padrÕes espaÇo-temporais de comunidades de plantas …§ões-teses/tese… · certificado de...

158
UNIVERSIDADE FEDERAL DE MATO GROSSO FACULDADE DE AGRONOMIA E MEDICINA VETERINÁRIA Programa de Pós-Graduação em Agricultura Tropical PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL MATO-GROSSENSE: GEOESTATÍSTICA E MODELAGEM BASEADA EM PROCESSOS DE EFEITOS AMBIENTAIS E INTERAÇÃO ESPACIAL JULIA ARIEIRA CUIABÁ MATO GROSSO – BRASIL 2010

Upload: others

Post on 21-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

UNIVERSIDADE FEDERAL DE MATO GROSSO

FACULDADE DE AGRONOMIA E MEDICINA VETERINÁRIA Programa de Pós-Graduação em Agricultura Tropical

PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL MATO-GROSSENSE:

GEOESTATÍSTICA E MODELAGEM BASEADA EM PROCESSOS DE EFEITOS AMBIENTAIS E INTERAÇÃO

ESPACIAL

JULIA ARIEIRA

CUIABÁ MATO GROSSO – BRASIL

2010

Page 2: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

2

2

UNIVERSIDADE FEDERAL DE MATO GROSSO

FACULDADE DE AGRONOMIA E MEDICINA VETERINÁRIA Programa de Pós-Graduação em Agricultura Tropical

PADRÕES ESPACO-TEMPORAIS DE COMUNIDADES DE

PLANTAS NO PANTANAL MATOGROSSENSE:

GEOESTATÍSTICA E MODELAGEM BASEADA EM

PROCESSOS DE EFEITOS AMBIENTAIS E INTERAÇÃO

ESPACIAL

JULIA ARIEIRA

Bióloga

Orientador: Prof. Dr. EDUARDO GUIMARÃES COUTO

Tese apresentada à Universidade Federal de Mato Grosso, como parte das

exigências do Programa de Pós- Graduação em Agricultura Tropical, para obtenção

do título de Doutor em Agricultura Tropical

CUIABÁ MATO GROSSO – BRASIL

2010

Page 3: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

3

3

FICHA CATALOGRÁFICA A698p Arieira, Julia Padrões espaço-temporais de comunidades de plantas no

Pantanal mato-grossense: geoestatística e modelagem baseada em processos de efeitos ambientais e interação espacial / Julia Arieira. – 2010.

15 f. : il. ; color. ; 30 cm. Orientador: Prof. Dr. Eduardo Guimarães Couto.

Co-orientadora: Profª. Drª. Cátia Nunes da Cunha. Co-orientador: Prof. Dr. Derek Karssenberg. Tese (doutorado) – Universidade Federal de Mato Grosso, Faculdade de Agronomia e Medicina Veterinária, Pós-gradua-ção em Agricultura Tropical, 2009. Bibliografia: f. 137-157 Prof. Dr. Derek Karssenberg. 1. Ecologia da paisagem – Pantanal mato-grossense. 2. Plantas – Pantanal – Geoestatística. 3. Vegetação – Pantanal – Padrões espaço-temporais. 4. Flora – Botânica. 5. Plantas – Pantanal mato-grossense. I. Título.

CDU – 504.54(817.2:252.6) Ficha elaborada por: Rosângela Aparecida Vicente Söhn – CRB-1/931

Page 4: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

4

4

UNIVERSIDADE FEDERAL DE MATO GROSSO

FACULDADE DE AGRONOMIA E MEDICINA VETERINÁRIA PROGRAMA DE PÓS-GRADUAÇÃO EM AGRICULTURA TROPICAL

CERTIFICADO DE APROVAÇÃO

Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL MATOGROSSENSE: GEOESTATÍSTICA E MODELAGEM BASEADA EM PROCESSOS DE EFEITOS AMBIENTAIS E INTERAÇÃO ESPACIAL

Autora: JULIA ARIEIRA Orientador: Dr. EDUARDO GUIMARÃES COUTO

Avaliada em 26 de fevereiro de 2010.

Comissão Examinadora:

Profª. Cátia Nunes da Cunha. Prof. Derek Karssenberg (Co-Orientadora) (Co-Orientador)

Prof. Wolfgang J. Junk Prof. Peter Zeilhofer

Prof. Eduardo Guimarães Couto (Orientador)

Page 5: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

5

5

DEDICATÓRIA

Às Arieira, Zilah e Eliane,

formadoras da minha educação, por seu estímulo constante ao meu crescimento.

Ao Eduardo Barcellos,

meu companheiro de vida e fiel admirador, por seu amor e incentivos.

Page 6: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

6

6

AGRADECIMENTOS

Um trabalho de doutorado não se constrói em solidão;

ele resulta da colaboração, direta ou indireta, de muitas pessoas e instituições.

Por isso agradeço:

aos meus orientadores, Eduardo, Cátia e Derek,

pelo carinho e atenção e pelas boas discussões científicas que me proporcionaram;

ao programa de pós-graduação em Agricultura Tropical

da Universidade Federal de Mato Grosso pela oportunidade;

aos pesquisadores da Universidade de Utrecht,

Steven de Jong, Elisabeth Addink e Jon Skøien,

pela enorme colaboração ao desenvolvimento desta tese;

aos integrantes da banca examinadora

pelos comentários construtivos sobre os resultados deste trabalho;

aos técnicos, Hélio, Zezinho, Libério, Joaquim, Rodrigo, Antônio e Nequinho,

e aos alunos da UFMT, Orleans, Joseane, Abílio, Eduardo, dentre outros,

pela ajuda, em tempos felizes e árduos, no trabalho de campo;

às organizações de fomento científico, CAPES e CNPq,

que tornaram possível o desenvolvimento desta tese,

acreditando e incentivando a formação de qualidade de alunos brasileiros;

e ao SESC Pantanal, por autorizar e apoiar o trabalho dentro de seus domínios.

Page 7: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

7

7

LISTA DE FIGURAS

1.1 Área de estudo. (A) localização do sitio de estudo na Reserva Particular do

Patrimônio Natural (RPPN) SESC Pantanal, Pantanal Matogrossense,

Mato Grosso; Brasil; (B) imagem multiespectral IKONOS-2 de 4-m de

resolução, cor verdadeira, do sitio estudado adquirida em Outubro de

2003; (C) dados da flutuação media anual do nível de água do rio Cuiabá

registrados em régua fluviométrica localizada à margem do rio, e

precipitação média próximo à Cuiabá entre 1963-2000, Pantanal. Dados

de precipitação do INMET, dado do nível do rio do

DNAEE.....................................................................................................23

2.1 Study site. (A) Natural Reserve SESC Pantanal located at the Pantanal

Matogrossense, Mato Grosso; Brazil; (B) Mean annual water depth

fluctuation of the River Cuiabá (1963-2000) and mean precipitation near

Cuiabá, northern Pantanal. Rainfall data from INMET (National Institute of

Meteorology of Brazil), river level data from DNAEE (National Department

of Waters and Electric Energy of Brazil); (C) Four meter resolution

multispectral IKONOS-2 image, of the study site acquired in October 2003,

true color. White circles are the sampling locations; (D) 90-m Resolution

SRTM (NASA Shuttle Radar Topographic Mission,

http://ww2.jpl.nasa.gov/srtm/) Digital Elevation Model of the study

area.…………………………………………………………..…………….…40

2.2 Flow diagram describing the procedural steps in the analysis of the data.

…………………………………………………………………………………..42

Page 8: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

8

8

2.3 Sampling scheme modified from the RAPELD method (see Magnusson et

al., 2005). (A) 23 trails are regularly spaced over the site; (B) Each trail is

placed at the same elevation level and divided in five sampling trails each

of 50 meter length. (C) Sampling along the trail. Herbaceous species: point

samples at regular interval along the trail centre line. Shrubs, large-sized

trees and medium-sized trees: exhaustive sampling in the indicated zone.

The tree size category is based on diameter of the trunk at breast height

(DBH)………………….…………………………………………………………46

2.4 Factor analysis biplots of the axes 1 to 4 on vegetation variables obtained

from 115 sampling locations. Seven clusters (symbols) represent the

vegetation communities found in the studied floodplain. Factor 1 describes

the gradient of tree biomass found in the study site; Factor 2 of herb cover

and richness; Factor 3 of tree dominant species; and Factor 4 of shrub

biomass.………………………………………………………………………..51

2.5 Maps of the kriged estimates of factor scores and the semi-variograms of

the residuals of the regression between factor axes and remotely sensed

and ancillary data; Fitted variogram models: Mat: Matheron family, Exp:

Exponential. Values between brackets are nugget effect, structured

variance and variogram range, respectively. (A) Factor 1; (B) Factor 2; (C)

Factor 3; (D) Factor 4.…………………………………….………………….60

2.6 Maps of the standard deviation of the predicted error resulting from

universal kriging; (A) Factor 1; (B) Factor 2; (C) Factor 3; (D) Factor

4………………………………………………………………………..….. …..62

Page 9: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

9

9

2.7 (A) Predicted distribution of the plant communities identified at the study

site. (B) Results of leave-one-sample out cross-validation. Percentage of

predicted classes at sampling locations. Each bar shows the results for

sampling locations with a certain observed class (indicated by the colors at

the bottom of the C panel). (C) Idem, leave-five-out cross-validation. N =

115.………………………………………………….…………………………64

2.8 Results of Monte Carlo simulation, using 1000 random simulations. (A) The

colors on the map indicate the vegetation class with the highest probability

of occurrence at a cell. A color gradient is used to show the value of this

highest probability; (B) Maps of two single random realizations, color scale

is identical to Figure 8…………………..……………………………………68

2.9 (A) Map with average number of days flooded per year at the study site,

calculated over the period 1969-2007; (B) Relationship between flood

duration (days yr-1) and elevation of the soil surface (meter a.s.l) observed

at the 23 study trails; (C) water level fluctuation in the River Cuiabá

between 1969 and 2007. Vertical dotted lines indicate the occurrence of

drier and wetter years.…….....………………………………………………71

2.10 Fraction of occupied sites by the seven identified communities along the

flood duration gradient. Flooding gradient is divided in five flood classes

representing number of flooded months……………………………………72

3.1 Study site. (A) Natural Reserve SESC Pantanal located at the Pantanal

Matogrossense, Mato Grosso; Brazil; (B) Mean annual water depth

fluctuation of the River Cuiabá (1963-2000) and mean precipitation near

Cuiabá, northern Pantanal. Rainfall data from INMET (National Institute of

Page 10: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

10

10

Meteorology of Brazil), river level data from DNAEE (National Department

of Waters and Electric Energy of Brazil); (C) Four meter resolution

multispectral IKONOS-2 image, of the study site acquired in October 2003,

true color. White circles are the sampling locations; (D) 90-m Resolution

SRTM (NASA Shuttle Radar Topographic Mission,

http://ww2.jpl.nasa.gov/srtm/) Digital Elevation Model of the study

area.………………………………….………………………………………….83

3.2. (A) Predicted distribution of the plant communities and (B) spatial pattern of

flood duration on the study floodplain, identified at the study by Arieira et

al. (in preparation)……………………………………………………………89

3.3 Conceptual model of vegetation dynamics on Aquatic-Terrestrial

Transitional Zones in the Pantanal Mato-grossense. Successional changes

(solid arrows) occur from an initial herb dominated stage toward tree

dominated stages. Disturbance, such as fire and exceptional flood events

may set back succession to previous stages (arrows in dotted lines).

Transition probabilities among vegetation states ( ( )jip lk ,→ ) and waiting

times before transitions ( kw , in years) vary according with the vegetation

position on wetter (right side values) or drier parts (left side values) of the

flood duration gradient. The strength of the neighboring effect on transition

probabilities is determined by a neighborhood effect parameter term ( m =

18)………………………………………………………………………………93

3.4. (A) Spatial pattern of community distribution identified by Arieira et al. (in

preparation) and (B) resulted from our model. Uncertainty in vegetation

Page 11: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

11

11

classification of the map in A is shown in (C), as two maps resulted from

Monte Carlo simulation (see Arieira et al. in preparation)………………..103

3.5. Model calibration. Comparison between original (bar) and modeled (line)

fraction of occupied area (log scale) by each vegetation states at different

classes of flood duration (monthly intervals)……………………………….104

3.6. Comparison of spatial patterns between the original and modeled

distribution of community states. A) total occupied area; B)mean patch

size……………………………………………………………………………105

3.7. Spatio-temporal model behaviour. Frequency of transitions among

vegetation states, each year, over 5000 years (dots) and frequency

distribution of ‘number of neighbors’ of 500 grid cells (bars), in four classes

of flood duration. Flood duration classes were derived from the map in

Figure 3.2B: class 1: 0 to 2 months; class 2: greater than 2 to 4 months;

class 3: greater than 4 to 6 months; class4: greater than 6 months. Mean

frequency of changes among vegetation states is highest at intermediary

flood sites……………………………………………………………………108

3.8. Scenarios illustrating spatial patterns of flood duration on the study site

found in a historical dry year (A; 1971) and in a historical wet year (B;

2006). (C) Water level fluctuation in the River Cuiabá between 1969 and

2007 is provided by Brazilian National Water Agency (ANA;

(http://hidroweb.ana.gov.br).................................................................110

3.9. Vegetation response to shifts in the hydrologic regime (namely, duration of

inundation) in the Pantanal; base realizations. A) spatially homogeneous

Page 12: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

12

12

dry scenario (DZ), B) spatially homogeneous wet scenario (WZ).

Hydrological changes begin after 500 yr timesteps…………………….113

3.10. Vegetation response to shifts in the hydrologic regime (namely, duration of

inundation) in the Pantanal; base realizations: A) historical dry scenario

(DY; 1971); (B) historical wet scenario (WY; 2006); base realizations:

Hydrological changes are simulated after 500 yr timesteps……………115

Page 13: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

13

13

LISTA DE TABELAS

2.1 Summary statistics for the factor analysis. Numbers in bold highlight the

highest correlation with the factor axis…………….………………………..48

2.2 Structural and floristic characteristics of plant communities, given as mean

and standard deviation.………………………….…………………………...54

2.3 Pearson’s correlation coefficients between factor axes and image variables:

four spectral bands, Normalized Difference Vegetation Index (NDVI),

Principal Component transformation to the IKONOS-2 image (PC), and

canopy topography derived from DEM-SRTM (DEM). * P ≤

0.05…………………………………………………………………….………..57

2.4 Multiple linear regression models relating factor axes scores (F1-4) to

imagery derived variables: four spectral bands (blue, green, red and infra-

red), Normalized Difference Vegetation Index (NDVI), Principal

Component transformation to the IKONOS-2 image (PC), and canopy

topography derived from DEM-SRTM (DEM). R2 is the coefficient of

determination showing the strength of these

relationships.……………..……………………………………………………..58

3.1 Historical life traits of dominant species of the seven successional states

found at the experimental area…………………………………………..….. 95

Page 14: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

14

14

SUMÁRIO

1. INTRODUÇÃO GERAL...............................................................................16

1.1. Contexto, definição do problema e objetivos...................................16

1.2. Área de estudo.................................................................................21

1.3. Resumo da tese...............................................................................25

1.4. Thesis summary…………………………………………………………29

2. INTEGRATING FIELD SAMPLING, SPATIAL STATISTICS AND REMOTE SENSING TO MAP FLOODPLAIN VEGETATION IN THE PANTANAL, BRAZIL……………………………………………………………………………33

2.1. Introduction………………………………………………………………35

2.2. Study area…………………………………………………………….....38

2.3. Outline of the approach……………………………………………..….41

2.4. Field data…………………………………………………………..…….43

2.5. Identifying plant communities…………………………………….……47

2.6. Mapping plant communities……………………………………….…...52

2.7. Flood duration-vegetation relationship…………………………….….69

2.8. Discussion……………….……………………………………………....72

2.9. Acknowledgements……………………………………………………..76

3. MODELLING WETLAND VEGETATION DYNAMICS BASED ON SPATIO-TEMPORAL INTERACTION AND FLOODING TOLERANCE OF PLANT COMMUNITIES IN THE PANTANAL MATOGROSSENSE (BRAZIL)…………………………………………………………………….……77

3.1. Introduction……………………………………………………….……..79

3.2. Study area………………………………………………………………83

Page 15: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

15

15

3.3. Spatio-temporal Markov chains……………………………………..86

3.4. Model calibration……………………………………………………...101

3.5. Model spatiotemporal behaviour……………………………………106

3.6. Scenarios……………………………………………………………...109

3.7. Discussion ……………………………………………......................116

3.8. Acknowledgements…………………………………………………...120

4. SÍNTESE ………………………………………………………………….......121 4.1. Definição do problema……………………………………….....……121

4.2. Integração de amostragem de campo, sensoriamento remoto e

estatística espacial para predizer distribuição de comunidades de plantas

no Pantanal..........................................................................................123

4.3. Modelando dinâmica de vegetação de área úmida baseada em

interação espaço-temporal e tolerância à inundação ..........................130

4.4. Considerações finais – impactos da pesquisa em futuros estudos e na

conservação dos recursos naturais do Pantanal.................................135

5. LITERATURA CITADA............................................................................137

Curriculum Vitae.........................................................................................158

Page 16: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

16

16

CAPÍTULO 1

INTRODUÇÃO GERAL

1.1. Contexto, definição do problema e objetivos Áreas úmidas estão entre as paisagens mais ameaçadas por mudanças

climáticas ou quaisquer mudanças ambientais que alterem o regime hidrológico

do sistema (Keogh et al. 1999, Junk 2002). Consideradas habitats

transacionais entre sistemas aquáticos e terrestres, áreas úmidas englobam

diferentes tipos de habitats como brejos, mangues, florestas ripárias e planícies

de inundação (Mitsch e Gosselink 2000). Diversidade de habitats é um fator

chave da dinâmica destas áreas (Junk et al 2006a), determinando o grau de

conectividade entre organismos e o recurso disponível (Ward e Tockner 2001).

Comunidades de plantas, por sua vez, ditam fortemente esta diversidade,

indicando a existência de certas condições ambientais e interações biológicas

(Tilman 1988). Diferentes tipos de comunidades de planta formam paisagens

sob forma de mosaico, cujas estrutura e composição podem variar

amplamente, no espaço e no tempo (Forman e Godron 1986). Em função da

natureza dinâmica de paisagens, identificar e quantificar padrões espaciais,

assim como ligá-los a processos ecológicos, é uma tarefa imprescindível às

funções de monitoramento, planejamento e conservação ambiental (Metzger

2004). Isto se aplica, principalmente, a áreas úmidas situadas nos trópicos,

onde critérios de classificação e monitoramento são ainda deficientes (Junk e

Piedade 2004).

A relação entre padrões espaciais e processos ecológicos é tema central

em estudos de ecologia de paisagem (Turner 1989). O estabelecimento das

Page 17: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

17

17

relações entre a distribuição de espécies, ou grupo de espécies, com

determinada característica espacial, como tamanho e a forma de habitat, torna

factível a criação de modelos preditivos sobre mudanças da paisagem (Metzger

2004). No entanto, a criação de tais modelos é ainda um tema desafiador, já

que complexos e variados padrões podem emergir de interações entre

espécies, e entre estas e seu ambiente multidimensional (Austin e Smith 1989).

Qual o nível de detalhe e quais as informações necessárias para definir

padrões espaciais de uma paisagem? E como estes padrões são influenciados

pelas características físicas e biológicas do ecossistema? As respostas para

estas indagações dependem de estudos, em um nível de detalhe, que

contemplem tanto a heterogeneidade da paisagem, como a homogeneidade

das manchas que a formam. Neste contexto, a escala espacial relacionada ao

detalhe e à amplitude do fenômeno estudado deve estar claramente definida,

na medida em que exerce influência sobre os padrões observados (Leps 1990,

Turner et al. 2001).

Entender os mecanismos ecológicos que determinam padrões de

vegetação tem sido importante objetivo em ecologia, por décadas (e.g.,

Whittaker 1967, Tilman 1988, Connell e Slatyer 1977, Grime1994, Svenning et

al 2004, Gardner e Engelhardt 2008).

Características abióticas da paisagem podem levar espécies de plantas

a se estabelecerem ou evitarem certos habitats, criando paisagens compostas

por certos tipos de comunidades de plantas. Em áreas úmidas, diferenças

locais em nível d’água e duração da inundação costumam determinar quais

espécies germinarão e se desenvolverão num habitat (van der Valk 1981),

Page 18: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

18

18

gerando variações espaciais em composição e estrutura de comunidades

vegetais (Casey e Ewel 2006). Embora a inundação seja considerada um dos

principais fatores seletivos ao estabelecimento e desenvolvimento de espécies

de plantas, em áreas úmidas (van der Valk 1981, Parolin et al. 2002, Junk et al.

2006a), muitos outros fatores ambientais devem servir como filtro seletivo.

Atributos do solo (e.g. textura, conteúdo de matéria orgânica), por exemplo, são

capazes de determinar a distribuição espacial de comunidade de plantas

(Burke 2003), apesar de muitos destes atributos serem colineares às variantes

da inundação (Mitsch e Gosselink 2000).

Por outro lado, padrões de distribuição da vegetação podem resultar de

efeitos espaciais relacionados a processos biológicos (Tilman 1994, Tilman e

Kareiva 1997). Interações entre plantas, associadas às diferenças em suas

estratégias de vida, i.e., arbustos, árvores, ervas, são capazes de gerar

heterogeneidade espacial (Greig-Smith 1979). Dependência espacial em

mecanismos de dispersão costuma criar padrão de distribuição agrupado

(Tilman 1994), resultando em diminuição de competição interespecífica e

promovendo coexistência e persistência em longo prazo (Gardner e Engelhardt

2008).

Em paisagens onde características abióticas e interações espaciais em

processos biológicos atuam, conjuntamente, gradientes um tanto complexos

são gerados. Tentativas de entender o papel destas diferentes forças sobre o

padrão de distribuição da vegetação e entender como estas conduzem

comunidades de plantas a diferentes estados e transições são questões

Page 19: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

19

19

relevantes para o entendimento da dinâmica da vegetação (Gardner e

Engelhardt 2008).

O presente trabalho foi desenvolvido em uma das maiores áreas úmidas

de planície de inundação do mundo - o Pantanal Mato-grossense (Brasil). Com

cerca de 150.000 km2, o Pantanal está localizada na região central da América

do Sul, estando sua maior área em território Brasileiro, estendendo-se ainda

pelo Paraguai e pela Bolívia. Sujeito a anuais alagamentos de planícies laterais

aos rios que cruzam seu território, o Pantanal apresenta grande diversidade de

habitats e riqueza de espécies (Junk et al. 2002). É considerado um dos

ecossistemas brasileiros em melhor estado de conservação, em conseqüência

da sua localização regional interiorana, da atividade econômica de baixo

impacto (i.e. pecuária extensiva) e das periódicas inundações. No entanto, a

integridade do Pantanal tem sido ameaçada, nas últimas décadas, devido a

interesses econômicos no desenvolvimento regional, através da intensificação

da pecuária e construção de diques de navegação em rios (Da Silva e Girard

2004, Junk et al. 2006a). Tais recentes pressões indicam a necessidade

imediata de criação de diretrizes ecológicas para subsidiar políticas públicas.

Muitos estudos no Pantanal têm-se focado na distribuição de

comunidades de plantas, ao longo de gradientes ambientais (e.g. inundação,

solo) (Prance e Schaller 1982, Zeilhofer e Schessl 1999, Damasceno-Junior et

al. 2005, Arieira e Nunes da Cunha 2006, Nunes da Cunha e Leitão-Filho 2007)

e alguns outros, na dinâmica temporal da vegetação (cf. Silva et al. 1988,

Mauro et al. 1998; Pott 2007). Baseados no conceito de gradientes ou

continuum, tais estudos aplicam-se a espaços ambientais abstratos, não

Page 20: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

20

20

provendo informação necessária à construção de modelos espacialmente

explícitos e baseados em processos. Tais modelos são construídos com base

na dependência entre processos ecológicos e padrões espaciais da paisagem

(Austin e Smith 1989).

Recentes progressos, em ecologia de paisagem e em estudo de

comunidades, tornaram possível o desenvolvimento de novas ferramentas para

estudo da vegetação em escalas amplas. Representar sistemas ecológicos

complexos, resultantes de uma rede de processos e atuando em múltiplas

escalas (Turner et al. 2001, Aumann 2007), através de modelos espacialmente

explícitos, envolve a integração de grupos de dados regionalizados (Bascompte

e Solé 1998, Guisan e Zimmermann 2000). A sobreposição destas diferentes

fontes de dados e a maneira como os processos ecológicos são avaliados e

relacionados a padrões espaciais variam amplamente e contam com uma série

de ferramentas de análise e manipulação de dados, tais como sensoriamento

remoto, sistemas de informação geográfica e geoestatística (Burrough e

McDonnell 1998). Tais ferramentas, além de gerarem dados para modelos

quantitativos, ajudam na identificação de características relevantes e

classificadores adequados para mapear diferentes tipos de cobertura do solo e

monitorar mudanças na vegetação (Burrough e McDonnell 1998). O presente

trabalho incorpora essas tendências, no sentido de contribuir para o

entendimento dos padrões espaço-temporais de vegetação de área úmida e na

busca por novas abordagens para se estudar e representar tais padrões.

A presente tese teve quatro principais objetivos:

Page 21: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

21

21

1) descrição, classificação e mapeamento de comunidades de plantas, em

uma paisagem no Pantanal Mato-grossense, usando uma abordagem

estatística e integrando dados de vegetação derivados de amostragem

de campo e de imagens de sensoriamento remoto;

2) avaliação da influência da duração da inundação sobre o padrão de

distribuição espacial das comunidades mapeadas;

3) descrição e modelagem da dinâmica da vegetação terrestre de zonas de

transição aquático-terrestres no Pantanal, destacando o papel da

duração da inundação e interação espacial entre comunidades vizinhas,

sobre estados e transições da vegetação;

4) avaliação da influência de cenários de inundação/seca para o Pantanal

sobre os padrões espaço-temporais da vegetação.

1.2. Área de estudo

Caracterização abiótica do Pantanal

O Pantanal Mato-grossense é uma depressão aluvial, localizada no Alto

da Bacia do Paraguai (Ab`Saber 1988), cobrindo cerca de 150.000 km2 da

parte centro-oeste do Brasil e parte da Bolívia e Paraguai (Fig.1.1). De acordo

com o sistema de classificação de Köppen (1948), o clima atual desta região é

Aw, que corresponde a invernos secos e verões chuvosos, com precipitação

anual entre 1000 e 1500 mm. O Pantanal é uma planície de inundação com

altitudes, que variam de 80 a 180 m a.n.m, e declividade do terreno, variando

entre 2-3 cm km-1 N-S e 5-25 cm km-1 O-L (Alvarenga et al. 1984). Solos são

geralmente mal drenados, mostrando variação em conteúdos de argila e areia,

em diferentes posições topográficas no leque aluvial (Assine and Soares 2004).

Page 22: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

22

22

Baixa declividade, alta precipitação concentrada durante o verão e solos mal

drenados resultam em inundação temporária da planície de inundação (Junk

1993, BRASIL 1997). Padrões de inundação são, em grande parte,

determinados pelas feições topográficas (Wantzen et al. 2005), criando um

gradiente em duração de inundação que nos permite classificar zonas

aquáticas, terrestres e de transição aquático-terrestre (ATTZ) (Junk et al 1989).

Estas últimas zonas (ATTZ) são importantes partes deste gradiente,

correspondendo a áreas que experimentam estados de seca, na estação seca,

e estados inundados, na estação úmida (Wantzen et al. 2005). Padrões de

precipitação causam esta flutuação anual, resultando em um padrão de

inundação previsível, unimodal e de pequeno alcance (Hamilton et al. 1996).

Apesar dos eventos de inundação serem previsíveis, duração e nível de

inundação podem apresentar padrões pluri-anuais mais úmidos ou mais secos,

como resultado de oscilações climáticas (Collischonn et al. 2001, Junk et al.

2006a).

Page 23: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

23

23

Figura 1.1 Área de estudo. (A) localização do sitio de estudo na Reserva

Particular do Patrimônio Natural (RPPN) SESC Pantanal, Pantanal Mato-

grossense, Mato Grosso; Brasil; (B) imagem multiespectral IKONOS-2 de 4-m

de resolução, cor verdadeira, do sitio estudado adquirida em Outubro de 2003;

(C) dados da flutuação media anual do nível de água do rio Cuiabá, registrados

em régua fluviométrica localizada à margem do rio, e precipitação média

BRASIL

Pantanal

N

RPPN SESC Pantanal

Rio São

Lour

enço

ESCALA

Rio

Cui

abá

0 105 Km

Pantanal

MT

MS

16o

21o

55o58o

100200300400500

0N D J F M A M J J A S O

Precipitação, mm

Nivel, cm

Fonte: AN

A/ G

EF/ PNU

MA

/ OEA

A C

B

Page 24: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

24

24

próximo à Cuiabá entre 1963-2000, norte do Pantanal. Dados de precipitação

do INMET, dado do nível do rio do DNAEE.

Vegetação do Pantanal

A vegetação do Pantanal possui elementos florísticos de três

importantes domínios morfoclimáticos e fitogeográficos: cerrado, amazônia e

chaco (Ab`Saber 1988). Diferentes formações de cerrado são fitofisionomias

dominantes no Pantanal (67%), mas não são as únicas: floresta semidecidual,

floresta de galeria, brejos, chaco e formações pioneiras, tais como floresta

monodominante de Vochysia divergens Pohl. (Silva et al. 2000) fazem parte do

mosaico de vegetação. A variabilidade em profundidade e duração da

inundação, além de conexões e desconexões estabelecidas entre elementos

da paisagem, através da água da inundação, são as causas preponderantes da

alta diversidade de comunidades biológicas no Pantanal (Junk et al 1989,

Wantzen et al. 2005). Estas causas ditam onde e quando espécies de plantas,

com diferentes estratégias de vida e tolerância à inundação, aparecerão (Junk

et al. 2006a). A influência do uso da terra sobre a vegetação ‘natural’ do

Pantanal ainda é freqüentemente discutida. A pecuária extensiva em campos

nativos do Pantanal, iniciada há cerca de 250 anos, parece não ter afetado,

substancialmente, padrões de distribuição da vegetação no Pantanal (Pott e

Pott 2004, Junk e Nunes da Cunha 2005). No entanto, pressões

governamentais, para intensificação desta atividade nas últimas décadas,

foram responsáveis pela conversão de cerca de 4,5 % da vegetação ‘natural’

Page 25: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

25

25

do Pantanal, principalmente florestas, em áreas de pastagem (Silva et al.

1998).

Área experimental

Um sítio com 60 km2 (5 km x 12 km), localizado na região norte do

Pantanal (16o 30’ – 16o 44’S and 56o 20’– 56o 30’W), dentro da Reserva

Particular do Patrimônio Natural (RPPN) SESC Pantanal - Barão de Melgaço,

Mato Grosso, Brasil - foi selecionado através de imagem IKONOS-2, 4 m de

resolução, como área experimental deste trabalho (Fig. 1.1B). O sítio está

localizado em uma ATTZ, sob influência do transbordamento periódico do rio

Cuiabá. Formações vegetais encontradas em diferentes partes do Pantanal,

como floresta aluvial, campos, arbustais e florestas monodominantes,

compõem o mosaico de vegetação, o que torna o sítio selecionado relevante

para estudos da vegetação do Pantanal. Desde a criação da RPPN, em 1998,

esta área tem sido usada com interesses científicos, o que nos permitiu

investigar as características estruturais e funcionais do ecossistema, na

ausência de intensa e freqüente atividade humana. Pesquisas Ecológicas de

Longa Duração (PELD) têm sido conduzidas nesta reserva, há quase uma

década, resultando em acúmulo de informações sobre estados da vegetação e

influências abióticas sobre ela. Estas informações foram de suma importância

para o desenvolvimento da presente tese.

1.3. Resumo da tese Padrões de distribuição da vegetação, no tempo e espaço, são

causados por diferentes forças. Forças externas, como aquelas determinadas

Page 26: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

26

26

por distúrbio, e internas, como aquelas determinadas por interações espaciais

entre indivíduos que partilham o mesmo espaço e recurso, influenciam de

maneiras distintas estes padrões. Em áreas úmidas, como o Pantanal Mato-

grossense, estrutura, composição e dinâmica da vegetação são consideradas

fortemente influenciadas pelo regime de inundação. No entanto, apesar de

haver um número significante de estudos, discutindo como a distribuição de

comunidades de plantas do Pantanal está relacionada à inundação, poucos

consideram a influência de processos espaciais e temporais da vegetação,

sobre a estrutura da paisagem e biodiversidade existente. A proteção de

ecossistemas de áreas úmidas, como o Pantanal, necessita da compreensão

dos elementos estruturantes da paisagem e da identificação de métodos

eficientes, para descrevê-los e monitorá-los. Esta tese visou contribuir para o

entendimento de padrões espaço-temporais da vegetação do Pantanal Mato-

grossense e na busca por novas abordagens, para se estudar e representar

tais padrões. O estudo foi realizado dentro de uma área inundável pelo rio

Cuiabá de 60km2 situada na Reserva Particular do Patrimônio Natural do

Serviço Social do Comércio (RPPN SESC Pantanal), município de Barão de

Melgaço, Mato Grosso. A tese é apresentada em quatro capítulos. O primeiro

capítulo apresenta uma introdução geral do trabalho desenvolvido, definindo os

problemas científicos abordados e situando este trabalho no âmbito da ecologia

de plantas e ecologia da paisagem. No segundo capítulo, modelagem preditiva

da vegetação, baseada em técnicas estatísticas sofisticadas, técnicas de

interpolação e propagação de erros, é usada para identificar e mapear

comunidades vegetais na área estudada. Como resultado de análise de fatores

Page 27: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

27

27

e técnica de agrupamento com dados de estrutura e composição da vegetação,

sete comunidades de plantas foram identificadas. A relação entre variáveis

derivadas de imagem de sensoriamento remoto IKONOS-2 e de um modelo de

elevação digital SRTM, com os quatro primeiro eixos de fatores, foram

formalizadas matematicamente, usando modelos de regressão linear múltipla.

Os modelos explicaram 70%, 66%, 31% e 26% dos padrões de vegetação

representados pelos quatro eixos de fatores, respectivamente, e foram usados

num procedimento de krigagem universal, para reduzir a incerteza nas

comunidades mapeadas. Procedimentos de cross-validation e simulações de

Monte Carlo quantificaram incertezas no mapa de vegetação produzido por

modelagem. A porcentagem de amostras preditas na classe correta em cross-

validation variou entre 49% a 52%, indicando que densidade de amostras afeta

a acurácea das predições espaciais e, conseqüentemente, do mapa final

produzido. Resultados das simulações de Monte Carlo mostraram que o

padrão espacial geral de distribuição das comunidades, sobre a planície de

inundação estudada, foi predito acuradamente. Comparação entre mapa de

vegetação e de duração da inundação mostrou que há uma preferência das

diferentes comunidades mapeadas a ocupar certas partes do gradiente de

duração de inundação. O mapeamento de comunidade de plantas em extensas

áreas, usando modelagem preditiva da vegetação, como visto neste capítulo,

mostrou-se uma abordagem promissora para conservação e monitoramento

ecológico de longa-duração, no Pantanal, devido à detalhada informação

biológica de amostragem de campo, integrada a dados sensoriados

remotamente, em predições no espaço e no tempo. No capitulo 3 desta tese,

Page 28: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

28

28

um modelo de sucessão vegetal para ATTZ foi desenvolvido e testado, através

de Modelo de Cadeia de Markov Espaço-Temporal. O modelo foi construído

com base no papel que duração da inundação e interação espacial, entre

comunidades vizinhas, têm sobre a dinâmica da vegetação. Informações sobre

requerimentos ecológicos e traços de história de vida, em espécies

características das comunidades estudadas, adquiridas da literatura ou

informadas por especialistas, foram utilizadas para determinar os estados de

vegetação e as probabilidades de transição entre estes. Tempos de espera

antes de transições foram incluídos no modelo, simulando o tempo de

desenvolvimento entre um estado de vegetação e outro. A calibração do

modelo foi realizada, através de modelagem inversa, baseada em

comparações entre padrões espaciais da vegetação, observados e simulados,

usando índices da paisagem. O comportamento espaço-temporal do modelo foi

examinado, através da relação entre freqüência de mudanças, em estados de

vegetação ao longo de 5000 anos (interações do modelo), e a distribuição em

freqüência de número de vizinhos, em diferentes posições do gradiente de

inundação. Esta análise mostrou que dinâmica da vegetação e diversidade de

vizinhos variam em função da duração de inundação. O aumento da

diversidade de vizinhos, em posições intermediárias de inundação, refletiu em

mudanças mais freqüentes entre estados de vegetação. Mudanças nos

padrões espaço-temporais da vegetação foram preditas sob influência de

quatro cenários de inundação. Rápidas e substanciais mudanças no padrão da

vegetação se apresentaram como resultado de um cenário, ilustrando uma

paisagem espacialmente homogênea e com período de inundação bastante

Page 29: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

29

29

reduzido. Um atraso na resposta das comunidades às mudanças ambientais

refletiu a inércia da vegetação, ligada à sua capacidade de absorver distúrbio.

Modelos de simulação espacialmente explícitos, como o aqui desenvolvido,

configuram-se como ferramentas importantes para interpretação de dinâmicas

complexas, como a da vegetação do Pantanal, e na formulações de novas

hipóteses. O capítulo final da tese (CAPITULO 4) apresenta uma síntese do

trabalho e suas conclusões gerais. As abordagens de modelagem da

vegetação, apresentadas aqui, mostraram-se importantes técnicas de

identificação e descrição de padrões espaço-temporais da vegetação de áreas

úmidas. No entanto, incertezas contidas nos mapas e modelo produzidos

sugerem que informações empíricas, sobre processos ecológicos e padrões

espaciais, continuem sendo adquiridas e monitoradas, a fim de tornar possíveis

predições espaciais mais acuradas e previsões temporais mais robustas, sobre

a vegetação do Pantanal.

1.4. Thesis summary

Patterns of vegetation distribution, in time and space, are caused by different

forces. External forces, such as those determined by disturbance, and internal

forces, such as those determined by spatial interaction among individuals that

share a similar space and resource, influence in different ways these patterns.

In wetlands, like the Pantanal, vegetation structure, composition and dynamics

are considered strongly influenced by flooding. However, in spite of there is a

significant number of studies discussing how distribution of plant communities of

the Pantanal is related to flooding, few studies consider the impact of spatial

and temporal processes on landscape structure and biodiversity. The protection

Page 30: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

30

30

of wetland ecosystems, like the Pantanal, needs to count on the understanding

on the structuring features of the landscape, as well as, the identification of

efficient methods to describe and monitor them. This thesis aimed at

contributing for the understanding of space-time vegetation patterns in the

Pantanal and the search for new approaches to study and represent these

patterns. The study was carried out in a 60km2 area at the Cuiabá river

floodplain, situated in the Natural Reserve SESC Pantanal, Barão de Melgaço,

Mato Grosso. The thesis is presented in four chapters. The first chapter gives a

general introduction of the work, defining the scientific problems and positioning

this study in the scope of plant and landscape ecology. In the second chapter,

predictive vegetation modeling, based on sophisticate statistic techniques,

interpolation techniques and error propagation, is used to identify and map

vegetation communities in the studied area. As result of factor analysis and

clustering technique in structural and compositional vegetation data, seven

communities were identified. The relation between variables derived from

remote sensing IKONOS-2 images and a digital elevation model-SRTM, with

the four factor axes were formalized mathematically using multiple linear

regression models. The models explained 70%, 66%, 31% and 26% of the

vegetation patterns represented by the first four factor axes, respectively, and

were used in a proceeding of universal kriging to reduce the uncertainty in the

mapped communities. Cross-validation and Monte Carlo simulation quantified

uncertainties in the produced vegetation map. The percentage of samples

assigned to the correct class in cross-validation was between 49% and 52%,

indicating that sampling density affects spatial prediction accuracy. The

Page 31: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

31

31

evaluation of the model using Monte Carlo simulation showed that the overall

spatial pattern of community distribution over the floodplain is predicted

accurately. By comparing the plant community map with a flood duration map, it

was shown that there is a preference of communities to occupy certain positions

at the flooding gradient. Mapping of plant communities across extensive areas

using predictive modeling, as shown in this chapter, is a promising approach for

conservation and long-term ecological monitoring in the Pantanal wetland, due

to the detailed biological information that it is integrated with remotely sensed

data producing a fine scale representation of vegetation spatial patterns over

large areas. In the third chapter of this thesis, a succession vegetation model for

aquatic-terrestrial transition zones of the Pantanal was developed and tested

using Spatiotemporal Markov Chain model. The successional model was

created based on the effect that flood duration and spatial interaction among

neighboring communities have on vegetation dynamics. Information on

ecological requirement and life history traits of characteristic species, acquired

from literature and expert knowledge, were used to determine the vegetation

states and transition probabilities. Waiting times before transitions were also

included in the model, simulating the time spent for one state to develop into

another. The model calibration was performed using inverse modeling, by

comparing observed and simulated spatial patterns using landscape indices.

The space-time model behaviour was examined by relating frequency of

changes among vegetation states over 5000-yr (model iterations) and

frequency distribution of number of neighbors at different position on the

flooding gradient. This analysis showed that vegetation dynamics and neighbor

Page 32: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

32

32

diversity varied according with the flood duration condition. The increase in

neighbor diversity at intermediate flood positions reflected more frequent

changes among vegetation states. Changes in space-time vegetation patterns

under four flooding scenarios were forecasted. Quick and substantial changes

in vegetation patterns resulted from a scenario simulating a spatially

homogeneous landscape and with reduced flooding. A delay in community

response to the environmental shifts reflected vegetation inertia, linked to

species capability to absorb disturbance. Spatially explicit simulation models, as

the developed here, help to interpret complex dynamics, such as of the

vegetation of the Pantanal, and formulate new hypothesis. The Chapter 4

shows a synthesis of the work and provides some general conclusions. The

modeling approaches presented in this thesis consist of important techniques to

identify and describe space-time patterns of wetland vegetation. However,

uncertainties in the mapped communities and model outputs suggest that

empirical information on ecological processes and spatial patterns to be still

acquired and monitored in order to generate more accurate spatial and

temporal predictions on the vegetation of the Pantanal.

Page 33: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

33

33

CAPÍTULO 2

INTEGRATING FIELD SAMPLING, SPATIAL STATISTICS AND

REMOTE SENSING TO MAP FLOODPLAIN VEGETATION IN THE

PANTANAL, BRAZIL

Com contribuição de: Derek Karssenberg, Steven M. De Jong, Elisabeth A.

Addink, Jon O. Skøien e Cátia Nunes da Cunha

Abstract Wetland ecosystems belong to a type of habitats that are highly

threatened by changes in precipitation and evapotranspiration due to the

preponderant influence of hydrology on structural and functional characteristics

of the ecosystem. New methods and tools to describe, understand, model and

monitor patterns and processes of wetland vegetation are urgently needed. In

this paper, we describe a mapping procedure based on statistical and

geostatistical techniques aiming at identifying and mapping plant communities

in a 60 km2 floodplain landscape in the Pantanal (Brazil), and at investigating

the influence of flooding duration on the community distribution. Seven plant

communities were identified using factor analysis and clustering techniques

performed on vegetation structure and composition data. The relation between

IKONOS-2 remote sensing images and SRTM-digital elevation model and the

first four factors in a factor analysis of vegetation patterns was formalized

mathematically in multiple linear regression models and used in a universal

kriging procedure to reduce the uncertainty in mapped communities. Image

derived variables explained 70%, 66%, 31% and 26% of the first four factors in

Page 34: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

34

34

a factor analysis of vegetation patterns, respectively. Cross validation

procedures and Monte Carlo simulations were used to quantify the uncertainty

in the resulting map. The percentage of samples assigned to the correct class in

cross-validation was between 49 % and 52 %, indicating that sampling density

affects spatial prediction accuracy. The evaluation of the model using Monte

Carlo simulation showed that the overall spatial pattern of community

distribution over the floodplain is predicted accurately. By comparing the

resulting plant community map with a flood duration map, we showed a

significant relationship between plant community distribution and flooding

duration. Mapping of plant communities across extensive areas using predictive

modeling, as shown in this study, is a promising approach for conservation

assessment and long-term ecological monitoring in the Pantanal wetland, due

to the detailed biological information that it is integrated with high spatial

resolution remotely sensed data producing a fine scale representation of

vegetation spatial patterns over large areas.

Key-words: 1.– mapping – 2. spatial autocorrelation – 3. life form – 4.

uncertainty evaluation – 5. plant community – 6. digital images

Page 35: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

35

35

2.1. Introduction

Wetland ecosystems are among the habitats most threatened by climatic

change, due to their high sensitivity to the hydrological regime (Junk 2002).

They form transitional habitats between aquatic and terrestrial systems and

embody different kinds of habitats such as mangroves, peatlands, freshwater

swamps and marshes (Mitsch et al. 2009). The ecological importance of these

habitats has been recognized worldwide as well as the urgent need to preserve

them, as stressed in the Cuiabá Declaration on Wetland elaborated during the

8o International Wetlands Conference of INTECOL, Brazil. However, lack of

knowledge about the complex natural dynamics of wetlands may lead to

arbitrary management decisions (Junk et al. 2006b). To improve the protection

of wetlands, it is imperative to have a thorough understanding of the structuring

elements and of the identification of efficient methods to describe and monitor

them.

Vegetation communities have distinct spatial and temporal patterns.

Understanding the mechanisms that determine these patterns has been an

important issue in ecology for decades (e.g., Connell and Slatyer 1977,

Svenning et al 2004). Two factors play a key role: spatial interactions in

ecological processes (e.g. competition), and environmental factors (e.g. flooding

duration) (Tilman 1988). Ecological processes include interactions between

individuals, which may cause particular spatial patterns in the distribution of

plants. Spatial variation in environmental factors causes spatial patterns in

vegetation communities due to the differences of species requirements. These

Page 36: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

36

36

two factors do not usually operate independently but act together at different

spatio-temporal scales (Turner et al. 1989, Svenning et al. 2004). This multi-

scale interaction may lead to complex spatial patterns that are continuously

changing (Wagner and Fortin 2005). Consequently, the ability of distinguishing

plant communities that arise from multi-scale ecological processes requires an

understanding of the processes and parameters causing the heterogeneity

(Turner et al. 1989).

Classical methods describing vegetation distribution patterns along

environmental gradients are based on sampling field plots, often along transects

(McIntosh 1958, Whittaker 1967). Such an approach yields detailed insights into

the vegetation occurrence and vegetation assemblages but does not provide

spatially continuous information required to study mechanistic processes and

spatial patterns of the landscape (Austin and Smith 1989). To retrieve such

spatially continuous information requires techniques that consider space

explicitly (Gardner & Engelhardt 2008). One of these techniques is remote

sensing (Gluck and Rempel 1996, Ozesmi and Bauer 2002, Zeilhofer 2006,

Martinez and Toan 2007). By using the spectral signature of different vegetation

species and states, remote sensing enables us to describe spatial and temporal

patterns of vegetation in a spatially continuous way (Jensen 2007). A restriction

of this approach is the limited level of detail in attribute information that can be

mapped by remote sensing, hindering the detection and identification of many

ecologically important properties of vegetation communities, such as floral

composition (Chambers et al. 2007).

Page 37: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

37

37

Whereas field plots and remote sensing data each have their limitations

as a source for continuous vegetation maps, is it possible to combine them

through a statistical approach (Guisan and Zimmerman 2000, Ferrier et al.

2002, Pfeffer et al. 2003, Miller et al. 2007). Point-data from field plots and

spatially continuous information from remote sensing are here incorporated by

means of statistical methods, such as ordination analysis (Jongman et al. 1995)

and spatial interpolation techniques such as kriging. In this way, we can make

maps representing the spatial distribution of vegetation across large areas that

incorporate detailed information on floral composition (Pfeffer et al. 2003). This

approach has become increasingly important in ecological studies as it

recognizes the influence of spatial correlation in vegetation patterns

(Bascompte and Sole, 1996, Turner et al. 2001). In addition, these techniques

allow quantifying the uncertainty in mapped vegetation, which is valuable when

vegetation maps are used for further quantitative analysis or for calibration and

evaluation of mechanistic vegetation models (e.g., Brzeziecki et al 1993, Guisan

and Zimmerman 2000, Chong et al 2001). Here, we will use mapped vegetation

(and its uncertainty) to study the effect of flood duration on plant community

patterns.

In this study, we integrate field data and remote sensing data through

geostatistical methods for a case study in the Pantanal, a 150,000 km2

floodplain in the center-west part of Brazil. The variability in water depth and

flood duration are considered to be the preponderant causes of the high

diversity of biological communities and plant zonation patterns found in the area

(Junk et al 1989, Wantzen et al. 2005). In this extensive and pristine wetland

Page 38: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

38

38

floodplain, long-term conservation depends on habitat diversity maintenance

(Junk et al. 2006a).

The aims of this paper are: 1) to indentify plant communities of the

Pantanal on key structural and compositional attributes of plant life forms,

based on a new data set collected in a field survey; 2) to present a spatial

statistical approach based on the integration of field data and remotely sensed

data to make accurate predictive maps of vegetation distribution; 3) to evaluate

the uncertainties in vegetation classification on the basis of this novel statistical

approach; and 4) to investigate relation between flood duration and vegetation

zonation.

2.2. Study area

The Pantanal contains a large variety of alluvial ecosystems with different

drainage patterns, flooding characteristics, geomorphologic aspects and

vegetation types covering about 150,000 km2 of the upper Paraguay basin (Fig.

2.1A) (Assine and Soares 2004). The climate of this region is tropical humid

with marked seasonality between winter and summer periods (Köppen 1948).

The summer from November to April is characterized by high temperatures

(average day temperature 34oC) and it is the season with the largest amount of

precipitation (Fig. 2.1B). The precipitation decreases in winter, causing this

season to be very dry (de Musis et al. 1997). The water level in the rivers of the

Pantanal follows the seasonal trend in the precipitation. Due to the poor surface

and subsurface drainage and the smooth, low topography relative to the river

level (Alvarenga et al. 1984, Assine and Soares 2004), large areas of the

Page 39: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

39

39

Pantanal are flooded every summer (Junk 1993, Hamilton et al. 1997). Climate

oscillations have been shown to be the main cause of the observed multi-year

period of cyclic variation in flooding (Junk et al. 2006a).

The Pantanal vegetation presents floristic elements of three important

morphoclimatic and phytogeographic domains, i.e., Cerrado (Brazilian

savanna), Amazonia and Chaco (Ab`Saber 1988). Savanna vegetation types

are dominant physiognomies in the Pantanal (67%), but are not the only one:

semideciduous forest, gallery forest, swamp, Chaco, pioneer formations such

as monodominant forest of Vochysia divergens Pohl (Silva et al. 2000) are the

remaining components of the vegetation mosaic. The variability in water depth

and flooding duration and the temporal connections and disconnection

established between different elements of the landscape by means of the flood

pulse (Junk et al 1989) are considered the preponderant causes of the high

diversity of biological communities in the Pantanal (Wantzen et al. 2005),

dictating where and when plant species with different life strategies and flooding

tolerance will appear (Junk et al. 2006a). Our study site covers 60 km2 and is

located within a nature reserve in North Pantanal (16 o 30’ – 16o 44’S and 56 o

20’– 56o 30’W) (Fig. 2.1A). The site is representative of a large part of the

Pantanal regarding vegetation and environmental conditions. The fluctuation in

water level of the river Cuiabá, which crosses the north part of the studied area,

is the main cause of the flooding over the studied area.

Page 40: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

40

40

Figure 2.1 Study site. (A) Natural Reserve SESC Pantanal located at the

Pantanal Matogrossense, Mato Grosso; Brazil; (B) Mean annual water depth

fluctuation of the River Cuiabá (1963-2000) and mean precipitation near

Cuiabá, northern Pantanal. Rainfall data from INMET (National Institute of

Meteorology of Brazil), river level data from DNAEE (National Department of

Page 41: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

41

41

Waters and Electric Energy of Brazil); (C) Four meter resolution multispectral

IKONOS-2 image, of the study site acquired in October 2003, true color. White

circles are the sampling locations; (D) 90-m Resolution SRTM (NASA Shuttle

Radar Topographic Mission, http://ww2.jpl.nasa.gov/srtm/) Digital Elevation

Model of the study area.

2.3. Outline of the approach

Figure 2.2 shows a diagram with the procedural steps followed to identify

vegetation communities, to determine their spatial distribution, and to study their

relationship with flooding duration. The first part of the paper addresses the

extraction of vegetation communities from high resolution field sampling using

factor analyses and clustering (Fig 2.2, top-right). Spatially continuous variables

were obtained from remotely sensed imagery and a digital elevation model

providing spatial information necessary for vegetation mapping (Fig 2.2, top-

left). These remote sensing and elevation data are related to vegetation field

data using regression analysis (Fig 2.2, centre). After fitting variograms

describing the spatial correlation in the residuals of these regressions, universal

kriging is performed to combine the field point-data and spatially continuous

information from remote sensing to map vegetation communities (Fig 2.2,

centre). The second part of the paper describes an extensive uncertainty

analysis on this mapping procedure by cross-validation and random simulations

to quantify the quality of the vegetation community maps (Fig. 2.2, bottom-left).

Finally, the vegetation map is used to study the vegetation-environment

Page 42: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

42

42

relations by comparing spatial patterns of plant community distribution with

spatial patterns of observed flooding duration (Fig 2.2, bottom right).

Figure 2.2 Flow diagram describing the procedural steps in the analysis of the

data.

Page 43: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

43

43

2.4. Field data

Vegetation Data Classification and characterization of plant communities were made

based on field sampling of key structural and compositional attributes of the five

following plant life forms as defined by Michin (1989): herbaceous species

(including gramineous plants), vines, shrubs, and two size classes of trees.

Here, we use the term life form with its wider connotation of functional groups

based on ‘group of plants that are similar in a set of traits and their association

to certain variables’ (Pillar and Sosinski 2003). Shrubs were considered

individuals with the trunk bifurcated at the ground level and maximum canopy

height of three meters. Palm species were considered either as a shrub life form

or as a tree, depending on species morphology. Due to possible phenotypic

plasticity found in species living under different micro-environmental conditions,

life form of a species was defined according to the predominant morphologic

form found in our sampling. Two reasons motivated us to focus on on life forms

instead of individual species when describing vegetation. First, this approach

reduces the data dimensionality (Colosanti et al. 2007), and second, life form

and ecology of plants are associated (Grime 1979), which guarantees that each

life form is an ecological unit. Dominant species within each plot, that is, the

woody species with the highest biomass or the vine and herbaceous species

with the highest coverage degree, were identified and included in vegetation

observations and analyses to ensure discrimination between structurally similar

but floristically distinct communities.

Page 44: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

44

44

Sampling scheme and data collection

Field sampling of vegetation was done in 2006 and 2007. A sampling

scheme modified from the RAPELD method (c.f., Magnusson et al., 2005) was

used here (Fig. 2.3). The adjusted RAPELD method comprised the

establishment of 23 trails of 250 m length distributed over the study site (Fig.

2.3A). In order to study the effect of flooding duration and soil properties on

vegetation composition, each trail was positioned at a different topographical

elevation. Each trail was thus placed along an elevation contour, defined using

a tripod-mounted telescope. In order to capture variation in vegetation over

short distances, the trails were divided into sampling trails of 50 m length (Fig.

2.3B), producing a total number of 115 sampling units.

Measurement acquisition and sample dimensions of a sampling unit

varied according to life form (Fig. 2.3C). Herbaceous and vine species were

sampled according to the point quadrat method, which is based on point-

intercept frequency measurements by plants (Bullock 1996). Presence or

absence of species was recorded at 25 points spaced at 2 m intervals along the

sampling trail. The coverage value for a sampling trail was calculated as the

proportion of these points being intercepted by the plant. For woody life forms,

plots were positioned along the trail (Fig. 2.3C). The plots have a length equal

to the length of the sampling unit along the trail (50 m), and a width depending

on the life form size as suggested by the RAPELD method (Fig. 2.3C). Shrub

measurements were taken in plots of 200 m2 (50 x 4 m); medium-sized tree

measurements in plots of 1000 m2 (50 x 20 m); and large-sized tree

measurements in plots of 2000 m2 (50 x 40). All species found in the plot were

Page 45: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

45

45

identified and trunk diameter and species height were measured for trees and

shrubs. For shrub species, diameters were measured for each individual at 5

cm above the soil surface and for tree species at breast height. These data

were also used to calculate some variables describing the vegetation structure.

Aboveground biomass of woody individuals was estimated by two different

allometric equations for shrubs and trees, respectively. Aboveground woody

biomass (Bs, kg) of shrubs was calculated using the allometric model

developed by Barbosa and Ferreira (2004):

Bs = exp(-3.9041+ 0.4658ln(Cb2H) + 0.0458(ln(Cb2H))2) (1)

with, Cb is circumference at the ground height (cm) and H the species

height (m).

Biomass (Bt, Kg) of a tree species was estimated following Chave et al.

(2005):

Bt = 0.112·(ρ·H·d²)0.916, (2)

with, ρ (g cm-3) the wood specific density, H (m) the species height, and d

(cm) the species diameter at breast height. Information on species densities

was obtained from Schöngart et al. (2008). Canopy height (CH) was considered

the average height of the eight highest individuals in a plot.

Page 46: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

46

46

Figure 2.3 Sampling scheme modified from the RAPELD method (see

Magnusson et al., 2005). (A) 23 trails are regularly spaced over the site; (B)

Each trail is placed at the same elevation level and divided in five sampling

trails each of 50 meter length. (C) Sampling along the trail. Herbaceous

species: point samples at regular interval along the trail centre line. Shrubs,

large-sized trees and medium-sized trees: exhaustive sampling in the indicated

zone. The tree size category is based on diameter of the trunk at breast height

(DBH).

DBH)

DBH)

Page 47: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

47

47

2.5. Identifying vegetation communities

Velloso et al. (1991) developed a classification system of Brazilian

vegetation, which was adapted by Nunes da Cunha et al. (2006), providing a

detailed description of the plant communities in the Pantanal. Here, we aim at

mapping the communities described by Nunes da Cunha et al. (2006),

considering that these can be identified by means of quantification of structure

and composition (i.e. only dominant species) of different vegetation layers.

Communities are represented at a broad level as vegetation formation types

rather than plant associations. We used factor analysis (Bray and Curtis 1957)

where the factor scores summarize the structural and compositional

characteristics of different vegetation samples. These factors were found in a

principal component analysis of the correlation matrix, generating a small

number of orthogonal factors explaining the correlation among the vegetation

variables (Legendre and Legendre 1998). The different factor scores are plotted

against each other in Fig. 2.4, and the proximity among point-samples and our

field background about the vegetation classes found in these points were used

to classify them in vegetation classes/clusters. Finally, cluster centers were

calculated by averaging factor scores corresponding to the community/cluster

and were used in the final part of the mapping procedure below.

Ecological Interpretation of Ordination Space

The first four factor axes explain 46% of the total variance (Table 2.1).

We assumed that the strongest correlations with each axis reflect the main

vegetation gradients captured by it. Factor 1 explains a relatively large

Page 48: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

48

48

proportion (22%) of the total variance. It mainly distinguishes communities

dominated by a tall and rich tree layer (negative loadings) and those dominated

by vine, shrub or herbaceous life forms (positive loadings). Although explaining

considerably smaller proportions of the total variance, the remaining factors are

still useful for identifying the vegetation classes. Factor 2 separates plant

communities by their degree of coverage and richness of herbaceous species.

Factor 3 mainly represents variation in biomass of two trees, Brosimum

latescens and Mouriri guianensis, and one shrub, Psychotria capitata. Factor 4

mainly represents variation in the biomass of shrubs and of two species, the

medium-sized tree Sapium obovatum and the shrub Ruprechtia brachycepala.

Table 2.1 Summary statistics for the factor analysis. Numbers in bold highlight

the highest correlation with the factor axis.

Variable Factor 1 Factor 2 Factor 3 Factor 4 Richness tree -0.76 -0.25 0.17 -0.28 Richness shrub 0.28 0.07 0.20 -0.35 Richness herb 0.31 0.58 0.43 -0.11 Canopy height -0.86 -0.05 -0.33 0.09 Cover %herb 0.04 0.79 0.16 0.06 Cover % vine 0.82 -0.15 -0.16 0.16 Richness vine 0.73 -0.09 -0.14 0.16 Biomass tree (total) -0.88 0.00 -0.26 0.18 Biomass shrub 0.54 -0.42 0.07 -0.58 Biomass (DBH 10 cm > 30 cm)

Vochysia divergens -0.31 -0.05 0.05 0.03 Sapium obovatum -0.03 -0.23 -0.09 -0.56 Licania parvifolia -0.43 -0.03 -0.17 0.11 Brosimum latescens -0.29 -0.34 0.51 0.22 Trichilia catigua -0.30 -0.27 0.45 0.06 Duroia duckei -0.59 0.09 -0.35 0.19 Cecropia pachystachya -0.31 0.23 -0.20 -0.02 Mouriri guianensis -0.51 -0.35 0.36 0.22

Biomass (DBH > 30 cm) Vochysia divergens -0.72 0.17 -0.47 0.21

Page 49: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

49

49

Variable Factor 1 Factor 2 Factor 3 Factor 4 Mouriri guianensis -0.37 -0.42 0.55 0.23

Biomass (shrub) Albizia polycephala 0.62 -0.11 0.02 0.12 Ruprechtia brachycepala -0.02 -0.25 0.05 -0.50 Peritassa dulcis 0.18 -0.52 -0.46 -0.06 Melochia villosa 0.41 0.16 0.18 0.24 Byrsonima cydoniifolia -0.23 -0.40 0.43 0.15 Psychotria capitata -0.48 -0.49 0.51 0.20 Bauhinia rufa 0.17 0.04 0.09 -0.32 Mimosa pellita 0.57 0.05 0.02 0.35 Laetia americana 0.74 -0.20 -0.09 0.14 Solanum

pseudoauriculatum 0.26 0.19 0.15 0.22

Eugenia florida 0.03 -0.29 -0.32 0.07 Alchornia discolor -0.22 0.37 0.03 -0.37 Mabea paniculata -0.30 0.12 0.17 -0.25 Byrsonima orbygniana 0.00 0.19 0.25 -0.49

Cover % herbaceous species Paspalum hydrophilum 0.34 0.37 0.24 0.05 Panicum guianense -0.17 0.06 -0.18 -0.35 Scleria bracteata -0.57 0.24 -0.27 0.16

Cover % vine Cissus spinosa 0.67 -0.31 -0.20 -0.001 Aniseia cernua 0.54 0.14 0.09 0.34 Paullinia pinata 0.52 -0.31 -0.27 0.09 Dolliocarpus dentatus 0.23 -0.57 -0.27 -0.01 Ipomea rubens 0.36 0.16 0.17 0.22

% Variance 22 9 8 7

Defining vegetation communities through ecological interpretation of clusters

The seven clusters are indicated in a scatter plot of the different factors (Fig.

2.4) and are identified as: Monodominant forest, Shrubland, Alluvial seasonal

semideciduous forest (Alluvial forest), Alluvial seasonal semideciduous low

forest (Alluvial low forest), Seasonally flooded grass-woody savanna

(Grassland), Low open tree and shrub savanna (Open savanna) and Low dense

tree and shrub savanna (Dense savanna). The number of samples in each

cluster and their distribution over the ordination space express the structural

Page 50: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

50

50

and floristic variability found within the community and which communities have

dominated the floodplain landscape. Table 2.2 provides a statistical summary of

structural and floristic characteristics of communities.

A number of communities show overlapping ranges of scores on some of

the factor axes, while other factor axes provide clear boundaries between these

communities. For instance, the transitions between Alluvial forest and

Monodominant forest are smooth (Fig. 2.4A-C). These two communities are

mainly separated through the tree biomass and coverage of herbaceous

species in Monodominant forest (Fig. 2.4A) and the dominance of Brosimum

latescens and Mouriri guianensis in Alluvial forest (Fig. 2.4B). Dense savanna

lies between Open savanna and Monodominant forest. Richness and coverage

of herbaceous life form distinguish these communities (Fig. 2.4A). Dense

savanna, Grassland, Open savanna and Monodominant forest have similar

correlation values with Factor 2, indicating that there may be a small variation in

coverage of herbaceous species between these communities. The low tree

biomass in Shrubland is responsible for its positive scores on the first factor.

Alluvial low forest is distinguished from other forests based on Factor 4. Its high

shrub coverage compared to Shrubland and the dominance of Sapium

obovatum and Ruprechtia brachycepala generates scores on Factor 4 in

intermediate position between Shrubland and Alluvial forest.

Page 51: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

51

51

Figure 2.4 Factor analysis biplots of the axes 1 to 4 on vegetation variables

obtained from 115 sampling locations. Seven clusters (symbols) represent the

vegetation communities found in the studied floodplain. Factor 1 describes the

Page 52: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

52

52

gradient of tree biomass found in the study site; Factor 2 of herb cover and

richness; Factor 3 of tree dominant species; and Factor 4 of shrub biomass.

2.6. Mapping plant communities

Remote sensing and ancillary data

Remotely sensed imagery and ancillary data are frequently used in spatial

vegetation modeling due to their capability of providing accurate environmental

information related to vegetation patterns (Guisan and Zimmerman 2000,

Pfeffer et al. 2003, Miller et al. 2007). An IKONOS-2 image and a Digital

Elevation Model (DEM) (Fig. 2.1C, D) were used in this study to derive variables

related to vegetation patterns. The acquisition date of the IKONOS-2 image is

October 1st, 2003 corresponding to the dry season in the Pantanal and

representing an optimal time for detecting spectral signatures of terrestrial

vegetation on the floodplain, due to the availability of cloud free images and

nonflooded soil conditions. The IKONOS-2 image consists of four spectral

bands: three bands in the visible part of the spectrum located at blue (450-

520nm), green (520-600 nm) and red (630-690 nm) and one band in Near

Infrared (760-900 nm). The pixel size is approximately 4 by 4 m. The registered

radiance values by the IKONOS-2 sensor were converted to reflectance values

using the calibration information provided by Bowen (2002). A Normalized

Difference Vegetation Index (NDVI) was computed from the spectral bands by

taking a ratio of the difference of the near infrared and red spectral bands and

the sum of the near infrared and red band (Tucker 1979). Such an NDVI image

shows stronger contrast between vegetation and soil and water surfaces while

Page 53: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

53

53

reducing noise in the image. Furthermore, we applied a principal component

(PC) transformation to the IKONOS-2 image to reduce inter-band correlation

and extract new spectral information that arises from this transformation. The

four original bands, the NDVI image and the four principal component images

were used for further data analysis as described in the next section. Ancillary

data, such as soil and topography maps, in combination with multi-spectral

bands have been used to improve classification of wetlands (Ozesmi and Bauer

2002). The 90-m resolution DEM of the study area was obtained from the

SRTM (NASA Shuttle Radar Topography Mapping Mission) and used to provide

continuous information of canopy height rather than soil surface (Jacobsen

2006) (Fig. 2.1D).

Re-scaling and extracting image derived data

The original geodata with cell sizes of 4 m (IKONOS-2) and 90 m (DEM)

were re-sampled to the support of the field data, i.e., to the plot size used to

take measurements of large tree species (50 x 40 m). The resampling

technique applied consists of: 1) delineating the irregular plot boundaries in the

IKONOS-2 image using ARC/INFO GIS software (version 9.0; ESRI, 2006); 2)

calculating average remote sensing and elevation values for exactly these

digitized plots; and 3) extracting variables from the IKONOS-2 derived images

and SRTM DEM for the 115 plots to be used in the analysis. The two last steps

were done with PCRaster (PCRaster 2002; Wesseling et al. 1996).

Page 54: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

54

54

Table 2.2 Structural and floristic characteristics of plant communities, given as mean and

standard deviation

Monodominant forest Shrubland Alluvial

forest Alluvial Low

Forest Grassland Open savanna

Dense savanna

Vochysia divergens Pohl.

Laetia americana L.

Byrsonima cydoniifolia A. Juss.

Ruprechtia brachysepala Meisn.

Paspalum hydrophilum Henrard

Paspalum hydrophilum Henrard

Byrsonima orbignyana A. Juss.

Duroia duckei Huber

Mimosa pellita Humb. & Bonpl. ex Willd.

Psychotria capitata Ruiz & Pav.

Crataeva tapia L.

Panicum guianense Hitchc.

Hybiscus furcellatus Desr.

Bauhinia rufa (Bong.) Steud.

Licania parvifolia Huber

Peritassa dulcis (Benth.) Miers

Trichilia catigua A. Juss.

Banara arguta Briq. Laetia

americana L. Alchornea discolor Poepp.

Scleria bracteata Cav.

Albizia polycephala (Benth.) Killip

Mouriri guianensis Aubl.

Sapium obovatum Klotzsch ex Müll. Arg.

Cissus spinosa Cambess.

Brosimum lactescens (S. Moore) C.C. Berg

Cecropia pachystachya Trécul

Aniseia cernua Moric.

Paullinia pinnata L.

Characteristic species

Ipomea rubens Chousy

Richness of herbs (no of sp. per sample)

1.98 ± 1.92 2.54 ± 1.75 2 ± 0.82 2.4 ± 1.52 3.67 ± 1.56 4.6 ± 1.34 4.2 ± 1.92

Richness of vines (no of sp. per sample)

2.96 ± 1.52 7.71 ± 1.72 1.71 ± 1.25 4.6 ± 1.82 4.42 ± 1.31 3.8 ± 1.1 1.4 ± 1.52

Richness of shrubs (no of sp. per sample)

7.85 ± 3.58 9.89 ± 2.36 6.71 ± 4.61 6.4 ± 1.95 8.58 ± 2.91 8.6 ± 2.3 14.6 ± 3.6

Richness of medium sized trees (no of sp. per sample)

4.91 ± 1.64 0.32 ± 0.61 8 ± 2.65 6.2 ± 2.17 0.17 ± 0.39 1 ± 0.45 5.8 ± 1.64

Richness of large trees (no of sp. per sample)

2.77 ± 0.71 0.14 ± 0.45 4.71 ± 1.11 1.6 ± 1.34 0.17 ± 0.39 0.6 ± 0.55 2 ± 0.7

Biomass of shrubs (Mg ha-1) 3.25 ± 6.71 10.11 ± 3.79 3.82 ± 3.01 13.54 ± 8.18 4.03 ± 2.08 2.63 ± 0.78 9.96 ± 6.71

Biomass of middle sized trees (Mg ha-

1) 109.58 ± 17.29 2.38 ± 7.58 91.54 ± 29.87 28.50 ± 21.78 4.57 ± 9.56 29.5 ± 31.01 26.75 ± 17.29

Biomass of large trees (Mg ha-1) 84.94 ± 11.36 1.87 ± 6.80 57.15 ± 18.55 9.47 ± 8.41 1.81 ± 4.29 24.8 ± 28.06 9.40 ± 11.36

Canopy height (m) 20.19 ± 1.30 2.41 ± 0.84 15.2 ± 3.19 5.72 ± 1.74 1.76 ± 0.21 2 ± 0.1 3.14 ± 1.3

Cover % herbs 37.06 ± 9.55 27 ± 24.26 16 ± 7.66 18.4 ± 11.52 61.33 ± 21.46 97.6 ± 3.58 56.8 ± 9.55

Cover % vines 21.74 ± 6.07 83 ± 11.71 8.57 ± 6.70 47.2 ± 21.05 43.33 ± 19.66 27.2 ± 7.16 5.6 ± 6.07

Page 55: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

55

55

Correlating field data and image derived data

We first examined the relationship between image and DEM derived

variables and the vegetation patterns captured in the four factorial axes. The

functional relationships between each factor axis and image and DEM derived

variable were found by Pearson’s correlation analysis, to facilitate the ecological

interpretation of the variables (James and McCulloch 1990). Next, the

relationship between the image derived variables and the factor axes was found

using the following multiple linear regression model:

ipipiii xaxaxaaY ε+++++= L22110 (3)

where Yi is the score value, paaa ,,, 10 L are the model parameters, x1i,

x2i, …, xpi are the values of the image derived variables and iε are uncorrelated

residuals. The analyses were done with log transformed reflectance values to

ensure that the statistical distribution of the data is close to Gaussian (Draper

and Smith 1998).

Before performing the multiple regression analysis, image derived

variables were selected to be included in the multiple regression models using

the best-subset regression method (Hofmann et al. 2007). In this method, all

combinations of explanatory variables in regressions are tested, and Mallow’s

C-p statistic (Mallows 1973) is used as eliminatory criterion of variables (Draper

and Smith 1998). We consider the best regression equation for each factor that

one combining lowest C-p value and lowest number of explanatory variables.

Page 56: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

56

56

Vegetation patterns captured by digital images

Table 2.3 shows correlations between explanatory variables and the

factor axes. Except for NDVI, all image derived data present significant

correlation with Factor 1. The strongest correlations with this first axis are found

with blue, green and red bands, PC1 and canopy topography. Lower reflectance

values in the three spectral bands and lower score values in the PC1-3 images

are linked to areas occupied by communities with high stored tree biomass such

as Monodominant forest and Alluvial forest (Table 2.3). Lower score values in

the PC4 reflects communities with lower tree biomass values even though this

axis explains the noise from the spectral band transformation. In spite of its

weak correlation with Factor 1, NDVI shows an expected spectral behaviour:

the values decrease toward areas with lower tree biomass, such as those areas

covered by Grassland, Open savanna, Shrubland and Dense savanna. The

strong negative correlation between canopy topography and Factor 1 shows

that the boundaries between communities dominated by trees and those

dominated by shrubs, lianas and herbs are detected by differences in canopy

height.

Page 57: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

57

57

Table 2.3 Pearson’s correlation coefficients between factor axes and image

variables: four spectral bands, Normalized Difference Vegetation Index

(NDVI), Principal Component transformation to the IKONOS-2 image (PC),

and canopy topography derived from DEM-SRTM (DEM). * P ≤ 0.05

The variability in cover degree and richness of herbaceous life forms

expressed by the second axis is best described by the PC2 image (61%; Table

2.3). Communities with higher and richer coverage of herbaceous species such

as Grassland, Open savanna and Dense savanna are associated with higher

reflectance values in blue, green and red bands and higher score values in the

PC2 image. The negative correlations between Factor 2 and infra-red band and

NDVI show that communities dominated by herbaceous species present weaker

spectral response to these two images.

As observed earlier, Factor 3 mostly justifies the spatial distribution

pattern of three tree species that dominate in Alluvial forest. Relatively to

Monodominant forest, the lower biomass content and canopy height of Alluvial

forest might be the cause for the negative correlations between Factor 3 and

NDVI and Factor 3 and canopy topography.

Variable Factor 1 Factor 2 Factor 3 Factor 4blue band 0.71* 0.30* 0.38* 0.008green band 0.71* 0.23* 0.38* -0.028red band 0.67* 0.36* 0.37* -0.009infra-red band 0.43* -0.34* 0.023 -0.001NDVI -0.124 -0.47* -0.30* 0.012PC1 0.69* -0.126 0.25* -0.028PC2 0.29* 0.61* 0.30* 0.035PC3 0.26* -0.076 0.025 0.095PC4 -0.33* 0.129 -0.097 -0.1Canopy topography (DEM) -0.72* 0.153 -0.39* -0.163

Page 58: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

58

58

The spatial variability of Factor 4 represents vegetation patterns that are

mainly explained by canopy topography (i.e. DEM) showing that areas with

higher biomass of shrubs are associated with lower canopy height.

The equations found in the multiple regression analysis are shown in

table 2.4. The regression models significantly explain 70.4%, 66.3%, 31.3% and

25.6% of the variance in factors 1 to 4, respectively.

Table 2.4. Multiple linear regression models relating factor axes scores (F1-4) to

imagery derived variables: four spectral bands (blue, green, red and infra-red),

Normalized Difference Vegetation Index (NDVI), Principal Component

transformation to the IKONOS-2 image (PC), and canopy topography derived

from DEM-SRTM (DEM). R2 is the coefficient of determination showing the

strength of these relationships.

Variogram analysis

We applied variogram analysis on the residuals of the multiple linear

regression to derive information on their spatial structure (Wagner and Fortin

2005). This information was used for two reasons: 1) to investigate the spatial

autocorrelation associated with the observed vegetation patterns; 2) to use this

information when making spatial predictions (Miller et al 2007). Sample

Equation R 2

F1 = 30.6 + 9.49 blue - 0.024DEM - 34.7 PC1 - 46.4 PC2 - 33.7 PC3 + 8.7 PC4 + 2.15 NDVI 70.4

F2 = - 9.43 + 5.15 NDVI + 0.0715 DEM - 3.38 green + 3.52 red + 55.1 PC2 - 140 PC3 66.3

F3 = 15.2 + 419 PC4 - 9.98 NDVI + 15.9 blue - 15.2 red + 4.90 infra-red 31.3

F4 = 2.4 -27.9 PC1 + 53.9 PC2 + 129 PC3 - 49 PC4 - 0.9 NDVI - 0.15 DEM - 20.9 blue + 2.2 green + 9.8 red+ 3.6 infra-red 25.6

Page 59: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

59

59

variograms were estimated and variogram models fit using the function

autofitVariogram from the library automap (Hiemstra et al., 2008) in the

statistical environment R (R Development Core Team 2009).

The results indicate that the vegetation gradients represented by the

residuals of each factor (Factor 1-4) vary on different spatial scales (Fig. 2.5).

Variograms of the Matheron family, a family of semivariogram models where the

degree of smoothness of the random field is controlled through a shape

parameter (kappa) (Pardo-Iguzquiza and Chica-Olmo 2008), were fit for Factors

1, 2 and 4, Fig. 2.5A,B,D), whereas an exponential variogram (special case of

the Matheron family) was fit for Factor 3 (Fig. 2.5C). The first and third factors

show large-scale patterns as revealed by their ranges of spatial dependence.

The variogram of Factor 1 has a range of 3,380 m., whereas the variogram of

Factor 3 is monotonically increasing within the extent of the sample variogram

and consequently has a larger range. The variograms of Factors 2 and 4 show

short ranges of spatial dependence (close to a pure nugget effect) suggesting

that processes governing their spatial patterns show small scale variability.

Universal Kriging

Universal kriging is a spatial interpolation technique that can incorporate

environmental data and spatial dependence in the modeled error to predict at

locations without observations and generate accurate vegetation distribution

maps (Pfeffer et al. 2003, Pebesma and Wesseling 1998). Universal kriging was

done on the regression residuals and the interpolated residuals were added to a

trend surface to predict factor scores at unobserved locations. This trend

surface was based on the regression equation in equation 3 (Pfeffer et al.,

Page 60: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

60

60

2003). The predicted scores were used to create four factor score maps. In

addition, the universal kriging approach was used to estimate the prediction

error (standard deviation), which is typically increasing as a function of the

distance to observation locations (Stein and Corsten 1991).

Figure 2.5 Maps of the kriged estimates of factor scores and the semi-

variograms of the residuals of the regression between factor axes and remotely

sensed and ancillary data; Fitted variogram models: Mat: Matheron family, Exp:

Page 61: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

61

61

Exponential. Values between brackets are nugget effect, structured variance

and variogram range, respectively. (A) Factor 1; (B) Factor 2; (C) Factor 3; (D)

Factor 4.

Continuum representation of vegetation spatial patterns

The score maps in figure 2.6 show the vegetation spatial patterns predicted by

universal kriging. The score maps of the first and third factor axes (Fig. 2.5A

and C) show mainly large-scale variability. These axes, as mentioned earlier,

mostly represent spatial variation of tree life forms. Contrarily, the score maps of

the second and fourth axes (Fig. 2.5B and D) representing the occurrence of

herbaceous and shrub layers, respectively, show small-scale spatial variability.

Examining the pattern of the prediction errors of the scores for each factor axis

(Fig. 2.6), one can infer to which extent sample data and image data contribute

to predictions. When the range of the semivariogram is large, as seen in the

semivariograms of Factor 1 and 3 (Fig 2.5A,C), the prediction errors increase

slowly with the distance away from samples. On the other hand, a short range

in the variogram results in prediction errors increasing rapidly with distance

away from samples, as is the case with Factor 2 and 4. Image data will in this

case have greater impact on predictions. Nevertheless, the quality of the factor

score maps is not only related to differences between small-scale and large-

scale spatial variation but rather reflects the explanatory strength of the

relationship between factor axes and image derived variables as shown by the

mean error in the score maps. According to these averages, Factor 1

Page 62: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

62

62

represents the most accurate map (mean SD = 0.51) followed by Factor 2

(mean SD = 0.64), Factor 3 (mean SD = 0.69) and Factor 4 (mean SD = 0.87).

Figure 2.6 Maps of the standard deviation of the predicted error resulting from

universal kriging; (A) Factor 1; (B) Factor 2; (C) Factor 3; (D) Factor 4.

Page 63: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

63

63

Spatial distribution of plant communities across the floodplain

In the final part of this procedure, we combined results from spatial and

non-spatial analyses generated as described in the former sections to create

the final map of plant communities. The clusters/communities centers,

calculated in the section ‘IDENTIFYING VEGETATION COMMUNITIES’ were

used to assign each location on the map to a community class. This was done

by calculating Euclidean distances between centers and predicted scores

values. Each location was then assigned to the community whose center was

nearest to the predicted score values at that location.

The map of plant communities (Fig. 2.7A) resulting from this classification

method shows the predicted spatial distribution of the seven identified plant

communities on the floodplain. Grassland (16% of coverage), Shrubland (30%

of coverage) and Monodominant forest (32% of coverage) sum up to 78% of the

coverage at the studied site. These communities mostly appear as large and

contiguous patches across the site. Alluvial forest and Alluvial low forest, as

expected, appear as strips covering exclusively places close to water bodies:

along rivers, channels and surrounding baías, i.e. temporary or permanent

lakes seasonally connected to the river. These two communities cover just 4%

(2% each) of the studied floodplain. The greatest portion of the 10% of Open

savanna that covers the study area is located towards the Northern boundary.

The 8% of Dense savanna is found as small patches generally surrounded by

Open savanna and as a big patch beside Monodominant forest.

Page 64: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

64

64

Figure 2.7 (A) Predicted distribution of the plant communities identified at the

study site. (B) Results of leave-one-sample out cross-validation. Percentage of

predicted classes at sampling locations. Each bar shows the results for

Page 65: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

65

65

sampling locations with a certain observed class (indicated by the colors at the

bottom of the C panel). (C) Idem, leave-five-out cross-validation. N = 115.

Evaluating uncertainty

Vegetation mapping using statistical approaches carries different sources

of uncertainties related to sampling scheme, interpolation errors, sampling

support, data quality, lack of data and others, which may compromise the

model’s capability of accurately predicting vegetation patterns (Guisan and

Zimmerman 2000, Pfeffer et al. 2003, Miller et al. 2007). The predictive success

of our mapping approach was evaluated using cross-validation (Efron and

Tibshirani 1986) and random-simulations (Bourennane et al. 2007), both

performed in R (R Development Core Team 2009).

Cross-validation

We have used cross-validation to investigate the sensitivity of vegetation

predictions performed by universal kriging as a result of sampling variability

(Pfeffer et al. 2003). Two resampling techniques were applied: leave-one-out

cross-validation (LOOCV) and leave-five-out cross-validation (LFOCV). The first

technique is the standard procedure (Efron and Tibshirani 1986) which consists

of omitting one sample at a time from the data set and based on the remaining

observed values make predictions at this location using the interpolation

technique, i.e., universal kriging. Because samples/plots within the same trail

are considerably closer to other observations than the typical distance between

prediction locations and observations locations (Miller et al. 2007), LFOCV was

used to test the prediction quality of the model when the whole trail, that is, five

Page 66: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

66

66

plots, is left out to make predictions. Vegetation classes were assigned from the

predicted scores and compared with the observed vegetation classes at the 115

sample plots.

Overall agreement between predicted and observed classes does not

differ substantially between the two resampling techniques: leave-one-out

results in 52.2 % agreement and leave-five-out in 48.7 % agreement. Both

techniques show that accuracy in classification varies according to the

community type (Fig. 2.7B and C). Communities which have been observed on

a large number of plots and occupy large portions of the vegetation map, such

as Monodominant forest and Shrubland, are less sensitive to sampling density

than those communities which occur in smaller and few patches, such as

Alluvial forest and Alluvial low forest. Consequently, communities observed in

few of the plots are wrongly classified also for LOOCV (Fig. 2.7B). Other

possible causes of uncertainty in classification from our mapping approach

derives from the similarity between community types having a small distance

between cluster centers in the ordination space (Fig. 2.4). Communities such as

Alluvial forest and Dense savanna are frequently predicted to be their

neighboring communities, namely, Monodominant forest; and Alluvial low forest

are frequently predicted to be Shrubland (Fig. 2.7B and C).

Simulation

A Monte Carlo approach was applied to examine the uncertainty of our

method (Legendre and Legendre 1998). In this approach, we performed the

same universal kriging, however creating random realizations of score maps

conditioned to the observations instead of predicted values as was done in the

Page 67: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

67

67

original procedure. This was done by simulating 1000 realizations of score

maps for each factor with Gstat (Pebesma, 2004), based on the scores at the

observation locations and the fit variograms. These realizations reflect the

prediction uncertainty at the prediction locations; all realizations are equally

probable. For each realization, we calculated the vegetation pattern, using the

same Euclidean distance algorithm applied in the original mapping procedure.

This was repeated for all 1000 realizations, resulting in 1000 realizations of

vegetation community maps. Two realizations are shown in Fig. 2.8 B, C. From

these 1000 realizations, we created a map showing the probability, from 0 to 1,

that a certain community is found in a 40 m grid cell (Miller and Franklin 2006)

(Fig. 2.8). On this map, a value 1 indicates zero prediction uncertainty.

The result shows that the quality of classification varies spatially, even

though the proportion and arrangement of communities observed in the original

map is preserved to a great extent. The central zone of a community patch is

more likely to be classified correctly than border areas, as shown by the

increasing probabilities towards the center of patches of communities (Fig.

2.8A). This might be related to intrinsic uncertainties in classification of natural

ecotones reflected in the overlapping of score values of very close communities

in the factor space. The quality of classification also varied between

communities. Classification of Dense savanna and Open savanna, for instance,

exhibit lower probabilities of being in the correct class as indicated by their more

random distribution across the landscape (Fig. 2.8B and C). Here, sampling

configuration and distance between clusters in factor space are an important

source of errors.

Page 68: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

68

68

Figure 2.8 Results of Monte Carlo simulation, using 1000 random simulations.

(A) The colors on the map indicate the vegetation class with the highest

probability of occurrence at a cell. A color gradient is used to show the value of

this highest probability; (B) Maps of two single random realizations, color scale

is identical to Figure 2.8.

Page 69: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

69

69

2.7. Flood duration-vegetation relationship

The relationship between vegetation distribution and flooding was

assessed by comparing the plant community map with a flood duration map as

in direct gradient analysis. The flood duration map (Fig. 2.9) was created from a

digital elevation map and 38 years of daily recordings of the water level in the

River Cuiabá (Fig. 2.1B) provided by the Brazilian National Water Agency (ANA;

(http://hidroweb.ana.gov.br). The 40-m resolution digital elevation map was

created with universal kriging from 81 GPS elevation measurements at the site

and using SRTM DEM as an auxiliary variable (Valeriano and Abdon 2007). A

base station was installed for increased precision of the GPS measurements.

Flood duration and flood depth data were also monitored by direct reading of

staff gauges for two years (2007-2008) at the 23 sampling trails. The

relationship between flooding and elevation data was tested with Pearson’s

correlation coefficient. Statistically significant and strong correlations were found

among them (r > 70%; P ≤ 0.05) indicating the possibility of calculating flooding

duration values over the floodplain through the indirect relationship between

river water depth and elevation. Flood duration of a cell was calculated by

comparing the water level in the river and the topographical elevation of the cell

for each day as follows: if the elevation value at a cell was lower than the water

level in the river on a certain day, the cell was considered flooded that day. This

approach ignores spatial variation in water level associated with downstream

gradients in water level, local depressions containing water that is only partially

connected with the main river, and surface water fed by groundwater. However,

Page 70: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

70

70

the effect of these processes is relatively small as indicated by additional field

sampling with the staff gauges.

The flood duration map (Fig. 2.9) shows the number of flooded days per

year in the study area. Flood duration data extracted from this map were

classified into monthly intervals and the distribution of the plant communities

found in the vegetation map along this flooding gradient was plotted in Fig. 2.10.

Fig. 2.10 shows that the zonation of plant communities along the floodplain is

clearly related to the duration of inundation. Alluvial forest and Dense savanna

occur in areas with a flooding duration of less than two months. Monodominant

forest, although occupying a high proportion of the highest areas, has the

highest occurrence at intermediary flooding conditions, with a flooding duration

between two and four months. Open savanna is mostly found where flooding

lasts for four to six months per year. Grassland is found under almost the whole

range of flooding durations, however with peaks of occurrence in areas with a

flooding duration below two months and between four and six months of

inundation. Alluvial low forest is mostly situated at locations with a flooding

duration between 6-8 months. Shrubland dominates the areas with the highest

flooding duration. Above eight months of flood duration, there is no suitable

condition for tree species establishment and the landscape is occupied mostly

by Shrubland, Open savanna and Grassland. The occurrence of monodominant

forest in this last flood duration class might be associated with the coarse

representation of spatial variation in flood duration, illustrated in the map (Fig.

2.9).

Page 71: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

71

71

Figure 2.9 (A) Map with average number of days flooded per year at the study

site, calculated over the period 1969-2007; (B) Relationship between flood

duration (days yr-1) and elevation of the soil surface (meter a.s.l) observed at

the 23 study trails; (C) water level fluctuation in the River Cuiabá between 1969

and 2007. Vertical dotted lines indicate the occurrence of drier and wetter years.

Page 72: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

72

72

Figure 2.10 Fraction of occupied sites by the seven identified communities

along the flood duration gradient. Flooding gradient is divided in five flood

classes representing number of flooded months.

2.8. Discussion

We showed that it is possible to classify vegetation at locations in the

studied floodplain by measuring structural and floristic attributes of different

vegetation layers (herbaceous, tree, shrub and vines), and combining these

data with remote-sensing imagery and DEM data. The plant communities

described in an existing classification could be clearly identified as clusters in

Page 73: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

73

73

the ordination space, thanks to the floristic properties included in the analyses

that differentiated structurally similar but floristically different plant communities.

However, sometimes clusters showed overlap on a number of factor axes and

boundaries between clusters were not always accurate. Such overlap probably

indicates the existence of gradual changes in vegetation (Brzeziecki et al 1993),

which is not represented in our model with sharp boundaries between

vegetation communities. Thus, the vegetation community studied deviates

slightly from our crisp plant community model. This had two implications for our

analysis. One is the subjective determination of cluster boundaries in the

ordination space, particularly in cases where boundaries were not crisp. The

other is related to the interpretation of the uncertainty analysis. One of the

causes of uncertainty of the mapped vegetation is the uncertainty in the

assignment of an interpolated point to a cluster in the ordination space. Overlap

of clusters in the ordination space may actually represent transition zones

between plant communities, and are related to intrinsic uncertainty in

classification (see also, Fortin et al. 2000, Hernandez-Stefanoni and Dupuy

2007). Potential misclassification in these zones appears as uncertainty on the

interpolated crisp map, particular in areas close to mapped boundaries between

plant communities. However, the assumption of crisp plant communities as a

spatial concept is in most cases sufficient to interpret vegetation patterns, as in

our study (see also Austin and Smith 1989, Brzeziecki et al. 1993, Pfeffer et al.

2003).

The statistical approach described here shows the value of integrating field

observations and high resolution remote sensing. The field observations provide

Page 74: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

74

74

enough information to identify vegetation communities, while remote sensing

reduces the interpolation error because derivatives of the remote sensing image

explain a significant part of the spatial variation in vegetation. The use of

universal kriging is valuable here because parts of the remaining variability can

be modeled as a spatially correlated residual. These findings confirm that the

use of remote sensing and a spatial interpolation method reduce the uncertainty

in mapped vegetation, as was also shown in other studies (e.g., Guisan and

Zimmerman 2000, Ferrier et al. 2002, Pfeffer et al. 2003, Miller et al. 2007).

The different techniques used to evaluate the behavior of the statistical

model used for mapping vegetation, e.g. cross-validation and Monte Carlo

simulation, allowed us to identify possible causes of misclassification and

determine spatial prediction uncertainty (Congalton and Green 1999, Guisan

and Zimmerman 2000, Pfeffer et al. 2003). The accuracy levels of the

vegetation map derived from the mapping procedure described here and

assessed by cross-validation (e.g. 49 of 52%) were of the same magnitude as

to those found by Pfeffer et al. (2003) in their maps of Alpine vegetation (e.g. 50

to 65%). The uncertainties in vegetation classification that resulted from the

sampling density and configuration suggest that the map quality may be

improved when samples are collected at a higher density (c.f., Guisan and

Zimmerman 2000, Pfeffer et al., 2003, Miller et al. 2007). In geostatistical

approaches for vegetation mapping as used in this paper, large distances

between the observations directly affect the estimated accuracy of the

predictions (Miller and Franklin 2006, Miller et al. 2007). Our study showed that

the gap of vegetation information due to large-distance separated sampling

Page 75: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

75

75

points can be filled with information contained in the remote sensing images. As

a result of the sampling scheme used here, the systematical sampling produced

an uneven number of samples per community type and possible omission of

communities limited to small and scattered patches over the floodplain, as was

the case of Savanna forest (personal observation). Consequently, the level of

uncertainty in predictions varied among communities and in space.

Uncertainty assessment and its cartographic representation is an important

tool for management and research, indicating zones of high and low

classification confidence and helping to find strategies for mapping

improvement (Chong et al 2001, Guisan and Zimmerman 2000, Pfeffer et al.

2003, Scheller and Mladenoff 2007). Many strategies can be used in such a

statistical approach to improve vegetation map quality. Increasing the number of

samples and better sample designs are the most obvious ways to improve

classification accuracy (Guisan and Zimmermann 2000, Pfeffer et al. 2003,

Rempel and Kushneriuk, 2003). There are also other image derived predictors

that could have been included in this study, such as digital maps of soil

properties (e.g. soil texture) or flooding attributes.

Our analysis of the causes of vegetation zonation on the floodplain

indicated that flood duration is an important determinant of plant community

distribution in space, influencing spatial transitions between different plant

communities (Zeihofer and Schessl 2000, Damasceno-Junior et al. 2005).

Different mechanisms of tolerance to prolonged flooding evolved by species of

a community (c.f. Parolin 2009) might be related to vegetation zonation by

controlling expansion of different set of plants (Damasceno-Junior et al. 2005).

Page 76: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

76

76

On the other hand, non-linear response of communities to the flood duration

gradient, as was the case of Grassland, indicate that interaction with

neighboring communities might have a strong influence on the vegetation

distribution of these communities (Fig. 2.10) (Austin 2002). Based on these

findings, we conclude that vegetation zonation in the studied floodplain might be

influenced not just by physiographic limits from flood duration, as stressed in

most of the studies in the Pantanal (Junk 1989, Nunes da Cunha and Junk

1999, 2000, Zeihofer and Schessl 2000), but also by biological constraints

related to competition between neighbors (Tilman 1994).

The significant advantage of the mapping approach described in this

paper is that detailed biological information present in field observations can be

integrated with high spatial resolution remotely sensed data producing accurate

vegetation maps. Different from ‘classical’ approaches to vegetation class

mapping, our modeling carries quantitative information on vegetation variability

allowing future application in modeling concerned with the effects of

environmental shifts on biological patterns and processes (Arieira et al. in

preparation; Brzeziecki et al 1993). We believe that mapping of plant

communities by integrating field observations and high-resolution imagery is a

promising approach for conservation assessment and long-term ecological

monitoring in extensive wetland areas.

2.9. Acknowledgments

The authors are grateful to the Brazilian governmental agencies, CAPES

and CNPq, for the financial support. Helpful comments and assistance were

provided by P. Girard, Peter Zeihofer, Arnildo Pott, Vali J. Pott, Sandra Santos

Page 77: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

77

77

and José F. M. Valls. We also thanks to the Social Service of the Commerce

(SESC) and technicians and students of the Federal University of Mato Grosso,

for the technical support in field work.

CAPÍTULO 3

MODELLING WETLAND VEGETATION DYNAMICS BASED ON

SPATIO-TEMPORAL INTERACTION AND FLOODING

TOLERANCE OF PLANT COMMUNITIES IN THE PANTANAL

MATOGROSSENSE (BRAZIL)

Com contribuição de: Derek Karssenberg e Cátia Nunes da Cunha

Abstract Predict whether and how vegetation will change in response to

environment shifts is a current issue for ecologists due to strong alterations in

habitat quality by human activities. Vegetation dynamics in wetland ecosystems

are considered associated to hydrological dynamics. However, spatial

interaction among neighboring species can also drive vegetation to different

states and transitions because of the complex nature of ecosystem dynamics.

Understanding the mechanisms involved in vegetation dynamics usually needs

to account to long-term and detail vegetation records that are not always

available. Modelling approaches have been developed to help us to describe

and interpret complex ecosystem behaviours. Spatiotemporal Markov Chain

model is used to implement and test our conceptual vegetation successional

model for the Pantanal wetland vegetation. STMC aggregates the main aspects

Page 78: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

78

78

of two other models used to study vegetation dynamics: cellular automaton (CA)

and Markov Chain models (MC). The conceptual successional model is

developed based on literature and expert knowledge about physiological plant

limits, life history traits and ecosystem functioning. The mathematical

formalization of the conceptual model is done by giving transition probabilities

among vegetation states based on spatial effect among neighboring

communities and environmental effect over vegetation development. We

calibrate the model by comparing observed and simulated spatial patterns using

landscape indices. Space-time vegetation patterns are assessed and insights

are gained about the underlying mechanism of vegetation dynamics. We

observed that the transitions among vegetation states are controlled by the

flooding condition and the diversity of neighbors. Intermediary flood conditions

and high neighbor diversity are associated to less stable vegetation dynamics.

Changes in space-time vegetation patterns under four flooding change

scenarios are forecasted. We found that extreme drought scenario exerts the

strongest impact on the vegetation of the studied landscape, modifying

substantially the spatial pattern of vegetation distribution. The model developed

in this study allowed us to explore some hypotheses about vegetation change

into the Pantanal and compare our findings with those found in other wetlands.

Key words: 1.- cellular automata; 2.- scenarios; 3.- vegetation change; 4.-

floodplain; 5.- dynamic modelling; 6.- Markovian processes; 7.- climate

changes, 8.- flooding, 9.- succession

Page 79: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

79

79

3.1. Introduction

The sensitivity of wetland ecosystems to climate oscillations is a key

element for understanding vegetation dynamics (Junk et al. 2006b). Because

the dynamics of wetland ecosystems are intrinsically connected to hydrological

regime, changes in precipitation and evapotranspiration patterns, that affect the

water balance in the system (Junk 2002), will very likely change the realized

environmental space (Jackson and Overpack 2000) (e.g. flood spatial patterns)

and, consequently, may modify the spatial pattern of the vegetation. However,

we are not sure when and how these changes will affect vegetation community

distribution. This will not only depend on the magnitude and rates of

environmental change, but, also, on species characteristics, such as dispersion

ability and tolerance to new environmental states (Jackson and Overpeck 2000,

Walther et al. 2002, Davis et al. 2005).

Vegetation communities are not static entities, they rather change

frequently over time and space, adjusting to a fluctuating environment. These

changes may be caused by either, plant interactions through mechanisms of

facilitation, tolerance or inhibition (i.e. autogenic succession), or external forces,

such as flood events (i.e. allogenic succession) (Connell and Slatyer 1977). The

strength, frequency and direction of environmental shifts may determine the

permanence (i.e. length of time before a change occurs) of communities and

the successional direction of the change, sometimes resulting in continuous and

progressive change, others, setting back certain characteristics formerly

acquired by the community, such as diversity and productivity (Whittaker 1967,

Connell and Slatyer 1977). The result of such a dynamic system is that, under a

Page 80: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

80

80

general expected trend in vegetation shifts, such as those governed by broad-

scale climate conditions, the complex patterns that emerge from species

interactions may cause uncertainty in vegetation response to abiotic changes

(Jackson and Overpack 2000, Ives et al. 2007).

Mathematical formalization of descriptive successional models has been

developed by ecologists, over the last decades, aiming at testing hypotheses

and making predictions about future states and distribution of vegetation under

different environmental scenarios (Hulst 1980, Usher 1981, Baptist et al. 2006).

Different approaches are used to model vegetation dynamics (Hulst 1979,

Acevedo et al. 1996, Baltzer et al. 1998, Caswell and Etter 1999, Reynolds et

al. 2001, Yemshanov and Perera 2002, Baptist et al 2006, Scheller and

Mladenoff 2007). Gap models, for instance, focus on plant individuals, requiring

detail characteristics on establishment, growth and mortality to describe

vegetation dynamics in small patch sizes (Reynolds et al. 2001). Contrarily,

transition or Markovian models focus on the orderly of succession processes,

using transition probabilities among discrete vegetation entities (Usher 1981).

Individual-based models, as is the case of gap models, despite bringing an

opportunity to make fine-scale and, maybe, more realistic predictions about

changes (van der Valk 1981, Reynolds et al. 2001), may result in high

computational costs (Scheller and Mladenoff 2007); beside, because it requires

large number and high quality data, may eventually become too complex to

have practical applications (Usher 1981). Contrarily, Markovian models,

although using simple representations of processes, have shown to be a

valuable approach to interpret and compare mechanisms of succession (Hulst

Page 81: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

81

81

1980, Usher 1981) and predict the impact of different scenarios of external

forcing, namely, climate change, fire events or management activities, on

vegetation dynamics (Iverson and Prasad 2001, Mouillot et al. 2002, Hamann

and Wang 2006). Hybrid approaches that combine the strongest aspects of

different model types have also been developed (Acevedo et al. 1996, Baltzer

et al. 1998, Reynolds et al. 2001). Spatio-Temporal Markov Chain model

(STMC) is an example of that (Baltzer et al. 1998). By including spatial aspect

of cellular automaton theory in the Markovian succession framework, STMC is

able to mimic complex system behaviours (Wolfram 1984, Baltzer et al. 1998).

The present study is the first attempt to describe and understand spatio-

temporal dynamics in vegetation communities in the Pantanal Mato-grossense

(Mato Grosso, Brazil) using a spatially explicit model. This will be done through:

(1) the creation of a conceptual successional model, considering the effects of

flood duration and spatial interactions between neighboring communities on

vegetation changes; (2) the mathematical formalization of this theoretical

framework using spatio-temporal Markov chain model; (3) the calibration of

model parameters by comparing simulated and observed vegetation patterns;

(4) the comparison between ecological concepts and model behaviour, and (5)

the investigation of impacts of different flood scenarios on current vegetation

patterns.

The Pantanal Mato-grossense, one of the largest floodplain wetland in

the world, is internationally recognized as a region of overwhelming value and

high conservation priority (Ramsar Information, Bureau 1998; Junk and Nunes

da Cunha 2005). This region encompasses a great variety of aquatic, terrestrial

Page 82: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

82

82

and transitional aquatic-terrestrial ecosystems (ATTZ) (Junk et al. 1989). In

wetlands, such as the Pantanal, flood conditions are important environmental

filters to plant establishment (Keddy et al. 2009), resulting in successive or

cyclical changes among vegetation states, that are associated with dispersion

strategies, growth rates and tolerance to stress (van der Valk 1981, Casanova

and Brock 2000). Frequent climate fluctuations occurred in the Pantanal during

the Quaternary, resulting in alternation between more humid and dry

environments (Assine and Soares 2004). Current climate changes, however,

are predicted to affect low latitudes by increasing year-to-year variations in

precipitation and causing heavy drought and flood events (Junk 2002). The

short and long-term consequences of these events on composition and spatial

distribution of vegetation are not fully understood. Understanding how sensitive

vegetation patterns are to different flood scenarios is one of the objectives of

this work.

3.2. Study area

Abiotic characterization

The Pantanal contains a large variety of alluvial ecosystems with different

drainage patterns, flooding characteristics, geomorphologic aspects and

vegetation types covering about 150,000 km2 of the upper Paraguay basin (Fig.

3.1) (Assine and Soares 2004). The climate of this region is tropical humid with

marked seasonality between winter and summer periods (Köppen 1948). The

summer from November to April is characterized by high temperatures (average

day temperature 34oC) and it is the season with the largest amount of

Page 83: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

83

83

precipitation (Fig. 3.1). The precipitation decreases in winter, causing this

season to be very dry (de Musis et al. 1997). The water level in the rivers of the

Pantanal follows the seasonal trend in the precipitation. Due to the poor surface

and subsurface drainage and the smooth, low topography relative to the river

level (Alvarenga et al. 1984, Assine and Soares 2004), large areas of the

Pantanal are flooded every summer (Junk 1993, Hamilton et al. 1997). Climate

oscillations have been shown to be the main cause of the observed multi-year

period of cyclic variation in flooding (Junk et al. 2006a).

Figure 3.1 Study site. Natural Reserve SESC Pantanal located at the Pantanal

Mato-grossense, Mato Grosso, Brazil. The water depth in the rivers of the

BRAZIL

Pantanal

N

Nature Reserve

River S

ão Lo

urenço

SCALE

Rive

r Cui

abá

0 105 Km

Pantanal

MT

MS

16o

21o

55o58o

16o

15o

100200300400500

0N D J F M A M J J A S O

Precipitation, mm

1.436 mm

Depth, cm

Page 84: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

84

84

Pantanal follows the seasonal trend in the precipitation, resulting in river water

overflow. Mean annual water depth fluctuation of the River Cuiabá (1963-2000)

and mean precipitation near Cuiabá are provided by INMET (National Institute

of Meteorology of Brazil) and river level data by DNAEE (National Department

of Waters and Electric Energy of Brazil).

Vegetation

The Pantanal vegetation presents floristic elements of three important

morphoclimatic and phytogeographic domains, i.e., Cerrado (Brazilian

savanna), Amazonia and Chaco (Ab`Saber 1988). Savanna vegetation types

are dominant physiognomies in the Pantanal (67%), but are not the only one:

semideciduous forest, gallery forest, swamp, Chaco, pioneer formations such

as monodominant forest of Vochysia divergens Pohl (Silva et al. 2000) are the

remaining components of the vegetation mosaic. The variability in water depth

and flooding duration and the temporal connections and disconnection

established between different elements of the landscape by means of the flood

pulse (Junk et al 1989) are considered the preponderant causes of the high

diversity of biological communities in the Pantanal (Wantzen et al. 2005),

dictating where and when plant species with different life strategies and flooding

tolerance will appear (Junk et al. 2006a).

The impact of historical land use on the current landscape pattern of the

Pantanal is not fully understood. However, ecosystem functionality seems to

have maintained untouched over the last Centuries. There are three main

reasons that ensured the Pantanal conservation: extensive cattle ranching as

Page 85: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

85

85

the dominant economic activity over the last 300 years; its countryside location;

and, last, the existence of annual flood events (Pott and Pott 2004, Junk and

Nunes da Cunha 2005).

Studied site We have taken a 60 km2 floodplain located at a private nature reserve

(RPPN SESC Pantanal) in the Northern Pantanal (16 o 30’ – 16o 44’S and 56 o

20’– 56o 30’W), Mato Grosso, Brazil (Fig. 3.1), as study area to describe and

test a conceptual model on vegetation succession in ATTZs. Since its creation,

in 1998, this reserve is mainly used for scientific purposes. This site is

representative of a large part of the Pantanal, regarding vegetation and

environmental conditions. The fluctuation in annual water level in the river

Cuiabá is the main cause of periodic flooding on the floodplain.

The vegetation and flooding duration maps of the studied site were

provided by Arieira et al. (in preparation) (Fig. 3.2). This study uses

sophisticated statistical classification, interpolation and error propagation

techniques in order to describe the spatial patterns in wetland vegetation

communities and flooding duration. The study includes the description and

analysis of field sampling and remotely sensed data, the classification of

vegetation communities, the universal kriging procedure to map the

communities, and an evaluation of relations between mapped vegetation and

flooding duration. In addition, it describes an uncertainty analysis to describe

the reliability of the findings.

Page 86: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

86

86

Figure 3.2. (A) Predicted distribution of the plant communities and (B) spatial

pattern of flood duration on the study floodplain, identified at the study by Arieira

et al. (in preparation).

A

16 46’So

56 18’Wo 56 23’Wo

16 57’So

0 500 1000 meter

Grassland

Secondary forest

Alluvial semideciduous forest

Shrubylands

Low tree and shrub savanna

Monodominant forest of PohlVochysisa divergens

Savanna forest

%

%

%

%

%

%

%

LEGEND365

0

flood duration

B

Page 87: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

87

87

3.3. Spatio-temporal Markov chains

The conceptual framework of vegetation succession was implemented

and tested using Spatio-Temporal Markov Chain (STMC) (Baltzer et al. 1998).

STMC aggregates the main aspects of two other models frequently used to

model vegetation dynamic: cellular automaton (CA) and Markov Chain models

(MC). The capability of CA mimicking complex ecosystem behaviors in a

relatively simple mathematical way (Wolfram 1984) added to easy

representation in MC of succession development in a transition probability

matrix (Hulst 1979), make STMS a good candidate to model vegetation

dynamics in this study. Besides, because STMC is able to incorporate two

important dimensions of ecological processes, spatial dependence and

temporal dependence (Baltzer et al. 1998), stochastic processes such as plant

interaction and dispersion mechanisms (Logofet and Lesnaya 2000), as well as

the deterministic aspect linked to successional evolution (i.e. future stages

depend on past stages) may be accommodated into the model (Colasanti and

Grime 1993).

The construction of the STMC follows three steps: first, conceptual model

of vegetation succession is described based on expert knowledge and

literature; second, this theoretical model is transformed in mathematical

statements; and third, the model parameters are calibrated using inverse

modelling.

Page 88: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

88

88

Conceptual successional model

Principles The present study proposes a conceptual model on vegetation

development in ATTZs in the Northern Pantanal. The framework of this

successional model was developed based on expert knowledge, field

observations, and literature (cf. Yemshanov and Perera. 2002). Although the

model concepts were created based on generic concepts on the vegetation

dynamics of the Pantanal, vegetation communities used in this study to illustrate

such dynamics are somewhat specific for our research area. Succession was

conceived here as a mechanistic process, by modelling the chances of seral

community types to change into a place as a result of the environmental

condition and spatiotemporal biotic interactions (Guisan and Zimmermann

2000).

The conceptual model is created based on a number of rules that drive

spatio-temporal vegetation changes and bound our interpretation of the model

outputs. These are: 1) vegetation communities (VC) are discrete entities; 2)

there is a fixed set of possible transitions between VCs, i.e. ‘succession’; 3)

speed of successional development is given by transition probabilities; 4)

transition probabilities depend on environmental site condition and

neighborhood effect.

Rule 1: Aggregation of species according to some defined criterion (e.g.

regeneration requirement) can be a big deal in modelling of tropical vegetation

types because of its rich flora (Acevedo et al. 1996). Discrete states derived

from this aggregation can be defined according to species composition,

Page 89: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

89

89

successional stages, vegetation classification units or land cover types

(Yemshanov and Perera. 2002). Succession was here approached at broad

level, where few discrete vegetation states, here considered seral community

types, are defined by their physiognomic aspect and dominant species.

Rule 2: We assumed that there is a limited number of discrete states in which

succession moves on and back, constrained by biological species life traits,

what allowed us to describe and interpret succession in a mechanistic and

feasible way (Moore 1990). With a finite number of states, Markov chains can

be created by determining an order followed in succession. In our model, late

successional stages have chance to return to initial ones, what allowed us to

simulate cyclical succession (Hulst 1979), influence by disturbance (i.e. fire,

flooding) and natural regeneration processes of vegetation.

Rule 3: Once established, a seral community type takes some time to develop

to another one over the successional course. This time lag before transition

depends on the life span, growth rate and mortality of the individuals of a

community (Moore 1990, Acevedo et al. 1996) and varies in response to the

flood regime (Parolin 2009). In such time-dependent Markov model, transition

probabilities are controlled by these waiting times (Logofet and Lesnaya 2000),

that, in turn, govern the speed of transitions. The long the waiting time is, the

lower the probability of change among states becomes.

Rule 4: External and internal ecological forces are important constraints for

plant establishment and successional development (Tilman 1994). Flood

duration is considered the main external cause of vegetation shifts in this study,

due to its influence in colonization, persistence, mortality and growth rates of

Page 90: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

90

90

plants (van der Valk 1981, Kirkman et al. 2000, Kandus and Malvarez 2004,

Parolin 2009). Vegetation shifts can also be promoted by internal forces, such

as plant interactions (e.g. competition) and dispersal mechanisms (Grime 1979,

Tilman 1994). Both mechanisms are considered spatially dependent (Gardner

and Engelhardt 2008), because the chances of dispersion decreases with the

distance from the propagule source (Janzen 1970); and competition might occur

among species that share similar and limited resources (Colasanti and Grime

1993). These environmental and neighbouring effects are considered here the

main forces influencing transitions among vegetation states.

Vegetation states and transitions

Vegetation states are considered those vegetation types showed on the

existing map of vegetation (Fig. 3.2A). These vegetation types are frequently

found in other ATTZ in the Pantanal, what makes the studied site relevant to

test our conceptual successional model for ATTZ of the Pantanal. They were

identified based on dominant species and structural characteristics of different

plant functional groups (i.e. shrub, tree, herbs, vines) (Arieira et al. in

preparation) and represent physiognomies rather than plant associations.

The scheme of succession elaborated in this study is shown in figure 3.3.

Grassland represents the starting point of our successional model. It is

characterized by predominance of an herbaceous layer. Woody species are

completely absent or exist in very low densities. Presence in seed bank, high

growth rates and high fecundity makes herbaceous species to show high

regeneration ability for colonizing open areas and regenerating after

disturbance (Table 1). Despites we consider here Grassland (state 1) as a

Page 91: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

91

91

single state, a variety of assemblages with differences in dominant species,

biomass content and density of woody species are included in this state. Mostly

composed by flood-tolerant species, such as Scleria leptostachya, Euphorbia

tymifolia, Setaria geniculata, Cyperus campestris, Paspalum hydrophyllum,

Panicum spp, Axonopus purpussi, Axonopus leptostachyus, Euphorbia

tymifolia, Grassland can occur in different positions on the flooding gradient. As

flooding duration decreases, density of woody species increases. This change

is usually associated to transitions from Grassland to other savanna types,

namely, Open savanna (state 2) and Dense savanna (state 5) (Ratter et al.

1988), suggesting that under long-lasting flooding, successional development

towards woody savanna may be delayed, or even avoided by keeping

succession in a cyclical dynamic (Kirkman et al. 2000). This manner, it is

expected that drier years in the Pantanal will favor colonization by savanna

pioneer woody species, such as Byrsonyma orbygniana, Curatella americana

and Sclerolobium aureum. Consequently Grassland (state 1) will be succeeded

by Open savanna (state 2) and Dense savanna (state 4), unless increasing of

fire events follows these dry years and prevent succession development

(Loehle and LeBlanc 1996). On another hand, wetter years may promote the

rapid colonization by pioneer and flood-tolerant species, pushing succession

towards two possible trajectories: 1) Grassland is succeeded by Monodominant

forest (State 6) due to the spread of the fast-growing and gap-requiring tree

species V. divergens (Table 1) (Nunes da Cunha and Junk 2004); 2) Grassland

is succeeded by Shrubland (state 3), due to the very dynamic response of shrub

species, such as Mimosa pellita, Laetia americana and Albizia polycephala, in

Page 92: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

92

92

areas under strong disturbance. Once established, Shrubland can persist for

many decades (Nunes da Cunha and Leitão-Filho 2007), due to the inhibition

effect caused by the shrub layer over tree and herb establishment. Its stable

state can be disrupted when new disturbances displace large areas dominated

by this community. Unlike Shrubland, Monodominant forest persistence has no

long-term guarantee (Arieira and Nunes da Cunha 2006), since regeneration

ability of V. divergens is limited to gap areas and depends on seed availability.

Even though, succession of Monodominant forest upwards more mature

vegetation states has not been recorded yet. In spite of there may be

overlapping between Shrubland and Monodominant forest occupancy,

Shrubland appears in low-lies position, while Monodominant forest mostly

occupy intermediary inundation periods. Succession in Alluvial forest (state 7)

looks like a classical facilitation model of succession described by Connell and

Slatyer (1977), where a set of species tolerant to stress and with high

colonization ability such as Sapium obovatum (Wantzen et al. 2005) and

Cecropia pachystachya, favor the establishment of better competitor species

with slow growth rate, short dispersion capability and shade tolerant such as

Cupania castaneifolia, Trichilia catigua, Mouriri guianensis, Inga vera and

Brosimum lactescens. The community state present in the first moment is called

here Secondary forest (state 5), but is represented in the vegetation map by

Alluvial low forest due to its transitional state toward Alluvial forest (Pott 2007).

Due to different life strategies of the set of species belonged to these two

sequential stages, these stages are frequently found in different flooding

conditions. Secondary forest may succeed Grassland everywhere but its

Page 93: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

93

93

chances of developing to Alluvial forest increases as the flooding duraton

decreases. Most of the species of Alluvial forest tolerates both short-time

waterlogging and periods of water deficiency (Damasceno-Junior et al 2005),

although severe droughts, or extreme inundation events, may result in

increasing of seedling mortality (Condit et al. 1995). Possible diebacks between

stages are considered in the model, illustrating a dynamic ecosystem influenced

by disturbance (i.e. fire) and regeneration cycles.

Figure 3.3 Conceptual model of vegetation dynamics on Aquatic-Terrestrial

Transitional Zones in the Pantanal Mato-grossense. Successional changes

(solid arrows) occur from an initial herb dominated stage toward tree dominated

stages. Disturbance, such as fire and exceptional flood events may set back

succession to previous stages (arrows in dotted lines). Transition probabilities

grassland

monodominant forest

open savanna

alluvial forest

secondary forest

dense savanna

1

2

4 5

6 7

scrubland3

30-yr / 40-yr

0.5 / 0.8

80-yr / 80-yr 30-yr / 300-yr

70-yr / 60-yr 180-yr / 100-yr

300-yr / 200-yr300-yr / 100-yr

0.6

/0.1

0.05 / 0

.6

0.28 / 0.14

0.95

/ 0.

4

0.99 / 0.9

0 .01

/ 0.

1 0.10

/0.

12

1.0 / 1.0

0.02 / 0.64

1.0 / 1.0

0.5 /0.2

1.0

/1.0

Page 94: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

94

94

among vegetation states ( ( )jip lk ,→ ) and waiting times before transitions ( kw , in

years) vary according with the vegetation position on wetter (right side values)

or drier parts (left side values) of the flood duration gradient. The strength of the

neighboring effect on transition probabilities is determined by a neighborhood

effect parameter term ( m = 18).

Mathematical formalization of the conceptual model

Model structure

The mathematical formalization of the conceptual model begins with the

definition of the spatial scale to which we are going to look at the process. We

have used a 60 km2 grid with i row number and j column number subdivided

into cells of 40 m (L) x 40 m (L). Each cell (L2), located at a specific coordinate

(x,y), is occupied by a community/ state (I) that have probability of changing into

other states in discrete time intervals (t=1,2,…,n; years).

As mentioned earlier, transition probabilities among states are driven by

both: habitat environmental suitability (i.e. flood duration) and the spatial

interaction between neighboring cells. This environmental and spatial

dependence of transition probabilities enables that the parameter values into

the transition matrix change according with the environmental site condition and

number of neighbors, as it is going to be shown.

Page 95: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

95

95

Table 2.1. Historical life traits and flood tolerance of characteristic species of the

seven successional states found at the experimental area. Adapted from

classification given by Budowski (1965) and Acevedo et al (1996).

Characteristic species Growth

speed Life span*

gap

requiring

Tolerance to

flooding

1. Grassland

Paspalum hydrophilum/

/Panicum spp/ Scleria

mitis

Axonopus purpusii/

Leersia hexandra

very fast very short, less

than 10 yr yes very tolerant

2. Open

savanna

Byrsonima orbygniana /

Annona cornifolia /

Axonopus purpusii

moderate usually 40-100

yr, some more yes Tolerant

3. Shrubland

Laetia americana /

Mimosa pellita / Peritassa

dulcis / Albizia

polycephala

fast very short, less

than 10 yr yes very tolerant

4. Secondary

forest

Crataeva tapia /

Ruprechtia brachysepala /

Sapium obovatum /

Cecropia pachystachya

fast usually 40-100

yr, some more yes Tolerant

5.

Monodominant

forest

Vochysia divergens/

Duroia duckei fast

usually 40-100

yr, some more yes Tolerant

6. Dense

savanna

Curatella americana/

Hymenae stigonocarpa /

Cordia glabrata/

Astronium fraxinifolium

slow very long, 100-

1000 no Tolerant/intolerant

7. Alluvial

Forest

Mouriri guianensis/

Ocotea diospyridolia/

Brosimum latescens

slow very long, 100-

1000 no Tolerant

Page 96: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

96

96

The number of input parameters used in the model is initially selected

based on the understanding of the system acquired in literature (Ratter et al.

1981, Ab’Saber 1988, Ponce and Nunes da Cunha 1993, Zeilhofer and Schessl

1999, Nunes da Cunha and Junk 2004, Damasceno-Junior et al. 2005, Arieira

and Nunes da Cunha 2006, Nunes da Cunha et al. 2006, Nunes da Cunha and

Leitão-Filho 2007, Pott 2007) and provided by ‘expert knowledge’. Knowledge

about tolerance to flooding (flood-tolerant; intermediate; flood-intolerant) and life

traits of dominant species of communities/states (Table 1) are used to

characterize succession by determining the transition probabilities among

vegetation states, the strength of the neighboring effect (neighboring effect

parameter) and waiting times to transitions (Yemshanov and Perera 2002,

Weaver and Perera 2004).

Transition probabilities are calculated in three steps: 1) waiting times are

defined for each vegetation state on the basis of the life span and the flood

tolerance of dominant species; 2) the environmental effect is accommodated in

the model by calculating the transition probabilities as a function of the flood

duration; and last, 3) the probabilities calculated in the second step are adjusted

to include the neighboring effect on the transition probabilities.

Waiting times

We have included in the mathematical model the parameter waiting time

( wk (i, j) , years), with k = 1, 2, ..,n and n, the number of vegetation communities,

to control the time in which one state/community remains until it changes to

another (Loehle and LeBlanc 1996). Maximum (mk) and minimum (nk) waiting

Page 97: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

97

97

times for each seral community are associated to the range of variation in flood

duration found in the study site, according with the impact of flooding on growth

rates and mortality of dominant species. These maximum and minimum values

are then used to calculate the final waiting time of each community in the cell,

as follows:

( ) ( ) ( )jiemnmjiw kkkk ,, ⋅−+= (1.1)

In Eq. (1.1), mk and nk are the values of the waiting time (years) for

community k for e(i,j) = 0 and e(i,j) = 1, respectively. e(i,j) correspond to

standardized flood duration values (d(i,j)) for each grid cell and are calculated

based on the accumulative influence of 38 years of flooding in the studied

floodplain and shown in figure 3.2B. Standardized flood duration (e(i,j), -) is

calculated as:

e(i, j) = d(i, j)− dmin( ) dmax − dmin( ) (1.2)

In Eq. (1.2), dmin is the minimum value of all d(i,j) values in the area, and

dmax the maximum value.

Environmental effect

The effect of flood duration on the transition probabilities among states is

included in the model by calculating probabilities as a function of the number of

Page 98: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

98

98

flooded days per year (d(i,j), days/year) and the waiting time (wk(i,j)). With a

time step of a year, the probability pk→ k (i, j) that the cell remains unchanged is:

pk→ k (i, j) = 1− 1 wk (i, j) (1.3)

The probability that the cell changes into another vegetation community

is calculated as a linear function of the flood duration:

pk→ l (i, j) = 1− pk→ k (i, j)( )⋅ pk→ l ,e=0 + pk→ l ,e=1 − pk→ l ,e=0( )⋅ e(i, j)( ), for each l ≠ k

with (1.4)

pk→ l ,e=0l≠ k∑ = 1 , and

pk→ l ,e=1l≠ k∑ = 1

In Eq. (1.4), pk→ l ,e=0 and pk→ l ,e=1 are the transition probabilities of vegetation

community k to change to vegetation community l given that the cell changes to

another state (defined by Eq. 1.3), for e(i,j) = 0 and e(i,j) = 1, respectively.

Neighboring effect

The neighboring effect is mathematically formalized by adjusting the

transition probabilities previously determined in the Eq. (1.3) and (1.4). First, for

each vegetation community k, the probability of transition to each of the

vegetation communities l, l=1,2,.., n is adjusted relative to the conditions in the

Page 99: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

99

99

neighbourhood. This is calculated for each cell, resulting in adjusted values

ak→ l (i, j)

ak→ l (i, j) = pk→ l ⋅ 1+ nl (i, j)( )⋅m , for each l (1.5)

with, nl(i,j) the number of cells with vegetation community l in the neighborhood

of the cell (i,j) under consideration. The neighborhood is defined as cells with a

spatial index (i+1,j), (i-1,j), (i,j+1), and (i,j-1). In Eq. (1.5), m is a neighborhood

effect parameter that control the strength of the neighboring influence on the

transition probability from k to l. The higher m is, the higher the neighboring

effect will be. It is assumed to be the same for all transition probabilities. Finally,

the ak→ l (i, j) values are standardized, resulting in transition probabilities

p*k→ l (i, j) , i.e. the transition probability for each cell from class k to class l, taking

into account the state of the neighboring cells:

p*k→ l (i, j) =

ak→ l (i, j)

ak→ l (i, j)l=1

n

∑ , for each k and l (1.6)

The transition matrix is implemented using Python programming language (cf.

Karssenberg et al. 2007) and run in the program PCRaster (PCRaster 2002).

Page 100: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

100

100

Neighboring effect

Spatial interaction between neighboring communities was

accommodated in our model by stating that the chance of a certain state

persists in the same state over time increases as the number of neighbors in

the same state increases. We consider the influence of the four cell neighbors

(first order neighborhood). This is mathematically formalized by adjusting the

transition probabilities, previously determined. First, for each vegetation

community k, the probability of transition to each of the vegetation communities

l, l=1,2,.., n is adjusted relative to the conditions in the neighbourhood. This is

calculated for each cell, resulting in adjusted values ak→ l (i, j)

ak→ l (i, j) = pk→ l ⋅ 1+ nl (i, j)( )⋅m , for each l (1.5)

with, nl(i,j) the number of cells with vegetation community l in the neighborhood

of the cell (i,j) under consideration. The neighborhood is defined as cells with a

spatial index (i+1,j), (i-1,j), (i,j+1), and (i,j-1). In Eq. 1.5, m is a neighborhood

effect parameter. It is assumed to be the same for all transition probabilities.

Finally, the ak→ l (i, j) values are standardized, resulting in transition probabilities

p*k→ l (i, j) , i.e. the transition probability for each cell from class k to class l, taking

into account the state of the neighboring cells:

Page 101: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

101

101

p*k→ l (i, j) =

ak→ l (i, j)

ak→ l (i, j)l=1

n

∑ , for each k (1.6)

The model was implemented using Python programming language (cf.

Karssenberg et al. 2007) and run in the GIS program PCRaster.

3.4. Model calibration

Procedure

Calibration of model parameters is an important step in modelling

procedures, providing parameter values best fitted to the reality. The model

parameters are calibrated using inverse modelling (IM). IM is suggested as the

only method available for model calibration in the absence of empirical

information on parameter values (Karssenberg 2002). Unlikely transitions, as

between Shrubland and Dense savanna, are considered fixed values in the

transition matrix and are not calibrated. IM yields posterior calibrated distribution

of the model parameters through an iteration of three steps: 1) selection of a set

of input maps (i.e. flooding duration map) and parameters (i.e. previous

parameters) for the dynamic model, 2) running the dynamic model with this set

of input data and parameters; 3) assessment of the model performance by

verifying the degree of agreement between model and observed outputs

(Hamann and Wang 2006). The observed output consists of the vegetation map

shown in figure 3.2A. This comparison between observed and model outputs

indicates if the model parameters are well adjusted or not. If the answer is

negative, the model parameters are changed and there is a loop back to step 1.

Page 102: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

102

102

The number of iterations can be reduced when results of previous iterations are

used in a better selection of inputs and parameters in step 1.

The comparison of the outputs is performed by quantifying the spatial

heterogeneity of the observed and modeled vegetation maps using: the fraction

of occupied cells per state/community along the flood duration gradient, the total

occupied area and the mean patch size of each state. The landscape patterns

are quantified using the software PCRaster. Mean patch size is calculated by

dividing total landscape per number of patches. Because vegetation patterns in

the studied area are associated to ecological processes, such as biotic

interactions and flood constraints (Arieira et al. in preparation), we assume that

similarities between observed and simulated patterns indicate that our

successional model efficiently represents the undergoing ecological processes

conducting vegetation development toward the current landscape.

Model performance

The calibrated model parameters are shown in figure 3.3. They

generated acceptable model predictions. The model runs cover a period of

15500 yr to reach a similar spatial pattern as the observed (Fig. 3.4). This long

time for achieving the observed pattern might be related to our assumption of a

dynamic steady state controlled by disturbance, and the large experimental

area used for modeling.

Page 103: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

103

103

Figure 3.4. (A) Spatial pattern of community distribution identified by Arieira et

al. (in preparation) and (B) resulted from our model. Uncertainty in vegetation

classification of the map in A is shown in (C), as two maps resulted from Monte

Carlo simulation (see Arieira et al. in preparation).

56 18’Wo 56 23’Wo

0 500 1000 meter

16 46’So

56 18’Wo 56 23’Wo

16 57’So

N

Page 104: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

104

104

The model seems to incorporate the main ecological forces driving succession

in the study ATTZ. The distribution of communities along the flood duration

gradient is represented satisfactorily in the modeled map (Fig. 3.5).

Figure 3.5. Model calibration. Comparison between original (bar) and modeled

(line) fraction of occupied area (log scale) by each vegetation states at different

classes of flood duration (monthly intervals).

Grassland

Secondary forest

Alluvial forestShrubland

Open savanna

Monodominant forest

Dense savanna

frac

tion

of o

ccup

ied

area

(log

10(n

))

flood duration class0-2 >2-4 >4-6 >6-8 >8

1

0

10

100

frac

tion

of o

ccup

ied

area

(log

10(n

))

flood duration class

1

0

10

100

frac

tion

of o

ccup

ied

are

a (lo

g10(

n))

flood duration class

1

0

10

100

frac

tion

of o

ccup

ied

are

a (lo

g10(

n))

flood duration class

1

0

10

100

frac

tion

of o

ccup

ied

area

(log

10(n

))

flood duration class

1

0

10

100

frac

tion

of o

ccup

ied

area

(log

10(n

))

flood duration class

1

0

10

100

frac

tion

of o

ccup

ied

area

(log

10(n

))

flood duration class

1

0

10

100

0-2 >2-4 >4-6 >6-8 >8

0-2 >2-4 >4-6 >6-8 >80-2 >2-4 >4-6 >6-8 >8

0-2 >2-4 >4-6 >6-8 >8 0-2 >2-4 >4-6 >6-8 >8

0-2 >2-4 >4-6 >6-8 >8

Page 105: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

105

105

The observed total fraction of the landscape occupied by each state (95 to 2127

ha) does not differ substantially from the simulated (23 - 2660 ha) (Fig. 3.6A). In

contrast, simulated patterns yielded mean patch sizes ten times higher than the

observed (Fig. 3.6B). Differences between simulated and observed spatial

patterns indicate some restrictions of the model and suggest that further

calibration can be necessary. The relatively simple mathematical formalization

of our succession model, related to the limited number of parameters used, may

have restricted the model representation of complex vegetation dynamics.

Including new parameters into the model could have improved the model ability

to simulate vegetation dynamics, but at the expense of an increasing in model

complexity and time spent in calibration.

Figure 3.6. Comparison of spatial patterns between the original and modeled

distribution of community states. A) total occupied area; B)mean patch size.

A B

Page 106: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

106

106

3.5. Model spatiotemporal behaviour

The ability to highlight emergent properties of ecological systems,

through few set of rules determining the interactions among the system

components is an important contribution of spatially explicit models (Scheffer

2009). Emergent system properties, such as diversity and stability are broadly

supported by ecological theories (Hutchinson 1961, Tilman 1994, Scheffer

2009), but the examination of the theory applicability is still an ecological issue.

We use theoretical background on Ecology to discuss the space-time behaviour

of our model. The model behaviour is examined by observing the frequency of

transitions among vegetation states, each year, over 5000 years (timesteps)

and the frequency distribution of ‘number of neighbors’ in different situations of

flood duration. Flood duration values on the map in Figure 3.2B are divided in

four classes separated at monthly flood intervals: class 1: from 0 to 2 months;

class 2: greater than 2 to 4 months; class 3: greater than 4 to 6 months; class 4:

greater than 6 months. We have used PCRaster to obtain values of frequency

of transitions and number of neighbors from grid cells of each flood class.

Figure 3.7 illustrates the space-time patterns resulted from this analysis.

Here, it is apparent that there is a trend in frequency distribution of number of

neighbors, accordingly with the cell position on the flood gradient. The longer

the flood duration is, the higher the proportion of cells completely surrounded by

the same vegetation state becomes (four neighbors). Contrarily, the highest

proportion of cells with the highest diversity of neighbors (number of neighbors

equal to zero) occurs where flooding lasts from 0 to 2 months. Intermediate

flood sites (flood class 2 and 3), i.e., sites where flooding lasts from 2 to 6

Page 107: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

107

107

months dominate the study site and show more intense dynamics. This might

result from the more balanced transition probabilities among community states

(Fig. 3.3) at these intermediate areas. On the other hand, the slower vegetation

dynamics in places that are flooded over very long periods (>6 months year-1) or

short periods (from 0 to 2 months year-1) might be controlled by long waiting

times and high probability of transitions among few vegetation states, generally,

Grassland and Shrubland (Fig. 3.3). In response to this slow dynamics,

Shrubland creates an aggregated distribution pattern (Fig. 3.4) that, in turn,

increases its chance of permanence on the site. Regardless the flood condition,

the mean frequency of change among vegetation states over 5000-yr (Fig. 3.7)

was low, varying between 4.7 and 6 changes over 5000-yr. This result suggests

that the modeled system reached an overall stability.

Page 108: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

108

108

Figure 3.7. Spatio-temporal model behaviour. Frequency of transitions

among vegetation states, each year, over 5000 years (dots) and frequency

distribution of ‘number of neighbors’ of 500 grid cells (bars), in four classes of

flood duration. Flood duration classes were derived from the map in Figure

3.2B: class 1: 0 to 2 months; class 2: greater than 2 to 4 months; class 3:

greater than 4 to 6 months; class4: greater than 6 months. Mean frequency of

changes among vegetation states is highest at intermediary flood sites.

Page 109: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

109

109

3.6. Scenarios

Scenarios for flood regime change

We have used the calibrated succession model to simulate short (i.e.

less than 102 yr) and long-term (i.e. greater than 102 yr) vegetation responses to

flooding regime shifts. Due to the above-mentioned restrictions of our model,

simulation outputs might be interpreted as suggestive of the sensitivity of

vegetation to environmental changes, rather than providing an accurate

prognostic of the future states of vegetation (Reynolds et al. 2001). Currently,

projections of climate changes have been suggesting contrasting trends to the

Pantanal, what is related to uncertainties in model predictions (Milly et al. 2005,

Marengo 2008). Warmer temperatures and increase in river flow are two

possible perspectives (Hulme and Sheard 1999, Marengo 2008). Due to the

current doubts regarding the future environment of the Pantanal, we establish

flood scenarios to represent contrasting trends of changes in the hydrologic

regime (namely, duration of inundation). Four flood scenarios are defined: two

of them illustrate homogeneous spatial patterns of flood duration on the

floodplain: one represents a situation of average flood duration found in low-

lying flood zones, or wetter zones (WZ); and the other, in high-lying flood zones,

or drier zones (DZ). The two other scenarios illustrate historical scenarios into

the Pantanal, represented by a dry hydrologic year, recorded in 1971 (DY) and

a wet hydrologic year, recorded in 2006 (WY) (Fig. 3.8). Hydrological historical

data were provided by the Brazilian National Water Agency (ANA;

(http://hidroweb.ana.gov.br). The flood maps are created in the same way as

the flood map used to calibrate the successional model (Fig. 3.2B). The effects

Page 110: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

110

110

of the scenarios of flood duration on vegetation dynamics are examined by

observing the fluctuation of the fraction of occupied sites (0≤F≤1) by each

community, at annual timescale.

Figure 3.8. Scenarios illustrating spatial patterns of flood duration on the study

site found in a historical dry year (A; 1971) and in a historical wet year (B;

2006). (C) Water level fluctuation in the River Cuiabá between 1969 and 2007 is

provided by Brazilian National Water Agency (ANA;

(http://hidroweb.ana.gov.br).

N

EW

S

Page 111: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

111

111

Vegetation response to flood regime shifts

Spatially homogeneous scenarios

DZ - The greatest changes in the current patterns of community distribution

are observed in this scenario. A retraction of Shrubland is the first vegetation

response to the drier landscape (Fig. 3.9A). In the first 200-yr after

environmental shift, the fraction of occupied site by Shrubland drops from 0.48

to 0.18, and goes to zero in the subsequent years. Grassland gains extensive

areas just after retraction of Shrubland. The initial frequency of Grassland in the

studied site (F= 0.12) rises in the first 400-yr after the environmental shift (F=

0.48), but is reversed when new Grassland areas are succeeded by other

community states. The chances for the new occupants depend on both, how

close they are from the new empty areas (i.e. Grassland) and their tolerance to

drier habitats. Open savanna and Monodominant forest do not show any

change in response to the environmental shift for 200-yr, ever since Open

savanna becomes five times more frequent (F= 0.16) and Monodominant forest

duplicates its range (F= 0.64). Dense savanna presents a slightly expansion,

from 0.0068 to 0.0075, as well as Secondary forest, from 0.0022 to 0.0094.

Although the probability of establishment of Secondary forest is lower on drier

habitats, its waiting time is higher, what might have caused the increase of its

range. Otherwise, Alluvial forest remains almost unaffected by the new drier

situation, oscillating in gaining and loosing small portions of habitats.

WZ - When long-lasting flooding occurs everywhere in the landscape (scenario

WZ), changes in vegetation patterns are not as drastic as when flooded periods

are reduced everywhere (scenario DZ) (Fig. 3.9B). Grassland does not change

Page 112: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

112

112

at all in the first 400-yr after the new wet scenario begins. Long waiting time of

Grassland at the wettest parts of the flood gradient holds the successional

development for 400-yr, ever since a slight retraction of Grassland is associated

with the expansion of Shrubland. The high probability of occupying the deepest

part of the flood gradient and the very long waiting time at this position (Fig.

3.3), led Shrubland to dominate more than half of the landscape in this

scenario. Contrarily, Open savanna remains in an unaltered situation for 150-yr.

After this time, its current proportion of occupied habitat (F= 0.03) is reduced

(F= 0.01). Dense savanna also shows a slight decline in its current occupancy

that might be linked to its shorter waiting time on wetter habitats. Similarly to

other communities, there is a time delay in the response of Monodominant

forest to the environmental shift. Only after 100-yr from the shift, Monodominant

forest retracts from 0.29 to 0.21. The fraction of occupied site of Secondary

forest falls from 0.0037 to 0.0029 over the first 100-yr and reaches 0.0007

during the next 900-yr. The frequency of Alluvial forest on the landscape keeps

almost unaltered for the first 200-yr after the beginning of the new scenario (F=

~ 0.05) and decreases (F= 0.01) at the subsequent years. The declines of

Secondary forest and Alluvial forest are related to their higher chances of dying

back to previous successional states and their lower waiting times on wetter

habitats.

Page 113: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

113

113

Figure 3.9. Vegetation response to shifts in the hydrologic regime (namely,

duration of inundation) in the Pantanal; base realizations. A) spatially

homogeneous dry scenario (DZ), B) spatially homogeneous wet scenario (WZ).

Hydrological changes begin after 500 yr timesteps.

A

B0 400 800 1200

timestep (year)

0

0.2

0.4

0.6

0.8

1

fract

ion

ofoc

cupi

edsi

te

1500

b

a

c

df

e g

0 400 800 1200

tim es tep (y ea r )

0

0.2

0.4

0.6

0.8

1

fract

ionof

occu

pied

site

1500

c

b

fa

dge

GRASSLAND

MONODOMINANT FOREST

ALLUVIAL LOW FOREST

DENSE SAVANNA

ALLUVIAL FOREST

OPEN SAVANNA

SHRUBLAND

b

a

g

f

e

c

d

200-YR 400-YR 600-YR 800-YR 1000-YR

1km

50-YR

time (year)

Page 114: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

114

114

Historical scenarios

DY – The vegetation changes observed in this scenario follows a similar trend

as the observed in DZ, but, here, the communities respond in a smoother way

to the environmental shift (Fig. 3.10A). Unlikely in DZ, Grassland oscillates in

gaining and losing areas for 200-yr after the hydrological dry year has begun,

indicating a rapid dynamic of creation and colonization of empty places. At the

end of 1000-yr, Grassland shows a slight increase of its occupied area.

Similarly to how we saw in DZ, the regret of Shrubland in this historical drought

scenario brings new opportunities for the landscape occupancy. After Shrubland

regression, vacant areas are most likely colonized by the nearest and abundant

neighbours, i.e., Monodominant forest (Fig. 3.10A). The spread of Open

savanna on the landscape is verified 800-yr after the environmental shift. This

expansion affects positively the expansion of Dense savanna. The slight decline

in occupied site by Secondary forest over the first 100-yr from the beginning of

the new scenario, is associated with its succession to Alluvial forest. The

frequency of Alluvial forest on the site is almost unaltered here.

WY – For this scenario, the changes in vegetation distribution are almost

imperceptible (Fig.3.10B). This might be related to the quite similar spatial

patterns of the flood maps representing this scenario (Fig. 3.8B) and that one

used to calibrate the model (Fig. 3.2B). The similarity between the flood maps

suggests that most of the past 38 years in the Pantanal evidenced large flood

events. The small vegetation changes observed under this scenario occur with

a delay of 200-yr, except for Shrubland that starts expanding after 50-yr. The

direction of the changes is very similar to that seen in the scenario WZ, where

Page 115: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

115

115

A

B

0 400 800 1200

timestep (year)

0

0.2

0.4

0.6

0.8

1

fract

ion

ofoc

cupi

edsit

e

1500

c

b

f

g d

ae

0 400 800 1200

timestep (year)

0

0.2

0.4

0.6

0.8

1

fract

ion

ofoc

cupi

edsi

te

15001500

b

e dg

f

c

a

200-YR 400-YR 600-YR 800-YR 1000-YR

1km

50-YR

time (year)

GRASSLAND

MONODOMINANT FOREST

ALLUVIAL LOW FOREST

DENSE SAVANNA

ALLUVIAL FOREST

OPEN SAVANNA

SHRUBLAND

b

a

g

f

e

c

d

Secondary forest, Alluvial forest, Grassland, Open savanna and Dense savanna

regret, while Shrubland spread. But unlikely in WZ, here, Monodominant forest

shows an expansion that seems to be related to the maintenance of spatially

heterogeneous flood conditions on the landscape.

Figure 3.10. Vegetation response to shifts in the hydrologic regime (namely,

duration of inundation) in the Pantanal; base realizations: A) historical dry

scenario (DY; 1971); (B) historical wet scenario (WY; 2006); base realizations:

Hydrological changes are simulated after 500 yr timesteps.

Page 116: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

116

116

3.7. Discussion

In this paper, we describe a vegetation successional model considering

spatial interaction between neighboring communities and duration of inundation

as important drivers of vegetation changes in the Pantanal. We seeks to gain

insights on wetland vegetation functioning by modelling succession as a

probabilistic and algorithm phenomena (Caswell and Etter 1999, Colosanti et al.

2007), extending the scope of Markov chain theory to spatio-temporal models

(Baltzer et al. 1998). We show that useful insights may be gained from simple

and few assumptions represented by transitional rules (Colosanti et al. 2007).

Despite our model may have some restricted application, because of the

coarse-scale representation of the system dynamic (Acevedo et al. 1996,

Baltzer et al. 1998), its practical methodology and easy computational

implementation make it a good alternative for modeling of vegetation dynamics,

when empirical data are not available. Literature and expert knowledge about

physiological plant limits, life history traits and ecosystem functioning are of

overwhelming importance in such a modeling approach, because these provide

information on the realized and potential range of vegetation responses to

environmental variability (Logofet and Lesnaya 2000), and, therefore, a more

realistic meaning for the model parameters.

The simulation of space time vegetation interactions with external (flooding)

and internal (neighborhood effect) ecological forces has resulted in an

understanding on how emergent system properties, such as landscape

diversity, stability and resilience may come up. These properties are related to

the capability of the system absorbing disturbance (Scheffer 2009). As

Page 117: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

117

117

disturbance was included in our model by making transition probabilities vary

according with flood tolerance in dominant species, the resulting non-

homogeneous transition matrix could be used to simulate different vegetation

behaviors under different environmental conditions, and vegetation changes

resulted from environmental shifts (Logofet and Lesnaya 2000).

Spatial heterogeneity in flooding conditions was responsible for increasing

community diversity and dictate vegetation dynamics on the floodplain, because

of local uniqueness (Levin 1976) and the trade-off between the abilities of

community states to tolerate more or less floodable places (Luo et al., 2008).

This high community diversity illustrates non-equilibrium coexistence in a

fluctuating environment (Shimda and Ellner 1984). Vegetation dynamics derived

from environmental heterogeneity and neighboring interaction led the modeled

system to a quasi-steady state (Scheffer 2009). At intermediate flood sites,

neighboring interaction affected the system dynamics by getting faster or slower

the processes of establishment and extinction of patches (Gardner and

Engelhardt 2008). Aggregated distribution of communities, such as

Monodominant forest and Shrubland, that resulted from high transition

probabilities and long waiting times caused long residence time and frequent

diebacks in successional stages. Cyclic vegetation dynamics under long flooded

periods, as simulated here, are recorded in other wetlands (Kirkman et al. 2000,

Stroh et al 2008). Contrarily, long-term persistence of communities with patchy

distribution, as is the case of Dense savanna and Open savanna, might depend

strongly on how long adverse site condition lasts, the species tolerance to

Page 118: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

118

118

disturbance, the plasticity of response to environmental variability and genetic

characteristics (Loehle and LeBlanc 1996).

The vegetation response to shifts in hydrological regime was assessed

assuming homogeneous and heterogeneous spatial patterns in flood duration.

Critical transitions between vegetation states were seen in spatially

homogeneous scenario (Fig. 3.9A, B), while spatially heterogeneity historical

scenarios (Fig. 3.10A, B) smoothed vegetation response to environmental shift.

Sharp shifts in vegetation patterns occurred when flood duration decreased

everywhere in the floodplain, suggesting that drought imposes a critical impact

on the current landscape stability. Large differences in transition probabilities

and waiting times between wet and dry habitats are the main reasons for these

observed changes in vegetation patterns. The impact of drought on wetland

ecosystems has been broadly recorded (Kirkman et al. 2000, Casey and Ewel

2006, Junk et al. 2006b, Stroh et al 2008). Stroh et al (2008) noticed an

expansion of Grassland dominated by perennial emergent grass and meadow

species and the following colonization for facultative tree species after long

drought events in a depression wetland in U.S. Southeastern Coastal Plain. A

very similar response pattern was verified here, where Grassland gained

extensive areas at the expense of Shrubland and were subsequently colonized

by the flood-tolerant species Vochysia divergens (Monodominant forest).

Although our model has included probability of diebacks in vegetation states

and short waiting times to simulate the impact of drought (fire) on community

dynamics in the Pantanal (Junk 2002), including explicitly fire behavior and

post-fire succession in the model (c.f. Hobbs 1983, Hirabayashi and Kasahara

Page 119: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

119

119

1987, Aumann 2007) could have provided a more reliable evaluation on this

impact.

Gradual vegetation changes were associated with the direction and the

spatial aspect of the environmental shift. Spatially heterogeneous scenarios

tended to smooth vegetation response to environmental shifts. Homogeneously

wet scenario (WZ, Fig. 3.9B) also caused a gradual vegetation response, but in

this case, strong vegetation inertia was responsible for this response. Inertia in

vegetation is associated with the ability of species to tolerate moderate to short-

term environmental fluctuation (101-103), by controlling growth rates at adverse

conditions (Loehle and LeBlanc 1996, Jackson and Overpeck 2000). The model

parameter waiting time regulated this delay in vegetation response, avoiding

overestimation of the vegetation sensitivity to environmental changes (Loehle

and LeBlanc 1996).

Although we have shown in this study, the ability of the STMC model to

simulate complex vegetation behaviours, the lack of empirical data to calibrate

parameters and the use of simple model assumptions have limited its

applicability. Succession knowledge obtained from literature has been used for

model calibration (Yemshanov and Perera 2002), but parameter values

acquired from this source do not represent exact estimates (Logofet and

Lesnaya 2000). The model assumptions of static communities and limited

number of vegetation states have restricted model ability to make accurate

projections on vegetation changes (Scheller and Mladenoff 2007). Despite

these restrictions, the successional model developed here can be considered a

‘null’ model (Yemshanov and Perera 2002), by focusing on how neighboring

Page 120: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

120

120

interaction and flooding operate on vegetation dynamics (Yemshanov and

Perera 2002, Scheller and Mladenoff 2007). To overcome the above-mentioned

model limitations further calibration and inclusion of new parameters in the

model may be necessary (Baltzer et al. 1998, Yemshanov and Perera 2002,

van Nes and Scheffer 2005). It is important to point out that, by increasing the

number of parameters in the model, its complexity is also increased. Beside,

calibration techniques based on historical data require time series data that may

not be available.

Vegetation modeling addressed to broad-scale processes, as shown in this

work, gives opportunity to explore hypothesis about how natural or human-

made impacts on ecosystem functioning may affect vegetation response

patterns, this manner, supporting decision making and policy. The relatively

pristine condition of the Pantanal area (Junk et al. 2006a) allows insights on

natural forces of vegetation dynamic to be gained and sustainable alternative of

management be traced. Modeling vegetation dynamics in the Pantanal is still a

challenge for scientists, because of the lack of empirical data on physiology and

ecology of plants to support predictions.

3.8. Acknowledgments

The authors are grateful to the Brazilian governmental agencies, CAPES

and CNPq, for the financial support. Helpful comments and assistance were

provided by P. Girard, Peter Zeihofer and Wolfgang Junk. We also thanks to the

Social Service of the Commerce (SESC) and technicians and students of the

Federal University of Mato Grosso for the technical support in field work.

Page 121: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

121

121

CAPÍTULO 4

SÍNTESE

4.1. Definição do problema

Paisagens são compostas por sistemas complexos com estrutura e

dinâmica influenciadas por fatores bióticos e abióticos, agindo em múltiplas

escalas espaciais e temporais. Indicar fatores chaves que determinem

heterogeneidade espacial de paisagens e quantificar padrões espaço-

temporais em escalas pertinentes ao manejo e conservação da biodiversidade

são demandas atuais e urgentes.

Paisagens de áreas úmidas estão entre as mais suscetíveis a mudanças

climáticas, devido ao papel regulador da hidrologia no funcionamento dos

ecossistemas. Estas áreas possuem uma grande variedade de serviços

ambientais associados à biodiversidade existente, tais como abastecimento de

água, regulação climática e fornecimento de alimentos. Conservar a

biodiversidade destas áreas necessita do entendimento de como a

heterogeneidade da paisagem é controlada pelo regime natural de distúrbio.

Predições acuradas de estados e mudanças em vegetação de áreas úmidas

requerem o desenvolvimento de métodos eficientes à aquisição e

processamento de informações relevantes sobre a variabilidade espacial e

temporal da vegetação.

O presente trabalho teve como principais objetivos descrever padrões

espaço-temporais para comunidades de plantas do Pantanal e entender suas

causas, usando modelos espacialmente explícitos. Dois tipos de modelos

Page 122: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

122

122

foram desenvolvidos: um modelo preditivo de distribuição espacial da

vegetação e um modelo baseado em processos, usado para simular dinâmica

da vegetação. Estes modelos integram diferentes fontes de dados de

vegetação e ambientais, provenientes de amostragem de campo, de imagens

de sensoriamento remoto e informações adquiridas da literatura. Além disso, o

procedimento de modelagem usado para descrever processos ecológicos,

identificar padrões e realizar predições conta com diferentes tipos de análise de

dados espaciais e não-espaciais, tais como análise multivariada, análise de

variograma, técnicas de interpolação e análise de ordenação. Incertezas

associadas à abordagem de modelagem para predições de distribuição e

dinâmica da vegetação são quantificadas, informando possíveis causas e

apontando formas de melhoramento dos modelos.

As principais questões científicas que este estudo se propôs a discutir

foram:

Como processos espaciais e fatores ambientais afetam padrões espaço-

temporais da vegetação do Pantanal e qual é a acurácea de modelos

espacialmente explícitos para descrever dinâmica e distribuição da

vegetação?

Estas questões foram discutidas ao longo do desenvolvimento da tese,

através de sub-questões feitas nos capítulos 2 e 3 e que serão apresentadas a

seguir, nos itens 4.2 e 4.3.

Page 123: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

123

123

4.2. Integrando amostragem de campo, sensoriamento remoto e

estatística espacial para predizer distribuição de comunidades de plantas

no Pantanal

Comunidades de plantas podem ser identificadas como entidades

discretas, com base na descrição de atributos estruturais de cinco formas

de vida de plantas?

A primeira parte do capítulo 2 visou identificar comunidades de plantas

descritas por Nunes da Cunha et al. (2006) numa planície de inundação no

Pantanal, através da amostragem de atributos estruturais (i.e. biomassa, grau

de cobertura, altura de copa e outros) de cinco formas de vida. Análise de

fatores foi usada para resumir os dados multivariados e ajudar na identificação

das sete comunidades de plantas presentes na área estudada. O resultado

desta análise mostrou que comunidades de plantas podem ser identificadas

usando atributos estruturais de conjuntos de espécies, agrupadas de acordo

com suas formas de vida, mas também revelou a importância de se incluir

dados de espécies dominantes para distinguir comunidades estruturalmente

similares, mas floristicamente distintas. Apesar de comunidades de plantas

terem sido tratadas como entidades discretas, o que pode ser útil para fins de

mapeamento e manejo da vegetação, sobreposição de escores de diferentes

comunidades nos eixos de fatores apontou para a existência de mudanças

graduais, antes que abruptas, em vegetação. Isto resultou em incertezas na

Page 124: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

124

124

classificação final da vegetação. A despeito disto, a suposição de comunidades

de plantas com limites bem definidos como um conceito espacial é, na maioria

dos casos, suficiente para interpretar padrões da vegetação, como neste

estudo.

Imagens de sensoriamento remoto conseguem capturar padrões de

vegetação amostrados em campo?

Qual a importância destas imagens em modelos preditivos de vegetação?

Imagens de sensoriamento remoto têm sido usadas para construção de

modelos preditivos da vegetação, devido à sua capacidade de detectar

variabilidade em atributos ambientais relacionados à vegetação. Neste estudo,

imagens IKONOS-2 e Modelo de Elevação Digital (MED/SRTM) ajudaram a

predizer a distribuição de comunidades de plantas sobre a paisagem estudada,

em função de suas correlações com padrões da vegetação observados em

campo. Topografia de copa (MED) ajudou na separação de áreas de alta e

baixa biomassa arbórea, como áreas de floresta e não-floresta. Uma imagem

do segundo componente principal, derivada da transformação das primeiras

quatro bandas IKONOS, capturou variações em riqueza e cobertura de

herbáceas e ajudou no mapeamento de comunidades de Campos. Tipos de

floresta, como Floresta Monodominante e Floresta Aluvial, foram

principalmente diferenciadas com auxílio das imagens de topografia de copa

(MED) e NDVI. As relações entre imagens e dados de campo foram

Page 125: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

125

125

formalizadas usando modelos de regressão linear múltipla. Estes modelos

foram usados em um procedimento de krigagem universal, reduzindo as

incertezas nas comunidades mapeadas.

Dependência espacial em dados biológicos tem sido, crescentemente,

incorporada a modelos preditivos de vegetação, devido ao seu poder

explicativo sobre alguns padrões de distribuição da vegetação. A estrutura

espacial dos resíduos da regressão entre variáveis de imagem e de campo

(escores de fatores), calculada em análise de variograma, foi usada para

investigar a autocorrelação espacial, associada aos padrões de distribuição da

vegetação. Esta informação foi acomodada ao modelo de krigagem universal a

fim de fazer predições espaciais de vegetação, em locais não amostrados do

sítio de estudo. Incluir dependência espacial no modelo preditivo, além de dar

um peso mais realístico ao poder explicativo das imagens sobre os padrões

observados, possibilita que parte da variabilidade da vegetação, não explicada

pelas imagens, seja incorporada no modelo como resíduo espacialmente

correlacionado (Miller et al. 2007). A estrutura espacial dos resíduos mostrou

que gradientes de vegetação, representados por diferentes camadas da

vegetação (i.e. herbácea, arbustiva, arbórea), variam em diferentes escalas

espaciais. Pequeno alcance de dependência espacial, associado a um padrão

Como padrão de distribuição de comunidades de planta pode surgir em

ecossistemas complexos?

Page 126: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

126

126

de distribuição em pequenas manchas de herbáceas e arbustos, pode ter

resultado de mecanismos de dispersão e interações biológicas, tais como

competição, ou estar associada a uma percepção detalhada de variabilidade

ambiental (Miller et al. 2007). Por outro lado, padrões de distribuição em ampla

escala foram associados a um contínuo aumento na variância e resultaram em

gradientes suaves de distribuição de árvores. Longos alcances de dependência

espacial relacionados à distribuição de árvores sobre a planície inundável

sugerem que variáveis explanatórias usadas no modelo podem estar co-

variando, espacialmente, com a distribuição das árvores; ou que variáveis que

explicam esta distribuição, não foram incluídas no modelo (Miller et al. 2007). A

combinação destes padrões de vegetação, variando em fina e ampla escala,

influenciados por diferentes forças ecológicas, foi responsável por criar uma

estrutura de paisagem complexa, enfatizando a natureza multi-escalar dos

mais altos níveis organizacionais biológicos, tais como comunidades e

ecossistemas.

Quais as vantagens da abordagem geoestatística para predizer distribuição

espacial da vegetação?

A grande vantagem da abordagem geoestatística para predição de

distribuição da vegetação é a possibilidade de se integrar informação biológica

detalhada com dados de alta qualidade, sensoriados remotamente. A

Page 127: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

127

127

habilidade do modelo de fazer predições acuradas em padrões de vegetação

variou com o poder explicativo das imagens e a dependência espacial dos

dados, ambas incorporadas ao método de interpolação (krigagem universal).

Outra vantagem da abordagem geoestatística em mapeamento de vegetação é

que incertezas nos mapas produzidos podem ser quantificadas e

representadas em bases cartográficas. Diferente de abordagens clássicas para

mapear vegetação, os resultados da abordagem geo-estatística carregam

informação quantitativa sobre variabilidade da vegetação e apresentam um

caráter dinâmico, permitindo sua futura aplicação em modelos interessados na

resposta biológica a mudanças ambientais.

Quais são as principais fontes de incerteza no mapa de vegetação

produzido e como estas podem ser minimizadas?

Incertezas fazem parte de modelos que representam a realidade. Por

isso, perguntar sobre a existência de incertezas em modelos preditivos não é

relevante e, sim, de onde surgem, como podem ser quantificadas e

minimizadas. Neste estudo, incertezas na classificação da vegetação surgiram

durante todo o procedimento de mapeamento, desde a qualidade dos dados

adquiridos, até os erros provenientes das análises estatísticas e geoestatísticas

utilizadas. Cross-validation e simulação de Monte Carlo ajudaram a quantificar

estas incertezas e apontaram suas possíveis causas. A percentagem de

Page 128: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

128

128

amostras classificadas corretamente em cross-validation variou entre 49% e

52%, indicando que configuração e densidade de amostras afetam a acurácea

das predições espaciais. Um mapa de incertezas, derivado de simulações de

Monte Carlo, mostrou que a qualidade da classificação varia espacialmente,

embora a proporção e o arranjo de comunidades observadas no mapa original

tenham sido preservados em grande parte. A quantificação e representação

cartográfica de incertezas, mostradas neste estudo, são ferramentas

interessantes para pesquisa e manejo, pois mostram o grau de confiança dos

dados e auxiliam a traçar estratégias para melhoramento dos mapas

produzidos. Aumentar o número de observações de campo; definir um desenho

amostral mais adequado às predições espaciais, que priorize a amostragem

das comunidades existentes na paisagem; incluir outras imagens relevantes à

explicação da variabilidade da vegetação no modelo preditivo - todas estas

estratégias poderiam melhorar a qualidade do mapa de vegetação produzido.

No entanto, os custos e benefícios associados ao aumento do esforço amostral

e à aquisição de novas imagens é algo que deve ser considerado em planos de

pesquisa.

Duração da inundação está relacionada ao padrão de distribuição das

comunidades de plantas na planície inundável?

A relação entre distribuição das comunidades de plantas e padrões de

duração de inundação foi avaliada através da comparação entre mapa de

Page 129: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

129

129

vegetação e mapa de duração de inundação, de acordo com o método de

análise direta de gradiente. A distribuição preferencial de comunidades a certos

alcances do gradiente de inundação mostrou que duração de inundação é um

importante determinante da zonação de comunidades de plantas na planície.

Por outro lado, respostas não-lineares de comunidades ao gradiente de

inundação, como no caso de Campos, sugeriram que interações espaciais em

processos biológicos também podem influenciar certos padrões de distribuição

da vegetação na planície. Com base nos resultados obtidos, este estudo

sugere que zonação da vegetação na planície de inundação deve ser

influenciada, não apenas pelos limites fisiográficos ditados pela inundação,

como ressaltado na maioria dos estudos no Pantanal, mas também por

interações biológicas e mecanismos de dispersão. Isto ressalta a importância

de estudos de vegetação no Pantanal, focados na influência de processos

biológicos espaciais (competição, dispersão) nos padrões espaciais da

vegetação.

Page 130: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

130

130

4.3. Modelando dinâmica de vegetação de áreas úmidas, baseado em

interações espaço-temporais e tolerância à inundação de comunidades de

plantas

Há informação disponível e suficiente sobre a vegetação do Pantanal

para modelar sua dinâmica?

A criação do modelo de sucessão vegetal descrito no capítulo 3 baseou-

se, principalmente, em dados de literatura e de especialistas, com relação à

dinâmica e características de vegetação de áreas úmidas. A criação de

modelos espaciais baseados em processos precisa estar embasada no

conhecimento dos mecanismos causadores de mudança na vegetação. Neste

estudo, informações disponíveis sobre traços de história de vida e tolerância à

inundação de espécies dominantes de comunidades de plantas do Pantanal

foram usadas para definir o efeito seletivo da inundação sobre estabelecimento

e permanência de estados da vegetação, e o efeito de vizinhança, simulando

dispersão local, sobre as chances de transição entre estes estados. A

escassez de dados sobre respostas fisiológicas, requerimentos ecológicos e

história de vida da grande parte das espécies de plantas do Pantanal, hoje,

limita o uso de abordagem de modelagem baseada no indivíduo, para estudar

mecanismos de sucessão. A falta de dados em séries temporais, sobre

mudanças da vegetação, restringe as possibilidades de calibração do modelo.

A despeito do modelo desenvolvido aqui apresentar restrições em sua

Page 131: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

131

131

aplicação, devido à representação, em grossa-escala, da dinâmica do sistema,

sua metodologia, de cunho prático e de fácil implementação computacional,

torna-o uma boa alternativa para modelar dinâmica da vegetação, quando

dados empíricos não estão disponíveis. Somado a isto, com base em simples e

poucas regras ditando o comportamento do modelo, este trouxe importantes

‘insights’ sobre o papel da inundação e de interações espaciais sobre a

dinâmica da vegetação.

Como efeitos ambientais e espaciais afetam padrões espaço-temporais

da vegetação?

A influência da inundação e de interações espaciais sobre a dinâmica da

vegetação foi investigada, através do comportamento espacial e temporal do

modelo. Apesar de esta influência ter sido determinada a priori, durante a

formulação do modelo conceitual, padrões de vegetação não esperados podem

emergir durante as simulações. Esta investigação mostrou que

heterogeneidade espacial em condições da inundação pode aumentar a

diversidade de comunidades na planície de inundação, por causa das

habilidades competitivas de espécies em tolerar locais, mais ou menos

inundados. Isto sugere que, em caso de homogeneidade ambiental, a

paisagem seria ocupada por poucos estados de vegetação, com alta

probabilidade de estabelecimento; e aponta para a importância de formulações

espacialmente explicitas, em modelagem de dinâmica de vegetação. A

Page 132: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

132

132

dinâmica da vegetação variou em função da posição no gradiente de duração

de inundação. Em locais sob mais forte distúrbio, devido à seca ou inundação

prolongada, dinâmicas sucessionais mais lentas e cíclicas devem predominar.

Estas dinâmicas resultaram dos longos tempos de espera, antes de transições

e altas probabilidades de estabelecimento de poucas comunidades.

Contrariamente, em posições intermediárias do gradiente de inundação,

probabilidades de transição mais balanceadas, entre as comunidades, levaram

a dinâmicas mais intensas de colonização e extinção de manchas. A inclusão

do efeito de vizinhança no modelo de sucessão, simulando mecanismos

biológicos dependentes do espaço (i.e. dispersão, competição), exerceu um

papel essencial na formação de manchas de vegetação e na criação do padrão

de distribuição espacial das comunidades na paisagem. Neste cenário, onde

heterogeneidade ambiental e interação espacial são importantes preditoras da

dinâmica do sistema, o futuro estado da paisagem, associado à capacidade da

vegetação de responder a freqüentes oscilações ambientais, dependerá,

fortemente, da configuração inicial da paisagem e da força e direção da

mudança ambiental.

Qual a validade do modelo criado?

Embora validação de modelos de simulação seja considerada, por

alguns cientistas, uma tarefa impraticável, por causa da impossibilidade de

simular dinâmicas complexas de sistemas naturais, ainda é uma etapa

Page 133: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

133

133

indispensável na avaliação de modelos (Scheffer 2009). Apenas diante desta

‘validação’, modelos poderão predizer, com maior confiança, os impactos de

mudanças ambientais sobre a vegetação. Neste trabalho, a validação do

modelo de sucessão foi realizada, através da comparação quantitativa entre

padrões espaciais da vegetação, observados e simulados. O bom ajustamento

entre estes padrões indicou que o modelo incorpora forças ecológicas

importantes, que dirigem sucessão vegetal, em áreas de transição aquático-

terrestre (ATTZ) do Pantanal. A falta de dados empíricos para calibração de

parâmetros e as simples suposições do modelo limitaram sua previsibilidade;

afinal de contas, parâmetros estimados por ajustamento à realidade não

representam estimativas exatas, apenas aproximações (Logofet and Lesnaya

2000). A inclusão de novos parâmetros no modelo ou o uso de métodos de

calibração mais avançados, como calibração Bayesiana, são possíveis

maneiras de melhorar o modelo, mas os custos, em tempo e complexidade, ao

se aumentar número de parâmetros de um modelo é algo que sempre deve ser

considerado. A despeito destas restrições, o modelo de sucessão desenvolvido

nesta tese, deve ser pensado como um modelo ‘nulo’, cujo objetivo principal é

avaliar como interação entre vizinhança e duração da inundação podem afetar

dinâmica da vegetação em ATTZ no Pantanal.

Quais são os possíveis impactos de alteração no regime de inundação sobre

o padrão de distribuição da vegetação do Pantanal?

Page 134: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

134

134

O modelo de sucessão da vegetação, desenvolvido e testado neste

trabalho, foi usado para simular os impactos de diferentes cenários de

inundação sobre a vegetação. Devido às restrições do modelo, os resultados

das simulações foram interpretados como sugestivos da sensibilidade da

vegetação a mudanças ambientais, antes que como verdadeiros prognósticos

de estados futuros da vegetação. Aqui foram avaliados os impactos de quatro

cenários de inundação: dois ilustram padrões de inundação espacialmente

homogêneos, representando condições mais secas e mais úmidas na planície;

e dois outros ilustram padrões de inundação representando anos históricos

mais secos (1971) e mais úmidos (2006) do Pantanal. Estas simulações

mostraram que a redução do período de inundação e a homogeneização das

condições ambientais sobre a paisagem devem trazer impactos mais críticos

sobre o estado atual da paisagem, mudando, substancialmente e de maneira

abrupta, sua configuração. Contrariamente, mudanças graduais em distribuição

da vegetação e atraso em resposta de comunidades às mudanças ambientais

ocorreram, tanto por causa da existência de heterogeneidade ambiental, bem

como pela ocasião de cenários mais úmidos encontrados na planície. Este

atraso simula a capacidade de espécies de áreas úmidas em absorverem

distúrbio causado pela inundação, resultando em maior inércia da vegetação.

Estes resultados sugerem que a dinâmica e a diversidade da vegetação do

Pantanal dependem fortemente da manutenção do pulso de inundação,

responsável por suas variações temporais e espaciais.

Page 135: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

135

135

4.4. Considerações finais – impactos da pesquisa em futuros estudos e na

conservação dos recursos naturais do Pantanal

Ecólogos têm apresentado forte tendência a ver sistemas naturais como

resultantes de uma rede de processos atuando em múltiplas escalas e como

reflexo de múltiplas causas (Turner et al., 2001, Aumann, 2007). Planícies de

inundação permitem que estudos da vegetação sejam desenvolvidos sob uma

abordagem multi-escalar, destacando respostas florísticas diferenciais ao

distúrbio e, ao mesmo tempo, descrevendo e caracterizando comunidades de

plantas num contexto de paisagem (Gillet e Gallandat 1996). Representar tais

sistemas naturais complexos, através de modelos espaciais, é uma importante

contribuição ao planejamento, monitoramento e manejo da paisagem, pois,

com ajuda de uma série de ferramentas operacionais como SIG e

sensoriamento remoto, permitem analisar dados variados, comunicar

resultados em bases cartográficas, além de permitir predições, projeções e

definição de hipóteses sobre interações entre padrões e processos (Turner et

al., 2001; Scheller e Mladenoff, 2007).

A presente tese enfoca dois aspectos relevantes de pesquisa científica

no Pantanal: primeiro, a relação entre processos ecológicos, em particular, a

influência da inundação e de interações espaciais em processos biológicos,

nos padrões espaciais e temporais de comunidades de plantas na planície

inundável; e, segundo, o desenvolvimento de modelos, espacialmente

explícitos e dinâmicos, para descrever e examinar esta relação. Esta tese

contribui para o conhecimento da vegetação do Pantanal de diferentes

Page 136: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

136

136

maneiras: 1) investigando métodos e ferramentas eficientes na descrição de

padrões espaço-temporais da vegetação; 2) indicando necessidades e ‘gaps’

de informação na modelagem da distribuição e dinâmica da vegetação; 3)

fazendo previsões dos impactos de mudança no regime de inundação sobre a

vegetação; 4) criando mapas detalhados de vegetação e inundação para

descrever padrões espaciais sobre a planície; 5) investigando a adequação de

amostragem de dados e classificação da vegetação, através da eficiente

aquisição e processamento de dados; 6) descobrindo escalas de variação

espacial de diferentes gradientes de vegetação e suas possíveis causas; e,

finalmente, 7) quantificando incertezas e avaliando a validade dos modelos de

vegetação e apontando estratégias para melhoramento dos mesmos.

Modelagem preditiva da vegetação é uma abordagem promissora para

descrição e avaliação de variabilidade espacial em dados biológicos de larga

escala, pois possibilita a integração de observações pontuais de campo e

informações contínuas de imagens de sensoriamento remoto. Modelos que

permitem a inclusão da dimensão espacial e temporal, para entender e

visualizar padrões resultantes da interação em processos ecológicos, em

escalas temporais e espaciais amplas, são ferramentas insubstituíveis que

ajudam a compreensão de comportamentos complexos de sistemas

ecológicos. Tomadas de decisão e definição de políticas em conservação e uso

de recursos naturais, calcados neste conhecimento, poderão tornar-se menos

arbitrárias e traçando um futuro menos incerto para este ecossistema

extraordinário que é o Pantanal Matogrossense.

Page 137: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

137

137

LITERATURA CITADA

Ab’Saber, A.N., 1988. O Pantanal Matogrossense e a teoria dos refúgios. Rev.

Bras. Geog. 50, 9-57.

Acevedo, M. F., D. L. Urban, H.H. Shugart 1996. Transition and gap models of

forest dynamics. Ecological Applications, 5: 1040-1055.

Alvarenga, S.M., Brasil, A.E., Pinheiro, R., Kux, H. J. H., 1984. Estudo

geomorfológico aplicado à Bacia do alto Rio Paraguai e Pantanais

Matogrossenses. Boletim Técnico Projeto RADAM/BRASIL. Série

Geomorfologia, Salvador, 187: 89–183.

Arieira, J., C. Nunes da Cunha 2006. Fitossociologia de uma floresta inundável

monodominante de Vochysia divergens Pohl (Vochysiaceae), no

Pantanal Norte, MT, Brasil. Acta Botanica Brasílica, 20: 569-580.

Arieira, J., D. Karssenberg, S.M. De Jong, E.A. Addink, E.G. Couto, C. Nunes

da Cunha, J.O. Skøien (in preparation). Integrating field sampling, spatial

statistics and remote sensing to map floodplain vegetation in the

Pantanal, Brazil. Ecology.

Arieira, J., Karssenberg, D., Couto, E.G., Nunes da Cunha, C. (in preparation).

Modeling wetland vegetation dynamic based on spatio-temporal

interaction and flooding tolerance of plant communities in the Pantanal

Mato-Grossense (Brazil). PhD Thesis, Federal University of Mato

Grosso, Cuiabá, Brazil/ Utrecht University, Utrecht, The Netherlands.

Page 138: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

138

138

Assine, M. L., and P. C. Soares. 2004. Quaternary of the Pantanal, west-central

Brazil. Quaternary International, 114: 23-34

Aumann, C. A. 2007. A methodology for developing simulation models of

complex systems. Ecological Modelling, 202: 385-396.

Austin, M.P., 1968. An ordination study of a chalk grassland community. J. Ecol.

56, 739-757.

Austin, M.P., 2002. Spatial prediction of species distribution: an interface

between ecological theory and statistical modelling. Ecol. Model. 157,

101-118.

Austin, M.P., Smith, T.M., 1989. A new model for the continuum concept.

Vegetatio 83, 35-47.

Balzter, H., P. W. Braun, and W. Kölhler, 1998. Cellular automata models for

vegetation dynamics. Ecological Modelling, 107:113–125.

Baptist, M. J., M. Haasnoot, P. Cornelissen, J. Icke, G. v. d. Wedden, H. J. d.

Vriend, and G. Gugic´. 2006. Flood detention, nature development and

water quality along the lowland river Sava, Croatia. Hydrobiology 565:

243–257.

Barbosa, R.I., Ferreira, C.A.C., 2004. Biomassa acima do solo de um

ecossistema de “campina” em Roraima, norte da Amazônia Brasileira.

Acta Amazon. 34, 577 - 586.

Bascompte, J., Solé, R.V., 1996. Habitat fragmentation and extinction

thresholds in spatially explicit models. J. Anim. Ecol. 65, 465-473.

Page 139: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

139

139

Bascompte, J., R. V. Solé (eds.) 1998. Modeling spatiotemporal dynamics in

ecology. Springer, Berlin.

Bourennane, H., King, D., Couturier, A., Nicoullaud, B., Mary, B., Richard, G.,

2007. Uncertainty assessment of soil water content spatial patterns using

geostatistical simulations: an empirical comparison of a simulation

accounting for single attribute and a simulation accounting for secondary

information. Ecol. Model. 205, 323-335.

BRASIL, Ministério do Meio Ambiente dos Recursos Hídricos e da Amazônia

Legal. 1997. Plano de Conservação da Bacia do Alto Paraguai

(Pantanal) – PCBAP. Diagnóstico dos meios físicos e biótico, meio

biótico. Vol. 2, Tomo 3. MMA/PNMA, Brasília, 433p.

Bray, J.R., Curtis, J.T., 1957. An ordination of the upland forest communities of

southern Wisconsin. Ecol. Monogr. 27, 325-349.

Brzeziecki, B., Kienast, F., Wildi, O., 1993. A simulated map of the potential

natural forest vegetation of Switzerland. J. Veg. Sci. 4, 499-508.

Budowski, G. 1965. Distribution of tropical American trees in the light of

successional process. Turrialba 15: 40-42.

Bullock, J., 1996. Plants. In: Sutherland, W.J. (Ed.), Ecological census

techniques: a handbook. Cambridge Univ. Press, NY., pp. 111–138.

Bureau, R. I. 1998. What are wetlands? Ramsar Information Paper 1.

Burke, M. K., S. L. King, D. Gartner, and M. H. Eisenbies. 2003. Vegetation,

soil, and flooding relationships in a blackwater floodplain forest.

Wetlands, 23 (4): 988-1002.

Page 140: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

140

140

Burrough, P., and R. McDonnell. 1998. Principles of Geographic Information

Systems. Oxford University Press, New York.

Casanova, M. T. and M. A. Brock 2000. How do depth, duration and frequency

of flooding influence the establishment of wetland plant communities?

Plant Ecology, 142: 237–250.

Casey, W. P., and K. C. Ewel. 2006. Patterns of succession in forested

depressional wetlands in north Florida, USA. Wetlands, 26:147–160.

Caswell, H., and R. Etter 1999. Cellular Automaton Models for Competition in

Patchy Environments: Facilitation, Inhibition, and Tolerance. Bulletin of

Mathematical Biology, 61(4): 625-649.

Chambers, J.Q., Asner, G.P., Morton, D.C., Morton, D.C., Anderson, L.O.,

Saatchi, S.S., Espírito-Santo, F.D.B., Souza Jr., M.P.C., 2007. Regional

ecosystem structure and function: ecological insights from remote

sensing of tropical forests. Trends Ecol. Evol. 22, 414-423.

Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D.,

Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.P., Nelson,

B.W., Ogawa, H., Puig, H., Riera, B., Yamakura, T., 2005. Tree allometry

and improved estimation of carbon stocks and balance in tropical forests.

Oecologia 145, 87-99.

Chong, G.W., Reich, R.M., Kalkhan, M.A., Stohlgren, T.J., 2001. New

approaches for sampling and modeling native and exotic plant species

richness. West. N. Am. Naturalist 61, 328–335.

Page 141: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

141

141

Colasanti, R. L. and J. P. Grime 1993. Resource Dynamics and Vegetation

Processes: A Deterministic Model Using Two-Dimensional Cellular

Automata. Functional Ecology, 7(2): 169-176.

Colasanti, R. L., R. Hunt, and L. Watrud. 2007. A simple cellular automaton

model for high-level vegetation dynamics. Ecological Modelling 203:363–

374.

Condit, R., S. P. Hubbell, and R. B. Foster. 1995. Mortality Rates of 205

Neotropical Tree and Shrub Species and the Impact of a Severe

Drought. Ecological Monographs, 65: 419-439.

Congalton, R.G., Green, K., 1999. Assessing the accuracy of remotely sensed

data: principle and practices. Lewis Publishers, BocaRaton, USA.

Connell, J.H., Slatyer, R.O., 1977. Mechanisms of succession in natural

communities and their role in community stability and organization. Am.

Nat. 111, 1119-1144.

Coutinho, L.M., 1982. Ecological Effect of fire in Brazilian Dense savanna. In:

Huntley, B.J., Walter, B.H. (Eds.). Ecology of Tropical Savannas,

Ecological Studies, 42, Springer, Berlin. pp. 273-291.

Curtis, J.T., McIntosh, R.P., 1950. The interrelations of certain analytic and

synthetic phytosociological characters. Ecology 31, 434-455.

Da Silva, C. J., and P. Girard. 2004. New challenges in the management of the

Brazilian Pantanal and catchment area. Wetlands Ecology and

Management, 12: 553–561.

Page 142: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

142

142

Damasceno-Junior, G.A., J. Semir, F.A.M. Santos, H.F. Leitão-Filho 2005.

Structure, distribution of species and inundation in a Alluvial forest of Rio

Paraguai, Pantanal, Brazil. Flora, 200:119-135.

Davis, M. B., R. G. Shaw, and J. R. Etterson. 2005. Evolutionary Responses to

Changing Climate. Ecology,86: 704-1714.

De Musis, C.R., Júnior, J.H.C., Filho, N.P., 1997. Caracterização climatológica

da Bacia do Alto Paraguai. Geografia 22, 5-21.

Decocq, G., 2002. Patterns of plant species and community diversity at different

organization levels in a forested riparian landscape. J. Veg. Sci. 13, 91-

106.

Draper, N.R., Smith, H., 1998. Applied Regression Analysis. John Wiley &

Sons, Inc., New York, USA.

Efron, B., Tibshirani, R., 1986. Bootstrap methods for standard errors,

confidence intervals, and other measures of statistical accuracy. Stat.

Sci. 1, 54-75.

Ferrier, S., Drielsma, M., Manion, G., Watson, G., 2002. Extended statistical

approaches to modelling spatial pattern in biodiversity in northeast New

South Wales. II. Community-level modelling. Biodivers. Conserv. 11,

2309-2338.

Forman, R.T.T., Godron, M., 1986. Landscape Ecology. John Wiley & Sons,

Inc. 603p

Fortin, M.J., Olson, R.J., Ferson, S. et al., 2000. Issues Related to the Detection

of Boundaries. Landscape Ecology 15: 453-466.

Page 143: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

143

143

Fortin, M.-J., Olson, R. J., Ferson, S., Iverson, L., Hunsaker, C., Edwards, G.,

Levine, D., Butera, K., Klemas, V., 2000. Issues related to the detection

of boundaries. Landscape Ecol. 15, 453-466.

Gardner, R.H., Engelhardt, K.A.M., 2008. Spatial processes that maintain

biodiversity in plant communities. Perspect. Plant Ecol. Evol. Syst. 9,

211–228.

Gillet F., Gallandat, J.D., 1996. Integrated synusial phytosociology: some notes

on a new, multiscalar approach to vegetation analysis. J. Veg. Sci. 7, 13-

18.

Gluck, M., Rempel, R., Uhlig, P.W.C., 1996. An Evaluation of Remote Sensing

for Regional Wetland Mapping Applications. Forest Research report 137.

Ontario Forest Research Institute, Sault Ste Marie, Ontario, Canada.

Greig-Smith 1979. Pattern in vegetation. Journal of Ecology, 67: 755-779.

Grime, J. P. 1979. Plant Strategies and Vegetation processes, Chichester.New

york.Brismane.Toronto. pp. 222

Grime, J. P. 1979. Plant Strategies and Vegetation processes, Chichester.New

york.Brismane.Toronto. pp. 222

Grime, J. P. 1994. Plant Strategies and Vegetation Processes. John Wiley &

Sons, Inc. pp. 222.

Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more

than simple habitat models. Ecol. Lett. 8, 993-1009.

Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in

ecology. Ecol. Model. 135, 147-186.

Page 144: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

144

144

Hamann, A., and T. Wang. 2006. Potential Effects of Climate Change on

Ecosystem and Tree Species Distribution in British Columbia. Ecology

87:2773-2786.

Hamilton, S. K., S. J. Sippel and J. M. Melack, 1996. Inundation patterns in the

Pantanal wetland of South America determined from passive microwave

remote sensing. Archiv für Hydrobiologie, 137: 1–23.

Hamilton, S.K., Sippel, S.J., Calheiros, D.F., Melack, J.M., 1997. An anoxic

event and other biogeochemical effects of the Pantanal wetland on the

Paraguay River. Limnol. Oceanogr. 42, 257-272.

Hernandez-Stefanoni, J.L., Dupuy, J.M., 2007. Mapping species density of

trees, shrubs and vines in a tropical forest, using field measurements,

satellite multiespectral imagery and spatial interpolation. Biodivers.

Conserv. 16, 3817-3833.

Hiemstra, P.H., Pebesma, E.J., Twenhöfel, C.J.W., Heuvelink, G.B.M., 2008.

Real-time automatic interpolation of ambient gamma dose rates from the

Dutch Radioactivity Monitoring Network, Comput. Geosci. 35, 1711-

1721.

Hirabayashi, F., Kasahara, Y., 1987. A fire-spread simulation model developed

as an extension of a dynamic percolation process model

Simulation 49: 254-261

Hobbs, R. J., 1983. Markov models in the study of post-fire succession in

heathland community. Vegetatio, 56: 17-30

Page 145: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

145

145

Hofmann, M., Gatu, C., Kontoghiorghes, E.J., 2007. Efficient algorithms for

computing the best subset regression models for large-scale problems.

Comput. Stat. Data An. 52, 16-29.

Hulme, M. and N. Sheard 1999. Climate Change Scenarios for Brazil Climatic

Research Unit, Norwich, UK, pp. 6

Hulst, R. 1979. On the dynamics of vegetation: Succession in model

communities. Plant Ecology 39:85-96.

Hulst, R. 1980. Vegetation dynamics or ecosystem dynamics: Dynamic

sufficiency in succession theory. Plant Ecology 43: 147-151.

Hutchinson, G. E. 1961. The paradox of the plankton. American Naturalist

95:137-145.

Iverson, L. R., and A. M. Prasad. 2001. Potential Changes in Tree Species

Richness and Forest Community Types following Climate Change.

Ecosystems 4: 186–199.

Ives, A. R., and S. R. Carpenter. 2007. Stability and Diversity of Ecosystems.

Science 317:58-62.

Jackson, S. T., and J. T. Overpeck. 2000. Responses of plant populations and

communities to environmental changes of the late Quaternary.

Paleobiology 26:194-220.

Jacobsen, K., 2006. SRTM Height Models. In: Thurston, Jeff (Ed.).

GEOconnexion International Magazine - Spatial data & landuse, 5. Mai

Ward, UK. pp. 20-21.

Page 146: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

146

146

James, F.C., McCulloch, C.E., 1990. Multivariate analysis in ecology and

systematics: panacea or pandora's box? Annu. Rev. Ecol. Syst. 21, 129-

166.

Janzen, D. H. 1970. Herbivores and the Number of Tree Species in tropical

Forests. The American Naturalist 104:501-528.

Jensen, J.R., 2007. Remote Sensing of the Environment - an Earth Resource

Perspective. 2nd edition, Upper Saddle River: Prentice-Hall.

Jongman, R.H.G., ter Braak, C.J.F., Van Togeren, O.F.R., 1995. Data Analysis

in Community and Landscape Ecology, Cambridge at the University

press, Cambridge, UK.

Junk, W.J., 1989. Flood tolerance and tree distribution in central Amazonian

floodplains. In: Haynes, R.R., Holm-Nielsen, L.B., Balslev, H. (Eds.).

Tropical Forests. Botanical Dynamics, Speciation and Diversity.

Academic Press, London. pp. 47-64.

Junk, W.J., Bayley, P.B., Sparks, R.E., 1989. The flood pulse concept in river-

floodplain systems. In: Dodge, D.P. (Ed.). Proceedings of the

International Large River Symposium, Canadian Special Publicationof

Fisheries and Aquatic Sciences, Ottawa, Canada. pp. 110–127.

Junk W.J., 1993. Wetlands of tropical South America. In: Whigham, D.F.,

Dyrygova, D., Hejny, S. (Eds.). Wetlands of the World, Inventory and

Management. Kluwer Academic Publisher, Dordrecht. pp.679-740.

Page 147: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

147

147

Junk, W. J., 2002. Long-term environmental trends and the future of tropical

wetlands. Env. Cons. 29: 414–435.

Junk, W. J. and M. T. F. Piedade 2004. Status of knowledge, ongoing research,

and research needs in Amazonian wetlands. Wetlands Ecology and

Management 12(6): 597-609.

Junk, W. J., and C. N. d. Cunha. 2005. Pantanal: a large South American

wetland at a crossroads. Ecological Engineering 24: 391-401.

Junk, W.J., Nunes da Cunha, C., Wantzen, K.M., Petermann, P., Strüssmann,

C., Marques, M.I., Adis, J., 2006a. Biodiversity and its conservation in the

Pantanal of Mato Grosso, Brazil. Aquat. Sci. 68, 278-309.

Junk, W. J., M. Brown, I. C. Campbell, M. Finlayson, B. Gopal, L. Ramberg, and

B. G. Warner. 2006b. The comparative biodiversity of seven globally

important wetlands: a synthesis. Aquatic Sciences 68:400–414.

Kandus, P., and A. I. s. Malvarez. 2004. Vegetation patterns and change

analysis in the lower delta islands of the Parana river (Argentina).

Wetlands 24:620–632.

Karssenberg, D. 2002. Building dynamic spatial environmental models (Het

maken van dynamische ruimtelijke landschapsmodellen). PhD thesis,

Universiteit Utrecht, Utrecht.

Karssenberg, D., De Jong, K. and Van der Kwast, J. 2007. Modelling landscape

dynamics with Python. Int. J. Geogr. Inf. Sci., 21: 483–495.

Page 148: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

148

148

Keddy, P.A., L. H. Fraser, A. I. Solomeshch, W. J. Junk, D. R. Campbell, M. T.

K. Arroyo, and C. J. R. Alho. 2009 Wet and Wonderful: The World’s

Largest Wetlands Are Conservation Priorities. BioScience 59:39-51.

Keogh, T.M., Keddy, P.A. e Fraser, L.H. 1999. Patterns of Tree Species

Richness in Forested Wetlands Wetlands, 19(3): 639-647.

Kirkman, L. K., P. C. Goebel, L. West, M. B. Drew, and B. J. Palik. 2000.

Depressional wetland vegetation types: a question of plant community

development. Wetlands 20: 373–385.

Köppen, W. 1948. Climatologia. Buenos Aires, Fondo de Cultura, pp.152-192.

Legendre, P., Legendre, L., 1998. Numerical Ecology. Amsterdam, NL.

Leps, J., 1990. Can underlying mechanisms be deduced from observed

patterns? In: Krahulec F. Agnew A.D.Q. Agnew S. & Willems J.H. (eds.):

Spatial processes in plant communities. SPB Publ.. pp. 1-11.

Levin, S. A. 1976. Population Dynamic Models in Heterogeneous

Environments. Annual Review of Ecology and Systematics 7:287-310.

Loehle, C. and D. LeBlanc 1996. Model-based assessments of climate change

effects on forests: a critical review. Ecological Modelling 90(1): 1-31.

Logofet, D. O. and E. V. Lesnaya 2000. The mathematics of Markov models:

what Markov chains can really predict in forest successions. Ecological

Modelling 126(2-3): 285-298.

Luo, W., F. Song, and Y. Xie. 2008. Trade-off between tolerance to drought and

tolerance to flooding in three wetland plants. Wetlands 28:866–873.

Page 149: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

149

149

Magnusson, W.E., Lim, A.P, Luizão, R., Luizão, F., Costa, F.R.C., Castilho,

C.V., Kinupp, V.F., 2005. RAPELD: uma modificação do método de

Gentry para inventário da biodiversidade em sítios para pesquisa

ecológica de longa duração. Biota Neotropica, 5.

http://www.biotaneotropica.org.br/v5n2

Marengo, J. A. 2008 Água e mudanças climáticas. Estudos Avançados 22: 83-

96.

Martinez, J.M., Toan, T.L., 2007. Mapping of flood dynamics and spatial

distribution of vegetation in the Amazon floodplain using multitemporal

SAR data. Remote Sens. Environ. 108, 209–223.

Mauro, R. A., Pott, A., Silva, M.P. 1998. Una propuesta de modelo de estados y

transiciones para una sabana tropical inundable: el Pantanal arenoso.

Ecotropicos, 10(2): 99-112.

McIntosh, R.P., 1958. Plant Communities. Science 128, 115-120.

Metzger, J. P. 2004. Delineamento de Experimentos numa Perspectiva de

Ecologia da Paisagem. In: Culler Jr L., Valladares-Pádua C. (eds.).

Métodos de Estudos em biologia da Conservação e Manejo da Vida

Silvestre. Ed. da UFPR. Fundação O Boticário de Proteção à Natureza.

pp. 539-553

Miller, J., Franklin, J., 2006. Explicitly incorporating spatial dependence in

predictive vegetation models in the form of explanatory variables: a

Mojave Desert case study. J. Geogr. Syst. 8, 411-435.

Page 150: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

150

150

Miller, J., Franklin, J., Aspinall, R., 2007. Incorporating spatial dependence in

predictive vegetation models. Ecol. Model. 202, 225-242.

Milly, P. C. D., K. A. Dunne, and A. V. Vecchia. 2005. Global pattern of trends in

streamflow and water availability in a changing climate. 438:347-350.

Minchin, P.R., 1989. Montane vegetation of the Mt. Field Massif, Tasmania: a

test of some hypotheses about properties of community patterns. Plant

Ecol. 83, 97-110.

Mitsch, W. J., and J. G. Gosselink. 2000. Wetlands. Van Nostrand Reinhold,

New York. 3 ed.

Moore, A. D. 1990. The Semi-Markov Process: a Useful Tool in the Analysis of

Vegetation Dynamics for Management. Journal of Environmental

Management 30:111-130.

Mouillot, F., S. Rambal, and R. Joffre. 2002. Simulating climate change impacts

on fire frequency and vegetation dynamics in a Mediterranean-type

ecosystem. Global Change Biology 8: 423-437.

Mueller-Dombois, D., Ellemberg, H., 1974. Aims and Methods of Vegetation

Ecology. John Wiley & Sons, New York.

Nunes da Cunha, C., Junk, W.J., 1999. Composição florística de capões e

cordilheiras: localização das espécies lenhosas quanto ao gradiente de

inundação no Pantanal de Poconé, MT, Brasil. In: Anais do II Simpósio

sobre Recursos Naturais e Sócio-Econômicos do Pantanal - Manejo e

Conservação. Embrapa – CPAP, Corumbá, Brasil, pp. 387-406.

Nunes da Cunha, C., Junk, W.J., 2000. The impact of flooding on distribution of

woody plant communities in the Pantanal of Poconé, Mato Grosso,

Page 151: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

151

151

Brazil. In: German-Brazilian Workshop on Neotropical Ecosystems -

Achievements and Prospects of Cooperative Research. Session 4: Living

Resource Management: Approaches, Techniques, Variability. Hamburg,

Germany. pp. 3-8.

Nunes da Cunha, C., and W. J. Junk. 2004. Year-to-year changes in water level

drive the invasion of Vochysia divergens in Pantanal grasslands. Applied

Vegetation Science 7:103-110.

Nunes da Cunha, C., and H. F. Leitão-Filho. 2007. Woody vegetation in the

Pantanal of Mato Grosso, Brazil: apreliminary typology. Amazoniana XIX

(3/4): 159-184.

Nunes da Cunha, C., Rawiel, P., Wantzen, K.M., Junk, W.J., Prado, A.L., 2006.

Mapping and characterization of vegetation units by means of Landsat

imagery and management recommendations for the Pantanal of Mato

Grosso (Brazil), north of Poconé. Amazoniana. XIX, 1-32.

O'Neill, R.V., Johnson, A.R., King, A.W., 1989. A hierarchical framework for the

analysis of scale. Landscape Ecol. 3, 193-205.

Ozesmi, S.L., Bauer, M.E., 2002. Satellite remote sensing of wetlands. Wetl.

Ecol. Manag. 10, 381–402.

Pardo-Iguzquiza, E., Chica-Olmo, M., 2008. Geostatistics with the Matérn

semivariogram model: a library of computer programs for inference,

kriging and simulation. Comput. Geosci. 34, 1073-1079.

Page 152: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

152

152

Parolin P., Oliveira, A.C., Piedade, M.T.F, Wittmann, F., Junk, W.J., 2002.

Pioneer trees in Amazonian floodplains: three key species form

monospecific stand in different habitats. Folia Geobotanica 37: 225-238.

Parolin, P., 2009. Submerged in darkness: adaptations to prolonged

submergence by woody species of the Amazonian floodplains. Ann. Bot.

103, 359-376.

PCRaster, 2002. PCRaster Software. Info at http://www.geog.uu.nl/pcraster.nl.

Pebesma, E.J., Wesseling, C.G., 1998. GSTAT: a program for geostatistical

modelling, prediction and simulation. Computat. Geosci. 24, 17–31.

Pebesma, E. J., 2004. Multivariable geostatistics in S: the gstat package.

Comput. Geosci. 30, 683-691.

Pfeffer, K., Pebesma, E.J., Burrough, P.A., 2003. Mapping alpine vegetation

using vegetation observations and topographic attributes. Landscape

Ecol. 18, 759-776.

Pillar, V.D., Sosinski Jr., E.E., 2003. An improved method for searching plant

functional types by numerical analysis. J. Veg. Sci. 14, 323-332.

Ponce, V. M. and C. Nunes da Cunha 1993. Vegetated Earthmounds in

Tropical Savannas of Central Brazil: A Synthesis: With Special

Reference to the Pantanal do Mato Grosso. Journal of Biogeography

20(2): 219-225.

Pott, A., Pott, V.J. 2004. Features and conservation of the Brazilian Pantanal

wetland. Wetlands Ecology and Management 12: 547–552.

Page 153: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

153

153

Pott, A. 2007. Dinâmica da vegetação do Pantanal. In: SEB (Ed.) Anais do VIII

Congresso de Ecologia do Brasil, Caxambu - MG.

Prance, G.T., Schaller, G.B., 1982. Preliminary study of some vegetation types

of the Pantanal, Mato Grosso, Brazil. Brittonia 34, 228-251.

R Development Core Team, 2009. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing, Vienna,

Austria, ISBN 3-900051-07-0, URL http://www.R-project.org.

Ratter, J.A., Pott, A., Pott, V.J., Nunes da Cunha, C., M. Haridasam 1988.

Observations on woody vegetation types in the Pantanal and at

Corumbá, Brasil. - Notes RBG, Edinb. 45(3): 503-525.

Reynolds, J. F., H. Bugmann, and L. F. Pitelka. 2001. How much physiology is

needed in forest gap models for simulating long-term vegetation

response to global change? challenges, limitations, and potentials.

Climatic Change 51:541–557.

Scheffer, M. 2009. Critical transitions in nature and society. Princeton University

Press, Princeton and Oxford.

Scheller, R., Mladenoff, D., 2007. An ecological classification of forest

landscape simulation models: tools and strategies for understanding

broad-scale forested ecosystems. Landscape Ecology 22 (4): 491-505.

Schöngart, J., Arieira, J., Fortes, C. F., Arruda, E.C., Nunes da Cunha, C.,

2008. Carbon dynamics in aboveground coarse wood biomass of

Page 154: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

154

154

wetland forest in the northern Pantanal, Brazil. Biogeosciences Discus. 5,

1203-1230.

Shmida, A., and S. Ellner. 1984. Coexistence of plant species with similar

niches. Vegetatio 58: 29-55.

Silva, M.P.; Mauro, R.A.; Pott, A.; Boock, A.; Pott, V.J.; Ribeiro, M. , 1988. Una

sabana tropical inundable: El Pantanal arcilloso, propuesta de modelo de

estados y transiciones. Ecotropicos, 10(2): 87-98.

Silva, M.P., Mauro, R., Mourão, G.E, Coutinho, M., 2000. Distribuição e

quantificação de classes de vegetação do Pantanal através de

levantamento aéreo. Revista Brasileira de Botânica, 23 (2): 143-152.

Stein, A., Corsten, L.C.A., 1991. Universal kriging and cokriging as a regression

procedure. Biometrics 47, 575-587.

Stroh, C. L., D. D. Steven, and G. R. Guntenspergen. 2008. Effect of climate

fluctuations on long-term vegetation dynamics in Carolina Bay wetlands.

Wetlands 28:17–27.

Svenning, J.C., Kinner, D.A., Stallard, R.F., Engelbrecht, B.M.J., Wright, S.J.,

2004. Ecological determinism in plant community structure across a

tropical forest landscape. Ecology 85, 2526-2538.

Tilman, D., 1988. Plant Strategies and the Dynamic and Structure of Plant

Communities. Princeton University Press, Princeton, New Jersey.

Tilman, D. 1994. Competition and biodiversity in spatially structured habitats.

Ecology. 75(1): 2-16.

Page 155: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

155

155

Tilman, D., P. Kareiva 1997. Spatial ecology - the role of space in population

dynamics and interspecific interaction, Princeton, New Jersey. pp. 365

Troxler, G.T., Childers, D.L., 2006. Relationships between hydrology and soils

describe vegetation patterns in seasonally flooded tree islands of

southern Everglades, Florida. Plant Soil 279, 271-286.

Tucker, C.J., 1979. Red and photographic infrared linear combinations for

monitoring vegetation. Remote Sens. Environ. 8, 127-150.

Turner, M.G., 1987. Spatial simulation of landscape changes in Georgia: a

comparison of 3 transitional models. Landscape Ecol. 1, 29-36.

Turner, M.G., 1989. Landscape ecology: the effect of pattern on process. Annu.

Rev. Ecol. Syst. 20, 171-197.

Turner, M.G., Gardner, R.H., O'Neill, R.V., 2001. Landscape Ecology in Theory

and Practice- Pattern and Process. Springer-Verlag New York, Inc.,

USA.

Usher, M. B. 1981. Modelling ecological succession, with particular reference to

Markovian models. Plant Ecology 46-47(1): 11-18.

Van der Valk, A. G. 1981. Succession in Wetlands: A Gleasonian Approach.

Ecology 62:688-696.

Van Nes, E.H., Scheffer, M. 2005. A strategy to improve the contribution of

complex simulation models to ecological theory. Ecological Modelling.

185: 153–164.

Velloso, H.P., Rangel Filho, A.L.R., Lima, J.C.A., 1991. Classificação da

Vegetação Brasileira Adaptada a um Sistema Universal. IBGE, RJ, BR.

Page 156: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

156

156

Vogiatzakis, I.N., Griffiths, G.H., 2006. A GIS-based empirical model for

vegetation prediction in Lefka Ori, Crete. Plant Ecol. 184, 311 –323.

Wagner, H.H., Fortin, M.J., 2005. Spatial analysis of landscapes: concepts and

statistics. Ecology 86, 1975-1987.

Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesank, T. J. C. Beebee,

J.-M. Fromentin, O. Hoegh-GuldbergI, and F. Bairlein. 2002. Ecological

responses to recent climate change. Nature 416:389-395.

Wantzen, K.M., Drago, E., da Silva, C.J., 2005. Aquatic habitats of the Upper

Paraguay River-Floodplain-System and parts of the Pantanal (Brazil). Int.

J. Ecohydrol. Hydrobiol. 5 (2), 107-126.

Ward, J. V. and K. Tockner 2001. Biodiversity: towards a unifying theme for

river ecology. Freshwater Biology 46: 807-819.

Wassen, M.J., Peeters, W.H.M., Venteunt, H.O., 2002. Patterns in vegetation,

hydrology and nutrient availability in an undesturbed river floodplain

Poland. Plant Ecol. 165, 27-43.

Weaver, J.E., Bruner, W.E., 1945. A Seven-Year Quantitative Study of

Succession in Grassland. Ecol. Monogr. 15, 297-319.

Weaver, K. and A. H. Perera 2004. Modelling land cover transitions: A solution

to the problem of spatial dependence in data. Landscape Ecology 19(3):

273-289.

Page 157: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

157

157

Werffeli, B., Roulier, C., Buttler, A., 1997. The methodology of integrated

synusial phytosociology applied to a floodplain sector of the Sarine river,

Switzerland. Global Ecol. Biogeogr. 6, 237-245.

Wesseling, C.G., Deursen, W.P.A., Burrough, P.A., 1996. A spatial modelling

language that unifies dynamic environmental models and GIS. In:

Proceeding, Third International Conference/ Workshop of Integrating GIS

and Environmental Modeling, Santa Fé, NM.

http://www.ncgia.ucsb.edu/conf/SANTA FE CD-ROM/main.html, Santa

Barbara, CA. National Center for Geographic Information and Analysis.

Whittaker 1967,

Whittaker, R.W., 1967. Gradient analysis of vegetation. Biol Rev. 49, 207-264.

Wiens, J.A., 1989. Spatial scaling in ecology. Funct. Ecol. 3, 385-397.

Wolfram, S. (1984). Cellular automata as models of complexity. Nature

311(5985): 419-424.

Yemshanov, D. and A. H. Perera 2002. A spatially explicit stochastic model to

simulate boreal forest cover transitions: general structure and properties.

Ecological Modelling 150(1-2): 189-209.

Zeilhofer, P., Schessl, M., 1999. Relationship between vegetation and

environmental conditions in the northern Pantanal of Mato Grosso. J.

Biogeogr. 27, 159-168.

Zeilhofer, P., 2006. Soil mapping in the Pantanal of Mato Grosso, Brazil, using

multitemporal Landsat TM data. Wetl. Ecol. Manag. 14, 445-461.

Page 158: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS …§ões-Teses/Tese… · CERTIFICADO DE APROVAÇÃO Título: PADRÕES ESPAÇO-TEMPORAIS DE COMUNIDADES DE PLANTAS NO PANTANAL

158

158

Curriculum Vitae

Julia Arieira nasceu em 03 de julho de 1976 no Rio de Janeiro, Brasil.

Graduou-se na Universidade Santa Úrsula, Rio de Janeiro, em 2001, no curso

de Bacharelado e Licenciatura em Ciências Biológicas. Nos dois anos

seguintes a sua formação, trabalhou em projetos de Educação ambiental,

prestou serviços como consultora em projetos de desenvolvimento sustentável

e avaliação de impactos de empreendimentos energéticos e como professora

de ensino fundamental e médio. Em 2003 começou seu mestrado em Ecologia

e Conservação da Biodiversidade na Universidade Federal de Mato Grosso,

sob orientação da Doutora Cátia Nunes da Cunha. Ingressou em 2005, logo

após o termino do mestrado, no doutorado em Agricultura Tropical pela UFMT,

sob orientação do Doutor Eduardo Guimarães Couto e co-orientação da

doutora Cátia Nunes da Cunha e Doutor Derek Karssenberg. Em seu

doutorado, participou do programa oferecido pela CAPES de doutorado

sanduíche, no qual permaneceu um ano no departamento de Geografia Física,

Universidade de Utrecht, Países Baixos, desenvolvendo novas habilidades em

análise espacial de dados biológicos, sob orientação do Doutor Derek

Karssenberg e colaboração do Doutor Steven de Jon e Doutora Elisabeth

Addink. Durante seu desenvolvimento acadêmico, publicou dois artigos

científicos, teve publicações técnicas junto à EMBRAPA e textos em jornais de

divulgação científica. Hoje, Julia participa de projetos de pesquisa vinculados

ao Programa de Pesquisas Ecológicas de Longa Duração e ao Instituto

Nacional de Áreas Úmidas.