processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos...

110

Upload: lehuong

Post on 04-Dec-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Universidade Federal do Rio Grande do Norte

Centro de Ciências Exatas e da Terra

Departamento de Física Teórica e Experimental

Programa de Pós-Graduação em Física

Processos não-randômicos associados aoaquecimento do disco galáctico

Carlos Augusto Pitombeira Viana

Natal-RNMaio de 2016

Page 2: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Carlos Augusto Pitombeira Viana

Processos não-randômicos associados aoaquecimento do disco galáctico

Dissertação apresentada ao Programa de Pós-Graduação em Física da Universidade Federal doRio Grande do Norte como requisito para obtençãodo grau de Mestre em Física.

Orientador:Prof. Dr. Daniel Brito de Freitas

Universidade Federal do Rio Grande do Norte - UFRNDepartamento de Física Teórica e Experimental - DFTE

Natal-RNMaio de 2016

Page 3: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Dissertação apresentada sob o título Processos não-randômicos associados ao aquecimentodo disco galáctico apresentada por Carlos Augusto Pitombeira Viana e aceita peloPrograma de Pós-Graduação em Física da Universidade Federal do Rio Grande do Norte,sendo aprovada por todos os membros da banca examinadora abaixo especi�cada:

Dr. Prof. Daniel Brito de FreitasOrientador

Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte

Natal-RN, Maio de 2016

Page 4: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Catalogação da Publicação na Fonte. UFRN / SISBI / Biblioteca Setorial Centro de Ciências Exatas e da Terra – CCET.

Viana, Carlos Augusto Pitombeira. Processos não-randômicos associados ao aquecimento do disco galáctico / Carlos

Augusto Pitombeira Viana. - Natal, 2016. xi, 94 f.: il.

Orientador: Prof. Dr. Daniel Brito de Freitas.

Dissertação (Mestrado) – Universidade Federal do Rio Grande do Norte. Centro

de Ciências Exatas e da Terra. Programa de Pós-Graduação em Física.

1. Mecânica estatística – Dissertação. 2. Aquecimento do disco galáctico. 3. Velocidade espacial – Dissertação. 3. Processos não-randômicos – Dissertação. 4. Estatística não-extensiva – Dissertação. I. Freitas, Daniel Brito de. II. Título. RN/UF/BSE-CCET CDU: 531.19

Page 5: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

A So�a, minha pequena.

Page 6: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

�Se os dias acumulassem o peso das horas em nossos ombros,se os eventos passados todos pesassem na memória, como fardos de metal

se os sopros dos adeuses eternos não suavizassem com o tempo,e a marca da traidora mulher não se apagasse com as carícias de uma outra qualquer,

então o universo seria uma coleção de uivos e dentes rangendoum batalhão de Sísifos cansados e de músculos doloridosformidáveis heróis num mundo onde o heroísmo é vazio,

o esquecimento é força da vidamas é ali, na carne que se recompõe lentamente

que mil possibilidades de crime fecundamo coração dolorido não esquece uma ofensa

e aguarda na espreita o momento certo de atacar�O tempo destrói tudo, LIAL.

ii

Page 7: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Agradecimentos

Dedico esse espaço para tecer agradecimentos aos que me ajudaram a trilhar meucaminho nos diversos âmbitos da vida pessoal e pro�ssional. Tenho pessoas maravilhosasque ajudaram em minha escalada através dos vales do conhecimento e sem a ajuda delaso pouco do que tenho não teria sido possível. Resumo aqui todo o meu agradecimentoe reconhecimento às pessoas que foram e ainda serão bastante importantes em meupercurso. Espero que cada esforço se faça grande para vencer cada dia de batalhaque nos espera. Obrigado amigos e família, sem vocês minha jornada pelo vale dasincertezas seria bem mais árdua. E é com essas breves palavras que início minhas estimase agradecimentos.

Começarei com os que me alicerçam: Minha Família.

• Aminha pequena So�a, a que tem o sorriso mais belo, que nem com toda a in�nitudedo pensamento seria capaz de conceber tamanha beleza e cujo amor que sinto nãocabe em mim e transborda além do cosmos;

• Aos meus pais, Erlange e Carlos, pelo amor incondicional, lições, conselhos eesforços. Sempre será pouco estimar em palavras toda a consideração e amor quesinto por vocês;

• Ao meu irmão e irmãs, Eduardo, Mairla e Iasmim, por todo amor, brigas, conversase bagunças. Crescer nos deixou mais longe, mas não menos importantes uns aosoutros;

• A Jujuba e Jão, meus pequenos sobrinhos, por toda beleza e afeto de seus abraços;

• Aos meus avós, Danilo e Maria, por todos os conselhos e amor distribuído em cadaencontro;

• Aos meus tios, Dendena, Leleu, Maquinhos, Geninha, por serem sempre pessoasmassa!;

• A Isabelle, minha companheira, por toda paciência, encorajamento, vida ecumplicidade. Obrigado por me ensinar a ser uma pessoa melhor a cada dia. Cadalição e aprendizado que traçamos juntos e que nos faz crescer em nossa comunhão.Te amo!;

• Aos irmãos não sanguíneos: Tássio, Fernando e Will: BANDA, viagens, brodagem eamor!!! A Dayvim, Nelinho, Dandam e Zezé por sempre serem massa que só! Pedro,Aninho, Melissa, Jéssyca, Camilla, Andrezão e todo o beco, nossa TAZ. Ao GUETO,

iii

Page 8: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

nosso refúgio de toda monotonia e fuga dos processos de institucionalização daamizade. Obrigado demais Cachorrão, Mackson, Vanessa, Marcos Vínicius, Fabrícioe Babá por sempre serem companheiros e tramar contra o mundo. Analine, Paulo,Nagilson, Ricardo, Suzana, Cidoca, Veruska e Murilo por momentos massa! Brenoe Magno pela confabulação contra dogmas. Joaquim e Lucina, pelas conversas,tramas e baladas góticas. Paolo, Ícaro, Rosa, Cegão, Samuel, que, mesmo com adistância, nunca deixaram que nada se fazesse abalar em nossa parceria.

• Aos amigos, todos, sinceramente, estimo todo amor a vocês.

Os agradecimentos seguem para os que no âmbito pro�ssional ajudaram na minhaformação:

• Ao grande Professor Dr. Daniel Brito de Freitas, grande Mestre, por todo auxílioe orientação, empreendendo bastante esforço e encorajamento a minha formação.Tenho bastante estima e admiração por todo seu esforço em construir um mundomais justo;

• Aos Professores do departamento de Física da UERN que ajudaram em minhaformação, direta ou indiretamente;

• Aos Professores do DFTE da UFRN, com quem tive o prazer em me relacionar eusufruir de seus ensinamentos;

• Aos colegas que conheci no caminho pelo aprendizado.

Ainda agradeço:

• Aos demais que estiveram junto a mim em algum momento deste percurso najornada por novos horizontes;

• A CAPES pela bolsa de estudos concedida.

iv

Page 9: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Resumo

Neste trabalho, analisamos os mecanismos que regem os processos que governam oaquecimento do disco galáctico através da dinâmica das velocidades espaciais U , V eW , extraídas do Catálogo Genebra-Copenhagen. Nós partimos da premissa, até entãoaceita a priori, de que os processos que atuam no disco galáctico são de naturezaaleatória e responsáveis por um aquecimento puro, revelado pela componente W . Emseguida, nós utilizamos um modelo baseado na Mecânica Estatística Não-Extensiva, apartir do qual derivamos as funções de distribuição de probabilidade que quanti�camo afastamento da Gaussianidade dado o per�l da cauda da distribuição mensuradopelo índice entrópico q. Nossos resultados revelam que a aleatoriedade ocorre apenasem regiões limitadas de idade, independente da velocidade espacial e faixa espectral,contrariando assim a premissa acima destacada. Além disso, utilizando as distribuiçõesdo tipo não-Gaussianas para descrever o comportamento das velocidades U , V e W ,nós chegamos ao entendimento de que o aumento da dispersão da velocidade, σ, coma idade das estrelas segue uma lei do tipo lei de potência, indicando que existe umdesencadeamento do tipo avalanche ocorrendo em diferentes escalas. Finalmente, nossosresultados colocam um novo olhar sobre essa questão e abre um caminho para o estudodas componentes cinemáticas Galácticas pela ótica de modelos estatísticos mais robustos,que levam em conta os efeitos de não-gaussianidade e não-linearidade.

Palavras-chave: Aquecimento do disco galáctico; Velocidade espacial; Processos não-randômicos; Estatística não-extensiva.

v

Page 10: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Abstract

In this work, we analyze the mechanisms ruling the processes that rules the heating ofthe galactic disk through the dynamics of space velocities U , V andW , extracted from theGeneva-Copenhagen catalog. We start from the premise − until then accepted in priority− that the processes operating in the galactic disk have random nature and are responsiblefor a pure heating, revealed by the W component. Then we use a model based on Non-Extensive statistical mechanics where we derive the probability distribution functionsthat quantify the removal of Gaussian, given the pro�le of the tail of the distributionmeasured by entropic index q. Our results show that randomization occurs only in limitedregions, independently of age, space velocity and spectral range, thus counteracting theabove premise highlighted. Furthermore, using the distribution of the non-Gaussian todescribe the behavior of the velocities U , V and W , we have found that the increasingdispersion rate, σ, at the age of stars follows a law of the power law type, indicating atrigger type avalanche occurring at di�erent scales. Finally, our results put a new look inthis matter and opens the way for the study of Galactic kinematics components throughthe eyes of more robust statistical models that considers the e�ects of non-Gaussian andnon-linearity.

Keywords: Galactic disk heating; Space velocity; Non-random process; Non-extensivestatistical.

vi

Page 11: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Lista de Figuras

1.1 Modelo da Via Láctea proposto por Herschel. O ponto mais escuro,próximo ao centr,o seria a posição ocupada pelo Sol (Fonte: Herschel,1785). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Foto panorâmica da Via Láctea. Crédito: ESO/S. Brunier (Fonte:https://www.eso.org/public/brazil/images/eso0932a/). . . . . . . . . . . 3

1.3 Esquema ilustrativo das componentes da Via Láctea onde estãodestacados o disco, o bojo central e o halo de aglomerados globulares.(Fonte:https://pt.wikipedia.org/wiki/Via_Láctea) . . . . . . . . . . . . . 4

1.4 (a)Imagem do disco �no e bojo de NGC 4762 (a partir do Digital SkySurvey). (b) Uma imagem mais profunda da mesma galáxia, NGC 4762,que agora mostra a extensão do disco espesso. As setas representam aaltura vertical em que o disco espesso é mais brilhante do que o disco �no(Fonte: Freeman & Bland-Hawthorn, 2002). . . . . . . . . . . . . . . . . 7

1.5 Vista dos planos superior (plano XY) e lateral (plano XZ) de simulaçõespara formação do disco Galáctico ainda na fase de formação estelar (Fonte:Brook et al., 2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Taxa de formação estelar (SFR) em função do tempo com pico de formaçãode estrelas em ∼ 9 Gano (Fonte: Brook et al., 2004). . . . . . . . . . . . 11

1.7 Parte da simulação de ondas espirais suaves responsáveis pelo aquecimentodo disco �no estelar (Fonte: Sellwood & Binney, 2002). . . . . . . . . . . 11

1.8 Representação esquemática das bolhas próximas ao Sol. (Fonte: Welsh etal., 1994) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Representação esquemática das bolhas Local e Loop I (Fonte:Breistchwerdt, 2000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.10 Coordenadas galácticas U,que aponta para cento da Via Láctea; V, para o sentido de rotação daGaláxia; e W, que é coordenada que se direciona ao polo norte galáctico.(Fonte: http://www.astro.sunysb.edu/metchev/AST443/lecture15.pd)f . 16

1.11 Velocidades U, V e W vs. Idade para 4065 estrelas simples do CGS (Fonte:Holmberg at al., 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.12 Diagrama U-V separado em quatro grupos de idade. (Fonte:Holmberg atal., 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.13 Diagrama V-W separado em quatro grupos de idade. (Fonte:Holmberg atal., 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.14 Histograma para a componente W da velocidade para uma subamostra deestrelas F e G single retiradas do CGS (Fonte: Holmberg et al., 2007). . . 20

vii

Page 12: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

2.1 Função de distribuição Normal, ou Gaussiana, para diversos valores de σ. 322.2 Comportamento da função de distribuição q-Exponencial para alguns

valores de q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.3 Comportamento da função de distribuição q-Logarítimo para alguns

valores de q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.4 Função de distribuição q-Gaussiana para diversos valores de q e σ �xo. . 39

3.1 Relação idade-dispersão de velocidade das componentes de velocidade U,V e W e da velocidade total(tot) retirada do Geneve-Copenhagen Survey.Linha tracejada é o ajuste da relação excluindo os três primeiros e os trêsúltimos intervalos. (Fonte:Holmberg et al. (2009)) . . . . . . . . . . . . . 41

3.2 Diagrama U-V com dados de uma subamostra formada por 4065 estrelasdo CGS, com σ(idade) < 25%, separadas em quatro grupos. . . . . . . . 42

3.3 Diagrama V-W com dados de uma subamostra formada por 4065 estrelasdo CGS, com σ(idade) < 25%, separadas em quatro grupos. . . . . . . . 43

3.4 Distribuição da velocidade W separadas por idade. Figura retirada doGeneve-Copenhagen Survey, Holmberg et al. (2007). A linha pontilhada éo ajuste Gaussiano. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Velocidades U,V e W em função da idade para 7237 estrelas single daamostra com dados para idade e velocidade bem de�nidos. Figura retiradado Geneve-Copenhagen Survey, Holmberg et al. (2004). . . . . . . . . . . 45

3.6 Velocidades U,V e W em função da idade para 2852 estrelas single daamostra com idades melhores que 25%. Figura retirada do Geneve-Copenhagen Survey, Holmberg et al. (2004). . . . . . . . . . . . . . . . . 46

3.7 Histograma da idade das estrelas F (Giga-ano). . . . . . . . . . . . . . . 463.8 Histograma da idade das estrelas G (Giga-ano). . . . . . . . . . . . . . . 473.9 Boxplot para idade das estrelas do tipo G evidenciando qual a faixa de

idade onde encontra-se maior número de estrelas. . . . . . . . . . . . . . 473.10 Histograma da massa em função da massa solar para estrelas F singles. . 483.11 Histograma da massa em função da massa solar para estrelas G singles. . 493.12 Histograma da metalicidade em função da metalicidade solar para estrelas

F single. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.13 Histograma da metalicidade em função da metalicidade solar para estrelas

G single. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Esquerda: Histograma da distribuição de velocidade para a componenteU de todas as estrelas F e G single com ajuste da função Kernel. Direita:Dados ajustados pela função Kernel (círculos) com ajuste q-Gaussiano(linha azul). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Esquerda: Histograma da distribuição de velocidade para a componenteV de todas as estrelas F e G single com ajuste da função Kernel. Direita:Dados ajustados pela função Kernel (círculos) com ajuste q-Gaussiano(linha azul). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Esquerda: Histograma da distribuição de velocidade para a componenteW de todas as estrelas F e G single com ajuste da função Kernel. Direita:Dados ajustados pela função Kernel (círculos) com ajuste q-Gaussiano(linha azul). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

viii

Page 13: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

4.4 Esquerda: Histograma da distribuição de velocidade para a componenteU das estrelas do tipo F single com ajuste da função Kernel. Direita:Dados ajustados pela função Kernel (círculos) com ajuste q-Gaussiano(linha azul). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Esquerda: Histograma da distribuição de velocidade para a componenteV das estrelas do tipo F single com ajuste da função Kernel. Direita:Dados ajustados pela função Kernel (círculos) com ajuste q-Gaussiano(linha azul). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Esquerda: Histograma da distribuição de velocidade para a componenteW das estrelas do tipo F single com ajuste da função Kernel. Direita:Dados ajustados pela função Kernel (círculos) com ajuste q-Gaussiano(linha azul). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Esquerda: Histograma da distribuição de velocidade para a componenteU das estrelas do tipo G single com ajuste da função Kernel. Direita:Dados ajustados pela função Kernel (círculos) com ajuste q-Gaussiano(linha azul). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 Esquerda: Histograma da distribuição de velocidade para a componenteV das estrelas do tipo G single com ajuste da função Kernel. Direita:Dados ajustados pela função Kernel (círculos) com ajuste q-Gaussiano(linha azul). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 Esquerda: Histograma da distribuição de velocidade para a componenteW das estrelas do tipo G single com ajuste da função Kernel. Direita:Dados ajustados pela função Kernel (círculos) com ajuste q-Gaussiano(linha azul). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.10 Curvas de resíduo obtidas a partir da razão entre os dados empíricos e oajuste da função q-Gaussiana para as velocidades espaciais (U, V, W) detodas as estrelas F e G single. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.11 Curvas de resíduo obtidas a partir da razão entre os dados empíricos e oajuste da função q-Gaussiana para as velocidades espaciais (U, V, W) dasestrelas do tipo F single. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 Curvas de resíduo obtidas a partir da razão entre os dados empíricos e oajuste da função q-Gaussiana para as velocidades espaciais (U, V, W) dasestrelas do tipo G single. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 Ajuste da função Kernel (círculos) com o ajuste q-Gaussiano (linha azul)para cada faixa de idade das componentes U, V e W, via bootstrap. . . . 62

4.14 Dispersão da velocidade em função da idade para estrelas do tipo F. Alinha em vermelho é o ajuste q-exponencial. . . . . . . . . . . . . . . . . 65

4.15 Dispersão da velocidade em função da idade para estrelas do tipo G. Alinha em vermelho é o ajuste q-exponencial. . . . . . . . . . . . . . . . . 65

4.16 Comportamento do índice entrópico q-original e q-bootstrap pela idade paraas estrelas F single. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.17 Comportamento do índice entrópico q-original e q-bootstrap pela idade paraas estrelas G single. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.18 Medida de desvio de mecânismos randômicos (q − 1) de U, V e W paraestrelas do tipo F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

ix

Page 14: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

4.19 Medida de desvio de mecânismos randômicos (q − 1) de U, V e W paraestrelas do tipo G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

x

Page 15: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Sumário

Agradecimentos iii

Resumo v

Abstract vi

1 Introdução 11.1 A Via Láctea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 O Bojo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.1.2 O Disco Galáctico . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.1.3 O Halo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Bolha Local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.3 Vizinhança Solar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.4 Aquecimento do Disco Galáctico . . . . . . . . . . . . . . . . . . . . . . . 151.5 Plano de trabalho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Estatística generalizada: uma abordagem não-extensiva 222.1 Mecânica estatística de Boltzmann-Gibbs . . . . . . . . . . . . . . . . . . 25

2.1.1 Extensividade e Aditividade . . . . . . . . . . . . . . . . . . . . . 272.1.2 Distribuição de Probabilidade para a Estatística de Boltzmann-Gibbs 29

2.2 Mecânica Estatística Não-extensiva . . . . . . . . . . . . . . . . . . . . . 332.2.1 Função de distribuição de probabilidade q-Gaussiana . . . . . . . 37

3 Descrição da amostra e dados observacionais 403.1 Catálogo Geneva-Copenhagen . . . . . . . . . . . . . . . . . . . . . . . . 403.2 Parâmetros astrofísicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Velocidades Espaciais (U, V, W) . . . . . . . . . . . . . . . . . . 403.2.2 Idade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.2.3 Massa e metalicidade . . . . . . . . . . . . . . . . . . . . . . . . . 473.2.4 De�nição da amostra . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Resultados e Discussões 514.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514.2 As distribuições de velocidade espacial . . . . . . . . . . . . . . . . . . . 52

4.2.1 Distribuições de velocidade para estrelas F single . . . . . . . . . 544.2.2 Distribuições de velocidade para as estrelas do tipo G single . . . 564.2.3 Razão Dados empíricos/Curva de ajuste . . . . . . . . . . . . . . 59

xi

Page 16: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

4.3 Segregação da amostra por idade . . . . . . . . . . . . . . . . . . . . . . 624.3.1 Relação entre σ e a idade . . . . . . . . . . . . . . . . . . . . . . 634.3.2 Relação entre o indíce entrópico q e a idade . . . . . . . . . . . . 66

5 Conclusões e Perspectivas 725.1 Conclusões . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725.2 Perspectivas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Referências 75

Page 17: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Capítulo 1

Introdução

Desde o início, a humanidade vem buscando compreender a dinâmica daqueles objetos

luminosos que rondam o céu. Desde sempre houve a curiosidade de entender e descrever o

comportamento das estrelas. Com o passar dos séculos, o avanço cientí�co e tecnológico,

permitiu uma melhor compreensão, não só das estrelas, mas também sobre a estrutura

de nossa e outras Galáxias: as fantásticas fábricas de estrelas.

As primeiras observações da Via Láctea, com critério cientí�co, foram feitas ainda no

início do século XVII, por Galileu Galilei (1564 - 1642), ao usar o telescópio na astronomia.

Esse pensador italiano conseguiu enxergar, com distinção, que a faixa esbranquiçada vista

no céu se tratava, na verdade, de milhares de estrelas, que não eram visíveis a olho nu,

percebendo também que muitas dessas estrelas estavam reunidas em aglomerados. Suas

observações in�uenciaram muitas outras investigações sobre o meio celeste nos séculos

seguintes, o que resultou no modelo conhecido hoje para a Via Láctea. Observações

posteriores revelaram que as estruturas difusas e extensas de formato discoide, que desde

a época do Almagesto1 de Ptolomeu eram descritas como nebulosas, eram constituídas

por um grande número de estrelas[1].

Em 1750, o �lósofo inglês Thomas Wright (1711 - 1786), em seu livro An original or

new hypothesis of the Universe (1750), a�rma que um vasto número de estrelas formam

grupos isolados no espaço e que a faixa esbranquiçada que é vista no céu em noites escuras

seria resultado da distribuição de estrelas em forma de disco achatado - estando o Sol

inserido nesse grupo.

O modelo proposto por Wright teve forte presença nos estudos do �lósofo prussiano

Immanuel Kant (1724 - 1804), que interpretou à Via Láctea como sendo um disco de

estrelas. In�uenciado por ideias da Física Newtoniana, Kant descreve a Galáxia em

1In�uente tratado cientí�co da antiguidade, feito por Cláudio Ptolomeu, compilando toda a produçãoastronômica realizada naquele período, distribuídos em treze volumes. Foi bastante aceito na época porapresentar uma teoria consistente para o movimento do Sol, da Lua e dos planetas (Silva, 2013).

1

Page 18: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

uma dinâmica rotacional, onde as estrelas teriam um comportamento semelhante aos

dos anéis de Saturno, girando em torno do centro da Via Láctea. Ele também propôs

que as estruturas extensas, antes chamadas de nebulosas, poderiam ser sistemas estelares

semelhantes a Via Láctea. Essa proposição foi nomeada de �Hipótese dos Universos-ilhas�.

Os modelos propostos tanto por Wright quanto por Kant, no entanto, não tiveram

aceitação, pois baseavam-se mais em especulações do que em deduções cientí�cas.

Nesse meio tempo, de Kant até os tempos atuais, muitos foram os avanços cientí�cos,

também, vários modelos propostos para a Via Láctea, como, por exemplo o modelo

de Willian Herschel (1738 - 1822), que foi baseado na contagem de estrelas em várias

direções no céu, formulando que a densidade de estrelas no espaço era uniforme e que

a concentração aparente de maior número de estrelas em algumas direções era devido

à extensão da Via Láctea[2]. A �gura 1.1 mostra a concepção da Galáxia segundo o

modelo de Herschel. Este modelo foi aceito durante muito tempo, e somente no início do

século XX, depois das observações feitas por Hubble (1923), é que foi constatado que as

nebulosas na verdade eram outras Galáxias e que não faziam parte da Via Láctea - o que

validava a hipótese nebular de Kant[3].

Figura 1.1: Modelo da Via Láctea proposto por Herschel. O ponto mais escuro, próximoao centr,o seria a posição ocupada pelo Sol (Fonte: Herschel, 1785).

A partir das observações de Hubble, há o surgimento de estudos pioneiros sobre a

natureza da Galáxia, catalogando informações sobre dimensões, composição e estrutura.

Tudo isso resulta no desenvolvimento de teorias para tentar descrever toda a dinâmica

galáctica: Lindblad mostra que a Via Láctea tem movimento próprio de rotação com

período aproximado de 200 milhões de anos[4, 5, 6, 7]; Oort propõe a existência do halo

galáctico e mede a massa da Galáxia[8, 9, 10]; Baade apresenta o conceito de populações

estelares relacionando distribuição espacial, propriedades cinemáticas e intrínsecas das

estrelas[11]. Esses são somente alguns, dentre tantos estudos importantes, a serem citados

sobre as características da Via Láctea.

Nos últimos anos, vastos estudos têm sido realizados, recolhendo uma in�nitude de

dados; e mesmo com essa gama de informações, ainda existem lacunas a serem preenchidas

sobre como aconteceu a formação e a evolução da Galáxia.

2

Page 19: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Na próxima seção, a Via Láctea será descrita em função das regiões que a compõe e

dos modelos que são utilizados para explicar o surgimento de cada uma destas partes, o

que se faz necessário para que haja o melhor entendimento de como se deu o processo de

evolução Galáctica.

1.1 A Via Láctea

A Via Láctea existe há bilhões de anos, mas o conhecimento sobre sua estrutura é

consideravelmente recente, datado em pouco mais de três séculos. Somente com o avanço

nas observações, ocorridas no início do século XX, foi que o escopo de teorias para explicar

sua origem e evolução foi se tornando mais consistente.

A �gura 1.2 mostra uma foto panorâmica da Galáxia.

Figura 1.2: Foto panorâmica da Via Láctea. Crédito: ESO/S. Brunier (Fonte:https://www.eso.org/public/brazil/images/eso0932a/).

Os primeiros estudos classi�cavam a Via Láctea como sendo dividida em dois grupos

distintos, ou populações. Baad[11], levando em conta levantamentos feitos por Oort[8, 9]

e Lindblad [5], divide a Galáxia em dois grupos: População I e População II. A População

I é formada pelos objetos que habitam o disco galáctico, possuindo uma ampla variação de

idade e composição química quase solar. Por sua vez, a População II é onde se encontram

as estrelas aglomeradas na componente esferoidal da Galáxia, que são estrelas bastante

velhas e pobres em metais, comparadas com a composição do Sol.

Os avanços nas técnicas observacionais e nas teorias possibilitaram o enriquecimento

do conceito de populações estelares. As estrelas da população II, mesmo com de�ciência

em metais, apresentam traços de elementos mais pesados, que não poderiam ter sido

produzidos no interior estelar desse grupo, indicando a possibilidade de existência de uma

3

Page 20: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

população interior, que teria enriquecido o meio interestelar (MI) antes do surgimento

da População II[12, 13, 14, 15, 16, 17]. Esta população ancestral passa então a ser

denominada de População III.

Os avanços nas descobertas rede�niram o conceito de população estelar, categorizando

novos tipos de populações, ou subpopulações. Por exemplo: População I Extrema

(regiões de HII), População I Velha (o Sol), População II Intermediária (estrelas de alta

velocidade), População II do Halo (aglomerados globulares)[18].

Pesquisas recentes apontam que a Via Láctea pode ser descrita de uma forma geral

como sendo composta por três regiões básicas: o bojo, localizado na parte central da

Galáxia, tendo forma esferoidal e grande densidade; o halo, região mais externa da

Via Láctea, onde são encontrados aglomerados globulares e as estrelas mais antigas da

Galáxia; e o disco, região onde estão localizados os braços espirais, constituído-se de duas

partes chamadas de disco �no e disco espesso. Estas regiões são assim classi�cadas de

acordo com as distribuições de: idade, cinemática e metalicidade[19].

A �gura 1.3 ilustra a divisão das regiões que compõem a Via Láctea.

Nos subtópicos a seguir, apresentaremos uma melhor caracterização das regiões que

formam a Galáxia, assim como também a descrição de teorias que tentam esclarecer a

formação do bojo, dos discos �no e espesso e do halo.

Figura 1.3: Esquema ilustrativo das componentes da Via Láctea onde estãodestacados o disco, o bojo central e o halo de aglomerados globulares.(Fonte:https://pt.wikipedia.org/wiki/Via_Láctea)

4

Page 21: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

1.1.1 O Bojo

Acredita-se que o bojo tenha sido originado no colapso inicial da protogaláxia. Eggen

et. al ([20]) sugeriram um modelo para formação do bojo depois de estudar estrelas

anãs na vizinhança solar e encontrar relação entre metalicidade e a excentricidade da

órbita e da velocidade perpendicular com a metalicidade. Veri�cou-se que estrelas com

idade elevada e baixa metalicidade possuem órbitas excêntricas e altas, enquanto que

as que teriam metalicidade maior possuíam órbitas quase circulares no plano galáctico.

O modelo proposto consiste em uma nuvem de gás primordial, que teria dado origem

à protogaláxia depois de uma colapso rápido (∼ 1 Mega-ano)2. Este colapso teria

dado origem à região central - aquela que possui maior densidade -, onde o índice de

formação estelar aumentaria, fazendo com que ocorresse o esgotamento de matéria para

a formação de estrelas. Os objetos criados neste período teriam baixa abundância de

elementos mais pesados, o que seriam responsáveis pela presença de estrelas velhas na

região central[21],[22]. O restante do gás circundante da região central de colapso cairia,

formando o disco da Galáxia. Isso explicaria a baixa excentricidade e a alta metalicidade

no plano galáctico. Após observações das abundâncias químicas de estrelas do disco e do

halo, este modelo passou a ser menos aceito.

Um outro modelo sugerido é a formação do bojo por colisão e fusão de galáxias

[23, 24, 25, 26]. Seguindo esse modelo, fusões sucessíveis de Galáxias menores

provocariam aumentos na formação estelar e acréscimo de estrelas[27]. Esta hipótese é

bastante aceita, tendo em vista que observações revelarem que Galáxias espirais gigantes

possuem Galáxias Satélites(GS) em suas vizinhanças, sendo atraídas pelo forte potencial

gravitacional. O engolimento das Galáxias menores provoca, então, o aparecimento

do bojo na região central. Há indícios desse canibalismo cósmico na Galáxia anã de

Sagittarius[28, 29] e na estreita relação entre a Nuvem de Magalhães e a Via Láctea[30].

Assim, as Galáxias tipo precoce (early type) teriam seus bojos formados pela matéria

acrescida, proveniente das Galáxias satélites, no decorrer do processo evolutivo, ocorrendo

a destruição do disco e aumentando a concentração da população típica do bojo. Já

Galáxias tipo tardias (late type) teriam baixa quantidade de vizinhas menores engolidas.

A alta dispersão da abundância química seria facilmente explicada pelo processo de

evolução do bojo por canibalismo galáctico, no entanto, análises cinemáticas voltadas

para o bojo[31], para estrelas e Nebulosas Planetárias, sugerem a existência de poucas

estrelas com movimento retrógrado e órbitas excêntricas para componente radial, o que

vai de encontro com a teoria de fusão entre Galáxias, apresentada anteriormente [32].

Existem, de fato, Galáxias sendo absorvidas por outras. Mas estudos sugerem que

o processo de engolimento poderia ser responsável pela formação do disco espesso e do

21 Mega-ano = 106 anos ou 1 milhão de anos

5

Page 22: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

halo galáctico e que outros processos seriam responsáveis pela formação do bojo[33].

Bojos formados por estes processos recebem a denominação de bojos clássicos por muitos

autores.

Um outro mecanismo de formação do bojo conhecido é o de Evolução Secular, que é

baseado na instabilidade da região central da barra galáctica. Combes & Sanders ([34]),

através de simulações numéricas, observaram um incremento, em um curto intervalo de

tempo (∼ 1 Giga-ano)3, na espessura da barra central em regiões de disco �no. O

aquecimento vertical da barra pode ser causado por ressonâncias orbitais e instabilidade,

ocorrendo dispersão de velocidade, o que por sua vez, causaria um aumentando na altura

com relação ao plano galáctico. O transporte de gás para a região mais interna da

Galáxia pode ser induzido pela barra central. O acúmulo de gás nesta região geraria uma

instabilidade, provocando um rompimento, que acarretaria no aparecimento do bojo.

Futuramente, a barra apareceria e voltaria a injetar gás, con�gurando assim um processo

cíclico. Desse modo, o fenômeno de aparecimento do bojo está ligado diretamente à

dinâmica do disco[35], sugerindo que a população estelar teria uma herança cinemática e

química da região interna do disco[36, 37].

Estudos teóricos conseguem reproduzir Galáxias de bojo pequeno, ou Galáxias

tardias, enquanto que, para reproduzir os bojos proeminentes das Galáxias early-type,

são encontrados problemas. Espera-se que, com os dados observacionais recolhidos nos

últimos anos para estrelas e nebulosas planetárias, novas análises possam produzir um

estudo mais consistente no que diz respeito à formação do bojo galáctico[38, 39].

1.1.2 O Disco Galáctico

Como pode ser observado na �gura 1.3, o disco Galáctico foi de�nido como sendo

formado por duas regiões, o disco �no e o disco espesso[40], e suas propriedades têm

sido objeto de inúmeros estudos. A escala de altura para o disco �no é de ∼ 300 pc4,

e ∼ 900 pc para o disco espesso[41]. A �gura 1.4, retirada do trabalho de Freeman &

Bland-Hawthorn [42], mostra as diferentes espessuras das componentes do disco para a

Galáxia NGC 4762; as setas evidenciam as diferentes alturas para os discos �no e espesso.

Ao comparar as �guras 1.4(a) e 1.4(b), o disco espesso é facilmente notado.

O disco espesso apresenta um grande número de estrelas velhas com alta dispersão

cinemática e pobres em metais. Por sua vez, o disco �no é composto por estrelas ricas em

metais e mais jovens. Estas características são essenciais para que o disco seja separado

em duas componentes distintas. Estudos e levantamentos mais detalhados da cinemática e

das abundâncias químicas têm sugerido a presença de uma outra população intermediária

31 Giga-ano = 109 anos ou 1 bilhão de anos.4O termo pc é a abreviação de Parsec. 1 Parsec = 3, 08568× 1016 metros = 3, 26156 anos-luz.

6

Page 23: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 1.4: (a)Imagem do disco �no e bojo de NGC 4762 (a partir do Digital Sky Survey).(b) Uma imagem mais profunda da mesma galáxia, NGC 4762, que agora mostra aextensão do disco espesso. As setas representam a altura vertical em que o disco espessoé mais brilhante do que o disco �no (Fonte: Freeman & Bland-Hawthorn, 2002).

entre os discos, possuidora de características de ambos[43, 44, 46]. Catálogos como o

Geneva-Copenhagen Survey[47, 48, 49] mostram que a separação entre os discos não é de

fácil detecção, pois não há, na literatura, um consenso sobre os valores limites a serem

adotados nos estudos de abundância química, cinemática ou idade, que possam revelar a

diferença entre estrelas do disco �no e do disco espesso, sendo adotados critérios diferentes

para cada uma dessas populações.

Reddy et al. [50] apontam que há um aumento claro da metalicidade com a idade,

além do que as populações estelares dos discos �no e espesso possuem abundâncias

químicas distintas[51]. Estudos baseados na abundância química têm sido considerados

mais con�áveis para identi�car a qual região do disco uma estrela pode pertencer. Mas

se o interesse for estudar o caminho evolutivo do disco Galáctico e a formação dos discos

�no e espesso, o estudo de abundância química é ine�ciente.

Estudos cinemáticos feitos por Bensby et al. [52] e Reddy et al. [46] atribuem a

probabilidade de cada estrela pertencer ao disco �no ou ao disco espesso. Os estudos

partem do pressuposto de que as velocidades espaciais U,V e W, de cada população

possuem uma distribuição com per�l Gaussiano com determinados valores médios e

dispersões σU , σV e σW . As equações que determinam as probabilidades são dadas por:

7

Page 24: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Pfino = f1P1

P

Pesp = f2P2

P(1.1)

Phalo = f3P3

P

Onde Pfino ,Pesp ,Phalo correspondem à probabilidade da estrela estar localizada no

disco �no, no disco espesso ou no halo. P e Pi são dados por:

P = f1P1 + f2P2 + f3P3

e

P = k · exp[− U2

2σ2Ui

− (V − Vass)2

2σ2Vi

− W 2

2σ2Wi

](1.2)

sendo

k =1

(2π)2/3σUiσViσWi

(1.3)

onde fi são as densidades relativas para cada uma das regiões e Vass é o termo de

assimetria.

Como é observado uma sobreposição entre as distribuições Gaussianas para as

velocidades espaciais, a de�nição da população para o disco �no ou disco espesso

é bastante sensível aos parâmetros que de�nem as distribuições normais para cada

população estelar.

A dispersão das velocidades σ são medidas através do tensor dispersão de

velocidade dado por[132, 147]:

σ2ij ≡ (vi − v̄i)(vj − v̄j) (1.4)

8

Page 25: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

onde, v ≡ (U, V,W ) e v ≡ (U, V ,W ).

As estrelas do disco movem-se ao redor do centro Galáctico com órbitas quase

circulares. O Padrão Local de Repouso (LSR) é de�nido como sendo centrado na posição

do Sol em relação ao centro da Galáxia, sendo a órbita solar considerada perfeitamente

circular em torno centro da Via Láctea, movendo-se paralelamente ao plano Galáctico. O

LSR é utilizado para a correção das velocidades espaciais para as estrelas na vizinhança

solar. A tabela 1.1, extraída do trabalho de Bensby et al. ([51, 52]), mostra a dispersão

das velocidades espaciais σU , σV e σW para o disco �no, disco espesso e halo.

O disco �no é formado maioritariamente por estrelas relativamente jovens, com idades

menores que 8 Giga-anos, ricas em metais e que possuem órbitas com elevado momento

angular ao redor do bojo Galáctico. Binney & Merri�eld [54] demonstram uma tendência

na dispersão para estrelas do disco espesso, em comparativo com as do disco �no,

utilizando análises cinemáticas. Estrelas tipicamente do disco espesso possuem baixa

velocidade orbital, com grande dispersão na velocidade[55, 56, 57, 58], elevada razão

[α/Fe], além de serem mais velhas e pobres em metais[46, 51, 53, 59, 60].

As estrelas do disco espesso devem ter se formado anteriormente às estrelas do disco

�no. Características que evidenciam são o fato delas possuírem uma alta razão [α/Fe]

e idades bem mais elevadas. Estas estrelas experimentaram um ambiente de rápida

formação estelar e passaram por aquecimento dinâmico e processos seculares, como a

dispersão por pertubações no disco[61]. A formação do disco espesso é resultado de

múltiplos processos complexos, experimentados pelas estrelas durante suas vidas; no

entanto, não existe um consenso sobre a natureza desse fenômeno.

Os processos que são discutidos como sendo responsáveis pela formação do disco

espesso estão divididos em dois grupos: origem violenta e evolução secular. Exemplos

de processo de origem violenta são dados por Quinn et al. [62] e Kazantzidis et al.

[63, 64]. Estes autores a�rmam que o disco espesso pode ter sido formado à partir do

aquecimento dinâmico do disco �no, que existia anteriormente, por fusão de Galáxias

satélites. Villalobos & Helmi [65, 66], por meio de simulações, demostraram que 10 -

20% das estrelas do disco espesso são provenientes da fusão de Galáxias, enquanto que o

restante seria resultado do aquecimento do disco �no.

Existe a hipótese de que estrelas formadas em Galáxias anãs foram capturadas em

órbitas próximas ao plano do disco galáctico dando origem ao disco espesso [67]. Este

processo seria responsável por ∼ 70% das estrelas do disco espesso [67].

Outro modelo de mecanismo de origem violenta é o de que as estrelas do disco espesso

podem ter sido formadas in situ por meio de fusões desordenadas de sistemas ricos em

gás, levando a formação de estrelas em momentos anteriores e durante as fusões. As

estrelas formadas no disco �no migrariam para a região espessa num tempo posterior ao

9

Page 26: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Tabela 1.1: Dispersão da velocidade espacial (σU , σV , e σW ) no disco �no, no discoespesso e no halo estelar, utilizando a equação 1.2. f é a densidade de estrelas observadaspara cada população na vizinhança solar e Vass é o termos de assimetria para cadacomponente V (Fonte: Bensby et al.,2003 e Bensby et al.,2004).

f σU σV σW Vass���- [km s−1] ���-

Disco Fino 0.90 35 20 16 −15Disco Espesso 0.10 67 38 35 −46Halo 0.0015 160 90 90 −220

das fusões[68, 69, 70, 71] . A �gura 1.5, extraída do trabalho de Brook et al. [68], mostra,

através de simulações, a formação do disco gasoso e do disco de estrelas além de um bojo

ainda na fase de formação estelar. A �gura 1.6, também extraída do trabalho de Brook et

al. [68], faz um traçado histórico da formação estelar, evidenciando um pico de formação

estelar em ∼ 9 Gano, passando por um decaimento até 4 ou 5 Gano, e assumindo um

per�l razoavelmente estável para os últimos 5 Gano, aproximadamente.

Figura 1.5: Vista dos planos superior (plano XY) e lateral (plano XZ) de simulaçõespara formação do disco Galáctico ainda na fase de formação estelar (Fonte: Brook et al.,2004).

Spitzer e Schwarzschild [72] mostraram que a evolução secular por aquecimento do

disco, causada por encontros de nuvens moleculares, aumenta a dispersão de velocidade

das estrelas tipo tardias (late-type). Outro mecanismo que provoca a dispersão da

velocidade de estrelas mais velhas é causado pela interação de estruturas espirais na

vizinhança solar[73].

Estudos teóricos e simulações[74, 75, 76] sugerem que o disco espesso poderia

ter se formado por processos seculares cumulativos associados à migração radial das

estrelas[77, 78]. A simulação mostrada na �gura 1.7, retirada do trabalhode Sellwood &

Binney [77], demostram uma sucessão de ondas espirais suaves que aquecem o disco �no,

favorecendo o aparecimento do disco espesso.

10

Page 27: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 1.6: Taxa de formação estelar (SFR) em função do tempo com pico de formaçãode estrelas em ∼ 9 Gano (Fonte: Brook et al., 2004).

Figura 1.7: Parte da simulação de ondas espirais suaves responsáveis pelo aquecimentodo disco �no estelar (Fonte: Sellwood & Binney, 2002).

1.1.3 O Halo

O halo é uma estrutura com formato quase esférico, com baixa ou nenhuma

rotação[79], composto por diversos objetos Galácticos distintos, como: estrelas, que se

distribuem num raio entre 1 - 40 kpc, a partir do centro Galático[80]; cerca de 150

aglomerados globulares[81, 82]; ∼ 20 Galáxias satélites[83]; além da presença de matéria

escura (ME), que alguns estudos mostram que corresponde a cerca de 1012 M� espalhadas

em 100 kpc[84, 88]. Esta estrutura é responsável apenas por 1% da luz emitida pela

Via Láctea, sendo o restante do espectro emitido de responsabilidade das estruturas

internas (bojo e disco)[42, 89]. A presença de matéria escura é inferida em analogia ao

comportamento de outras Galáxias, onde estudos apontam a presença de mais massa do

11

Page 28: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

que é observado, sendo sua presença detectada apenas como efeitos gravitacionais[90],

onde curvas ópticas para as velocidades de rotação de Galáxias espirais permanecem

relativamente constantes para raios consideravelmente grandes, em vez de diminuir, como

é esperado caso a massa gravitacional seja atribuída apenas para às estrelas visíveis[91].

As estrelas que habitam o halo possuem órbitas altamente aleatórias e baixa rotação,

além de baixa metalicidade e de serem bastante escassas em comparação ao disco e ao

bojo.

A baixa metalicidade nesta região é um registro fóssil da formação da Galáxia. Por

ser tão antigo, o halo deve abrigar alguns dos primeiros objetos da Via Láctea, como

exemplo de algumas anãs brancas com idade em torno de 11 Gano[92].

Nas próximas seções a nossa abordagem será restrita às estruturas menores

pertencentes a Galáxia onde todas as estrelas utilizadas no presente trabalho estão

con�nadas, no caso a Bolha Local e a Vizinhança Solar.

1.2 Bolha Local

Estruturas semelhantes a bolhas ou cavidades de plasma são comumente encontradas

em Galáxias. O Sol está imerso em uma dessas regiões globulares, que recebe o nome

de Cavidade Local ou Bolha Local,[93, 94, 95, 96, 97, 98, 99, 101, 100]. Esta região

é extremamente rarefeita (n rmHI = 0, 005 cm3) e possui formato irregular. Dentro da

bolha local, existem pequenas nuvens de baixa densidade nHI ≤ 0.01 cm−3, com dimensões

entre 3 - 5 pc[93, 97, 102] e temperatura T ≈ 7000K. O Sol está no interior ou próximo

da borda de uma dessas nuvens, a qual recebe o nome de Nuvem Interestelar Local

(NIL)[103]. Existem ainda, dentro da bolha local, regiões de gás aquecido (T ≈ 106 K),

que emitem radiação no comprimento de onda do raio-X, conhecidas como Bolha Local

Quente(BLQ)[93, 97, 98, 100, 101].

A cavidade local não está sozinha no meio Galáctico. Em sua vizinhança existem

outras bolhas com características semelhantes que podem interagir. Como mostrado na

�gura 1.8, algumas destas bolhas são a Eridanus Loop, Gum Nebula, Loop I, II, III

e IV[100, 104, 105, 106]. Welsh elt al. [100] mostraram uma esquematização de como

podem se con�gurar estas bolhas no meio interestelar local. A �gura 1.8 mostra o esquema

idealizado por Welsh et al. [100].

Na direção de Scorpio-Centauri (Sco-Cen), localiza-se a região de Loop I, que é

uma cavidade ainda maior que a bolha local. Acredita-se que esta região se formou

por explosões de supernovas das estrelas de Sco-Cen junto da ação de ventos estelares

fortíssimos, que agiram sobre a matéria remanescente da formação estelar, criando, então,

a cavidade de baixa densidade[105, 107, 108].

12

Page 29: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 1.8: Representação esquemática das bolhas próximas ao Sol. (Fonte: Welsh et al.,1994)

Devido a proximidade entra as bolhas local e Loop I, acreditava-se que deveria existir

uma interação entre elas. Análises de dados de raio-X e Hidrogênio neutro feitas por

Egger e Aschenbach ([109]) indicaram a existência dessa região de interação entre as

bolhas. Uma representação dessa interação entre as bolhas local e Loop I, baseada no

modelo de Breistchwerdt [101], é mostrada na �gura 1.9.

Como foi de�nido, a Cavidade Local (CL) é uma região de baixa densidade ao redor

do Sol, enquanto que a Bolha Local Quente é con�gurada pelas regiões de gás aquecido

dentro da cavidade local que emitem em raio-X. Ao serem analisadas as linhas de absorção

do Sódio neutro, se tem um bom indicador da quantidade de gás neutro presente no meio

interestelar. Sfeir et al. [98], através dos estudos das linhas de absorção de NaI para 465

estrelas, revelaram a existência de uma cavidade de gás interestelar neutro em torno do

Sol. Os autores sugerem uma cavidade assimétrica, que pode estar sendo comprimida por

expansões de bolhas jovens que possuem pressão interna maior que a da bolha local. As

emissões de raio-X revelam que o volume ocupado pelo gás aquecido pode ser comparado

ao de uma esfera de 100 pc de raio[93]. Observações do ROSAT (abreviação da palavra

13

Page 30: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 1.9: Representação esquemática das bolhas Local e Loop I (Fonte: Breistchwerdt,2000).

Röntgensatellit, que signi�ca satélite de raios-X em tradução livre), em raio-X de baixa

energia (SRX), revelaram interferências de corpos gasosos fora da bolha local, que podem

estar associadas ao bojo ou halo Galáctico[110]. Craves et al. [111] mostram que o

meio interplanetário também é responsável pela emissão de SRX. Estes levantamentos

evidenciam que a cavidade local e a BLQ não coincidem em tamanho e volume, sendo as

dimensões da CL ∼ 200 pc, enquanto a BLQ tem tamanho entre 40 - 130 pc[112].

Diversos modelos existem para a explicação do surgimento da bolha local. Alguns

autores apontam que a formação da BL ocorreu através da explosão de uma ou mais

supernovas em uma região próxima ao Sol, gerando a cavidade e a região emissora de

raio-X de baixa energia[113, 114, 115, 116, 117, 118]. Outro modelo é o de que a BL

faz parte de uma superbolha que surgiu numa região de baixa densidade entre os braços

espirais da Galáxia[102, 119, 120, 121, 122]. Há também a suposição de que a cavidade

não teria relação com a atividade estelar, sendo apenas um local típico entre os braços

espirais[123, 124]. Lépine & Sartori [125] sugerem que choques entre os braços espirais e

o meio interestelar teriam provocado o aparecimento das bolhas.

A interação das nuvens de alta densidade, encontradas no interior da bolha local,

com o disco Galáctico, afeta a dinâmicas das estrelas, provocando difusão em suas

velocidades[72, 126, 127, 128]. Este efeito de aquecimento na velocidade estelar é

encontrado na vizinhança solar e será discutido na seção 1.4. Antes, no entanto,

14

Page 31: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

apresentamos a de�nição de vizinhança solar.

1.3 Vizinhança Solar

A Vizinhança Solar (VS) é onde podemos testar as teorias sobre a formação e evolução

do disco Galáctico[129]. As estrelas compreendidas num volume ao redor do Sol revelam

estimativas sobre a densidade de massa próxima ao plano Galáctico, onde a distribuição da

idade dessas estrelas pode fornecer um traçado histórico do processo evolutivo. Detalhes

sobre a abundância de elementos pesados em função da idade descrevem o registro fóssil

da evolução e o enriquecimento químico do disco[60, 130]. Assim como os movimentos

espaciais e órbitas Galácticas, também em função da idade, revelam a evolução dinâmica

e o grau de mistura das populações estelares de diferentes regiões do disco[42, 131].

O volume para a vizinhança Solar depende do tipo espectral, sendo a magnitude dada

em função da distância[54]. Ou seja, a determinação do limite da vizinhança para as

estrelas G poderá ser menor do que para as estrelas F, por exemplo, pois o �uxo cai com

o inverso do quadrado da distância.

Em nosso trabalho serão utilizadas estrelas anãs do tipo F e G, pois são relativamente

numerosas; possuem tempo de vida extenso, podendo algumas ter tempo de vida próximo

ou igual ao tempo de formação do disco Galáctico; as atmosferas convectivas destas

estrelas re�etem sua composição química inicial; e as idades podem ser estimadas por

comparação com modelos de evolução estelar.

O sistema de fotometria Strömgren uvbyβ foi utilizado para derivar os parâmetros

observacionais intrínsecos[133, 134]. Olsen [135, 136, 137, 138] utilizou a fotometria

Strömgren uvbyβ para determinar os parâmetros das estrelas F e G. Os catálogos do

Hipparcos[139] e Tycho-2[140] forneceram dados precisos para paralaxe e movimento

próprio. Os dados para velocidade radial foram retirados do Bright Star Catalog[141],

de observações do CORAVEL[142] e por técnicas convencionais de espectroscopia.

Informações das velocidades radiais, órbitas e paralaxe são importantes para descrever o

movimento tridimensional e derivar resultados estatísticos con�áveis para relação idade-

velocidade das estrelas F e G. (Uma melhor descrição sobre a de�nição da amostra será

feita no Capítulo 3).

1.4 Aquecimento do Disco Galáctico

O termo aquecimento foi forjado para indicar um processo de dispersão na velocidade

em grupos de estrelas com idades em comum. A distribuição das velocidades U, V e

15

Page 32: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

W na vizinhança Solar fornece uma abordagem sobre o campo potencial Galáctico e as

relações entre cinemática, idade e metalicidade para as estrelas do disco.

De�nido o padrão local de repouso (PLR) como sendo um ponto �ctício que coincide

com o ponto onde o Sol está localizado e viaja em órbita circular em torno do centro

da Galáxia. As componentes cartesianas usuais (x, y, z), utilizadas para referenciar a

posição do objeto celeste, foram substituídas pelas componentes (U, V, W); onde U é

direcionado para o centro da Galáxia, V aponta para a direção de rotação da

Galáxia e W está na direção do polo norte Galáctico, como pode ser visto na

�gura (1.10).

Figura 1.10: Coordenadas galácticas U, que aponta para cento da Via Láctea; V, parao sentido de rotação da Galáxia; e W, que é coordenada que se direciona ao polo nortegaláctico. (Fonte: http://www.astro.sunysb.edu/metchev/AST443/lecture15.pd)f

Estudos mostram que as populações formadas por estrelas mais velhas possuem maior

dispersão na velocidade do que populações mais jovens[144]. A dispersão da velocidade

das estrelas aumenta com a idade, provavelmente porque o disco é aquecido por interações

com mecanismos dinâmicos. Desse modo, é possível notar uma relação direta entre a idade

e dispersão de velocidade em estrelas próximas, indicando a existência de mecanismos que

causam aumento aleatório das velocidades estelares[47, 144].

Desde os trabalhos de Spitzer & Scharwzschild [72, 126], existe o interesse no estudo

da relação entre idade e dispersão de velocidade de estrelas. Os autores sugeriram

uma relação entre o aumento da excentricidade das órbitas, inicialmente circulares, e

o aumento da difusão de velocidade estelares, que poderiam ter como causa a interação

com nuvens moleculares massivas. Outros mecanismos de interação gravitacional foram

16

Page 33: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

propostos como in�uenciadores na difusão de velocidade, por exemplo: a interação

de braços espirais no disco Galáctico[73]; ou buracos negros massivos na periferia da

Galáxia[145]. Quinn et al. [62] sugerem fusões abruptas entre a Galáxia e as Galáxias

satélites, que gerariam o aquecimento do disco; mas processos suaves de interação entre

Galáxias também �aquecem� as velocidades[146].

A �gura 1.11 mostra o incremento na difusão da velocidade com a idade, além de

uma assimetria aparente na difusão para estrelas com idades superiores a 6 Gano nas

componentes U e V.

Figura 1.11: Velocidades U, V e W vs. Idade para 4065 estrelas simples do CGS (Fonte:Holmberg at al., 2007)

Trabalhos mais recentes, baseados em simulações, mostraram em seus resultados que

a dispersão da velocidade em função do tempo obedece a uma lei de potência do tipo[147]:

σ1(t) = (σ1/p0 + Ct)p. (1.5)

Trabalhos como o De Simone et al. [147] sugerem braços espirais transitórios como

agentes do aquecimento do disco; Mincheve e Quillen [148] mostram que a interação entre

sistemas espirais pode produzir uma estrutura de aquecimento; ou ainda as interações

entre estruturas espirais e a barra Galáctica[149].

A �gura 1.12 mostra a dispersão da velocidade no plano U-V para estrelas do CGS

separadas em quatro grupos de idade.

Muitos trabalhos mostram o incremento da dispersão da velocidade com o tempo para

17

Page 34: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 1.12: Diagrama U-V separado em quatro grupos de idade. (Fonte:Holmberg atal., 2007)

estrelas anãs e subgigantes[84, 85, 86, 87]. É notável que o aquecimento dinâmico do disco

local continua em toda a vida útil das estrelas[45] e pode ser observada a existência de um

domínio na evolução das velocidades U e V; enquanto que, para W, as velocidades parecem

permanecer aleatórias[48, 49]. Isto pode signi�car a existência de mecanismos, tais

como nuves moleculáres gigantes[59]; ou perturbações causadas pelos braços espirais da

Galáxia[147]; ou intereções com a barra galáctica[187], que agem aumentando a dispersão

das velocidades e das órbitas estelares no disco Galáctico[143], desde o nascimento até

sua morte, num processo gradual. A �gura 1.13 mostra a dispersão da velocidade no

plano V-W para estrelas do CGS separadas em quatro grupos de idade.

As velocidades U, V e W sugerem distribuições com per�l ligeiramente Gaussiano,

onde para as componentes U e V possuem uma certa assimetria que precisa ser corrigida.

Para a componente W, as distribuições obedecem a um per�l da distribuição normal. A

�gura 1.14 mostra o histograma para a velocidade W de uma subamostra de estrelas F e

G single do CGS.

A dinâmica das estrelas da Galáxia podem receber in�uência de vários fenômenos.

Em especial, destacamos o aquecimento do disco como sendo de interesse no presente

trabalho. No entanto, tendo em vista que esse aquecimento é produto de interações de

estrelas com o ambiente, surge-nos a pergunta: o que provocaria esses mecanismos não-

randômicos ao longo da história das estrelas? Uma outra questão seria: se existem tais

18

Page 35: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 1.13: Diagrama V-W separado em quatro grupos de idade. (Fonte:Holmberg atal., 2007)

processos não-randômicos (ou não-aleatórios), tal comportamento não pode ser descrito

por uma distribuição normal? Deste modo, como poderíamos quanti�car esses processos

de forma consistente? É a partir da ótica dessas questões que o Capítulo 2 apresenta

seu foco; ou seja, descreveremos o ambiente necessário para uma teoria estatística que

forneça um indicador preciso e revisite o conceito de aquecimento do disco, em particular,

o conceito de aquecimento �puro�, na direção �z�, como apontado por Holmberg et al. [48].

19

Page 36: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 1.14: Histograma para a componente W da velocidade para uma subamostra deestrelas F e G single retiradas do CGS (Fonte: Holmberg et al., 2007).

1.5 Plano de trabalho

Neste trabalho, temos como objetivo investigar a dinâmica do aquecimento do

disco galáctico na vizinhança solar, utilizando um viés estatístico mais elaborado para

descrever a in�uência de mecanismos não-randômicos sobre a evolução nas dispersões das

velocidades espaciais em estrelas do tipo F e G single. Utilizando uma teoria estatística

mais elaborada, que nos forneceu a base necessária para as investigações, pudemos

veri�car a atuação dos mecanismos não-aleatórios e como as distribuições de velocidade

se afastam de um distribuição normal convencional. Tal estatística se faz necessária,

tendo em vista que, ao considerarmos sistemas com interação gravitacional,por exemplo, a

Mecânica Estatística de Boltzmann-Gibbs já se mostrou limitada para descrever processos

que envolvam interações de longo alcance.

No Capítulo 2, iremos expôr os conceitos básicos da teoria estatística não-extensiva

de Tsallis e o porquê desta ser mais usual para tratarmos problemas onde interações não

podem ser desprezadas. Também apresentaremos as distribuições que serão utilizadas

em nosso trabalho.

No Capítulo 3, abordaremos a amostra de estrelas F e G single utilizada no trabalho,

destacando as características e parâmetros estelares pertinentes para a pesquisa.

O Capítulo 4 é aquele no qual vamos expôr nossos resultados. Nele faremos nossos

ajustes, utilizando as funções de distribuições q-gaussiana e q-exponencial, grá�cos de

resíduos que medem o quão nossos ajustes se afastam das curvas teóricas, além dos

20

Page 37: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

grá�cos que medem o desvio dos mecanismos randômicos, desvencilhando qualquer

comportamento da velocidade espacial (U, V, W) de um aquecimento �puro�.

Por último, o Capítulo 5 consiste na apresentação de nossas conclusões e perspectivas

para trabalhos futuros.

21

Page 38: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Capítulo 2

Estatística generalizada: uma

abordagem não-extensiva

O desenvolvimento de leis físicas que pudessem explicar o comportamento

macroscópico da matéria se deu, essencialmente, sob um ponto de vista fenomenológico

e experimental. Foi assim que toda a base da Termodinâmica, que é uma das teorias

mais consistentes da Física, foi fundamentada. Suas leis têm base empírica e analisam

os comportamentos térmicos de corpos macroscópicos. O desenvolvimento da formulação

da descrição dos processos e fenômenos físicos ligados à matéria veio com os primeiros

trabalhos sobre a Teoria Cinética dos Gases, atingindo seu apogeu com os trabalhos de

Maxwell e Boltzmann ao �m do século XIX. Esses trabalhos expuseram ideias como a

descrição microscópica de sistemas macroscópicos, a probabilidade como conceito inerente

aos processos físicos, e a formulação de uma equação cinética com propriedade explícita de

irreversibilidade. Em meio a tudo isso, o conceito de entropia é desenvolvido, sendo esse

um dos conceitos principais da Termodinâmica, e uma das bases da Mecânica Estatística.

Na Termodinâmica, a função entropia é de�nida, considerando estados de equilíbrio,

através da equação,

∆S =∆Q

T,

que também pode ser escrita em termos de parâmetros extensivos, como energia interna

U , volume V e número de partículas N de um dado sistema composto5, e está baseada

em três propriedades [151]:

• A entropia é uma função contínua, diferenciável e monotonicamente crescente de

energia.

5Um sistema composto é aquele formado por um conjunto de sistemas simples separados por paredesou vínculos.

22

Page 39: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

• Considerando um sistema composto, a entropia, S, é aditiva sobre cada uma dos

seus componentes. Por exemplo, se um sistema é formado por dois �uidos puros,

temos que

S(U1, V1, N1, U2, V2, N2) = S1(U1, V1, N1) + S2(U2, V2, N2).

A aditividade da entropia signi�ca que S(U, V,N) é uma função homogenia de

primeiro grau das suas variáveis, ou seja, S(λU, λV, λN) = λS(U, V,N), para

qualquer valor de N.

• Na remoção de um vínculo interno, os parâmetros assumem valores que maximizam

a entropia. A entropia, como função dos parâmetros extensivos, constitui

uma equação fundamental de uma dado sistema e contém toda a informação

termodinâmica do mesmo.

O conceito de entropia é um dos maiores feitos da ciência e um dos pilares mais

importantes da Termodinâmica. Foi através dele que as teorias que dão escopo à

termodinâmica de equilíbrio e de processos irreversíveis se desenvolveram, além de ser

base fundamental da Mecânica Estatística e ter in�uenciado fortemente a Teoria de

Informação6.

A Termodinâmica trata de efeitos macroscópicos de sistemas formados por inúmeras

partículas que podem ser governadas por leis da Mecânica, que pode ser Clássica ou

Quântica. Se pensarmos em um mundo microscópico onde cada partícula é governada

por leis da Mecânica, e o número de partículas é da ordem 1023, cada uma delas terá

sua própria equação de movimento, o que torna o estudo de sua dinâmica inviável.

Sendo assim, para sistemas formados por inúmeros outros subsistemas, faz-se necessária

a utilização de uma teoria estatística que possa descrever o comportamento macroscópico

através do comportamento microscópico. Desta forma, a Mecânica Estatística, que

é sustentada na teoria de probabilidade, é quem faz a ligação entre os dois níveis,

macroscópico e microscópico.

Os fenômenos térmicos são manifestações macroscópicas da dinâmica microscópica.

Quando se compreende essa interação, torna-se mais fácil perceber a conexão entre a

termodinâmica e a microdinâmica. Utilizando a Mecânica Estatística, pode-se, então,

fazer interpretações mais gerais dos sistemas, sem que haja a necessidade de um

tratamento individual para cada partícula, onde o conjunto de microestados pode ser

descrito através das variáveis macroscópicas do sistema.

6Ramo da matemática que estuda a quanti�cação da informação através da aplicação de conceitosestatísticos e foi desenvolvida inicialmente por Claud Shannon, em 1948.

23

Page 40: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Mecânica Estatística foi como �cou conhecido o ramo da Física que se dedica ao estudo

de sistemas constituídos por inúmeros outros subsistemas, onde as informações sobre esses

�cam limitadas de se conhecer. A formulação da Mecânica Estatística está sustentada

na de�nição de entropia feita por Boltzmann, podendo as propriedades macroscópicas do

sistema serem obtidas através das informações microscópicas[150, 151].

Temos, então, que a entropia pode ser associada à medida do grau de irreversibilidade

do processo termodinâmico, conceito que está ligado à 2a Lei da Termodinâmica. Ela

também pode ser de�nida como sendo a medida do grau de desordem de um sistema,

estando esta abordagem mais caracterizada pela Mecânica Estatística. Uma outra

de�nição possível, ainda, é a de que a entropia é a medida do grau de desinformação que

se tem sobre um sistema qualquer, ou seja, a entropia é a medida do grau de incerteza

que existe antes que uma escolha seja feita[152]. Esta última é contextualizada dentro da

teoria da informação.

Utilizaremos a abordagem da Mecânica Estatística; esta fornece uma relação entre as

propriedades macroscópicas (entropia) e a informação microscópica. Para situações onde

são considerados sistemas que estão em equilíbrio termodinâmico, Boltzmann estabeleceu

a conexão entre os micro e macro estados através da expressão para entropia,

S = −KB lnW,

sendo esta a primeira formulação para uma visão microscópica da Termodinâmica.

Posteriormente, Gibbs trouxe contribuições fundamentais através da teoria de ensemble.

A Mecânica Estatística de Boltzamann-Gibbs (B-G) é, sem dúvida, uma poderosa

ferramenta para descrever sistemas usuais, quando a extensividade termodinâmica é

ocorrente, em outras palavras, quando sistemas são considerados isolados. Ao considerar

sistemas onde existe a presença de força de longo alcance, por exemplo, ou quando não

pode ser desprezada qualquer interação que ocorra, havendo a violação da extensividade

da entropia, a termodinâmica de B-G torna-se usual, sendo necessária uma maneira

alternativa para descrever estes sistemas. Pensando neste contexto onde há a inviabilidade

da Mecânica Estatística Clássica, o Físico greco-brasileiro Constantino Tsallis propôs uma

generalização para a entropia de B-G.

Partindo destas considerações, descreveremos nas próximas seções quais são as

implicações favoráveis ao uso da Estatística de Tsallis em nosso trabalho.

24

Page 41: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

2.1 Mecânica estatística de Boltzmann-Gibbs

O conceito de entropia foi introduzido por Clausius ainda no século XIX, fator

predominante para o desenvolvimento da Mecânica Estatística. James Maxwell foi o

primeiro a dar um interpretação estatística à teoria da entropia, em seu trabalho sobre

sobre as Distribuições de Velocidades Moleculares; assim, ele alicerçou o que viria a ser

conhecido como Mecânica Estatística. Os trabalhos posteriores de Boltzmann, sobre a

Hipótese Ergódica, a Equação de Transporte e o Teorema H alicerçam melhor a teoria

de Maxwell. Mais tarde, Josiah Gibbs e sua teoria dos Ensembles dão robustez a todo o

traçado do que �cou conhecido como Mecânica Estatística de Boltzmann-Gibbs.

Este conceito de forma simples relaciona os parâmetros macroscópicos, neste caso, a

entropia, com os estados microscópicos ou microestados. Considerando um sistema com

energia, volume e número de partículas constantes, se o espaço de fases deste sistema

macroscópico, isolado, for dado por W possíveis estados microscópicos, sua entropia é

dada por

S = −KB lnW (2.1)

onde KB (constante de Boltzmann) é positiva e de�ne a unidade em que a entropia

é medida. No entanto, é desta relação que é dada a interpretação da medida do grau de

desordem de um sistema. Como descrito por Borges[165], existe apenas um local para

guardar um objeto; e de acordo com a relação dada pela equação (2.1), S(W = 1) = 0,

temos então um sistemas �organizado�. Ao considerar um maior número de estados

acessíveis, maior será também a desordem e a entropia.

Podemos expressar a entropia de forma mais geral através da funcional

S = −KB

W∑i=1,

pi ln pi (2.2)

onde pi é a probabilidade do sistema ser encontrado num estado i e W é o número

total de estados microscópios acessíveis. Em outras palavras, pi é a fração de tempo que

o sistema permanece no estado i durante a evolução no espaço de fases. Sendo assim, os

valores de pi variam de acordo com o estado i.

As condições macroscópicas, às quais o sistema está submetido, de�nem o modo

como estes valores se distribuem pelo espaço de fases. Quando a energia, volume e o

número de partículas são mantidos constantes, os valores de pi são independentes do

25

Page 42: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

estado i; nesse caso, os estados são igualmente prováveis, sendo este o caso particular que

valida a equação (2.1). Este conjunto de estados é chamado de ensemble microcanônico.

Em outras palavras, quando pi = 1/W , a equação (2.2) retorna à entropia usual de

Boltzamann-Gibbs, equação (2.1).

Um outro modo de analisar a relação entre os micro e macro estados é pelo ensemble

canônico, segundo o qual a energia não mais é mantida constante, sendo consideradas

pequenas varições ou �utuações em torno de seu valor médio, que é mantido constante.

O efeito físico recorrente dessa interpretação pode ser dado por um efeito macroscópico

de manter a temperatura constante.

Sendo assim, o estado de fases não mais terá estados equiprováveis; logo, o sistema

terá estados com maior e menor energia, com o sistema passando mais tempo nos níveis

com valores de energia inferiores, que são os estados de maior probabilidade. Dessa forma,

os estados de maior energia são os estados pouco prováveis, onde o sistema passará um

tempo relativamente curto.

Logo, pela Mecânica Estatística de B-G, a distribuição de probabilidade no equilíbrio

térmico será dada por:

pi =e−βEi

Z(2.3)

Onde: Ei é a energia do estado i, e β é o parâmetro de Lagrange, dado por β = 1/kBT .

Z é a função de partição, que é um fator que garante a normalização das probabilidade

Z =W∑i=1

e−βEi (2.4)

pi é o fator de Boltzmann.

O valor médio da energia é uma grandeza macroscópica denominada energia interna,

que é dada por

〈E〉 ≡ U =W∑i=1

piEi (2.5)

A entropia de Boltzmann-Gibbs é côncava, o que signi�ca que a expressão dada pela

equação (2.1) tem apenas um máximo. Esta é a propriedade que leva a satisfazer a

Segunda Lei da Termodinâmica, garantindo, assim, a estabilidade do sistema[154].

26

Page 43: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

2.1.1 Extensividade e Aditividade

A Termodinâmica de Boltzmann-Gibbs clássica depende das propriedades de

extensividade e aditividade dos sistemas abordados[153]. A entropia de Boltzmann-Gibbs

é uma entropia extensiva, ou seja, despreza a interação de elementos que pertençam a

diferentes sistemas[150, 155]. A extensividade da entropia é obedecida em casos onde

a interação de curto alcance ou microscópica podem ser desconsideradas, e quando a

memória microscópica é de curta duração ou inexistente[156]. Por exemplo, ao ser

considerado um sistema que não troca matéria, energia ou informação com sua vizinhança,

dito sistema isolado, este corresponde à idealização de interação de curto alcance, onde a

interação decai bruscamente com a distância, sendo este comportamento descrito numa

função tipo exponencial. Implica dizer que este sistema se aproxima de um sistema isolado

ideal, pois, ao separar as partículas que o compõe, as interações destas tornam-se tão

fracas que podem ser desprezadas[156]. Assim, se um subsistema A, onde esta associado

a uma entropia S(A), e um subsistema B, associado a uma entropia S(B), relacionam-se,

a soma das quantidades dos subsistemas é igual ao sistema total, ou, como descrito por

Salinas[151]

S(A+B) = S(A) + S(B) (2.6)

Essa a�rmação é verdadeira ao serem considerados sistemas não interagentes. Para N

subsistemas diferentes, a relação torna-se:

S

(N∑i=1,

Xi

)=

N∑i=1,

S (Xi) . (2.7)

Quando Xi = X , que seria quando todos os subsistemas são iguais, tem-se:

S

(N∑i=1,

Xi

)= S (NX) = NS (X) . (2.8)

O conceito de extensividade obedece a seguinte relação:

limN→∞

|S(N)|N

<∞, (2.9)

onde um sistema extensivo tem um comportamento assintótico com o número de

27

Page 44: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

subsistemas N, onde existe um fator de proporcionalidade entre S(N) e N �nito. Logo,

um sistema extensivo é assintoticamente aditivo. Para sistemas onde a interação de seus

subsistemas não são desprezíveis, a entropia de Boltzmann-Gibbs torna-se ine�ciente. É

o caso de sistemas com presença de força de longo alcance, por exemplo, que causam

modi�cações importantes na Termodinâmica [157], como, por exemplo, a possibilidade

de calor especí�co negativo no ensemble microcanônico, pois é justamente a aditividade

que garante a concavidade da entropia. No entanto, no ensemble canônico, a existência do

calor especí�co negativo não é possível. Sendo assim, as interações de longo alcance, ou

de memória de longo prazo, podem acarretar uma violação da equivalência de ensembles,

um conceito fundamental na estatística tradicional de Boltzmann-Gibbs[150, 155].

Outro problema que surge quando tratamos estatisticamente sistemas de longo alcance

é sua ergodicidade7. Para Boltzmann (1877), em sua hipótese de equiprobabilidade dos

microestados, é necessário que o sistema seja ergódico. Considerando um espaço de fase

de 2dN dimensões, onde N é o número de partículas e d é a dimensão do sistema, cada

ponto nesse espaço representa uma con�guração (microestado) do sistema. Assim, um

sistema, inicialmente em um ponto, deve evoluir ao longo de uma superfície de energia

constante nesse espaço de fase de acordo com as leis de Hamilton. Ao invés de considerar

apenas um único sistema evoluindo ao longo de toda a superfície, imaginam-se in�nitos

sistemas distribuídos sobre ela. Este conjunto de sistemas é o ensemble microcanônico,

ou seja, sistemas em todos os possíveis microestados correspondentes a dadas variáveis

macroscópicas de mesma energia. Entretanto, ao serem consideradas regiões da superfície

de energia constante que são inacessíveis para o sistema a partir de uma determinada

condição inicial, não há ergodicidade, e a correspondência entre a evolução temporal

de uma sistema e uma distribuição de in�nitos sistemas não é mais válida[159]. Ao

considerar sistemas de curto alcance, a ergodicidade é observada, embora não haja uma

prova de sua existência. Já, para sistemas de longo alcance, há indícios de quebra de

ergodicidade[158, 159].

O formalismo de B-G pode não ser a melhor ferramenta para se trabalhar com

sistemas que incluem força de longo alcance, efeitos de memória de longa duração

e de multifractalidade, pois quando estas interações são relevantes, os parâmetros

Termodinâmicos tendem a perder seu caráter extensivo. É o caso de sistemas onde não se

veri�ca a extensividade da entropia, em que a aproximação do equilíbrio é tão lenta que

não pode ser encontrada na prática. Esses sistemas são chamados de sistemas complexos.

7Na Termodinâmica, a hipótese da ergodicidade estabelece que, em um dado período de tempo,o tempo de permanência em dada região do espaço de fase de microestados com a mesma energia éproporcional ao volume da região, ou seja, todos os microestados acessíveis são equiprováveis em umlongo período de tempo.

28

Page 45: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

2.1.2 Distribuição de Probabilidade para a Estatística de

Boltzmann-Gibbs

Um procedimento baseado na maximização da entropia é utilizado para se obter uma

função de distribuição Normal ou Gaussiana no contexto da Mecânica Estatística Clássica

de Boltzmann-Gibbs. Ao se considerar um caso contínuo de estados possíveis x, a entropia

pode ser expressada por:

S = −KB

∫p(x) ln p(x)dx.

Esta nova forma de entropia é conhecida como Entropia de Shannon, ou entropia

informacional.

Partindo da equação (2.3) para distribuições contínuas da entropia de Shannon,

podemos encontrar a distribuição de probabilidade que maximiza a entropia de

Boltzmann-Gibbs. Na eq.(2.3) temos que, para cada x associado, temos uma

probabilidade associada p(x). Para cada distribuição p(x) pode ser associada uma medida

de incerteza ligada à informação sobre o sistema que esta distribuição representa.

Maximizar a entropia signi�ca assumir que o sistema é o mais aleatório possível dentro

dos vínculos anunciados. Ou encontrar a função de probabilidade que maximiza a entropia

permitida pela informação disponível[167, 168, 169].

Para a entropia de Boltzmann-Gibbs, a função de probabilidade está restrita aos

vínculos. Segundo Salinas[151], temos que:

(a) Condição de normalização:

∫p(x)dx = 1 (2.10)

(b) A variância de p(x ), que caracteriza a largura da distribuição, deve ser �nita.

Considerando distribuições de média nula:

〈x2〉 =

∫x2p(x)(x)dx = σ2 (2.11)

Utilizando a técnica de multiplicadores de Lagrange[170], sob n condições de vínculo

Si[p(x)] = 0, a maximização de S(p) equivale à maximização da Lagrangiana.

Assim,

29

Page 46: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

L[p, λ1, λ2, ..., λn] = S(p)−n∑i=1,

λiFi[p] (2.12)

onde λi , (i = 1 , ..., n) são os multiplicadores de Lagrange. Usando a equação(2.12) e os

vínculos (2.10) e (2.11), tem-se:

L[p, λ1, λ2] = −∫p(x) ln p(x)dx− λ1

∫[p(x)dx− 1]−

−λ2∫

[x2p(x)dx− σ2] (2.13)

L[p, λ1, λ2] possui máximo global[171]. Considerando variações δp(x) arbitrárias em

relação à distribuição que maximiza L[p, λ1, λ2]:

δL =δL

δpδp = 0 −→ δL

δp= 0 (2.14)

δL

δp= −

∫δp(x) ln p(x)dx−

∫p(x)

δp(x)

p(x)dx− λ1

∫δp(x)dx− λ2

∫x2δp(x)dx (2.15)

∫δp(x)[ln p(x) + 1 + λ1 + λ2x

2]dx = 0 (2.16)

ln p(x) + 1 + λ1 + λ2x2 = 0 (2.17)

p(x) = exp[−1− λ1]− exp[−λ2x2] (2.18)

Aplicando os vínculos (2.10) e (2.11) na eq.(2.17), obtêm-se:

(1 + λ1) =1√

2πσ2(2.19)

30

Page 47: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

e

λ2 =1

2σ2(2.20)

Logo, os multiplicadores de Lagrange λ1 e λ2 estão associados à constante de

normalização e à variância da distribuição maximizada. Substituindo λ1 e λ2 em (2.18),

temos que:

p(x) =1√

2πσ2exp

(− x2

2σ2

)(2.21)

Fornecendo uma distribuição Gaussiana, ou distribuição normal, como a distribuição

de máxima entropia do sistema. Ou seja, as propriedades macroscópicas das difusões

são regidas por uma distribuição Gaussiana. Isso já era previsto pela própria mecânica

estatística, que assume que a entropia de uma sistema tende a um máximo, assumindo a

validade do princípio variacional, e assumindo também que o vínculo da variância garante

esta distribuição, de acordo com o Teorema de Limite Central (TLC).

O Teorema do Limite Central é bastante conhecido na Teoria das Probabilidades e se

trata de um formalismo baseado em conceitos probabilísticos e provas matemáticas[172].

O TLC a�rma que, se as funções de probabilidade (FDP) forem contínuas, elas evoluem

para um per�l Gaussiano. Isso demonstraria o motivo das distribuições Gaussianas serem

tão recorrentes na natureza, uma vez que uma grande quantidade de número/recorrência

de ações que satisfazem a TLC tem a propriedade de convergir para uma função de

probabilidade Gaussiana[173].

Na sua formulação mais simplista, o Teorema do Limite Central estabelece que, dada

uma sequência de n variáveis aleatórias independentes e identicamente distribuídas, seu

somatório converge, à medida que n cresce, para uma distribuição normal. Este teorema

tem grande importância, pois muitas estatísticas envolvem somas de variáveis aleatórias,

que se referem aos dados da amostra, e vários fenômenos de interesse estatístico, que

podem ser pensados como agregações de contribuintes de fatores menores.

Estas considerações fazem com que a distribuição seja amplamente empregada na

inferência e modelagem estatísticas. De forma bastante geral, o TLC pode ser descrito

como sendo:

Sejam x1, x3, x3, .., xn variáveis aleatórias independentes e igualmente distribuídas,

onden∑i=1

xi = X, onde i = 1, 2, 3, .., n. Considerando 〈Xi〉 = µi, onde µi é o valor médio

da distribuição, temos então que:

31

Page 48: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

〈X2i − µi〉 = σi (2.22)

onde σi > 0 é a variância da distribuição. Então a variável aleatória:

Zn =

X −n∑i=1

µi√n∑i=1

σ2i

(2.23)

onde a função de distribuição de probabilidade é dada por:

f(Zn) =1√2π

exp

[−(Zn)2

2

](2.24)

Essas condições são responsáveis por fazerem com que muitas das distribuições

estatísticas sejam representadas por um função normal, desde o comportamento de ações

na bolsa de valores, a distribuição de altura de habitantes de uma cidade e até mesmo

alguns fenômenos físicos.

A �gura (2.1) mostra o comportamento da distribuição de probabilidade Normal para

diversos valores σ.

Figura 2.1: Função de distribuição Normal, ou Gaussiana, para diversos valores de σ.

32

Page 49: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

A Mecânica Estatística de B-G encontrou uma vasta aplicabilidade em diversos

sistemas físicos, como �uídos quânticos, fenômenos físico-químicos não-lineares,

fenômenos críticos, teoria de transporte, biofísica, entre outros[155].

No entanto, mesmo a termoestatística de Boltzmann-Gibbs tendo vasta aplicabilidade,

muitas pesquisas sugerem que existem sistemas que possuem comportamento anômalo,

onde são consideradas interações de longo alcance, memória de longa duração, ou que

possuem geometria fractal ou multifractal; esses casos não podem ser descrito pela

Mecânica Estatística Clássica[174, 175]. Muitas pesquisas já sugerem este comportamento

em muitos sistemas, encontrados, por exemplo, na astrofísica estelar[185, 191, 176, 173,

177, 178, 179], na física de plasmas[175, 16], na gravitação, em fractais [160], em espectro

de raios cósmicos[181], em superfícies de crescimento, em difusão anômala[182, 161],

na estatística de terremotos[183], em formação de estruturas em cosmologia[184], entre

muitos outros. Estes sistemas não obedecem à restrição imposta pela expressão (2.1),

encontrando-se fora da extensividade da entropia, exigindo, assim, uma nova proposta que

englobe uma estatística generalizada, que considere essas as interações. Neste contexto

é que a q-estatística de Tsallis torna-se uma grande ferramenta para a descrição destes

sistemas fora de equilíbrio.

2.2 Mecânica Estatística Não-extensiva

A Mecânica Estatística de Boltzmann-Gibbs descreve bem muitos fenômenos na

natureza, mas, ao serem considerado alguns sistemas onde existam interação de longo

alcance, regimes caóticos ou turbulentos, há a necessidade de uma reformulação no interior

da teoria de B-G.

O físico greco-brasileiro Constantino Tsallis propôs uma generalização da estatística

de B-G, levando em consideração que, em alguns casos, ocorrem interações entre os

componentes dos sistemas, e estas não podem ser desconsideradas[160, 164]. A abordagem

feita por Tsallis torna possível um tratamento não extensivo para a energia interna e a

entropia. Ou seja, a q-entropia de Tsallis é uma generalização da entropia Clássica de

B-G.

Segundo Borges[165], ao generalizar uma teoria, possivelmente será necessário romper

com alguns de seus postulados, sendo isto fator fundamental para o êxito ou fracasso da

teoria. A entropia não extensiva viola a aditividade da entropia clássica. Podemos

veri�car isto da seguinte forma: ao considerarmos um sistema composto por dois

subsistemas independentes (A) e (B), sabemos, através da equação (2.6), que é um dos

postulados da Termodinâmica que a�rma que a entropia é aditiva sobre seus subsistemas

contínuos, ou seja, a entropia total do sistema será dada pela soma das entropias de cada

33

Page 50: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

subsistema.

Na q-entropia de Tsallis, a formulação clássica não é obedecida, e a aditividade da

entropia não ocorre. No contexto não-extensivo, a entropia é dada por:

S(A+B)q = S(A)

q + S(B)q +

(1− q)k

S(A)q S(B)

q (2.25)

onde q é o índice entrópico que caracteriza a generalização e k é a contante de Boltzmann.

Quando q −→ 1 ou k −→∞, a extensividade da entropia é recuperada. Esta relação entre

q e a constante k pode implicar um relação não trivial entre eles. Quando a extensividade

é recuperada, através de k −→ ∞, considera-se que, para temperaturas in�nitas, todos

os sistemas tornam-se extensivos[165].

A medida da não-extensividade de um sistema é dada pelo termo (1 − q). Se q < 1,

o sistema é superaditivo, S(A+B)q > S(A+B); e quando q > 1, o sistema é subaditivo,

S(A+B)q < S(A+B). Fisicamente, quando ocorre a violação da aditividade da entropia, um

dos conceitos mais básicos da Termodinâmica, que é o de sistema isolado, não mais pode

ser considerado. De forma mais clara, quando temos dois subsistemas, (A) e (B), como

na equação (2.6) , e estes são juntados para formar um sistema composto (A + B),

cada um destes contribui com sua quantidade. Já, quando consideramos o sistema

composto (A+B), dado pela equação (2.25), é como se cada subsistema contribuísse com

a quantidade S(A)q [1 + (1/2)((1− q)/k)S

(B)q ], para a S(A)

q , e S(B)q [1 + (1/2)((1− q)/k)S

(A)q ],

para S(B)q . Isso quer dizer que, mesmo antes de estarem em contato, ou seja, antes do

sistema composto ser formado, cada um dos subsistemas (A) e (B), já sentia um ao outro,

rompendo, então, com o conceito de sistemas isolados.

A Mecânica Estatística Não-Extensiva postula que a q-entropia está relacionada com

as probabilidades pi dos microestados pela equação[160].

Sq[(pi)] = k

1−W∑i=1

pqi

q − 1(2.26)

Quando q −→ 1, a eq. (2.26) se reduz à entropia de Boltzmann-Gibbs, ou seja, quando q

se aproxima de 1 o formalismo clássico da Mecânica Estatística é recuperado. A expressão

para entropia de Tsallis, Sq, é uma função não negativa, para qualquer valor de q. Quando

q > 0, a entropia generalizada Sq tem concavidade com ponto de máximo, ou quando

q < 0, a entropia generalizada Sq é convexa e apresenta um ponto de mínimo. Assim

como a teoria clássica de Boltzmann-Gibbs, a entropia generalizada de Tsallis satisfaz a

segunda Lei da Termodinâmica. Segundo essa, os valores do índice entrópico q, sejam

34

Page 51: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

eles q > 0 ou q < 0, representam valores de máximo e mínimo, respectivamente. O que

signi�ca dizer que �a entropia de um sistema isolado é um extremo�, que pode ser máximo

ou mínimo[165].

Através do ensemble microcanônico, que postula que todos os estados acessíveis são

equiprováveis, ou seja pi = 1/W , da equação (2.26), obtém-se

Sq[1/W ] = kW 1−q − 1

1− q(2.27)

A eq. (2.27) corresponde à entropia generalizada da q-Estatística de Tsallis para o

microcanônico. De�nindo a função q-logaritmo como:

lnq ≡x1−q − 1

1− q, x > 0, (2.28)

a q-Entropia pode ser reescrita da seguinte forma:

Sq = k lnqW, (2.29)

onde:

• q < 1, a desordem cresce mais rapidamente que o logaritmo de W;

• q > 1, a desordem cresce mais lentamente;

• q −→ 1, a equação da entropia generalizada recupera a forma usual da estatística

de Boltzamann-Gibbs.

A função inversa da q-logaritmo, denominada q-exponencial, é dada por:

exq ≡ [1 + (1− q)x]1/(1−q) (2.30)

onde é possível se veri�car que:

lnq(expq x) = expq(lnq x) = x. (2.31)

As funções q-logaritmo e q-exponencial foram de�nidas por Tsallis em seu trabalho de

35

Page 52: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

1994, e são generalizações para as funções exponencial e logarítmica convencionais[160,

163, 166].

A Mecânica Estatística Não-Extensiva é, portanto, uma generalização para a

estatística de Boltzmann-Gibbs, sendo esta última um caso particular da estatística de

Tsallis. A �gura (2.2) apresenta os comportamentos da q-exponencial para alguns valores

de q.

Figura 2.2: Comportamento da função de distribuição q-Exponencial para alguns valoresde q.

O valor do índice entrópico q pode ser considerado como uma medida da não-

extensividade do sistema, onde, para valores altos de q, tem-se os regimes onde as

interações dos microestados não podem ser desprezadas, como os encontrados em sistemas

complexos. A �gura (2.3) apresenta os comportamentos da q-logarítimo para diversos

valores de q.

Figura 2.3: Comportamento da função de distribuição q-Logarítimo para alguns valoresde q.

36

Page 53: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

2.2.1 Função de distribuição de probabilidade q-Gaussiana

Utilizando um procedimento análogo ao descrito na subseção (2.1.2) para encontrar

a distribuição Normal, vamos maximizar a entropia de Tsallis. Temos então os vínculos

modi�cados dados por:

∫p(x)dx = 1 (2.32)

∫x

[p(x)]q∫[p(x)]qdx

dx ≡ 〈x〉q = µ̄q (2.33)

∫(x− µ̄q)2

[p(x)]q∫[p(x)]qdx

dx ≡ 〈(x− µ̄q)2〉q = σ2q (2.34)

O primeiro vínculo é a condição de normalização da função de densidade de

probabilidade. Já os outros dois vínculos correspondem à média generalizada e à variância

de x.

A função de distribuição de probabilidade que maximiza a entropia de Tsallis é obtida,

assim como a função de distribuição Gaussiana, através dos multiplicadores de Lagrange.

Depois de grande algebrismo, obtemos que:

pq(x) = Aq[1 + (1− q)Bq(x− µ̄q)2]1/(1−q) (2.35)

válido para todo q < 3.

A contante de normalização Aq é obtida através da equação (2.32), e é válida para os

intervalos:

(i) q < 1,

Aq =

Γ

[5− 3q

2− 2q

[2− q1− q

] √1− qπ

Bq (2.36)

37

Page 54: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

e (ii) q < 1,

Aq =

Γ

[1

q − 1

[3− q2q − 2

]√q − 1

πBq (2.37)

O Valor de Bq é função de variânicia σq e é dado por:

Bq = [(3− q)σ−2q ]−1 (2.38)

Assim, a função de distribuição q-Gaussiana pode ser escrita como:

pq(x) = Aq[1 + (1− q)]1/(1−q) (2.39)

quando:

• q = 1, a função retorna a Gaussiana padrão;

• q > 1, há o aparecimento de caldas que seguem uma lei de Potência;

• q < 1, sempre que q < 0 a q-exp é negativa, aparece um corte e o suporte é �nito.

Assim como a função de distribuição Gaussiana padrão, a q-Gaussiana de Tsallis

obedece ao teorema do limite central, havendo uma q-generalização para este teorema,

na qual uma sequência de variáveis aleatórias apresentam correlações fortes entre si,

com uma q-variância �nita. O TLC q-generalizado estabelece que a recorrência de

efeitos na natureza podem ser descritos por uma q-Gaussiana. A �gura (2.4) descreve o

comportamento da função de distribuição normal generalizada para diferentes valores de

q e σ.

38

Page 55: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 2.4: Função de distribuição q-Gaussiana para diversos valores de q e σ �xo.39

Page 56: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Capítulo 3

Descrição da amostra e dados

observacionais

3.1 Catálogo Geneva-Copenhagen

A amostra utilizada neste trabalho é composta por estrelas anãs single e de campo com

tipo F e G localizadas na vizinhança solar, completa em magnitude e volume de ∼ 40 pc,

retiradas do catálogo Geneva-Copnhagen Survey (GCS), que foi publicado por Nordström

et al. [47] e posteriormente revisado por Holmberg et al. [48],[49] e Casagrande et al.

[129], contendo dados de idade, metalicidade, massa, velocidade de rotação projetada

(vsini) e propriedades cinemáticas para cerca de 14000 estrelas na vizinhança solar.

Nas próximas seções, descreveremos os parâmetros astrofísicos pertinentes ao nosso

trabalho, que são as velocidades espaciais (U, V, W), Idade, Massa e Metalicidade.

3.2 Parâmetros astrofísicos

3.2.1 Velocidades Espaciais (U, V, W)

Na Seção (1.4) do Capítulo 1 foi di�nido o sistema de refrências para a velocidade

espacial, para o meio estelar, em termos de suas componentes (U, V, W), onde U aponta

para o centro da Galáxia, V se direciona no sentido da rotação da Galáxia e W para o

polo norte Galático.

As velocidades (U, V, W) presentes no GCS foram calculadas utilizando dados de

distância, movimento próprio e a média da velocidade radial8, sendo que estes parâmetros

foram obtidos através do CORAVEL e CfA, para cada uma das estrelas.

8Ver o artigo Nordström et al. (2004).

40

Page 57: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Para garantir uma maior precisão nos resultados, Holmberg et al. [49] �zeram um

levantamento para estrelas que possuíam erro na idade inferior a 25% (∼ 2600 estrelas).

Essa subamostra foi dividida em 30 intervalos, contendo 88 estrelas em cada, sendo, então,

calculada a dispersão de velocidade média para as componentes U, V e W da velocidade

espacial e da velocidade total para cada um dos intervalos. A Fig. (3.1) mostra a relação

idade-velocidade, onde pode ser percebido um aumento das dispersões das velocidade

com a idade das estrelas. A linha pontilhada representa o ajuste do tipo lei de potência,

dado pela equação de De Simone[147], que forneceu os seguintes valores para os σ de cada

uma das distribuições de velocidade σtot = 0.40, σU = 0.38, σV = 0.38 e σW = 0.54[48].

A �gura (3.1) está com valores em log para ambos os eixos.

Figura 3.1: Relação idade-dispersão de velocidade das componentes de velocidade U, V eW e da velocidade total(tot) retirada do Geneve-Copenhagen Survey. Linha tracejada é oajuste da relação excluindo os três primeiros e os três últimos intervalos. (Fonte:Holmberget al. (2009))

Uma análise detalhada, feita por Famey et al. [186], identi�cou grupos dinâmicos

distintos. As estrelas desses grupos possuem uma faixa de variação nas idades e na

composição química, sendo esse um provável indicativo de que essas estrelas não tiveram

uma origem em comum. Podemos então inferir que deve existir algum mecanismo do

disco Galáctico capaz de aproximar essas estrelas em órbitas semelhantes, como braços

espirais transientes[147] ou ressonância externa de Lindblad com a barra Galáctica [187].

Segundo Holmberg et al.[48], as �guras (3.2) e (3.3) descrevem a difusão das

velocidades nos planos U-V e V-W, separados em quatro grupos de idade. Pode-se

perceber uma difusão não-aleatória na Fig. (3.2), enquanto que na Fig. (3.3), essa

41

Page 58: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

não-aleatoriedade não está presente.

Figura 3.2: Diagrama U-V com dados de uma subamostra formada por 4065 estrelas doCGS, com σ(idade) < 25%, separadas em quatro grupos.

Para Holmberg et al.[48] a distribuição de velocidade nos eixos U e V é resultado de

um aquecimento não puro, ou seja, a interferência de estruturas cinemáticas poderia

ser causadora da difusão. Já para o eixo W, o aquecimento não teria in�uência

dessas estruturas, o que resultaria num aquecimento puro, sendo, então, uma difusão

totalmente aleatória. Contudo, as distribuições das componentes U e V parecem não

apresentar uma distribuição Gaussiana, o que pode caracterizar a presente in�uência

dessas estruturas[188]. Por sua vez, o movimento difusivo para componente W apresenta

um per�l aparentemente Gaussiano em todas as idades[47],[48],[49]. A Figura (3.4)

tenta descrever o per�l Gaussiano proposto por Holmerg et al., para quatro grupos de

idades, sendo que há um incremento considerável para o valor de σ para cada uma das

distribuições.

Devemos, então, considerar que os processos dinâmicos podem contribuir com o

aumento na dispersão da velocidade espacial, onde esses processos introduzem energia

cinética nas componentes do movimento com o passar do tempo[189]. As componentes

das velocidades espaciais U, V e W, em função da idade para as estrelas F e G da amostra,

são mostradas nas Figuras (3.5) e (3.6). Essas distribuições para as velocidades espaciais

correspondem a uma espécie de série temporal composta por diversos objetos com

42

Page 59: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 3.3: Diagrama V-W com dados de uma subamostra formada por 4065 estrelas doCGS, com σ(idade) < 25%, separadas em quatro grupos.

parâmetros estelares aproximadamente similares, nos quais uma evolução da difusão da

velocidade em função do tempo pode ser percebida mais claramente para as componentes

U e V. Para Seabroke & Gilmor[188], o melhor parametro físico para especi�car o aumento

aleatório nas componentes (U, V, W) é aquecimento.

3.2.2 Idade

As idades estelares individuais têm grande importância quando queremos inferir dados

con�áveis para determinação de propriedades químicas e cinemáticas ao considerarmos

o viés evolutivo das estrelas. Estudos com base na atividade cromosférica têm sido

usados para estimativa de idades estelares, mas esses se mostram pouco e�cientes ao

considerarmos estrelas com idades próximas à do Sol, pois nesta faixa de idade a emissão

cromosférica praticamente cessa.

Já o método de determinação de idades por isócronas se mostra uma ferramenta

melhor, mesmo apresentando discrepância para idades de estrelas mais velhas e de baixa

massa. As idades adotadas no GCS foram obtidas por meio de isócronas estelares

por Nordström el al.[47], utilizando a técnica Bayesiana proposta por Jørgensen e

Lindegren[190]. Os dados foram revisados por Holmberg et al. [48],[49] e Casagrande

43

Page 60: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 3.4: Distribuição da velocidade W separadas por idade. Figura retirada doGeneve-Copenhagen Survey, Holmberg et al. (2007). A linha pontilhada é o ajusteGaussiano.

et al. [129], onde consideraram novas calibrações para temperatura e metalicidade. Para

Nordström el al.[47] e Holmberg et al.[48],[49], 81% das estrelas da amostra original do

GCS possuem erro abaixo de 50%.

As idades são computadas determinando a posição que as estrelas se encontram

no diagrama-HR tridimensional, utilizando os parâmetros de temperatura efetiva Tef

(log Tef ), magnitude visual (Mv) e metalicidade ([Fe/H]). O cálculo da probabilidade

revela onde a estrela deverá estar no diagrama-HR, usando a interpolação de Padova9. O

cálculo da probabilidade é feita através da equação:

P = exp

[−∆T 2

e

2σ2Te

]exp

[−∆M2

v

2σ2Mv

]exp

[−∆[Fe/H]2

2σ2[Fe/H]

]. (3.1)

Nessa equação, os erros são retirados do CGS. Integrando (3.1) sobre todos os pontos,

9As isócronas, diferentemente dos traços evolutivos tradicionais, consideram as idades como constante,mas variando a massa. São modelos teóricos para determinar o comportamento de parâmetros da estrelano diagrama-HR. Padova é uma homenagem à cidade italiana onde foi criado o modelo.

44

Page 61: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 3.5: Velocidades U,V e W em função da idade para 7237 estrelas single da amostracom dados para idade e velocidade bem de�nidos. Figura retirada do Geneve-CopenhagenSurvey, Holmberg et al. (2004).

obtém-se a distribuição de probabilidade global para as idades possíveis de cada estrela.

Novamente, utilizando (3.1) é possível obter a função de distribuição normalizada, ou

função-G, integrando a função da probabilidade. O valor máximo da função normalizada

fornece o valor mais provável da idade de uma estrela.

As Figuras (3.7) e (3.8) apresentam os histogramas das idades de todas as estrelas

F e G single presentes na amostra. Cada um desses histogramas evidencia quais são os

intervalos de idade que apresentam maior número de estrelas, sendo entre 1,5 e 3,0 Giga-

anos para estrelas do tipo F, e entre 2,8 e 7,0 Giga-anos para estrelas do tipo G - tipo em

que maior parte das estrelas estão concentradas. Como o histograma mostrado pela Fig.

(3.8) não deixa claro qual a faixa de idade onde encontra-se maior parte das estrelas, foi

utilizado um grá�co do tipo boxplot para determinar esse intervalo, como pode ser visto

na �gura (3.9). Nele é possível ver com clareza quais é o intervalo com maior número

de estrelas, além da média e mediana, como também os valores atípicos para a idade da

amostra.

45

Page 62: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 3.6: Velocidades U,V e W em função da idade para 2852 estrelas single daamostra com idades melhores que 25%. Figura retirada do Geneve-Copenhagen Survey,Holmberg et al. (2004).

Freq

uenc

y

0

200

400

600

800

1.000

Age (Gyr)0 2 4 6 8 10

F-stars

Figura 3.7: Histograma da idade das estrelas F (Giga-ano).

46

Page 63: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Freq

uenc

y

0

50

100

150

200

250

Age(Gyr)0 2 4 6 8 10

Tabela5_Agegyr

G-stars

Figura 3.8: Histograma da idade das estrelas G (Giga-ano).

5%

25%

50%

75%

95%

Ag

e (g

yr)

0

1

2

3

4

5

6

7

8

9

10

Agegyr

x

Mean

Median

Outlier

Figura 3.9: Boxplot para idade das estrelas do tipo G evidenciando qual a faixa de idadeonde encontra-se maior número de estrelas.

3.2.3 Massa e metalicidade

A massa estelar também pode ser inferida utilizando a análise de isócronas[47]. Os

dados para massa possuem erros individuais na ordem de 0,05 M�. A metalicidade

foi estimada usando fotometria uvbyβ de Strömgren. A distribuição de metalicidade

para as estrelas na vizinhança solar presentes nesta amostra obedece a uma distribuição

Gaussiana com média de -0,14 e desvio padrão de 0,19 dex, como indicado nas �guras

47

Page 64: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

(3.12) e (3.13).

Holmberg et al.[48] analisam uma subamostra contendo 5835 estrelas single presentes

no GCS. Essa análise mostrou uma média de 〈[Fe/H]〉 = -0,18 e desvio padrão de 0,21

dex. Podemos, então, observar que a maioria das estrelas que compõem este trabalho são

do tipo solar. Um outro fator que também é evidenciado é o de que há a presença de um

número pequeno de estrelas com metalicidade subsolar.

Recentemente, Casagrande et al. [129] reexaminaram a maioria dos parâmetros do

catálogo através do �uxo de infravermelho. Esse método apontou diferenças nas medidas

de temperatura efetiva; logo, os novos dados resultaram em uma melhor concordância

entre a posição das estrelas e as isócronas no diagrama HR.

Um histograma para as massas de todas as estrelas F single em função da massa solar

é apresentado na Fig. (3.10). A maioria das estrelas F single possuem massas entre 1,0

M� e 1,6 M� e maior concentração na faixa de 1,1 M� até 1,2 M�.

Tít

ulo

do

eix

o Y

0

100

200

300

400

500

600

700

800

900

M/Mο

0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4

Tabela3_mass

F-stars

Figura 3.10: Histograma da massa em função da massa solar para estrelas F singles.

Na Fig. (3.11) temos um histograma para as massas, M/M�, de todas as G

single presentes na amostra. Podemos ver que as estrelas do tipo G single têm massa

compreendida no intervalo de 0,8 M� e 1,2 M� e apresentam um pico entre 0,9 M� e 1,1

M�.

Observando a Fig. (3.12), vemos que a metalicidade para as estrelas F single

apresentadas na amostra estudada está entre -1,4 dex e 0,4 dex. Enquanto que, para

as estrelas G single, a metalicidade �ca em torno de -0,8 dex e 0,4 dex (Fig. 3.13). As

metalicidades apresentadas para as estrelas F e G são dadas em função da metalicidade

solar.

48

Page 65: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

freq

uenc

y

0

100

200

300

400

500

600

700

M/Mο

0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4

Tabela6_mass

G-stars

Figura 3.11: Histograma da massa em função da massa solar para estrelas G singles.

Freq

uenc

y

0

200

400

600

800

1.000

[Fe/H](dex)−1,4 −1,2 −1 −0,8 −0,6 −0,4 −0,2 0 0,2 0,4 0,6 0,8 1 1,2 1,4

Tabela1_FeH

F-stars

Figura 3.12: Histograma da metalicidade em função da metalicidade solar para estrelasF single.

3.2.4 De�nição da amostra

Nesta dissertação foram utilizados dados para as componentes da velocidade espacial

(U, V, W), idade e massa presentes no GCS para estrelas F e G single[47, 48, 49].

Limitamos a idade em torno de 10 Giga-ano. Para a massa, adotamos um intervalo

entre 0,90 M� ≤M ≤ 2,0 M�. O limite superior de 10 Giga-ano para idade foi escolhido

por este compreender a idade aproximada da Galáxia. Já, para as massas (ou tipo

49

Page 66: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Freq

uenc

y

0

100

200

300

400

500

600

[Fe/H](dex) −1,4 −1,2 −1 −0,8 −0,6 −0,4 −0,2 0 0,2 0,4 0,6 0,8 1 1,2 1,4

G-stars

Figura 3.13: Histograma da metalicidade em função da metalicidade solar para estrelasG single.

espectral), os limites foram de�nidos baseando-se em análises de isócronas teóricas, com

erros individuais da ordem de 0,05M�, obtidos através da equação (3.1). A metalicidade

foi obtida por fotometria. Optamos por estes limites para evitar a contaminação da

amostra com estrelas que possuíssem incertezas consideráveis nesses parâmetros - ou seja,

as estrelas de baixa massa e as consideradas mais velhas que a galáxia foram deixadas de

fora, assim como as estrelas muito massivas. Como resultado, a amostra �nal apresenta

6166 estrelas single (estrelas que não possuem companheiras), onde 3838 são do tipo F

(2063 têm tipo espectral entre F0 e F5, e 1175 entre F6 e F9) e 2328 do tipo G (2156

possuem tipo espectral entre G0 e G5, e 172 entre G6 e G9)[185]. Assim, toda a amostra

utilizada neste trabalho tem sua completeza em magnitude dentro de um volume com

aproximadamente 40 pc na vizinhança solar.

50

Page 67: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Capítulo 4

Resultados e Discussões

4.1 Introdução

Neste capítulo, serão apresentados os resultados, discussões e implicações físicas de

nosso trabalho.

Em virtude das investigações, a partir da perspectiva da estatística de Tsallis e da

in�uência de mecanismos que atuam no disco galático originando difusões na velocidade

estelar, podemos propôr que, para todas as componentes da velocidade espacial (U, V, W),

existe a atuação de mecanismos não-randômicos; fato que diverge de estudos anteriores,

onde foram desprezados esses efeitos não aleatório na difusão para a coordenada W.

Nordströn el al. ([47]) e Holmberg et al. ([48, 49]) descreveram o comportamento

da difusão para a componente W da velocidade como sendo um aquecimento puro,

ou randômico, onde os mecanismos que atuam no plano U-V provocando uma difusão

não-aleatória não estariam presentes. Os autores sugerem distribuições em que as

componentes U e V da velocidade não seguem um per�l puramente Gaussiano, sendo

assim, somente a componente W teria o comportamento descrito por uma curva

Gaussiana padrão. De Freitas & De Medeiros ([191]) mostraram que o melhor ajuste para

a velocidade radial de estrelas anãs F e G é dado por uma q-Gaussiana. Considerando

esse resultado, utilizamos função de densidade Kernel e a q-Gaussiana de Tsallis para

determinar os parâmetros pertinentes para nosso trabalho.

Utilizando análises de cunho estatístico, observa-se um comportamento que diverge

dos resultados da literatura ao considerar velocidades espaciais de estrelas F e G single na

sequência principal. Os métodos estatísticos, as análises que foram utilizadas e resultados

são apresentados nas próximas seções.

51

Page 68: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

4.2 As distribuições de velocidade espacial

As �guras (4.1), (4.2) e (4.3) são as distribuições do tipo histogramas para as

componentes U, V e W, respectivamente, para todas as estrelas F e G single que

foram utilizadas neste trabalho. A curva em vermelho representa o ajuste Kernel.

Este ajuste mede a in�uência de um ponto sobre outro da distribuição, sendo que os

pontos que estão mais próximos têm maior in�uência do que aqueles que estão mais

distantes, possibilitando, assim, identi�car uma suavização da in�uência à medida que

a distância do ponto até a origem é aumentada. Desta forma, ao plotar histogramas,

que são descontínuos, junto com o ajuste Kernel, este último converge mais rápido

para a verdadeira densidade do histograma, por ser mais suave [192]. A função Kernel

que foi utilizada para a suavização da distribuição foi retirada do programa estatístico

MATLAB10.

Figura 4.1: Esquerda: Histograma da distribuição de velocidade para a componente Ude todas as estrelas F e G single com ajuste da função Kernel. Direita: Dados ajustadospela função Kernel (círculos) com ajuste q-Gaussiano (linha azul).

Mesmo que as �guras mostrem per�s bem próximos de uma Gaussiana, pode ser

veri�cado uma certa assimetria aparente em cada uma das componentes da velocidade

espacial estelar, havendo, também, um desvio para a esquerda, notório em todas as

distribuições. Na �gura (4.2), no painel da direita, referente à componente V, o

10MATLAB (abrevição das palavras inglesas MAtrix LABoratory) é um programa interativo destinadoa cálculos numéricos e grá�cos cientí�cos.

52

Page 69: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 4.2: Esquerda: Histograma da distribuição de velocidade para a componente Vde todas as estrelas F e G single com ajuste da função Kernel. Direita: Dados ajustadospela função Kernel (círculos) com ajuste q-Gaussiano (linha azul).

Figura 4.3: Esquerda: Histograma da distribuição de velocidade para a componente Wde todas as estrelas F e G single com ajuste da função Kernel. Direita: Dados ajustadospela função Kernel (círculos) com ajuste q-Gaussiano (linha azul).

deslocamento para a esquerda é bem evidente, indicando que, aparentemente, maior

parte das estrelas possuem velocidade contrária ao movimento rotacional da galáxia.

Os grá�cos dispostos à direita são as funções de distribuição de probabilidade (PDF)

53

Page 70: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

normalizadas para o método Kernel junto do ajuste q-Gaussiano. Como as distribuições

apresentam regiões de calda, a função q-Gaussiana fornece um melhor ajuste nessas

regiões do que a Gaussiana padrão. A distribuição Kernel garante uma suavização, onde

a região de maior concentração de dados, o ajuste q-Gaussiano, é bem ajustado. Para as

regiões mais afastadas do centro da distribuição, nas regiões de calda, é perceptível que

não há um ajuste tão �no para a componente V, onde o melhor ajuste revela um per�l

que foge bastante de regime próximo da gaussianidade padrão. O ajuste da curva em azul

foi feito utilizando a distribuição q-Gaussiana de Tsallis, dada pela equação (2.32):

pq(x) = Aq[1 + (1− q)]1/1−q.

Segregando a amostra por tipo espectral, podemos analisar com maior riqueza de

detalhes o comportamento das distribuições para as estrelas F e G.

4.2.1 Distribuições de velocidade para estrelas F single

As �guras (4.4), (4.5) e (4.6) são os histogramas para as velocidades U, V e W para as

estrelas F, assim como o ajuste da função Kernel para cada uma das componentes, além

dos ajustes q-Gaussianos sobre os pontos das distribuições Kernel (painéis à direta). É

possível notar que as distribuições tendem para uma per�l aparentemente Gaussiano.

Figura 4.4: Esquerda: Histograma da distribuição de velocidade para a componente Udas estrelas do tipo F single com ajuste da função Kernel. Direita: Dados ajustadospela função Kernel (círculos) com ajuste q-Gaussiano (linha azul).

Pela normalização da PDF, percebe-se que a curva q-Gaussiana (linha azul) se ajusta

54

Page 71: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

de forma suave aos pontos da distribuição Kernel para a componente U, contemplando

quase todos os pontos, como se vê na �g. (4.4). Para a componente V, a curva sobre

a distribuição não se ajusta bem na região próxima a -100 kms−1 (região de calda mais

aparente), mas o �t q-Gaussiano tem melhor ajuste no restante da distribuição, como

é possível notar no painel direito da �gura (4.5). A Figura (4.6) é a distribuição de

velocidade para a componente W. Nela podemos notar que, mesmo a distribuição se

aproximando da gaussianidade, há uma clara assimetria (deslocamento para esquerda)

e a forte presença de caldas. A normalização sobre a distribuição Kernel mostra caldas

bem aparentes para as velocidades V e W.

Figura 4.5: Esquerda: Histograma da distribuição de velocidade para a componente Vdas estrelas do tipo F single com ajuste da função Kernel. Direita: Dados ajustadospela função Kernel (círculos) com ajuste q-Gaussiano (linha azul).

55

Page 72: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 4.6: Esquerda: Histograma da distribuição de velocidade para a componente Wdas estrelas do tipo F single com ajuste da função Kernel. Direita: Dados ajustadospela função Kernel (círculos) com ajuste q-Gaussiano (linha azul).

4.2.2 Distribuições de velocidade para as estrelas do tipo G single

As �guras (4.7), (4.8) e (4.9) são as distribuições para as estrelas do tipo G.

É de fundamental importância notar que, para todas estas distribuições, mesmo se

aproximando de distribuições Gaussianas, as extremidades apresentam espécies de caldas

às quais a distribuição normal padrão não se adéqua. É pela presença dessas regiões que

se faz necessário o uso da estatística não-extensiva, onde o melhor ajuste é feito pela

q-Gaussiana. Essas regiões caracterizam valores para q que fogem dos regimes extensivos

(q > 1), inviabilizando a estatística usual de Boltzmann-Gibbs para melhor descrever o

fenômeno.

Os valores dos σ e q de cada distribuição, obtidos através da função q-Gaussiana de

Tsallis, estão agrupados na tabela 4.1.

Pelas distribuições mostradas nas �guras de (4.1) à (4.9), podemos inferir que elas

se aproximam de distribuições Gaussianas, havendo assimetria em todas, sendo mais

evidente para a componente V. A normalização da PDF ajuda a veri�car a presença

de caldas assimétricas, o que poderia exigir uma função q-Gaussiana modi�cada, ou q-

Gaussiana assimétrica, como a proposta por Burlaga & Viñas[193], mas os melhores

ajustes e valores mais adequados para o índice entrópico foram dados pela q-Gaussiana

padrão proposta por Tsallis. Aparentemente, nenhuma das �guras expõe per�s de

distribuições puramente Gaussianos, o que se contrapõe com alguns trabalhos anteriores,

56

Page 73: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 4.7: Esquerda: Histograma da distribuição de velocidade para a componente Udas estrelas do tipo G single com ajuste da função Kernel. Direita: Dados ajustadospela função Kernel (círculos) com ajuste q-Gaussiano (linha azul).

por exemplo, Nordström et al.[47] e Holmberg et al.[48, 49], que descrevem per�s

puramente Gaussianos para componente W da velocidade para todas as estrelas F e

G.

Tabela 4.1: Valores para os índices entrópicos (qU , qV , qw) para cada uma dasdistribuições de velocidade espacial, além das dispersões das velocidades (σU , σV , e σW )para todas as estrelas e estrelas F e G, em separado. Os valores destas variáveis foramobtidos pela função do ajuste q-Gaussiano dada pela equação 4.1.

qU qV qW σU σV σW xU xV xW�������� [km s−1] ��������

Todas as estrelas 1.023 1.406 1.20 46.35 20.03 21.43 -13.27 -15.70 -6.16Estrelas F 1.108 1.086 1.092 39.58 23.24 17.74 -11.54 -13.66 -7.244Estrelas G 1.07 1.565 1.432 53.26 23.07 17.66 -9.86 -14.75 -5.23

57

Page 74: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 4.8: Esquerda: Histograma da distribuição de velocidade para a componente Vdas estrelas do tipo G single com ajuste da função Kernel. Direita: Dados ajustadospela função Kernel (círculos) com ajuste q-Gaussiano (linha azul).

Figura 4.9: Esquerda: Histograma da distribuição de velocidade para a componente Wdas estrelas do tipo G single com ajuste da função Kernel. Direita: Dados ajustadospela função Kernel (círculos) com ajuste q-Gaussiano (linha azul).

58

Page 75: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

4.2.3 Razão Dados empíricos/Curva de ajuste

As �guras (4.10), (4.11) e (4.12) são os resultados da razão entre os dados empíricos

obtidos utilizando a distribuição Kernel e a curva de ajuste teórica dada pela q-Gaussiana.

Essas �guras representam o resíduo de nossas distribuições e revelam quanto o ajuste

teórico se afasta dos dados empíricos, evidenciando em quais pontos a curva melhor se

ajustou. Quanto mais o ajuste teórico se aproxima dos dados reais, mais próxima de 1

será a razão. Essa relação �ca bem clara ao observarmos a �gura (4.10), onde quase toda

a distribuição �ca próxima de 1, para as componentes U e W da velocidade para todas

as estrelas, na região entre -100 e 100 kms−1, e menos evidente para a velocidade V. As

regiões nas extremidades fora desse intervalo possuem picos, evidenciando as regiões de

calda das distribuições e onde os ajustes não são tão precisos.

Figura 4.10: Curvas de resíduo obtidas a partir da razão entre os dados empíricos e oajuste da função q-Gaussiana para as velocidades espaciais (U, V, W) de todas as estrelasF e G single.

A �gura (4.11) mostra os grá�cos para as estrelas F single. Para a componente U,

os valores do resíduo estão bem próximos de 1, variando entre 0.5 e 1.5 para quase

59

Page 76: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

toda a amostra, entre -100 e 100 kms−1, que corresponde a 3σ da distribuição. Para a

componente V, os valores das regiões de calda são bem extrapolados. Em W, observa-se

uma discrepância alta para região acima de 50 kms−1, estando a distribuição com valores

próximos de 1 na faixa entre -50 e 50 kms−1 (região que representa 2σ da distribuição).

Figura 4.11: Curvas de resíduo obtidas a partir da razão entre os dados empíricos e oajuste da função q-Gaussiana para as velocidades espaciais (U, V, W) das estrelas do tipoF single.

Por último, temos a análise residual dos dados das estrelas G single. Nessas estrelas

observam-se comportamentos mais excêntricos para o resíduo. Os valores residuais estão

bem próximos de 1 em todas as componentes U, V eW da velocidade estelar, apresentando

per�s que se assemelham a oscilações. Esse comportamento pode ser observado facilmente

no primeiro painel da �gura (4.12), onde um regime oscilatório está bem evidente para a

componente U. Nos outros painéis, para V e W, essas oscilações também estão presentes,

todas com valores próximos de 1.

Essas oscilações são amplamente conhecidas em diversas áreas da Física, da Geológia

e da Economia, conhecidas como oscilações log-periódicas. Elas têm sido encontradas em

estudos de terremotos[195, 196], em probabilidade de fuga em mapas caóticos próximos

60

Page 77: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 4.12: Curvas de resíduo obtidas a partir da razão entre os dados empíricos e oajuste da função q-Gaussiana para as velocidades espaciais (U, V, W) das estrelas do tipoG single.

a ponto crítico[197], em difusões anomalas em estudos de sistemas randômicos[198, 199,

200], em processos cinemáticos e dinâmicos em aquecimentos randômicos e informação

fractal[201, 202, 203], em calor especí�co associado a sistemas autossimilares[204] ou

espectro fractal[205], em clusters limitados ou difusões agregadas[206], em modelos de

grupo[207], mercado de ações perto de crises �nanceiras[206, 208, 209, 210], entre outros.

Todos esses casos foram obtidos utilizando leis de potências básicas, livres de escalas que

regulam seus comportamentos. Em contrapartida, nos trabalhos recentes de De Moura

et al., [211], que analisam a dinâmica de convergência de mapas de z-logística, e de Wilk

& Wldorczyk [212], que se voltam à ocorrência de capacidade térmica complexa, à noção

de probabilidade complexa e ao ruído multiplicativo complexo, utiliza-se um contexto

da mecânica estatística não-extensiva. Wilk & Wldorczyk, utilizando dados do LHC,

CERN, CMS, ATLAS e ALICE, encontraram oscilações para as distribuições de Tsallis.

Nossos resultados dos resíduos para as estrelas G single seguem um per�l semelhante aos

obtidos por Wilk & Wldorczyk [212], embora não tenhamos conseguido encontrar uma

61

Page 78: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

implicação Física que origine essas oscilações.

4.3 Segregação da amostra por idade

Além da segregação por tipo espectral, F e G, a amostra foi dividida em intervalos

de idade de 1 Giga-ano. As quantidades de estrelas por faixa de idade estão expostos

na tabela (4.2). Essas novas subamostras separadas por idade forneceram dados para

q e σ através de novas distribuições de velocidade, que foram de suma importância na

compreensão da ação de mecanismos que afetam a dinâmica do Disco Galático, alterando

o comportamento da velocidade espacial (U, V, W).

Para cada umas dessas subamostras separadas por idade, novos valores para q e σ

foram abtidos. A técnica bootstrap foi utilizada para que houvesse melhor tratamento

para os resultados. A �gura (4.13) fornece o ajuste via bootstrap segregado por idade

para todas as estrelas F e G.

Figura 4.13: Ajuste da função Kernel (círculos) com o ajuste q-Gaussiano (linha azul)para cada faixa de idade das componentes U, V e W, via bootstrap.

O método bootstrap consiste em uma técnica de reamostragem bastante utilizada em

diversas situações estatísticas. Nele, um conjunto de novas amostras é obtido através

da amostra original[213]. Empregamos esse método para que houvesse con�abilidade em

62

Page 79: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Tabela 4.2: Quantidade de estrelas F e G single por faixa de idade.

Idade Número de estrelas(Giga-ano) F single G single

0 − 1 103 1651 − 2 970 1202 − 3 1592 3543 − 4 622 3334 − 5 226 2455 − 6 162 2416 − 7 80 2547 − 8 52 2458 − 9 20 2089 − 10 09 105

nossos dados e para que qualquer análise tendenciosa fosse eliminada de nossos resultados.

Logo, a reamostragem via bootstrap nos oferece resultados con�áveis a respeito dos per�s

de nossas distribuições, eliminando qualquer viés provocado pelo baixo número de estrelas

em algumas faixas de idade, por exemplo, as estrelas F com idade entre 9 e 10 Giga-

anos que possue apenas 09 estrelas, como pode ser veri�cado na tabela (4.2). Para

eliminar qualquer comportamento provocado pela baixa quantidade de dados, o bootstrap

gerou 1000 valores para cada uma das faixas de idade, sendo que estas novas amostras

possuem per�s estatísticos semelhantes aos das amostras originais. Assim, esse método

de reamostragem fornece estimativas mais con�áveis sobre o uso da estatística de Tsallis

para a análise do comportamento das estrelas na vizinhança solar e, inferindo, assim,

resultados mais claros de como o aquecimento do disco galáctico pode ocorrer.

É visível na tabela (4.2) que a distribuição das estrelas G em cada faixa de idade é

mais uniforme, tendo em cada idade um número considerável de dados.

4.3.1 Relação entre σ e a idade

Nordströn el al. [47] e Holmberg et al. [48, 49] discutem a difusão das componentes

(U, V, W) da velocidade através da dispersão de σ com a idade. Utiliza-se, para tanto,

um ajuste de lei de potências dada pela equação (1.5)[147]:

σ1(t) = (σ1/p0 + Ct)p.

Esse ajuste forneceu os expoentes que estão colocados na tabela (4.3). Segundo os

autores, os valores dos σ para U, V, W e total representam a evolução das velocidades

63

Page 80: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

ao longo da idade, sendo caracterizados pelo aumento suave nas proporções entre σV /σUe um maior aumento da proporção σW/σU . A �gura (3.4) do capítulo anterior ilustra a

dispersão dos σU , σV , σW e σtotal com a idade. O σtotal é calculado por:

σtotal =√σ2U + σ2

V + σ2W (4.1)

Igualando a equação (4.1) com a equação (2.31), que é a exponencial de Tsallis,

podemos encontrar o expoente p em função de q, dado por:

(σ1/p0 + Ct)pσ(t)] = σ0[1 + (q − 1)(t/τ)](1/q−1)

p =1

q − 1. (4.2)

e

τ = (q − 1)σ0C

1/p

. (4.3)

onde τ representa um tempo característico.

O grá�co presente na �gura (3.4) mostra inclinações suaves para a distribuição de σUe σV , enquanto para σW há uma inclinação mais acentuada.

Nas �guras (4.14) e (4.15) estão os valores dos σ encontrados para nossas distribuições

em função da idade e as curvas dadas por uma q-exponencial. É bem claro que, para as

estrelas anãs do tipo F, o ajuste utilizando a exponencial de Tsallis se adéqua bem ao

comportamento da distribuição, sendo que, para σU e σV , ocorre um crescimento bem

suave. Já para σW , observa-se um aumento suave até ∼ 7 Giga-anos, e, após essa idade,

tem-se um aumento mais abrupto. Os valores de σW que estão mostrados na �gura(4.14)

estão em concordância com os valores encontrados na literatura. Outra consideração é

de que nossos sigmas são dados em função do índice entrópico q.

Para as estrelas do tipo G, como pode ser observado na �gura (4.15), o ajuste da

curva tem um per�l bem suave para todas as idades para todos os σ, onde é veri�cado

que para σW o comportamento se assemelha ao de uma reta.

64

Page 81: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

0 1 2 3 4 5 6 7 8 9 1 00

2 0

4 0

6 0

8 0

1 0 0

stellar

veloc

ity dis

persi

on (σ

) (km/

s)

A g e ( G y r )

σt o t a l

σU

σW = 0 . 3 9 σt o t a l

Figura 4.14: Dispersão da velocidade em função da idade para estrelas do tipo F. A linhaem vermelho é o ajuste q-exponencial.

0 1 2 3 4 5 6 7 8 9 1 00

2 0

4 0

6 0

8 0

1 0 0

σW = 0 . 3 6 s t o t a l

σU

stellar

veloc

ity dis

persi

on (σ

) (km

/s)

A g e ( G y r )

σt o t a l

Figura 4.15: Dispersão da velocidade em função da idade para estrelas do tipo G. A linhaem vermelho é o ajuste q-exponencial.

65

Page 82: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

4.3.2 Relação entre o indíce entrópico q e a idade

As �guras (4.16) e (4.17) são referentes aos valores dos índices entrópicos para cada

faixa de idade, onde a linha preta representa o valor mediano de q e a faixa em cinza

representa os valores de máximo e mínimo, considerando o nível de con�ança de 95%,

obtido através do bootstrap. Os painéis à esquerda são os valores originais de q, enquanto

os valores obtidos pelo bootstrap estão nos painéis da direita. Nas �guras (4.16) e (4.17)

estão os valores para as estrelas F e G, em separado, respectivamente.

0 2 4 6 8 100.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Ent

ropi

c in

dex

(q n

o bo

otst

rap)

Age

U (F stars)

0 2 4 6 8 100.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Ent

ropi

c in

dex

(q b

oots

trap

)

Age (gyr)

U (F stars)

0 2 4 6 8 100.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Ent

ropi

c in

dex

(q n

o bo

otst

rap)

Age (Gyr)

V (F stars)

0 2 4 6 8 100.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Ent

ropi

c in

dex

(q b

oots

trap

)

Age (Gyr)

V (F stars)

0 2 4 6 8 100.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ent

ropi

c in

dex

(q n

o bo

otst

rap)

Age (Gyr)

W (Fstars)

0 2 4 6 8 100.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ent

ropi

c in

dex

(q b

oots

trap

)

Age (Gyr)

W (F stars)

Figura 4.16: Comportamento do índice entrópico q-original e q-bootstrap pela idade paraas estrelas F single.

66

Page 83: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Tabela 4.3: Valores para os índices entrópicos q-original e q-bootstrap para as estrelas dotipo F da amostra, separadas por faixa de idade e componentes U, V e W.

Idade Estrelas tipo F(Giga-ano) qU qV qW qUbs qV bs qWbs

0 − 1 1.068 1.199 0.865 0.693 1.326 1.0341 − 2 0.859 1.406 0.925 1.022 1.070 1.0972 − 3 1.001 0.976 0.939 1.123 1.079 1.1683 − 4 1.095 0.829 1.037 1.270 1.124 1.0644 − 5 1.434 1.012 1.193 0.993 1.198 1.3055 − 6 0.941 1.111 1.391 1.020 1.183 0.8816 − 7 0.705 1.158 0.927 1.244 1.599 0.7517 − 8 0.980 1.731 0.725 1.691 1.473 0.8848 − 9 2.461 0.941 1.310 0.780 0.734 0.9469 − 10 - - - - - -

A tabela (4.3) contém os valores para os q-originais e q-bootstrap para as estrelas F.

Na faixa de idade entre 9 e 10 Giga-anos, os valores para q não foram computados, posto

que não obedeçam às condições iniciais aplicadas pelo programa bootstrap, que impõe ser

necessário um número mínimo de 20 dados para que possa ocorrer a reamostragem. Como

este intervalo apresenta apenas nove dados, esses foram desprezados pelo programa.

Podemos observar que o comportamento do índice entrópico é bem semelhante tanto

para a dispersão de q original quanto para a amostra bootstrap. Sendo que, para faixas de

idade com número reduzido de dados, o valor proveniente da reamostragem tende a uma

redução de bias que possam interferir na distribuição, como mostrado na tabela (4.2).

Na tabela (4.4) estão os valores de q para a amostra original e para a reamostragem

bootstrap das estrelas G. Mesmo as estrelas F estando em maior número, os dados para

cada faixa de idade para as estrelas G é bem mais homogêneo, veri�cando que há um

número considerável para cada faixa de idade.

Na �gura (4.17) estão as distribuições do índice entrópico das estrelas G pela idade

onde pode ser veri�cada uma redução na dispersão dos valores.

O índice entrópico q mede o quão a distribuição se afasta da gaussianidade padrão.

Temos que, para todas as estrelas F e G, nenhuma das componentes tende a uma

curva Gaussiana usual. Os q encontrados e sua evolução no tempo não apresentam um

comportamento crescente ou decrescente, mas aparentemente oscilatório, podendo estar

associado a transições de fase com o passar do tempo, mais evidente nas esrelas G.

67

Page 84: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

0 2 4 6 8 100.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ent

ropi

c in

dex

(q n

o bo

otst

rap)

Age ( Gyr)

U (G stars)

0 2 4 6 8 100.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ent

ropi

c in

dex

(q b

oots

trap

)

Age (Gyr

U (G stars)

0 2 4 6 8 100.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Ent

ropi

c in

dex

(q n

o bo

otst

rap)

Age (Gyr)

V (G stars)

0 2 4 6 8 100.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Ent

ropi

c in

dex

(q b

oots

trap

)

Age (Gyr)

V (G stars)

0 2 4 6 8 100.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Ent

ropi

c in

dex

(q n

o bo

otst

rap)

Age (Gyr)

W (G stars)

0 2 4 6 8 100.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Ent

ropi

c in

dex

(q b

oots

trap

)

Age (Gyr)

W(G stars)

Figura 4.17: Comportamento do índice entrópico q-original e q-bootstrap pela idade paraas estrelas G single.

Pensando nos processos de aquecimento do disco galáctico, a suposição de que esse

aquecimento tem uma natureza não-aleatória no plano U-V, e tendo em vista que

estudos apontam a interferência de mecanismos que atuam modi�cando sua cinemática,

queremos acrescentar que, para a componente W da velocidade espacial, pode existir

a presença de mecanismos que produzam um aquecimento não-puro. Na literatura, a

dispersão da velocidade em W é considerada como sendo proveniente da aleatoriedade,

onde não há a presença de estruturas que possam interferir na sua difusão; em outras

palavras, a aleatoriedade domina todo o processo de difusão em W. Em nosso trabalho,

68

Page 85: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Tabela 4.4: Valores para os índices entrópicos q-original e q-bootstrap para as estrelas dotipo G da amostra, separadas por faixa de idade e componentes U, V e W.

Idade Estrelas tipo G(Giga-ano) qU qV qW qUbs qV bs qWbs

0 − 1 0.885 1.079 1,330 1.232 1.395 1.2641 − 2 0.883 2.042 1.341 0.992 1.771 1.2672 − 3 1,189 1.343 1.121 0.992 1.565 1.6823 − 4 1.165 1.506 1.415 0.843 1.702 1.4014 − 5 0.721 1.169 1.275 1.096 1.460 1.2875 − 6 0.966 1.654 1.716 1.003 1.494 1.4566 − 7 0.979 1.005 1.360 1.008 1.824 1.4957 − 8 1.214 1.617 1.127 1.061 1.875 1.4008 − 9 0.938 1.178 1.260 0.941 1.400 1.1169 − 10 1.094 1.157 1.380 1.068 1.464 1.455

é veri�cado que há uma certa discordância com as pesquisas que sugerem essa tendência

de aquecimento puro.

Utilizando um processo que foi chamado de desvio de mecanismos randômicos (DMR),

que seria, na verdade, uma medida da in�uência cinemática aleatória no processo de

aquecimento do disco galáctico como função do índice entrópico q pela idade, nós usamos

como padrão de referência para designar esse desvio o termo (q − 1). Isso signi�ca

que, para as componentes W, essa diferença deveria ser próxima de 0 (zero) para cada

intervalo de idade, como a�rmam Nordström et al. [47] e Holmberg et al. [48, 49]. As

�guras (4.18) e (4.19) apresentam as distribuições de (q − 1) pela idade para as estrelas

F e G. Essas distribuições sugerem o quanto as velocidades (U, V, W) são in�uenciadas

por mecanismos de difusão não-aleatórios, onde valores de q próximos de 1 representam

o quão randômica é a distribuição. Ou seja, para movimentos regidos pela aleatoriedade,

temos comportamento de (q − 1) bem próximos de zero.

Na �gura (4.18) observa-se que os valores para as componentes U, V e W estão bem

próximos de 0 até a idade de ∼ 3 Giga-ano, havendo, então, um afastamento dos valores

para idades superiores.

Na �gura (4.19) também está bem explícito como o comportamento das componentes

estão bem longe de um equilíbrio próximo de zero. Para as estrelas G, há um forte indício

que sugere que a aleatoriedade não governa nenhuma das componentes da velocidade

espacial em qualquer faixa de idade, sendo o processo de difusão totalmente não-

randômico para toda a vida do disco Galáctico.

Esse fato evidencia o quanto as distribuições da componente W da velocidade estelar

se afastam do equilíbrio gaussiano. Logo, pode ser observado que, para todas as

componentes da velocidade espacial, existe um desvio, que sugere movimentos não-

69

Page 86: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 4.18: Medida de desvio de mecânismos randômicos (q − 1) de U, V e W paraestrelas do tipo F.

aleatórios, o que contrasta com os resultados de Nordströn et al.[47] e Holmberg et

al.[48, 49], por exemplo. Esses autores a�rmam que o movimento W é puramente

aleatório, o que seria explicado pelo per�l gaussiano da distribuição; no entanto, pode ser

observado que a velocidade W segue uma dispersão característica, encontrada tanto na

componente U quanto na V, o que foge de uma curva Gaussiana padrão.

Sabe-se que muitos são os mecanismos que atuam no plano U-V modi�cando a

velocidade e causando sua dispersão, mas pouco se sabe sobre como o incremento

da dispersão da velocidade na componente W acontece. Não podemos deixar de

fora da discussão a existência de mecanismos não-aleatórios que atuam modi�cando o

comportamento de W. É visível, ao analisar as �guras (4.18) e (4.19), que a difusão

na componente W da velocidade não pode ser atribuída somente aos processos não-

randômicos, ou à aleatoriedade, sendo que os efeitos de aquecimento �puro� estão

presentes apenas numa estreita faixa de idade. É nesse cenário que colocamos que

os comportamento experimentados por todas as componentes da velocidade espacial

70

Page 87: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Figura 4.19: Medida de desvio de mecânismos randômicos (q − 1) de U, V e W paraestrelas do tipo G.

obedecem a uma difusão anômala à medida que a idade aumenta, não havendo para

nenhuma dessas componentes processos de aquecimento aleatório.

71

Page 88: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Capítulo 5

Conclusões e Perspectivas

5.1 Conclusões

A função de distribuição q-Gaussiana baseada no formalismo estatístico desenvolvido

por Tsallis tem se mostrado bastante e�ciente em descrever inúmeros fenômenos

recorrentes na natureza onde há um alto grau de interação e complexidade. O teorema

do limite central q-generalizado dá o suporte necessário para a interpretação de o porquê

desses fenômenos serem descritos por distribuições q-Gaussianas, ampliando o aparato

teórico que justi�que o uso das generalizações das FDP.

O índice entrópico q é o termo que controla o comportamento das distribuições q-

Gaussianas e q-dispersões, σq, onde q = 1 representa distribuições onde despreza-se

qualquer interação, havendo um regime totalmente extensivo; ou seja, para q = 1, temos

distribuições totalmente aleatórias.

O intuito de nosso trabalho foi investigar o quão a aleatoriedade pode governar a

dispersão de velocidade das componentes (U, V, W), em especial para W. Para isso

utilizamos uma amostra com pouco mais de 6166 estrelas divididas entre F e G single

que ocupam posições na vizinhança solar.

Primeiramente, em nossas análises, pudemos observar que há o incremento das

dispersões das velocidades com a idade. É notável que ocorre um crescimento suave para

as componentes U e V, das estrelas F, em todas as faixas de idade. A componente W

apresenta um comportamento suave até uma idade aproximada de 7 Giga-anos, havendo

um crescimento mais acentuado após essa idade. Para as estrelas G, o aumento da

dispersão nas componentes da velocidades (U, V, W) acontece de forma suave em todas

as idades. Estes resultados estão de acordo com os encontrados na literatura, onde os

valores para a razão σW/σT foram de 0,39, para as estrelas F, e 0,36, para as estrelas G

− sendo estes valores inferiores aos encontrados por alguns autores.

A técnica boostrap foi utilizada para que não ocorresse algum resultado in�uenciado

72

Page 89: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

por qualquer tendência provocada por baixo número de dados em qualquer faixa de idade.

Observamos que, mesmo depois da técnica de reamostragem, o comportamento de q com a

idade enfrenta regimes de subextensividade (q < 1) e superextensividade (q > 1) ao longo

de toda a história evolutiva das estrelas F e G, não podendo ser encontrado um regime de

crescimento ou decaimento suave com a idade, mas sim algo que se assemelha a transições

entre esses dois comportamentos para o índice entrópico sem saturação, caracterizando o

quanto o sistema se encontra fora da extensividade.

As investigações dos resíduos revelaram oscilações log-periódicas, algumas

apresentando q imaginários. Este fato era previsto pela Mecânica Estatística não-

extensiva, sendo esses efeitos já observados em alguns outros estudos. Ainda não

encontramos qualquer interpretação física que justi�que o aparecimentos destas oscilações

em nossas análises.

Por último, temos que, pela medida dos desvios randômicos (q−1), durante quase toda

a vida das estrelas há a presença de mecanismos que afetam as dispersões das velocidades

(U, V, W), discordando de resultados na literatura que apontam um aquecimento

totalmente puro, ou aleatório, para a componente W da velocidade. É notável que, para

estrelas do tipo F, somente uma região próxima de 3 Giga-anos parece ser dominada pela

aleatoriedade para as três componentes. Este resultado tem bastante importância, pois

revela que a componente W não aquece de forma aleatória, como previsto por trabalhos

anteriores que atribuíam a esta componente uma evolução totalmente governada pelo

aleatoriedade. Não podemos inferir quais mecanismos atuam sobre a componente W,

mas podemos a�rmar que, pelo grau de interação que existe entre as componentes da

velocidade espacial, não podemos desconsiderar qualquer in�uência que algum mecanismo

que atue modi�cando as velocidades U e V possa ter sobre W. O grau de mistura do

sistema revela o quão as componentes estão correlacionadas.

5.2 Perspectivas

Trabalhos futuros podem tratar com maior profundidade alguns pontos relevantes que

foram levantados. Desta forma, temos como perspectivas:

• Ampliar o número de estrelas da amostra, utilizando outros catálogos, para veri�car

se o comportamento não-aleatório para todas as componentes se mantém;

• Utilizar estrelas com outros tipos espectrais e tentar observar se há comportamento

similar aos que foram encontrados neste trabalho;

• Investigar as possíveis causas da dispersão na componente W, e quais mecanismos

são responsáveis pelo aquecimento nesta componente;

73

Page 90: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

• Buscar interpretações possíveis para os valores imaginários de q e quais são as

implicações físicas destes resultados;

• Realizar estudos do comportamento das estrelas F e G utilizando distribuições à

partir da energia cinética;

• Realizar um amplo estudo em estrelas do tipo O e B, por considerar que estas

estrelas ainda não enfrentaram mudanças evolutivas rotacionais importantes, o

que por sua vez, estão na sua maioria localizadas nos ambientes em que foram

recentemente formadas e, por consequência, são bons marcadores de estruturas

jovens.

74

Page 91: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Referências Bibliográ�cas

[1] Galilei, G. Sidereus Nuncius - O Mensageiro das Estrelas. Fundação Calauste

Gulbenkuan, Lisboa. Tradução Henrique Lira, 2010. p.68-77, 1610.

[2] Herschel, W. On the Construction of the Heaven. Philosophical Transactions

of the Royal Society of London, 75, p.213-266, 1785.

[3] Hubble, E. The Realm of the Nebulae. Oxford University Press, London. p.

97-100, 1936.

[4] Lindblad, B. Cosmogonic Consequences of Theory of Stellar System. Ark.

19A. No.35, 1926a.

[5] Lindblad, B. Star-Streaming and Structure of Stellar System. Paper2. Ark.

19B. No.7, 1926b.

[6] Lindblad, B. On the Nature of the Stellar Nebulae. MN 87, p.420-426, 1927a

[7] Lindblad, B. On the State Motion in Galactic System. MN 87, p.553-564,

1927b

[8] Oort, J. H. On a Possible Relation Between Globular Cluster and Stars

Velocity. Proc, Natl Acad Sci USA 10(6) p.256-260, 1924.

[9] Oort, J. H. Some Problems Concerning the Distribution of Luminosities

and Peculiar Velocities of Extragalactic Nebulae. Bull. Astron. Inst. Neth. 6,

p.155-159, 1931.

[10] Oort, J. H. The Force Exerted by the Stellar System in the Direction

Perpendicular to the Galactic Plane and Some Related Problems. Bull.

Astron. Inst. Neth. 6, p.249-287, 1932.

[11] Baad, W. The resolution of Messier 32, NGC 205, and the central region

of the Andromeda nebula. ApJ v.100 137-146, 1944.

75

Page 92: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[12] Puget, J. L. & Heyvaerts, J.Population III stars and the shape of the

cosmological black body radiation. A&A, vol. 83, no. 3, p.L10-L12, 1980.

[13] Bond, H. E. Where is Population III?. Ap. J. Part 1, vol. 248, p.606-611, 1981.

[14] Carr, B. J. Pre-galactic stars and the origin of the microwave background.

Mon. Not. R. Astron. Soc., vol. 195, p.669-684, 1981.

[15] Kashlinsky, A. & Rees, M. J. Formation of population III stars and pregalactic

evolution. Mon. Not. R. Astron. Soc., vol. 205, p.955-971, 1983.

[16] Carr, B. J., Bond, J. R., & Arnett, W. D Cosmological consequences of

Population III stars. ApJ, Part 1, vol. 277, p. 445-469, 1984.

[17] Ashman, K. M. & Carr, B. J. Pre-galactic cooling �ows and baryonic dark

matter. Mon. Not. R. Astron. Soc., vol. 234, p.219-240, 1988.

[18] O'Connell, D. J. K. Stellar populations: proceedings of the conference

sponsored by the Ponti�cal Academy of Science and the Vatican

Observatory. May 20-28, 1957. North Holland Pub. Co., p.426, 517, 533, 1958.

[19] Spinrad, H. Galaxy Formation and Evolution. Springer Praxis Books, p.3, 2005.

[20] Eggen, O. J.; Lynden-Bell, D. & Sandage, A. R. Evidence from the motions of

old stars that the Galaxy collapsed. Astrophysical Journal, vol. 136, p.748-766,

1962.

[21] Lee, Young-Wook. Evidence for an old Galactic bulge from RR Lyrae stars

in Baade's window - Implications for the formation of the Galaxy and the

age of the universe. Astr. J. 104, 1780?1789, 1992.

[22] Barbuy, B.; Bica, E. & Ortolani, S. Globular clusters within 5(deg) of the

Galactic center. A&A, vol.333, p.117-124, 1998.

[23] White, S. D. M. & Rees, M. J. Core condensation in heavy halos - A two-stage

theory for galaxy formation and clustering. Mon. Not. R. Astr. Soc., vol.183,

p.341-358, 1978.

[24] Matteucci, F. & Brocato, E. Metallicity distribution and abundance ratios in

the stars of the Galactic bulge. ApJ, Part 1, vol.365, p.539-543, 1990.

[25] Ferreras, I., Wyse, R. F. G. & Silk, J. The formation history of the Galactic

bulge. Mon. Not. R. Astr. Soc., Vol. 345, I. 4, pp.1381-1391, 2003.

76

Page 93: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[26] Rahimi, A., Kawata, D., Brook, Chris B. & Gibson, Brad K. Chemodynamical

analysis of bulge stars for simulated disc galaxies. Mon. Not. R. Astr. Soc.,

Vol.401, I. 3, pp. 1826-1831, 2010.

[27] Kau�mann, G. The age of elliptical galaxies and bulges in a merger model.

Mon. Not. R. Astr. Soc., Vol.281, I.2, p.487-492, 1996.

[28] Ibata, R.A., Gilmore, G. & Irwin M.J.A Dwarf Satellite Galaxy in Sagittarius.

Nature 370, p.194-196, 1994.

[29] Ibata, R.A., Gilmore, G. & Irwin M.J.Sagittarius ? the nearest dwarf galaxy.

Mon. Not. R. Astr. Soc., Vol.277, p.781-800, 1995.

[30] Putman, M. E.; Gibson, B. K.; Staveley-Smith, L.; Banks, G.; Barnes, D. G.; Bhatal,

R.; Disney, M. J.; Ekers, R. D.; Freeman, K. C.; Haynes, R. F.; Henning, P.; Jerjen,

H.; Kilborn, V.; Koribalski, B.; Knezek, P.; Malin, D. F.; Mould, J. R.; Oosterloo,

T.; Price, R. M.; Ryder, S. D.; Sadler, E. M.; Stewart, I.; Stootman, F.; Vaile, R.

A.; Webster, R. L.; Wright, A. E Tidal disruption of the Magellanic Clouds

by the Milky Way.Nature, Vol.394, I.6695, pp.752-754, 1998.

[31] Wyse, R. F. G., Gilmore, G. & Franx, M. Galactic bulges..An. Rev. Astrom.

Astrophys., Vol.35, p.637-675, 1997.

[32] Beaulieu, S. F., Freeman, K. C., Kalnajs, A. J., Saha, P., Zhao, H. Dynamics

of the Galactic Bulge Using Planetary Nebulae. The Astronomical Journal,

Vol.120, Issue 2, pp. 855-871, 2000.

[33] Pagel, B. E. J. Chemical Evolution of the Galaxy. The Evolution of Galaxies on

Cosmological Timescales, ASP Conference Series,Vol. 187. Edited by J. E. Beckman

and T. J. Mahoney, p.3-19, 1999.

[34] Combes, F.; Sanders, R. H.Demianski, M. Formation and properties of

persisting stellar bars.A&A, vol. 96, no.1-2, p. 164-173, 1981.

[35] Friedli, D.; Martinet, L. Bars Within Bars in Lenticular and Spiral Galaxies:

a Step in Secular Evolution?. A&A, Vol. 277, P. 27-41, 1993

[36] Kormendy, J.Observations of galaxy structure and dynamics. IN: Morphology

and dynamics of galaxies; Proceedings of the Twelfth Advanced Course, Saas-Fee,

Switzerland, March 29-April 3, 1982 (A84-15502 04-90). Sauverny, Switzerland,

Observatoire de Geneve, 1983, p. 113-288.

77

Page 94: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[37] Kormendy, J.; Illingworth, G. Rotation of the bulge components of disk

galaxies. Astrophysical Journal, Part 1, vol. 256, p.460-480, 1982.

[38] Escudero, A. V.; Costa, R. D. D.Abundances of recently discovered planetary

nebulae towards the galactic bulge.A&A, v.380, p.300-308, 2001.

[39] Escudero, A. V., Costa, R. D. D. & Maciel, W. J. New abundances of planetary

nebulae in the Galactic Bulge. A&A, v.414, p.211-221, 2004.

[40] Gilmore, G. & Reid, N. New light on faint stars. III - Galactic structure

towards the South Pole and the Galactic thick disc. Mon. Not. R. Astr. Soc.,

vol. 202, p. 1025-1047, 1983.

[41] Juri�c, M., Ivezi?, ?., Brooks, A., Lupton, R. H., Schlegel, D., Finkbeiner, D.,

Padmanabhan, N., Bond, N., Sesar, B., Rockosi, C. M., Knapp, G. R., Gunn, J.

E., Sumi, T., Schneider, D. P., Barentine, J. C., Brewington, H. J., Brinkmann, J..

Fukugita, M., Harvanek, M., Kleinman, S. J., Krzesinski, J., Long, D., Neilsen, E. H.

Jr., Nitta, A., Snedden, S. A., York, D. G. The Milky Way Tomography with

SDSS. I. Stellar Number Density Distribution. The Astrophysical Journal,

Volume 673, Issue 2, p.864-914, 2008.

[42] Freeman, K. & Bland-Hawthorn, J. The New Galaxy: Signatures of Its

Formation. Ann. Rev. Astron. Astrophys., Vol. 40, p. 487-537, 2002.

[43] Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.; Korotin, S. A. On the

correlation of elemental abundances with kinematics among galactic disk

stars.A&A, v.418, p.551-562, 2004.

[44] Soubiran, C.; Girard, P. Abundance trends in kinematical groups of the

Milky Way's disk. A&A, Vol. 438, Issue 1, p.139-151, 2005.

[45] Soubiran, C.; Bienaymé, O.; Mishenina, T. V.; Kovtyukh, V. V.Vertical

distribution of Galactic disk stars. IV. AMR and AVR from clump giants.

A&A, Volume 480, pp.91-10, 2008.

[46] Reddy, B. E.; Lambert, D. L. & Allende Prieto, C. Elemental abundance survey

of the Galactic thick discMon. Not. R. Ast. Soc., Vol.367, Issue 4, pp. 1329-1366,

2006.

[47] Nordström, B.; Mayor, M.; Andersen, J.; Holmberg, J.; Pont, F.; Jørgensen, B. R.;

Olsen, E. H.; Udry, S.; Mowlavi, N. The Geneva-Copenhagen survey of the

78

Page 95: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

Solar neighbourhood. Ages, metallicities, and kinematic properties of ?14

000 F and G dwarfs A&A, v.418, p.989-1019, 2004.

[48] Holmberg, J.; Nordström, B.; Andersen, J. The Geneva-Copenhagen survey of

the Solar neighbourhood II. New uvby calibrations and rediscussion of

stellar ages, the G dwarf problem, age-metallicity diagram, and heating

mechanisms of the disk A&A, Vol. 475, Issue 2, p.519-537, 2007.

[49] Holmberg, J.; Nordström, B.; Andersen, J. The Geneva-Copenhagen survey of

the solar neighbourhood. III. Improved distances, ages, and kinematics.

A&A, Vol.501, Issue 3, pp.941-947, 2009.

[50] Reddy, B. E.; Tomkin, J.; Lambert, D. L.; Allende Prieto, C. The chemical

compositions of Galactic disc F and G dwarfs. Mon. N. R. Astr. Soc., Vol.340,

Issue 1, p. 304-340 2003.

[51] Bensby, T.; Feltzing, S.; Lundström, I. Elemental abundance trends in the

Galactic thin and thick disks as traced by nearby F and G dwarf stars.

A&A, v.410, p.527-551, 2003.

[52] Bensby, T.; Feltzing, S.; Lundström, I. Oxygen trends in the Galactic thin and

thick disks.A&A, v.415, p.155-170, 2004.

[53] Bensby, T.; Feltzing, S.; Lundström, I.; Ilyin, I. ?-, r-, and s-process element

trends in the Galactic thin and thick disks. A&A, Volume 433, Issue 1, p.185-

203, 2005.

[54] Binney J., Merrield M. Galactic Astronomy. Princeton University Press,

Princeton, New Jersey, USA, 1998.

[55] Majewski, S. R. Galactic structure surveys and the evolution of the Milky

Way. Ann. Rev. astron. Astrophys. Vol. 31, p.575-638, 1993.

[56] Chiba, M. & Beers, T. C. Kinematics of Metal-poor Stars in the Galaxy. III.

Formation of the Stellar Halo and Thick Disk as Revealed from a Large

Sample of Nonkinematically Selected Stars. The Astronomical Journal, Vol.

119, Issue 6, p. 2843-2865, 2000.

[57] Robin, A. C.; Reylé, C.; Derrière, S.; Picaud, S. A synthetic view on structure

and evolution of the Milky Way. A&A, v.409, p.523-540, 2003.

79

Page 96: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[58] Wyse, Rosemary F. G.; Gilmore, Gerard; Norris, John E.; Wilkinson, M. I.; Kleyna,

Jan T.; Koch, A.; Evans, N. W.; Grebel, E. K. Further Evidence of a Merger

Origin for the Thick Disk: Galactic Stars along Lines of Sight to Dwarf

Spheroidal Galaxies. The Astrophysical Journal, Vol. 639, Issue 1, p. L13-L16,

2006.

[59] Fuhrmann, K. Nearby stars of the Galactic disc and halo - IV. Mon. Not. R.

Astr. Soc., Vol. 384, Issue 1, p. 173-224, 2008.

[60] Haywood, M. Radial mixing and the transition between the thick and thin

Galactic discs. Mon. Not. R. Astr. Soc., Vol. 388, Issue 3, pp. 1175-1184, 2008.

[61] Lee, Y. S.; Beers, T. C.; An, D.; Ivezi?, ?.; Just, A.; Rockosi, C. M.; Morrison, H.

L.; Johnson, J. A.; Schönrich, R.; Bird, J.; Yanny, B.; Harding, P.; Rocha-Pinto, H.

J. Formation and Evolution of the Disk System of the Milky Way: [?/Fe]

Ratios and Kinematics of the SEGUE G-dwarf Sample. The Astrophysical

Journal, Vol. 738, Issue 2, article id. 187, 17 p. , 2011.

[62] Quinn, P. J.; Hernquist, Lars; Fullagar, D. P. Heating of galactic disks by

mergers. Astrophysical Journal, Part 1, vol. 403, no. 1, p. 74-93, 1993.

[63] Kazantzidis, S.; Bullock, J. S.; Zentner, A. R.; Kravtsov, A. V.; Moustakas, L.

A. Cold Dark Matter Substructure and Galactic Disks I: Morphological

Signatures of Hierarchical Satellite Accretion. The Astrophysical Journal,

Vol.688, Issue 1, p.254-276, 2008.

[64] Kazantzidis, S.; Zentner, A. R.; Kravtsov, A. V.; Bullock, J. S.; Debattista,

V. P.Cold Dark Matter Substructure and Galactic Disks II: Dynamical

E�ects of Hierarchical Satellite Accretiontext. The Astrophysical Journal,

Vol. 700, Issue 2, pp. 1896-1920, 2009.

[65] Villalobos, A.; Helmi, A. Simulations of minor mergers - I. General properties

of thick discs. Mon. Not. R. Astro. Soc., Vol.391, Issue 4, pp.1806-1827, 2008.

[66] Villalobos, A.; Helmi, A. Simulations of minor mergers - II. The phase-space

structure of thick discs. Mon. Not. R. Astro. Soc., Vol.399, Issue 1, pp. 166-176.

[67] Abadi, M. G.; Navarro, J. F.; Steinmetz, M.; Eke, V. R. Simulations of Galaxy

Formation in a ? Cold Dark Matter Universe. II. The Fine Structure of

Simulated Galactic Disks. The Astrophysical Journal, Volume 597, Issue 1, pp.

21-34, 2003.

80

Page 97: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[68] Brook, C, B.; Kawata, D.; Gibson, B. K.; Freeman, K. C. The Emergence of

the Thick Disk in a Cold Dark Matter Universe. The Astrophysical Journal,

Vol.612, Issue 2, pp. 894-899, 2004.

[69] Brook, C. B.; Gibson, B. K.; Martel, H.; Kawata, D. The Emergence of the

Thick Disk in a CDM Universe. II. Colors and Abundance Patterns. The

Astrophysical Journal, Vol. 630, Issue 1, pp. 298-308, 2005.

[70] Brook, C. B.; Richard, S.; Kawata, D.; Martel, H.; Gibson, B. K. Two Disk

Components from a Gas-Rich Disk-Disk Merger. The Astrophysical Journal,

Vol.658, Issue 1, pp. 60-64, 2007.

[71] Brook, C. B.; Veilleux, V.; Kawata, D.; Martel, H.; Gibson, B. K. Gas Rich

Mergers in Disk Formation. ISLAND UNIVERSES, Astrophysics and Space

Science Proceedings. ISBN 978-1-4020-5572-0. Springer, p.551, 2007.

[72] Spitzer, L. Jr. & Schwarzschild, M. The Possible In�uence of Interstellar

Clouds on Stellar Velocities. II. Astrophysical Journal, vol. 118, p.106, 1953.

[73] Barbanis, B. & Woltjer, L. Orbits in Spiral Galaxies and the Velocity

Dispersion of Population I Stars. Astrophysical Journal, vol. 150, p.461, 1967.

[74] Schönrich, R. & Binney, J. Chemical evolution with radial mixing. Mon. Not.

R. Astro. Soc., Vol.396, Issue 1, pp. 203-222, 2009a.

[75] Schönrich, R. & Binney, J. Origin and structure of the Galactic disc(s). Mon.

Not. R. Astro. Soc., Vol.399, Issue 3, pp. 1145-1156, 2009b.

[76] Loebman, S. R.; Ro?kar, R.; Debattista, V. P.; Ivezi?, ?.; Quinn, T. R.; Wadsley,

J. The Genesis of the Milky Way's Thick Disk Via Stellar Migration. The

Astrophysical Journal, Volume 737, Issue 1, article id. 8, 17 pp. 2011.

[77] Sellwood, J. A.; Binney, J. J. Radial mixing in galactic discs. Mon. Not. R.

Astro. Soc., Vol.336, Issue 3, pp. 785-796, 2002.

[78] Ro?kar, R.; Debattista, V. P.; Stinson, G. S.; Quinn, T. R.; Kaufmann, T.; Wadsley,

J.Beyond Inside-Out Growth: Formation and Evolution of Disk Outskirts.

The Astrophysical Journal Letters, Vol. 675, Issue 2, p. L65-L68 2008.

[79] Freeman, K. C. The Galactic spheroid and old disk. Ann, Rev. Astro. astrophys.

Vol.25 . Palo Alto, CA, Annual Reviews, Inc., p. 603-632, 1987.

81

Page 98: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[80] Bell, E. F.; Zucker, D. B.; Belokurov, V.; Sharma, S.; Johnston, K. V.; Bullock, J.

S.; Hogg, D. W.; Jahnke, K.; de Jong, J. T. A.; Beers, T. C.; Evans, N. W.; Grebel,

E. K.; Ivezi?, ?.; Koposov, S. E.; Rix, Hans-Walter; Schneider, D. P.; Steinmetz,

M.; Zolotov, A. The Accretion Origin of the Milky Way's Stellar Halo. The

Astrophysical Journal, Vol. 680, Issue 1, p.295-311, 2008

[81] Harris, W. E.A Catalog of Parameters for Globular Clusters in the Milky

Way. Astronomical Journal v.112, p.1487, 1996.

[82] Harris, W. E.A New Catalog of Parameters for Globular Clusters in the

Milky Way. arXiv:1012.3224 , 2010.

[83] Helmi, A. The stellar halo of the Galaxy. The Astronomy and Astrophysics

Review, Volume 15, Issue 3, pp.145-188, 2008.

[84] Dehnen, W. & Binney, J. Mass models of the Milky Way. Mont. Not. R. Astro.

Soc., vol. 294, p. 429, 1998.

[85] Mignard, F. Local galactic kinematics from Hipparcos proper motions. A&A,

v.354, p.522-536, 2000.

[86] Bosch, G.; Selman, F.; Melnick, J.; Terlevich, R. The ionising cluster of 30

Doradus. IV. Stellar kinematics. A&A, v.380, p.137-141, 2001.

[87] de Souza, R. E. & Teixeira, R. Kinematic segregation of nearby disk stars

from the Hipparcos database. A&A,471, 475-484, 2007.

[88] McMillan, P. J. Mass models of the Milky Way. Mon. Not. R. Astro. Soc., Vol.

414, Issue 3, pp. 2446-2457, 2011.

[89] Morrison, H. L. The local density of halo giants. Astronomical Journal, vol. 106,

no. 2, p. 578-590, 1993.

[90] Ashman, K. M.Dark matter in galaxies. Astronomical Society of the Paci�c,

Publications (ISSN 0004-6280), vol. 104, no. 682, p. 1109-1138, 1992.

[91] Rubin, V. C Constraints on the dark matter from optical rotation curves.

Dark matter in the universe; Proceedings of the IAU Symposium, Princeton, NJ,

June 24-28, 1985 (A87-30805 12-90). Dordrecht, D. Reidel Publishing Co., 1987, p.

51-62; Discussion, p. 63-65. 1985.

[92] Kaliarai, J. S. The age of the Milky Way inner halo. Nature 486, p.90-92, 2012.

82

Page 99: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[93] Snowden, S. L., Cox, D. P., McCammon, D., & Sanders, W. T. A model

for the distribution of material generating the soft X-ray background.

Astrophysical Journal, Part 1, vol. 354, p.211-219, 1990.

[94] Warwick, R. S., Barber, C. R., Hodgkin, S. T., & Pye, J. P. The EUV source

population and the local bubble. Mon. Not. R. Astro. Soc., vol.262, no. 2, p.

289-300, 1993.

[95] Lallement, R.; Welsh, B. Y.; Vergely, J. L.; Crifo, F.; Sfeir, D. 3D mapping of the

dense interstellar gas around the Local Bubble. Astronomy and Astrophysics,

v.411, p.447-464, 2003.

[96] Paresce, F On the distribution of interstellar matter around the sun.

Astronomical Journal (ISSN 0004-6256), vol. 89, p. 1022-1037, 1984.

[97] Cox, D. P. & Reynolds, R. J. The Local Interstellar Mediun. Ann. Rev. Astron.

AStrophys., v.25, p.303-344, 1987.

[98] Sfeir, D. M.; Lallement, R.; Crifo, F.; Welsh, B. Y. Mapping the contours of

the Local bubble: preliminary results. Astronomy and Astrophysics, v.346,

p.785-797, 1999.

[99] Leroy, J. L. Interstellar dust and magnetic �eld at the boundaries of the

Local Bubble. Analysis of polarimetric data in the light of HIPPARCOS

parallaxes. Astronomy and Astrophysics, v.346, p.955-960, 1999.

[100] Welsh, B. Y.; Lallement, R. Highly ionized gas in the local ISM: Some like

it hot?. Astronomy and Astrophysics, Vol. 436, Issue 2� pp.615-632, 2005.

[101] Breitschwerdt, D.; Freyberg, M. J.; Egger, R. Origin of H I clouds in the

Local Bubble I: A hydromagnetic Rayleigh-Taylor instability caused by

the interaction between the Loop I and the Local Bubble. Astronomy and

Astrophysics, v.361, p.303-320, 2000.

[102] Frisch, P. C.; York, D. G.Synthesis maps of ultraviolet observations of

neutral interstellar gas. Astrophysical Journal, Part 2, vol. 271, p. L59-L63, 1983.

[103] Lallement, R. & Bertin, P. Northern-Hemisphere observations of nearby

interstellar gas - Possible detection of the local cloud. Astronomy and

Astrophysics, vol. 266, no. 1, p. 479-485, 1992.

83

Page 100: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[104] Berkhuijsen, E. M. A Survey of the Continuum Radiation at 820 MHz

between Declinations -7◦ and +85◦: A Study of the Galactic Radiation

and the Degree of Polarization with Special Reference to the Loops and

Spurs. Astronomy and Astrophysics, Vol. 14, p. 359, 1971.

[105] Iwan, D. X-ray observations of the North Polar Spur. Astrophysical Journal,

Part 1, vol. 239, p.316-327, 1980.

[106] Egger, R. Interaction of the Local Bubble with its environment.

Lecture Notes in Physics, vol.506, The Local Bubble and Beyond. Lyman-Spitzer

Colloquium, Proceedings of the IAU Colluquium No. 166 held in Garching, Germany,

21-25 April, 1997, XXVII, 603pp. Springer-Verlag Berlin Heidelberg New York (ISBN

3-540-64306-0), edited by D. Breitschwerdt, M. J. Freyberg, and J. Truemper, pp.

287-296, 1998.

[107] Weaver, H. Large supernova remnants as common features of the disk.

The large-scale characteristics of the galaxy; Proceedings of the Symposium, College

Park, Md., June 12-17, 1978. (A80-19476 06-90) Dordrecht, D. Reidel Publishing

Co., 1979, p. 295-298; Discussion, p. 298-300.

[108] de Geus, E. J.; de Zeeuw, P. T.; Lub, J.Physical parameters of stars in the

Scorpio-Centaurus OB association. Astronomy and Astrophysics, vol. 216, no.

1-2, p. 44-61, 1989.

[109] Egger, R. J. & Aschenbach, B. Interaction of the Loop I supershell with the

Local Hot Bubble. Astronomy and Astrophysics, vol. 294, no. 2, p. L25-L28, 1995.

[110] Moritz, P.; Wennmacher, A.; Herbstmeier, U.; Mebold, U.; Egger, R.; Snowden, S.

L.X-ray shadows of the Draco nebula. A new method to determine total

hydrogen column densities. Astronomy and Astrophysics, v.336, p.682-696, 1998.

[111] Cravens, T. E.; Robertson, I. P.; Snowden, S. L. Temporal variations of

geocoronal and heliospheric X-ray emission associated with the solar wind

interaction with neutrals. ournal of Geophysical Research, Volume 106, Issue

A11, p. 24883-24892, 2001.

[112] Snowden, S. L.; Egger, R.; Finkbeiner, D. P.; Freyberg, M. J.; Plucinsky,

P. P. Progress on Establishing the Spatial Distribution of Material

Responsible for the 1 4 keV Soft X-Ray Di�use Background Local and

Halo Components. The Astrophysical Journal, Volume 493, Issue 2, pp. 715-729,

1998.

84

Page 101: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[113] Cox, D. P.; Smith, B. W. Large-Scale E�ects of Supernova Remnants on

the Galaxy: Generation and Maintenance of a Hot Network of Tunnels.

Astrophysical Journal, vol. 189, p.L105, 1974.

[114] Cox, D. P.; Anderson, P. R. Extended adiabatic blast waves and a model of

the soft X-ray background. Astrophysical Journal, Part 1, vol. 253, p. 268-289,

1982.

[115] Cox, D. P.; Snowden, S. L. Perspective on the local interstellar medium.

COSPAR and IAU, Symposium on UV Space Astronomy - Physical Processes in the

Local Interstellar Medium, 7th, Toulouse, France, June 30-July 11, 1986 Advances

in Space Research (ISSN 0273-1177), vol. 6, no. 2, 1986, p. 97-107.

[116] Cox, D. P. Modeling the Local Bubble. Lecture Notes in Physics, vol.506,

The Local Bubble and Beyond. Lyman-Spitzer Colloquium, Proceedings of the IAU

Colluquium No. 166 held in Garching, Germany, 21-25 April, 1997, XXVII, 603pp.

Springer-Verlag Berlin Heidelberg New York (ISBN 3-540-64306-0), edited by D.

Breitschwerdt, M. J. Freyberg, and J. Truemper, pp. 121-131, 1998.

[117] Smith, R. K.; Cox, D. P. Modeling the Local Bubble Using Multiple

Supernova Remnants. Lecture Notes in Physics, vol.506, The Local Bubble and

Beyond. Lyman-Spitzer Colloquium, Proceedings of the IAU Colluquium No. 166

held in Garching, Germany, 21-25 April, 1997, XXVII, 603pp. Springer-Verlag Berlin

Heidelberg New York (ISBN 3-540-64306-0), edited by D. Breitschwerdt, M. J.

Freyberg, and J. Truemper, pp. 133-136, 1998.

[118] Berghöfer, T. W.; Breitschwerdt, D. The origin of the young stellar

population in the solar neighborhood - A link to the formation of the

Local Bubble?. Astronomy and Astrophysics, v.390, p.299-306, 2002.

[119] Frisch, P. C. The nearby interstellar medium. Nature, vol. 293, Oct. 1, 1981,

p. 377-379, 1981.

[120] Frisch, P. C. The physical properties of the 'local �u�'. COSPAR, IAGA,

and SCOSTEP, Plenary Meeting, 26th, Symposium on Solar Wind Interactions,

6th, Toulouse, France, June 30-July 11, 1986 Advances in Space Research (ISSN

0273-1177), vol. 6, no. 1, 1986, p. 345-351.

[121] Frisch, P. C. Characteristics of Nearby Interstellar Matter. Space Science

Reviews, Volume 72, Issue 3-4, pp. 499-592, 1995.

85

Page 102: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[122] Bochkarev, Nikolai G. Local intersteller medium. Astrophysics and Space

Science, vol.138, no.2, p. 229-302, 1987.

[123] Bruhweiler, Fredrick C. The Morphology and Physics of the Local

Interstellar Medium. Astrophysics in the extreme ultraviolet. Proceedings of

colloquium no. 152 of the International Astronomical Union; held in Berkeley;

California; March 27-30; 1995; Dordrecht: Kluwer Academic Publ.; |c1996; edited

by Stuart Bowyer and Roger F. Malina, p.261

[124] Mebold, U.; Kerp, J.; Kalberla, P. M. W. Radio, Millimeter and Infrared

Observations of the Local Hot Bubble and Its Environment.Lecture Notes

in Physics, vol.506, The Local Bubble and Beyond. Lyman-Spitzer Colloquium,

Proceedings of the IAU Colluquium No. 166 held in Garching, Germany, 21-25

April, 1997, XXVII, 603pp. Springer-Verlag Berlin Heidelberg New York (ISBN 3-

540-64306-0), edited by D. Breitschwerdt, M. J. Freyberg, and J. Truemper, pp.

199-210, 1998.

[125] Lépine, J. R. D. & Sartori, M. J. The Oph-Sco-Lup-Cen-Cru-Mus-Cha star-

formation region. Open Issues in Local Star Formation. Proceedings of the Ouro

Preto Colloquium, Brazil, April 5-10, 2003. Edited by Jacques Lépine and Jane

Gregorio-Hetem. Astrophysics and Space Science Library, Volume 299. Kluwer

Academic Publishers, Dordrecht, 2003., p.63

[126] Spitzer, L. Jr.; Schwarzschild, M. The Possible In�uence of Interstellar

Clouds on Stellar Velocities. Astrophysical Journal, vol. 114, p.385, 1951.

[127] Tenorio-Tagle, G.; Franco, J.; Bodenheimer, P.; Rozyczka, M. Collisions of high-

velocity clouds with the Milky Way - The formation and evolution of

large-scale structures

[128] Comerón, F. & Torra, J. The oblique impact of a high velocity cloud on

the galactic disk. Astrophysical Journal v.261, 94-104, 1992.

[129] Casagrande, L.; Schönrich, R.; Asplund, M.; Cassisi, S.; Ramírez, I.; Meléndez,

J.; Bensby, T.; Feltzing, S. New constraints on the chemical evolution of

the solar neighbourhood and Galactic disc(s): Improved astrophysical

parameters for the Geneva-Copenhagen Survey. Astronomy & Astrophysics,

Volume 530, id.A138, p.1-21, 2011.

[130] Rocha-Pinto, H. J.; Maciel, W. J. The metallicity distribution of G dwarfs in

the solar neighbourhood. Mon. Not. R. Astro. Soc., Vol. Vol.279, No. 2, p.447-

458, 1996.

86

Page 103: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[131] Aumer, M.; Binney, J. J.Kinematics and history of the solar neighbourhood

revisited. Mon. Not. R. Astro. Soc., Volume 397, Issue 3, pp. 1286-1301, 2009.

[132] Binney J., Tremaine S.Galactic Dynamics. Second Edition, Princeton University

Press, Princeton, 2008.

[133] Strömgren, B. Main Sequence Stars, Problems of Internal Constitution

and Kinematics. Quarterly Journal of the Royal Astronomical Society, Vol. 4, p.8

[134] Strömgren, B. An Investigation of the Relations Between Age, Chemical

Composition and Parameters of Velocity Distribution Based on uvby?

Photometry of F Stars within 100 Parsec. The Galaxy, Vol. 207 of the series

NATO ASI Series, p.229-246, 1987.

[135] Olsen, E. H. Four-colour UVBY and H-beta photometry of A5 to G0 stars

brighter than 8.3 M. Astronomy and Astrophysics Supplement Series (ISSN 0365-

0138), vol. 54, Oct. 1983, p. 55-134, 1983.

[136] Olsen, E. H. Stromgren Four-Colour UVBY Photometry of G5-TYPE

Hd-Stars Brighter than MV=8.6. Astronomy and Astrophysics Supplement,

Vol.102, NO.1, P. 89, 1993.

[137] Olsen, E. H.A large, complete, volume-limited sample of G-type dwarfs. I.

Completion of Stroemgren UVBY photometry. Astronomy and Astrophysics

Suppl. 104, 429-472, 1994.

[138] Olsen, E. H. Stroemgren photometry of F- and G-type stars brighter

than V = 9.6. I. UVBY photometry; Astronomy and Astrophysics Suppl. 106,

257-266, 1994.

[139] ESA The HIPPARCOS and TYCHO catalogues. Astrometric and

photometric star catalogues derived from the ESA HIPPARCOS Space

Astrometry Mission. The Hipparcos and Tycho catalogues. Astrometric and

photometric star catalogues derived from the ESA Hipparcos Space Astrometry

Mission, Publisher: Noordwijk, Netherlands: ESA Publications Division, 1997,

Series: ESA SP Series vol no: 1200

[140] Høg, E.; Fabricius, C.; Makarov, V. V.; Urban, S.; Corbin, T.; Wyco�, G.; Bastian,

U.; Schwekendiek, P.; Wicenec, A. The Tycho-2 catalogue of the 2.5 million

brightest stars. Astronomy and Astrophysics, v.355, p.L27-L30, 2000.

87

Page 104: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[141] Ho�eit, D., & Jaschek, C. The Bright Star Catalogue. Yale University Obs.,

1982.

[142] Andersen, J.; Nordstrom, B.; Ardeberg, A.; Benz, W.; Mayor, M.; Imbert, M.;

Martin, N.; Prevot, L.; Lindgren, H.; Maurice, E. Radial velocities of southern

stars obtained with the photoelectric scanner CORAVEL. III - 790 late-

type bright stars. Astronomy and Astrophysics Supplement Series (ISSN 0365-

0138), vol. 59, Jan. 1985, p. 15-36. Research supported by the Swiss National Science

Foundation and Observatoire de Marseille, 1985.

[143] Lacey, C. G. The in�uence of massive gas clouds on stellar velocity

dispersions in galactic discs. Mon. Not. R. Astron. Soc., vol. 208, p. 687-707,

1984.

[144] Wielen, R. The di�usion of stellar orbits derived from the observed age-

dependence of the velocity dispersion. Astronomy and Astrophysics, vol. 60,

no. 2, p. 263-275, 1977.

[145] Lacey, C. G.; Ostriker, J. P. Massive black holes in galactic halos?.

Astrophysical Journal, Part 1, vol. 299, p. 633-652, 1985.

[146] Velazquez, H. & White, Simon D. M. Sinking satellites and the heating of

galaxy discs. Mon. Not. R. Astro. Soc., Vol. 304, Issue 2, p.254-270, 1999.

[147] De Simone, R.; Wu, X.; Tremaine, S. The stellar velocity distribution in the

solar neighbourhood. Mon. Not. R. Astro. Soc., Vol.350, Issue 2, pp. 627-643,

2004.

[148] Minchev, I. & Quillen, A. C. Radial heating of a galactic disc by multiple

spiral density waves. Mon. Not. R. Astro. Soc., Vol.368, Issue 2, pp. 623-636,

2006.

[149] Chakrabarty, D. Phase space structure in the solar neighbourhood.

Astronomy and Astrophysics, Volume 467, Issue 1, pp.145-162, 2007.

[150] Huang, K. Statistical Mechanics. 2a Edição, Wiley, 1987.

[151] SALINAS, S. R. A. Introdução à Física Estatística. 2ed. São Paulo: Edusp,

2008.

[152] Brillouin, L. Science and Information Theory. 2 nd Ed. Academic Press, New

York, 1962.

88

Page 105: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[153] Callen, H.B. Thermodynamics and an Introduction to Thermostatistics. 2

nd Ed. John Wiley & Sons, New York, 1985.

[154] Tizza, L. Generalized Thermodynamics. The MIT Press, Cambridge, MA,

1966.

[155] Reichl, L. E.A Modern Course in Statistical Physics. Published by University

of Texas Press, 1980.

[156] Pedron, I. T. Integrais, Equações Diferenciais e Entropia de Tsallis.

Dissertação de Mestrado, Departamento de Física da Universidade Estadual de

Maringá, 1999)

[157] Campa, A., Dauxois, T. & Ru�o, S. Statistical mechanics and dynamics of

solvable models with long-range interactions.Physics Reports, Volume 480,

Issues 3?6, Pages 57?159, 2009.

[158] Mukamel D, R. S. & Schreiber N. Breaking of ergodicity and long relaxation

times in systems with long-range interactions. Phys Rev Lett. Epub, 2005.

[159] Benetti, F. P. da C., Teles, T. N., Pakter, R. & Levin, Y. Ergodicity Breaking

and Parametric Resonances in Systems with Long-Range Interactions.

Rev. Lett. 108, 2012.

[160] Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. Journal of

Statistical Physics, Volume 52, Issue 1-2, pp. 479-487, 1988.

[161] TSALLIS, C. & BUKMAN, D. J. Anomalous di�usion in the presence

of external forces: exact time-dependent solutions and their

thermostatistical basis. Phys. Rev. E, 54:R2197, 1996.

[162] Tsallis, C. Some comments on Boltzmann-Gibbs

statistical mechanics.Chaos, Solitons & Fractals, Volume 6, Complex Systems

in Computational Physics, Pages 539?559, 1995.

[163] Tsallis, C.What are the Numbers that Experiments Provide?. Quim. Nova,

17(6), 468-471, 1994.

[164] Lyra, M. L., Tsallis, C. Nonextensivity and multifractality in low-

dimensional dissipative systems. Physical Review Letters 80, 53-56, 1998.

[165] Borges, E. P. Manifestações dinâmicas e termodinâmicas de sitemas não-

extensivos. Tese de Doutorado, CBPF, 2004.

89

Page 106: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[166] Borges, E. P. A possible deformed algebra and calculus inspired in

nonextensive thermostatistics. Physica A, Volume 340, Issues 1?3, Pages 95?101,

2004.

[167] Jaynes, E. T. Information Theory and Statistical Mechanics. Phys. Rev. 106,

620, 1957a

[168] Jaynes, E. T. Information Theory and Statistical Mechanics. II. Phys. Rev.

108, 171, 1957b

[169] Fang, S. C., Rajasekera,J. R., Tsao, H. S. J. Entropy Optimization and

Mathematical Programming. Book, International Series in Operations Research

& Management Science, Volume 8, 1997.

[170] Kaplan, W. Advanced Calculus. Addison-Wesley, 1957 printing, c1952. (1952)

[171] Kapur J. N. & Kesavan H. K. Entropy optimization principles with

applications. Academic Press, INC., 1992.

[172] Papoulis, A. The Fourier Integral and Its Applications. McGraw-Hill Book

Copany, INC/New York, San Francisco, London and Toronto, 1962.

[173] Nascimento, C. N. Análise multifractal e seções de Lévy de �utuações

heterocedásticas. Tese de Doutorado, Instituto de Física da Universidade Federal

de Alagoas, 2008.

[174] Menezes Filho Não-extensividade termodinâmica, invariância discreta de

escala-plasticidade: estudo de um modelo geodinâmico auto-organizado

criticamente. Tese de Doutorado, PUC-RIO, Rio de Janeiro, 2003.

[175] SILVA, R. Teoria Cinética Não-Extensiva: Efeitos Físicos em Gases e

Plasmas. Tese de Doutorado, DFTE, UFRN, Natal, 2000.

[176] PLASTINO, A. R. & PLASTINO Stellar polytropes and Tsallis?s

entropy.Phys. Lett. A, 174:384, 1993.

[177] SILVA, R. & ALCANIZ, J. S. Non-extensive statistics and the stellar

polytrope index. Physica A, 341:208?214, 2004.

[178] CARVALHO, J. C.; SILVA, R.; NASCIMENTO, J. D. & MEDEIROS, J. R. Power

law statistics an stellar rotationnal velocities in the Pleiades. EPL Journ.,

84:59001, 2008.

90

Page 107: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[179] LIMA, J. A. S. & SOUZA, R. E. Power law stellar distribtions. Physica A,

350:303?314, 2005.

[180] HASEGAWA, A.; KUMIONI, A. M. & DUONG-VAN, M. Plasma Dis-tribution

Function in a Superthermal Radiation Field. Phys. Lett., 54:2608?10, 1985.

[181] WILK, G. & WLODARCZYK, Z. Plasma Distribution Function in a

Superthermal Radiation Field. Phys. Rev. D, 50:2318?20, 1994.

[182] ZANETE, D. & ALEMANY, P. Thermodinamics anomalous di�usion. Phys.

Rev. Lett., 75:366, 1995.

[183] VILAR, C. S.; FRANÇA, G.S.; SILVA, R. & ALCANIZ, J. S. Nonextensivity in

Geological Faults?. Physica A, 377:285?290, 2007.

[184] ALMEIDA, L. M. S.

Efeitos não-gaussianos em Astrofísica e Cosmologia.(Tese de Doutorado).

UFRN, Natal, 2007.

[185] De Freitas, D.B. & De Medeiros, J. R.A non-extensive approach to the stellar

rotational evolution?I. F-and G-type stars. Mon. Not. R. Astro. Soc., vol.433,

p.1789-1795, 2013.

[186] Famaey, B.; Jorissen, A.; Luri, X.; Mayor, M.; Udry, S.; Dejonghe, H.; Turon, C.

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2

data. Revisiting the concept of superclusters. Astronomy and Astrophysics,

v.430, p.165-186, 2005

[187] Fux, R. Order and chaos in the local disc stellar kinematics induced by

the Galactic bar. Astronomy and Astrophysics, v.373, p.511-535, 2001.

[188] Seabroke, G. M.; Gilmore, G. Revisiting the relations: Galactic thin disc

age-velocity dispersion relation. Mon. Not. R. Astro. Soc., vol. 380, Issue 4, pp.

1348-1368, 2007.

[189] Nordström, B. Signatures of heating processes in the Galactic thin disk.

The Ages of Stars, Proceedings of the International Astronomical Union, IAU

Symposium, Volume 258, p. 31-38, 2009.

[190] Jørgensen, B. R.; Lindegren, L.Determination of stellar ages from isochrones:

Bayesian estimation versus isochrone �tting. Astronomy and Astrophysics,

Volume 436, Issue 1, pp.127-143, 2005.

91

Page 108: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[191] De Freitas, D.B. & De Medeiros, J. R. Nonextensivity in the solar

neighborhood. Europhysics Letters, Volume 97, Number 1, 2012.

[192] Nascimento, A. P. Estimação tipo Kernel para distribuições simétricas

usando técnica de Monte Carlo. UFPB, CCeT, TCC, 2014.

[193] Burlaga, L. F., and A. F.-Viñas Multiscale structure of the magnetic �eld

and speed at 1 AU during the declining phase of solar cycle 23 described

by a generalized Tsallis probability distribution function. J. Geophys. Res.,

109, A12107, 2004.

[194] Burlaga, L. F., and A. F.-Viñas Multi-scale probability distributions of

solar wind speed �uctuations at 1 AU described by a generalized Tsallis

distribution. Geophys. Res. Lett., 31, L16807, 2004.

[195] Saleur H., Sammis C.G., Sornette DDiscrete scale invariance, complex fractal

dimensions, and log-periodic �uctuations in seismicity. ournal of Geophysical

Research: Solid Earth, Volume 101, Issue B8, pp. 17,661-17,677, 1996.

[196] Huang, Y., Saleur, H., Sammis, C., Sornette, D. Precursors, aftershocks,

criticality and self-organized criticality. Europhys. Lett, 41 (1), pp. 43-48, 1998.

[197] Krawiecki, A.; Kacperski, K.; Matyja?kiewicz, S.; Ho?yst, J. A. Log-periodic

oscillations and noise-free stochastic multiresonance due to self-similarity

of fractals. Chaos, Solitons & Fractals, vol. 18, issue 1, pp. 89-96, 2003.

[198] Bernasconi, J.; Schneider, W. R. Di�usion in random one-dimensional

systems. Journal of Statistical Physics, Volume 30, Issue 2, pp.355-362. 1983.

[199] Stau�er, D.; Sornette, D. Log-periodic oscillations for biased di�usion on

random lattice. Physica A: Statistical Mechanics and its Applications, Volume

252, Issue 3, p. 271-277, 1998.

[200] Stau�er, D. New simulations on old biased di�usion. Physica A: Statistical

Mechanics and its Applications, Volume 266, Issue 1, p. 35-41, 1999.

[201] Kutnjak-Urbanc, B.; Zapperi, S.; Milo?evi?, Sava; S., H. E. Sandpile model on

the Sierpinski gasket fractal. Physical Review E (Statistical Physics, Plasmas,

Fluids, and Related Interdisciplinary Topics), Volume 54, Issue 1, July 1996, pp.272-

277, 1996.

92

Page 109: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

[202] Andrade, R. F. S. Detailed characterization of log-periodic oscillations

for an aperiodic Ising model. Physical Review E (Statistical Physics, Plasmas,

Fluids, and Related Interdisciplinary Topics), Volume 61, Issue 6, pp.7196-7199,

2000.

[203] Bab, M. A.; Fabricius, G.; Albano, E. V. Critical behavior of an Ising system

on the Sierpinski carpet: A short-time dynamics study. Physical Review E,

vol. 71, Issue 3, 2005.

[204] Vallejos, R. O.; Mendes, R. S.; da Silva, L. R.; Tsallis, C. Connection between

energy spectrum, self-similarity, and speci�c heat log-periodicity. Physical

Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary

Topics), Volume 58, Issue 2, pp.1346-1351, 1998.

[205] Tsallis, C.; da Silva, L. R.; Mendes, R. S.; Vallejos, R. O.; Mariz, A. M. Speci�c

heat anomalies associated with Cantor-set energy spectra. Physical Review

E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics),

Volume 56, Issue 5, pp.R4922-R4925, 1997.

[206] Sornette, D.; Johansen, A.; Arneodo, A.; Muzy, J. F.; Saleur, H. Complex Fractal

Dimensions Describe the Hierarchical Structure of Di�usion-Limited-

Aggregate Clusters. Physical Review Letters, Volume 76, Issue 2, pp.251-25, 1996.

[207] Huang, Y.; Ouillon, G.; Saleur, H.; Sornette, D. Spontaneous generation of

discrete scale invariance in growth models. Physical Review E (Statistical

Physics, Plasmas, Fluids, and Related Interdisciplinary Topics), Volume 55, Issue 6,

pp.6433-6447, 1997.

[208] Vandewalle, N.; Boveroux, Ph.; Minguet, A.; Ausloos, M. The crash of October

1987 seen as a phase transition: amplitude and universality. Physica A:

Statistical Mechanics and its Applications, Volume 255, Issue 1, p. 201-210, 1998.

[209] Vandewalle, N.; Ausloos, M.; Boveroux, P.; Minguet, A.How the �nancial crash

of October 1997 could have been predicted. The European Physical Journal

B, Volume 4, Issue 2, pp. 139-141, 1998.

[210] Wosnitza, J. H.; Leker, J. Can log-periodic power law structures arise from

random �uctuations?. Physica A: Statistical Mechanics and its Applications,

Volume 401, p. 228-250, 2014.

[211] de Moura, F. A. B. F.; Tirnakli, U.; Lyra, M. L. Convergence to the critical

attractor of dissipative maps: Log-periodic oscillations, fractality, and

93

Page 110: Processos não-randômicos associados ao aquecimento do ... · se os sopros dos adeuses eternos não suavizassem omc o tempo, e a marac da traidora mulher não se apagasse omc as

nonextensivity. Physical Review E (Statistical Physics, Plasmas, Fluids, and

Related Interdisciplinary Topics), Volume 62, Issue 5, pp.6361-6365, 2000.

[212] Wilk, G.; W?odarczyk, Z.Tsallis Distribution Decorated with Log-Periodic

Oscillation. Entropy, vol. 17, issue 1, pp. 384-400, 2015.

[213] Efron B., Tibshirani R.J., An Introduction to the Bootstrap.Chapman and

Hall/CRC; Softcover reprint of the original 1st ed. 1993.

94