fontes de campo magnético uma carga parada cria um campo elétrico e este exerce força sobre uma...

Post on 17-Apr-2015

120 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Fontes de Campo Magnético

Uma carga parada cria um campo elétrico e este exerce força sobre uma carga parada.

Uma carga em movimento cria um campo magnético e ele exerce força sobre uma carga em movimento.

Movimento é relativo, mas cuidado.

Campo Magnético de uma Carga em Movimento

02

ˆqv rB

4 r

O vetor unitário liga a carga com o ponto em que queremos calcular o campo.

A carga em movimento também produz campo elétrico.

Linhas de força do campo magnético circulam a direção da velocidade.

Campo magnético de um Elemento de Corrente

Existe um principio de superposição dos campos magnéticos.

Então, iremos começar pelo campo magnético produzido por um pequeno pedaço de condutor.

Neste pequeno pedaço há uma carga (n é o número de cargas em movimento por unidade de volume):

dQ nqAdl

Campo Magnético de um Elemento de Corrente

dQ nqAdl ddQv sendB

r0

24

dnqAdlv sen IdlsendB

r r0 0

2 24 4

ˆIdl rdB

r0

24

Biot-Savart LawThe Biot-Savart Law relates magnetic fields to the currents which are their sources. In a similar manner, Coulomb's law relates electric fields to the point charges which are their sources. Finding the magnetic field resulting from a current distribution involves the vector product, and is inherently a calculus problem when the distance from the current to the field point is continuously changing.

                                                                   

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/biosav.html

  Em nosso estudo da eletrostática, observamos que a lei de Coulomb, descrevendo o campo elétrico de cargas puntiformes foi simplesmente o modo pelo qual as observações experimentais relativas a forças eletrostáticas em corpos carregados poderiam ser melhor resumidas. A situação é a mesma em relação a campos magnéticos produzidos por correntes estacionárias. Não há meio de se deduzir uma expressão para estes campos; tudo o que podemos fazer é observar as forças magnéticas criadas por correntes reais experimentalmente e então tentar achar uma expressão matemática para o campo magnético que esteja de acordo com os resultados de todas as observações. Foi justamente desta maneira que a lei de Biot-Savart, a qual dá o campo magnético criado pelo fluxo de corrente em um condutor, foi descoberta. A lei de Biot-Savart diz-nos que o elemento de indução magnética dB associado a uma corrente i em um segmento de um fio condutor descrito por dl é:     a- dirigido em uma direção perpendicular ao dl e ao vetor posição r do segmento do      condutor ao ponto P, no qual o campo está sendo medido, como está ilustrado na Fig. 2 ;     b- diretamente proporcional ao comprimento dl do segmento e à corrente i que ele carrega;     c- inversamente proporcional em módulo ao quadrado da distância r entre o elemento de corrente e o ponto P.     d- proporcional ao seno do ângulo entre os vetores di e r .

É evidente que a equação (6) concretiza todos os resultados estabelecidos acima, pois ela nos diz que o vetor dB é perpendicular a dl e a r e tem um módulo proporcional a idlsen /r2, que é exatamente o observado. Nós nos referimos anteriormente ao fato de que as forças magnéticas exibem uma dependência do inverso do quadrado da distância, como as forças de Coulomb entre cargas elétricas. Isto é claramente considerado na equação (6). http://www.unb.br/iq/kleber/EaD/Eletromagnetismo/LeiBiotSavart/LeiBiotSavart.html

Infelizmente a lei de Biot-Savart acima, dá-nos apenas o elemento diferencial da indução magnética B , então para determinar B é necessários somar a contribuição de todos os elementos infinitesimais dl. Esta soma infinita é denonimada de integral, conceito este que será discutido em outra oportunidade. Assim a equação (7), neste limite, assume a forma,

ˆIdl rB

r0

24

http://www.unb.br/iq/kleber/EaD/Eletromagnetismo/LeiBiotSavart/LeiBiotSavart.html

Campo Magnético de um Condutor Retilíneo Transportando uma Corrente

ˆIdl rB

r0

24

Campo Magnético de um Condutor Retilíneo Transportando uma Corrente

a

a

I xdy ˆB ( k)

(x y )

03

2 2 24

Cada vetor infinitesimal tem direção e sentido para dentro da folha. Podemos, então, somar sem problemas.

I aB

x(x a )

01

2 2 2

2

4

a

Ilim B

x0

2

Falar sobre linhas de E e de B e sobre integral de área =0

Força entre Condutores Paralelos

IB

r0

2

F Ic LXB

Ic é corrente no fio superior e I no inferior.F é a força no superior. Vai ser orientada de cima para baixo.

Força entre Condutores Paralelos

IB

r0

2

IIcL IIcF

F Ic LBr L r

0 0

2 2

Um ampére é a corrente invariável que, quando percorre dos fios retilíneos infinitos paralelos separados no vácuo por uma distância de um metro, produz sobre cada metro do condutor uma força exatamente igual a 2 10-7 Newtons.

Campo Magnético de uma Espira Circular

x

y

I dldB

(x a )

I adldB

(x a )

I xdldB

(x a )

02 2

03

2 2 2

03

2 2 2

4

4

4

x

x

IaB

(x a )

Campo total em y =0. Para N espiras:

NIaB

(x a )

20

32 2 2

20

32 2 2

2

2

Em 11 de setembro de 1820 Ampere ouviu a respeito da descoberta de Hans Christian Oersted de que uma agulha imantada sofre a ação de uma corrente elétrica. Em 18 de setembro de 1820 ele apresentou um artigo à academia contendo uma exposição bem mais completa deste e de outros fenômenos relacionados.

Lei de AmpèrePara um fio condutor:

IB dl B dl r I

r0

022

r rr

gÑ Ñ

Lei de Ampère

Percurso qualquer:

B dl Bdlcos Brd rr

gI I

B dl rd d Ir

0 002 2

rrgÑ Ñ ÑEm b, parte do fio, a variação total deste ângulo para um caminho sem fio é zero e a integral é nula. Melhor escrever:

int eB dl I0rr

Lei de Ampère GeneralizadaBasicamente, quando um capacitor esta sendo carregado a corrente na superfície de uma de suas placas é nula, o que, pela Lei de Ampere, levaria a um campo magnético nulo, mas a corrente no fio que leva ao capacitor não é nula, isto cria a situação em que o campo é e não é nulo ao mesmo tempo, ou no mínimo é absurdamente descontínuo.

Supõe-se uma pseudocorrente iD na região entre as placas:

0 C D int eB d l (i i )

D

dVi C

dt

ic r rB dl ic

R R

2 2

0 02 2

rr

gÑrr

rB ic B icR R

20

0 2 22

2

Bate com o valor medido.

29.1, 29.3, 29.13, 29.14, 29.15, 29.24, 29.37, 29.38, 29.44, 29.45, 29.49, 29.50,29.56, 29.60, 29.69, 29.70

top related