thamiris renata martiny

131
UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA Thamiris Renata Martiny OBTENÇÃO DE EXTRATOS DE FOLHAS DE OLIVEIRA PARA APLICAÇÃO COMO AGENTE ANTIMICROBIANO EM EMBALAGENS BIODEGRADÁVEIS ATIVAS Santa Maria, RS 2021

Upload: others

Post on 03-Jul-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thamiris Renata Martiny

UNIVERSIDADE FEDERAL DE SANTA MARIA

CENTRO DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

Thamiris Renata Martiny

OBTENÇÃO DE EXTRATOS DE FOLHAS DE OLIVEIRA PARA

APLICAÇÃO COMO AGENTE ANTIMICROBIANO EM

EMBALAGENS BIODEGRADÁVEIS ATIVAS

Santa Maria, RS

2021

Page 2: Thamiris Renata Martiny

Thamiris Renata Martiny

OBTENÇÃO DE EXTRATOS DE FOLHAS DE OLIVEIRA PARA

APLICAÇÃO COMO AGENTE ANTIMICROBIANO EM

EMBALAGENS BIODEGRADÁVEIS ATIVAS

Tese apresentada ao programa de Pós-

graduação em Engenharia Química da

Universidade Federal de Santa Maria, como

requisito parcial para obtenção do Título de

Doutora em Engenharia Química.

Orientador: Prof. Dr. Guilherme Luiz Dotto

Santa Maria, RS

2021

Page 3: Thamiris Renata Martiny
Page 4: Thamiris Renata Martiny
Page 5: Thamiris Renata Martiny

DEDICATÓRIA

Dedico esse estudo a todos os profissionais que fazem ciência e pesquisa, que apesar dos

percalços seguem firmes na construção de um mundo melhor e que, em especial, nesse último

ano que se passou mostraram-se ainda mais imprescindíveis.

Page 6: Thamiris Renata Martiny

AGRADECIMENTOS

A Deus pela presença constante, me dando força em todos os momentos.

Aos meus pais, que sempre incentivam e apoiam a evolução da minha qualificação. Não há

palavra que descreva minha gratidão. Muito obrigada!

Aos meus irmãos, Renan e Ygor, pela parceria de sempre.

Ao meu amado companheiro de vida, Raimar, pela dedicação, compreensão, apoio, dicas e

imensa ajuda para realização desse trabalho, sobretudo na revisão do idioma estrangeiro.

Aos meus familiares, que sempre estiveram presentes na minha caminhada, ajudando com

extrema generosidade nos momentos em que precisei.

À Profª. Drª. Gabriela Silveira da Rosa, por sua orientação, dedicação, amizade, pela

confiança, pelos ensinamentos e pelo incentivo para que eu me aprimorasse permitindo meu

amadurecimento profissional.

Ao Prof. Dr. Guilherme Luiz Dotto por sua orientação, atenção, disponibilidade sempre e pela

liberdade no desenvolvimento deste trabalho.

Aos membros da banca, Profª. Drª. Caroline Costa Moraes, Profª. Drª. Mariana Agostini de

Moraes, Profª. Drª. Raquel Cristine Kuhn e Drª Kátia Regina Kuhn pela disponibilidade.

Aos técnicos dos laboratórios onde o trabalho foi desenvolvido, pela imensa ajuda e

colaboração, afinal o êxito também depende de vocês.

À estância Guarda Velha de Pinheiro Machado, na figura do Eng. Vinícius Leite e demais

colaboradores, pela disponibilidade das amostras.

Aos meus colegas de trabalho da Eletrobras CGTELETROSUL, pela compreensão, incentivo

e ajuda, em especial a Quelen, ao Giordâni, ao Nelson e ao Wagner.

Page 7: Thamiris Renata Martiny

À Camila e ao Theilor, que generosamente, me abrigaram em sua residência nos dias de aula

em Santa Maria.

Ao Grupo de Pesquisa Engenharia Processos e Sistemas Particulados (GPEPSP) pela parceria

e compartilhamento de saberes.

À Universidade Federal do Pampa (UNIPAMPA) pela infraestrutura e todo apoio de sempre.

À McGill University na figura do Professor Vijaya Raghavan pela oportunidade de realizar

uma parte importante dessa tese utilizando sua infraestrutura física e intelectual.

Ao Programa de Pós-Graduação em Engenharia Química da Universidade Federal de Santa

Maria (UFSM), o qual proporcionou meu desenvolvimento acadêmico oportunizando a

realização do Doutorado.

A todos que colaboraram e me ajudaram direta ou indiretamente ao longo do doutorado e na

elaboração desse trabalho, o meu reconhecimento.

Page 8: Thamiris Renata Martiny

“Na vida, não existe nada a temer, mas a entender.”

(Marie Curie)

Page 9: Thamiris Renata Martiny

RESUMO

OBTENÇÃO DE EXTRATOS DE FOLHAS DE OLIVEIRA PARA

APLICAÇÃO COMO AGENTE ANTIMICROBIANO EM

EMBALAGENS BIODEGRADÁVEIS ATIVAS

AUTOR: Thamiris Renata Martiny

ORIENTADOR: Prof. Dr. Guilherme Luiz Dotto

COORIENTADORA: Profª. Drª. Gabriela Silveira da Rosa

Este trabalho teve como objetivo obter extratos de folhas de oliveira (EFO) através da técnica

de extração assistida por micro-ondas para posterior aplicação dos extratos obtidos na

elaboração de filmes biodegradáveis ativos. O processo de extração, assim como a influência

dos parâmetros do processo sobre o conteúdo de compostos bioativos presentes no extrato

aquoso foram estudados utilizando planejamento de experimentos. O conteúdo de compostos

fenólicos totais (FT), a atividade antioxidante (AA), a atividade antimicrobiana do EFO

contra a Escherichia coli (E. coli) e o conteúdo de oleuropeína obtidos sob condições ótimas

de extração foram às respostas avaliadas. Complementarmente, foram estudados os métodos

de extração por maceração e assistido por ultrassom para obtenção dos extratos de folha de

oliveira. Após, foram elaborados filmes à base de carragenana com e sem a adição de EFO

pelo método de casting. Os filmes foram avaliados quanto à cor, solubilidade, espessura,

permeabilidade ao vapor d’água e propriedades mecânicas. O efeito protetor dos filmes contra

a atividade antimicrobiana na embalagem de carne de cordeiro também foi avaliado. As

condições ótimas de extração assistida por micro-ondas, utilizando a ferramenta estatística da

desejabilidade, foram: 100°C, 2 min e pH 6. Nessas condições é possível obter AA de

92,87%, FT de 103,87 mgGAE.g–1 (b.s.), além de atividade antimicrobiana contra E. coli, com

valor de concentração inibitória mínima de 50 mg.mL-1 e conteúdo de oleuropeína de 11,59

mg.g-1 (b.s.). Quando comparada às tecnologias de extração por maceração e ultrassom, a

tecnologia de micro-ondas se mostrou mais eficiente, apresentando uma maior recuperação de

compostos bioativos de interesse. A incorporação do EFO na matriz de carragenana provocou

mudanças nas propriedades dos filmes, com o aumento na espessura, na elongação e na

permeabilidade ao vapor d’água, e a diminuição na tensão de ruptura e no módulo de

elasticidade do filme. A solubilidade não foi significativamente afetada pela adição do EFO,

porém a diferença de cor com a adição de EFO foi de 64,72%. Outro importante resultado foi

o da análise in vivo de psicrófilos, ou seja, quando aplicados na embalagem de carne de

cordeiro os filmes de carragenana com extrato apresentaram efeito inibitório na contagem de

psicrófilos. O estudo revelou os benefícios do extrato de folhas de oliveira, obtido por micro-

ondas incorporado em filmes à base de carragenana com potencial para a aplicação como

embalagens ativas.

Palavras-chaves: Olea europea, carragenana, micro-ondas, filme biodegradável

Page 10: Thamiris Renata Martiny

ABSTRACT

OBTAINING OLIVE LEAF EXTRACTS FOR APPLICATION AS AN

ANTIMICROBIAL AGENT IN ACTIVE BIODEGRADABLE PACKAGING

AUTHOR: Thamiris Renata Martiny

ADVISOR: Pro. Dr. Guilherme Luiz Dotto

COADVISOR: Profª. Drª. Gabriela Silveira da Rosa

This work had as objective to obtain extracts of olive leaves (OLE) through the technique of

extraction assisted by microwaves for later application of the extracts obtained in the

elaboration of active biodegradable films. The extraction process, as well as the influence of

the process parameters on the content of bioactive compounds present in the aqueous extract,

were studied using design of experiments. The content of total phenolic compounds (PC), the

antioxidant activity (AA), the antimicrobial activity of OLE against Escherichia coli (E. coli)

and the content of oleuropein obtained under optimal conditions of extraction were the

responses evaluated. In addition, methods of extraction by maceration and assisted by

ultrasound to obtain olive leaf extracts were studied. Afterwards, carrageenan films were

made with and without the addition of OLE by the casting method. The films were evaluated

for color, solubility, thickness, water vapor permeability and mechanical properties. The

protective effect of films against antimicrobial activity on lamb meat packaging was also

evaluated. The optimal conditions for microwave assisted extraction, using the desirability

statistical tool, were: 100°C, 2 min and pH 6. Under these conditions it is possible to obtain

AA of 92.87%, PC of 103.87 mgGAE.g–1 (d.b), in addition to antimicrobial activity against E.

coli, with a minimum inhibitory concentration value of 50 mg.mL-1 and oleuropein content of

11.59 mg.g-1 (d.b). When compared to the extraction technologies by maceration and

ultrasound, the microwave technology proved to be more efficient, presenting a greater

recovery of bioactive compounds of interest. The incorporation of OLE in the carrageenan

matrix caused changes in the properties of the films, with an increase in thickness, elongation

and permeability to water vapor, and a decrease in the tensile strength and elasticity modulus

of the film. The solubility was not significantly affected by the addition of OLE, however the

color difference with the addition of OLE was 64.72%. Another important result was the in

vivo analysis of psychrophiles, that is, when applied to the packaging of lamb meat,

carrageenan films with extract had an inhibitory effect on the count of psychrophiles. The

study revealed the benefits of olive leaf extract, obtained by microwave incorporated in films

based on carrageenan with potential for application as active packaging.

Keywords: Olea europea, carrageenan, microwave, biodegradable film

Page 11: Thamiris Renata Martiny

LISTA DE ILUSTRAÇÕES

CAPÍTULO 1

Figura 1 - Estrutura da Tese ..................................................................................................... 21

CAPÍTULO 2

Figura 1 - Apresentação da planta ............................................................................................ 27

Figura 2 - Folhas de oliveira ..................................................................................................... 29

Figura 3 - Estruturas básicas das carragenanas ........................................................................ 39

CAPÍTULO 3

Fig. 1. Kinetic growth profiles of E. coli against olive leaf extracts. MAE=microwave-assisted

extraction; UAE=ultrasound-assisted extraction; NC=negative control; PC=positive

control.......................................................................................................................................58

CAPÍTULO 4

Fig. 1. Olive leaves. .................................................................................................................. 71

Fig. 2. Central rotational composite design for microwave-assisted extraction (MAE) with

experimental values and coded levels of independent variables. ............................................. 72

Fig. 3. Extracts obtained from microwave extraction. The numbers correspond to each extract

obtained in the respective extraction condition (1-17) of Table 1. ........................................... 75

Fig. 4. Pareto chart of the responses (a) total phenolic compounds and (b) antioxidant activity

.................................................................................................................................................. 76

Fig. 5. Profile of predicted values and desirability for antioxidant activity and total phenolic

compounds for microwave extraction. ..................................................................................... 79

CAPÍTULO 5

Figure 1. Samples of lamb meat that were packed using different films: (A) polyvinyl chloride

(PVC) film, (B) carrageenan control film (CAR-C), and (C) carrageenan film with olive leaf

extract (CAR-OLE). ............................................................................................................... 100 Figure 2. Visual appearance of the carrageenan films: (A) CAR-C and (B) CAR-OLE. CAR–

C: carrageenan film, CAR–OLE: carrageenan film with olive leaf extract. .......................... 101

Page 12: Thamiris Renata Martiny

LISTA DE TABELAS

CAPÍTULO 2

Tabela 1 - Aplicação de filmes biodegradáveis incorporados com antimicrobianos ou

antioxidantes. ............................................................................................................................ 41

CAPÍTULO 3

Table 1. Total phenolic (TP), antioxidant activity (AA), oleuropein (OP) and hydroxytyrosol

(HT). ......................................................................................................................................... 55 Table 2. Antimicrobial Inhibition (AI) effect of extracts obtained from MAE and UAE against

E. coli. ....................................................................................................................................... 59

CAPÍTULO 4

Table 1. Total phenolic compounds (T.phenolics) and antioxidant activity (Antioxidant.A) of

extracts obtained by microwave. .............................................................................................. 75 Table 2. Analysis of variance for phenolic compounds. .......................................................... 77 Table 3. Analysis of variance for antioxidant activity.............................................................. 78

Table 4. Parameters used in the simultaneous optimization of microwave extraction responses.

.................................................................................................................................................. 78

CAPÍTULO 5

Table 1. Thickness, water vapor permeability (WVP), mechanical properties, solubility, and

optical properties of carrageenan films. ................................................................................. 103 Table 2. The psychrophiles population measured initially and after 2 days of storage. ........ 105

Page 13: Thamiris Renata Martiny

LISTA DE ABREVEATURAS E SIGLAS

AA - Atividade Antioxidante - Antioxidant Activity

A.activity - Antioxidant activity

AI - Antimicrobial Inhibition

ANOVA - Análise de variância

Antioxidant.A - Antioxidant Activity

ASTM -American Society for Testing and Materials

b.s - base seca

CAPES - Coordination for the Improvement of Higher Education Personnel and the Natural

Sciences

CAR-C - Carrageenan Control Film

CAR-OLE - Carrageenan film with olive leaf extract

CCRD - Central Composite Rotational Design

CNPq - Brazilian National Counsel of Technological and Scientific Development

CFU - Colony-Forming Unit

d.b - dry basis

DPPH - 2,2-diphenyl-1-picrylhydrazyl

DSC - Calorimetria exploratória diferencial

E. coli - Escherichia coli

EB - elongation at break

EFO - Extrato de Folhas de Oliveira

EM - Elastic Modulus

FT - Fenólicos Totais

GAE - Ácido Gálico

HPLC - High performance liquid chromatography

HT - Hydroxytyrosol

MAE - Microwave-Assisted Extraction

MIC - Minimum inhibitory concentration

Microbial.A - Antimicrobial Activity

NC - Negative Control

NSERC - Engineering Research Council of Canada

OLE - Olive Leaf Extracts

O.L.Extracts - Olive Leaves Extracts

OP - Oleuropein

PET - Polietileno Tereftalato

PC - Phenolic Compounds

PVA - Permeabilidade ao Vapor de Água

PVC - Policloreto de Vinila

TGA - Análise Termogravimétrica

TP - Total Phenolic

T.ph - Phenolic Compounds

T.phenolics - Total Phenolic Compounds

TS - Tensile Strength

UAE - Ultrasound-Assisted Extraction

UFSM - Universidade Federal de Santa Maria

UNIFESP - Universidade Federal de São Paulo

UNIPAMPA - Universidade Federal do Pampa

U.K. - United Kingdom

USA - United States of America

Page 14: Thamiris Renata Martiny

WS - Water Solubility

VWD - Variable wavelength detector

WVP - Water Vapor Permeability

Page 15: Thamiris Renata Martiny

LISTA DE SÍMBOLOS

a* standard CIE Lab [ - ]

a exposed film surface m²

AA antioxidant activity %

A. activity antioxidant activity %

𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙 absorbance of the blank solution [ - ]

𝐴C absorbance of the control [ - ]

𝐴OLE absorbance of the extract samples [ - ]

𝐴𝑠𝑎𝑚𝑝𝑙𝑒 absorbance of the extract solution [ - ]

AI antimicrobial inhibition %

𝐴1OLE initial extract absorbance [ - ]

𝐴2OLE final absorbance of the extract [ - ]

𝐴1C initial absorbance of the control [ - ]

𝐴2C final absorbance of the control [ - ]

b* standard CIE Lab [ - ]

e thickness m

EB elongation at break %

EM elastic modulus MPa

Microbial.A antimicrobial activity %

L* standard CIE Lab [ - ]

mi initial dry mass g

mf final dry mass g

𝑂𝐷𝑒𝑥𝑡2 optical density of the sample after the

incubation period [ - ]

𝑂𝐷𝑒𝑥𝑡1 optical density of the sample before the

incubation period [ - ]

𝑂𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙2 optical density of the control after the

incubation period [ - ]

𝑂𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙1 optical density of the control before the

incubation period [ - ]

t time s

TS tensile strength MPa

WVP water vapor permeability g.m-1.Pa-1.s-1

W absorbed moisture g

WS water solubility %

ΔE* color difference %

Page 16: Thamiris Renata Martiny

ΔP partial pressure difference Pa

𝛽0 constant coefficient [ - ]

𝛽𝑖 linear coefficient [ - ]

𝛽𝑖𝑖 quadratic coefficient [ - ]

𝛽𝑖𝑗 cross-product coefficient [ - ]

error [ - ]

Χ𝑖 non-coded values of independent

variables [ - ]

𝛶 predicted response [ - ]

Page 17: Thamiris Renata Martiny

SUMÁRIO

CAPÍTULO 1 - ........................................................................................................................ 19 ESTRUTURA DA TESE, INTRODUÇÃO E OBJETIVOS .............................................. 19 1.1 ESTRUTURA DA TESE ................................................................................................... 20 1.2 INTRODUÇÃO .................................................................................................................. 22

1.3 OBJETIVOS ....................................................................................................................... 25

1.3.1 Objetivo geral ................................................................................................................. 25 1.3.2 Objetivos específicos ...................................................................................................... 25 - CAPÍTULO 2 - ..................................................................................................................... 26 REVISÃO DA LITERATURA ............................................................................................. 26 2.1 A OLIVEIRA ..................................................................................................................... 27 2.2 AS FOLHAS DE OLIVEIRA E SEUS EXTRATOS ........................................................ 28

2.3 MÉTODOS DE EXTRAÇÃO ............................................................................................ 30

2.3.1 Extração por Maceração ............................................................................................... 31 2.3.2 Extração assistida por ultrassom ................................................................................. 32 2.3.3 Extração assistida por micro-ondas ............................................................................. 33 2.4 SISTEMAS DE EMBALAGENS ...................................................................................... 34

2.4.1 Embalagens ativas ......................................................................................................... 34

2.4.2 Embalagens biodegradáveis ......................................................................................... 36 2.5 BIOPOLÍMEROS ............................................................................................................... 37

2.5.1 Carragenanas ................................................................................................................. 38 2.6 FILMES BIODEGRADÁVEIS .......................................................................................... 40

2.6.1 Técnicas para a preparação de filmes biodegradáveis ............................................... 41

2.6.2 Propriedades de filmes biodegradáveis ....................................................................... 43

- CAPÍTULO 3 - ..................................................................................................................... 47 MÉTODOS DE EXTRAÇÃO PARA PRODUÇÃO DO EXTRATO DE FOLHA DE

OLIVEIRA .............................................................................................................................. 47 3.1 INTRODUCTION .............................................................................................................. 50 3.2 MATERIALS AND METHODS ....................................................................................... 51

3.2.1 Reagents .......................................................................................................................... 51

3.2.2 Sample Preparation ....................................................................................................... 52 3.2.3 Extraction Procedure .................................................................................................... 52 3.2.4 Total Phenolics (TP) ...................................................................................................... 52

3.2.5 Antioxidant Activity (AA) ............................................................................................. 53 3.2.6 Oleuropein (OP) and Hydroxytyrosol (HT) ................................................................ 53

3.2.7 Antimicrobial Inhibition (AI) ....................................................................................... 53 3.2.8 Statistical analysis .......................................................................................................... 54 3.3 RESULTS AND DISCUSSION ......................................................................................... 54 3.4 CONCLUSION .................................................................................................................. 59

- CAPÍTULO 4 - ..................................................................................................................... 65 OTIMIZAÇÃO DA EXTRAÇÃO DE COMPOSTOS BIOATIVOS DA FOLHA DE

OLIVEIRA .............................................................................................................................. 65 4.1 INTRODUCTION .............................................................................................................. 68 4.2 MATERIALS AND METHODS ....................................................................................... 70

4.2.1. Olive leaves .................................................................................................................... 70 4.2.2 Chemicals ....................................................................................................................... 71 4.2.3 Apparatus and extraction ............................................................................................. 71 4.2.4 Experimental design ...................................................................................................... 72 4.2.5 Estimation of total phenolic compounds and antioxidant activity ............................ 73

Page 18: Thamiris Renata Martiny

4.2.6 Potential of the leaf extract as a food preservative ..................................................... 73

4.2.7 Statistical Analysis ......................................................................................................... 74 4.3 RESULTS AND DISCUSSION ......................................................................................... 74

4.3.1 Optimization of microwave-assisted extraction conditions ....................................... 74 4.3.2 Oleuropein content and antimicrobial action of the O.L.Extracts ........................... 81 4.4 CONCLUSIONS ................................................................................................................ 83

- CAPÍTULO 5 - ..................................................................................................................... 90 EXTRATO DE FOLHA DE OLIVEIRA PARA OBTENÇÃO DE EMBALAGEM

ATIVA ..................................................................................................................................... 90 5.1 INTRODUCTION .............................................................................................................. 93 5.2 MATERIALS AND METHODS ....................................................................................... 95

5.2.1 Materials ......................................................................................................................... 95 5.2.1.1 Olive Leaves ................................................................................................................. 95

5.2.1.2 Chemicals ..................................................................................................................... 95

5.2.1.3 Bacterial Isolates .......................................................................................................... 95

5.2.2 Preparation of the Plant Extract .................................................................................. 96 5.2.3 Extract Characterization .............................................................................................. 96

5.2.4 Carrageenan Biodegradable Films .............................................................................. 97 5.2.4.1 Film Preparation .......................................................................................................... 97 5.2.4.2 Film Properties ............................................................................................................. 98

5.2.5 Storage Study: Inhibition of Psychrophiles in Lamb Meat ....................................... 99 5.2.6 Statistical Analysis ....................................................................................................... 100 5.3 RESULTS AND DISCUSSION ....................................................................................... 100

5.3.1 Olive Leaf Extract ....................................................................................................... 100

5.3.2 Film Evaluation ........................................................................................................... 101

5.3.3 Storage Study ............................................................................................................... 105 5.4 CONCLUSIONS .............................................................................................................. 106

- CAPÍTULO 6 - ................................................................................................................... 114 DISCUSSÃO, CONCLUSÃO GERAL E SUGESTÕES PARA TRABALHOS

FUTUROS ............................................................................................................................. 114 6.1 DISCUSSÃO .................................................................................................................... 115

6.2 CONCLUSÃO GERAL ................................................................................................... 118 6.3 SUGESTÕES PARA TRABALHOS FUTUROS ............................................................ 118

REFERÊNCIAS ................................................................................................................... 120

APÊNDICE – PÁGINAS INICIAIS DOS ARTIGOS PUBLICADOS ........................... 129

Page 19: Thamiris Renata Martiny

19

- CAPÍTULO 1 -

ESTRUTURA DA TESE, INTRODUÇÃO E OBJETIVOS

Page 20: Thamiris Renata Martiny

20

1.1 ESTRUTURA DA TESE

Nessa tese, as etapas de desenvolvimento da pesquisa estão apresentadas em 6

capítulos. Neste Capítulo 1 - ESTRUTURA DA TESE, INTRODUÇÃO E OBJETIVOS -

são apresentados, concisamente, o tema principal do estudo, os objetivos pretendidos e as

etapas envolvidas para sua realização. As atividades propostas e realizadas são apresentadas

na Figura 1.

No Capítulo 2 - REVISÃO DA LITERATURA - uma revisão da literatura foi

realizada abrangendo a caracterização da folha de oliveira, as tecnologias de extração

convencionais ou não para obtenção de extratos e o tema das embalagens ativas e as matérias-

primas para sua produção.

Nos capítulos subsequentes estão apresentados os resultados obtidos nesse trabalho na

forma de quatro artigos. Os mesmos encontram-se conforme os moldes das revistas a que

foram submetidos e, subsequentemente, publicados.

Artigo 1 – Eco-friendly extraction for the recovery of bioactive compounds from

Brazilian olive leaves.

Artigo 2 – Optimization of green extraction for the recovery of bioactive compounds

from Brazilian olive crops and evaluation of its potential as a natural preservative.

Artigo 3 – Bio-Based Active Packaging: Carrageenan Film with Olive Leaf Extract

for Lamb Meat Preservation.

O desenvolvimento experimental da pesquisa foi realizado utilizando a infraestrutura

dos laboratórios de Engenharia Química e Engenharia de Alimentos, da UNIPAMPA

(Universidade Federal do Pampa), Bagé, Rio Grande do Sul, Brasil, do laboratório de

Engenharia Química da UFSM (Universidade Federal de Santa Maria), Santa Maria, Rio

Grande do Sul, Brasil e do Bioresource Engineering Laboratory da McGill University,

Montreal, Quebec, Canadá.

No Capítulo 3 - MÉTODOS DE EXTRAÇÃO PARA OBTENÇÃO DO EXTRATO

DE FOLHA DE OLIVEIRA - foram estudadas as técnicas de extração – maceração, extração

assistida por ultrassom e extração assistida por micro-ondas– a fim de se selecionar a melhor

técnica em termos de recuperação de compostos de interesse bioativo e parâmetros

operacionais.

No Capítulo 4 - OTIMIZAÇÃO DA EXTRAÇÃO DOS COMPOSTOS BIOATIVOS

DA FOLHA DE OLIVEIRA - são apresentados os resultados experimentais da pesquisa

envolvendo a otimização da extração assistida por micro-ondas de compostos bioativos das

Page 21: Thamiris Renata Martiny

21

folhas de oliveira. Foram avaliados os parâmetros de extração tempo, temperatura e pH na

atividade antioxidante e os compostos fenólicos dos extratos produzidos.

No Capítulo 5 - EXTRATO DE FOLHA DE OLIVEIRA PARA OBTENÇÃO DE

EMBALAGEM ATIVA - é apresentada uma alternativa de aplicação do extrato de folha de

oliveira obtido. O extrato foi incorporado na matriz polimérica de carragenana para produção

de filmes que funcionam como embalagem ativa.

No Capítulo 6 - DISCUSSÃO, CONCLUSÃO GERAL E SUGESTÕES PARA

TRABALHOS FUTUROS - são resumidos os principais resultados oriundos do

desenvolvimento da tese. Este capítulo reúne as informações mais relevantes obtidas nos

capítulos 3 a 6, bem como apresenta algumas sugestões de pesquisas futuras.

Figura 1 - Estrutura da Tese

Fonte: Autora (2021).

Artigo 1

Artigo 2

Artigo 3

Maceração

Ultrassom

Micro-ondas

Page 22: Thamiris Renata Martiny

22

1.2 INTRODUÇÃO

A Olea europaea L., conhecida como oliveira, é uma planta nativa da região do

Mediterrâneo, perfazendo áreas da ordem de milhões de hectares. Mas essa cultura vem se

expandindo para outros territórios, principalmente no Brasil na região Sul. O cultivo da

oliveira vem crescendo e mudando a paisagem, antes apenas com vastos campos agrícolas,

agora como olivais a perder de vista. As terras brasileiras se mostraram boas para o cultivo da

oliveira, produzindo azeites premiados mundialmente (CAVALHEIRO et al., 2015;

COUTINHO et al., 2009; FOSCOLOU; CRITSELIS; PANAGIOTAKOS, 2018). Haja vista

essa expansão e que as condições climáticas e locacionais influenciam a composição das

plantas (HODAIFA et al., 2019; TALHAOUI et al., 2014), pesquisas com as lavouras

cultivadas no Brasil são fundamentais.

Do ponto de vista econômico, o interesse pelas oliveiras está ligado à produção de

azeitonas e azeite, porém, as folhas de oliveira são ricas em compostos com potencial

bioativo, os quais exibem propriedades antioxidantes e antimicrobianas, as quais têm sido

relacionadas com suas características conservantes (ALBUQUERQUE et al., 2018;

BENAVENTE-GARCÍA et al., 2000; WICHERS; SOLER-RIVAS; ESPI, 2000). Além disso,

outra vantagem da utilização de folhas de oliveira é que elas são consideradas como um

subproduto da indústria do azeite, podem representar entre 5% e 10% em peso da azeitona

que entra para processamento (BOUDHRIOUA et al., 2008; EL; KARAKAYA, 2009;

HERRERO; CIFUENTES; IBAÑEZ, 2006). Nesse contexto, a incorporação de extrato de

folhas de oliveira em sistemas de embalagem permitiria a substituição de aditivos sintéticos,

como os conservantes alimentícios.

Ainda é possível notar que o uso das folhas de oliveira como extrato valoriza esse

subproduto trazendo uma perspectiva sustentável dentro do contexto produtivo em que são

geradas. Não obstante, destaca-se que a olivicultura, por se tratar de uma cultura incipiente na

região sul do Brasil, não possui muitas pesquisas relacionadas aos seus subprodutos gerados,

como as folhas. Ressaltando-se que a origem geográfica da planta representa mudanças em

sua composição, que consequentemente impacta no seu potencial bioativo.

A diminuição do uso de conservantes químicos é uma tendência atual, devido aos

possíveis riscos à saúde. Na última década, o mercado nutracêutico aumentou a demanda pela

produção e incorporação de conservantes naturais em uma ampla gama de produtos (AHMAD

et al., 2011; GARCÍA-MORENO et al., 2014). No entanto, como qualquer mudança, no

mercado de alimentos, sofre com a adaptação necessária no setor industrial, sendo o processo

Page 23: Thamiris Renata Martiny

23

de extração de aditivos apontado como a principal dificuldade (ALBUQUERQUE et al.,

2018).

Existem diversos métodos relacionados à extração dos compostos bioativos de

materiais vegetais, porém cada um possui vantagens e desvantagens. São requeridos processos

de extração que combinem requisitos de gasto energético razoável com tempos curtos e uso

reduzido de solventes, bem como a escolha de solventes atóxicos, mantendo a eficiência de

extrações sólido-líquido, convencionais, como por exemplo, a maceração

(MEULLEMIESTRE et al., 2016; WANG; WELLER, 2006). Sendo assim, técnicas de

extração não convencionais como extração assistida por micro-ondas, extração assistida por

ultrassom e extração pelo uso de fluido supercrítico estão sendo aplicadas para obter valiosos

compostos bioativos de matrizes naturais (ROSELLÓ-SOTO et al., 2015).

Atualmente, a fim de atender a demanda de embalagens para a indústria alimentícia,

milhares de toneladas de polímeros sintéticos são produzidos, como o policloreto de vinila

(PVC) e o polietileno tereftalato (PET). Apesar de suas inúmeras vantagens, a maioria desses

polímeros é resistente à biodegradação, causando sérios problemas ambientais com seu

descarte (ABDOU; SOROUR, 2014; FANG et al., 2005). Esses problemas enfatizam a

importância de desenvolver alternativas de embalagens que possam substituir o uso de

polímeros convencionais. Dessa forma, a embalagem antimicrobiana à base de biopolímeros,

as chamadas embalagens biodegradáveis ativas, que podem ser na forma de filmes

biodegradáveis, apresenta-se como uma importante alternativa (ANDRADE-MAHECHA;

TAPIA-BLÁCIDO; MENEGALLI, 2012; ROBERTSON, 2013).

As pesquisas de novas fontes para a produção de filmes biodegradáveis cresceram nos

últimos anos. Em particular, fontes não convencionais e pouco exploradas têm sido alvo de

interesse, como as fontes de origem marinha (alginato e quitosana). Porém, ainda as principais

tecnologias empregadas para solucionar o problema são o desenvolvimento de filmes a partir

de amido extraídos das mais diversas matrizes, como batata e milho, por exemplo.

Recentemente, estudos referentes a produção de filmes biodegradáveis com a incorporação de

aditivos antimicrobianos e antioxidantes para aplicação como embalagem foram publicados

(ALBERTOS et al., 2017; BERMÚDEZ-ORIA et al., 2017; NUR FATIN NAZURAH; NUR

HANANI, 2017).

O biopolímero estudado nesse trabalho para a produção de filmes biodegradáveis foi a

carragenana pertencente à família dos polissacarídeos, que possui a capacidade de formar

bons filmes, aqueles que são capazes de serem competitivos com os filmes plásticos

comercializados, apresentando as propriedades físicas requeridas (ABDOU; SOROUR, 2014;

Page 24: Thamiris Renata Martiny

24

PARK, 1996; SHOJAEE-ALIABADI et al., 2014). Ela é um hidrocolóide galactano sulfatado

extraído das algas vermelhas (Rhodophyta) (SMIDSROD; GRASDALEN, 1982). As

carragenanas têm propriedades que lhes garantem aplicação comercial como aditivos na

indústria alimentícia, sendo agentes gelificantes, emulsificantes, estabilizantes e espessantes

(WILLIAMS; PHILLIPS, 2009). Além disso, vêm ganhando gradativamente reconhecimento

como fonte de novos materiais com valiosas aplicações. Por isso, é necessário intensificar a

sua pesquisa, a fim de descobrir novas funcionalidades, aproveitando ao máximo seu

potencial, entre eles a produção de filmes biodegradáveis.

Face ao contexto apresentado, a incorporação de um composto bioativo natural - o

extrato de folhas de oliveira - para a produção de uma embalagem baseada em uma matriz

polimérica biodegradável - as carragenanas - representa uma direção tanto para a substituição

de plásticos não biodegradáveis, como para a extensão do prazo de validade de produtos

alimentícios sem adição de conservantes químicos.

Em linhas gerais, até o momento, não foram encontrados trabalhos na literatura, a

partir das plataformas de buscas científicas, que utilizam as folhas de oliveira originária do sul

do Brasil para a otimização da obtenção de seus extratos, a fim de estudar seu potencial

bioativo e empregá-los como conservante natural em embalagens ativas a base de

carragenana. Procura-se demostrar que os extratos constituem uma excelente fonte de

recuperação de compostos bioativos e que a nova embalagem desenvolvida possui

propriedades desejáveis. Essa hipótese foi testada aplicando a nova embalagem no

armazenamento de carne de cordeiro. Assim, a proposta dessa pesquisa surge como uma

alternativa inovadora, que busca integrar o reaproveitamento de um resíduo na produção de

uma nova embalagem, com vistas à preservação do meio ambiente e proteção dos alimentos e

da saúde humana.

Page 25: Thamiris Renata Martiny

25

1.3 OBJETIVOS

1.3.1 Objetivo geral

Este trabalho teve como objetivo geral obter extrato de folhas de oliveira para

posterior aplicação do extrato na elaboração de filme biodegradável ativo.

1.3.2 Objetivos específicos

Obtenção extratos das folhas de oliveira a partir da extração assistida por micro-ondas e

ultrassom e a extração por maceração;

Otimizar as condições de extração do método avaliado, a partir dos resultados de

compostos fenólicos e atividade antioxidante;

Comparar a extração assistida por micro-ondas com a extração por maceração e a

extração assistida por ultrassom na obtenção de extratos de folha de oliveira;

Determinar o potencial de inibição do extrato na condição otimizada contra Escherichia

coli;

Determinar o conteúdo de oleuropeína e hidroxitirosol dos extratos;

Produzir filmes biodegradáveis de carragenana com incorporação do extrato de folha de

oliveira;

Caracterizar os filmes biodegradáveis obtidos quanto à espessura média, às suas

propriedades mecânicas (tensão de ruptura, elongamento e módulo de elasticidade),

permeabilidade ao vapor d’água e cor.

Avaliar o potencial de aplicação do filme biodegradável como embalagem ativa em

carne de cordeiro.

Page 26: Thamiris Renata Martiny

26

- CAPÍTULO 2 -

REVISÃO DA LITERATURA

Page 27: Thamiris Renata Martiny

27

2.1 A OLIVEIRA

Majoritariamente cultivada na região Mediterrânea a Olea europaea L., popularmente

conhecida como oliveira, é uma planta arbórea e é a única espécie da família Oleaceae que

apresenta fruto comestível, as azeitonas. Além da produção de azeitonas, é usada para fins

ornamentais e produção de azeite (COUTINHO et al., 2009; FLORES et al., 2013).

A planta (Figura 1) é de tamanho médio, de formato arredondado, com tronco

contorcido, casca grossa e folhas perenes. Suas características como porte, densidade da copa,

cor da madeira e folha variam em função das condições de cultivo e do cultivar (RAPOPORT,

1998).

Figura 1 - Apresentação da planta

Fonte: Autora (2021).

Os países europeus apresentam 75% dos olivais do mundo, porém as áreas nesses

países já estão exauridas, havendo uma tendência da ocupação dessa cultura em novas áreas

(RAMOS et al., 2013; WREGE et al., 2015). O Brasil figura entre os principais países

importadores de azeitonas e azeite, sendo o quinto país que mais consome azeite (WREGE et

al., 2015). A olivicultura no Brasil ainda é embrionária, porém com o passar dos anos análises

laboratoriais comprovaram que o azeite brasileiro não perde em qualidade para os produtos

importados, assim impulsionando o plantio, sendo que os estados das regiões Sul e Sudeste se

Page 28: Thamiris Renata Martiny

28

destacam na produção. Mais especificamente, no Rio Grande do Sul as áreas com plantios

comerciais estão localizadas principalmente nas cidades de Bagé, Cachoeira do Sul, Caçapava

do Sul, Dom Pedrito, Encruzilhada do Sul, Rio Grande, Santana do Livramento e Vacaria

(COUTINHO et al., 2009).

A extração do azeite e a produção de azeitonas representam uma atividade econômica

e social altamente relevante. Do ponto de vista nutricional esses produtos são recomendados

por estarem associados a benefícios à saúde (RODRIGUES; PIMENTEL; OLIVEIRA, 2015).

Durante muitos séculos, a folha de oliveira ou os seus extratos foram associados à saúde e

preservação. Na medicina popular estes foram usados para tratar diabetes e hipertensão

(BENAVENTE-GARCÍA et al., 2000; BOCK; ROMBOUTS, 2013).

2.2 AS FOLHAS DE OLIVEIRA E SEUS EXTRATOS

O aumento da demanda pela valorização de resíduos e subprodutos do processo de

produção de azeite levou a indústria de alimentos a explorar novas alternativas. Durante o

processamento do azeite, uma variedade de resíduos e subprodutos é produzida. Os principais

com interesse nutricional e tecnológico, são o bagaço de azeitona, as águas residuais, as folhas

de oliveira e a semente, que podem ser valorizados compondo produtos inovadores (NUNES

et al., 2016; RODRIGUES; PIMENTEL; OLIVEIRA, 2015).

As folhas são consideradas um subproduto gerado em grande quantidade na prática da

olivicultura. Esse subproduto é encontrado principalmente em dois pontos durante a produção

do azeite. Em primeiro lugar, são descartadas durante a poda das oliveiras, cada árvore de

oliveira produz cerca de 25 kg de folhas e ramos e, em segundo lugar, na instalação de

produção de azeite, onde as folhas são separadas das azeitonas por uma máquina sopradora, e

podem representar entre 5% e 10% em peso, da azeitona que entra para o processamento. Só

na Espanha, são geradas 0,2 milhões de toneladas de folhas de oliveira por ano. Sendo assim,

torna-se interessante a valorização e o aproveitamento desse subproduto devido ao seu baixo

custo e grande acúmulo nessa atividade agrícola (BOUDHRIOUA et al., 2008; EL;

KARAKAYA, 2009; GUINDA et al., 2004; ROMERO-GARCÍA et al., 2014; ROMERO et

al., 2018).

As folhas quando adultas são compridas e estreitas, de forma elíptica, elíptica-

lanceolada e lanceolada. Possuem comprimento variando de 5,0 a 7,0 cm e largura de 1,0 a

1,5 cm e coloração verde escura e brilhante na região ventral e verde acinzentada ou

esbranquiçada na região dorsal (RAPOPORT, 1998). A Figura 2 ilustra as folhas de oliveira.

Page 29: Thamiris Renata Martiny

29

Figura 2 - Folhas de oliveira

(A) Região ventral da folha. (B) Região dorsal da folha.

Fonte: Autora (2021).

As folhas de oliveira despertam o interesse da comunidade científica e das indústrias

em todo o mundo, uma vez que os seus benefícios de promoção da saúde são constantemente

mostrados por um número cada vez maior de dados científicos (RODRIGUES; PIMENTEL;

OLIVEIRA, 2015). De acordo com De Castro; Capote, (2010) e Japón-Luján; Luque-

Rodrígues; Castro (2006), as folhas têm o maior poder de extração de compostos com

potencial bioativo. Vários estudos mostraram a grande diversidade de fenóis nas folhas de

oliveira (KIRITSAKIS; GOULA; ADAMOPOULOS, 2017; RODRIGUES; PIMENTEL;

OLIVEIRA, 2015; SAHIN; BILGIN, 2018; WICHERS; SOLER-RIVAS; ESPI, 2000). O

composto fenólico mais abundante é a oleuropeína (GIKAS; BAZOTI; TSARBOPOULOS,

2007), cerca de 60-90 mg/g de folha seca, sendo 73% do total de seus constituintes

(SUDJANA et al., 2009). Muitos estudos têm demonstrado a atividade antimicrobiana de

compostos fenólicos, mostrando assim as potencialidades de aplicação desses como

alternativa aos conservantes químicos (NUNES et al., 2016; SAHIN; BILGIN, 2018).

Liu; Mckeever; Malik (2017) investigaram o efeito antimicrobiano de extrato bruto de

folhas de oliveira e demonstraram que na concentração de 62,5 mg/mL, o extrato inibiu quase

A B

Page 30: Thamiris Renata Martiny

30

completamente o crescimento de Listeria monocytogenes, Escherichia coli e Salmonella

Enteritidis. Concluíram que o extrato poderia ser potencialmente utilizado no controle de

agentes patogênicos em produtos alimentares.

Pereira et al. (2006) relataram que os extratos de azeitonas inibiram o crescimento das

bactérias Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, E. coli e Klebsiella

pneumoniae. Sudjana et al. (2009) estudaram a inibição do extrato comercial de folhas de

oliveira para a atividade inibitória de Salmonella enterica, E. coli e Listeria. monocytogenes.

Lee; Lee (2010) e Albertos et al. (2017) não encontraram atividade inibitória do extrato de

folhas de oliveira contra E. coli, embora tenha havido inibição contra outras espécies

bacterianas. Estes resultados divergentes em relação ao efeito inibitório do extrato podem ser

decorrentes de diferentes metodologias de extração e concentração do extrato, bem como o

uso de diferentes solventes na obtenção dos extratos.

Por fim, figura entre as novas tendências o uso de resíduos e subprodutos da azeitona

como fonte de polifenóis, em especial as folhas de oliveira, que podem ser usadas para

diferentes propósitos, como aditivos alimentares. Nesta linha, foram desenvolvidas várias

patentes e aplicações comerciais baseadas na recuperação de polifenóis, especialmente

hidroxitirosol e oleuropeína, a partir de resíduos e subprodutos da produção do azeite

(ROSELLÓ-SOTO et al., 2015).

Todo conteúdo exposto nessa seção referente ao potencial do reaproveitamento das

folhas de oliveira, tornam seus extratos promissores para a aplicação em filmes

biodegradáveis, como um ingrediente com propriedades bioativas.

2.3 MÉTODOS DE EXTRAÇÃO

A extração de produtos naturais é uma operação de retirada seletiva e eficaz de

compostos ou frações de interesse, que estão dentro de uma matriz vegetal (SIMÕES et al.,

2010). Porém, cada material vegetal possui suas propriedades características em termos da

extração de compostos biologicamente ativos, sendo muito importante desenvolver as

condições ótimas de extração. O sucesso da extração é influenciado por inúmeros fatores, mas

principalmente pela estabilidade térmica dos compostos ativos, tecnologia de extração, pH,

tipo de solvente, temperatura e tempo de extração (PANJA, 2017; PUTNIK et al., 2017a;

ROSELLÓ-SOTO et al., 2015). Por isso, é importante avaliar várias tecnologias que

favorecerão a estabilidade dos compostos bioativos durante as extrações, que sejam

ecologicamente corretas, eficientes e custo-efetivo.

Page 31: Thamiris Renata Martiny

31

Existem muitos métodos e patentes para extrair compostos fenólicos das folhas de

oliveira, pois as folhas podem conter até 70 g de compostos fenólicos /kg de folhas

(ROMERO et al., 2018). Os métodos de extração mais utilizados são a maceração, a extração

assistida por ultrassom e extração assistida por micro-ondas os quais são descritos em maiores

detalhes nas próximas seções.

2.3.1 Extração por Maceração

A extração por maceração é um método tradicional que resulta em um menor

rendimento de compostos fenólicos, porém ainda é a principal técnica de extração utilizada

(DENG et al., 2017). É um exemplo de extração sólido-líquido, onde emprega-se calor e/ou

agitação com o objetivo de realizar a dissolução dos compostos presentes na amostra sólida

com o solvente extrator, ou seja, consiste no contato de partes sólidas do material com o

solvente. Ocorre o fenômeno de difusão do solvente através do material vegetal, em que um

número de compostos são transferidos da matriz para o solvente, enquanto o contato entre eles

é mantido (ALEIXANDRE-TUDO; TOIT, 2018; DE CASTRO; CAPOTE, 2010).

A matéria-prima deve ser dividida em pequenos fragmentos e, às vezes pulverizada, de

modo a provocar um aumento considerável da área oferecida à ação do solvente extrator que

deve ser deixado em contato com o material vegetal por um determinado tempo. Aliás, o

tempo é um dos principais problemas dessa técnica, pois geralmente são longos, sendo

frequentemente na região entre 24 h e 48 h. Esta técnica pode ser estática, quando o contato

entre o soluto e o solvente é feito por um tempo estabelecido e em repouso, ou dinâmica,

quando a mistura em extração é mantida sob agitação por um tempo determinado (DE

CASTRO; CAPOTE, 2010; VINATORU; MASON; CALINESCU, 2017).

Jimenez et al. (2011) produziram extratos de folhas de oliveira a partir da maceração.

As folhas secas foram submetidas à extração com etanol e água (1:1), por 24 h à temperatura

ambiente. Como resultado obtiveram extratos hidroalcoólicos com cerca de 29% de

oleuropeína.

Ansari, Kazemipour e Fathi (ANSARI; KAZEMIPOUR; FATHI, 2011) também

investigaram extratos de folhas de oliveira obtidos através de maceração com água, dentre

outros solventes, e ainda otimizaram parâmetros como pH, temperatura e tempo de extração.

Seus resultados mostraram que a extração com água deionizada em pH 3, por 4 h na

temperatura de 60°C, resultou na melhor eficiência. Os autores justificaram esse resultado,

com base em que a oleuropeína é um composto fenólico solúvel em água, cuja solubilidade

Page 32: Thamiris Renata Martiny

32

aumenta com a elevação da temperatura. Contudo, fazem a ressalva de que em temperaturas

maiores que 80°C a oleuropeína pode sofrer degradação.

Ahmad-Qasem et al. (2013) estudaram a extração por maceração de compostos

bioativos de folhas de oliveira utilizando uma solução de 80:20 (v/v) etanol-água por 24 h a

25°C. Eles encontraram resultados como 66 mgGAE/g (b.s) de compostos fenólicos totais e 74

mg/g (b.s) de oleuropeína.

2.3.2 Extração assistida por ultrassom

Uma das energias disponíveis para favorecer os processos de extração são as ondas de

ultrassom, que são ondas sonoras com alta frequência além da capacidade auditiva humana,

assim, os dispositivos de ultrassom para extração funcionam na faixa de 20 kHz a 2 MHz

(PANJA, 2017). A extração assistida por ultrassom vale-se da cavitação, ou seja, da formação

de pequenas bolhas sujeitas a rápidas compressões e expansões adiabáticas. Esse fenômeno

favorece a penetração e a transferência de massa, pois ocorre a ruptura das paredes das células

das plantas, levando a uma melhor liberação dos compostos alvo, assim havendo uma maior

solubilidade e difusividade dos compostos de interesse. Além disso, há também a energia

oxidativa dos radicais criados durante a aplicação do ultrassom no solvente, o que resulta em

um alto poder extrativo (JAPÓN-LUJÁN; JANEIRO; DE CASTRO, 2008; JAPÓN-LUJÁN;

LUQUE-RODRÍGUES; CASTRO, 2006a).

A extração assistida por ultrassom para materiais vegetais pode ser descrita em quatro

etapas. Primeiro, as bolhas de cavitação são geradas perto da superfície da matriz da planta

durante a aplicação do ultrassom. Na segunda etapa, ocorre a implosão das bolhas de

cavitação na superfície do produto, gerando micro jatos que resultam em vários efeitos, como

descamação superficial, erosão e quebra de partículas. Na terceira etapa, a superfície da

matriz rompida entra em contato direto com o solvente. Por fim, os componentes ativos são

liberados e transportados para o solvente (CHEMAT et al., 2017; PANJA, 2017).

Essa tecnologia apresenta muitas vantagens para a extração de compostos naturais, são

elas: maior penetração do solvente no material celular, menor tempo de processamento e

residência, maiores rendimentos e reprodutibilidade do produto, menor consumo de solvente,

alta taxa de processamento, economia significativa em manutenção, menos energia necessária

para o processamento, mais barata e menos tóxica (DENG et al., 2017; PANJA, 2017;

ROSELLÓ-SOTO et al., 2015).

Page 33: Thamiris Renata Martiny

33

Japón-Luján; Janeiro; De Castro (2008) enriqueceram óleos comestíveis (oliva,

girassol e soja) com extrato de folhas de oliveira obtidos por extração assistida por ultrassom.

Concluíram que os baixos custos de aquisição e manutenção de uma fonte de ultrassom e sua

aplicação em um sistema dinâmico tornam recomendável a implementação industrial do

método proposto.

Ahmad-Qasem et al. (2013) produziram extratos hidroalcoólicos (80:20 (v/v))de

folhas de oliveira utilizando ultrassom e concluíram que a aplicação de energia de ultrassom

pode ser considerada uma alternativa como meio de intensificar o processo de extração de

compostos fenólicos de folhas de oliveira.

2.3.3 Extração assistida por micro-ondas

Entre as novas técnicas estudadas, com alto potencial industrial, a extração assistida

por micro-ondas tem recebido significativa atenção na extração de bioativos de plantas. O

método está ganhando popularidade porque os equipamentos de micro-ondas estão facilmente

disponíveis a baixo custo (PANJA, 2017; ROSELLÓ-SOTO et al., 2015; SEOANE et al.,

2017).

A extração assistida por micro-ondas é baseada no aquecimento do solvente pela

aplicação de energia de micro-ondas, que é a radiação eletromagnética com comprimentos de

onda variando de 1 mm a 1 m e com frequências de 300 MHz (1 m) a 300 GHz (1 mm)

(PANJA, 2017; SEOANE et al., 2017). No processo, a energia de micro-ondas é usada para

aquecer os solventes em contato com as amostras sólidas e extrair compostos de interesse da

amostra para o solvente, isso se dá pelo aumento da pressão interna dentro da célula que

subsequentemente facilita a ruptura da parede celular e a liberação de compostos ativos

(CHEMAT et al., 2017; DE CASTRO; CAPOTE, 2010; XIE et al., 2015a).

A radiação de micro-ondas provoca o aquecimento direto da parte interna da matriz

sólida e o gradiente de temperatura é invertido em relação ao aquecimento convencional.

Portanto, essa técnica faz uma combinação sinérgica de transferência de massa e de

transferência de calor atuando na mesma direção, de dentro da matriz sólida para o exterior,

evitando as perdas de energia para o meio ambiente. Algumas vantagens desse tipo de

extração são o aquecimento rápido, menor necessidade de solvente e trata-se de um processo

limpo, dependendo do solvente empregado (SEOANE et al., 2017).

As técnicas de maceração e micro-ondas foram comparadas na extração de compostos

fenólicos de folhas de oliveira (RAFIEE et al., 2011). Os pesquisadores observaram que a

Page 34: Thamiris Renata Martiny

34

extração assistida por micro-ondas tinha várias vantagens sobre a maceração em termos de

rendimento e tempo de extração.

Şahin et al. (2017) otimizaram os compostos fenólicos totais e o conteúdo de

oleuropeína em extratos de folhas de oliveira obtidos por extração assistida por micro-ondas.

As condições ótimas de extração foram: potência de irradiação de 250 W, tempo de extração

de 2 min e quantidade de amostra de 5 g. Nestas condições, eles obtiveram o rendimento

máximo de oleuropeína (0,060 ± 0,012 ppm) e a quantidade de compostos fenólicos totais foi

de 2,480 ± 0,060 ppm. Além disso, os extratos de folhas de oliveira obtidos sob condições

ótimas mostraram atividade antibacteriana contra Staphylococcus aureus e Staphylococcus

epidermidis, com uma concentração inibitória mínima (CIM) de 1,25 mg/mL.

2.4 SISTEMAS DE EMBALAGENS

Os sistemas de embalagens ocupam uma posição de destaque no processamento de

alimentos, sendo seu uso indispensável para a distribuição e comercialização de produtos no

mercado. A seleção de materiais e sistemas de embalagem adequados é parte integrante do

processamento de alimentos (BERK, 2018). Robertson (2013) atribui às embalagens quatro

funções: contenção, proteção, conveniência e comunicação. As embalagens para alimentos

sofrem cada vez mais a influência do surgimento de novas tecnologias e novos materiais. Elas

configuram, aproximadamente, metade do total de embalagens produzidas nos países

industrializados (ANDRADE, 2003).

Os alimentos embalados sofrem com dois tipos de problemas. O primeiro é o de

influência direta, como por exemplo, perda do valor nutricional, contaminação por poeiras,

ataque microbiológico e oxidação. O segundo provém da embalagem, como por exemplo,

permeabilidade ao oxigênio, retenção de umidade ou perda de água e compatibilidade do

material com o alimento. Diante disso, é de vital importância que a embalagem seja

constituída de propriedades que atendam às exigências de qualidade do produto (ANDRADE,

2003).

2.4.1 Embalagens ativas

O termo embalagem ativa foi usado pela primeira vez em uma conferência na Islândia,

em 1987, por Theodore Labuza (ROBERTSON, 2013). Embalagem ativa é definida como

Page 35: Thamiris Renata Martiny

35

embalagem que modifica a condição do alimento embalado, de modo a prolongar sua vida útil

e melhorar sua segurança (AHVENAINEN, 2003).

Os sistemas de embalagens ativas são divididos em duas categorias: aquelas em que os

princípios ativos são incluídos na embalagem e aquelas em que são incorporados ao material

da embalagem. Alguns desses princípios são “modificadores da atmosfera”, como

absorvedores de oxigênio, absorvedores ou geradores de dióxido de carbono, absorvedores de

etileno e reguladores de umidade. Estes são normalmente incluídos na embalagem como uma

fase separada (por exemplo, os saquinhos de sílica usados como absorventes de umidade).

Quando o princípio ativo é incorporado na formulação da embalagem, ele pode ser um agente

preservador ou um antioxidante e é liberado lentamente para a atmosfera da embalagem

durante o armazenamento (BERK, 2018; ROBERTSON, 2013; SUPPAKUL et al., 2003).

A perda de alimentos por deterioração microbiana é bastante expressiva, sendo

fundamental o uso de embalagens adequadas à sua conservação. Estudos referentes a

embalagens ativas com a incorporação de antimicrobianos vêm se intensificando. A

incorporação de aditivos antimicrobianos em embalagens aumenta a segurança para o

consumo dos produtos, uma vez que esses compostos não são adicionados diretamente ao

alimento, o que poderia comprometer as características sensoriais do mesmo

(AHVENAINEN, 2003; KECHICHIAN, 2007).

O interesse por esse tipo de embalagem é reflexo da demanda dos consumidores por

alimentos frescos, minimamente processados e isentos de conservantes. Além disso, é sabido

que na maioria dos alimentos sólidos e semissólidos, o desenvolvimento de micro-organismos

ocorre principalmente na superfície, assim há um maior contato entre o produto e o agente

antimicrobiano (AHVENAINEN, 2003; ROBERTSON, 2013).

Uma vantagem importante da utilização de embalagens ativas antimicrobianas é que

apenas pequenas quantidades de conservante entram em contato com os alimentos, em

comparação com a adição direta de conservantes ao alimento. A composição dessas

embalagens tem por objetivo prolongar o período de latência e reduzir a taxa de crescimento

de micro-organismos para prolongar a vida útil e manter a segurança alimentar. Podem ser

aplicadas em: cereais, carnes, peixes, pães, lanches, queijos, frutas e legumes (ROBERTSON,

2013).

Dando ênfase àquela forma de embalagem ativa antimicrobiana quando os agentes

antimicrobianos são adicionados na composição da embalagem, os mesmos ao encontrarem a

superfície do produto são absorvidos e então se difundem conferindo o efeito antimicrobiano

(LÓPEZ-RUBIO et al., 2004). Um exemplo dessa aplicação é a embalagem antimicrobiana

Page 36: Thamiris Renata Martiny

36

para produtos cárneos, produzida com polímero convencional, em que os antimicrobianos

presentes no polímero entram em contato com o produto e migram por difusão

(QUINTAVALLA; VICINI, 2002).

Em uma revisão abrangente Joerger (2007) catalogou e analisou os resultados de 129

estudos publicados sobre filmes antimicrobianos e observou que a bacteriocina nisina foi a

mais comumente incorporada em filmes, seguida por ácidos e sais, quitosana, extratos

vegetais e as enzimas lisozimas e lactoperoxidase.

As aplicações potenciais das embalagens ativas antimicrobianas, para prolongar a vida

útil de carnes e dos produtos derivados foram analisadas por Camo; Beltrán; Roncalés (2008).

Kechichian (2007), em seu trabalho avaliou filmes biodegradáveis a base de fécula de

mandioca incorporando antimicrobianos naturais (cravo em pó, canela em pó, pimenta

vermelha em pó, óleo essencial de laranja, café em pó, mel e extrato de própolis). Kuorwel et

al. (2011) estudou agentes antimicrobianos sintéticos e naturais incorporando-os em filmes

para embalagem, utilizou manjericão, orégano e tomilho e seus óleos essenciais. Ugalde

(2014) produziu filmes biodegradáveis ativos incorporando óleos essenciais de alecrim,

cravo-da-índia, orégano e sálvia e obteve bons resultados para o desempenho dos filmes.

Houve uma melhor inibição frente às bactérias Gram-positivas do que Gram-negativas.

Vale ressaltar que para comprovar o potencial dos compostos antimicrobianos

naturais, bem como um potencial antioxidante para aplicações em embalagens, deve-se testar

as suas propriedades antimicrobianas em sistemas alimentares em condições reais de

armazenamento e distribuição (AHVENAINEN, 2003; SILVA et al., 2017).

2.4.2 Embalagens biodegradáveis

Diferentemente das embalagens produzidas a partir de polímeros convencionais

advindos da indústria petroquímica, as embalagens biodegradáveis são feitas a partir de

matérias-primas renováveis, que podem ser degradadas pela ação de seres vivos, que são

comumente bactérias e fungos (ALVES; TOMÁS, 2003).

Grande parte dos resíduos sólidos municipais é constituída por embalagens, o que

torna interessante e sustentável o desenvolvimento de pesquisas no âmbito dos polímeros

biodegradáveis com o objetivo de produzir embalagens, que vêm com a tarefa de reduzir o

acúmulo de lixo e os impactos ambientais. Assim, um dos desafios das indústrias de

embalagens alimentares é produzir embalagens biodegradáveis que atendam aos requisitos de

resistência e tempo de prateleira do produto. Biopolímeros como carboidratos, proteínas e

Page 37: Thamiris Renata Martiny

37

lipídios têm sido utilizados para a confecção dessas embalagens biodegradáveis (ALVES;

TOMÁS, 2002).

Para mostrar que esse é um tema imprescindível e atual, tramita no Senado Federal

Brasileiro o Projeto de Lei n° 263, de 2018, o qual dispõe:

Art. 2º O Capítulo VI do Título III da Lei nº 12.305, de 2 de agosto de 2010, passa a

vigorar acrescido do seguinte art. 49-A:

“Art. 49-A. São proibidas a fabricação, a importação, a distribuição, ainda que a

título gratuito, e a comercialização de sacolas plásticas para acondicionamento e

transporte de mercadorias, bem como de utensílios plásticos descartáveis para

consumo de alimentos e bebidas.

Parágrafo único. Excetuam-se da proibição estabelecida no caput as sacolas e os

utensílios descartáveis fabricados com material integralmente biodegradável, na

forma do regulamento.” (COMISSÃO DE DIREITOS HUMANOS E

LEGISLAÇÃO PARTICIPATIVA, 2018).

Nesse contexto, os biopolímeros vêm sendo explorados para a fabricação de

embalagens biodegradáveis.

2.5 BIOPOLÍMEROS

Os materiais poliméricos são compostos sólidos, não metálicos, de alto peso

molecular. Eles são compostos por macromoléculas repetidas e têm características variadas

dependendo de sua composição. Os biopolímeros são aqueles polímeros que ocorrem

normalmente na natureza e seu uso é cada vez mais frequente na fabricação de embalagens.

Porém, eles apresentam limitações ao serem processados com as tecnologias tradicionais e

alcançam desempenhos inferiores em termos de propriedades funcionais e estruturais, quando

comparados com os polímeros convencionais (ROCHA; SOUZA; PRENTICE, 2018).

Existem diversos biopolímeros, que ocorrem na natureza e que podem ser utilizados

na fabricação de filmes biodegradáveis. Tharanathan (2003) descreve-os como sendo de

origem animal (colágeno e gelatina), de resíduos do processamento de alimentos de origem

marinha (quitina e quitosana), de fontes microbianas, além dos de origem agrícola (lipídios,

proteínas e polissacarídeos).

Robertson (2013) cita uma gama de matrizes para filmes biodegradáveis comestíveis

que é dominada pelos polissacarídeos quitosana, alginato, κ-carragenana, éteres de celulose,

Page 38: Thamiris Renata Martiny

38

produto de alfa amilose e derivados de amido, filmes à base de proteína feitos com glúten de

trigo, soja, zeína, gelatina, soro e caseína.

Inúmeras são as pesquisas que estudaram as potencialidades da fabricação de filmes

biodegradáveis a partir de variados biopolímeros. No entanto, pouco se sabe sobre a

elaboração de filmes a partir de um biopolímero obtido de algas vermelhas: as carragenanas.

2.5.1 Carragenanas

A diversidade das espécies de algas é algo que se destaca diante da imensidão dos

oceanos que cobrem nosso planeta. O aproveitamento das algas se dá no nosso cotidiano de

diversas maneiras, diretamente na alimentação, extração de ficocolóides, aplicações na

medicina, investigação científica e indústria farmacêutica. Porém, as algas vêm ganhando

gradativo reconhecimento como fonte de materiais valiosos, sendo assim necessário

intensificar a investigação fundamental, de modo a descobrir novos usos, aproveitando todas

as suas potencialidades, sobretudo no que diz respeito aos biopolímeros (PEREIRA et al.,

2003, 2009; VIDOTTI; ROLLEMBERG, 2004; WEBBER et al., 2012).

Dentre as mais variadas espécies algais, as algas vermelhas são do filo Rhodophyta,

que inclui uma única classe, a Rhodophyceae. As espécies mais importantes incluem as

carragenófitas, que como o próprio nome sugere são as algas que nos fornecem as

carragenanas (PEREIRA, 2004). A principal característica dessa alga é a presença do

pigmento ficoeritrina, responsável pela coloração com tonalidades que variam do rosa-claro

ao vermelho-escuro (CARLUCCI et al., 1997; PEREIRA, 2004; VIDOTTI; ROLLEMBERG,

2004).

Carragenana é a denominação dada à família de polissacarídeos extraídos das algas

vermelhas. Assim como o ágar e o alginato as carragenanas são parte de um grupo de

substâncias complexas biopoliméricas chamadas ficocolóides. É o terceiro hidrocolóide

(gomas solúveis em água) mais importante na indústria alimentar, antecedem a gelatina e o

amido (PEREIRA et al., 2003; WEBBER et al., 2012). São polímeros sulfatados, de elevada

massa molecular e com um alto grau de polidispersividade, que possuem duas características

principais: são constituídas a partir de um monômero, a galactose, e contêm uma forte

proporção de ésteres sulfato (O-SO3-). São classificadas de acordo com a presença de ligações

3,6-anidro ligadas ao resíduo de galactose e com a posição e o número de grupos sulfato. Por

isso, são geralmente distribuídas em três categorias denominadas -carragenana, -

carragenana e -carragenana, que podem ser distinguidas por suas estruturas primárias. A

Page 39: Thamiris Renata Martiny

39

Figura 3 mostra as estruturas básicas que se transformam nas várias carragenanas (CAMPO et

al., 2009; PEREIRA et al., 2009; PEREIRA, 2004; WEBBER et al., 2012).

Esses biopolímeros possuem a capacidade de formar géis termoreversíveis ou soluções

viscosas quando adicionados a soluções salinas. Os géis de carragenanas se estabilizam em

pH de 5,0 a 7,0 e apresentam algumas propriedades de sólido e outras de líquido, o que lhes

conferem a aplicação como aditivos na indústria de alimentos, sendo agentes gelificantes,

emulsionantes, estabilizantes e espessantes (PEREIRA et al., 2009; PEREIRA, 2004;

WEBBER et al., 2012).

Figura 3 - Estruturas básicas das carragenanas

Fonte: Pereira et al. (2009).

Além do uso das carragenanas como um gel, novas pesquisas sugerem sua utilização

como filme biodegradável. Abdou; Sorour (2014) prepararam e caracterizaram filmes

produzidos com carragenanas e amido, em variadas proporções. Obtiveram como resultado

Page 40: Thamiris Renata Martiny

40

filmes em que as propriedades mecânicas e a permeabilidade ao vapor de água aumentaram

com o aumento da concentração de carragenanas. Paula et al. (2015) desenvolveram e

caracterizaram filmes a partir de misturas de ɩ-carragenana, κ-carragenana e alginato.

Concluíram que filmes formados com κ-carragenana, apresentaram melhores propriedades

quando comparados com filmes compostos por ɩ-carragenana. Apesar desses estudos, ainda é

escassa a procura por novos potenciais usos para esse biopolímero.

Alguns estudos também sugerem o aproveitamento das algas vermelhas como um

produto com potenciais antimicrobiano, antioxidante, antiviral, antitumoral e anticoagulante,

bem como no tratamento de algumas doenças. A detecção, caracterização e isolamento de

substâncias ativas presentes em algas tem crescido nos últimos anos (STEIN, 2011).

2.6 FILMES BIODEGRADÁVEIS

Os filmes biodegradáveis caracterizam-se por filmes finos, não tóxicos e não

poluentes, produzidos a partir dos formadores de matriz (lipídios, proteínas e polissacarídeos),

solventes (água e etanol) e agentes plastificantes (glicerol, sorbitol, triacetina e ácidos graxos)

(BATISTA, 2004). A pesquisa envolvendo a produção e caracterização de filmes

biodegradáveis aumentou significativamente, principalmente devido ao interesse em

minimizar o impacto ecológico causado pelo uso de materiais de embalagem sintética. Dadas

as crescentes preocupações ambientais pelo acúmulo excessivo de plástico, as indústrias de

embalagens de alimentos também tem demonstrado interesse nos filmes biodegradáveis nas

duas últimas décadas (MIR et al., 2018).

Além disso, outro grande benefício dos filmes biodegradáveis, é que os mesmos

podem ser utilizados como meios de transmissão de aromas, antioxidantes, agentes

antimicrobianos e corantes, que serão liberados para o sistema alimentar durante o tempo de

estocagem, atuando como embalagem ativa (KROCHTA; MULDER-JOHNSTON, 1997;

MILLER; KROCHTA, 1997). Eles têm sido considerados alternativas atraentes às

embalagens plásticas, devido à sua excelente biodegradabilidade, biocompatibilidade,

comestibilidade e possíveis aplicações, com a incorporação de compostos bioativos (MIR et

al., 2018). Na Tabela 1, podem-se observar exemplos de estudos que incorporaram compostos

antimicrobianos e antioxidantes em filmes biodegradáveis, com intuito de obter embalagem

ativa para alimentos.

Page 41: Thamiris Renata Martiny

41

Tabela 1 - Aplicação de filmes biodegradáveis incorporados com antimicrobianos ou

antioxidantes.

Biopolímero Antimicrobiano*/Antioxidante Alimento

testado Referência

Quitosana Óleo de canela* Truta arco-íris Ojagh et al. (2010)

Goma foliar de

Hsian-tsao Extrato de chá verde* carne de porco Chiu; Lai (2010)

κ-carragenana Sorbato de potássio* Peito de

frango Seol et al. (2009)

Proteína de soro Polilisina* Carne fresca

Zinoviadou;

Koutsoumanis;

Biliaderis (2010)

Gelatina/quitosana Extratos de orégano e

alecrim*

Sardinha

defumada

Gómez-Estaca et

al. (2007)

Galactomannan Nisina* Ricota Martins et al.

(2010)

Quitosana/amido Quitosana* Salmão Vásconez et al.

(2009)

Amido de milho Lisozima * In vitro

Fabra; Sánchez-

González; Chiralt

(2013)

Amido de milho Nisina* In vitro Sanchez-Ortega et

al. (2016)

Amido de

mandioca Extrato de alecrim In vitro

Piñeros-

Hernandez et al.

(2017)

Ecoflex®/ácido

polilático

α-tocoferol e extrato de folhas

de oliveira In vitro

Marcos et al.

(2014)

Polietileno/papel Extrato de folhas de oliveira In vitro Moudache et al.

(2016)

Gelatina de peixe Casca de manga In vitro Adilah et al.

(2018)

Celulose Extratos de canela, cravo,

gengibre, chá verde e tomilho Óleo de soja

Phoopuritham et

al. (2012)

Fonte: Autora (2021).

Page 42: Thamiris Renata Martiny

42

2.6.1 Técnicas para a preparação de filmes biodegradáveis

A elaboração de filmes biodegradáveis está ancorada na presença de três constituintes

principais: um formador de matriz, um plastificante e um solvente (BARRETO, 2003). Os

formadores de matriz são a estrutura básica do filme biodegradável e podem ser à base de

hidrocolóides (celulose, alginatos, amidos e outros polissacarídeos), de lipídios (ácidos

graxos, ceras e gliceróis) ou de proteínas (colágeno, gelatina e caseína). Já o plastificante é

uma substância não volátil, que quando adicionado em sistemas diversos promove alterações

físicas e/ou mecânicas. O plastificante deve ser miscível no polímero e ambos devem possuir

solubilidade no solvente. O glicerol é um dos agentes plastificantes mais aplicados na

elaboração de filmes biodegradáveis, devido sua compatibilidade e estabilidade com as

cadeias dos biopolímeros. Dependendo do objetivo podem ser utilizados os mais diversos

solventes: água, etanol, metanol, acetona, entre outros, sendo o mais comum a água

(BARRETO, 2003; UGALDE, 2014).

A elaboração de filmes biodegradáveis envolve ligações químicas cruzadas entre

cadeias de polímeros para formar uma matriz tridimensional semi-rígida que interage com o

solvente. A sua estabilidade depende da estrutura do polímero, processo de fabricação,

parâmetros físicos, tais como temperatura, pressão e tipo de solvente, presença de plastificante

e de aditivos (GONTARD; GUILBERT, 1994).

Para a formação de filmes biodegradáveis, frequentemente é preparada uma solução,

chamada de solução filmogênica, e eles se formam pela remoção do solvente, técnica é

conhecida como casting. A solução pode ser aplicada diretamente sobre o produto a ser

recoberto ou ser utilizado um suporte, para posterior remoção e utilização do filme.

Geralmente, designam-se por coberturas as soluções filmogênicas aplicadas e formadas

diretamente na superfície do produto, enquanto os filmes biodegradáveis são formados

separadamente como filmes finos e então aplicados (ROCHA; SOUZA; PRENTICE, 2018).

Dois estudos recentes obtiveram sucesso na produção de filmes biodegradáveis com a

adição de extratos vegetais da oliveira. Albertos et al. (2017) produziram filmes de gelatina de

peixe com a adição de extrato de folhas de oliveira e utilizaram como embalagem para salmão

defumado frio, os filmes com o extrato diminuíram o crescimento de L. monocytogenes. Já

Bermúdez-Oria et al. (2017) produziram filmes biodegradáveis à base de pectina e proteína de

pele de peixe com a adição de extratos de azeitona, o filme preservou os morangos contra

mofo durante o armazenamento. Seol et al. (2009) avaliaram filmes de carragenana

suplementados com sorbato de potássio e EDTA quando usados em embalagens de peito de

Page 43: Thamiris Renata Martiny

43

frango. Eles observaram que os filmes mostraram o efeito da inibição contra bactérias

aeróbias totais e E. coli durante o armazenamento a 5°C. Além disso, alegaram que estudos

adicionais deveriam ser feitos para investigar outras aplicações para produtos cárneos e

diferentes micro-organismos devido à sua eficácia. Outros estudos avaliaram a produção de

filmes antimicrobianos biodegradáveis, mas as dificuldades estão na escolha de um agente

com características antimicrobianas adequadas, assim como na escolha de uma matriz

polimérica que resulte em filmes biodegradáveis com características desejáveis (CHIU; LAI,

2010; GÓMEZ-ESTACA et al., 2007; MARTINS et al., 2010; OJAGH et al., 2010;

VÁSCONEZ et al., 2009; ZINOVIADOU; KOUTSOUMANIS; BILIADERIS, 2010). Ao

contrário de alguns estudos citados que utilizaram um conservante químico para conferir a

atividade antimicrobiana/antioxidante, ou polímero sintético na formulação dos filmes, a

presente pesquisa propõe a utilização do extrato de folhas de oliveira (produto natural) e da

carragenana.

2.6.2 Propriedades de filmes biodegradáveis

A aplicação de filmes e coberturas para embalagens de alimentos requer o prévio

conhecimento de suas características funcionais e estruturais, a saber mecânicas, óticas, de

barreira, solubilidade, sensoriais e de composição. Estas vão depender do composto utilizado

como base do filme, da técnica de fabricação e das condições ambientais (SOBRAL, 2000).

De modo geral, são avaliadas as propriedades mecânicas, sendo elas resistência máxima à

tração e porcentagem de elongação na ruptura, as propriedades físico-químicas, como

solubilidade em água e espessura, a propriedade de barreira, que é a permeabilidade ao vapor

de água (PVA) e a propriedade ótica, cor.

Como já mencionado, os filmes biodegradáveis podem ser aditivados com compostos

antimicrobianos, sendo assim, as propriedades desses materiais também devem ser avaliadas.

Filmes formados pela incorporação de extratos vegetais em polímeros geralmente resultam

em modificações físico-químicas, mecânicas e de barreira, antioxidantes e antimicrobianas em

comparação com filmes feitos de componentes individuais. A maximização dessas

propriedades para a obtenção de filmes biodegradáveis aptos a embalagem tem sido o objetivo

de diversas pesquisas. Para isso, são fabricados filmes biodegradáveis com as mais variadas

composições, fazendo-se blendas de biopolímeros, diferentes proporções de plastificantes,

incorporação de compostos com potencial antimicrobiano e até mesmo a proposição do uso de

novos biopolímeros para o fim de embalagem. A adição de plastificantes exerce efeito sobre

Page 44: Thamiris Renata Martiny

44

as propriedades mecânicas dos filmes biopoliméricos (KECHICHIAN, 2007; MIR et al.,

2018; ROCHA; SOUZA; PRENTICE, 2018).

Veiga-santos et al. (2005) avaliaram a influência da adição dos plastificantes sacarose,

açúcar invertido e fosfato de sódio em filmes biodegradáveis a base de fécula de mandioca.

Foram realizados ensaios de barreira ao vapor de água e ao oxigênio, resistência máxima a

tração e porcentagem de elongação na ruptura, além da determinação de propriedades

térmicas. Os autores concluíram que os ingredientes utilizados afetaram de forma negativa os

resultados de resistência máxima a tração, porém afetaram de forma positiva os resultados de

porcentagem de elongação na ruptura. A permeabilidade ao vapor de água não sofreu

alterações significativas entre as amostras de filmes biodegradáveis elaborados.

Longares et al. (2005) produziram e caracterizaram filmes biodegradáveis com

variadas proporções de proteína do soro do leite e caseinato de sódio, utilizando glicerol como

plastificante. A caracterização foi realizada através de propriedades físicas, de barreira e de

solubilidade. Dentre os filmes elaborados apenas com caseinato de sódio apresentou

resistência máxima a tração e a permeabilidade ao vapor de água semelhante aos filmes

preparados com a combinação de proteína do soro do leite e caseinato de sódio. Filmes

contendo somente proteína e glicerol apresentaram melhores resultados de porcentagem de

elongação na ruptura, quando comparados com filmes preparados apenas com caseinato de

sódio e glicerol.

O aspecto visual está relacionado a aparência do filme biodegradável, que pode

implicar na aceitação dos consumidores do produto por ele embalado, além de determinar a

aplicação ou não do filme biodegradável. A avaliação do aspecto visual é feita de forma

subjetiva através de observações visuais e táteis.

O filme biodegradável deve apresentar uma superfície continua e homogênea, dessa

forma não deve apresentar bolhas, fissuras, partículas insolúveis, poros abertos e diferenças de

coloração (CARVALHO, 1997).

As propriedades óticas dos materiais de embalagem são de importância prática, porque

elas afetam a função de proteção e influenciam na aparência e atratividade. Muitas reações

deteriorantes são catalisadas pela luz, que incluem oxidação, geração de sabor, descoloração,

destruição de componentes de importância nutricional. Embalagens transparentes permitem

que os consumidores vejam o produto através da embalagem e possam julgar a qualidade pela

sua aparência. É possível aliar o compromisso entre a proteção da luz e a transparência

usando-se embalagens coloridas (BERK, 2018).

Page 45: Thamiris Renata Martiny

45

A cor e a opacidade destacam-se dentre as propriedades óticas para avaliação de

filmes biodegradáveis. A cor está associada com os ingredientes utilizados na elaboração dos

filmes e pode ser uma boa ferramenta na caracterização dos mesmos. É geralmente avaliada

utilizando-se um colorímetro, por meio dos padrões CIE (Comission Internacionale de

I’Eclairage) Lab, L* variando de 0 (branco) a 100 (preto), a* do verde (-) ao vermelho (+) e

b* do azul (-) ao amarelo (+) (UGALDE, 2014).

Pelissari (2009) produziu filmes de amido de mandioca, quitosana e glicerol. Como

resultado obteve que filmes com maiores concentrações de quitosana originaram filmes mais

opacos e escuros, fato que pode ser devido a sua coloração amarelada característica.

A espessura é definida como sendo a distância entre duas superfícies do material. Esta

propriedade é muito importante, pois através dela é possível caracterizar os filmes

biodegradáveis quanto suas propriedades mecânicas e de barreira (OLIVEIRA; ALVES;

SARANTÓPOULOS, 1996).

O controle do processo de fabricação dos filmes biodegradáveis é muito importante

para que sejam garantidas espessuras uniformes e para que haja repetibilidade das

propriedades estudadas. Quando se utiliza a técnica de casting para produção de filmes

biodegradáveis, deve-se controlar o nível do local, pois desníveis podem provocar diferenças

na espessura (GENNADIOS; WELLER; TESTIN, 1993).

Segundo Park; Chinnan (1995) a permeabilidade ao vapor de água pode variar com a

espessura, pois existem mudanças estruturais na matriz filmogênica, que afetam a estrutura

dos filmes e provocam tensões internas que podem influenciar na permeação. Em sua

pesquisa verificaram que a permeabilidade ao vapor de água aumentava proporcionalmente

com a espessura dos filmes protéicos.

A capacidade de uma embalagem de proteger seu conteúdo contra forças externas

depende de suas propriedades mecânicas. A avaliação dessas propriedades mecânicas é

essencial para filmes biodegradáveis, visto que refletem sua durabilidade e capacidade de

acondicionar alimentos. As propriedades mecânicas estão intimamente ligadas à composição

do filme biodegradável e seu poder de formar estruturas estáveis, bem como às condições

ambientais, como temperatura e umidade (WARD, I. M.; HARDLEY, 1998).

A resistência à tração, porcentagem de elongação na ruptura e o módulo de

elasticidade são propriedades mecânicas avaliadas em filmes biodegradáveis. A resistência à

tração é a máxima tensão suportada pelo filme até o momento de sua ruptura. A elongação é a

capacidade do filme em deformar antes de ocorrer sua ruptura, define sua maleabilidade.

Filmes biodegradáveis quebradiços apresentam baixos valores de elongação (MACLEOD, G.

Page 46: Thamiris Renata Martiny

46

S.; FELL, J. T.; COLLETT, 1997). Já o módulo de elasticidade indica a rigidez do filme, um

valor mais alto corresponde a um material mais rígido (DE CAMPO et al., 2016).

As propriedades de barreira estão ligadas a passagem de gases, especialmente o

oxigênio, e vapor de água para o interior do sistema de embalagem. O oxigênio e o vapor de

água são responsáveis pela perda das características sensoriais, modificações físico-químicas

e deterioração microbiológica de um alimento (BATISTA, 2004).

Três fenômenos podem descrever o transporte de gases e vapor de água através de um

filme polimérico, são eles: a difusão, que é o movimento de uma molécula através de uma

matriz polimérica, a solubilidade, que é o comportamento de partição de uma molécula

permeante entre a superfície do filme polimérico e uma posição vizinha na matriz polimérica,

e a permeabilidade, que é a taxa de transporte de uma molécula através de um filme

polimérico como resultado da combinação dos fenômenos de difusão e solubilidade

(MILLER; KROCHTA, 1997).

A permeabilidade é medida através da exposição dos filmes a um meio com o

permeante, que passa de um lado do filme para o outro, quando há diferentes concentrações

desse permeante em um determinado tempo. Para medição dessa propriedade é importante o

conhecimento da espessura e da área exposta do filme. As propriedades de barreira são

bastante afetadas pela variação na concentração do biopolímero utilizado para a elaboração do

filme biodegradável (BATISTA, 2004).

A solubilidade em água é uma característica importante nos filmes biopoliméricos e

trata da resistência do filme à água (RHIM, 2012). É uma propriedade relevante, sobretudo

para o delineamento da área de aplicação do filme.

Page 47: Thamiris Renata Martiny

47

- CAPÍTULO 3 -

MÉTODOS DE EXTRAÇÃO PARA PRODUÇÃO DO EXTRATO DE FOLHA DE

OLIVEIRA

Page 48: Thamiris Renata Martiny

48

O Capítulo 3 visou a pesquisa dos métodos de extração para a seleção daquele com a

melhor possibilidade de recuperação de compostos de interesse bioativos das folhas de

oliveira. Essa pesquisa está apresentada no artigo 1.

Artigo 1

Eco-friendly extraction for the recovery of bioactive compounds from Brazilian olive

leaves

Gabriela Silveira da Rosa1, 2*, Thamiris Renata Martiny3, Guilherme Luiz Dotto3, Sai Kranthi

Vanga2, Débora Parrine2, Yvan Gariepy2, Mark Lefsrud2, Vijaya Raghavan2

1. Graduate Program in Materials Science and Engineering, Federal University of

Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul,

Brazil, 96413-172

2. Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road,

Ste-Anne-de-Bellevue, Quebec, Canada, H9X 3V9

3. Department of Chemical Engineering, Federal University of Santa Maria, 97105–900, Santa

Maria, Rio Grande do Sul, Brazil

*Corresponding author: Unipampa, 1650, Maria Anunciação Gomes de Godoy Avenue,

Bagé, Rio Grande do Sul, Brazil. E–mail address: [email protected], phone

number (+55) 53 99967-2226

Artigo publicado no formato de short communication no periódico Sustainable Materials and

Technologies

Volume 28, July 2021, e00276

ISSN: 2214-9937. DOI: https://doi.org/10.1016/j.susmat.2021.e00276

Page 49: Thamiris Renata Martiny

49

Graphical Abstract

Abstract

The aim of this study was to recover value-added compounds from Brazilian olive tree leaves

using organic solvent-free green extraction techniques. The key molecules obtained by

microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and maceration

were characterized for total phenolic compounds (TP), antioxidant activity (AA), oleuropein

(OP) and hydroxytyrosol (HT) contents. In the study, we also determined the lowest

concentration of extract that causes growth inhibition of Type 1 Escherichia coli. The results

show that green technologies were suitable for the extraction of bioactive compounds from

olive tree leaves. MAE was more efficient than UAE and maceration. OP was the

predominant phenolic compound found in the extracts. At a concentration of 50 mg.mL-1, the

extract produced by MAE inhibited the growth of E. coli by 100%, compared to 80.9% for the

extract produced by UAE. As for the inhibition kinetics of the extracts, no bacterial growth

was observed up to 75 min after inoculation. This study demonstrates that green technologies

can be used successfully to extract compounds with antioxidant and antibacterial properties

from olive culture byproducts, and that Brazilian crops are a viable environmental source.

Keywords: phenolic compounds; oleuropein; hydroxytyrosol; antioxidant; antimicrobial.

Page 50: Thamiris Renata Martiny

50

3.1 INTRODUCTION

Olive trees (Olea europaea L.) produce many byproducts (leaves, branches, solid and

liquid waste), however olive tree leaves stand out, they are the part of tree containing the

highest levels of biophenols [1,2]. These biophenols have bioactive capacity and can act with

antioxidants, antimicrobials, anti-inflammatories, anti‐atherogenic, in which the antiviral

capacity stands out in the face of the current pandemic needs that we are experiencing [3].

The oleuropein (OP) and the hydroxytyrosol (HT) are the main olive phenols present in the

leaves and they provide a natural defense for the leaves against biological predators [4,5].

There have been many publications on the activity properties of this compound. Researchers

have studied its antioxidant activity [6] and antimicrobial activity [7], thus showing the

potential application of oleuropein as an alternative to chemical preservatives and antibiotics.

The leaves represent an important byproduct considering that at the olive oil extraction

plant, the olive tree leaves represent up to 10% of the mass of the olive arriving from the

fields and need to be removed from the fruits in the early steps of olive cleaning [8].

Currently, this byproduct has no value, and it is even costly to dispose of. The current

practices are either to burn it, or to bury it along with other byproducts in the ground.

Occasionally, the residues are used as animal feed [9]. In terms of sustainability, assessing the

value of biomass based on raw materials has become an urgent need. Therefore, it is

inevitable to evaluate mainly agricultural residues that have no economic value or even

threaten the environment [10].

It is very important to note that there is a variability in olive crops, which are grown

mostly in the Mediterranean region. However, Brazil has increased its cultivated area,

especially in the southern region [11]. Since climatic and location conditions influence the

composition of plants [9,12], research on crops grown in Brazil is fundamental.

The inherent diversity and interest of food industry on natural products to replace

synthetic additives is increasing. Production of bioactive compounds at industrial scale

requires fast and simple extraction processes which are environmental friendly, energy

efficient and simple to implement. Nevertheless, the biophenol contents of the olive leaf

extract varies according to the method and conditions extractions. Therefore, it is important to

evaluate different extraction methods to select a method that maintains the stability of

phenolic compounds during the extraction process, while being effective and economical [3].

Several techniques have been proposed for the recovery of bioactive compounds from olive

tree leaves. Recent development in microwave-assisted extraction (MAE) and in ultrasound

Page 51: Thamiris Renata Martiny

51

assisted extraction (UAE) suggests that these techniques can be successfully used for the

extraction of bioactive compounds from olive leaves [2,13].

Both MAE and UAE are techniques that are related to increasing the bioaccessibility

of phenolics. UAE can be used to accelerate adsorption uptake and kinetics in comparison

with conventional technique (maceration) [14]. The cavitation bubbles generated by the

ultrasound collaborate to rupture the wall of the extraction matrix, thus releasing more

compounds [15]. MAE is known for accelerating the extraction process by heating inside out

caused by microwave energy, minimal degradation of the target components and better

extraction yield, together with less solvent use compared to maceration and other advanced

extraction methods [16].

The scientifically proven sanitary properties of olive phenols and their concentration

levels in olive leaf extracts are promoting the development of new, faster and more efficient

extraction methods for their industrial exploitation. There are few studies that deal with the

extraction and characterization of bioactive compounds from leaves that grow in the southern

region of Brazil. Thus, the aim of this study was to address the lack of knowledge in this area,

investigating the potential benefits of using MAE and UAE for the extraction of value added

compounds, specifically OP and HT, bringing an important assessment of their antimicrobial

capacity, using green extraction techniques without organic solvent.

3.2 MATERIALS AND METHODS

3.2.1 Reagents

Analytical grade 2,2-diphenyl-1-picrylhydrazyl (DPPH), Folin Ciocalteu’s reagent,

anhydrous sodium carbonate and gallic acid were obtained from Sigma Aldrich (St. Louis,

USA). HPLC grade water, acetonitrile, acetic acid, methanol, oleuropein and hydroxytyrosol

from Sigma Aldrich (St. Louis, USA) were also utilized.

For the antimicrobial analysis, Nutrient and Müller-Hinton broth and Kanamycin were

purchased from Sigma Aldrich (St. Louis, USA). Escherichia coli K12 (ATCC 10798) was

obtained from Cederlane (Burlington, USA).

Page 52: Thamiris Renata Martiny

52

3.2.2 Sample Preparation

The olive leaves (variety Arbequina) were collected at the Rio Grande do Sul state in

Brazil (31º30'04.0"S, 53º30'42.0"W). The leaves were prepared according to Martiny [17],

briefly, the leaves were signaled with sterile distilled water and a 2% sodium hypochlorite

solution. The initial moisture of the leaves was at 51.7% (w.b.). The leaves were dried for 24

h in a forced air oven operated at 40°C to a final moisture content of 3.1% (w.b.). Prior to

analysis, the fraction retained at 60-mesh sieve was used to ensure an uniform particle size.

3.2.3 Extraction Procedure

The MAE was performed in a Mini-WAVE microwave unit (SCP Science, Canada).

The microwave unit operated at a frequency of 2.45 GHz with a maximum power of 1000 W.

A MAE extract was produced at a 86°C temperature, with a duration of 3 min.

The UAE was performed in an ultrasound system with a working frequency of 20 kHz

and a power output of 450 W (Branson Sonifier 450, USA). The sample was exposed to the

acoustic waves while the ultrasonic probe was immersed 1 cm into the solution for 29 min.

The amplitude of the ultrasonic power has been adjusted to a desired level of 55% (percentage

of output power) of the maximum power. The temperature of the sample was maintained by a

cold-water bath at 27°C and the duty cycle was set up at 50%.

For the maceration extraction, the samples were blended with water and stirred

(Cimarec2, Thermolyne, USA) for 24 h at 25oC with agitation.

The extraction conditions chosen for this research for all techniques used (MAE, UAE

and maceration) are optimized conditions obtained by preliminary studies [18]. In which for

MAE different temperatures and extraction times were evaluated, for UAE different times and

ultrasound power output were evaluated and for maceration different solvents (water and

ethanol in different proportions) were evaluated. All extractions were carried out with an

amount of 0.5 g of ground material in 25 mL of distilled water used as solvent.

3.2.4 Total Phenolics (TP)

Singleton and Rossi [19] method was used to quantify total phenolics content with

Folin-Ciocalteu reagent. TP were quantified using a standard curve of absorbance obtained

Page 53: Thamiris Renata Martiny

53

with concentrations of gallic acid ranging from 70 to 1800 mg.L-1. The concentration was

expressed as milligrams of gallic acid equivalent per gram of dry matter. All measurements

were made in triplicate.

3.2.5 Antioxidant Activity (AA)

The AA was measured by the Brand-Williams et al. [20] method. The analysis was

conducted in triplicate. The percentage of free radicals scavenged by DPPH radical was

calculated using Equation 1.

𝐴𝐴 (%) = (𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝐴𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙) ∙ 100 (1)

where, Acontrol is the absorbance of the blank solution (with water), and Asample is the

absorbance of the extract solution. The absorbance was measured at 517 nm.

3.2.6 Oleuropein (OP) and Hydroxytyrosol (HT)

An Agilent 1100 series instrument (Santa Clara, USA), high performance liquid

chromatograph (HPLC) equipped with a variable wavelength detector (VWD) was used to

identify and quantify the amount of OP and HT in the extract. The separation was conducted

at 25ºC using a reversed phase C18 discovery column (5 μm, 25 cm×4.6 mm) (Supelco,

USA), fitted with a Supelguard C18 cartridge (5 μm, 2 cm×4 mm) (Discovery, USA). The

mobile phase was composed by a water/acetonitrile/acetic acid solution (80/19/1 v/v/v) [21].

Extracts obtained by the MAE, UAE and maceration methods were filtered through a 0.45

mm syringe filter and directly injected in the HPLC. The concentrations of OP and HT in the

extracts were quantified using standard curves. The extraction yields of OP and HT were

expressed in miligrams per gram of olive tree leaves (mg.g-1 ) (d.b.).

3.2.7 Antimicrobial Inhibition (AI)

The extract AI analysis was performed with the gram-negative bacteria Escherichia

coli K12 (ATCC 10798), following the micro-dilution method of the Clinical and Laboratory

Standards Institute [22]. Lyophilized extracts were used to determine the minimum inhibitory

Page 54: Thamiris Renata Martiny

54

concentration (MIC). The lyophilized extracts were obtained using a freeze dryer (Gamma 1-

16 LSC, Christ, Germany) for 48 h and the yield for extract produced was 22.9% (w/w).

Samples were tested at concentrations ranging from 5 to 75 mg.mL-1. The E. coli was cultured

in a nutrient broth at 37°C for 24 h in shaken flasks until a 0.5 optical density (600 nm) was

reached. A mixture of extract (135 μL), sterile Muller-Hinton broth (145 μL) and E. coli

culture (20 μL) was added to a 96-well microtiter plates. A positive control containing only

the inoculum (with no extract) and a negative control of inoculum and kanamycin antibiotic

(50 ug.mL-1) were added to the microplate. The assay was carried out in a microplate

incubated in a spectrophotometer (PowerWave XS, Biotek, USA) for 16 h, with the

temperature kept at 37°C. Absorbances (620 nm) were taken at different times during the

incubation period to establish the inhibition kinetics. The analysis were conducted in

biological triplicates. AI was calculated using Equation 2.

𝐴𝐼 = [1 − (𝑂𝐷𝑒𝑥𝑡2−𝑂𝐷𝑒𝑥𝑡1

𝑂𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙2−𝑂𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙1) 𝑥 100 ] (2)

where, ODext2 is the optical density of the sample after the incubation period, ODext1 is the

optical density of the sample before the incubation period, ODcontrol2 is the optical density of

the control after the incubation period, and ODcontrol1 is the optical density of the control

before the incubation period.

3.2.8 Statistical analysis

Experimental data were expressed as average values ± mean deviation. Significant

differences among the means were determined by Tukey test at p < 0.05 by Statistica software

(StatSoft Inc., 10, Tulsa, OK, USA).

3.3 RESULTS AND DISCUSSION

The values of total phenolic compounds (TP), antioxidant activity (AA), oleuropein

content (OP) and hydroxytyrosol content (HT) obtained with MAE, UAE and maceration are

presented in Table 1.

Page 55: Thamiris Renata Martiny

55

Table 1. Total phenolic (TP), antioxidant activity (AA), oleuropein (OP) and hydroxytyrosol

(HT).

Extraction

technique

TP

(mgGAE.g-1 d.b.)

AA

(%)

OP

(mgOP.g-1 d.b.)

HT

(mgHT.g-1 d.b.)

MAE 104.22±0.61a 90.03±0.04a 14.468±0.405a 0.590±0.001a

UAE 80.51±1.52b 91.45±1.29a 6.914±0.276b 0.547±0.001b

Maceration 57.28±0.95c 67.25±0.03b 0.051±0.001c 0.027±0.008c

Data reported are average values and ± mean deviation. Means with different superscript alphabets in the

columns of each analysis are significantly different at p<0.05.

The different extraction methods had a significant impact on the results of TP, AA, OP

and HT, with the exception of AA for MAE and UAE in which there was no significant

difference. Generally, the MAE increased significantly (p≤0.05) all the results. A previous

study reported a better performance of MAE attributed primarily to the greater cell wall

disruption under microwave processing, which resulted in faster release of the cell compounds

into the solvent [23]. The temperature applied in MAE improved the permeation and the

solubilization processes to wash the intracellular compounds out of the matrix [24]. Many

plant compounds are sensitive to high temperature, therefore, the use of microwave energy

during the extraction may yield poor results due to the degradation of these compounds. In

general, the extraction yield increases with the rising temperature in a shorter extraction time,

as it peaks at a maximum before flatlining or declining [25]. Thus, extraction of thermal

sensitive compounds, as oleuropein, has been a challenge. The results in this study prove that

a high extraction temperature (86oC) does not cause the degradation of antioxidant

compounds from olive tree leaves. The use of a temperature of 80°C is recommended to MAE

of olive tree leaves to minimize compound degradation [26].

An increase of the TP yield using MAE with similar short extraction times (2.5 to 4

min) has already been observed [13,27]. As expected, the AA values measured from the

extracts were higher and the values observed for the UAE (91.45%) and MAE (90.03%)

methods were similar to those found in the literature (95.4% - 95.5610%) [28,29]. Although

the extracts obtained by maceration resulted in a much lower yield (TP 57.28 mgGAE.g-1) than

the ones obtained by UAE or MAE, they were twice as high as those reported in the literature.

Ahmad-Qasem et al.[30] and Cavalheiro et al. [31] reported an extraction rate of 29 mgGAE.g-1

for olive leaves under maceration extraction in ethanol, at room temperature condition with

durations ranging from 5 to 24 h.

Page 56: Thamiris Renata Martiny

56

Acoustic cavitation was observed in the solvent by ultrasonic waves. Interestingly,

MAE using water as solvent was found to be faster and more efficient than the two other

extraction methods tested. The use of water, compared to standard methods that utilize organic

solvent, has the advantage of water being safer, less expansive and environment-friendly.

Bilgin and Sahin [32] also studied the extraction of phenolic compounds from olive leaves,

but using methanol as a solvent, in techniques such as homogenization and ultrasound

extraction. The authors found for the yield of phenolic extracts with the homogenization

technique values between 10.11 - 61.66 mgGAE/g dry leaf, while for ultrasound, the content

varied between 7.35 - 38.66 mgGAE/g of dry leaf. It is worth mentioning that, although some

studies have indicated that methanol is a good solvent to extract oleuropein, it has high

toxicity and may compromise the use of extracts in foods. Martín-García et al. [3] studied

pressurized liquid extraction to recover phenolic compounds from olive leaves, found better

results using ethanol as a solvent. Although ethanol is a safe solvent, extraction with it implies

more expenses with the process. In a recent study Kırbaşlar and Şahin [10] In a recent study

Kırbaşlar and Şahin [10] evaluated the extraction of phenolic compounds from olive leaves

using MAE, and obtained better results (10.45 mgGAE/g dry leaf) using acetonitrile as a

solvent, which is a harmful solvent. Therefore, the use of water as a solvent reduces the cost

of the process, makes it safer and cleaner, and expands the possibilities for future applications.

The OP was the predominant phenolic compound found in the extracts, followed by

HT. Oleuropein has been shown to be a powerful inhibitor of viruses, blocking the synthesis

of enzymes with roles in virus replication [33]. In a recent study, analyzing solutions to deal

with the COVID-19 pandemic, the oleuropein compound of olive leaves was mentioned for

its antiviral potential [33]. The suitability of each technique changes based on the properties

of the target class of compound for extraction and MAE has been shown to be more efficient

for extracting more polar compounds such as oleuropein [26]. The OP content reported in this

study for the MAE was 14.468 mg.g-1 (d.b.), a two-fold increase compared to the UAE. In

many cases, the UAE is used as a supplementary technique to increase the yield, as

demonstrated bt Xie et al. [34] when they obtained higher yields for oleuropein when they

used the UAE as a combined extraction technique. Yateem et al. [35] reported a high yield of

oleuropein, due to an increase in solubility of this compound, which was obtained by using a

higher temperature (60°C). In the literature, the measured concentrations of OP in olive leaves

are in the range of 6 to 20 mg.g-1 (d.b.) [12,36,37]. However, the extraction conditions

reported by the studies apply toxic solvents, such as acetonitrile and methanol. Şahin et al.

[27] also explored solvent-free MAE methods for the extraction of polyphenolic compounds,

Page 57: Thamiris Renata Martiny

57

and oleuropein from olive tree leaves. Yet, the yield observed by them was considerably

lower than the one reported in this work. They obtained, in the optimum extraction conditions

(250 W and 2 min), a oleuropein yield of 0.00006 mg.g-1 (d.b.), and a TP of 0.00248 mgGAE.g-

1 (d.b.).

The AI of olive leaf aqueous extracts against Escherichia coli was investigated in this

study. Though most of the strains of E. coli are harmless and thrive in the lower intestine of

human body, few strains can lead to food poisoning and gastroenteritis. E. coli contamination

in food products is one of the major causes of economic loss due to product recalls in North

America and Europe [38]. The antimicrobial analysis results for the olive extract obtained by

MAE and UAE are reported in Table 2.

Table 2. Antimicrobial Inhibition (AI) effect of extracts obtained from MAE and UAE against

E. coli.

Olive leaf extract

(mg.mL-1)

AI (%)

MAE UAE

75 100 91.8

50 100 80.9

25 85.4 0

10 38.6 0

5 23.9 0

The extract produced by MAE showed an inhibition of E. coli growth of 100% at a

concentration of 50 mg.mL-1, while at the same concentration, the UAE extract inhibition was

of 80.9%. The inhibition effect reached almost 92% for the UAE extract at 75 mg.mL-1. Liu et

al. [39] has reported that at a concentration of 62.5 mg.mL-1 the extract from olive leaves

inhibited 95% of the growth of E. coli. Similar to our results, however, utilizing a commercial

extract of olive leaves, Sudjana et al. [7] also observed a 100% of inhibitory activity for E.

coli. These differences are due to the use of different extraction methodologies, the origin of

the leaves, and the concentrations of synthesized bioactive compounds. The impact of the

geographic origin of the leaves on the concentration of the phenolic compounds has already

been proven. The concentration of phenolic compounds, obtained by UAE, ranging from 7.35

to 38.66 mgGAE/g-dried leaf have been obtained in metanoic extracts of olive leaves from

different regions of Anatolia [40]. Certainly, the chemical composition of the extracts

conditioned the observed antimicrobial effects [41], suggesting that Brazilian olive cultivars

Page 58: Thamiris Renata Martiny

58

have an enormous potential for recovery of bioactive compounds. The literature shows that

plant extracts with high phenolic content have a strong antibacterial activity [42]. Therefore,

our findings revealed that the high antibacterial activity of the MAE extract could be

attributed to the high OP and TP contents, compared to the one obtained by other extraction

methods.

OP and HT have been proven to inhibit or delay the growth rate of several pathogens [43].

Additionally, the use of extracts as antibacterial agents might be more beneficial and

synergistic than isolated constituents. Bioactive individual compounds can change their

properties in the presence of other compounds that are naturally present in the leaf extracts

[44]. This enhanced property, due to synergistic effect, is important in the bio-active

enrichment and makes the use of leaf extracts in the food and biopharma industries extremely

interesting [45].

Time-kill studies are important because the comprehensive information on

pharmacodynamics of an antimicrobial agent may not be obtained simply through endpoints

such as MIC [46]. Turbidimetry was used as the method to determine the growth of the

microorganism; the gradual cellular growth was inferred by absorbance measurements (Fig.

1).

Fig. 1. Kinetic growth profiles of E. coli against olive leaf extracts. MAE=microwave-assisted

extraction; UAE=ultrasound-assisted extraction; NC=negative control; PC=positive control.

Page 59: Thamiris Renata Martiny

59

Fig. 1 shows the kinetics of antimicrobial inhibition of olive leaves extracts at a

concentration of 50 mg.mL-1 against E. coli during the incubation period. The positive control

showed a typical expected growth curve including the exponential and stationary phases.

According to the findings, no bacterial growth was observed on extracts during the 75 min

after inoculation. Differences in antimicrobial activity between the MAE and UAE were

observed. After 75 min, the extract obtained from MAE presented a slight growth. The results

from the samples containing the UAE extract showed a less pronounced cell inhibition. In this

case, there was a point where the bacterial cells obtained large sizes and deposited in the

bottom, causing the backscattering effect, in which there is an increase of the spread of light

in the suspension, causing the false conclusion of a decrease in bacterial growth. However,

there was still a substantial significant difference in bacterial viability between the control and

the bacterial sample exposed to olive leaf extracts 16 hours after the inoculation. Thus, we

report on the antibacterial effect of the extract of Brazilian olive leaves against E. coli, as it

interferes with microbial growth, which can lead to bacteria death.

3.4 CONCLUSION

Different extraction techniques were used and compared to extract bioactive

compounds from Brazilian olive leaves using water as solvent. The results obtained in this

study demonstrate that MAE is more efficient than UAE and maceration. Under these

conditions to MAE, the OP and HT extractions were 14.468 and 0.590 mg.g-1 (d.b.).

From the antimicrobial inhibition results, the use of olive leaves as nutraceuticals may

lower the risk of E. coli contamination, mainly due to the protective action provided by its

bioactive compounds, mainly attributable to the presence of OP and HT. The extract produced

by MAE showed a MIC at concentration of 50 mg.mL-1. This study also reports on the

inhibition kinetics, which shows a quick effect (after 75 min).

Based on the results presented, antioxidant and antimicrobial properties were verified

and the potential for valorization of byproducts from olive cultivation, especially in emerging

plantations in southern Brazil. In the food industry, olive leaf extracts have shown to have a

broad application prospect in food industries to improve the nutritional profile of foods. Also

important to the food industry and others, the antibacterial effect of the extract should be

explored. Although future studies aiming at characterizing the antibacterial activity of the

extract, along with the biomolecular mechanism of the inhibition will be important to

Page 60: Thamiris Renata Martiny

60

elucidate this finding, this study is the first in reporting the important, and environmental-

friendly, potential of olive leaves extract as antibacterial agents.

Thus, in future work, olive leaf extracts can be used for the preparation of food

coatings in order to increase the shelf life of products. Furthermore, regarding the Covid-19

pandemic, that brought fast and substantial changes in the most diverse systems and

organizations, the academic-scientific environment are encouraged to find advances. We

intent in our future studies to produce nanofibers masks added with olive leaf extracts, which

may have the potential to provide extra biological protection through antimicrobial or

antiviral action.

Acknowledgements

The authors would like to thank the Coordination for the Improvement of Higher

Education Personnel and the Natural Sciences (CAPES), process number:

88881.119571/2016-01, and Natural Sciences and Engineering Research Council of Canada

for their financial support. This research was also supported by the Brazilian National

Counsel of Technological and Scientific Development (CNPq), process number:

249096/2013-7.

References

[1] M.D.L. De Castro, F.P. Capote, Extraction of Oleuropein and Related Phenols from

Olive Leaves and Branches, Elsevier Inc., 2010. https://doi.org/10.1016/B978-0-12-374420-

3.00028-0.

[2] M.H. Ahmad-Qasem, J. Cánovas, E. Barrajón-Catalán, V. Micol, J.A. Cárcel, J.V.

García-Pérez, Kinetic and compositional study of phenolic extraction from olive leaves (var.

Serrana) by using power ultrasound, Innov. Food Sci. Emerg. Technol. 17 (2013) 120–129.

https://doi.org/10.1016/j.ifset.2012.11.008.

[3] B. Martín-García, S. Pimentel-Moral, A.M. Gómez-Caravaca, D. Arráez-Román, A.

Segura-Carretero, Box-Behnken experimental design for a green extraction method of

phenolic compounds from olive leaves, Ind. Crops Prod. 154 (2020) 112741.

https://doi.org/10.1016/j.indcrop.2020.112741.

[4] J.A. Del Río, A.G. Báidez, J.M. Botía, A. Ortuño, Enhancement of phenolic

compounds in olive plants (Olea europaea L.) and their influence on resistance against

Phytophthora sp., Food Chem. 83 (2003) 75–78. https://doi.org/10.1016/S0308-

8146(03)00051-7.

Page 61: Thamiris Renata Martiny

61

[5] A.G. Báidez, P. Gómez, J.A. Del Río, A. Ortuño, Dysfunctionality of the xylem in

Olea europaea L. plants associated with the infection process by Verticillium dahliae Kleb.

role of phenolic compounds in plant defense mechanism, J. Agric. Food Chem. 55 (2007)

3373–3377. https://doi.org/10.1021/jf063166d.

[6] O.H. Lee, B.Y. Lee, Antioxidant and antimicrobial activities of individual and

combined phenolics in Olea europaea leaf extract, Bioresour. Technol. 101 (2010) 3751–

3754. https://doi.org/10.1016/j.biortech.2009.12.052.

[7] A.N. Sudjana, C. D’Orazio, V. Ryan, N. Rasool, J. Ng, N. Islam, T. V. Riley, K.A.

Hammer, Antimicrobial activity of commercial Olea europaea (olive) leaf extract, Int. J.

Antimicrob. Agents. 33 (2009) 461–463. https://doi.org/10.1016/j.ijantimicag.2008.10.026.

[8] V.T. Papoti, M. Papageorgiou, K. Dervisi, E. Alexopoulos, K. Apostolidis, D. Petridis,

Screening olive leaves from unexploited traditional Greek cultivars for their phenolic

antioxidant dynamic, Foods. 7 (2018) 1–21. https://doi.org/10.3390/foods7120197.

[9] G. Hodaifa, P.A.R. Gallardo, C.A. García, M. Kowalska, M. Seyedsalehi, Chemical

oxidation methods for treatment of real industrial olive oil mill wastewater, J. Taiwan Inst.

Chem. Eng. 97 (2019) 247–254. https://doi.org/10.1016/j.jtice.2019.02.001.

[10] Ş.İ. Kırbaşlar, S. Şahin, Recovery of bioactive ingredients from biowaste of olive tree

(Olea europaea) using microwave-assisted extraction: a comparative study, Biomass

Convers. Biorefinery. (2021).

http://publications.lib.chalmers.se/records/fulltext/245180/245180.pdf%0Ahttps://hdl.handle.

net/20.500.12380/245180%0Ahttp://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.

org/10.1016/j.gr.2017.08.001%0Ahttp://dx.doi.org/10.1016/j.precamres.2014.12.

[11] C.V. Cavalheiro, R.S. Picoloto, A.J. Cichoski, R. Wagner, C.R. de Menezes, L.Q.

Zepka, D.M. Da Croce, J.S. Barin, Olive leaves offer more than phenolic compounds - Fatty

acids and mineral composition of varieties from Southern Brazil, Ind. Crops Prod. 71 (2015)

122–127. https://doi.org/10.1016/j.indcrop.2015.03.054.

[12] N. Talhaoui, A.M. Gómez-caravaca, L. León, R. De, A. Segura-carretero, A.

Fernández-gutiérrez, Determination of phenolic compounds of ‘ Sikitita ’ olive leaves by

HPLC-DAD-TOF-MS . Comparison with its parents ‘ Arbequina ’ and ‘ Picual ’ olive leaves,

LWT - Food Sci. Technol. 58 (2014) 28–34. https://doi.org/10.1016/j.lwt.2014.03.014.

[13] Z. Rafiee, S.M. Jafari, M. Alami, M. Khomeiri, Microwave-assisted extraction of

phenolic compounds from olive leaves; a comparison with maceration, J. Anim. Plant Sci. 21

(2011) 738–745.

[14] Y. Tao, Y. Han, W. Liu, L. Peng, Y. Wang, S. Kadam, P.L. Show, X. Ye, Parametric

and phenomenological studies about ultrasound-enhanced biosorption of phenolics from fruit

pomace extract by waste yeast, Ultrason. Sonochem. 52 (2019) 193–204.

https://doi.org/10.1016/j.ultsonch.2018.11.018.

[15] R. Sankaran, S. Manickam, Y.J. Yap, T.C. Ling, J.S. Chang, P.L. Show, Extraction of

proteins from microalgae using integrated method of sugaring-out assisted liquid biphasic

Page 62: Thamiris Renata Martiny

62

flotation (LBF) and ultrasound, Ultrason. Sonochem. 48 (2018) 231–239.

https://doi.org/10.1016/j.ultsonch.2018.06.002.

[16] N. Talhaoui, A. Taamalli, A.M. Gómez-caravaca, A. Fernández-Gutiérrez, A. Segura-

Carretero, Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic

influence, and health benefits, Food Res. Int. 77 (2015) 92–108.

https://doi.org/10.1016/j.foodres.2015.09.011.

[17] T.R. Martiny, B.S. Pacheco, C.M.P. Pereira, A. Mansilla, M.S. Astorga-España, G.L.

Dotto, G.S. da Rosa, A novel biodegradable film based on k-carrageenan actived with olive

leaves extract, Food Sci. Nutr. 00 (2020) 1–10.

[18] G.S. da Rosa, S.K. Vanga, Y. Gariepy, V. Raghavan, Comparison of microwave,

ultrasonic and conventional techniques for extraction of bioactive compounds from olive

leaves (Olea europaea L.), Innov. Food Sci. Emerg. Technol. 58 (2019) 102234.

https://doi.org/10.1016/j.ifset.2019.102234.

[19] V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic

phosphotungstic acid reagents, Am. J. Enol. Vitic. 16 (1965) 144–158.

[20] W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate

antioxidant activity, LWT - Food Sci. Technol. 28 (1995) 25–30.

https://doi.org/https://doi.org/10.1016/S0023-6438(95)80008-5.

[21] F. Al-Rimawi, Development and validation of a simple reversed- phase HPLC-UV

method for determination of oleuropein in olive leaves, J. Food Drug Anal. (2013) 1–5.

https://doi.org/10.1016/j.jfda.2013.10.002.

[22] CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow

Aerobically, in: Approv. Stand. Ed. CLSI Doc. M07-A10., Pennsylvania, 2015: pp. 1–87.

https://doi.org/10.4103/0976-237X.91790.

[23] B. Zhang, R. Yang, C. Liu, Microwave-assisted extraction of chlorogenic acid from

flower buds of Lonicera japonica Thunb ., Sep. Purif. Technol. 62 (2008) 480–483.

https://doi.org/10.1016/j.seppur.2008.02.013.

[24] I. Khemakhem, O.D. Gargouri, A. Dhouib, M.A. Ayadi, M. Bouaziz, Oleuropein rich

extract from olive leaves by combining microfiltration, ultrafiltration and nanofiltration, Sep.

Purif. Technol. 172 (2017) 310–317. https://doi.org/10.1016/j.seppur.2016.08.003.

[25] C. Chan, R. Yusoff, G. Ngoh, F.W. Kung, Microwave-assisted extractions of active

ingredients from plants, J. Chromatogr. A. 1218 (2011) 6213–6225.

https://doi.org/10.1016/j.chroma.2011.07.040.

[26] A. Taamalli, D. Arráez-Román, E. Ibañez, M. Zarrouk, A. Segura-Carretero, A.

Fernández-Gutiérrez, Optimization of Microwave-Assisted Extraction for the

Characterization of Olive Leaf Phenolic Compounds by Using HPLC- ESI-TOF-MS/IT-MS

2, J. Agric. Food Chem. 60 (2012) 791–798.

Page 63: Thamiris Renata Martiny

63

[27] S. Sahin, R. Samli, A.S. Birteks Z Tan, F.J. Barba, F. Chemat, G. Cravotto, J.M.

Lorenzo, Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves:

Antioxidant and antimicrobial properties, Molecules. 22 (2017).

https://doi.org/10.3390/molecules22071056.

[28] M. Moudache, M. Colon, C. Nerín, F. Zaidi, Phenolic content and antioxidant activity

of olive by-products and antioxidant film containing olive leaf extract, Food Chem. 212

(2016) 521–527. https://doi.org/10.1016/j.foodchem.2016.06.001.

[29] S. Sahin, R. Samli, Optimization of olive leaf extract obtained by ultrasound-assisted

extraction with response surface methodology, Ultrason. Sonochem. 20 (2013) 595–602.

https://doi.org/10.1016/j.ultsonch.2012.07.029.

[30] M.H. Ahmad-Qasem, B.H. Ahmad-Qasem, E. Barrajón-Catalán, V. Micol, J.A.

Cárcel, J. V. García-Pérez, Drying and storage of olive leaf extracts. Influence on polyphenols

stability, Ind. Crops Prod. 79 (2016) 232–239. https://doi.org/10.1016/j.indcrop.2015.11.006.

[31] C.V. Cavalheiro, R.S. Picoloto, A.J. Cichoski, R. Wagner, C.R. de Menezes, L.Q.

Zepka, D.M. Da Croce, J.S. Barin, Olive leaves offer more than phenolic compounds - Fatty

acids and mineral composition of varieties from Southern Brazil, Ind. Crops Prod. 71 (2015)

122–127. https://doi.org/10.1016/j.indcrop.2015.03.054.

[32] M. Bilgin, S. Şahin, Effects of geographical origin and extraction methods on total

phenolic yield of olive tree (Olea europaea) leaves, J. Taiwan Inst. Chem. Eng. 44 (2013) 8–

12. https://doi.org/10.1016/j.jtice.2012.08.008.

[33] Z. Sun, K. Ken, Future antiviral surfaces : Lessons from COVID-19 pandemic,

Sustain. Mater. Technol. 25 (2020) e00203. https://doi.org/10.1016/j.susmat.2020.e00203.

[34] P.J. Xie, L.X. Huang, C.H. Zhang, F. You, Y.L. Zhang, Reduced pressure extraction

of oleuropein from olive leaves (Olea europaea L.) with ultrasound assistance, Food Bioprod.

Process. 93 (2015) 29–38. https://doi.org/10.1016/j.fbp.2013.10.004.

[35] H. Yateem, P. Afaneh, F. Al-Rimawi, Optimum Conditions for Oleuropein Extraction

from Olive Leaves, Int. J. Appl. Sci. Technol. 4 (2014) 153–157.

http://www.ijastnet.com/journals/Vol_4_No_5_October_2014/18.pdf.

[36] I. Afaneh, H. Yateem, F. Al-Rimawi, Effect of Olive Leaves Drying on the Content of

Oleuropein, Am. J. Anal. Chem. 06 (2015) 246–252. https://doi.org/10.4236/ajac.2015.63023.

[37] M. Ansari, M. Kazemipour, S. Fathi, Development of a Simple Green Extraction

Procedure and HPLC Method for Determination of Oleuropein in Olive Leaf Extract Applied

to a Multi-Source Comparative Study, J. Iran. Chem. Soc. 8 (2011) 38–47.

[38] R.L. Vogt, L. Dippold, Escherichia coli O157:H7 Outbreak Associated with

Consumption of Ground Beef, June–July 2002, Public Health Rep. 120 (2005) 174–178.

[39] Y. Liu, L.C. McKeever, N.S.A. Malik, Assessment of the antimicrobial activity of

olive leaf extract against foodborne bacterial pathogens, Front. Microbiol. 8 (2017) 1–8.

https://doi.org/10.3389/fmicb.2017.00113.

Page 64: Thamiris Renata Martiny

64

[40] M. Bilgin, S. Selin, Effects of geographical origin and extraction methods on total

phenolic yield of olive tree ( Olea europaea ) leaves, J. Taiwan Inst. Chem. Eng. 44 (2013) 8–

12. https://doi.org/10.1016/j.jtice.2012.08.008.

[41] A.P. Pereira, I.C.F.R. Ferreira, F. Marcelino, P. Valentão, B. Paula, R. Seabra, L.

Estevinho, A. Bento, J.A. Pereira, Phenolic Compounds and Antimicrobial Activity of Olive

(Olea europaea L. Cv. Cobrançosa) Leaves, Molecules. 12 (2007) 1153–1162.

https://doi.org/10.3390/12051153.

[42] S.A. Mohammed, R.C. Panda, B. Madhan, B.A. Demessie, Extraction of bio-active

compounds from Ethiopian plant material Rumex abyssinicus ( mekmeko ) root — A study

on kinetics , optimization , antioxidant and antibacterial activity, J. Taiwan Inst. Chem. Eng.

(2017) 1–12. https://doi.org/10.1016/j.jtice.2017.03.004.

[43] G. Bisignano, A. Tomaino, R. Lo Cascio, G. Crisafi, N. Uccella, A. Saija, On the In-

vitro Antimicrobial Activity of Oleuropein and Hydroxytyrosol, J. Pharm. Pharmacol. 51

(1999) 971–974. https://doi.org/10.1211/0022357991773258.

[44] A.T. Borchers, C.L. Keen, M.E. Gershwin, Mushorooms, Tumors, and Immunity: An

Update, Soc. Exp. Biol. Med. (2004).

[45] O. Benavente-García, J. Castillo, J. Lorente, A. Ortuño, J.A. Del Rio, Antioxidant

activity of phenolics extracted from Olea europaea L. leaves, Food Chem. 68 (2000) 457–

462. https://doi.org/https://doi.org/10.1016/S0308-8146(99)00221-6.

[46] K. Schaper, S. Schubert, A. Dalhoff, Kinetics and Quantification of Antibacterial

Effects of Beta-Lactams , Macrolides , and Quinolones against Gram-Positive and Gram-

Negative RTI Pathogens, Infection. 33 (2005) 3–14. https://doi.org/10.1007/s15010-005-

8202-2.

Page 65: Thamiris Renata Martiny

65

- CAPÍTULO 4 -

OTIMIZAÇÃO DA EXTRAÇÃO DE COMPOSTOS BIOATIVOS DA FOLHA DE

OLIVEIRA

Page 66: Thamiris Renata Martiny

66

O Capítulo 3 revelou que o melhor método de extração para recuperação de compostos

com potencial bioativo é a extração assistida por micro-ondas, diante disso o Capítulo 4

explorou essa técnica de extração visando a determinação das condições ótimas de extração

desses compostos de folhas de oliveira a partir do estudo de otimização. Essa pesquisa está

apresentada no artigo 2.

Artigo 2

Optimization of green extraction for the recovery of bioactive compounds from

Brazilian olive crops and evaluation of its potential as a natural preservative

Thamiris Renata Martiny1,2, Vijaya Raghavan3, Caroline Costa de Moraes4, Gabriela Silveira

da Rosa2,4, Guilherme Luiz Dotto1*

1Department of Chemical Engineering, Federal University of Santa Maria, 97105–900, Santa

Maria, Rio Grande do Sul, Brazil.

2Engineering Graduate Program, Federal University of Pampa, 1650, Maria Anunciação

Gomes de Godoy Avenue, Bagé, Rio Grande do Sul, Brazil.

3Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste–

Anne–de–Bellevue, Quebec, Canada, H9X 3V9.

4Materials Science and Engineering Graduate Program, Federal University of Pampa, 1650,

Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul, Brazil.

Thamiris Renata Martiny Email: [email protected]

Vijaya Raghavan Email: [email protected]

Caroline Costa de Moraes Email: [email protected]

Gabriela Silveira da Rosa Email: [email protected]

Guilherme Luiz Dotto Email: [email protected]

*Corresponding author: UFSM, 1000, Roraima Avenue, 97105–900, Santa Maria, RS, Brazil.

Email address: [email protected], phone number (+55) 55 32208448

Artigo publicado no periódico Journal of Environmental Chemical Engineering

Volume 9, Issue 2, 2021, 105130

ISSN: 2213-3437. DOI: https://doi.org/10.1016/j.jece.2021.105130

Page 67: Thamiris Renata Martiny

67

Graphical Abstract

Abstract

Olive leaves are a great resource to obtain bioactive compounds, contributing to sustainability

in agriculture. This work aimed to optimize the extraction conditions of bioactive compounds

from Brazilian olive leaves using a green technique and evaluate the potential of the extract as

a food additive with antioxidant and antibacterial activities. The microwave-assisted

extraction (MAE) was used to obtain the olive leaves extracts (O.L.Extracts). A central

composite rotational design was applied to optimize the MAE as a function of pH,

temperature and, irradiation time. The response variables were total phenolic (T.phenolic) and

antioxidant activity (Antioxidant.A). The optimal conditions for MAE were: 100 °C, 2 min,

and pH 6. Under these conditions, it is possible to obtain Antioxidant. A equal to 92.87% and

T.phenolic equal to 103.87 mgGAE.g– 1(d.b), according to the desirability function.

O.L.Extracts obtained under optimal conditions of MAE extraction showed antibacterial

activity against Escherichia coli, with a minimum inhibitory concentration value of 50 mg

mL-1 and the oleuropein content was 11.59 ± 0.004 mg g-1 (d.b). In addition to being able to

be recycled, olive leaves represent a viable source of bioactive compounds from green

extraction. Hence, their extracts have enormous potential for application in various areas,

especially natural additives, in the food area.

Keywords: olive leaves; microwave-assisted extraction; phenolic compounds; antioxidant

activity; oleuropein.

Page 68: Thamiris Renata Martiny

68

4.1 INTRODUCTION

The olive tree is a fruit plant, scientific name Olea europaea L., family Oleaceae.

Olive tree crops exist throughout the world, making up areas of the order of millions of

hectares, of which 90% are located on the coast of the Mediterranean Sea [1]. But this culture

has been expanding into other territories, especially in Brazil. The cultivation of olive trees

has been growing and changing the landscape, before with only vast agriculture fields, now as

olive groves as far as the eye can see [2,3]. The Brazilian lands proved to be good for

cultivating the olive tree, producing olive oils awarded worldwide. This scenario demonstrates

the economic and social importance of this crop and the emerging opportunity of using any of

its by-products of olive crops. From the economic viewpoint, the interest in olive trees is

linked to olives and olive oil production. In this production, many residues are generated,

such as pomace, mill wastewater, and leaves. Many studies have been published about other

olive-based residues in the production of value-added products, such as the use of olive

pomace for the production of cosmetics and supplementation of diets and the recovery of

bioactive compounds from mill wastewater have been appreciated in food and pharmaceutical

industry [4,5]. Nevertheless, the recycling of olive leaves must be considered, as well as the

most effective methods to extract all its bioactive properties.

This plant's leaves are considered by-products generated in large quantities, about 25

kg of leaves and branches, per tree, from the pruning activities [6–8]. Despite this,

historically, olive leaves are used for medicinal purposes, such as fighting fevers. Besides,

they are known to possess bioactive potential, which exhibits antioxidant and antimicrobial

properties, which have been linked to their strong preservative characteristics [9–11].

Therefore, it is interesting to appreciate and use this by-product due to its low cost and great

accumulation in this agricultural activity, representing an environmental, technical, and

economical solution to manage these by-products [6,8,12,13].

Olive leaves are of interest to science and industry worldwide [14]. According to De

Castro and Capote [15] and Japón-Luján [16], the leaves have the greatest power to extract

compounds with bioactive potential. Several studies have shown the great diversity of phenols

in olive leaves [10,14,17–19]. The most abundant phenolic compound is oleuropein [20],

about 60-90 mg/g of dry leaf, 73% of the total of its constituents [21]. Oleuropein has strong

antimicrobial activity. The main mechanisms proposed include damage to the cell membrane

and interference with the production of certain amino acids essential for these microorganisms

[22]. Furthermore, such compounds play important roles as antioxidant agents due to their

Page 69: Thamiris Renata Martiny

69

ability to scavenge free radicals, thus saving the cell from different diseases [23]. Larrosa et

al. [24] already highlighted vegetables as important sources of exogenous antioxidants like

phenolic compounds.

Given the exposition, the investigation of olive leaves extracts in the most diverse

industrial sectors is relevant, especially concerning the application as a natural additive in the

food area. With the benefit of the chemical industry's advancement, the food industry started

to use many chemical additives to improve the storage conditions. However, there is no

concern about the risks to health or the environment of these synthetic additives [25]. For this

reason, it is important to search for potential natural food additives, such as olive leaf extract,

which, due to its characteristics already mentioned, can act as a preservative and antioxidant

additive. Some studies point in this direction. The results obtained by Lee and Lee [26] show

that the combination of olive leaf extract phenolics possessed antimicrobial and antioxidant

activities. Also, Şahin et al. [27] obtained extracts from olive leaves that showed excellent

antibacterial and antioxidant activities. However, antioxidant activity and phenolics in olive

leaves were reported [6,28,29], but few studies are available on optimum extraction

conditions and quantification of individual phenolic compounds. When it comes to the olive

tree of Brazilian geographical origin, studies are non-existent.

The extraction of natural products is an operation of selective and effective removal of

compounds or fractions of interest within a plant matrix [30]. However, each plant has its

specific properties in terms of the extraction of biologically active compounds. It is then

important to obtain the optimal extraction conditions. Extraction success is influenced by

several factors, but mainly by the active compounds' thermal stability, extraction technology,

pH, temperature, solvent, and extraction time [31–33]. Therefore, it is fundamental to evaluate

several technologies that favor bioactive compounds' stability during extractions, which are

ecologically correct, efficient, and cost-effective. The quantity and quality of bioactive

compounds present in a plant depend on numerous conditions [34]. These include factors such

as drying, extraction, separation, and purification. Among these, extraction is a basic and

foremost important step in extracting the optimum amount of bioactive compounds. Some

alternative extraction techniques such as microwave-assisted extraction (MAE), ultrasonic-

assisted extraction, pressurized liquid extraction, and supercritical fluid extraction are

available and proven effective for phytochemicals [34]. The MAE is known to speed-up the

extraction process, low-energy requirement, minimum degradation of target components, and

better extraction yield along with lesser solvent use compared with conventional and other

advanced extraction techniques [35].

Page 70: Thamiris Renata Martiny

70

This work is of great value and will make a difference for the wider public. It provides

data on the extraction of bioactive compounds from olive leaves from plantations in southern

Brazil, whose information is still limited, given that the cultivation of olive trees in this area

region started recently. Coupled to this, the research seeks to solve a waste problem generated

in the cultivation of the olive tree, which is the leaves, making use of this waste that has

enormous potential as a source of bioactive compounds. Besides, it explores aspects of a

fundamental unit operation in chemical engineering, which is extraction. The research seeks

alternative forms of extraction that do not harm the environment, using water as a solvent,

providing valuable information within this research line.

The main goal of this work is to study the green extraction of olive tree leaves using

the MAE approach to optimize the extraction conditions and to prove that the extracts

produced under the optimum conditions are viable for future applications like natural additive

for the food industry, investigating their oleuropein content and their antimicrobial action.

4.2 MATERIALS AND METHODS

4.2.1. Olive leaves

The leaves, when grown, are long and narrow, elliptical, elliptical-lanceolate, and

lanceolate. They have a length ranging from 5.0 to 7.0 cm and a width of 1.0 to 1.5 cm and a

dark green and bright color in the ventral region and greyish or whitish green in the dorsal

region [36]. Fig. 1 represents the olive leaves of cultivar Arbequina collected in the region of

the Rio Grande do Sul campaign in southern Brazil (31º30'04.0 "S, 53º30'42.0" W). After

collection, the leaves were oven-dried (ETHIK, Brazil) (40°C-24 h). Then, the leaves were

milled (IKA® A11BS32, China) and sieved (metal mesh 60, Bertel, Brazil). Leaf powder

(particles less than 0.272 mm in diameter) was used in the extraction processes.

Page 71: Thamiris Renata Martiny

71

Fig. 1. Olive leaves.

4.2.2 Chemicals

The reagents used were: Folin Ciocalteu’s, anhydrous sodium carbonate, 2,2-diphenyl-

1-picrylhydrazyl (DPPH), methanol (HPLC grade), gallic acid, oleuropein, acetonitrile

(HPLC grade), and acetic acid (HPLC grade). All reagents were obtained from Sigma Aldrich

(St. Louis, USA).

4.2.3 Apparatus and extraction

Olive leaves extracts (O.L.Extracts) were obtained by microwave-assisted extraction

(MAE). MAE was conducted using a multimode (closed) microwave unit (MiniWAVE SCP

Science, Canada) with the frequency and irradiation power of 2.45 GHz and 1000 W. 0.5 g of

powdered olive leaves was added to 25 mL of distilled water [37]. The vessels were placed in

equipment, and the MAE was performed. After extractions were complete, the solids were

separated from the mixture by vacuum filtration (Sigma Aldrich, St. Louis, USA).

Page 72: Thamiris Renata Martiny

72

4.2.4 Experimental design

The type of solvent, extraction time, temperature, solvent concentration,

sample/solvent ratio, and microwave power are fundamental factors for the recovery of

polyphenols using microwave-assisted extraction [33]. Therefore, different extraction

conditions were tested. In this study, a central composite rotational design (CCRD) was used

to determine the main affecting factors and to verify the existence of quadratic terms in the

regression model. To evaluate the pure error, the design consisted of fourteen randomized

runs with three replicates at the central values. Independent variables used in the experimental

design were pH, irradiation time, and temperature (see Fig. 2). The independent variables

(Table 1) were coded in levels, and the answers are presented. The obtained parameters were

replaced in the second-order polynomial model shown in Equation 1.

Υ = 𝛽0 + ∑ 𝛽𝑖𝜅𝑖 = 1 Χ𝑖 + ∑ 𝛽𝑖𝑖

𝜅𝑖=1 Χ𝑖𝑖

2 + ∑ 𝛽𝑖𝑗𝜅−1𝑖 Χ𝑖 Χ𝑗 + (1)

where Υ is the predicted response (Antioxidant.A and T.phenolics), 𝛽0 is the constant

coefficient, Χ𝑖 are non-coded values of independent variables (pH, temperature, and

irradiation time), 𝛽𝑖, 𝛽𝑖𝑖, and 𝛽𝑖𝑗 are the linear, quadratic, and cross-product coefficients, and

is error.

Fig. 2. Central rotational composite design for microwave-assisted extraction (MAE) with

experimental values and coded levels of independent variables.

Page 73: Thamiris Renata Martiny

73

4.2.5 Estimation of total phenolic compounds and antioxidant activity

To obtain total phenolic compounds (T.phenolics) spectrometric method was used

[38]. For this, an aliquot (500 µL) of O.L.Extracts is mixed with 1000 µL of distilled water

and 100 µL of Folin-Ciocalteu. After 5 min, 8000 µL of 7.5% (w / v) aqueous sodium

carbonate solution is added. The mixture is stored in the dark for two hours. Then, the

mixture's absorbance is measured at a wavelength of 765 nm with a spectrophotometer

(Ultraspec 2100 pro, Biochrom Ltd., Cambridge, United Kingdom).

2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method [39] was used

to determine the antioxidant activity (Antioxiant.A). Briefly, the O.L.Extracts (200 µL) is

mixed with 7800 µL of DPPH solution and kept for 30 min in the dark at room temperature.

The same procedure is carried out with an aliquot of water to obtain the control. The

absorbance of the control and the extracts samples are measured using a spectrophotometer

(Ultraspec 2100 pro, Biochrom Ltd., Cambridge, United Kingdom) at 517 nm.

4.2.6 Potential of the leaf extract as a food preservative

The O.L.Extract's potential as a food preservative was determined using two

indicators: the oleuropein content and the antimicrobial action.

Quantitative analyzes of oleuropein in O.L.Extracts were performed by high-

performance liquid chromatography - HPLC (Agilent 1100 series instrument, USA).

Oleuropein was separated on a Discovery column (Supelco, USA) RP C18 (5 μm, 25 cm ×

4.6 mm), equipped with a Supelguard cartridge (Discovery, USA), C18 (5 μm, 2 cm × 4 mm)

and then analyzed using a variable wavelength detector (VWD) that is set to 280 nm. The

mobile phase is a mixture of water, acetonitrile, and acetic acid (80/19/1 v/v/v). The extract

was filtered through a 0.45 mm syringe filter and injected directly into the HPLC. The column

temperature is maintained at 25 °C, and the mobile flow was fixed at 1.0 mL.min-1.

Oleuropein was identified and quantified using external standards and a calibration curve. The

oleuropein content is expressed in mg.g-1 of olive leaves on a dry basis.

The Minimum Inhibitory Concentration (MIC) was evaluated against Escherichia coli

(E. coli) (ATCC 11229). E. coli was chosen because it is an important bacterium that

indicates food contamination, thus being able to limit or make dangerous its consumption

[40]. The MIC of the extract was defined as the lowest concentration of the extract necessary

for complete inhibition of visible growth [27]; concentrations ranged from 5 to 150 mg.mL-1

Page 74: Thamiris Renata Martiny

74

of extract. The antimicrobial action of the extracts was determined by the Elisa plate culture

adapted method [41,42]. In a 96-well microplate, 145 μL of sterile Mueller-Hinton broth, 135

μL of extract (in each of the tested concentrations), and 20 μL of the culture containing the E.

coli were pipetted into well. The antimicrobial action was quantified by the absorbance

(wavelength of 630 nm) difference between the two readings, one in the initial time and the

other after 16 h of incubation, of the samples containing each extract in different

concentrations concerning the mean absorbance of the control (with water) samples.

4.2.7 Statistical Analysis

All the experimental analyses were performed in triplicate, and the results are the

means with the mean deviation. All results were analyzed statistically with the aid of the

statistical software Statistica®, version 10.0. The adequacy of ANOVA for the models for all

independent variables without interaction was assessed using the Fisher's F-test and the lack

of fit test (at a 5% level of statistical significance) with an adjusted R2 value. The optimal

conditions of extraction were calculated using the procedure of desirability (in optimal values)

to maximize the response variables, optimizing processes with multiple responses.

4.3 RESULTS AND DISCUSSION

4.3.1 Optimization of microwave-assisted extraction conditions

Table 1 shows the values of phenolic compounds and antioxidant activity of the

O.L.Extracts obtained by microwave-assisted extraction according to the CCRD conditions.

Fig. 3 shows the O.L.Extracts obtained in each of the 17 extraction conditions; the visual

analysis assumes that the results of the extractions were different. The extraction process's

good reproducibility was verified through the results obtained by experiments 15 to 17, which

correspond to the central points for both total phenolic compounds and antioxidant activity.

From Table 1, it was found that for the experimental conditions, the range obtained for the

total phenolic compounds was from 67.84 to 119.16 mgGAE.g–1 (d.b). For antioxidant activity,

values between 77.56 and 93.58% were obtained.

Page 75: Thamiris Renata Martiny

75

Fig. 3. Extracts obtained from microwave extraction. The numbers correspond to each extract

obtained in the respective extraction condition (1-17) of Table 1.

Table 1. Total phenolic compounds (T.phenolics) and antioxidant activity (Antioxidant.A) of

extracts obtained by microwave.

Extration

condition

Irradiation

time (min) pH

Temperature

(ºC)

T.phenolics

(mgGAE.g–1

d.b)*

Antioxidant.A

(%)*

1 2 (-1) 3 (-1) 60 (-1) 79.85 ± 0.89 92.71 ± 0.003

2 6 (1) 3 (-1) 60 (-1) 88.79 ± 1.78 82.17 ± 0.1015

3 2 (-1) 9 (1) 60 (-1) 80.09 ± 0.84 79.70 ± 0.0041

4 6 (1) 9 (1) 60 (-1) 89.08 ± 1.18 84.49 ± 0.0038

5 2 (-1) 3 (-1) 100 (1) 103.24 ± 0.28 93.04 ± 0.0008

6 6 (1) 3 (-1) 100 (1) 110.02 ± 0.86 92.19 ± 0.0007

7 2 (-1) 9 (1) 100 (1) 105.91 ± 0.53 86.96 ± 0.0045

8 6 (1) 9 (1) 100 (1) 106.16± 0.86 83.81 ± 0.0069

9 4 (0) 6 (0) 46 (-1.68) 67.84 ± 0.62 90.49 ± 0.0058

10 4 (0) 6 (0) 114 (+1.68) 115.80 ± 0.49 92.12 ± 0.0054

11 4 (0) 1 (-1.68) 80 (0) 119.16 ± 1.61 93.58 ± 0.0071

12 4 (0) 11(+1.68) 80 (0) 111.32 ± 0.36 77.57 ± 0.0081

13 0.64 (-1.68) 6 (0) 80 (0) 89.32 ± 1.81 92.05 ± 0.0014

14 7.36 (+1.68) 6 (0) 80(0) 99.64 ± 1.15 91.14 ± 0.0016

15 4 (0) 6 (0) 80 (0) 100.46 ± 0.05 92,06 ± 0.0043

16 4 (0) 6 (0) 80 (0) 100.33 ± 0.33 92.59 ± 0.003

17 4 (0) 6 (0) 80 (0) 100.18 ± 1.57 92.38 ± 0.0023

* mean ± standard deviation (n = 3).

From the CCRD response matrix (Table 1), Pareto charts were generated to verify the

significance of temperature, time, pH, and their interactions in the considered responses.

Pareto plots for total phenolic compound responses and antioxidant activity are shown in Fig.

4 (a) and 4 (b), respectively. Fig. 4 shows that all the main effects (temperature, time, and

Page 76: Thamiris Renata Martiny

76

pH), both linear and quadratic, and also the interaction effect, significantly influenced

(p≤0.05) the response to total phenolic compounds (Fig. 4 (a)). Şahin et al. [27] also found

that the variable extraction time was significant when they studied the extraction of phenolic

compounds from olive leaves. For the antioxidant activity response (Fig. 4 (b)), only the

interaction between linear temperature and time was not significant.

Fig. 4. Pareto chart of the responses (a) total phenolic compounds and (b) antioxidant activity

Page 77: Thamiris Renata Martiny

77

Second-order Equations 2 and 3 are derived for total phenolic compounds

(T.phenolics), and antioxidant activity (Antioxidant.A), respectively, as a function of

temperature (T), time (t), and pH.

T. phenolics = 100,66 − 4,06T2 − 3,25t2 + 4,15pH2 + 12,27T + 3,10t − 1,01pH −

+0,22TpH − 1,36Tt − 0,81pHt (2)

Antioxidant. A = 92,50 − 0,87T2 − 0,80t2 − 2,99pH2 + 1,43T − 3,82pH − 0,47TpH +

+1,62pHt (3)

To verify whether the statistical models (Equations 2 and 3) were predictive and

significant, the analysis of variance and Fisher's F-test (Tables 2 and 3) were used. The model

that represents the total phenolic compounds as a function of the independent variables

(Equation 2) was statistically significant (R2 = 0.92) and predictive since the F calculated

value (Fvalue= 15.62) was about four times higher than the standard F (Ftable = 3.68). The

model that represents the antioxidant activity (Equation 3) was also statistically significant

(R2 = 0.82) and not predictive since the F calculated value was approximately equal to the F

table (Fvalue= 3.79 and Ftable = 3.68). Regardless, the results can be included in the analysis by

the recommendations from other authors who also found similar behavior in plant matrices

[43,44]. Thus, the models can adequately adjust to the experimental data, indicating the

relationship between the dependent and independent parameters. The experimental designs

were found to be adequate to describe and predict the extraction process of phenolic

compounds and antioxidant activity from olive leaves, providing useful models that

sophisticated the research process towards better research parameters, allowing to guide

decision making.

Table 2. Analysis of variance for phenolic compounds.

Sum of

squares

Degrees of

freedom

Quadratic

mean F value F table

Regression 2915.77 9 323.97 15.62 3.68

Residual 145.17 7 20.74

Lack of fit 145.13 5 29.03

Pure error 0.04 2 0.02

Total 3060.94 16

Page 78: Thamiris Renata Martiny

78

Table 3. Analysis of variance for antioxidant activity.

Sum of

squares

Degrees of

freedom

Quadratic

mean F value F table

Regression 381.66 9 42.41 3.79 3.68

Residual 78.34 7 11.19

Lack of fit 79.19 5 0.02

Pure error 0.14 2

Total 460.01 16

The estimation of the optimal conditions for the response variables defined in the

experimental design was performed based on the proposed statistical models and "Function

Desirability." Table 4 presents the specifications of the numerical values for the lower limit,

average value, and upper limit, in addition to the exponents s and τ and the desirability

required by the Statistica software as input for the optimization of the extraction. The values

in parentheses are the desirability (Table 4). For antioxidant activity, responses above 85.57%

were considered acceptable, whereas total phenolic compounds are considered unsatisfactory

below 67.84 mgGAE.g– 1 (d.b) acceptable close to the midpoint and satisfactory close to the

upper limit. The aim was to maximize these responses; the upper limits were considered

desirable. The high value chosen against the low value of τ causes the desirability to decrease

rapidly, becoming very low unless the predicted response is very close to the target. In this

case, it is more acceptable for the response value to be above the target than below it. Fig. 5

shows the results of the optimization algorithm.

Table 4. Parameters used in the simultaneous optimization of microwave extraction

responses.

Response Inferior limit Midpoint Superior limit s τ

Antioxidant activity 77.57 (0) 85.57 (1) 93.58 (1) 10 1

Total phenolic compounds 67.84 (0) 93.50 (0.5) 119.1 (1) 10 1

Page 79: Thamiris Renata Martiny

79

Fig. 5. Profile of predicted values and desirability for antioxidant activity and total phenolic

compounds for microwave extraction.

The curves show how the responses vary with each factor, keeping the levels of the

other factors fixed at the specified values. In the second graph of the first column, for

example, it can be seen that the antioxidant activity is little affected by the temperature

variation. Time has little influence on the responses since temperature and pH are the

determining factors for obtaining the optimum point. The desirability graphs as a function of

temperature and pH (fourth line) show that any change in temperature or time will cause a

sharp drop in desirability. The vertical dashed lines indicate maximum global desirability

conditions, which for this set of tests reached 0.84 (blue dashed line). It was obtained at a

temperature of 100 °C in 2 min and pH 6 (red dashed line). Under these conditions, it will be

possible to obtain the antioxidant activity equal to 92.87% and the total phenolic compounds

equal to 103.87 mgGAE.g– 1 (d.b), as shown by the values marked on the respective axes (solid

blue line).

Page 80: Thamiris Renata Martiny

80

The condition optimized by the "Desirability function" was tested experimentally for

validation. The result for total phenolic compounds was 115.96 ± 0.56 mgGAE.g–1(d.b), and the

result for antioxidant activity was 89.52 ± 0.013 %. The result of total phenolic compounds

exceeded the model's expectation, whereas the antioxidant activity resulted below the

expected result. The results indicated the suitability of the model. The Desirability was

successfully applied to optimize the extraction process in a shorter extraction time and at a pH

without the need for correction, since pH 6 was that of the distilled water used.

The optimal extraction conditions are following the data reported in the literature.

Şahin et al. [27] also reported very short extraction times. They also find a better time in 2

min during the extraction of phenolic compounds from olive leaves using microwaves. The

short time is one of MAE's main related advantages because conventional techniques require

a long extraction time, causing the degradation of bioactive compounds [37,45]. As

previously reported, MAE presents efficient extraction yields in a shorter time and without the

degradation of the extracted bioactive compounds [46]. In addition, because it does not

require a long extraction time and has a good yield, the MAE justifies its use despite its

energy expenditure.

About the temperature effect, in extraction with microwaves, the elevated temperature

favored the removal of the bioactive compounds present in the leaf matrix. The increase in the

temperature decreases solvent viscosity, causing an increase in the intermolecular interaction

resulting in increased compounds solubility, increasing the mass transfer coefficients. Higher

temperatures can also cause cell disruption due to the increase in intracellular pressure [47].

All these facts corroborate the result of a higher temperature for the optimal extraction

condition.

Finally, for the variable pH, extraction proceeds better at more moderate pHs.

Regarding the recovery of polyphenols, pH can impact different mechanisms, such as

increased solute solubility and alternation of antioxidant interactions with other plant material

[48]. According to Japón-Luján et al. [49], the largest amount of phenolic compound

oleuropein extracted from olive leaves was found at pH 7. In contrast, the authors used the

ultrasound-assisted extraction technique.

Regarding the yield of phenolic compounds and antioxidant activity, the results found

were excellent, indicating a good prospect for future applications of the produced

O.L.Extracts. In recent contribuitions from our research group [50] was reported that

Arbequina olive leaves collected from the same location showed lower (41.40 mgGAE.g–1)

phenolic content when maceration process with water was applied. Compared to other

Page 81: Thamiris Renata Martiny

81

researches, similar antioxidant activity results of up to 94% were obtained for olive leaf

extracts [4,18,23]. In line with the results obtained in the present study, Rosa et al. [37] also

produced olive leaf extract by MAE but did not explore the pH variable. They found 104.22

mgGAE.g–1 (d.b.) for total phenolic compounds and 90.03% for antioxidant activity, at a

temperature of 86 °C and extraction time of 3 min. Abaza et al. [28] also produced aqueous

extracts of olive leaves, but using room temperature and maceration as an extraction

technique, and found 16.52 mgGAE.g–1 (d.b). Ahmad Qasem et al. [51] studied the phenolic

extraction of olive leaves by maceration and found the value of 66 mgGAE.g–1 (d.b.) for the

total phenolic compounds. Rafiee et al. [52] reported that the phenolics compounds yield of

54.08 mgGAE.g−1 (d.b.) for olive leaf extract was obtained using water as a solvent in MAE

with 4 min of extraction time.

4.3.2 Oleuropein content and antimicrobial action of the O.L.Extracts

The oleuropein content quantified under optimized microwave-assisted extraction

conditions was 11.59 ± 0.004 mg.g-1 (d.b.). In a study by Japón-Luján et al. [53], 23 mg.g-1

(d.b.) of oleuropein was extracted using the microwave technique in a mixture of ethanol and

water (80:20 v/v). In contrast, Khemakhem et al. [54] used the maceration technique and

produced aqueous extracts of olive leaves, obtaining 2.65 mg.g-1 (d.b.) of oleuropein. Jemai et

al. [55] extracted 0.0432 mg.g-1 (d.b.) of oleuropein from olive leaves using a mixture of

methanol and water (200 mL, 4: 1 v/v) by maceration. Ansari et al. [56] extracted the

oleuropein with water at 60 °C and obtained approximately 15 mg.g-1 (d.b.). Coppa et al. [57]

obtained a high oleuropein value of 65.9 mg.g-1 (d.b.) but used methanol as a solvent, and the

olive leaves came from Spain. In another study published by Stamatopoulos et al. [19], the

authors extracted oleuropein from dried olive leaves using the bleaching method steam in

multiple stages, for 48 h at 40 °C, and ethanol and water ratio 70:30. These conditions

resulted in an oleuropein content of 4.6 mg.g-1 (d.b.). The value obtained in this research was

comparable to the results reported in the cited literature. It is worth mentioning that important

differences are observed, such as the type of solvent, extraction technique, and origin of the

plant matrix. Another relevant fact was that water was used as a solvent (safe and non-toxic)

in this research, which showed a positive result in the oleuropein content obtained, thus

making its use competitive in substitution to methanol and ethanol, which are commonly used

in extractions.

Page 82: Thamiris Renata Martiny

82

The O.L.Extracts obtained under the optimal microwave extraction conditions showed

antibacterial activity against Escherichia coli, with a MIC value of 50 mg mL-1. This result is

a half of MIC reported in previous study [50] with same samples, but using maceration as an

extraction method. Therefore, it is noteworthy that the methodology and optimized conditions

achieved in the present study were efficient in increasing the antibacterial activity of the

O.LExtract. The result also is in close agreement with the data previously reported by Pereira

et al. [22]. They also found antimicrobial activity dependent on the concentration of olive leaf

extracts against bacteria and fungi. They attributed the antimicrobial activity to oleuropein

and the total phenolic compounds identified in the extract. Şahin et al. [27] similarly produced

olive leaves extracts using the microwave technique but evaluated the variables irradiation

power, irradiation time, and leaf mass. Their study revealed that olive leaf extract obtained in

optimal conditions showed antibacterial activity against Staphylococcus aureus and

Staphylococcus epidermidis, with a MIC value of 1.250 mg mL-1. Dominciano [58] evaluated

oleuropein's efficiency as antimicrobial power against the bacteria Listeria monocytogenes,

Staphylococcus aureus, and Escherichia coli. They found that the oleuropein also had an

antimicrobial effect (reduction: 91.49%).

The results of oleuropein content and antimicrobial action of the O.L.Extracts obtained

at optimal MAE conditions have revealed that olive leaf extract is a potentially cheap,

renewable, and abundant bioactive compound source. These valuable compounds in olive

leaves are responsible for many health benefits, and their use represents benefits for the

environment. However, the O.L.Extracts characteristics, as demonstrated in this work, are

affected by technological parameters, type of solvent, temperature, extraction time, pH, and

geographical origin. Therefore, there is a growing interest in using O.L.Extracts in various

industrial applications, such as natural food additives. Some works already point in this

direction, especially in film production. For example, the research developed by Carvalho et

al. [59] produced chitosan films with anthocyanins, which also have antioxidant power. More

specifically, Rosa et al. [60] demonstrated that when the olive leaf extract obtained by MAE is

incorporated in biodegradable carrageenan films, the films presented antioxidant

characteristics appear to be a potential strategy to add natural food additives. Martiny et al.

[50] also incorporated olive leaves extract obtained by maceration into carrageenan matrix

film, and they discovered that the film could be used as antimicrobial food packaging. Marcos

et al. [61] developed polyester films with olive leaf extract. They found that extract has

antioxidant activity in vitro. Finally, Botsoglou et al. [62] proved that olive leaves extract

could also be used as an antioxidant in meat stored.

Page 83: Thamiris Renata Martiny

83

The proposed MAE method allows the extraction of these compounds in a shorter time

(2 min) with higher efficiency without using any toxic solvent. Therefore, MAE proved to be

an attractive alternative to conventional extraction methods to extract bioactive compounds

from olive leaves. It is noteworthy that this research has found superior results especially

when comparing the results of phenolic compounds and antioxidant activity using the MAE

for this purpose with viable and competitive parameters. The literature cited makes use of

other extraction methods, such as maceration and ultrasound-assisted extraction. When

comparing the use of MAE in the cited literature, it appears that all parameters that were

explored here were not explored in a combined manner. It is important to note that all this was

achieved using water as an extractor solvent, which is an important fact, since most other

research to have good extraction yields uses organic solvents (methanol and ethanol), which

can limit the application of the extracts later. In comparision with the conventional extraction

[50] it was possible to increase the phenolic compounds in almost 3-fold and to ensure the

antibacterial activity against Escherichia coli with a half of MIC. Combining all obtained

results, MAE showed advantages and could be successfully used at the optimal conditions

proposed for the recovery of olive leaves bioactive compounds in order to produce a natural

additive with antioxidant and antimicrobial capacities. The O.L.Extracts produced in this

work can be applied in several industry sectors, but special attention can be given to its use as

a natural preservative in food packaging. This fact was confirmed in a recent work published

using the extract obtained from this research. Martiny et al. [63] produced carrageenan-based

active packaging film using the same O.L.Extracts from this research as a bioactive agent, and

the study revealed that the film with the O.L.Extracts was shown to have an antimicrobial

capacity during the storage of lamb meat with the potential to increase the shelf life of it.

4.4 CONCLUSIONS

This work studied the effects of temperature, irradiation time, and pH during the

microwave-assisted extraction (MAE) of bioactive compounds from southern Brazil's olive

leaves. The regression models can accurately predict the phenolic compounds and antioxidant

activity of the MAE. The ideal extraction conditions for the examined responses were as

follows: pH = 6, irradiation time = 2 min and temperature = 100 °C. Under these ideal

conditions, the oleuropein concentration was 11.59 mg.g-1 (d.b.), and the olive leaf extract

showed antimicrobial action against the bacterium Escherichia coli with a MIC of 50 mg mL-

1. The data of this research demonstrate that the olive leaves can supply compounds with

Page 84: Thamiris Renata Martiny

84

bioactive potential, which can be used as a resource and should not be discarded as residue.

This fact reinforces the questions about sustainability in olive growing. The extract produced

represents an alternative to chemical additives in the food industry, exploiting their

antioxidant and antimicrobial activities.

References

[1] J. Giacometti, G. Žauhar, M. Žuvić, Optimization of ultrasonic-assisted extraction of

major phenolic compounds from olive leaves (Olea europaea L.) using response

surface methodology, Foods. 7 (2018) 1–14. https://doi.org/10.3390/foods7090149.

[2] C.V. Cavalheiro, R.S. Picoloto, A.J. Cichoski, R. Wagner, C.R. de Menezes, L.Q.

Zepka, D.M. Da Croce, J.S. Barin, Olive leaves offer more than phenolic compounds -

Fatty acids and mineral composition of varieties from Southern Brazil, Ind. Crops

Prod. 71 (2015) 122–127. https://doi.org/10.1016/j.indcrop.2015.03.054.

[3] E.F. Coutinho, F.C. Ribeiro, T.H. Cappellaro, F.A. Araújo, Mercados e

comercialização, in: E.F. Coutinho, F.C. Ribeiro, T.H. Cappellaro (Eds.), Cultiv.

Oliveira (Olea Eur. L.), Embrapa Clima Temperado, Pelotas, 2009: pp. 102–115.

[4] M. Moudache, M. Colon, C. Nerín, F. Zaidi, Phenolic content and antioxidant activity

of olive by-products and antioxidant film containing olive leaf extract, Food Chem. 212

(2016) 521–527. https://doi.org/10.1016/j.foodchem.2016.06.001.

[5] Á. Peralbo-Molina, M.D.L. de Castro, Potential of residues from the Mediterranean

agriculture and agrifood industry, Food Sci. Technol. 32 (2013) 1–9.

https://doi.org/10.1016/j.tifs.2013.03.007.

[6] S.N. El, S. Karakaya, Olive tree (Olea europaea) leaves: Potential beneficial effects on

human health, Nutr. Rev. 67 (2009) 632–638. https://doi.org/10.1111/j.1753-

4887.2009.00248.x.

[7] Á. Guinda, T. Albi, M.C. Pérez-Camino, A. Lanzón, Supplementation of oils with

oleanolic acid from the olive leaf (Olea europaea), Eur. J. Lipid Sci. Technol. 106

(2004) 22–26. https://doi.org/10.1002/ejlt.200300769.

[8] N. Boudhrioua, N. Bahloul, I. Ben Slimen, N. Kechaou, Comparison on the total

phenol contents and the color of fresh and infrared dried olive leaves, Ind. Crops Prod.

9 (2008) 412–419. https://doi.org/10.1016/j.indcrop.2008.08.001.

[9] O. Benavente-García, J. Castillo, J. Lorente, A. Ortuño, J.A. Del Rio, Antioxidant

activity of phenolics extracted from Olea europaea L. leaves, Food Chem. 68 (2000)

457–462. https://doi.org/https://doi.org/10.1016/S0308-8146(99)00221-6.

[10] H.J. Wichers, C. Soler-rivas, J.C. Espı, Review Oleuropein and related compounds, J.

Sci. Food Agric. 80 (2000) 1013–1023. https://doi.org/10.1002/(SICI)1097-

0010(20000515)80:7<1013::AID-JSFA571>3.0.CO;2-C.

Page 85: Thamiris Renata Martiny

85

[11] H. Annab, N. Fiol, I. Villaescusa, A. Essamri, A proposal for the sustainable treatment

and valorisation of olive mill wastes, J. Environ. Chem. Eng. 7 (2019) 102803.

https://doi.org/10.1016/j.jece.2018.11.047.

[12] J.M. Romero-garcía, L. Niño, C. Martínez-patiño, C. Álvarez, E. Castro, M.J. Negro,

Bioresource Technology Biorefinery based on olive biomass . State of the art and

future trends, 159 (2014) 421–432. https://doi.org/10.1016/j.biortech.2014.03.062.

[13] C. Romero, E. Medina, M.A. Mateo, M. Brenes, New by-products rich in bioactive

substances from the olive oil mill processing, J Sci Food Agric. 98 (2018) 225–230.

https://doi.org/10.1002/j.

[14] F. Rodrigues, F.B. Pimentel, M.B.P.P. Oliveira, Olive by-products: Challenge

application in cosmetic industry, Ind. Crops Prod. 70 (2015) 116–124.

https://doi.org/10.1016/j.indcrop.2015.03.027.

[15] M.D.L. De Castro, F.P. Capote, Extraction of Oleuropein and Related Phenols from

Olive Leaves and Branches, Elsevier Inc., 2010. https://doi.org/10.1016/B978-0-12-

374420-3.00028-0.

[16] R. Japón-Luján, J.M. Luque-Rodrígues, M.D.L. Castro, Dynamic ultrasound-assisted

extraction of oleuropein and related biophenols from olive leaves, J. Chromatogr. 1108

(2006) 76–82. https://doi.org/10.1016/j.chroma.2005.12.106.

[17] K. Kiritsakis, A.M. Goula, K.G. Adamopoulos, Valorization of Olive Leaves : Spray

Drying of Olive Leaf Extract, Waste and Biomass Valorization. 9 (2017) 616–633.

https://doi.org/10.1007/s12649-017-0023-x.

[18] S. Sahin, M. Bilgin, Olive tree (Olea europaea L.) leaf as a waste by-product of table

olive and olive oil industry: A review, J Sci Food Agric. 98 (2018) 1271–1279.

https://doi.org/10.1002/j.

[19] K. Stamatopoulos, A. Chatzilazarou, E. Katsoyannos, Optimization of Multistage

Extraction of Olive Leaves for Recovery of Phenolic Compounds at Moderated

Temperatures and Short Extraction Times, Foods. 3 (2014) 66–81.

https://doi.org/10.3390/foods3010066.

[20] E. Gikas, F.N. Bazoti, A. Tsarbopoulos, Conformation of oleuropein , the major

bioactive compound of Olea europea, 821 (2007) 125–132.

https://doi.org/10.1016/j.theochem.2007.06.033.

[21] A.N. Sudjana, C. D’Orazio, V. Ryan, N. Rasool, J. Ng, N. Islam, T. V. Riley, K.A.

Hammer, Antimicrobial activity of commercial Olea europaea (olive) leaf extract, Int.

J. Antimicrob. Agents. 33 (2009) 461–463.

https://doi.org/10.1016/j.ijantimicag.2008.10.026.

[22] A.P. Pereira, I.C.F.R. Ferreira, F. Marcelino, P. Valentão, P.B. Andrade, R. Seabra, L.

Estevinho, A. Bento, J.A. Pereira, Phenolic Compounds and Antimicrobial Activity of

Olive (Olea europaea L. Cv. Cobrançosa) Leaves, Molecules. 12 (2007) 1153–1162.

https://doi.org/10.3390/12051153.

Page 86: Thamiris Renata Martiny

86

[23] R. Fares, S. Bazzi, S.E. Baydoun, R.M. Abdel-Massih, The Antioxidant and Anti-

proliferative Activity of the Lebanese Olea europaea Extract, Plant Foods Hum. Nutr.

66 (2011) 58–63. https://doi.org/10.1007/s11130-011-0213-9.

[24] A.P.Q. Larrosa, T.R.S. Cadaval, L.A.A. Pinto, Influence of drying methods on the

characteristics of a vegetable paste formulated by linear programming maximizing

antioxidant activity, LWT - Food Sci. Technol. 60 (2015) 178–185.

https://doi.org/10.1016/j.lwt.2014.08.003.

[25] M. Faustino, M. Veiga, P. Sousa, E.M. Costa, S. Silva, M. Pintado, Agro-Food

Byproducts as a New Source of Natural Food Additives, Molecules. 24 (2019).

https://doi.org/10.3390/molecules24061056.

[26] O.H. Lee, B.Y. Lee, Antioxidant and antimicrobial activities of individual and

combined phenolics in Olea europaea leaf extract, Bioresour. Technol. 101 (2010)

3751–3754. https://doi.org/10.1016/j.biortech.2009.12.052.

[27] S. Sahin, R. Samli, A.S. Birteks Z Tan, F.J. Barba, F. Chemat, G. Cravotto, J.M.

Lorenzo, Solvent-free microwave-assisted extraction of polyphenols from olive tree

leaves: Antioxidant and antimicrobial properties, Molecules. 22 (2017).

https://doi.org/10.3390/molecules22071056.

[28] L. Abaza, N. Ben Youssef, H. Manai, F. Mahjoub Haddada, K. Methenni, M. Zarrouk,

Chétoui olive leaf extracts: influence of the solvent type on phenolics and antioxidant

activities, Grasas y Aceites. 62 (2011) 96–104. https://doi.org/10.3989/gya.044710.

[29] O.H. Lee, B.Y. Lee, Antioxidant and antimicrobial activities of individual and

combined phenolics in Olea europaea leaf extract, Bioresour. Technol. 101 (2010)

3751–3754. https://doi.org/10.1016/j.biortech.2009.12.052.

[30] C.M.O. Simões, E.P. Schenkel, G. Gosmann, J.C.P. Mello, L.A. Mentz, P.R. Petrovick,

Farmacognosia da planta ao medicamento, 6th ed., Porto Alegre/Florianópolis, 2010.

[31] E. Roselló-soto, M. Koubaa, A. Moubarik, R.P. Lopes, A. Jorge, N. Boussetta, N.

Grimi, F.J. Barba, Emerging opportunities for the effective valorization of wastes and

by-products generated during olive oil production process: Non-conventional methods

for the recovery of high-added value compounds, Trends Food Sci. Technol. 45 (2015)

296–310. https://doi.org/10.1016/j.tifs.2015.07.003.

[32] P. Putnik, F.J. Barba, I. Spani, V. Dragovi, Green extraction approach for the recovery

of polyphenols from Croatian olive leaves (Olea europea), Food Bioprod. Process. 106

(2017) 19–28. https://doi.org/10.1016/j.fbp.2017.08.004.

[33] P. Panja, Green extraction methods of food polyphenols from vegetable materials,

Curr. Opin. Food Sci. 23 (2017) 173–182. https://doi.org/10.1016/j.cofs.2017.11.012.

[34] L. Wang, C.L. Weller, Recent advances in extraction of nutra- ceuticals from plants, 17

(2006) 300–312. https://doi.org/10.1016/j.tifs.2005.12.004.

Page 87: Thamiris Renata Martiny

87

[35] N. Talhaoui, A. Taamalli, A.M. Gómez-caravaca, A. Fernández-Gutiérrez, A. Segura-

Carretero, Phenolic compounds in olive leaves: Analytical determination, biotic and

abiotic influence, and health benefits, Food Res. Int. 77 (2015) 92–108.

https://doi.org/10.1016/j.foodres.2015.09.011.

[36] H. V. Rapoport, Botânica y Morfologia, in: El Cultiv. Del Olivo, 2nd ed., Mundi-

Prensa-Junta de Andalucia, Madri, 1998: pp. 37–63.

[37] G.S. da Rosa, S.K. Vanga, Y. Gariepy, V. Raghavan, Comparison of microwave,

ultrasonic and conventional techniques for extraction of bioactive compounds from

olive leaves (Olea europaea L.), Innov. Food Sci. Emerg. Technol. 58 (2019) 102234.

https://doi.org/10.1016/j.ifset.2019.102234.

[38] V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic

phosphotungstic acid reagents, Am. J. Enol. Vitic. 16 (1965) 144–158.

[39] W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate

antioxidant activity, LWT - Food Sci. Technol. 28 (1995) 25–30.

https://doi.org/10.1016/S0023-6438(95)80008-5.

[40] M.S. Donnenberg, Escherichia coli, Elsevier, 2013. https://doi.org/10.1016/C2011-0-

07692-5.

[41] M. Balouiri, M. Sadiki, S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial

activity: A review, J. Pharm. Anal. 6 (2016) 71–79.

https://doi.org/10.1016/j.jpha.2015.11.005.

[42] CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow

Aerobically, in: Approv. Stand. Ed. CLSI Doc. M07-A10., Pennsylvania, 2015: pp. 1–

87. https://doi.org/10.4103/0976-237X.91790.

[43] A. Saldaña-Robles, R. Guerra-Sánchez, M.I. Maldonado-Rubio, J.M. Peralta-

Hernández, Optimization of the operating parameters using RSM for the Fenton

oxidation process and adsorption on vegetal carbon of MO solutions, J. Ind. Eng.

Chem. 20 (2014) 848–857. https://doi.org/10.1016/j.jiec.2013.06.015.

[44] M. Danish, R. Hashim, M.N.M. Ibrahim, O. Sulaiman, Optimized preparation for large

surface area activated carbon from date (Phoenix dactylifera L.) stone biomass,

Biomass and Bioenergy. 61 (2014) 167–178.

https://doi.org/10.1016/j.biombioe.2013.12.008.

[45] C. Tsaltaki, M. Katsouli, T. Kekes, S. Chanioti, C. Tzia, Comparison study for the

recovery of bioactive compounds from Tribulus terrestris, Panax ginseng, Gingko

biloba, Lepidium meyenii, Turnera diffusa and Withania somnifera by using

microwave-assisted, ultrasound-assisted and conventional extraction methods, Ind.

Crops Prod. 142 (2019) 111875. https://doi.org/10.1016/j.indcrop.2019.111875.

[46] J. Li, Y.G. Zu, Y.J. Fu, Y.C. Yang, S.M. Li, Z.N. Li, M. Wink, Optimization of

microwave-assisted extraction of triterpene saponins from defatted residue of yellow

horn (Xanthoceras sorbifolia Bunge.) kernel and evaluation of its antioxidant activity,

Innov. Food Sci. Emerg. Technol. 11 (2010) 637–643.

Page 88: Thamiris Renata Martiny

88

https://doi.org/10.1016/j.ifset.2010.06.004.

[47] M. Khajeh, A.R. Akbari Moghaddam, E. Sanchooli, Application of Doehlert design in

the Optimization of microwave-assisted extraction for determination of zinc and copper

in cereal samples using FAAS, Food Anal. Methods. 3 (2010) 133–137.

https://doi.org/10.1007/s12161-009-9099-7.

[48] M.A.A. Meireles, Extracting Bioactive Compounds for Food Products Theory and

Applications, 1st ed., CRC Press, Boca Raton, 2009.

[49] R. Japón-Luján, J.M. Luque-Rodríguez, M.D. Luque De Castro, Multivariate

optimisation of the microwave-assisted extraction of oleuropein and related biophenols

from olive leaves, Anal. Bioanal. Chem. 385 (2006) 753–759.

https://doi.org/10.1007/s00216-006-0419-0.

[50] T.R. Martiny, B.S. Pacheco, C.M.P. Pereira, A. Mansilla, M.S. Astorga-España, G.L.

Dotto, G.S. da Rosa, A novel biodegradable film based on k-carrageenan actived with

olive leaves extract, Food Sci. Nutr. 00 (2020) 1–10.

[51] M.H. Ahmad-Qasem, J. Cánovas, E. Barrajón-Catalán, V. Micol, J.A. Cárcel, J.V.

García-Pérez, Kinetic and compositional study of phenolic extraction from olive leaves

(var. Serrana) by using power ultrasound, Innov. Food Sci. Emerg. Technol. 17 (2013)

120–129. https://doi.org/10.1016/j.ifset.2012.11.008.

[52] Z. Rafiee, S.M. Jafari, M. Alami, M. Khomeiri, Microwave-assisted extraction of

phenolic compounds from olive leaves; a comparison with maceration, J. Anim. Plant

Sci. 21 (2011) 738–745.

[53] R. Japón-Luján, J.M. Luque-Rodrígues, M.D.L. Castro, Multivariate optimisation of

the microwave-assisted extraction of oleuropein and related biophenols from olive

leaves, Anal Bioanal Chem. 385 (2006) 753–759. https://doi.org/10.1007/s00216-006-

0419-0.

[54] I. Khemakhem, O.D. Gargouri, A. Dhouib, M.A. Ayadi, M. Bouaziz, Oleuropein rich

extract from olive leaves by combining microfiltration, ultrafiltration and

nanofiltration, Sep. Purif. Technol. 172 (2017) 310–317.

https://doi.org/10.1016/j.seppur.2016.08.003.

[55] H. Jemai, M. Bouaziz, I. Fki, A. El, S. Sayadi, Hypolipidimic and antioxidant activities

of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves,

Chem. Biol. Interact. 176 (2008) 88–98. https://doi.org/10.1016/j.cbi.2008.08.014.

[56] M. Ansari, M. Kazemipour, S. Fathi, Development of a Simple Green Extraction

Procedure and HPLC Method for Determination of Oleuropein in Olive Leaf Extract

Applied to a Multi-Source Comparative Study, J. Iran. Chem. Soc. 8 (2011) 38–47.

[57] C.F.S.C. Coppa, R.E. Rosim, C.A.F. De Oliveira, C.E. Da Costa Rodrigues, C.B.

Gonçalves, Extração de oleuropeína a partir de folhas de oliveira utilizando solvente

hidroalcoólico, Brazilian J. Food Technol. 20 (2017). https://doi.org/10.1590/1981-

6723.16916.

Page 89: Thamiris Renata Martiny

89

[58] L.C. da C. Dominciano, Avaliação de oleuropeína e de sanitizantes químicos, isolados

ou associados, para eliminação de biofilmes de Staphylococcus aureus, Listeria

monocytogenes e Escherichia coli em superfícies inertes., Universidade de São Paulo,

2015.

[59] V.V.L. Carvalho, J.O. Gonçalves, A. Silva, T.R. Cadaval, L.A.A. Pinto, T.J. Lopes,

Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan

films, Int. J. Biol. Macromol. 131 (2019) 905–911.

https://doi.org/10.1016/j.ijbiomac.2019.03.145.

[60] G.S. da Rosa, S.K. Vanga, Y. Gariepy, V. Raghavan, Development of Biodegradable

Films with Improved Antioxidant Properties Based on the Addition of Carrageenan

Containing Olive Leaf Extract for Food Packaging Applications, J. Polym. Environ. 28

(2020) 123–130. https://doi.org/10.1007/s10924-019-01589-7.

[61] B. Marcos, C. Sárraga, M. Castellari, F. Kappen, G. Schennink, J. Arnau, Development

of biodegradable films with antioxidant properties based on polyesters containing α-

tocopherol and olive leaf extract for food packaging applications, Food Packag. Shelf

Life. 1 (2014) 140–150. https://doi.org/10.1016/j.fpsl.2014.04.002.

[62] E. Botsoglou, A. Govaris, I. Ambrosiadis, D. Fletouris, N. Botsoglou, Effect of olive

leaf (Olea europea L.) extracts on protein and lipid oxidation of long-term frozen n-3

fatty acids-enriched pork patties, Meat Sci. 98 (2014) 150–157.

https://doi.org/10.1016/j.meatsci.2014.05.015.

[63] T.R. Martiny, V. Raghavan, C.C. de Moraes, G.S. da Rosa, G.L. Dotto, Bio-Based

Active Packaging: Carrageenan Film with Olive Leaf Extract for Lamb Meat

Preservation, Foods. 9 (2020) 1759. https://doi.org/10.3390/foods9121759.

Page 90: Thamiris Renata Martiny

90

- CAPÍTULO 5 -

EXTRATO DE FOLHA DE OLIVEIRA PARA OBTENÇÃO DE EMBALAGEM

ATIVA

Page 91: Thamiris Renata Martiny

91

O Capítulo 5 explorou a aplicação do extrato de folha de oliveira obtido nas condições

ótimas de extração, determinadas no Capítulo 4, na efetiva utilização como potencial aditivo

conservante em embalagem biodegradável ativa. O artigo 3 reuniu os resultados dessa

pesquisa.

Artigo 3

Bio-Based Active Packaging: Carrageenan Film with Olive Leaf Extract for Lamb Meat

Preservation

Thamiris Renata Martiny1,2, Vijaya Raghavan3, Caroline Costa de Moraes4, Gabriela

Silveira da Rosa1,4,* and Guilherme Luiz Dotto2

1 Engineering Graduate Program, Federal University of Pampa, 1650, Maria Anunciação

Gomes de Godoy Avenue, Bagé, 96413-172 Rio Grande do Sul, Brazil;

[email protected]

2 Chemical Engineering Department, Federal University of Santa Maria, Santa Maria,

97105-900, Rio Grande do Sul, Brazil; [email protected]

3 Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-

Anne-de-Bellevue, H9X 3V9 Montreal, QC, Canada; [email protected]

4 Graduate Program in Materials Science and Engineering, Federal University of Pampa,

1650, Maria Anunciação Gomes de Godoy Avenue, Bagé, 96413-172 Rio Grande do Sul,

Brazil; [email protected]

* Correspondence: [email protected]; Tel.: +55 53-9996-722-26.

Artigo publicado no periódico Foods

Volume 9, Issue 12, 2020, 1759

ISSN: 2304-8158. DOI: https://doi.org/10.3390/foods9121759

Page 92: Thamiris Renata Martiny

92

Graphical Abstract

Abstract: Carrageenan-based active packaging film was prepared by adding olive leaf

extract (OLE) as a bioactive agent to the lamb meat packaging. The OLE was characterized

in terms of its phenolic compounds (T.ph), antioxidant activity (AA), oleuropein, and

minimum inhibitory concentration (MIC) against Escherichia coli. The film’s formulation

consisted of carrageenan, glycerol as a plasticizer, water as a solvent, and OLE. The effects

of the OLE on the thickness, water vapor permeability (WVP), tensile strength (TS),

elongation at break (EB), elastic modulus (EM), color, solubility, and antimicrobial capacity

of the carrageenan film were determined. The OLE had the following excellent

characteristics: the T.ph value was 115.96 mgGAE∙g−1 (d.b), the AA was 89.52%, the

oleuropein value was 11.59 mg∙g−1, and the MIC was 50 mg∙mL−1. The results showed that

the addition of OLE increased the thickness, EB, and WVP, and decreased the TS and EM of

the film. The solubility was not significantly affected by the OLE. The color difference with

the addition of OLE was 64.72%, which had the benefit of being a barrier to oxidative

processes related to light. The film with the OLE was shown to have an antimicrobial

capacity during the storage of lamb meat, reducing the count of psychrophiles five-fold when

compared to the samples packed by the control and commercial films; therefore, this novel

film has the potential to increase the shelf life of lamb meat, and as such, is suitable for use

as active packaging.

Keywords: active packaging film; microwave-assisted extraction; Olea europaea;

antimicrobial capacity; antioxidant activity; lamb meat

Page 93: Thamiris Renata Martiny

93

5.1 INTRODUCTION

Packaging systems occupy a prominent position in food processing and their use is

indispensable for the distribution and commercialization of products on the market. Food

packaging is increasingly influenced by the emergence of new technologies and new

materials, such as active packaging [1]. This is a reflection of consumer demand for food that

is original, underprocessed, and without chemical additives, and for more sustainable

packaging materials [1,2]. Active packaging refers to packaging that modifies the condition of

packaged food. Therefore, active packaging materials are used to extend a food’s shelf life

and improve food safety [2,3]. Although extensive research is being carried out on active

packaging, many have not yet been successfully tested on real systems. Thus, antimicrobial

packaging in the form of biopolymeric films represents a viable alternative to active

packaging [4,5].

From this perspective, new and unprecedented materials for bio-based packaging have

been and continue to be developed, especially when it comes to biodegradable films [6], for

example, biopolymers that are made from marine sources (chitosan, alginate) or raw materials

from agriculture (corn and potato starches, zein) [7,8]. However, little is known about making

films from a biopolymer obtained from red algae, namely, carrageenans, which is a group of

complex biopolymeric substances called phycocolloids and represents a great prospect for the

future [9,10]. The advantage of using carrageenan is that its gels have properties that alternate

between liquids and solids, which allows for applications as additives in food manufacturing

and the potential to form good biodegradable films due to their gelling power with excellent

mechanical properties [11,12]. In addition, when making biodegradable films, a plasticizer is

required. The plasticizer is a non-volatile substance that, when added to different systems,

promotes physical and mechanical changes, allowing the films to become more malleable and

resistant in terms of tension and elongation. Glycerol is a commonly used plasticizing agent in

the production of films due to its compatibility and stability with biopolymer chains [13].

In order to transfer the additional antioxidant and antimicrobial properties to the films,

the use of plant extracts is increasing [2] and olive leaf extract has characteristics that are

suitable for this application. Olive leaves have substantial amounts of bioactive compounds

(oleuropein, verbascoside, luteolin-7-O-glucoside, apigenin-7-O-glucoside, hydroxytyrosol,

and tyrosol) in their composition, resulting in antioxidant and antimicrobial properties, which

have been associated with their strong characteristics as preservatives [14–16]. The presence

of phenolics and antioxidant activity in olive leaf extract has been reported [17,18]. Liu et al.

Page 94: Thamiris Renata Martiny

94

[19] studied the antimicrobial activity of crude olive leaf extract and found that the extract

nearly completely inhibited the growth of Escherichia coli and Salmonella enteritidis. They

concluded that the extract could potentially be used to control pathogens in food products.

Another advantage is that the leaves are a waste product of olive oil manufacture, where they

make up an average of 10% by weight in the processing of olives [20,21].

The supplementation of olive leaf extract in biodegradable films has already been

tested in some research [22,23]. Albertos et al. [22] produced fish gelatin films with the

addition of olive leaf extract and used them as packaging for cold-smoked salmon; the films

with the extract decreased the growth of Listeria monocytogenes. Bermúdez-Oria et al. [24]

produced biodegradable films based on pectin and fish skin protein with the addition of olive

extracts; the film preserved strawberries against mold during storage. It is also worth

mentioning that two recent BR (Brazil) patents related to this research have shown the

effectiveness of films produced with carrageenan and an incorporated olive leaf extract

[25,26]. All information regarding the potential of reusing olive leaves shows their extracts as

being promising as an ingredient with bioactive properties for applications in active

packaging.

The effort to use less plastic and new packaging technologies is being mobilized

around the world and is being felt even in the meat industry. Despite this, the development of

meat packaging is a challenge because meat products often require materials with low

transmission rates to extend and guarantee their useful life [7,27]. In this context, lamb meat

is a suitable candidate for investment in protective packaging, as there are few studies on the

changes in the quality of lamb meat during its storage. Lamb meat preservation methods

include freezing, cooling, a vacuum, and a modified atmosphere [28], although the shelf life is

limited by microorganism growth and lipid oxidation; however, these troubles can be solved

by adding extracts of plants to the formulation of the packaging, making it active.

The potential applications for active antimicrobial packaging to extend the shelf life of

meat and meat products were analyzed by Camo et al. [29]. Kuorwel et al. [30] studied

synthetic and natural antimicrobial agents by incorporating them in films for packaging used

basil, oregano, and thyme, as well as their essential oils. Given the above, the implementation

of active packaging in the storage of lamb meat can be an innovative technology for the

longer preservation of this meat and has the advantage that the extracts are not applied

directly to the surface of the meat but are incorporated into the internal part of the packaging

material [6,28,31].

Page 95: Thamiris Renata Martiny

95

Thus, the aims of this unprecedented research were to produce and evaluate the

properties of an active carrageenan film containing olive leaf extract and to investigate its

influences during the refrigerated storage of fresh lamb meat to produce an active packaging

with the potential to replace films produced with synthetic polymers.

5.2 MATERIALS AND METHODS

5.2.1 Materials

5.2.1.1 Olive Leaves

The Olea europaea L. type Arbequina was grown in southern Brazil (31°30'04.0"S,

53°30'42.0"W). After the collection, the leaves were oven-dried (ETHIK, Vargem Grande

Paulista, Brazil) (40 °C, 24 h). Then, the leaves were ground (IKA® A11BS32, Shanghai,

China) and sieved (metal mesh 60, Metalúrgica Indústria Bertel, Caieiras, Brazil). Particles

with a diameter of less than 0.272 mm were used.

5.2.1.2 Chemicals

The carrageenan was purchased from Sigma-Aldrich (St. Louis, MO, USA), where the

type was κ-carrageenan. The plasticizer used was glycerol, which was purchased from

Mistura da Terra (Bagé, Brazil). The following reagents were bought from Sigma-Aldrich (St.

Louis, MO, USA) and were of an analytical standard: Folin Ciocalteu’s phenol reagent, 2,2-

diphenyl-1-picrylhydrazyl (DPPH), methanol, anhydrous sodium carbonate, gallic acid, and

oleuropein. For microbiological analyses: nutrient broth, Müller–Hinton broth, PCA agar, and

peptone (Himedia, Bengaluru, India), as well as sterilized distilled water, were used.

5.2.1.3 Bacterial Isolates

Escherichia coli ATCC 11229 was obtained from Oswaldo Cruz Foundation, Rio de

Janeiro, Brazil. Before the tests, the bacterial culture was grown for 24 h in a nutrient broth at

35 °C.

Page 96: Thamiris Renata Martiny

96

5.2.2 Preparation of the Plant Extract

In order to obtain olive leaf extracts (OLEs), microwave-assisted extraction was

performed in a multimode (closed) microwave unit (SCP Science, Baie-D'Urfe, QC, Canada)

by applying the methodology of Rosa et al. [32]. The extraction was performed with 0.5 g of

olive leaf powder in 25 mL of distilled water. Subsequently, the extracts were vacuum-filtered

using Whatman® Grade 4 filter paper (Sigma-Aldrich, St. Louis, MI, USA). Finally, they

were lyophilized (Gamma 1–16 LSC, Christ, Osterode, Germany). Using the experimental

optimization methodology (preliminary tests), the best extraction conditions were the

following: 100 °C for 2 min at pH 6.

5.2.3 Extract Characterization

The total phenolics (T.ph) were determined using a method adapted from Singleton

and Rossi [33]. The procedure was analogous to that of Martiny et al. [34]. The T.ph results

were expressed in milligrams of gallic acid equivalent (GAE) per gram of dry matter. The

analysis was performed in triplicate.

The method of Brand-Williams et al. [35] was used for the measurement of the

antioxidant activity. A total of 0.2 mL of OLE was blended with 7.8 mL of DPPH (6 × 10−5

M) solution and stood still for thirty minutes at room temperature without light. The same

procedure was performed with an aliquot of water in order to obtain control samples. The

absorbance of the control and extract samples were measured using a spectrophotometer

(Ultraspec1000, Amersham Pharmacia Biotech, Cambridge, England) at 517 nm. The free

radicals captured by the DPPH were calculated using Equation (1) in triplicate:

A. activity = (𝐴C−𝐴OLE

𝐴C) × 100%, (1)

where A. activity is the antioxidant activity expressed as a percentage (%), 𝐴C is the

absorbance of the control, which was water, and 𝐴OLE is the absorbance of the OLE samples.

Quantitative analyses of the oleuropein in the OLE were performed using HPLC

(Agilent 1100 series instrument, Santa Clara, CA, USA). Oleuropein was separated on a

Discovery RP C18 column (Supelco, PA, USA; 5 μm, 25 cm × 4.6 mm) equipped with a

Supelguard C18 cartridge (Discovery, St. Louis, MO, USA; 5 μm, 2 cm × 4 mm); it was then

Page 97: Thamiris Renata Martiny

97

analyzed using a variable wavelength detector (VWD) that was set to 280 nm. The mobile

phase was a mixture of water, acetonitrile, and acetic acid (80/19/1 v/v/v). The oleuropein was

identified and quantified (mg∙g−1 of olive leaves (d.b.) (dry base) using an external standard

and a calibration curve.

The minimum inhibitory concentration (MIC) was evaluated against E. coli (ATCC

11229). E. coli was chosen because this bacterium is a potential causative agent of food-

related diseases since meat is an environment that is favorable for its development. The MIC

is the lowest concentration of the extract necessary for the complete inhibition of visible

growth, where concentrations ranged from 5 to 150 mg∙mL−1 of the lyophilized extract. The

antimicrobial activity was determined via inhibition analysis of the extracts obtained and was

performed using the ELISA plate culture method adapted from [36,37]. In an ELISA

microplate, 145 μL of sterile Mueller–Hinton broth, 135 μL of extract, and 20 μL of the

culture containing the microorganism were pipetted into wells in triplicate. The antimicrobial

activity was quantified using the absorbance (wavelength of 630 nm) difference between the

two readings of the samples containing the extract in relation to the mean absorbance of the

control samples in a spectrophotometer (PowerWave XS, Biotek, Winooski, VT, USA).

Equation (2) was used to calculate the inhibition:

microbial. A = [ 1 − (𝐴2OLE−𝐴1OLE

𝐴2C−𝐴1C)] × 100%,

(2)

where microbial. A is the inhibition (%) and A is the absorbance, where the subindex "1"

refers to the readings at 0 h, the subindex "2" refers to the readings at 16 h, the subindex

"OLE" refers to samples containing extracts, and the subindex "C" refers to the mean

absorbances for the control samples, which were the inoculants with water.

5.2.4 Carrageenan Biodegradable Films

5.2.4.1 Film Preparation

The biodegradable films were formed according to the casting technique by Rosa et al.

[23]. The proportion used for the film-forming solution was 1% (w/v) of carrageenan, 37.5%

(w/w) glycerol (based on the carrageenan mass), and 62.5% (w/w) of OLE (based on

Page 98: Thamiris Renata Martiny

98

carrageenan mass), which were dissolved in 50 mL of distilled water under agitation (1100

rpm) on a magnetic stirrer with heating (QUIMIS-Q261M23, Diadema, Brazil) at a

temperature of 70 °C for 15 min. These conditions were established in preliminary tests.

Initial studies were carried out to find the most suitable plasticizer and OLE concentrations.

The results showed that films without a plasticizer were brittle, while those with high amounts

of glycerol were stringy and difficult to remove from the plates. Thus, the concentration of

37.5% (w/w) glycerol was chosen for this research. It was determined that films made with

OLE at concentrations below 62.5% (w/w) showed low or no antimicrobial effect; therefore,

we chose to use a concentration of 62.5% (w/w) OLE for the formulation of the films. Films

without the extract were produced as control films and called CAR-C, while films with the

extract were called CAR-OLE. The filmogenic solutions were poured into 150 mm diameter

acrylic plates and subjected to dehydration in an oven at 40 °C for 24 h.

5.2.4.2 Film Properties

With the support of a digital micrometer (Insize-IP65, São Paulo, Brazil), the

measurements were taken at ten different positions of the film, thus detecting the mean

thickness of the different samples of the biodegradable films produced.

The water vapor permeability (WVP) was ascertained using the ASTM standard

E96/E96M methodology [38]. The mass gain, measured via anhydrous calcium chloride

absorption, was monitored over ten days and the WVP was calculated using Equation (3):

WVP = 𝑊

𝑡

𝑒

𝑎𝑃, (3)

where WVP is the water vapor permeability (g∙m−1∙Pa−1∙s−1), 𝑊 is the absorbed moisture (g), t

is the time (s), e is the thickness (m), a is the exposed film surface (m²), and ΔP the partial

pressure difference (1176.17 Pa at 294.31 K).

The tensile strength (TS), elongation at break (EB) point, and elastic modulus (EM) of

the films were measured using the ASTM standard D882-09 methodology [39]. The apparatus

used was a Texturometer Analyzer (Stable Micro System TA.XTplus, Richmond, U.K.).

The film color was determined using the methodology proposed by Martiny et. al.

[34]. The color difference was calculated using Equation (4):

Page 99: Thamiris Renata Martiny

99

∆𝐸∗ = √(𝐿𝐶∗ − 𝐿𝑂𝐿𝐸

∗ )2 + (𝑎𝐶∗ − 𝑎𝑂𝐿𝐸

∗ )2 + (𝑏𝐶∗ − 𝑏𝑂𝐿𝐸

∗ )2, (4)

where ∆𝐸∗ is the color difference (%); 𝐿𝐶∗ , 𝑎𝐶

∗ , and 𝑏𝐶∗ are the color parameters of the CAR-C

films; 𝐿𝑂𝐿𝐸∗ , 𝑎𝑂𝐿𝐸

∗ , and 𝑏𝑂𝐿𝐸∗ are the color parameters of the CAR-OLE films. The L*

parameter ranges from 0 (black) to 100 (white). The a* parameter measures the degree of red

(+a) or green (−a) color and the b* parameter measures the degree of yellow (+b) or blue (−b)

color.

The water solubility of carrageenan-based films was determined using the method

proposed by Gontard and Guilbert [40]. The film samples were initially dried to find the

initial mass dry of the film samples. The samples were cut into 2 cm diameter discs, then

immersed in 50 mL of water and the system received gentle agitation (100 rpm) at 20 °C for

24 h using a shaker incubator (SOLAB-SL 223, Piracicaba, Brazil). To determine the final

amount of dry matter, the sample was dried (105 °C for 24 h). The solubility in water was

calculated from the triplicate results using Equation (5):

WS = 𝑚𝑖−𝑚𝑓

𝑚𝑖× 100%, (5)

where WS is the water solubility (%), 𝑚𝑖 is the initial dry mass (g), and 𝑚𝑓 is the final dry

mass (g).

5.2.5 Storage Study: Inhibition of Psychrophiles in Lamb Meat

To evaluate whether the biodegradable films of carrageenan with the olive leaf extract

(CAR-OLE) had an influence on the housing of lamb meat, analyses of the growth of

psychrophiles were made. Chilled lamb samples were purchased from the local market in

Bagé, a city in southern Brazil. The tested meat was fresh and raw. The initial psychrophiles

count was determined. Then, the samples were packed separately for each different film in

duplicate, namely, CAR-C, CAR-OLE, and commercial polyvinyl chloride (PVC) film (Royal

Pack, Alto Aririu, Brazil) (Figure 1). The packages were sealed using a heat-sealing machine

(Lenor CP1-TH, ShenZhen, China) at 150 °C for 10 s. The packages were stored at 7 °C for 2

days. After the storage period, the final psychrophiles count was performed. The methodology

used was the standard plate count [41] according to the American Public Health Association

(APHA) [42]. The plate counts were made using a colony counter microprocessor

(Electronics India, Parwanoo, India). The results were presented as the colony-forming units

per gram of lamb meat (CFU∙g−1).

Page 100: Thamiris Renata Martiny

100

Figure 1. Samples of lamb meat that were packed using different films: (A) polyvinyl

chloride (PVC) film, (B) carrageenan control film (CAR-C), and (C) carrageenan film with

olive leaf extract (CAR-OLE).

5.2.6 Statistical Analysis

The means of the experimental data and their respective deviations were calculated,

where three replicates were performed. Significant differences between the means were

determined via Tukey’s test at p < 0.05 using Statistica software (Stat Soft Inc., version 10,

Tulsa, OK, USA).

5.3 RESULTS AND DISCUSSION

5.3.1 Olive Leaf Extract

Olive leaf is an excellent resource of phenolic compounds with an elevated antioxidant

activity [32]. The results found in the current research also demonstrated these attributes. The

total phenolic compounds (T.ph) were 115.96 ± 0.56 mgGAE∙g−1 (d.b.) and the result for the

antioxidant activity was 89.52 ± 0.013%. Similar results for the antioxidant activity of up to

94% were found for olive leaf extracts obtained using a microwave [43,44]. The oleuropein

content was 11.59 ± 0.004 mg∙g-1 (d.b.). In a study by Japón-Luján et al. [45], 23 mg∙g−1 (d.b.)

oleuropein was extracted via the microwave technique using ethanol and water (80:20 v/v). In

contrast, Khemakhem et al. [46] used the maceration technique and produced aqueous

extracts of olive leaves, obtaining 2.65 mg∙g−1 (d.b.) of oleuropein. Jemai et al. [47] extracted

0.0432 mg∙g−1 (d.b.) of oleuropein from olive leaves using methanol with water (4:1 v/v) via

maceration. Ansari et al. [48] extracted oleuropein with water at 60 °C and obtained 15

Page 101: Thamiris Renata Martiny

101

mg∙g−1 (d.b.). The values obtained in this research were comparable to the results reported in

the literature cited. It is noteworthy that important differences were observed, such as the

solvent type, extraction technique, and plant matrix origin. Another relevant fact was that in

this research, water was used as a solvent (safe and non-toxic), which had a positive result in

the oleuropein content obtained; as such, its use becomes competitive as a substitution for

methanol and ethanol, which are commonly used in extractions.

Extracts of olive leaves produced via microwave-assisted extraction demonstrated

antibacterial activity against E. coli, with an MIC value of 50 mg∙mL−1. This result is in

accordance with the data previously reported by Pereira et al. [49], where they also observed

an antimicrobial effect that was related to the concentration of OLE against bacteria and

fungi. They found that the antimicrobial effect was attributed to oleuropein and the T.ph

found in the extract, corroborating the results found in this research. Şahin et al. [43] similarly

produced olive leaf extracts using the microwave technique but evaluated variables such as

irradiation potency, irradiation time, and leaf mass. Their study revealed that the extract

obtained under optimal conditions demonstrated an antibacterial effect against Staphylococcus

aureus, with an MIC value of 1.25 mg∙mL−1.

5.3.2 Film Evaluation

Figure 2 illustrates the visual appearance of the biodegradable carrageenan films. The

carrageenan-based biodegradable films were homogeneous, uniform, and could be easily

removed from the plate. Films with no extract addition were clear and transparent and films

with the extract addition were greenish-brown.

Figure 2. Visual appearance of the carrageenan films: (A) CAR-C and (B) CAR-OLE. CAR–

C: carrageenan film, CAR–OLE: carrageenan film with olive leaf extract.

Page 102: Thamiris Renata Martiny

102

Table 1 provides the thickness, WVP, mechanical properties, solubility, and optical

properties data of the formulated films. These results show that the incorporation of the OLE

into the films caused an increase in the thickness. The thickness of the films increased linearly

with the increasing mass; the addition of the extract in the film formulation caused an increase

in the mass, which consequently caused an increase in thickness. Rhim [50] produced

agar/carrageenan composite films (50:50) with incorporated clay nanocomposites; he obtained

thicknesses of 0.0582 mm and 0.0643 mm as a result. The differences in the thicknesses

found in the literature are due to the different methodologies used in the experimental

preparation procedures, composition, and formulation of the film solutions.

There were significant differences in the WVPs of the films CAR-OLE and CAR-C,

which was an indication that the water vapor permeability gradient was not the same for both

films tested. The difference in the % relative humidity at the interfaces of both films was the

driving force behind the diffusion of the water [51]. The WVP of a film depends on several

variables, especially the thickness [52]. As there were differences in the permeability values

between films with an OLE concentration, the increase in WVP may be due to the difference

in the thickness. The increase in thickness in CAR-OLE was already expected due to the

increase in the mass of the film-forming solution due to the incorporation of the extract. Films

with OLE had a significantly higher thickness than those without OLE (Table 1). This

observed effect may have been due to the interaction of the polysaccharides and OLE, which

may have changed the saturation point. These interaction effects of the polymeric matrix and

the different additives were also observed by Turco et al. [53], where they produced poly

(lactic acid)/thermoplastic starch films with cardoon seed epoxidized oil and observed that the

higher the tension at the interface (less compatible mixtures), the greater the spaces between

the phases, which favored the diffusion of water. Therefore, the OLE probably decreased the

interfacial adhesion between the polymeric matrix and the dispersed phase, decreasing both

the surface tension of the carrageenan and the intermediate space between the

macromolecular chains, thus causing the acceleration of the diffusion of water molecules.

Ideally, a film for the storage of lamb meat requires a low WVP; this result was found in this

research and was corroborated by other studies that produced carrageenan films or films with

the addition of OLE [22,23].

Comparing the data found in Table 1 with the properties of the commercial PVC film,

which had a thickness of 0.004 mm, a WVP of 2.47 g∙m−1∙Pa−1∙s−1, elongation at break of

108.79%, and a tensile strength of 21.55 MPa based on data reported by Martiny et al. [34], it

was concluded that the produced carrageenan films presented a superior thickness and WVP

Page 103: Thamiris Renata Martiny

103

and inferior mechanical properties. These results suggest that the films can be improved in

terms of their physical properties, where the investigation of biopolymeric blends for this

purpose may be an option.

Table 1. Thickness, water vapor permeability (WVP), mechanical properties, solubility, and

optical properties of carrageenan films.

Physical Properties CAR-C CAR-OLE

Thickness (mm) 0.032 ± 0.004a 0.048 ± 0.004b

WVP (g∙m−1∙s−1∙Pa−1) 6.61×10−11 ± 1.6×10−12a 7.43×10−11 ± 9.1×10−13b

Elongation at break (%) 29.21 ± 0.12a 36.58 ± 1.70b

Tensile strength (MPa) 11.83 ± 0.23a 8.51 ± 0.09b

Elastic modulus (MPa) 40.50 ± 0.97a 23.34 ± 1.33b

Solubility (%) 82.60 ± 3.47a 76.60 ± 0.33a

Optical Properties CAR-C CAR-OLE

L* 94.49 ± 0.21a 71.41 ± 0.92b

a* −0.145 ± 0.03a 7.78 ± 0.43b

b* 3.32 ± 0.31a 63.26 ± 1.59b

ΔE - 64.72

Data reported as the mean values ± mean deviation. CAR–C: carrageenan film, CAR–OLE: carrageenan

film with OLE. ∆𝐸∗ is the color difference (%); L*, a*and b* are the color parameters Different letters in

the same line indicate significant differences between samples (p < 0.05).

The addition of the extract in the composition of the films significantly changed the

mechanical properties. There was an increase in the EB and a decrease in the TS. The fact that

the biodegradable films of carrageenan prepared with the extract had a higher EB percentage

may have been due to the fact that the extract had essential oils in its constitution since some

studies show that lipid components can act as plasticizers in films. The addition of essential

oils to the composition of biofilms caused a decrease in the rupture tension and an increase in

the elongation of the films [54]. The EB is due to the alteration of the morphological structure

of the film, which changes to a plastic flow regime up to the breaking limit. In this whole

Page 104: Thamiris Renata Martiny

104

process, the chain alignment in the amorphous regions and the destruction of micro- and

macro-crystalline structures are involved, with the consequent formation of fibrillar structures

[55]. A polymeric material can undergo transformations in its original structure, as indicated

by the EB test, and can limit the possible applications of the packaging [56].

Table 1 presents the values of the EMs for carrageenan films. The addition of OLE in

the carrageenan films had an effect on the elastic modulus. There was a significant difference

(p < 0.05) between both film formulations. The CAR-C film showed the highest EM value

(40.50 MPa), which was in accordance with the result of the TS in this study. Films with

higher EM data have turned out to be less flexible and more rigid than those with lower EM

data [57,58]. The results found in this study showed that the OLE contributed significantly to

the EM, producing more flexible films; this may have been due to the presence of lipid

compounds in the extract that were able to form a continuous and cohesive structure. An EM

result very similar to ours for a carrageenan film that was also plasticized with glycerol was

found by Paula et al. [59], where the authors reported a value of 52.45 MPa. The results of

this study were also in agreement with the study by Pereda et al. [60], which reported that the

addition of olive oil into chitosan films enhanced the EM; according to the authors, this was

because organic compounds, such as fatty acids and lipids, can contribute to the plasticization

of the films. Therefore, the incorporation of the OLE had an effect on the elastic modulus of

the carrageenan films produced in this study.

The addition of the extract to the film formulation did not cause a significant

difference in solubility (Table 1). This high solubility is a feature of films formed from

hydrocolloids, as they are highly hydrophilic, especially those made of polysaccharides and

proteins [61]. In contrast, Rhim [50] only produced glycerol-plasticized carrageenan films,

where the films completely disintegrated in water in just a 30 min test.

The results for the color parameters and color differences are shown in Table 1.

Regarding the display of the carrageenan films, the addition of the extract decreased their

moderate L* value, which is an occurrence that was expected since the extract had a dark

green color. The parameters a* and b* increased with the incorporation of the OLE, with both

being positive, i.e., having mostly red and yellow components, respectively. The increase in

b* may have been linked to the phenolic compounds present in the OLE, which can absorb

light of low wavelengths; similar behavior was obtained by Shojaee-Aliabadi et al. [62] for

carrageenan films with incorporated essential oils. The films with oils differed from the

control at 64.72%; these authors used glycerol plasticized carrageenan (1%) films of the same

description as the CAR-C films, where L* = 88.41, a* = −0.27, and b* = 0.86. Another

Page 105: Thamiris Renata Martiny

105

relevant aspect is color, given that it interferes with the consumption profile. For the

commercial PVC film, the optical parameters were L* = 95.81, b* = 1.088, and a* = −0.14.

As can be seen from Table 1, these data were close to the carrageenan films without the OLE,

whereas for the films with the addition of the extract, the color parameters were significantly

different. Despite the disadvantages attributed to the decrease in transparency, the addition of

the extract has the advantage of decreasing oxidative processes caused by light on the food,

though a more thorough investigation should be done regarding this feature.

5.3.3 Storage Study

The effects of the carrageenan film with or without the OLE on the development of

psychrophiles microorganisms in the lamb meat packaging are shown in Table 2. The lamb

meat was measured for initial psychrophiles and was determined to contain 1.10 × 105

CFU∙g−1. The final concentration of psychrophile microorganisms in the lamb meat increased

substantially during the 2 days of storage in all the samples. This trend was in line with the

findings of Al Sheddy et al. and the EFSA BIOHAZ (European Food Safety Authority

Biological Hazards) Panel [63,64], who demonstrated the ability of these microorganisms to

develop in cool temperatures. It can be observed that during the storage period, the growth of

psychrophile microorganisms was lower in lamb meat packed with the CAR-OLE film; this

was approximately 5 times lower compared to the samples packed with CAR-C or the PVC

film. CAR-OLE was able to slow the growth of psychrophiles compared to the control

sample. The CAR-OLE efficiency can be attributed to its position on the surface of the lamb

meat, where there was a higher microbial concentration.

Table 2. The psychrophiles population measured initially and after 2 days of storage.

Samples packed with different films Initial (CFU∙g−1) 2 Days of Storage (CFU∙g−1)

Fresh lamb meat (1.10 ± 5.66) × 105 -

CAR-C - (27.6 ± 8.66a) × 105

CAR-OLE - (5.51 ± 7.62b) × 105

PVC film - (23.9 ± 7.78c) × 105

Data reported as the average values ± standard deviation. CAR–C: carrageenan film, CAR–OLE: carrageenan

film with OLE, PVC film: polyvinyl chloride commercial film. Tukey’s multiple range tests were executed.

Different letters in the same column indicate significant differences between the samples (p < 0.05).

Page 106: Thamiris Renata Martiny

106

Some studies have also achieved successful results when designing active packaging

for food applications; however, despite the advantages of this type of packaging, there are not

many studies on lamb meat. In one study, Karabagias et al. [65] obtained a significant

reduction in bacterial growth in lamb chops packed in a modified atmosphere packaging

containing thyme oil. This active packaging extended its useful life by 2 to 3 days compared

to that achieved with conventional modified atmosphere packaging. As opposed to using

biodegradable polymers, Camo et al. [29] incorporated oregano extract into polystyrene

(synthetic polymer) polymer matrix films and evaluated the application of this active

packaging to the storage of lamb, successfully increasing the shelf life of the samples.

Jancikova et al. [66] obtained edible carrageenan films with the incorporation of a lapacho

extract; the results they obtained show that the films produced have the potential as a wrapped

food commodity. However, they did not test the application in any food matrix. Saleh et al.

[66] evaluated the effect of the direct use of olive leaf extract (not under a polymeric matrix

like the present study) on the microbial growth of raw poultry meat; the results found by them

revealed that the incorporation of olive leaf extract successfully reduced the microbial growth

and the extract extended the shelf life of the poultry meat.

Other research had already shown that OLE can inhibit the growth of microorganisms

in in vitro assays. However, in this study, it was demonstrated for the first time that the

carrageenan film with OLE could reduce the growth of psychrophile microorganisms in food,

specifically in lamb meat. The application of the active carrageenan film with OLE provided

an additional obstacle to the growth of unwanted microorganisms. The results reported in the

literature prove that the union of a biopolymer, such as carrageenan, and olive leaf extract

represents enormous potential regarding the development and real application as an active

packaging for meat, which was corroborated by the promising results found in the present

study.

5.4 CONCLUSIONS

From the aqueous OLE extraction process using the microwave-assisted extraction

technique, an extract rich in total polyphenols was obtained, with high antioxidant activity

and excellent oleuropein content, which was highly effective against E. coli. In addition, it has

other benefits, such as low cost due to its source being a byproduct stream. When the OLE

was incorporated into the biopolymeric matrix of carrageenan for the production of films, it

decreased the growth rate of psychrophiles in packaged lamb meat and presented competitive

Page 107: Thamiris Renata Martiny

107

physical characteristics relative to conventional polymeric matrices. The characterization of

the biodegradable carrageenan films demonstrated that they were flexible and manageable,

and that the addition of OLE significantly changed the thickness, the color parameters, the

mechanical properties, and the barrier property. However, there was no significant change in

the solubility. The carrageenan films with OLE were found to act as effective packaging that

inhibited microbial growth in lamb. In order to avoid a significant effect on sensory

properties, additional studies are recommended, including sensory tests on the product due to

the application of the film.

Patents

There are two patents that resulted from the work reported in this manuscript.

Patent 1: Registry number: BR 102018013380-2 A2; publication date: 14/01/2020;

title: Filme bioativo antimicrobiano à base de carragenana e extrato de folhas de oliveira.

Patent 2: Registry number: BR 102017013381-8 A2; publication date: 15/01/2019;

title: Biofilmes antimicrobianos para proteção de alimentos.

Author Contributions: Conceptualization, methodology, formal analysis, investigation,

writing—original draft, T.R.M.; supervision, resources, investigation, writing—review and

editing, V.R.; conceptualization, resources, investigation, writing—review and editing,

C.C.M.; conceptualization, supervision, resources, investigation, writing—review and editing,

G.S.R.; supervision, resources, investigation, writing—review and editing, G.L.D.

Funding: The authors would like to thank the Research Support Foundation of the

Coordination for the Improvement of Higher Education Personnel (CAPES) and the Natural

Sciences and Engineering Research Council of Canada (NSERC) for their financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Berk, Z. Food packaging. In Food Process Engineering and Technology; Academic

Press: Cambridge, MA, USA, 2018; pp. 625–641.

2. Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.;

Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for

Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199, doi:10.1111/1541-

4337.12322.

Page 108: Thamiris Renata Martiny

108

3. Ahvenainen, R., Ed. Novel Food Packaging Techniques;Woodhead Publishing:

Cambridge, UK, 2003.

4. Robertson, G.L. Food Packaging: Principles and Practice; 2nd ed.; CRC Press: Boca

Raton, FL, USA, 2013.

5. Andrade-Mahecha, M.M.; Tapia-Blácido, D.R.; Menegalli, F.C. Development and

optimization of biodegradable films based on achira flour. Carbohydr. Polym. 2012, 88,

449–458, doi:10.1016/j.carbpol.2011.12.024.

6. Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.;

Santos, E.M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used

in meat industry: A review. Food Res. Int. 2018, 113, 93–101,

doi:10.1016/j.foodres.2018.06.073.

7. Jalal, H.; Salhuddin, M.; Para, P.A.; Rajasthan, S.; Pal, M.A. Bio-based Packaging

Materials for Preservation of Processed Meat Products. In Recent Research Trends in

Veterinary Sciences and Animal Husbandry; AkiNik Publications: New Delhi, India,

2018; pp. 31–48.

8. Cha, D.S.; Chinnan, M.S. Biopolymer-based antimicrobial packaging: A review. Crit.

Rev. Food Sci. Nutr. 2004, 44, 223–237, doi:10.1080/10408690490464276.

9. Paolucci, M.; Fasulo, G.; Volpe, M.G. Employment of marine polysaccharides to

manufacture functional biocomposites for aquaculture feeding applications. Mar. Drugs

2015, 13, 2680–2693, doi:10.3390/md13052680.

10. Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of

edible films and coatings from alginates and carrageenans. Carbohydr. Polym. 2016, 137,

360–374, doi:10.1016/j.carbpol.2015.10.074.

11. Webber, V.; de Carvalho, S.M.; Ogliari, P.J.; Hayashi, L.; Barreto, P.L.M. Optimization

of the extraction of carrageenan from Kappaphycus alvarezii using response surface

methodology. Food Sci. Technol. 2012, 32, 812–818, doi:10.1590/S0101-

20612012005000111.

12. Sedayu, B.B.; Cran, M.J.; Bigger, S.W. Reinforcement of refined and semi-refined

carrageenan film with nanocellulose. Polymers Basel 2020, 12, 1145,

doi:10.3390/POLYM12051145.

13. Ili Balqis, A.M.; Nor Khaizura, M.A.R.; Russly, A.R.; Nur Hanani, Z.A. Effects of

plasticizers on the physicochemical properties of kappa-carrageenan films extracted from

Eucheuma cottonii. Int. J. Biol. Macromol. 2017, 103, 721–732,

doi:10.1016/j.ijbiomac.2017.05.105.

14. Giacometti, J.; Žauhar, G.; Žuvić, M. Optimization of ultrasonic-assisted extraction of

major phenolic compounds from olive leaves (Olea europaea L.) using response surface

methodology. Foods 2018, 7, 1–14, doi:10.3390/foods7090149.

Page 109: Thamiris Renata Martiny

109

15. El, S.N.; Karakaya, S. Olive tree (Olea europaea) leaves: Potential beneficial effects on

human health. Nutr. Rev. 2009, 67, 632–638, doi:10.1111/j.1753-4887.2009.00248.x.

16. Kiritsakis, K.; Goula, A.M.; Adamopoulos, K.G. Valorization of Olive Leaves : Spray

Drying of Olive Leaf Extract. Waste and Biomass Valoriz. 2017, 9, 619–633,

doi:10.1007/s12649-017-0023-x.

17. Stamatopoulos, K.; Chatzilazarou, A.; Katsoyannos, E. Optimization of Multistage

Extraction of Olive Leaves for Recovery of Phenolic Compounds at Moderated

Temperatures and Short Extraction Times. Foods 2014, 3, 66–81,

doi:10.3390/foods3010066.

18. Lee, O.H.; Lee, B.Y. Antioxidant and antimicrobial activities of individual and combined

phenolics in Olea europaea leaf extract. Bioresour. Technol. 2010, 101, 3751–3754,

doi:10.1016/j.biortech.2009.12.052.

19. Liu, Y.; McKeever, L.C.; Malik, N.S.A. Assessment of the antimicrobial activity of olive

leaf extract against foodborne bacterial pathogens. Front. Microbiol. 2017, 8, 1–8,

doi:10.3389/fmicb.2017.00113.

20. Papoti, V.T.; Papageorgiou, M.; Dervisi, K.; Alexopoulos, E.; Apostolidis, K.; Petridis,

D. Screening olive leaves from unexploited traditional Greek cultivars for their phenolic

antioxidant dynamic. Foods 2018, 7, 1–21, doi:10.3390/foods7120197.

21. Abaza, L.; Ben Youssef, N.; Manai, H.; Mahjoub Haddada, F.; Methenni, K.; Zarrouk,

M. Chétoui olive leaf extracts: Influence of the solvent type on phenolics and antioxidant

activities. Grasas y Aceites 2011, 62, 96–104, doi:10.3989/gya.044710.

22. Albertos, I.; Avena-Bustillos, R.J.; Martín-Diana, A.B.; Du, W.; Rico, D.; Mchugh, T.H.

Antimicrobial Olive Leaf Gelatin fi lms for enhancing the quality of cold- smoked

Salmon. Food Packag. Shelf Life 2017, 13, 49–55, doi:10.1016/j.fpsl.2017.07.004.

23. Da Rosa, G.S.; Vanga, S.K.; Gariepy, Y.; Raghavan, V. Development of Biodegradable

Films with Improved Antioxidant Properties Based on the Addition of Carrageenan

Containing Olive Leaf Extract for Food Packaging Applications. J. Polym. Environ.

2019, 28, 123–130, doi:10.1007/s10924-019-01589-7.

24. Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Vioque, B.; Rubio-Senent, F.; Fernández-

Bolaños, J. Physical and functional properties of pectin-fish gelatin films containing the

olive phenols hydroxytyrosol and 3,4-dihydroxyphenylglycol. Carbohydr. Polym. 2017,

178, 368–377, doi:10.1016/j.carbpol.2017.09.042.

25. Da Rosa, G.S.; de Moraes, C.C.; Alves, R.C.; Ribeiro, P.B.; Martiny, T.R. Biofilmes

Antimicrobianos Para Proteção de Alimentos 2019,Instituto Nacional da Propriedade

Industrial, Brazil.

26. Da Rosa, G.S.; de Moraes, C.C.; Ribeiro, P.B.; de Silva, B.Z.; de Pereira, C.M.P.;

Pacheco, B.S.; Freitas, V.O.; Martiny, T.R. Filme Bioativo Antimicrobiano À Base De

Carragenana E Extrato De Folhas De Oliveira 2020, Instituto Nacional da Propriedade

Industrial, Brazil.

Page 110: Thamiris Renata Martiny

110

27. Quintavalla, S.; Vicini, L. Antimicrobial food packaing in meat industry. Meat Sci. 2002,

62, 373–380, doi:10.1016/S0309-1740(02)00121-3.

28. Bellés, M.; Alonso, V.; Roncalés, P.; Beltrán, J.A. A review of fresh lamb chilling and

preservation. Small Rumin. Res. 2016, 146, 41–47,

doi:10.1016/j.smallrumres.2016.12.003.

29. Camo, J.; Beltrán, J.A.; Roncalés, P. Extension of the display life of lamb with an

antioxidant active packaging. Meat Sci. 2008, 80, 1086–1091,

doi:10.1016/j.meatsci.2008.04.031.

30. Kuorwel, K.K.; Cran, M.J.; Sonneveld, K.; Miltz, J.; Bigger, S.W. Essential Oils and

Their Principal Constituents as Antimicrobial Agents for Synthetic Packaging Films. J.

Food Sci. 2011, 76, 164–177, doi:10.1111/j.1750-3841.2011.02384.x.

31. Joerger, R.D. Antimicrobial films for food applications: A quantitative analysis of their

effectiveness. Packag. Technol. Sci. 2007, 20, 231–273, doi:10.1002/pts.774.

32. Da Rosa, G.S.; Vanga, S.K.; Gariepy, Y.; Raghavan, V. Comparison of microwave,

ultrasonic and conventional techniques for extraction of bioactive compounds from olive

leaves (Olea europaea L.). Innov. Food Sci. Emerg. Technol. 2019, 58, 102234,

doi:10.1016/j.ifset.2019.102234.

33. Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic

phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158.

34. Martiny, T.R.; Pacheco, B.S.; Pereira, C.M.P.; Mansilla, A.; Astorga–España, M.S.;

Dotto, G.L.; Moraes, C.C.; Rosa, G.S. A novel biodegradable film based on κ-

carrageenan activated with olive leaves extract. Food Sci. Nutr. 2020, 8, 3147–3156,

doi:10.1002/fsn3.1554.

35. Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate

antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30, doi:10.1016/S0023-

6438(95)80008-5.

36. Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial

activity: A review. J. Pharm. Anal. 2016, 6, 71–79, doi:10.1016/j.jpha.2015.11.005.

37. CLSI. In Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow

Aerobically, Proceedings of the Approved Standard-Tenth Edition; CLSI document M07-

A10; Pennsylvania, USA, 2015; pp. 1–87.

38. ASTM. In Standard E96/E96M Standard Test Methods for Water Vapor Transmission of

Material, Proceedings of the ASTM International, 2012; ASTM International: West

Conshohocken, PA, USA.

39. ASTM. In Standard D882-09 Standard Test Method for Tensile Properties of Thin

Plastic Sheeting, Proceedings of the ASTM International, 2012, ASTM International:

West Conshohocken, PA, USA.

Page 111: Thamiris Renata Martiny

111

40. Gontard, N.; Guilbert, S. Bio-packaging: Technology and properties of edible and/or

biodegradable material of agricultural origin. In Food Packaging and Preservation;

Springer: Boston, MA, USA, 1994; pp. 159–181.

41. Martin, P.G. Manuals of Food Quality Control; FAO: Rome, Italy,1997; ISBN

925102412X.

42. APHA. Compendium of Methods for the Microbiological Examination of Foods, 2nd ed.;

Speck, M.L. Ed.; American Public Health Association: Washington, DC, USA,1984.

43. Sahin, S.; Samli, R.; Birteks, Z.; Tan, A.S.; Barba, F.J.; Chemat, F.; Cravotto, G.;

Lorenzo, J.M. Solvent-free microwave-assisted extraction of polyphenols from olive tree

leaves: Antioxidant and antimicrobial properties. Molecules 2017, 22,

doi:10.3390/molecules22071056.

44. Moudache, M.; Colon, M.; Nerín, C.; Zaidi, F. Phenolic content and antioxidant activity

of olive by-products and antioxidant film containing olive leaf extract. Food Chem. 2016,

212, 521–527, doi:10.1016/j.foodchem.2016.06.001.

45. Japón-Luján, R.; Luque-Rodríguez, J.M.; de Luque Castro, M.D. Multivariate

optimisation of the microwave-assisted extraction of oleuropein and related biophenols

from olive leaves. Anal. Bioanal. Chem. 2006, 385, 753–759, doi:10.1007/s00216-006-

0419-0.

46. Khemakhem, I.; Gargouri, O.D.; Dhouib, A.; Ayadi, M.A.; Bouaziz, M. Oleuropein rich

extract from olive leaves by combining microfiltration, ultrafiltration and nanofiltration.

Sep. Purif. Technol. 2017, 172, 310–317, doi:10.1016/j.seppur.2016.08.003.

47. Jemai, H.; Bouaziz, M.; Fki, I.; El, A.; Sayadi, S. Hypolipidimic and antioxidant activities

of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves.

Chem. Biol. Interact. 2008, 176, 88–98, doi:10.1016/j.cbi.2008.08.014.

48. Ansari, M.; Kazemipour, M.; Fathi, S. Development of a Simple Green Extraction

Procedure and HPLC Method for Determination of Oleuropein in Olive Leaf Extract

Applied to a Multi-Source Comparative Study. J. Iran. Chem. Soc. 2011, 8, 38–47.

49. Pereira, A.P.; Ferreira, I.C.F.R.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.;

Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic Compounds and Antimicrobial Activity

of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules 2007, 12, 1153–1162,

doi:10.3390/12051153.

50. Rhim, J.W. Physical-Mechanical Properties of Agar/k-Carrageenan Blend Film and

Derived Clay Nanocomposite Film. J. Food Sci. 2012, 77, doi:10.1111/j.1750-

3841.2012.02988.x.

51. Du, W.X.; Olsen, C.W.; Avena-Bustillos, R.J.; McHugh, T.H.; Levin, C.E.; Friedman, M.

Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on

physical properties and antimicrobial activities. J. Food Sci. 2009, 74,

doi:10.1111/j.1750-3841.2009.01282.x.

Page 112: Thamiris Renata Martiny

112

52. McHugh, T.H.; Avenabustillos, R.; Krochta, J.M. Hydrophilic Edible Films—Modified

Procedure for Water-Vapor Permeability and Explanation of Thickness Effects. J Food

Sci 1993, 58, 899–903, doi:10.1111/j.1365-2621.1993.tb09387.x.

53. Turco, R.; Ortega-Toro, R.; Tesser, R.; Mallardo, S.; Collazo-Bigliardi, S.; Boix, A.C.;

Malinconico, M.; Rippa, M.; Di Serio, M.; Santagata, G. Poly (lactic acid)/thermoplastic

starch films: Effect of cardoon seed epoxidized oil on their chemicophysical, mechanical,

and barrier properties. Coatings 2019, 9, 574, doi:10.3390/coatings9090574.

54. Rojas, I.M. Efecto del Tipo y Contenido de Aceites Esenciales Sobre las Propiedades

Mecánicas y Barrera de Películas Comestibles Basadas en Zeína. Master Thesis, Public

University of Navarra, Navarra, Spain, 2010.

55. Ferracin, R.J.; Ruvolo Filho, A.; Marconcini, J.M.; de Diniz, J.H.O. Avaliação das

propriedades mecânicas de material polimérico utilizado na confecção de caixas de

medição de energia elétrica. Polímeros 2009, 19, 166–176, doi:10.1590/s0104-

14282009000200016.

56. De Campo, C.; Costa, T.M.H.; de Rios, A.O.; Flôres, S.H. Effect of incorporation of

nutraceutical capsule waste of safflower oil in the mechanical characteristics of corn

starch films. Food Sci. Technol. 2016, 36, 33–36, doi:10.1590/1678-457X.0049.

57. Endres, H.-J.; Siebert-Raths, A. End-of-Life Options for Biopolymers. In Engineering

Biopolymers; Hanser Publishers: Munich, Germany, 2011.

58. Paula, G.A.; Benevides, N.M.B.; Cunha, A.P.; de Oliveira, A.V.; Pinto, A.M.B.; Morais,

J.P.S.; Azeredo, H.M.C. Development and characterization of edible films from mixtures

ofκ-carrageenan, Ι-carrageenan, and alginate. Food Hydrocoll. 2015, 47, 140–145,

doi:10.1016/j.foodhyd.2015.01.004.

59. Pereda, M.; Amica, G.; Marcovich, N.E. Development and characterization of edible

chitosan/olive oil emulsion films. Carbohydr. Polym. 2012, 87, 1318–1325,

doi:10.1016/j.carbpol.2011.09.019.

60. Zactiti, É.M. Desenvolvimento e Caracterização de Filmes Biodegradáveis de Alginato

de Cálcio Sem e Com Sorbato de Potássio. Ph.D. Thesis, Universidade Estadual de

Campinas, Campinas, Brazil, 2004.

61. Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou,

M.; Hosseini, S.M.; Khaksar, R. Characterization of κ-carrageenan films incorporated

plant essential oils with improved antimicrobial activity. Carbohydr. Polym. 2014, 101,

582–591, doi:10.1016/j.carbpol.2013.09.070.

62. Al-Sheddy, I.A.; Fung, D.Y.C.; Kastner, C.L. Microbiology of fresh and restructured

lamb meat: A review. Crit. Rev. Microbiol. 1995, 21, 31–52,

doi:10.3109/10408419509113533.

63. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards). Scientific opinion on the

growth of spoilage bacteria during storage and transport of meat. EFSA J. 2016, 14, 38,

doi:10.2903/j.efsa.2016.4523.

Page 113: Thamiris Renata Martiny

113

64. Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf life extension of lamb meat using

thyme or oregano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88,

109–116, doi:10.1016/j.meatsci.2010.12.010.

65. Jancikova, S.; Dordevic, D.; Jamroz, E.; Behalova, H.; Tremlova, B. Chemical and

physical characteristics of edible films, based on κ- And ι-carrageenans with the addition

of lapacho tea extract. Foods 2020, 9, 357, doi:10.3390/foods9030357.

66. Saleh, E.; Morshdy, A.E.; El-manakhly, E.; Al-rashed, S.; Hetta, H.F.; Jeandet, P.; Yahia,

R.; Batiha, G.E.; Ali, E. Effects of Olive Leaf Extracts as Natural Preservative on

Retailed Poultry Meat Quality. Foods 2020, 9, 1–12.

Page 114: Thamiris Renata Martiny

114

- CAPÍTULO 6 -

DISCUSSÃO, CONCLUSÃO GERAL E SUGESTÕES PARA TRABALHOS

FUTUROS

Page 115: Thamiris Renata Martiny

115

6.1 DISCUSSÃO

O presente trabalho envolveu a produção de três artigos com enfoque a obtenção de

extrato de folha de oliveira utilizando três diferentes métodos de extração (maceração,

extração assistida por ultrassom e micro-ondas), e posteriormente, a sua incorporação em

embalagem ativa a base de carragenana. Os principais resultados foram a obtenção de um

extrato de folha de oliveira por meio da extração assistida por micro-ondas em condições

otimizadas de temperatura, tempo de extração e pH, e a formulação de uma nova embalagem

ativa com comprovada ação antimicrobiana, possibilitando a manutenção da qualidade do

alimento embalado, nesse caso a carne de cordeiro.

O primeiro artigo testou métodos de extração, a maceração e a extração assistida por

ultrassom, além da extração assistida por micro-ondas, e comprovou que esta última foi a

mais eficiente em relação aos resultados de atividade antioxidante, compostos fenólicos,

oleuropeína e hidroxitirosol. Esses melhores resultados foram devido à energia do micro-

ondas que rompe a parede celular, aliada a transferência de massa e calor na mesma direção,

permitindo assim uma maior liberação dos compostos de interesse no solvente. Na extração

assistida por micro-ondas os conteúdos de oleuropeína e hidroxitirosol foram de 14,468 e

0,590 mg.g-1 (b.s.).

O segundo artigo avaliou a extração de compostos bioativos de folhas de oliveira de

plantações do sul do Brasil, especificamente do tipo Arbequina. As informações sobre esta

cultivar ainda são limitadas nesta região e também há poucos estudos, visto que o cultivo na

região iniciou recentemente. Sendo assim, o estudo torna-se importante, pois como já é

conhecido o tipo de cultivar e a origem geográfica onde a planta é cultivada afetam suas

características, como a composição, influenciando as suas propriedades bioativas. Lembrando

que existem diversas variedades desta planta, e na lista das mais citadas estão as cultivares

Picual e Ascolana, para avaliar as propriedades das folhas esta informação deve ser levada em

consideração. Obteve-se extrato de folhas de oliveira através da extração assistida por micro-

ondas, com comprovada atividade antimicrobiana. As melhores condições para a obtenção do

extrato com potencial antimicrobiano foram temperatura 100°C, tempo de extração 2 min e

pH 6. Nessas condições, foi possível obter a atividade antioxidante de 92,87% e os compostos

fenólicos totais de 103,87 mgGAE.g-1 (b.s), de acordo com a função de desejabilidade. Os

extratos obtidos nestas condições apresentaram atividade antibacteriana contra Escherichia

coli, com valor de concentração inibitória mínima de 50 mg. mL-1 e teor de oleuropeína de

11,59 ± 0,004 mg.g-1 (b.s).

Page 116: Thamiris Renata Martiny

116

O método de extração assistida por micro-ondas de compostos bioativos das folhas,

não relatado anteriormente na forma como a pesquisa foi realizada, foi avaliado e otimizado.

A combinação de parâmetros nunca antes avaliados para este método, especialmente no que

diz respeito à influência do pH, foi investigada. Modelos estatísticos para atividade

antioxidante e compostos fenólicos totais relacionando três parâmetros importantes,

temperatura, tempo e pH, foram obtidos. A pesquisa buscou uma forma alternativa de

extração em que impacto negativo no meio ambiente fosse reduzido, sendo possível obter um

extrato à base de água com excelentes propriedades bioativas. Destaca-se o seu resultado do

teor de oleuropeína, que foi superior ao encontrado na literatura sob condições análogas.

Apesar da dificuldade, foi possível obter excelentes resultados sem a utilização de solventes

extratores orgânicos e sob condições de extração viáveis e competitivas. Deixando claro que

inúmeros outros trabalhos relacionados com a produção de extratos de folha de oliveira não

alcançariam um bom aproveitamento se não utilizassem solventes orgânicos.

No terceiro artigo, o extrato obtido sob as condições otimizadas foi utilizado com

sucesso na produção de filmes biodegradáveis. Com a incorporação do extrato na matriz

biopolimérica de carragenana observou-se uma redução do crescimento de psicrófilos no

filme utilizado como embalagem para carne de cordeiro. Além disso, essa nova alternativa de

embalagem mostrou-se competitiva frente às embalagens convencionais, apresentando

excelentes propriedades.

A caracterização dos filmes biodegradáveis de carragenana demonstrou que estes

foram flexíveis e manuseáveis e que a adição de extrato de folhas de oliveira na matriz de

carragenana provocou mudanças nas propriedades dos filmes, como o aumento na espessura,

na elongação e na permeabilidade ao vapor d’água, e diminuição na tensão de ruptura e no

módulo de elasticidade dos filmes. A solubilidade não foi significativamente afetada (p >

0,05) pelo extrato. A diferença de cor com a adição do extrato foi de 64,72%. As espessuras

dos filmes controle e preparados com a adição do extrato foram de 0,032 e 0,048 mm,

respectivamente. A permeabilidade ao vapor d’água obteve-se 6,61×10−11 e 7,43×10−11 g. m-1

.s-1.Pa-1, respectivamente para os filmes controle e com extrato. Os resultados de resistência à

tração, elongação e módulo de elasticidade foram 11,83 Mpa, 29,21 % e 40,50 MPa, e 8,51

MPa, 36,58 % e 23,34 MPa para filmes controle e com extrato, respectivamente. Por fim, a

solubilidade foi de 82,60% e 76,60% para filmes controle e com extrato, respectivamente.

Os filmes biodegradáveis de carragenana quando aplicados na embalagem de amostras

de carne de cordeiro apresentaram efeito inibitório na contagem de psicrófilos. Pode-se

observar que durante o período de armazenamento, o crescimento de microrganismos

Page 117: Thamiris Renata Martiny

117

psicrófilos foi menor na carne de cordeiro embalada com o filme com adição de extrato; foi

aproximadamente 5 vezes menor em comparação com as amostras embaladas com o filme

controle ou filme de PVC.

Aqui cabe uma importante discussão acerca de testes preliminares não mencionados

ou não publicados. Foi feita a tentativa de extração supercrítica para obtenção do extrato de

folha de oliveira. A técnica de extração por fluido supercrítico também é uma técnica não

convencional de extração emergente em pesquisas, e possui vantagens, sobretudo por

apresentar uma boa recuperação de compostos bioativos sem a necessidade do uso de

solventes orgânicos. Não se logrou sucesso na tentativa do uso dessa técnica para a extração

de compostos bioativos de folhas de oliveira. As extrações foram realizadas com o fluido CO2

na unidade extratora disponível no laboratório de Engenharia Química da UFSM, porém as

dimensões do extrator supercrítico e as características do material a ser extraído, nesse caso as

folhas de oliveira em pó, dificultaram a extração e não permitiram a obtenção de uma

quantidade suficiente de extrato para os testes posteriores necessários, tais como a

quantificação dos compostos fenólicos e a determinação da atividade antioxidante.

Com base na pesquisa realizada, também é possível apontar algumas realidades que

foram observadas tanto no estudo dos extratos e métodos de extração como na produção do

filme, e entre elas estão:

• A folha de oliveira brasileira é uma boa fonte de compostos fenólicos com

atividade antioxidante;

• A extração assistida por micro-ondas mostrou-se um método rápido e eficiente

para a produção de extrato de folhas de oliveira;

• O extrato de folhas de oliveira em condições ideais mostrou atividade

antibacteriana contra Escherichia coli;

• O extrato de folha de oliveira tem um grande potencial de uso como conservante

natural para alimentos;

• Os extratos de folha de oliveira demonstraram ter uma ampla perspectiva de

aplicação na indústria alimentícia;

• As propriedades físicas mostraram que os filmes têm potencial para uso como

embalagem de alimentos;

• Os filmes foram eficazes em retardar o crescimento microbiano na carne de

cordeiro;

• Os filmes têm um uso promissor como embalagens ativas de alimentos.

Page 118: Thamiris Renata Martiny

118

6.2 CONCLUSÃO GERAL

O desenvolvimento dessa tese é de grande importância e pode inspirar novas pesquisas

e fornecendo informações valiosas, entre elas, dados da extração de compostos bioativos de

folhas de oliveira de plantações do sul do Brasil, cujas informações estas que ainda são

limitadas, devido ao recente cultivo de oliveiras nessa região. Aliado a isso, a pesquisa busca

resolver um problema de resíduo que é gerado no cultivo da oliveira, que são as folhas, dando

um aproveitamento para esse resíduo que possui um enorme potencial como fonte de

compostos bioativos. O estudo também explora aspectos de uma operação unitária

fundamental na engenharia química, que é a extração, buscando formas alternativas de

extração que não tenham um impacto negativo no meio ambiente, utilizando a água como

solvente. A pesquisa ainda permitiu a elaboração e a caracterização de filmes biodegradáveis

ativos, bem como sua aplicação no acondicionamento de carne de cordeiro. Os resultados

mostraram que a adição de extrato de folhas de oliveira em filmes biodegradáveis a base de

carragenana promove alterações nas propriedades dos filmes e confere atividade

antimicrobiana aos mesmos. Assim, o extrato de folhas de oliveira apresenta-se como uma

alternativa para a formulação de filmes biodegradáveis de carragenana, com grande

prospecção de aplicação no setor de embalagens ativas para alimentos.

6.3 SUGESTÕES PARA TRABALHOS FUTUROS

Da experiência adquirida ao longo da execução dessa tese e com base nos resultados

alcançados, uma lista de sugestões é exposta abaixo com o intuito de estimular pesquisas

futuras que potencializem esse estudo para uma possível aplicação industrial da extração, bem

como o uso do filme obtido. Salienta-se que algumas pesquisas não foram possíveis de ser

executas devidos às limitações impostas pela atual situação de pandemia, e por isso também

se estimula a continuidade a partir dos trabalhos futuros. O Grupo de Pesquisa Engenharia

Processos e Sistemas Particulados (GPEPSP) que colaborou em partes com o

desenvolvimento dessa tese, possui outros trabalhos que envolvem a olivicultura e já vem

desempenhando papel importante na continuidade das pesquisas.

i. Avaliar a estrutura dos filmes biodegradáveis através de técnicas de

microscopia;

Page 119: Thamiris Renata Martiny

119

ii. Avaliar os filmes por Calorimetria Exploratória Diferencial (DSC) e realizar

Análise Termogravimétrica (TGA).

iii. Estudar a biodegradabilidade dos filmes;

iv. Estudar a difusão do agente antimicrobiano;

v. Avaliar a inibição frente à bactéria Listeria monocytogenes;

vi. Estudar a reticulação dos filmes de carragenana;

vii. Avaliar a técnica de extração por fluído supercrítico;

viii. Estudar outros cultivares de oliveira e comparar com o cultivar Arbequina já

estudado;

ix. Avaliar a extração de compostos bioativos de outros resíduos da olivicultura, tal

como o bagaço de azeitona;

x. Estudar outras técnicas de armazenamento dos extratos;

xi. Estudar a influência da liofilização do extrato nos compostos bioativos;

xii. Estudar a desintegração dos filmes em diferentes condições de umidade;

xiii. Quantificar o conteúdo de compostos fenólicos totais nos filmes biodegradáveis

incorporados com extrato de folhas de oliveira;

xiv. Estudar a aplicação dos filmes biodegradáveis ativos em outros alimentos;

xv. Estudar a purificação dos extratos.

Page 120: Thamiris Renata Martiny

120

REFERÊNCIAS

ABDOU, E. S.; SOROUR, M. A. Preparation and characterization of starch/carrageenan

edible films. International Food Research Journal, v. 21, n. 1, p. 189–193, 2014.

ADILAH, A. N. et al. Utilization of mango peel extracts on the biodegradable films for active

packaging. Food Packaging and Shelf Life, v. 16, n. January, p. 1–7, 2018.

AHMAD-QASEM, M. H. et al. Kinetic and compositional study of phenolic extraction from

olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science and

Emerging Technologies, v. 17, p. 120–129, 2013.

AHMAD, M. F. et al. Nutraceutical Market and its Regulation. American Journal of Food

Technology, v. 6, n. 5, p. 342–347, 2011.

AHVENAINEN, R. (ED.). Novel Food Packaging Techniques. Cambriege: Woodhead

Publishing, 2003.

ALBERTOS, I. et al. Antimicrobial Olive Leaf Gelatin fi lms for enhancing the quality of

cold- smoked Salmon. Food Packaging and Shelf Life, v. 13, n. December 2016, p. 49–55,

2017.

ALBUQUERQUE, B. R. et al. Recovery of bioactive compounds from Arbutus unedo L .

fruits : Comparative optimization study of maceration / microwave / ultrasound extraction

techniques. Food Research International, v. 109, n. April, p. 455–471, 2018.

ALEIXANDRE-TUDO, J. L.; TOIT, W. Cold maceration application in red wine production

and its effects on phenolic compounds: A review. LWT - Food Science and Technology, v.

95, n. November 2017, p. 200–208, 2018.

ALVES, M. M.; TOMÁS, R. Embalagens biodegradáveis. In: Embalagens para indústria

alimentar. 1. ed. Lisboa: Instituto Piaget, 2003. p. 373–388.

ANDRADE-MAHECHA, M. M.; TAPIA-BLÁCIDO, D. R.; MENEGALLI, F. C.

Development and optimization of biodegradable films based on achira flour. Carbohydrate

Polymers, v. 88, n. 2, p. 449–458, 2012.

ANDRADE, I. N. A. A embalagem e a sua evolução na indústria alimentar. In: Embalagens

para indústria alimentar. Lisboa: Instituto Piaget, 2003. p. 17–27.

ANSARI, M.; KAZEMIPOUR, M.; FATHI, S. Development of a Simple Green Extraction

Procedure and HPLC Method for Determination of Oleuropein in Olive Leaf Extract Applied

to a Multi-Source Comparative Study. Journal of the Iranian Chemical Society, v. 8, n. 1,

p. 38–47, 2011.

BARRETO, P. L. M. Propriedades Físico-Químicas de Soluções Formadoras e de Filmes

de Caseinato de Sódio Plastificados com Sorbitol. Florianópolis: Universidade Federal de

Santa Catarina, 2003.

BATISTA, J. A. Desenvolvimento, caracterização e aplicações de biofilmes a base de

Page 121: Thamiris Renata Martiny

121

pectina, gelatina e ácidos graxos em bananas e sementes de brócolos. Campinas:

Universidade Estadual de Campinas, 2004.

BENAVENTE-GARCÍA, O. et al. Antioxidant activity of phenolics extracted from Olea

europaea L. leaves. Food Chemistry, v. 68, p. 457–462, 2000.

BERK, Z. Food packaging. In: Food Process Engineering and Technology. 3. ed. [s.l.]

Academic Press, 2018. p. 625–641.

BERMÚDEZ-ORIA, A. et al. Physical and functional properties of pectin-fish gelatin films

containing the olive phenols hydroxytyrosol and 3,4-dihydroxyphenylglycol. Carbohydrate

Polymers, v. 178, p. 368–377, 2017.

BOCK, M. DE; ROMBOUTS, P. A double-sampling cross noise-coupled Sigma Delta

modulator with a reduced amount of opamps. p. 1–4, 2013.

BOUDHRIOUA, N. et al. Comparison on the total phenol contents and the color of fresh and

infrared dried olive leaves. Industrial Crops and Products, v. 9, p. 412–419, 2008.

CAMO, J.; BELTRÁN, J. A.; RONCALÉS, P. Extension of the display life of lamb with an

antioxidant active packaging. v. 80, p. 1086–1091, 2008.

CAMPO, V. L. et al. Carrageenans: Biological properties, chemical modifications and

structural analysis - A review. Carbohydrate Polymers, v. 77, n. 2, p. 167–180, 2009.

CARLUCCI, M. J. et al. Derivatives : Correlation Between Structure and Biological Activity.

v. 20, p. 97–105, 1997.

CARVALHO, R. A. Desenvolvimento e caracterização de biofilmes à base de gelatina.

Campinas: Universidade Estadual de Campinas, 1997.

CAVALHEIRO, C. V. et al. Olive leaves offer more than phenolic compounds - Fatty acids

and mineral composition of varieties from Southern Brazil. Industrial Crops and Products,

v. 71, p. 122–127, 2015.

CHEMAT, F. et al. Ultrasonics Sonochemistry Ultrasound assisted extraction of food and

natural products . Mechanisms , techniques , combinations , protocols and applications . A

review. Ultrasonics - Sonochemistry, v. 34, p. 540–560, 2017.

CHIU, P. E.; LAI, L. S. Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf

gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork

slices. International Journal of Food Microbiology, v. 139, n. 1–2, p. 23–30, 2010.

COMISSÃO DE DIREITOS HUMANOS E LEGISLAÇÃO PARTICIPATIVA. PROJETO

DE LEI DO SENADO No 263, DE 2018Brazil, 2018.

COUTINHO, E. F. et al. Mercados e comercialização. In: COUTINHO, E. F.; RIBEIRO, F.

C.; CAPPELLARO, T. H. (Eds.). . Cultivo de oliveira (Olea europaea L.). Pelotas: Embrapa

Clima Temperado, 2009. p. 102–115.

Page 122: Thamiris Renata Martiny

122

DE CAMPO, C. et al. Effect of incorporation of nutraceutical capsule waste of safflower oil

in the mechanical characteristics of corn starch films. Food Science and Technology, v. 36,

p. 33–36, 2016.

DE CASTRO, M. D. L.; CAPOTE, F. P. Extraction of Oleuropein and Related Phenols

from Olive Leaves and Branches. Elsevier Inc., 2010.

DENG, J. et al. Ultrasonics Sonochemistry Comparative evaluation of maceration and

ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrasonics -

Sonochemistry, v. 37, p. 328–334, 2017.

EL, S. N.; KARAKAYA, S. Olive tree (Olea europaea) leaves: Potential beneficial effects on

human health. Nutrition Reviews, v. 67, n. 11, p. 632–638, 2009.

FABRA, M. J.; SÁNCHEZ-GONZÁLEZ, L.; CHIRALT, A. Lysozyme release from isolate

pea protein and starch based fi lms and their antimicrobial properties. LWT - Food Science

and Technology, p. 1–5, 2013.

FANG, J. M. et al. Development of biodegradable laminate films derived from naturally

occurring carbohydrate polymers. Carbohydrate Polymers, v. 60, n. 1, p. 39–42, 2005.

FLORES, C. A. et al. Zoneamento Edafoclimático da Olivicultura para o Rio Grande do

Sul. 1. ed. Brasília: Embrapa, 2013.

FOSCOLOU, A.; CRITSELIS, E.; PANAGIOTAKOS, D. Maturitas Olive oil consumption

and human health : A narrative review. Maturitas, v. 118, n. October, p. 60–66, 2018.

GARCÍA-MORENO, P. J. et al. Antioxidant activity of protein hydrolysates obtained from

discarded Mediterranean fish species. Food Research International, v. 65, p. 469–476,

2014.

GENNADIOS, A.; WELLER, C. L.; TESTIN, R. F. Modification of Physical and Barrier

Properties of Edible Wheat Gluten-Based Films. 1993.

GIKAS, E.; BAZOTI, F. N.; TSARBOPOULOS, A. Conformation of oleuropein , the major

bioactive compound of Olea europea. v. 821, p. 125–132, 2007.

GÓMEZ-ESTACA, J. et al. Effect of functional edible films and high pressure processing on

microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchardus). Food

Chemistry, v. 105, n. 2, p. 511–520, 2007.

GONTARD, N.; GUILBERT, S. Bio-packaging: Technology and properties of edible and/or

biodegradable material of agricultural origin. In: Food packaging and preservation. p. 159–

181.

GUINDA, Á. et al. Supplementation of oils with oleanolic acid from the olive leaf (Olea

europaea). European Journal of Lipid Science and Technology, v. 106, n. 1, p. 22–26,

2004.

HERRERO, M.; CIFUENTES, A.; IBAÑEZ, E. Sub- and supercritical fluid extraction of

functional ingredients from different natural sources: Plants, food-by-products, algae and

Page 123: Thamiris Renata Martiny

123

microalgae - A review. Food Chemistry, v. 98, n. 1, p. 136–148, 2006.

HODAIFA, G. et al. Chemical oxidation methods for treatment of real industrial olive oil mill

wastewater. Journal of the Taiwan Institute of Chemical Engineers, v. 97, p. 247–254,

2019.

JAPÓN-LUJÁN, R.; JANEIRO, P.; DE CASTRO, M. D. L. Solid - Liquid Transfer of

Biophenols from Olive Leaves for the Enrichment of Edible Oils by a Dynamic Ultrasound-

Assisted Approach. Jounal of Agricultural and Food Chemistry, v. 56, p. 7231–7235,

2008.

JAPÓN-LUJÁN, R.; LUQUE-RODRÍGUES, J. M.; CASTRO, M. D. L. Dynamic ultrasound-

assisted extraction of oleuropein and related biophenols from olive leaves. Journal of

Chromatography, v. 1108, p. 76–82, 2006.

JIMENEZ, P. et al. Oxidative stability of oils containing olive leaf extracts obtained by

pressure , supercritical and solvent-extraction. Eur. J. Lipid Sci. Technol., v. 113, p. 497–

505, 2011.

JOERGER, R. D. Antimicrobial films for food applications: A quantitative analysis of their

effectiveness. Packaging Technology and Science, v. 20, n. 4, p. 231–273, 2007.

KECHICHIAN, V. Adição de ingredientes antimicrobianos em filmes biodegradáveis à

base de fécula de mandioca. São Paulo: Universidade de São Paulo, 2007.

KIRITSAKIS, K.; GOULA, A. M.; ADAMOPOULOS, K. G. Valorization of Olive Leaves :

Spray Drying of Olive Leaf Extract. Waste and Biomass Valorization, v. 9, n. 0, p. 616–

633, 2017.

KROCHTA, J. M. .; MULDER-JOHNSTON, C. Edible and biodegradable polymer films:

challenges and opportunities. Food Technology, v. 51, n. 2, p. 60–74, 1997.

KUORWEL, K. K. et al. Essential Oils and Their Principal Constituents as Antimicrobial

Agents for Synthetic Packaging Films. Journal of Food Science, v. 76, n. 9, p. 164–177,

2011.

LEE, O. H.; LEE, B. Y. Antioxidant and antimicrobial activities of individual and combined

phenolics in Olea europaea leaf extract. Bioresource Technology, v. 101, n. 10, p. 3751–

3754, 2010.

LIU, Y.; MCKEEVER, L. C.; MALIK, N. S. A. Assessment of the antimicrobial activity of

olive leaf extract against foodborne bacterial pathogens. Frontiers in Microbiology, v. 8, n.

FEB, p. 1–8, 2017.

LONGARES, A. et al. Physical properties of edible films made from mixtures of sodium

caseinate and WPI. International Dairy Journal, v. 15, p. 1255–1260, 2005.

LÓPEZ-RUBIO, A. et al. Overview of active polymer-based packaging technologies for food

applications. Food Reviews International, v. 20, n. 4, p. 357–387, 2004.

Page 124: Thamiris Renata Martiny

124

MACLEOD, G. S.; FELL, J. T.; COLLETT, J. H. Studies on the physical properties of mixed

pectin/ethylcellulose films intended for colonic drug delivery. International Journal of

Pharmaceutics, v. 157, p. 53–60, 1997.

MARCOS, B. et al. Development of biodegradable films with antioxidant properties based on

polyesters containing α-tocopherol and olive leaf extract for food packaging applications.

Food Packaging and Shelf Life, v. 1, n. 2, p. 140–150, 2014.

MARTINS, J. T. et al. Shelf life extension of ricotta cheese using coatings of galactomannans

from nonconventional sources incorporating nisin against listeria monocytogenes. Journal of

Agricultural and Food Chemistry, v. 58, n. 3, p. 1884–1891, 2010.

MEULLEMIESTRE, A. et al. Ultrasonics Sonochemistry Impact of ultrasound on solid –

liquid extraction of phenolic compounds from maritime pine sawdust waste . Kinetics ,

optimization and large scale experiments. v. 28, p. 230–239, 2016.

MILLER, K. S.; KROCHTA, J. M. Oxygen and aroma barrier properties of edible films: a

review. Trends in Food Science and Technology, v. 81, p. 228–237, 1997.

MIR, S. A. et al. Effect of plant extracts on the techno-functional properties of biodegradable

packaging films. Trends in Food Science & Technology, v. 80, p. 141–154, 1 out. 2018.

MOUDACHE, M. et al. Phenolic content and antioxidant activity of olive by-products and

antioxidant film containing olive leaf extract. Food Chemistry, v. 212, p. 521–527, 2016.

NUNES, M. A. et al. Olive by-products for functional and food applications: Challenging

opportunities to face environmental constraints. Innovative Food Science and Emerging

Technologies, v. 35, p. 139–148, 2016.

NUR FATIN NAZURAH, R.; NUR HANANI, Z. A. Physicochemical characterization of

kappa-carrageenan (Euchema cottoni) based films incorporated with various plant oils.

Carbohydrate Polymers, v. 157, p. 1479–1487, 2017.

OJAGH, S. M. et al. Effect of chitosan coatings enriched with cinnamon oil on the quality of

refrigerated rainbow trout. Food Chemistry, v. 120, n. 1, p. 193–198, 2010.

OLIVEIRA, L. M.; ALVES, R. M. V.; SARANTÓPOULOS, C. I. G. L. Ensaios para

avaliação de embalagens plásticas flexíveis. Campinas: ITAL, CETEA, 1996.

PANJA, P. Green extraction methods of food polyphenols from vegetable materials. Current

Opinion in Food Science, v. 23, p. 173–182, 2017.

PARK, H. J. Gas and mechanical barrier properties of carrageenan-based biopolymer films.

Food Science & Industry, v. 29, p. 47–53, 1996.

PARK, H. J.; CHINNAN, M. Gas and water vapor barrier properties of edible films from

protein and cellulosic materials. Journal of Food Engeneering, v. 25, n. 4, p. 497–507, 1995.

PAULA, G. A. et al. Development and characterization of edible fi lms from mixtures of k -

carrageenan , l -carrageenan , and alginate. Food Hydrocolloids, v. 47, p. 140–145, 2015.

Page 125: Thamiris Renata Martiny

125

PELISSARI, F. M. Produção e caracterização de filmes de amido de mandioca, quitosana

e glicerol com incorporação de óleo essencial de orégano. Londrina: Universidade Estadual

de Londrina, 2009.

PEREIRA, J. A. et al. Table olives from Portugal: Phenolic compounds, antioxidant potential,

and antimicrobial activity. Journal of Agricultural and Food Chemistry, v. 54, n. 22, p.

8425−8431, 2006.

PEREIRA, L. et al. Use of FTIR , FT-Raman and 13 C-NMR spectroscopy for identification

of some seaweed phycocolloids. v. 20, p. 223–228, 2003.

PEREIRA, L. et al. Identification of selected seaweed polysaccharides (phycocolloids) by

vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloids, v. 23, n. 7, p.

1903–1909, 2009.

PEREIRA, L. C. DOS R. T. Estudos em macroalgas carragenófitas ( Gigartinales ,

Rhodophyceae ) da costa portuguesa - aspectos ecológicos , bioquímicos e citológicos.

Coimbra: Coimbra University, 2004.

PHOOPURITHAM, B. P. et al. Antioxidant Properties of Selected Plant Extracts and

Application in Packaging as Antioxidant Cellulose-Based Films for Vegetable Oil. n. August

2011, p. 125–136, 2012.

PIÑEROS-HERNANDEZ, D. et al. Edible cassava starch films carrying rosemary antioxidant

extracts for potential use as active food packaging. Food Hydrocolloids, 2017.

PUTNIK, P. et al. Food and Bioproducts Processing Green extraction approach for the

recovery of polyphenols from Croatian olive leaves ( Olea europea ) cevi. v. 6, p. 19–28,

2017.

QUINTAVALLA, S.; VICINI, L. Antimicrobial food packaing in meat industry. Meat

Science, v. 62, n. 3, p. 373–380, 2002.

RAFIEE, Z. et al. Microwave-assisted extraction of phenolic compounds from olive leaves; a

comparison with maceration. Journal of Animal and Plant Sciences, v. 21, n. 4, p. 738–745,

2011.

RAMOS, P. et al. Valorization of olive mill residues: Antioxidant and breast cancer

antiproliferative activities of hydroxytyrosol-rich extracts derived from olive oil by-products.

Industrial Crops and Products, v. 46, p. 359–368, 2013.

RAPOPORT, H. V. Botânica y Morfologia. In: El cultivo Del olivo. 2. ed. Madri: Mundi-

Prensa-Junta de Andalucia, 1998. p. 37–63.

RHIM, J. Physical-Mechanical Properties of Agar / k-Carrageenan Blend Film and Derived

Clay Nanocomposite Film. v. 77, n. 12, 2012.

ROBERTSON, G. L. Food Packaging: principles and practice. 2. ed. Flórida: CRC Press,

2013.

Page 126: Thamiris Renata Martiny

126

ROCHA, M.; SOUZA, M. M. DE; PRENTICE, C. Biodegradable Films : An Alternative

Food Packaging. In: Food Packaging and Preservation. [s.l.] Elsevier Inc., 2018. p. 307–

342.

RODRIGUES, F.; PIMENTEL, F. B.; OLIVEIRA, M. B. P. P. Olive by-products: Challenge

application in cosmetic industry. Industrial Crops and Products, v. 70, p. 116–124, 2015.

ROMERO-GARCÍA, J. M. et al. Bioresource Technology Biorefinery based on olive

biomass. State of the art and future trends. v. 159, p. 421–432, 2014.

ROMERO, C. et al. New by-products rich in bioactive substances from the olive oil mill

processing. J Sci Food Agric., v. 98, n. 1, p. 225–230, 2018.

ROSELLÓ-SOTO, E. et al. Emerging opportunities for the effective valorization of wastes

and by-products generated during olive oil production process: Non-conventional methods for

the recovery of high-added value compounds. Trends in Food Science & Technology, v. 45,

p. 296–310, 2015.

SAHIN, S. et al. Solvent-free microwave-assisted extraction of polyphenols from olive tree

leaves: Antioxidant and antimicrobial properties. Molecules, v. 22, n. 7, 2017.

SAHIN, S.; BILGIN, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table

olive and olive oil industry: A review. J Sci Food Agric., v. 98, n. 4, p. 1271–1279, 2018.

SANCHEZ-ORTEGA, I. et al. Characterization and antimicrobial effect of starch-based

edible coating suspensions. Food Hydrocolloids, v. 52, p. 906–913, 2016.

SEOANE, P. R. et al. Microwave-Assisted Water Extraction. In: Water Extraction of

Bioactive Compounds. [s.l: s.n.]. p. 163–198.

SEOL, K. H. et al. Antimicrobial effect of κ-carrageenan-based edible film containing

ovotransferrin in fresh chicken breast stored at 5 °C. Meat Science, v. 83, n. 3, p. 479–483,

2009.

SHOJAEE-ALIABADI, S. et al. Characterization of κ-carrageenan films incorporated plant

essential oils with improved antimicrobial activity. Carbohydrate Polymers, v. 101, n. 1, p.

582–591, 2014.

SILVA, N. et al. Manual de Métodos de Análise Microbiológica de Alimentos e Água. 5.

ed. São Paulo: Blucher, 2017.

SIMÕES, C. M. O. et al. Farmacognosia da planta ao medicamento. 6. ed. Porto

Alegre/Florianópolis.

SMIDSROD, O.; GRASDALEN, H. Some physical properties of carrageenan in solution and

gel state. Carbohydrate Polymers, v. 2, p. 270–272, 1982.

SOBRAL, P. J. A. Influência da espessura sobre certas propriedades de biofilmes à base de

proteínas miofibrilares. Pesquisa Agropecuária Brasileira, v. 35, n. 6, p. 1251–1259, 2000.

Page 127: Thamiris Renata Martiny

127

STEIN, E. M. Avaliação das atividades biológicas e composição química dos extratos de

algas vermelhas do gênero Laurencia (Rhodomelaceae, Ceramiales) do litoral do

Espírito Santo, Brasil Evaluation. São Paulo: Universidade de São Paulo, 2011.

SUDJANA, A. N. et al. Antimicrobial activity of commercial Olea europaea (olive) leaf

extract. International Journal of Antimicrobial Agents, v. 33, n. 5, p. 461–463, 2009.

SUPPAKUL, P. et al. Active Packaging Technologieswith an Emphasis on Antimicrobial

Concise Reviews in Food Science. Journal of Food Science, v. 68, n. 2, p. 408–420, 2003.

TALHAOUI, N. et al. Determination of phenolic compounds of ‘ Sikitita ’ olive leaves by

HPLC-DAD-TOF-MS . Comparison with its parents ‘ Arbequina ’ and ‘ Picual ’ olive leaves.

LWT - Food Science and Technology, v. 58, n. 1, p. 28–34, 2014.

THARANATHAN, R. N. Biodegradable films and composite coatings: past, present and

future. Trends in Food Science and Technology, v. 14, p. 71–78, 2003.

UGALDE, M. L. Biofilmes ativos com incorporação de óleos essenciais. Erechim:

Universidade Regional Integrada, 2014.

VÁSCONEZ, M. B. et al. Antimicrobial activity and physical properties of chitosan-tapioca

starch based edible films and coatings. Food Research International, v. 42, n. 7, p. 762–769,

2009.

VEIGA-SANTOS, P. et al. Mechanical properties , hydrophilicity and water activity of

starch-gum films : effect of additives and deacetylated xanthan gum. Food Hydrocolloids, v.

19, p. 341–349, 2005.

VIDOTTI, E. C.; ROLLEMBERG, M. C. Algas: da economia no ambientes aquáticos à

biorremedição e à química analítica. Química Nova, v. 27, n. 1, p. 139–145, 2004.

VINATORU, M.; MASON, T. J.; CALINESCU, I. Trends in Analytical Chemistry

Ultrasonically assisted extraction ( UAE ) and microwave assisted extraction ( MAE ) of

functional compounds from plant materials. Trends in Analytical Chemistry, v. 97, p. 159–

178, 2017.

WANG, L.; WELLER, C. L. Recent advances in extraction of nutra- ceuticals from plants. v.

17, p. 300–312, 2006.

WARD, I. M.; HARDLEY, D. W. An introduction to the mechanical properties of solid

polymers. Great Britain: John Wiley & Sons, 1998.

WEBBER, V. et al. Optimization of the extraction of carrageenan from Kappaphycus

alvarezii using response surface methodology. Food Science and Technology (Campinas),

v. 32, n. 4, p. 812–818, 2012.

WICHERS, H. J.; SOLER-RIVAS, C.; ESPI, J. C. Review Oleuropein and related

compounds. Journal of the Science of Food and Agriculture, v. 80, n. November 1999, p.

1013–1023, 2000.

Page 128: Thamiris Renata Martiny

128

WILLIAMS, P. A.; PHILLIPS, G. O. Introduction to food hydrocolloids. Glyndwr:

Woodhead Publishing Limited, 2009.

WREGE, M. S. et al. Distribuição Potencial de Oliveiras no Brasil e no Mundo. Rev. Bras.

Frutic., v. 37, n. 3, p. 656–666, 2015.

XIE, P. J. et al. Reduced pressure extraction of oleuropein from olive leaves (Olea europaea

L.) with ultrasound assistance. Food and Bioproducts Processing, 2015.

ZINOVIADOU, K. G.; KOUTSOUMANIS, K. P.; BILIADERIS, C. G. Physical and thermo-

mechanical properties of whey protein isolate films containing antimicrobials, and their effect

against spoilage flora of fresh beef. Food Hydrocolloids, v. 24, n. 1, p. 49–59, 2010.

Page 129: Thamiris Renata Martiny

129

APÊNDICE – PÁGINAS INICIAIS DOS ARTIGOS PUBLICADOS

Page 130: Thamiris Renata Martiny

130

Page 131: Thamiris Renata Martiny

131