 50

5 ⌐ 10 90

10 ⌐ 15 70

15 ⌐ 20 60

20 ⌐ 25 30

TOTAL

Solução:

Número de clientes

freqüência simples (f)

freqüência relativa (%)

Freqüência acumulada

xi (ponto médio) fi . xi

0 ⌐ 5 50 16,67 50 2,5 2,5. 50=125

5 ⌐ 10 90 30 140 7,5 7,5. 90= 675

10 ⌐ 15 70 23,33 210 12,5 12,5.70= 875

15 ⌐ 20 60 20 270 17,5 17,5.60= 1050

20 ⌐ 25 30 10 300 22,5 22,5.30= 675

TOTAL 300 100 ---- Soma =3400

a) .33,11300

3400. ==∑

∑=−

f

xfx m

b) Moda: A classe modal é aquela que possui a maior freqüência simples. No caso, é a 2ª classe

(de 5 a 10)

D1 = f* - f(anterior) = 90 – 50 = 40

D2 = f* - f(posterior) = 90 – 70 = 20

.33,860

20052.

2040

405. *

21

1* =+=+

+=+

+= hDD

DlM o

c) Mediana.

Primeiramente, você deve reconhecer a classe mediana. Como a somatória das freqüências

simples é Σ fi = 300, a classe mediana fica na metade deste valor, ou seja, 150. Procure, então a

freqüência acumulada imediatamente superior, que no caso é 210 (3ª classe – de 10 a 15). Então, l*

= 10. O valor de FAC TOTAL = 300, h* = amplitude amostral da classe mediana é 5 e f* (freqüências

simples da classe mediana) = 70.

.71,105.70

]140150[10.

]2

[

*

* =−+=−

+= hf

FF

lManteriorAC

ACTOTAL

d

Page 54: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 3: Medidas de Tendência Central e de posição (com Intervalo de classes). 54

2- A tabela abaixo apresenta uma distribuição de freqüência do saldo médio de clientes de um

pequeno banco num determinado mês.

Saldo médio (R$) 1100 ⌐ 1200 ⌐ 1300 ⌐ 1400 ⌐ 1500

Nº de Clientes 600 500 350 250

Pede-se: (a) A média; (b) A moda; (c) A mediana

Resolução:

Nº da Classe Classe f xm f. xm FAC

1 1100 ⌐ 1200 600 1150 1150.600 = 690.000 600

2 1200 ⌐ 1300 500 1250 1250.500 = 625.000 1100

3 1300 ⌐ 1400 350 1350 1350.350 = 472.500 1450

4 1400 ⌐ 1500 250 1450 1450.250 = 362.500 1700

TOTAIS Σf = 1700 Σ f. xm = 2.150.000

a) .213,23531700

2150000. ==∑

∑=−

f

xfx m

b) Moda: A classe modal é aquela que possui a maior freqüência simples. No caso, é a 1ª classe

(1100 ⌐ 1200)

D1 = f* - f(anterior) = 600 – 0 = 600

D2 = f* - f(posterior) = 600 – 500 = 100

54,541100

600001100100.

500600

6001100. *

21

1* =+=+

+=+

+= hDD

DlM o

c) Mediana.

Para reconhecer a classe mediana, determina-se a somatória das freqüências simples (Σ fi =

1700), de modo que a classe mediana fica na metade deste valor, ou seja, 850. Procure, na coluna da

freqüência acumulada, o valor imediatamente superior, que no caso é 1100 (2ª classe: 1200 ⌐

1300). Então, l* = 1200. O valor de FAC TOTAL = 1700; h* = amplitude amostral da classe mediana é

100; f* = freqüências simples da classe mediana = 500.

.1250100.500

]600850[1200.

]2

[

*

* =−+=−

+= hf

FF

lManteriorAC

ACTOTAL

d

3- 3- Determine a média, moda e mediana da distribuição de freqüências abaixo.

Classe f

1 0 ⌐ 2 4

2 2 ⌐ 4 8

3 4 ⌐ 6 18

4 6 ⌐ 8 27

5 8 ⌐ 10 15

6 10 ⌐ 12 11

7 12 ⌐ 14 10

8 14 ⌐ 16 7

TOTAIS 100

Page 55: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 55

(a)

Classe f xm f.xm FAC

1 0 ⌐ 2 4 1 4 4

2 2 ⌐ 4 8 3 24 12

3 4 ⌐ 6 18 5 90 30

4 6 ⌐ 8 27 7 189 57

5 8 ⌐ 10 15 9 135 72

6 10 ⌐ 12 11 11 121 83

7 12 ⌐ 14 10 13 130 93

8 14 ⌐ 16 7 15 105 100

TOTAIS 100 798

a) .,987100

798. ==∑

∑=−

f

xfx m

b) Moda: A classe modal é aquela que possui a maior freqüência simples. No caso, é a 4ª classe (6 ⌐ 8)

D1 = f* - f(anterior) = 27 –18 = 9

D2 = f* - f(posterior) = 27 – 15 = 12

=+=+

+=+

+=21

1862.

129

96. *

21

1* hDD

DlM o 6,857.

c) Mediana.

Como a somatória das freqüências simples é Σ fi = 100, a classe mediana fica na metade deste

valor, ou seja, 50 e a classe mediana é a 4ª (6 ⌐ 8). Então, l* = 6, FAC TOTAL = 100, h* = 2 e

f* (freqüências simples da classe mediana) = 27.

,48.72.27

]3050[6.

]2

[

*

* =−+=−

+= hf

FF

lManteriorAC

ACTOTAL

d

II- Medidas de Posição com Intervalo de Classes: Quartis e Percentis. O conceito destas medidas de posição foram tratados no capítulo anterior. O quadro abaixo

apresenta as expressões para se determinar essas medidas de posição.

Medidas de Posição

1º Quartil ..

]4

.1[

*

*

1 hf

Ff

lQanteriorAC−∑

+=

2º Quartil ou mediana h

f

Ff

lMouhf

Ff

lQanteriorAC

d

anteriorAC

.

]2

.1[

..

]4

.2[

*

*

*

*

2

−∑

+=−∑

+=

3º Quartil ..

]4

.3[

*

*

3 hf

Ff

lQanteriorAC−∑

+=

Percentil ..

]100

.[

*

*h

f

FfP

lPanteriorAC

i

i

−∑

+=

Page 56: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 3: Medidas de Tendência Central e de posição (com Intervalo de classes). 56

II.1- Exemplos

1- Considere a distribuição de freqüências abaixo, com iguais amplitudes de intervalo. Determine:

(a) o 1º quartil; (b) a mediana; (c) o 3º quartil; (d) o 40º percentil.

Nº da Classe Classe f

1 0 ⌐ 2 3

2 2 ⌐ 4 5

3 4 ⌐ 6 8

4 6 ⌐ 8 6

5 8 ⌐ 10 4

6 10 ⌐ 12 4

TOTAIS 30

Solução:

Nº da Classe Classe f FAC

1 0 ⌐ 2 3 3

2 2 ⌐ 4 5 8

3 4 ⌐ 6 8 16

4 6 ⌐ 8 6 22

5 8 ⌐ 10 4 26

6 10 ⌐ 12 4 30

TOTAIS 30

(a) Para reconhecer a classe do 1º quartil determina-se a somatória das freqüências simples

(Σfi = 30), e efetua-se ¼ deste valor, ou seja, Σfi/4 = 30/4 = 7,5. Procure, na coluna da freqüência

acumulada, o valor imediatamente superior, que no caso é 8, na 2ª classe (2 ⌐ 4). Então, l* = 2,

h* = 2 (amplitude amostral da classe do 1º quartil), FAC (anterior) = 3 e a freqüências simples da classe

mediana é f* = 5.

(a) 1º Quartil .8,38,122.

5

3]-[7,52..

]4

.1[

*

*

1 =+=+=−∑

+= hf

Ff

lQanteriorAC

(b) Mediana: Σfi/2 = 30/2 = 15, o que implica a 3ª classe como mediana (4 ⌐ 6), onde l* = 4, h = 2,

f* = 8 e FAC (anterior) = 8

(b) mediana .875,42.

8

]815[4.

]2

.1[

.*

* =−+=−∑

+= hf

Ff

lManteriorAC

d

(c) Para reconhecer a classe do 3º quartil determina-se a somatória das freqüências simples

(Σ fi = 30), e efetua-se ¾ deste valor, ou seja, 3.Σfi/4 = 3.30/4 = 90/4 = 22,5. Procure, na coluna da

freqüência acumulada, o valor imediatamente superior, que no caso é 26, na 5ª classe (8 ⌐ 10).

Então, l* = 8, h* = amplitude amostral da classe do 3º quartil é 2, FAC (anterior) = 22 e a freqüências

simples da classe mediana é f* = 4.

(c) 3º Quartil .25,82.

4

22]-[22,58..

]4

.3[

*

*

3 =+=−∑

+= hf

Ff

lQanteriorAC

Page 57: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 57

(d) ) A classe do P40 é obtida por 40.Σfi/100 = 40.30/100 = 1200/100 = 12. Procure, na coluna da

freqüência acumulada, o valor imediatamente superior, que no caso é 16, na 3ª classe (4 ⌐ 6).

Então, l* = 4, h* = amplitude amostral da classe do 3º quartil é 2, FAC (anterior) = 8 e a freqüências

simples da classe mediana é f* = 8.

(d) P40

.0,5142.8

]812[4

]100

.[

*

*

40 =+=−+=−∑

+=f

FfP

lPanteriorAC

i

2-- Considere a distribuição de freqüências abaixo, com iguais amplitudes de intervalo.

(b) Determine o 1º quartil; (b) Determine a mediana; (c) Determine o 3º quartil; (d) P30.

Número de

clientes freqüência simples (f)

0 ⌐ 5 50

5 ⌐ 10 90

10 ⌐ 15 70

15 ⌐ 20 60

20 ⌐ 25 30

TOTAL 300

Solução: Número de

clientes freqüência simples (f)

Freqüência acumulada

0 ⌐ 5 50 50

5 ⌐ 10 90 140

10 ⌐ 15 70 210

15 ⌐ 20 60 270

20 ⌐ 25 30 300

TOTAL 300 ----

(a) Para reconhecer a classe do 1º quartil determina-se a somatória das freqüências simples

(Σfi = 300), e efetua-se ¼ deste valor, ou seja, Σfi/4 = 300/4 = 75. Procure, na coluna da freqüência

acumulada, o valor imediatamente superior, que no caso é 140, na 2ª classe (5 ⌐ 10). Então, l* = 5,

a amplitude amostral da classe do 1º quartil é h* = 5, FAC (anterior) = 50 e a freqüências simples da

classe mediana é f* = 90.

(a) 1º Quartil .39,65.

90

50]-[755..

]4

.1[

*

*

1 =+=−∑

+= hf

Ff

lQanteriorAC

(b) Mediana: Σfi/2 = 300/2 = 150, o que implica a 3ª classe como mediana (10 ⌐ 15), onde l* = 10,

h = 5, f* = 70 e FAC (anterior) = 140

(b) mediana .71,105.

70

]140150[10.

]2

.1[

.*

* =−+=−∑

+= hf

Ff

lManteriorAC

d

Page 58: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 3: Medidas de Tendência Central e de posição (com Intervalo de classes). 58

(c) Para reconhecer a classe do 3º quartil determina-se a somatória das freqüências simples (Σ fi = 300), e

efetua-se ¾ deste valor, ou seja, 3.Σfi/4 = 3.300/4 = 900/4 = 225. Procure, na coluna da freqüência

acumulada, o valor imediatamente superior, que no caso é 270, na 4ª classe (15 ⌐ 20). Então, l* = 15, h* =

amplitude amostral da classe do 3º quartil é 5, FAC (anterior) = 210 e a freqüências simples da classe mediana é

f* = 60.

(c) 3º Quartil .25,165.

60

210]-[22515..

]4

.3[

*

*

3 =+=−∑

+= hf

Ff

lQanteriorAC

(d) A classe do P30 é obtida por 30.Σfi/100 = 30.300/100 = 9000/100 = 90. Procure, na coluna da freqüência

acumulada, o valor imediatamente superior, que no caso é 140, na 2ª classe (5 ⌐ 10). Então, l* = 5, h* =

amplitude amostral da classe do 3º quartil é 5, FAC (anterior) = 50 e a freqüências simples da classe mediana é f*

= 90.

(d) P30 .22,75.

90

]5090[5

]100

.[

*

*

30 =−+=−∑

+=f

FfP

lPanteriorAC

i

3- A tabela abaixo apresenta uma distribuição de freqüência do saldo médio de clientes de um pequeno banco num determinado mês.

Saldo médio (R$) 1100 ⌐ 1200 ⌐ 1300 ⌐ 1400 ⌐ 1500

Nº de Clientes 600 500 350 250

Determine: (a) o 1º quartil; (b) a mediana; (c) o 3º quartil; (d) P 65.

Resolução:

Nº da Classe Classe f FAC

1 1100 ⌐ 1200 600 600

2 1200 ⌐ 1300 500 1100

3 1300 ⌐ 1400 350 1450

4 1400 ⌐ 1500 250 1700

TOTAIS Σf = 1700

(a) 1º quartil: Σfi = 1700; Σfi/4 = 300/4 = 425; 1ª classe; l* = 1100, h* = 100, FAC (ant) = 0 e f* = 600.

(a) 1º Quartil .83,70100.

600

0]-[4251100..

]4

.1[

*

*

1 =+=−∑

+= hf

Ff

lQanteriorAC

(b) Mediana: Σfi/2 = 1700/2 = 850; 2ª classe; l* = 10, h = 5, f* = 1200; FAC (anterior) = 600

(b) mediana .1250100.

500

]600850[1200.

]2

.1[

.*

* =−+=−∑

+= hf

Ff

lManteriorAC

d

(c) 3º quartil: Σfi = 1700; 3Σfi/4 = 1275; 3ª classe; l* = 1300, h* = 100, FAC (anterior) = 1100 e f* = 350.

(c) 3º Quartil

.1350100.350

1100]-[12751300..

]4

.3[

*

*

3 =+=−∑

+= hf

Ff

lQanteriorAC

(d) Σfi = 1700; 65Σfi/100=1105; 3ª classe; l* = 1300, h* = 100, FAC (anterior) = 1110 e f* = 350.

(d) P65

.43,1301100.350

1100]-[11051300..

]100

.65[

*

*

65 =+=−∑

+= hf

Ff

lPanteriorAC

Page 59: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo V: Medidas de dispersão ou de variabilidade

Para se resumir os dados de uma distribuição não basta anunciar o valor de medida

central (média, moda ou mediana). Por exemplo, dizer que a temperatura média de uma cidade

foi de 20ºC não quer dizer muita coisa. Qual foi a temperatura máxima? E qual foi a

temperatura mínima?

No caso, se a central de notícias informa que a temperatura mínima foi de 15ºC e a

máxima foi de 25ºC, com média 20ºC, não é a mesma coisa que uma temperatura mínima de

5ºC e máxima de 35ºC, que também apresenta média 20ºC.

As medidas de dispersão ou variabilidade permitem situar os dados de determinada

distribuição de modo mais completo e compreensível. As principais medidas de dispersão ou

de variabilidade estão resumidas abaixo.

a) Desvio: xxd i −=

b) Desvio Médio = dm = É a média dos módulos dos desvios, ou seja:

f

dfdfdfdaindaou

f

dfd

ii

m

ni

i ii

m Σ+++

= ∑=

= ....:,

.22111

c) Desvio-Padrão: σ (SIGMA, símbolo padrão). Utilizaremos:

Para variáveis discretas: n

i

2

ii .df

∑=σ

Para variáveis contínuas: 2

2

ii2

2

ii x.f)

.(

x.f x

nn

xf

n

ii −=−=∑∑∑

σ

d) Variância: 2 s σ=

e) Coeficiente de Variação (CV): %100.x

CVσ=

V.1- Medidas de dispersão ou de variabilidade em distribuições sem Intervalo de Classes Exemplo: Os resultados do lançamento de um dado foram os dados abaixo da tabela primitiva.

4 5 2 3 4 3 4 2 6 5 1 4 6 3 5 4 3 6 3 4 2 4 6 5 3 2 1 3 5 6

Pede-se: a) o desvio médio; (b) o desvio-padrão; (c) a variância; (d) o coeficiente de variação.

Page 60: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 5: Medidas de dispersão ou de variabilidade. 60Solução: Organizando o Rol em ordem crescente fica:

(xi) f f.xi

desvio xxd i −=

xxd i −= df . 2.df

1 2 1.2=2 d1= 1-3,8= -2,8 2,8 2. 2,8=5,6 2. 2,82=15,68 2 4 2.4=8 d2 = 2-3,8= -1,8 1,8 4. 1,8=7,2 4. 1,82=12,96 3 7 3.7=21 d3 = 3-3,8= -0,8 0,8 7. 0,8=5,6 7. 0,82=4,48 4 7 4.7=28 d4 = 4-3,8= 0,2 0,2 7. 0,2=1,4 7. 0,22=0,28 5 5 5.5=25 d5 = 5-3,8= 1,2 1,2 5. 1,2=6 5. 1,22=7,2 6 5 6.5=30 d6 = 6-3,8= 2,2 2,2 5. 2,2=11 5. 2,22=24,2 Σ 30=Σf 114 f.xi =Σ 8,36. =Σ df 64,8. 2 =Σ df

(a) Para se calcular o desvio médio, é necessário antes calcular a média e cada desvio.

A média fica: 8,330

114. ==Σ

Σ=f

xfx i

O desvio médio vale: 23,130

8,36.==

Σ=∑

f

dfdm

O desvio padrão fica: 47,116,230

8,64.df

2

ii ===Σ

= ∑f

A variância será: 16,2 s 2 ==σ

O Coeficiente de variação será: %68,38%100.8,3

47,1%100.

x CV === σ

V.2- Medidas de dispersão ou de variabilidade em distribuições com Intervalo de Classes.

Exemplo 1: Determinar o desvio médio, o desvio-padrão; a variância e o coeficiente de variação.

Classe Intervalo f 1 100 ⌐ 200 60 2 200 ⌐ 300 50 3 300 ⌐ 400 35 4 400 ⌐ 500 20 5 500 ⌐ 600 12 6 600 ⌐ 700 2 7 700 ⌐ 800 1

Totais 180 Solução: Os valores de xi representam o ponto médio de cada intervalo. Assim:

Intervalo f xi f. xi desvio

xxd i −= df .

100 ⌐ 200 60 150 60.150= 9000 d1= 150-285,56= -135,56 60.135,56= 8133,6 200 ⌐ 300 50 250 50.250= 12500 d2 = 250-285,56= -35,56 50.35,56 = 1778 300 ⌐ 400 35 350 35.350= 12250 d3 = 350-285,56= 64,44 35.64,44= 2255,4 400 ⌐ 500 20 450 20.450= 9000 d4 = 450-285,56= 164,44 20.164,44= 3288,8 500 ⌐ 600 12 550 12.550= 6600 d5 = 550-285,56= 264,44 12.264,44= 3173,28 600 ⌐ 700 2 650 2.650= 1300 d6 = 650-285,56= 364,44 2.364,44= 728,88 700 ⌐ 800 1 750 1.750= 750 d7 = 750-285,56= 464,44 1.464,44= 464,44

Total 180 40051f.xi =Σ 4,19822. =Σ df

Page 61: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 61

A média fica: 56,285180

51400.==

ΣΣ

=f

xfx i

O desvio médio vale: 12,110180

4,19822.==

Σ=∑

f

dfdm

Intervalo f xi f. xi2

100 ⌐ 200 60 150 60.1502= 1 350 000 200 ⌐ 300 50 250 50.2502= 3 125 000 300 ⌐ 400 35 350 35.3502= 4 287 500 400 ⌐ 500 20 450 20.4502= 4 050 000 500 ⌐ 600 12 550 12.5502= 3 630 000 600 ⌐ 700 2 650 2.6502= 845 000 700 ⌐ 800 1 750 1.7502= 562 500

Total 180 00085017f.x 2i =Σ

.75,132153,17622514,81544667,99166

56,285180

0008501756,285

180

00085017x.f 222

2

ii

==−=

−=−=−=∑

σ

σ xn

A variância será: 153,62217 s 2 == σ

O Coeficiente de variação será: %49,46%100.56,285

75,132%100.

x CV === σ

Exemplo 2: A tabela abaixo indica as medidas associativas do número de erros de digitação de uma amostra de trinta livros. Pede-se:

a) qual o número médio de erros por página?

b) qual o número mediano de erros por página?

c) qual é o desvio padrão?

d) Se a dissertação tem 180 páginas, qual o número esperado de erros?

Erros Freqüência 0 15 1 10 2 3 3 1 4 1

Total: 30

a) Resposta: .f Xi

Xf

∑=

∑= 0,77

b) O número mediano de erros por página é 0,5 (média entre o 15o. e 16o. elementos) c) Desvio padrão:

2( )f X Xs

f

−∑=

∑= 0,99

d) O número esperado de erros é: 0,77 x 180 = 138,6 = 139 erros esperados

Erros Freqüência

0 15 1 10 2 3 3 1 4 1

Total: 30

Page 62: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 5: Medidas de dispersão ou de variabilidade. 62Exemplo 3- Na tabela a seguir são fornecidas as alturas de 100 estudantes do sexo masculino de uma Universidade.

Altura (cm) nº de estudantes 151-158 5 159-166 18 167-174 42 175-182 27 183-190 8

Determinar: (a) altura média dos estudantes ( X ); (b) o desvio médio (DM);

Solução:

Altura (cm)

(f) Ponto médio (xi)

fi.xi |xi - X | f .|xi - X |

151-158 5 154,5 772,5 17,2 86,0 159-166 18 162,5 2925,0 9,2 165,6 167-174 42 170,5 7161,0 1,2 50,4 175-182 27 178,5 4819,5 6,8 183,6 183-190 8 186,5 1492,0 14,8 118,4

Σf = 100 Σf.xi = 17170,0 Σ f .|X - X | = 604,0

(a) . 17170,0

171,70100

f XX cm

f

∑= = =∑

(b) 604,0

6,04100

f X XDM cm

N

−∑= = =

V.3- Exercícios:

1- Determinar a média, o desvio médio e o desvio-padrão.

Notas f 5 4 6 6 7 8 8 4 9 2

10 1 TOTAL

2- Determinar a média, o desvio médio e o desvio-padrão.

Notas freqüência simples (f)

0 ⌐ 2 20 2 ⌐ 4 15 4 ⌐ 6 12 6 ⌐ 8 8

8 ⌐ 10 5 TOTAL

Page 63: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória. 633- As idades dos alunos de uma classe está representada abaixo. Determinar a média, o

desvio médio e o desvio-padrão.

Idades f 15 ⌐ 18 13 18 ⌐ 24 20 24 ⌐30 17 30 ⌐ 40 3 40 ⌐ 50 1 TOTAL

4- Os Custos mensais de produtos de uma empresa são dados pela tabela abaixo.

Determinar a média, o desvio médio e o desvio-padrão.

Custos (mil Reais)

10 ⌐ 15 15 ⌐ 20 20 ⌐ 25 25 ⌐ 30 30 ⌐ 35

N° de produtos

6 5 4 3 1

5- Determinar a média, o desvio médio e o desvio-padrão.

x f FAC

0 ⌐ 3 11 3 ⌐ 7 7

7 ⌐ 10 23 10 ⌐ 13 8 13 ⌐ 20 40 TOTAL

Respostas: 1-

Notas f f.xi desvio f.mod(d) f.d^2 5 4 20 -1,88 7,52 14,1376 6 6 36 -0,88 5,28 4,6464 7 8 56 0,12 0,96 0,1152 8 4 32 1,12 4,48 5,0176 9 2 18 2,12 4,24 8,9888

10 1 10 3,12 3,12 9,7344 Total 25 172 25,6 42,64

Média= 6,88 Desvio médio= 1,02 Desviopadrão= 1,31

2-

Intervalo f xi f.xi desvio f.d f.mod(d) f.d^2 0 2 20 1 20 -2,76667 -55,3334 55,3334 153,0893 2 4 15 3 45 -0,76667 -11,50005 11,50005 8,816743 4 6 12 5 60 1,23333 14,79996 14,79996 18,25323 6 8 8 7 56 3,23333 25,86664 25,86664 83,63538 8 10 5 9 45 5,23333 26,16665 26,16665 136,9387

Total 60 226 -0,0002 133,6667 400,7333 Média= 3,76667 Desvio médio= 2,2278 Desvio padrão= 2,5844

Page 64: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 5: Medidas de dispersão ou de variabilidade. 64 3-

Idades f xi f.xi desvio f.d f.mod(d) f.d^2 15 18 13 16,5 214,5 -6,5278 -84,8614 84,8614 553,9582 18 24 20 21 420 -2,0278 -40,556 40,556 82,23946 24 30 17 27 459 3,9722 67,5274 67,5274 268,2323 30 40 3 35 105 11,9722 35,9166 35,9166 430,0007 40 50 1 45 45 21,9722 21,9722 21,9722 482,7776

Total 54 1243,5 -0,0012 250,8336 1817,208

Média= 23,0278 Desvio médio= 4,6451 Desvio padrão= 5,801

4-

Idades f xi f.xi desvio f.d f.mod(d) f.d^2 10 15 6 12,5 75 -6,8421 -41,0526 41,0526 280,886 15 20 5 17,5 87,5 -1,8421 -9,2105 9,2105 16,96666 20 25 4 22,5 90 3,1579 12,6316 12,6316 39,88933 25 30 3 27,5 82,5 8,1579 24,4737 24,4737 199,654 30 35 1 32,5 32,5 13,1579 13,1579 13,1579 173,1303

Total 19 367,5 0,0001 100,5263 710,5263

Média= 19,3421 Desvio médio= 5,2909 Desvio padrão= 6,1152

5-

x f Fac xi f.xi desvio f.d f.mod(d) f.d^2 0 3 11 11 1,5 16,5 -6,8625 -75,4875 75,4875 518,033 3 7 7 18 5 35 -3,3625 -23,5375 23,5375 79,14484 7 10 5 23 8,5 42,5 0,1375 0,6875 0,6875 0,094531 10 13 8 31 11,5 92 3,1375 25,1 25,1 78,75125 13 20 9 40 16,5 148,5 8,1375 73,2375 73,2375 595,9702

Total 40 334,5 0 198,05 1271,994

Média=8,3625 Desvio médio= 4,9513 Desvio padrão=5,6391

Page 65: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo VI: Aplicações dos Princípios Estatísticos

Neste capítulo apresentamos algumas situações com contextos na área de Gerenciais. A

intenção é oferecer uma possível transferência dos conhecimentos estatísticos abordados nos

capítulos anteriores em um contexto mais próximo a realidade dos cursos da referida área.

VI.1- Testes (1ª Bateria)

1- Num banco, um fiscal observa que há vários caixas, cada qual movimentando uma

quantidade de dinheiro. Em termos de variáveis, é correto afirmar que:

a) a quantidade de caixas é uma variável contínua e a quantia de dinheiro movimentada

é uma variável discreta.

b) a quantidade de caixas é uma variável discreta e a quantia de dinheiro movimentada é

uma variável contínua.

c) a quantidade de caixas e a quantia de dinheiro movimentada representam variável

discreta.

d) a quantidade de caixas e a quantia de dinheiro movimentada representa uma variável

contínua.

e) a quantidade de caixas é uma variável qualitativa e a quantia de dinheiro

movimentada é uma variável discreta

2- Uma empresa apresentou o seguinte balanço de vendas nos meses de Janeiro,

Fevereiro e Março de 2004: Meses Balanço (R$) Janeiro 14 000 ,00 Fevereiro 21 000 ,00 Março 35 000 ,00 Total 70 000,00

Qual das afirmativas abaixo é errada.

a) O mês de Janeiro representa 20% do balanço do 1º trimestre de 2004.

b) O mês de Fevereiro representa 30% do balanço do 1º trimestre de 2004.

c) O mês de Fevereiro representa 50% do balanço do 1º trimestre de 2004.

d) O mês de Fevereiro representa um aumento de 50% nas vendas em relação a Janeiro.

e) O mês de Março representa um aumento de 100% nas vendas em relação Fevereiro.

3- Um pequeno banco, desejoso de realizar uma pesquisa a respeito da qualidade de

atendimento com seus clientes que aplicam em um só tipo de fundo de investimento do tipo

A, B, C e D, verificou que existem 1250 clientes nestas condições. Como o custo de tal

pesquisa seria muito alto resolveram obter uma amostra estratificada proporcional de 100

clientes. Verifique qual alternativa está errada.

Page 66: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 6: Aplicações dos Princípios Estatísticos. 66 Opção de Investimento

Clientes Amostra da clientela

A 500 x B 350 y C 250 z D 150 w

Totais 1250 100

a) A amostra de clientes que investem só na opção A é de 40 clientes.

b) A amostra de clientes que investem só na opção B é de 28 clientes.

c) A amostra de clientes que investem só na opção C é de 24 clientes.

d) A amostra de clientes que investem só na opção D é de 12 clientes.

e) A amostra de 100 clientes corresponde a 8% do total de 1250 clientes que investem só nas

opções A, B, C e D.

4- Um banco, desejoso de melhorar a qualidade de atendimento dos caixas, resolveu

implantar um método de observação, que consiste em um inspetor atribuir notas de zero a dez

para um determinado caixa num certo período de tempo, nota esta que depende de fatores

como: o caixa está atendendo ou não um cliente, o atendimento é rápido e não ocorrem

reclamações do cliente. Desta nota depende a permanência do empregado na função de caixa.

Um determinado caixa obtém as seguintes notas: 9, 10, 7, 10 , 8, 0, 8, 7, 8, 9.

Verifique qual a alternativa errônea.

a) A amplitude amostral do caixa é 10.

b) A média aritmética do caixa é 7,6

c) A moda do caixa é 8.

d) A seqüência de notas acima apresentada representa um rol.

e) A mediana do caixa é 8.

5- Uma pesquisa de opinião foi realizada para avaliar os níveis de audiência de alguns canais de televisão, entre 20h e 21h, durante uma determinada noite. Os resultados obtidos estão representados no gráfico de barras a seguir. O número de residências atingidas nessa pesquisa foi aproximadamente 200. A taxa percentual que representam os assinantes da TVC em relação ao total pode ser expressa aproximadamente por:

a) 10 %; b) 20 %; c) 30%; d) 40%; e) 50%

Respostas: 1- B; 2- E; 3- C; 4- D; 5-A

Page 67: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória.

67

VI.2- Testes (2ª Bateria)

As questões 1 e 2 estão baseadas no Quadro I.

Quadro I: Balanço patrimonial (em R$ mil)

Ativo Passivo

Disponibilidades 1.500 Circulante 12.000

Caixa 30 Fornecedores 5.000

Bancos conta movimento 70 Empréstimos 3.600

Aplicações com liquidez 2.500 Tributos 2.500

Circulante 18.750 Salários e encargos 2.000

Contas a receber 5.000 Exigível a longo prazo 8.200

Estoques 13.500 Empréstimos bancários 8.200

Despesas do período seguinte 250 Patrimônio líquido 7.450

Capital social 5.000

Permanente 7.400 Capital a Integralizar (2.600)

Investimentos 1.200 Reservas de capital 2.000

Imobilizado 6.000 Reservas de lucros 2.500

Diferido 200 Lucros acumulados 550

Total 27.650 Total 27.650

1- O quadro I mostra informações referentes ao balanço patrimonial de uma empresa. Com relação ao Ativo, considerando os itens disponibilidades, circulante e permanente, qual a alternativa correta que indica, em Reais, os valores da moda e da média entre estes valores, respectivamente:

a) 2 600,00 e 9 583,33 b) 18 750,00 e 9 583,33 c) 7 400,00 e 28 750,00 d) 9 583,33 e 28 750,00 e) 18 750,00 e 28 750,00

2- Com relação ao item circulante, qual a taxa de evolução (percentual) dos valores do ativo em relação ao passivo?

a) 143,13%; b) 135,11 %; c) 122,57%; d) 109,47%; e) 56,60%

Page 68: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 6: Aplicações dos Princípios Estatísticos. 68 A tabela abaixo se refere as questões 3, 4 e 5.

2- Considerando que os custos abaixo referem-se a produção de 20 unidades qual é o

custo médio (unitário) na produção de 20 unidades do produto. 3-

Aluguel do Prédio R$ 14.000,00 Depreciação dos Equipamentos R$ 3.000,00 Energia Elétrica R$ 4.000,00 Mão-de-obra Direta R$ 40.000,00 Matéria-prima Direta R$ 30.000,00 Telefone R$ 1.000,00

Os custos diretos são variáveis proporcionais.

(a) (b) R$ 4.600,00; b) R$ 3.680,00; (c) R$ 4.380,00; (d) R$ 3.500,00 (e) R$ 2.800,00

Questões 4, 5 e 6.

A tabela abaixo mostra a distribuição de freqüência dos salários mensais, em reais, de 77 funcionários da empresa Tudo Em Cima LTDA.

Salários (R$)

Número de funcionários

3.000 ⌐ 4000 20 4.000 ⌐ 5000 15 5.000 ⌐ 6000 12 6.000 ⌐ 7000 10 7.000 ⌐ 8000 8 8.000 ⌐ 9000 7

9.000 ⌐ 10.000 5 TOTAIS

4- Em relação a essa tabela, a porcentagem de funcionários que ganham menos de R$ 6.000,00 é de:

a) 45,45%; b) 56,74%; c) 61,04%; d) 67,93 %; e) 74,03%

5- O valor da moda da distribuição é, em Reais:

a) 2638,89; b); 3454,67 c) 3500,00; d) 3571,429; e) 4573,56 Respostas:

1- B; 2- A; 3-A ; 4- C ; 5- D

Page 69: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória.

69

VI.3- Aplicações

A tabela abaixo se refere às questões 1, 2, 3 e 4.

1- A tabela acima indica o desempenho das exportações dos principais produtos feitos pela indústria brasileira. Em 2003, o percentual representado pelo único maior produto exportador em milhões de dólares (soja mesmo triturada) em relação ao valor total dos 25 principais produtos é percentualmente representado por: a) 10,37% b) 90, 85% c) 5% d) 4,29% e) 9,40% 2- No período entre 2002 para 2003, o desempenho percentual representado pelo soja (mesmo triturada) é representado por: a) 18,32% b) 118,32% c) 41,49% d) 141,49% e) 125% 3- Entre 2002 e 2003, a melhora de desempenho dos 25 principais produtos exportadores brasileiros é percentualmente representada por: a) 119,88% b) 219,88% c) 58,38% d) 19,88% e) 5, 45%

Page 70: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 6: Aplicações dos Princípios Estatísticos. 70 4- Entre 2002 e 2003, a melhora de desempenho dos totais gerais dos produtos exportadores brasileiros é percentualmente representada por: a) 21,08% b) 121,08% c) 55,49% d) 98, 47% e) 0% QUESTÕES 5, 6 e 7. Segundo dados da ABE (Associação de Exportadores Brasileiros), foram compilados dados numa tabela indicando os vinte e um (21) principais produtos de exportação brasileiras no período de Janeiro a Dezembro de 2003. Responda as questões 1, 2 e 3 tomando como base os dados desta tabela.

EXPORTAÇÃO BRASILEIRA

Janeiro a Dezembro de 2003 Principais Produtos Exportados

US$ Milhões F.O.B. N° de produtos 1 000 a 1 500 9 1 500 a 2000 7 2 000 a 2 500 1 2 500 a 3 000 2 3 000 a 3 500 1 3 500 a 4 000 0 4 000 a 4 500 1

5- A média, em milhões de dólares (F.O.B.) dos vinte e um (21) principais produtos brasileiros de exportação é: a) 1545,24 b) 1745,24 c) 1845,24 d) 2 000,00 e) 4 000,00 6- Determine o intervalo que pertence a mediana da distribuição, em milhões de dólares (F.O.B.) dos vinte e um (21) principais produtos brasileiros de exportação é: a) 1 000 a 1 500 b) 1 500 a 2 000 c) 2 000 a 2 500 d) 2 500 a 3 000 e) 4 000 a 4 500 7- Determine o intervalo que pertence a moda da distribuição, em milhões de dólares (F.O.B.) dos vinte e um (21) principais produtos brasileiros de exportação é: a) 1000 a 1 500 b) 1 500 a 2 000 c) 2 000 a 2 500 d) 2 500 a 3 000 e) 4 000 a 4 500

O gráfico e a tabela abaixo se referem as questões 8, 9 e 10 mostram a evolução das receitas do comércio exterior brasileiro entre o ano de 1980 até o ano de 2003, em milhões de dólares (F.O.B.) [Fonte SECEX].

X

ANO Exportações- milhões de

dólares FOB

Importações -milhões de

dólares FOB 1980 20132 22955 1985 25639 13153 1990 31414 20661 1995 46506 49972 2000 55086 55839 2002 60362 47240 2003 73084 48260

Page 71: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Conceitos e Aplicações de Estatística para cursos de Ciências Gerenciais: Uma abordagem introdutória.

71

8- Com base nele, o valor percentual aproximado do desenvolvimento das receitas das exportações brasileiras entre 2003 e 1980 pode ser representado por:

a) 54% b) 110% c) 163% d) 263% e) 363%

9- Os anos em que houve o melhor e o pior desempenho percentual entre exportações e importações do comércio exterior foram respectivamente: a) 2003 e 2002 b) 1985 e 1980 c) 2002 e 1995 d) 2003 e 1990 e) 2002 e 2000

10- A média das exportações no período entre 1980 a 2000 é, em milhões de dólares F.O.B.: a) 35 755,40 b) 44 603,29 c) 32 516,00 d) 36 868,57 e) 40 000,00 Respostas:

1- A

2- Resposta: C (4290/3032 = 1, 4149= 41,49%).

3- Resposta: D (41357/34499 = 1,1988 = 19,88%)

4- Resposta: A (73084/ 60 362 = 1,2108 = 21,08%)

5- Alternativa: C

Justificativa US$ Milhões F.O.B. N° de produtos xi xi.fi

1 000 a 1 500 9 1 250 1250 . 9 = 11250 1 500 a 2000 7 1 750 1750.7 =12250 2 000 a 2 500 1 2 250 2250.1 = 2250 2 500 a 3 000 2 2 750 2750.2 =5500 3 000 a 3 500 1 3250 3250.1 =3250 3 500 a 4 000 0 3 750 0 4 000 a 4 500 1 4 250 1.4250 = 4250

TOTAL 21 38 750 Média = 38 750: 21 = 1845,24 milhões de dólares.

6- Alternativa: B

Justificativa US$ Milhões F.O.B. N° de produtos Fi

1 000 a 1 500 9 9 1 500 a 2000 7 16 2 000 a 2 500 1 17 2 500 a 3 000 2 19 3 000 a 3 500 1 20 3 500 a 4 000 0 20 4 000 a 4 500 1 21

TOTAL 21 A classe mediana é a 2ª, pois a metade do somatório das freqüências é 21/2 = 10,5 A classe mediana é aquela imediatamente superior a este valor

7- Alternativa A (Justificativa: A classe modal é a 1ª, ou seja, de 1000 a 1 500 milhões de dólares, pois é onde temos a maior freqüência).

8- Alternativa d ( 73 084/ 20 132 = 3, 63 = 263%).

9- Alternativa B 10- Alternativa: A (20132+ 25639 + 31414+ 46506 + 55086): 5 = 35 755,4

Page 72: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

Capítulo 6: Aplicações dos Princípios Estatísticos. 72 Questões do Provão e ENADE.

1- Provão 2001.

2- Provão 2001.

Soluções:

1- 00,166

100

800480240140

100

40.2030.1620.1210.14 =+++=+++=−x

R$ 166,00 de R$ 1000,00 representa a fração %.6,16166,01000166 ou=

2-.

.554

220

4

100405030litrosx ==+++=

Page 73: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

73Referências Bibliográficas

ANDERSON, David R.; SWEENEY, Dennis J.; WILLIANS, Thomas A. Estatística

Aplicada à Administração e Economia. 2. ed. São Paulo: Thomson Learning, 2007.

ARA, Amilton Braio; MUSETI, Ana Villares; SCHNEIDERMAN, Boris. Introdução à

Estatística. São Paulo: Edgar Blücher, 2003.

AZEVEDO, Paulo Roberto Medeiros de. Introdução à estatística. Natal: UFRN, 2005. COSTA NETO, Pedro Luiz de Oliveira. Estatística. 2. ed. São Paulo: Edgar Blücher, 2002.

CRESPO, Antônio Arnot. Estatística Fácil. São Paulo: Editora Saraiva, 1987.

DIEESE. Brasil e FMI: Retrospectiva e os números atuais da Dívida Externa. Informativo Eletrônico do DIEESE, ano 2, n. 20, nov. 2001. Disponível em: <http://www.dieese.org.br/esp/cju/anote20.pdf>.

FREITAS, Ladir Souza; CALÇA, José Atílio. Estatística: teoria e exercícios de aplicação. São Bernardo do Campo: Universidade Metodista de São Paulo, 2007.

FREUND, John E. Estatística aplicada à economia, administração e contabilidade. 11. ed. Porto Alegre: Bookman, 2006.

IBGE. Disponível em: <http://www.ibge.gov.br>.

LARSON, R.; FARBER, B. Estatística Aplicada. 2. ed. São Paulo: Pearson Hall. 2004.

MANN, Prem S. Introdução à Estatística. 5. ed. Rio de Janeiro: LTC, 2006.

MORETTIN, Luiz Gonzaga. Estatística básica. v. 2. São Paulo: Pearson Education, 2000.

NERY, Miguel Antonio Cedraz, SILVA, Emanoel Apolinário. Ouro, 2001. Disponível em: <http://www.dnpm.gov.br/dnpm_legis/suma2001/OURO.doc>.

SEBRAE. Disponível em: <http://www.sebraesp.com.br>.

SILVA, Nilza Nunes. Amostragem Estatística. 2. ed. São Paulo: EDUSP, 2004.

SMOLE, Kátia Cristina Stocco, DINIZ, Maria Ignes, Matemática. Ensino Médio, Editora Saraiva, São Paulo, 2003.

SPIEGEL, Murray R. Estatística, Editora. Rio de Janeiro: McGraw-Hill do Brasil, 1974.

SPINELLI, Walter, SOUZA, Maria Helena S. Introdução a Estatística. São Paulo: Editora Ática, 1990.

STEIN, Carlos Efrain; LOESCH, Cláudio. Estatística e probabilidade. Blumenau: Edifurb, 2008.

STEVENSON, William J. Estatística Aplicada à Administração. São Paulo: Harper, 1981.

SULLIVAN, Michael; ABE, Mizrahi. Matemática finita: uma abordagem aplicada. 9. ed. Rio de Janeiro: LTC, 2006.

WALPOLE, Ronald E.; MYERS, Raymond H. Probabilidade e estatística para

engenharia e ciências. 8. ed. São Paulo: Pearson, 2009.

WEBSTER, Allen L. Estatística aplicada à administração e economia. São Paulo: McGraw-Hill, 2006.

Page 74: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem
Page 75: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

75

Anexo I – Critérios de arredondamentos:

Para as variáveis contínuas, utiliza-se o seguinte critério:

- quando o 1° algarismo a ser abandonado for 0, 1, 2, 3 ou 4, o último algarismo permanece

inalterado.

- quando o 1° algarismo a ser abandonado for 5, 6, 7, 8 ou 9, o último algarismo aumenta uma

unidade.

Exemplos: Arredonde.

número critério Número

arredondado

Explicação

2,38 décimo 2,4 Como o 1° algarismo a ser abandonado é 8, o algarismo 3

(décimo) é acrescido de uma unidade

125,41 décimo 5,4 Como o 1° algarismo a ser abandonado é 1, o algarismo 4

(décimo) permanece inalterado.

6,823 centésimo 6,82 Como o 1° algarismo a ser abandonado é 3, o algarismo 2

(centésimo) permanece inalterado.

14,238 centésimo 14,24 Como o 1° algarismo a ser abandonado é 8, o algarismo 3

(centésimo) é acrescido de uma unidade.

4,356 centésimo 4,36 Como o 1° algarismo a ser abandonado é 6, o algarismo 5

(centésimo) é acrescido de uma unidade.

1,2368 milésimo 1,237 Como o 1° algarismo a ser abandonado é 8, o algarismo 6

(miléimo) é acrescido de uma unidade.

2,3417 centésimo 2,34 Como o 1° algarismo a ser abandonado é 1, o algarismo 4

(centésimo) permanece inalterado.

Exercícios:

1- Responda:

a) Um aluno obteve como resposta a fração 1/3. Como ele representaria este

número com duas casas decimais.

b) Arredonde 24,448 para a centena mais próxima

c) Arredonde 5,56501 para o centésimo mais próximo.

d) Arredonde 134,854 para o décimo mais próximo.

2- Efetue o cálculo 2/9 e aproxime para:

a) para o décimo mais próximo

b) para a centena mais próxima

c) para o milésimo mais próximo.

3- Calcule 11/7 e aproxime para:

a) para o décimo mais próximo

b) para a centena mais próxima

c) para o milésimo mais próximo.

4- Faça os cálculos e arredonde.

a) 3/8 para o décimo mais próximo

b) 5/9 para o décimo mais próximo

c) 7/6 para a centena mais próxima

d) 13/7 para a centena mais próxima

Page 76: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

76

Respostas:

1- Responda:

a) Um aluno obteve como resposta a fração 1/3. Como ele representaria este

número com duas casas decimais.

0,33

b) Arredonde 24,448 para a centena mais próxima 24,45

c) Arredonde 5,56501 para o centésimo mais próximo. 5,57

d) Arredonde 134,854 para o décimo mais próximo. 134,9

2- Efetue o cálculo 2/9 e aproxime para:

a) para o décimo mais próximo 0,2

b) para a centena mais próxima 0,22

c) para o milésimo mais próximo. 0,222

3- Calcule 11/7 e aproxime para:

a) para o décimo mais próximo 1,6

b) para a centena mais próxima 1,57

c) para o milésimo mais próximo. 1,571

4- Faça os cálculos e arredonde.

a) 3/8 para o décimo mais próximo 0,4

b) 5/9 para o décimo mais próximo 0,6

c) 7/6 para a centena mais próxima 1,17

d) 13/7 para a centena mais próxima 1,86

Page 77: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

77

TABELA DE NÚMEROS ALEATÓRIOS [Fonte: NI IPS – CSEO]

LC 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

01 4 5 0 5 8 7 4 4 6 4 2 4 6 3 9 3 3 5 5 1 8 7 3 6 5 7 3 2 8 3

02 9 8 0 6 4 4 2 1 8 0 3 4 9 8 1 2 8 8 3 0 7 8 2 2 7 5 4 7 3 6

03 4 1 4 1 0 1 6 7 4 1 8 6 4 9 4 2 4 4 0 7 8 0 0 5 4 8 5 3 2 6

04 7 4 4 9 5 1 0 6 7 3 9 3 2 5 4 2 8 8 5 3 8 7 8 1 1 8 7 5 9 4

05 7 3 0 3 3 6 2 0 4 2 8 1 9 8 2 7 5 8 6 0 7 1 8 3 0 7 6 3 9 5

06 6 6 6 4 8 6 3 2 8 4 0 8 9 7 4 5 6 0 7 6 0 9 2 9 3 9 6 9 7 6

07 8 5 3 8 1 6 6 7 8 1 3 3 7 1 5 3 1 6 2 8 8 7 2 1 3 6 9 0 8 1

08 3 5 5 0 7 2 1 3 3 3 0 7 1 5 3 7 2 3 1 4 9 2 3 4 5 1 4 9 3 9

09 2 9 6 3 8 1 2 1 0 8 5 7 1 4 9 5 6 3 7 6 2 4 7 4 0 5 6 1 7 5

10 6 6 8 4 4 7 4 8 4 6 9 7 2 7 4 5 1 7 5 2 0 2 5 8 1 1 6 2 0 3

11 6 2 2 7 8 8 8 2 0 3 9 9 3 5 1 5 0 5 9 5 9 2 2 3 2 8 4 4 2 0

12 6 8 8 7 9 6 7 3 9 3 5 3 2 3 9 3 8 8 0 9 7 0 9 9 5 4 5 5 1 8

13 7 8 2 8 9 3 2 0 7 5 9 0 6 7 0 6 6 2 5 3 4 5 2 2 0 9 7 4 7 1

14 6 4 3 8 8 5 0 0 0 5 1 4 7 3 7 4 6 7 9 5 1 3 5 3 2 4 7 2 3 2

15 3 6 1 1 7 8 3 9 6 3 2 6 1 8 8 3 7 8 9 2 9 3 8 7 3 5 8 7 2 6

16 7 5 5 1 5 3 2 7 8 1 7 1 2 2 0 6 8 6 5 8 7 1 0 2 8 8 0 5 6 6

17 8 8 8 1 5 9 7 6 2 5 5 2 8 8 1 9 0 0 5 9 2 0 1 3 9 8 6 3 2 5

18 4 6 3 9 8 2 7 3 2 8 0 2 1 2 9 2 2 6 9 5 3 1 2 5 0 0 0 5 9 6

19 4 0 6 5 1 7 6 7 1 0 3 1 9 3 7 7 0 0 9 2 9 3 8 1 6 5 5 5 0 9

20 5 8 0 9 3 4 7 7 0 5 4 1 5 1 8 3 4 3 8 3 9 6 6 7 7 2 3 2 5 7

21 0 5 8 1 2 0 4 5 5 8 0 6 4 8 4 4 1 9 2 5 6 1 3 0 3 1 2 1 2 3

22 7 7 6 4 9 4 6 6 6 7 1 5 0 3 2 8 4 4 5 0 6 8 6 7 5 2 8 3 6 5

23 2 1 4 5 2 2 4 2 5 7 0 0 5 1 7 6 2 9 8 8 4 9 0 0 1 8 2 8 1 1

24 1 5 0 2 4 5 5 3 2 8 1 4 8 7 9 6 9 3 8 5 6 7 4 9 6 3 9 5 6 7

25 8 6 0 2 8 0 9 1 2 5 0 7 1 0 2 1 9 9 5 6 5 8 7 8 6 0 9 0 1 1

26 4 7 9 0 7 2 3 1 1 4 5 7 1 9 7 8 0 0 6 2 8 6 0 2 5 0 2 3 7 2

27 3 0 9 7 6 6 0 4 2 4 9 9 4 1 3 1 9 5 5 3 8 2 7 1 4 8 5 7 5 8

28 8 6 0 0 1 4 4 9 0 6 5 9 3 9 8 2 9 8 7 8 3 0 0 2 2 3 9 3 1 4

29 5 8 2 2 2 1 5 2 0 8 2 2 9 0 1 3 9 0 5 7 8 3 8 5 7 8 9 1 7 4

30 5 4 6 8 7 7 9 6 3 8 5 7 9 9 5 1 4 6 7 9 8 5 4 5 3 0 5 6 1 8

31 9 7 5 7 7 3 4 0 1 8 4 0 7 0 4 9 7 1 1 1 1 5 0 0 0 4 9 2 5 6

32 0 1 4 2 4 3 6 7 9 3 1 9 7 3 2 1 9 4 4 2 1 5 5 0 7 0 4 2 7 3

33 1 1 5 8 0 1 7 6 1 6 2 7 6 2 4 7 1 8 5 9 0 3 8 9 9 5 8 0 8 7

34 4 6 6 7 1 0 2 3 3 4 6 3 9 4 4 6 1 3 2 5 6 9 7 2 6 3 8 3 8 3

35 7 9 4 0 5 9 2 6 9 4 9 9 6 4 9 9 1 0 6 6 6 8 0 2 5 5 2 5 0 2

36 5 5 6 0 6 2 4 6 7 1 5 6 1 1 8 4 7 6 2 9 6 1 4 4 4 8 7 7 3 1

37 9 3 6 0 6 7 0 1 9 1 3 2 9 0 7 7 9 6 4 4 5 4 2 8 3 6 0 7 4 8

38 8 2 5 3 6 1 8 3 7 1 3 1 0 6 6 4 1 0 5 9 1 4 3 5 3 7 2 6 7 7

39 4 4 0 8 5 7 0 6 3 8 9 3 0 3 7 3 2 0 4 3 2 8 2 4 8 1 4 8 0 4

40 0 6 8 0 1 1 9 6 8 5 8 3 9 7 6 7 5 8 0 3 3 5 2 3 7 3 8 4 0 6

Page 78: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

78

41 2 9 4 2 8 2 2 4 8 7 7 8 8 4 5 2 3 9 1 9 6 0 9 9 9 3 9 1 7 7

42 0 2 3 7 9 2 1 6 0 3 9 1 9 6 1 8 6 6 5 2 1 1 4 6 3 2 4 9 0 1

43 9 9 6 4 1 1 1 3 6 4 2 1 2 0 0 9 7 4 7 8 8 8 4 6 0 3 6 3 2 2

44 0 8 2 4 7 0 4 6 2 9 3 7 6 2 3 8 6 4 1 4 2 0 2 4 2 5 2 7 4 7

45 5 8 0 8 5 9 6 7 6 0 6 6 0 5 4 7 9 5 0 3 6 9 8 0 8 5 2 3 8 8

46 0 8 9 8 3 7 8 8 8 5 1 5 3 6 9 4 7 8 1 2 2 0 6 4 4 3 9 8 7 9

47 3 0 9 3 5 6 8 9 0 9 3 9 2 8 2 3 8 9 1 2 9 9 9 4 3 2 0 4 3 9

48 4 4 4 0 5 9 9 2 2 0 6 1 1 4 7 1 6 2 9 7 9 6 5 1 4 3 6 1 8 6

49 2 3 1 6 1 3 5 5 3 3 6 1 7 2 0 9 0 1 7 6 4 7 3 6 1 6 6 2 3 3

50 3 3 6 1 8 2 0 1 4 4 5 8 8 8 2 8 9 7 3 2 1 7 2 0 5 1 4 6 9 1

51 9 7 9 0 5 3 0 3 4 8 7 6 9 6 1 6 9 3 0 8 2 7 0 3 8 9 3 0 7 5

52 1 0 5 7 8 3 1 4 9 8 9 4 0 1 3 2 1 4 2 6 1 9 0 4 8 0 9 6 6 3

53 6 6 6 5 2 9 6 6 8 2 0 7 3 6 4 1 5 7 0 0 7 0 1 5 0 2 8 2 8 9

54 5 6 5 1 5 5 5 0 9 9 6 0 0 6 9 3 9 4 7 2 8 0 7 6 2 5 0 3 5 1

55 0 2 7 5 8 2 5 6 9 0 6 5 1 3 8 0 5 5 6 0 3 9 8 3 9 6 0 4 4 7

56 0 7 5 8 7 7 4 7 0 3 6 1 2 2 7 7 3 3 8 8 4 6 2 2 6 2 0 1 2 2

57 0 5 2 8 4 6 5 1 0 2 0 1 0 9 4 4 0 6 8 1 0 6 9 8 9 7 5 4 1 0

58 2 4 0 0 7 3 0 3 9 5 8 5 6 2 8 4 6 2 5 7 5 7 5 2 5 6 8 5 8 6

59 2 6 1 7 7 4 5 5 9 8 2 2 3 4 1 4 5 6 9 2 5 4 6 2 2 5 6 1 0 3

60 7 4 2 5 4 5 8 7 8 6 3 2 1 5 0 5 0 3 5 6 9 2 6 3 0 7 9 1 7 6

61 1 1 9 1 5 3 9 3 0 4 0 8 6 8 2 1 8 1 0 3 4 2 1 3 4 9 6 6 8 9

62 6 1 5 3 9 8 5 6 1 5 4 0 7 1 8 2 3 9 7 1 7 2 3 6 4 3 6 4 8 3

63 8 2 7 0 3 4 3 2 3 2 6 0 7 3 9 4 9 6 5 4 7 6 2 3 3 5 3 9 0 4

64 1 7 8 3 3 6 1 7 4 6 5 5 8 7 2 2 3 0 0 8 5 1 5 5 0 3 9 3 5 4

65 5 6 8 4 0 8 2 6 2 2 7 7 9 2 6 3 8 8 7 7 1 8 1 7 9 1 3 1 0 9

66 7 7 3 9 9 9 3 7 4 5 7 0 3 3 7 7 0 6 4 6 2 2 5 8 2 1 6 0 6 4

67 7 9 7 5 2 0 3 2 0 9 7 1 1 4 8 0 3 6 9 7 7 7 5 0 8 5 2 6 7 8

68 1 8 0 3 1 5 3 7 2 7 3 2 3 9 3 3 9 4 5 1 5 8 0 9 9 5 3 9 1 2

69 5 0 7 5 8 6 3 0 3 3 4 3 3 1 8 1 2 7 6 3 1 1 3 7 2 9 2 6 4 1

70 0 4 2 6 2 5 3 7 6 7 2 1 0 6 9 1 7 7 7 8 9 3 8 2 0 5 6 8 4 0

71 5 4 4 9 4 4 5 6 6 3 3 4 9 2 8 5 3 2 9 6 5 1 9 2 5 2 1 1 7 5

72 6 6 8 8 3 4 1 4 4 8 3 1 1 0 5 8 4 3 0 8 8 3 1 5 7 7 0 5 9 8

73 2 8 2 9 4 4 5 0 2 3 6 1 3 7 8 7 6 3 7 7 6 4 1 7 4 0 3 4 1 7

74 1 3 0 3 3 6 3 2 5 4 5 5 4 6 6 0 4 6 7 0 1 3 1 7 9 8 6 6 5 8

75 7 2 9 7 3 2 9 4 8 3 7 9 2 4 4 7 5 8 2 9 2 1 9 8 4 1 3 9 1 1

76 1 6 6 6 5 8 0 4 0 4 2 2 6 5 5 5 0 8 4 7 7 2 6 0 7 0 1 0 0 0

77 4 4 8 7 6 1 1 6 3 5 5 1 5 0 2 7 7 0 2 9 3 3 5 8 6 5 0 5 1 9

78 0 7 5 0 3 3 4 1 1 9 4 6 8 5 0 9 4 8 7 8 7 3 0 4 6 8 1 7 1 8

79 2 1 2 5 6 3 8 8 4 7 1 9 7 5 5 5 1 3 5 9 5 1 2 5 1 0 6 3 1 1

80 9 0 6 4 8 1 2 5 1 4 1 4 8 1 4 7 0 3 8 7 4 8 4 5 6 8 6 7 2 4

81 4 8 3 0 9 1 9 1 1 9 2 3 6 3 3 4 4 8 9 1 2 4 4 8 8 0 0 0 6 0

82 9 3 2 5 5 5 4 5 5 6 6 4 4 2 4 3 7 7 0 8 0 5 3 6 6 0 3 4 2 5

83 3 7 4 5 6 7 9 6 0 3 5 2 6 8 1 0 2 3 8 0 2 4 3 0 1 2 2 6 8 7

Page 79: Conceitos e Aplicações de Estatística para cursos …stoa.usp.br/wmpommer/files/3915/20691/Livro Estatística...principais técnicas são a amostragem probabilística e a amostragem

79

84 7 0 4 8 5 2 3 9 8 8 9 4 3 0 0 4 9 1 1 4 0 5 4 7 7 5 7 5 7 8

85 4 8 3 4 7 2 7 0 7 0 4 2 8 6 1 2 9 3 3 6 0 5 3 4 4 1 2 3 8 8

86 3 8 5 8 0 6 4 9 7 2 7 3 7 8 6 5 9 4 0 3 4 3 1 5 3 6 9 4 2 8

87 6 8 9 2 2 4 0 9 6 0 8 4 3 0 7 2 8 7 4 8 5 4 4 0 7 1 0 3 9 1

88 0 1 0 7 8 7 2 6 6 5 4 3 2 1 0 0 3 0 1 8 2 4 1 0 2 8 1 2 6 8

89 1 5 8 0 2 8 3 7 3 7 3 3 0 8 4 5 0 7 3 8 1 5 0 0 7 6 2 9 4 2

90 4 3 3 1 0 6 6 0 5 1 9 7 9 0 1 4 0 7 4 8 8 7 5 0 1 6 3 6 1 4

91 9 4 2 1 1 1 3 3 6 2 7 4 4 9 7 8 1 9 8 0 3 5 8 0 6 7 8 8 3 4

92 2 5 1 2 9 0 0 7 7 0 0 1 4 5 8 0 2 1 8 4 4 9 0 2 6 6 5 6 4 3

93 6 9 0 3 2 7 0 1 3 7 9 6 1 0 8 1 6 0 6 2 4 9 3 0 7 6 8 0 6 7

94 6 2 8 0 6 9 9 0 8 8 2 9 5 7 2 4 2 3 2 1 6 9 0 9 2 0 6 6 1 5

95 6 9 6 7 0 2 6 6 9 4 0 3 3 2 9 2 1 3 0 0 3 2 2 4 7 4 7 2 7 3

96 4 0 5 1 9 3 5 0 0 2 0 1 9 6 2 7 3 8 2 6 4 1 9 1 4 7 4 3 3 2

97 2 6 8 4 7 2 1 2 1 6 6 1 9 1 6 6 5 6 4 1 4 1 8 5 3 5 1 7 8 1

98 8 1 6 1 2 4 6 0 9 2 4 0 3 4 7 5 2 7 1 2 6 0 1 6 0 0 6 2 5 1

99 6 1 4 2 8 0 2 0 7 4 9 5 1 3 4 6 7 0 2 6 0 7 1 6 4 8 0 5 0 3

100 4 7 2 2 0 8 6 1 4 1 4 6 2 1 7 2 0 2 7 0 1 3 0 2 3 1 9 8 6 4

Tabela de Números Aleatórios [Fonte: http://www.random.org/nform.html ]