aula 2: movimento e energia

15
CIÊNCIA APLICADA AO DESIGN Aula 2 — Movimento e Energia Paulo Tribolet Abreu IADE, Licenciatura em Design 2008/9, 2º semestre

Upload: paulo-tribolet-abreu

Post on 12-Nov-2014

1.627 views

Category:

Documents


1 download

DESCRIPTION

IADE, Licenciatura em Design 2008/91º ano, 2º SemestreCiência Aplicada ao Design, Prof. Paulo TriboletAula 2: Movimento e energia

TRANSCRIPT

Page 1: Aula 2: Movimento e energia

CIÊNCIA APLICADA AO DESIGNAula 2 — Movimento e Energia

Paulo Tribolet AbreuIADE, Licenciatura em Design 2008/9, 2º semestre

Page 2: Aula 2: Movimento e energia

DESCRIÇÃO DO ESPAÇO

Page 3: Aula 2: Movimento e energia

QUANTIFICAÇÃO

Grandeza: espaço (claro!).

Três dimensões: não é possível vida noutras dimensões.

Referêncial.

3

x

x

z

y

Page 4: Aula 2: Movimento e energia

Origem (descrição).

Orientação (regra da mão direita).

Unidades (escala).

Cartesiano, ...x

z

y

REFERENCIAL

4

Page 5: Aula 2: Movimento e energia

Origem (descrição).

Orientação (regra da mão direita).

Unidades (escala).

Cartesiano, cilindrico, ...

x

z

y

(r; θ; z)θ

r

REFERENCIAL

5

Page 6: Aula 2: Movimento e energia

x

z

y

(r; φ; θ)

r

φ

θOrigem (descrição).

Orientação (regra da mão direita).

Unidades (escala).

Cartesiano, cilindrico, esférico ...

REFERENCIAL

6

Page 7: Aula 2: Movimento e energia

EXEMPLO: GEOGRAFIA

7

Page 8: Aula 2: Movimento e energia

MOVIMENTO E ENERGIA

Page 9: Aula 2: Movimento e energia

MOVIMENTO

Posição e tempo.

Mudança de posição com o tempo: velocidade.

Mudança de velocidade com o tempo: aceleração.

Conversão para km/h: 1 m/s = 3,6 km/h

9

!

v ="x

"t [m/s]

!

a ="v

"t [m/s2]

Page 10: Aula 2: Movimento e energia

MOVIMENTO

Sem resistência do ar, os corpos caem com a mesma aceleração: 10 m/s2. Em cada s, a velocidade aumenta 10 m/s (36 km/h).

No entanto, prefiro levar com uma pena na cabeça do que com uma pedra.

Com resistência, caem com acelerações diferentes até estabilizarem (a velocidades diferentes). Porquê?

É preciso acelerar um carro para manter a sua velocidade. Porquê?

10

Page 11: Aula 2: Movimento e energia

ENERGIA

O movimento contém energia: Energia Cinética Ec.

2x massa = 2x energia;

2x velocidade = 4x energia.

O que é? Capacidade de realizar trabalho (mover massa).

11

!

Ec =1

2mv

2

Page 12: Aula 2: Movimento e energia

TIPOS DE ENERGIA

Cinética:

Potencial: gravítica, elástica, química ...

Calor (no fundo é cinética).

Os tipos de energia convertem-se uns nos outros sem perdas (excepto para o que nos interessa ).

Exemplos...

12

!

Ec =1

2mv

2

Page 13: Aula 2: Movimento e energia

UNIDADES DE ENERGIA

13

[E] = kg . (m/s)2. Complicado ...

!

Ec =1

2mv

2

Unidade de energia Definição e equivalência

joule J (SI)kilojoule kJ

elevar 1 kg a 10 cm1000 J

caloria cal aquecer 1 g de água a 1 C1 cal = 4,18 J ≈ 4 J

Caloria Cal (alimentação)kilocaloria kcal

aquecer 1 kg de água a 1 C1 Cal = 4180 J ≈ 4 kJ

kilowatt-hora kWh 3600 kJ = 861 kcal ≈ 1000 kcal0,12 €

BTU (British Thermal Unit) 1 BTU = 1055 J ≈ 1 kJ = ¼ kcal

Quad“Quadrilião” de BTUs = 1015 BTU ≈ 1018 J

Mundo ≈ 400 quad/anoEUA ≈ 100 quad/ano

Page 14: Aula 2: Movimento e energia

ALGUNS VALORES DE ENERGIA

14

1-4

and 25 cents, depending on where you live. (Electric prices vary much more than

gasoline prices.) We’ll assume the average price of 10 cents per kWh in this text.

It probably will not surprise you that there is a smaller unit called the watt-

hour, abbreviated Wh. A kilowatt-hour consists of a thousand watt-hours. This unit

isn’t used much, since it is so small; however my computer battery has its capacity

marked on the back as “60 Wh”. Its main value is that a Wh is approximately 1

Calorie4. So for our purposes, it will be useful to know that:

Wh = 1 Calorie (approximately)

1kWh = 1000 Calories

Joule. Physicists like to the use energy unit called the joule (named after James

Joule) because it makes their equations look simpler. There are about 4000 joules

in a Calorie, 3600 in a Wh, 3.6 million in a kWh.

The energy table below shows the approximate energies in various substances.

I think you’ll find that this table is one of the most interesting ones in this entire

textbook. It is full of surprises. The most interesting column is the last one.

Energy per gram

object Calories

(or Watt-hours)

joules compared to

TNT

bullet (at sound speed, 1000 ft per sec) 0.01 40 0.015

battery (auto) .03 125 0.05

battery (rechargeable computer) 0.1 400 0.15

battery (alkaline flashlight) 0.15 600 0.23

TNT (the explosive trinitrotoluene) 0.65 2,723 1

modern High Explosive (PETN) 1 4200 1.6

chocolate chip cookies 5 21,000 8

coal 6 27,000 10

butter 7 29,000 11

alcohol (ethanol) 6 27,000 10

gasoline 10 42,000 15

natural gas (methane, CH4) 13 54,000 20

hydrogen gas or liquid (H2) 26 110,000 40

asteroid or meteor (30 km/sec) 100 450,000 165

uranium-235 20 million 82 billion 30 million Note: many numbers in this table have been rounded off.

Stop reading now, and ponder the table of energies. Concentrate on the last

column. Look for the numbers that are surprising. How many can you find? Circle

them. My answers are below.

I think all of the following are surprises:

the very large amount of energy in chocolate chip cookies

the very small amount of energy in a battery (compare to gasoline!)

the high energy in a meteor, compared to a bullet or to TNT

the enormous energy available in uranium, compared to anything else in

the table

4 to an accuracy of 16%.

Page 15: Aula 2: Movimento e energia

ALGUNS PREÇOS DE ENERGIA

15

1-12

For the same weight of fuel, nuclear reactions

release about a million times more energy than do

chemical or food reactions.

More surprises: coal is dirt cheap There are also some amazing surprises in the cost of fuel. Suppose you want to buy a Calorie of energy, to heat your house. What is the cheapest source? Let’s forget all other considerations, such as convenience, and just concentrate on the cost of the fuel. It is not easy for the consumer to compare. Coal costs about $40

per ton, gasoline about $3.00 per gallon, natural gas (methane) costs about $10 per million cubic feet, and electricity costs about 10¢ per kilowatt-hour. So which gives the most Calories per dollar? It isn’t obvious, since the different fuels are measured in different units, and they provide different amounts of energy. But if you put all the numbers together, you get the following table. The table also shows the cost of the energy if it is converted to electricity. For fossil fuels, that increases the cost by a factor of 3, since motors convert only about 1/3 of the heat energy to electricity.

fuel market cost cost per kWh (1000 Cal)

cost if converted to electricity

coal $40 per ton 0.4¢ 1.2¢

natural gas $10 per million cubic feet

3¢ 9¢

gasoline $3 per gallon 9¢ 27¢

electricity $0.10 per kWh 10¢ 10¢

car battery $50 to buy battery 21¢ 21¢

computer battery $100 to buy battery

$4.00 $4.00

AAA battery $1.50 per battery $1000.00 $1000.00

The wide disparity of these prices is quite remarkable. Concentrate on the

third column, the cost per kWh. Note that it is 25 times more expensive to heat your home with electricity than with coal! Gasoline costs 3 times as much as natural gas. That has led some mechanics to modify their autos to enable them to use compressed natural gas instead of gasoline.

Note that for heating your home, natural gas is 3 times cheaper than electricity. Back in the 1950s, many people thought that the “all electric home”

was the ideal – since electricity is convenient, clean, and safe. But most such homes have now been converted to use coal or natural gas, just because the energy is considerably cheaper.

Most dramatic on this list is the low price of coal. If energy per dollar were the only criterion, we would use coal for all our energy needs. Moreover, in many countries that have huge energy requirements, including the United States, China, Russia and India, the reserves of coal are huge, enough to last for hundreds of years. We may run out of oil in the next few decades, but that does not mean that

we are running out of cheap fossil fuel. So why do we use oil instead of coal in our automobiles? The answer isn’t

physics, so I am only guessing. But part of the reason is that gasoline is very convenient. It is a liquid, and that makes it easy to pump into your tank, and from the tank to the engine. It was once much cheaper than it is now, and so in the past the cost was not as important an issue as convenience. It does contain more energy

Porque não usamos mais carvão (há países que usam)?

Porque usamos pilhas e baterias?