padrÕes de ocorrÊncia e coexistÊncia de mamÍferos de … · 2020. 9. 27. · de serrinha dos...

191
UNIVERSIDADE FEDERAL DO DIO GRANDE DO NORTE CENTRO DE BIOCIÊNCIAS DEPARTAMENTO DE ECOLOGIA PROGAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE MÉDIO E GRANDE PORTE NA CAATINGA PAULO HENRIQUE DANTAS MARINHO NATAL 2020

Upload: others

Post on 24-Mar-2021

2 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

UNIVERSIDADE FEDERAL DO DIO GRANDE DO NORTE

CENTRO DE BIOCIÊNCIAS

DEPARTAMENTO DE ECOLOGIA

PROGAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA

PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE

MAMÍFEROS DE MÉDIO E GRANDE PORTE NA CAATINGA

PAULO HENRIQUE DANTAS MARINHO

NATAL

2020

Page 2: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

i

Paulo Henrique Dantas Marinho

PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE

MAMÍFEROS DE MÉDIO E GRANDE PORTE NA CAATINGA

Tese apresentada ao Programa de Pós-

graduação em Ecologia da Universidade

Federal do Rio Grande do Norte como parte dos

requisitos para a obtenção do título de Doutor

em Ecologia.

Orientador:

Eduardo Martins Venticinque

Co-orientador:

Carlos Roberto Fonseca

NATAL

2020

Page 3: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

ii

Page 4: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

iii

Page 5: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

iv

À universdiade pública, que abre mentes e portas para o mundo e é capaz de transformar

vidas como nenhuma outra instituição

(Dedico)

Page 6: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

v

“Quem não tiver debaixo dos pés da alma, a areia de sua terra, não resiste aos atritos da sua

viagem na vida, acaba incolor, inodoro e insípido, parecido com todos.”

Luís da Câmara Cascudo

Page 7: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

vi

AGRADECIMENTOS

Foram quatro longos, e ao mesmo tempo rápidos, anos, durante os quais, apesar dos

percalços e desafios, realizei muito mais do que planejei e desejei, e por isso aproveito esse

espaço para agradecer a todos que de alguma forma contribuíram para eu conseguir encerrar

esse ciclo da melhor forma possível, mesmo em meio à uma pandemia e à desvalorização da

pesquisa por parte de quem mais deveria apoiá-la, o atual governo brasileiro.

Esta tese foi feita a várias mãos, umas mais privilegiadas e acostumadas a interagir com

computadores e equipamentos tecnológicos, como as minhas, e outras, igualmente importantes,

mas mais acostumadas a lidar com ferramentas de lida com a terra, muitas vezes injustiçadas e

esquecidas por aqueles que deveriam valorizá-las. Por isso, eu começo meus agradecimentos

pelos vários auxiliares de campo e amigos que encontrei pelos caminhos da Caatinga

nordestina, e que me ensinaram grande parte do que acho que sei hoje sobre bicho, mato e gente

do interior.

Entre eles está o que mais tempo passou comigo nos campos, ouvindo minhas piadas sem

graça e lamentos, seu João da Boa Vista, de Lajes do Cabugi, ou João Bernardino de Lima, para

os que não tiveram a sorte de conhecê-lo melhor. Comigo desde os primeiros campos do

mestrado até o último do doutorado, seu João, um dia espero conseguir lhe transmitir um terço

da sua importância no meu trabalho, e na pessoa que sou hoje, por isso sou profundamente grato

por ter lhe conhecido e por sua essencial ajuda e amizade. E com seu João, veio um combo de

gente querida que me ajudou em momentos cruciais. Obrigado Joana Darc (Darquinha) pela

sua amizade, cuidado e refeições deliciosas e revigorantes. Bem como, obrigado Jussara,

Pedrinho, Joseane, Gabriel, seu Lourival e dona Dasdores, sempre amáveis e generosos, como

é o povo bom do interior.

Além de seu João, durante esses quatro anos, e antes deles, quando coletei parte dos dados

apresentados aqui também no meu mestrado, contei com a importante ajuda de outros grandes

Page 8: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

vii

homens e mulheres, a quem serei eternamente grato. Entre ele estão seu Chico Preto e Aldenora

de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu

Cícero de Ponta do Mel, Bala, Veio e seu Severino e família de Cerro Corá, Titico, Gilvan e

Liélio de Martins, Alex, Suiane, Marlus, Renato, Rielson e o grande Iatagan de Mossoró e

Baraúna, Rogério Santos, Paulo e Leomar Martins (Babá) de Curaçá, Neto e família do

Boqueirão da Onça, entre vários outros e outras que certamente cometerei a injustiça de não

citá-los por esquecimento. A todos vocês, meu muito obrigado!

Agradeço à minha família, a base de tudo, de onde eu vim e quem me deu o suporte

necessário para eu chegar até aqui. Sou grato à minha mãe e ao meu pai, Maria de Fátima Dantas

e Francisco Marinho, que me proporcionaram algo que nunca tiveram durante sua juventude,

quando estudar era um privilégio ainda maior do que é hoje. À minha mãe, sou mais grato ainda

pela sua força e cuidado imensuráveis e por ser um exemplo de resiliência para seus filhos. À

Izabel e ao Ricardo, meus irmãos, sou grato pelo companheirismo e aprendizado que me dão

sendo quem são. Ao Ricardo, sou grato ainda por ter nos dado um motivo a mais para seguir e

tentar melhorar esse mundo, Zé Arthur.

Nessa reta final, contei com o carinho e suporte de uma pessoa muito especial sem a qual

não teria chegado até aqui, pelo menos não tão são e confiante como (acho que) cheguei.

Obrigado Virgínia Paixão por me aguentar, incentivar e me ensinar a ser uma pessoa melhor a

cada dia, você me inspira e me faz querer evoluir sempre, te quiero mucho!

Ao meu orientador, Dadão (vulgo Eduardo Venticinque), tenho que agradecer por tantos

anos de parceria científica e ensinamentos de vida. Com seu jeitão leve e descontraído, mas

super responsável e dedicado à mensagem que devemos passar nos trabalhos, e para além deles,

você me ensinou muito. Sou grato pela oportunidade de ter sido seu orientando durante esse

tempo, e por você ter acreditado em mim e no meu trabalho quando eu muitas vezes não

acreditava mais...

Page 9: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

viii

Ao meu co-orientador, Carlos R. Fonseca, que foi meu primeiro orientador acadêmico,

durante meu TCC da graduação, sou muito grato pela oportunidade que me deu e por ter sido

minha primeira referência acadêmica, me acompanhando desde lá até aqui com seus

comentários e revisões cirúrgicos, colocados de uma forma sempre respeitosa e construtiva, um

grande mestre!

Aos dois, obrigado por me mostrar que existe vida, música e amizade na academia (e

além dela) entre orientador e orientando!

Agradeço imensamente a disponibilidade e valiosa contribuição dos membros da banca,

Mauro Pichorim, Claudia Campos, Rodrigo Massara, Fabiana Rocha e Guilherme Lima

(suplente, mas titular na competência). Vocês são exemplo e inspiração para minha atuação

profissional. Espero que façamos ainda muitas outras parcerias pela ciência e conservação da

biodiversidade!

Aos meus amigos e parceiros da Biologia, da Ecologia, da Consultoria Ambiental, da

Mastozoologia nordestina, do Programa Amigos da Onça, e da vida, sou grato pela amizade,

companheirismo e aprendizado, sem os quais esses quatros anos teriam sido mais difíceis e

menos divertidos: Felipe, Alan, Damião e Daniel, que além da amizade me ajudaram nos

campos; João Paulo, Ivanice, Dellano, Érika, Sean e Laís, amigos mais malucos e melhores não

há, seja de perto ou de longe, sempre lá; Renato, Annie e Paloma, amigos queridos desde a

graduação, os quais cito para representar toda nossa turma Bio 2008.2 e tantos outros amigos

que fiz durante a graduação; Paulo Fernandes, Talles, Adriana Almeida, Andressa Scabin,

Nádia, Andressa Meirelles, Rafael Domingos, Maria Clara, Marina Antongiovanni, Janina

Calado e Carolina Lisboa, amigos e colegas de profissão que a pós-graduação me deu e que

levarei pra vida; Dyego, Raissa, Tony, Raul Sales e Bruno França, que me acompanharam nas

consultorias nordeste a fora, afinal, não se vive só de bolsa; tantos amigos dos tempos de Traíras

e do Colégio Equipe, que ficaram distantes mas continuam nos meus pensamentos; Thalita, a

Page 10: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

ix

quem agradeço pelo apoio em boa parte desse período; Liana Sena, Mayara Beltrão, Hugo

Fernandes, Lucas Silva e Robério Filho, que em sintonia temos avançado no conhecimento

sobre os mamíferos do nordeste; Claudia Martins, Claudia Campos (novamente), Carolina

Esteves e Maísa Ziviane, obrigado pela oportunidade de conhecer e contribuir para a

conservação do Boqueirão da Onça; Dulce, Taís, Gustavo, Abhishek, Luis, Lucas e Fany,

amigos que fizeram minha estadia em Portugal bem mais “fixe”. A todos e todas, meu mais

sincero obrigado!

Aqui agradeço aos meus colegas de “laboratório”, por dividirem trabalho, angústias e

alegrias. Eugênia e Juan, serei eternamente grato pela contribuição que vocês deram e dão para

a Caatinga e pelo exemplo e inspiração que representam, obrigado pela amizade e suporte de

sempre. À Virgínia, agradeço aqui pelas ajudas em campo, pela leitura dos meus textos e pelos

conselhos visando o melhor pra mim, você é a melhor “colega de lab” que eu poderia desejar.

Fernanda, obrigado pela parceria e pelo bom humor de sempre, espero que continue trabalhando

com a Caatinga, mas sei que será exitosa em qualquer linha que escolher seguir. Ellen, obrigado

pela sua sensibilidade e por me permitir te ajudar e de alguma forma conhecer mais sobre a

Amazônia e sua biodiversidade, torço muito pelo seu sucesso. Nessa linha, estendo meus

agradecimentos ao Duka, quem primeiro me mostrou a bicharada dessa belezura de bioma. À

Patrícia Ribeiro, agradeço pela amizade e parceria importante desde o mestrado até os dias de

hoje.

À Maria Luiza Falcão e ao Raul Santos, alunos de iniciação científica e amigos, agradeço

pela ajuda essencial que me deram e me dão, e pela paciência e confiança em continuar

trabalhando com alguém tão ocupado e atrapalho quanto eu. Tenho orgulho dos profissionais

que se tornaram e contem comigo para o que precisarem.

Nas pessoas das professoras Ivoneide Ferreira e Elineí Araújo agradeço a todos os

professores e professoras que me incentivaram e ensinaram que a educação é o bem mais

Page 11: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

x

precioso que podemos almejar e utilizar para transformar vidas. Ivoneide, ainda no CERU em

Traíras, que é de onde eu venho, incentivou como ninguém o início da minha caminhada para

chegar até aqui. Elineí, já na UFRN, me apoiou nos momentos de maior fragilidade, até mesmo

financeiramente, para que eu não desistisse dessa caminhada.

Agradeço a todos que fazem o Programa de Pós-graduação em Ecologia e o Departamento

de Ecologia da UFRN, entre professores e colegas discentes, por incentivarem o crescimento

profissional da forma mais humana possível, algo cada vez mais raro na academia. Agradeço

especialmente aos queridos e queridas dona Marlene, Víctor, Dimas e Kionara, sempre

disponíveis e sorridentes ao ajudar.

Durante essa jornada, tive a oportunidade e felicidade de viver uma experiência na

Universidade de Aveiro, em Portugal, a qual agradeço imensamente. Particularmente, agradeço

ao meu supervisor durante o intercâmbio, Carlos Fonseca, pela oportunidade e receptividade, e

a toda a equipe da Unidade de Vida Selvagem, onde aprendi muito e fiz bons amigos. Obrigado

João Carvalho, Dário Hipólito, Rita Torres, Ana Figueiredo, Eduardo Ferreira, Joana

Fernandes, Filipa Costa, Raquel Martins, Raquel Crespo e Victor Bandeira, pelas boas

conversas durante o trabalho, os almoços e os finos, mas principalmente pelos campos e eventos

que me permitiram conhecer a biodiversidade e as belas paisagens naturais de Portugal. Ao

Pedro Sarmento, agradeço especialmente pelo suporte em um dos capítulos da tese e por me

proporcionar uma das maiores experiências da minha vida, ver um lince ibérico em vida livre,

e ainda com filhotes. Chorei nesse dia, e não era pra menos!

Sou grato à Camile Lugarini pela confiança e oportunidade de colaborar com o Projeto

Ararinha na Natureza, desenvolvido pelo Centro Nacional de Pesquisa e Conservação de Aves

Silvestres (CEMAVE/ICMBio) e financiado pela Vale através do Funbio. Sou grato ainda pela

amizade e ajuda de Cristine Prates, Sueli Damasceno, Damilys Oliveira, Mércia Milena e

Tatiane Alves, com as quais aprendi muito durante minha passagem pelo projeto!

Page 12: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

xi

Agradeço à toda equipe do Parque Nacional da Furna Feia (ICMBio), nas pessoas do

Leonardo, Lúcia, Suiane, Rielson e Iatagan (mais uma vez), pelo importante apoio e parceria

durante o projeto que desenvolvi nesta importante unidade de conservação.

Agradeço ao Gabriel Penido pela parceria em um dos capítulos deste trabalho; à Barbara

Zimbres e Tadeu de Oliveira pela ajuda em análises e identificação de registros de felinos,

respectivamente; e ao Aírton Galvão (Tito) pela amizade e ajuda nos campos do mestrado que

subsidiaram um dos capítulos apresentados aqui.

Para realizar esse trabalho, contei também com o suporte financeiro, gerencial e logístico

de importantes parceiros, entre instituições e financiadores, a quem sou grato: The Mohamed

bin Zayed Species Conservation Fund, Restaurante Camarões (através de Vitor Medeiros e

família), Fundação Grupo Boticário de Proteção à Natureza, Wildlife Conservation Society –

WSC Brasil, Tropical Forest Conservation Act (TFCA) e Fundo Brasileiro para a

Biodiversidade. Ao Santander Universidades agradeço pela bolsa-auxílio para fazer o

intercâmbio. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento

de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001 / This study

was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -

Brasil (CAPES) - Finance Code 001.

Sou grato a todos os moradores locais e proprietários de terras que me receberam e

permitiram realizar esse trabalho nas suas propriedades e vizinhança.

À Caatinga e aos seus moradores (gente, planta e bicho), sou grato por me fazer valorizar

minhas origens e por dar mais sentido a minha existência nesse planeta.

Page 13: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

xii

SUMÁRIO

RESUMO ........................................................................................................................................ 11

ABSTRACT .................................................................................................................................... 13

INTRODUÇÃO GERAL ................................................................................................................ 15

Referências ...................................................................................................................................... 18

MAMÍFEROS DE MÉDIO E GRANDE PORTE DA CAATINGA DO RIO GRANDE DO

NORTE, NORDESTE DO BRASIL ............................................................................................... 22

Resumo ............................................................................................................................................ 23

Abstract ........................................................................................................................................... 24

Introdução ....................................................................................................................................... 25

Material e métodos.......................................................................................................................... 27

Resultados ....................................................................................................................................... 32

Discussão ......................................................................................................................................... 39

Agradecimentos .............................................................................................................................. 49

Literatura citada ............................................................................................................................. 49

TEMPORAL NICHE OVERLAP AMONG MESOCARNIVORES IN A CAATINGA DRY

FOREST .......................................................................................................................................... 61

Abstract ........................................................................................................................................... 63

Introduction .................................................................................................................................... 64

Methods ........................................................................................................................................... 67

Results ............................................................................................................................................. 72

Discussion ........................................................................................................................................ 81

Acknowledgments ........................................................................................................................... 86

References ....................................................................................................................................... 86

Supplementary Material ................................................................................................................. 95

CO-OCCURRENCE PATTERNS BETWEEN OCELOT AND SYMPATRIC

MESOCARNIVORES IN A BRAZILIAN DRY FOREST ......................................................... 102

Abstract ......................................................................................................................................... 104

Introduction .................................................................................................................................. 105

Page 14: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

xiii

Material and methods ................................................................................................................... 108

Results ........................................................................................................................................... 114

Discussion ...................................................................................................................................... 122

Acknowledgments ......................................................................................................................... 127

References ..................................................................................................................................... 128

Supplementary Material ............................................................................................................... 138

MULTI-SPECIES OCCUPANCY MODELLING REVEALS MAMMALS’ PREFERENCE

FOR FORESTED HABITATS IN AN OVERGRAZED SEMIARID LANDSCAPE ................ 141

Highlights ...................................................................................................................................... 143

Abstract ......................................................................................................................................... 143

Introduction .................................................................................................................................. 144

Methods ......................................................................................................................................... 147

Results ........................................................................................................................................... 154

Discussion ...................................................................................................................................... 160

Acknowledgments ......................................................................................................................... 166

References ..................................................................................................................................... 167

Supplementary Material ............................................................................................................... 178

CONCLUSÕES GERAIS ............................................................................................................. 185

Page 15: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

11

RESUMO 1

As florestas tropicais secas são ecossistemas ameaçados e pouco conhecidos onde a associação 2

entre o clima semiárido e a geralmente elevada degradação ambiental impõe desafios para a 3

persistência da fauna silvestre. Neste contexto, mamíferos de médio e grande porte (MMGP) 4

são especialmente afetados pelas perturbações antropogênicas, entre os quais os carnívoros são 5

intensamente perseguidos, prejudicando seu papel na estruturação das comunidades biológicas 6

através da predação e da competição intraguilda. Nesta tese, nós investigamos os padrões de 7

ocorrência e coexistência de MMGP em diferentes paisagens da Caatinga, a floresta tropical 8

seca brasileira, utilizando dados obtidos com armadilhamento fotográfico. Especificamente 9

nós: 1) realizamos o primeiro levantamento sistemático de MMGP do estado do Rio Grande do 10

Norte (RN) amostrando 10 áreas prioritárias para a conservação; 2) descrevemos os padrões 11

diários e sazonais de atividade e investigamos a sobreposição temporal entre mesocarnívoros, 12

e deles com suas presas potenciais, utilizando estatística circular e análises não paramétricas de 13

sobreposição de atividade; 3) investigamos os padrões de co-ocorrência espacial entre um 14

mesopredador dominante (Leopardus pardalis) e mesocarnívoros simpátricos, considerando a 15

sazonalidade e utilizando modelos de co-ocorrência condicional; e, finalmente, 4) testamos os 16

efeitos relativos de preditores ambientais e antropogênicos na ocupação de MMGP em uma 17

paisagem perturbada pela elevada densidade de gado e durante um período de seca extrema, 18

utilizando modelos Bayesianos de ocupação em uma abordagem multi-espécies. Como 19

resultados principais, nós encontramos 1) uma riqueza de 14 espécies de MMGP na Caatinga 20

do RN, o que representa 50% das espécies deste grupo registradas ao norte do Rio São 21

Francisco, incluindo espécies ameaçadas de extinção como um predador de topo (Puma 22

concolor). 2) Os mesocarnívoros foram principalmente noturnos ao longo das estações seca e 23

chuvosa, sobrepondo grande parte da sua atividade diária, mas segregando os picos de maior 24

atividade, o que pode representar um mecanismo de coexistência. Enquanto isso, Herpailurus 25

Page 16: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

12

yagouaroundi foi diurno, evitando o encontro com seus competidores e sincronizando sua 26

atividade com presas potenciais. 3) Espacialmente, os demais mesocarnívoros usaram o habitat 27

independentemente da presença de L. pardalis, com exceção de H. yagouaroundi, que parece 28

preferir os mesmos locais que esse mesopredador dominante, provavelmente por apresentarem 29

melhores condições e recursos, enquanto a segregação temporal diminui os riscos de encontros 30

agressivos. 4) MMGP ocorreram principalmente em manchas de vegetação florestal, as quais 31

representam um habitat chave para a persistência desse grupo em uma paisagem degradada e 32

sob estiagem prolongada, onde muitas espécies apresentaram abundância extremamente baixa. 33

Por isso, esses ambientes devem ser protegidos para garantir a persistência de MMGP na 34

Caatinga. Nossos resultados reforçam a relevância de áreas e habitats prioritários para a 35

conservação de mamíferos na floresta tropical seca brasileira, além de elucidar as estratégias de 36

coexistência intraguilda que mantém a diversidade de mesocarnívoros neste ambiente 37

semiárido. 38

Palavras-chave: Distribuição de espécies; Espécies ameaçadas; Floresta tropical seca; 39

Interação interespecífica; Modelos de ocupação; Padrão de atividade; Semiárido. 40

41

42

43

44

45

46

47

48

49

50

Page 17: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

13

Occurrence and coexistence’s patterns of medium to large-sized mammals in Caatinga 51

52

ABSTRACT 53

Dry tropical forests are threatened and little-known ecosystems where the association between 54

the semiarid climate and the generally high environmental degradation imposes challenges for 55

the persistence of wild fauna. In this context, medium to large-sized mammals (MLSM) are 56

especially affected by anthropogenic disturbances, among which, carnivores are intensely 57

persecuted, impairing their role in structuring biological communities through predation and 58

intraguild competition. In this thesis, we investigated the occurrence and coexistence patterns 59

of MLSM in different landscapes of the Caatinga, the Brazilian dry tropical forest, using camera 60

trapping data. Specifically, we 1) carried out the first systematic survey of MLSM in the Rio 61

Grande do Norte state (RN), sampling 10 priority areas for conservation; 2) we described the 62

daily and seasonal activity patterns and estimated the temporal overlap among mesocarnivores 63

using circular statistics and non-parametric analyzes of activity overlap; 3) we investigated the 64

patterns of spatial co-occurrence between a dominant mesopredator (Leopardus pardalis) and 65

sympatric mesocarnivores, considering seasonality and using conditional co-occurrence 66

models; and finally, 4) we tested the relative effects of environmental and anthropogenic 67

predictors on MLSM’s occupancy in a landscape disturbed by high cattle density and during a 68

period of extreme drought, using Bayesian occupancy models in a multi-species approach. As 69

main results, we found 1) a wealth of 14 MLSM’s species in the Caatinga of RN, which 70

represents 50% of the MLSM registered at the north of the São Francisco River, including 71

threatened species as a top predator (Puma concolor). 2) Mesocarnivores were mainly nocturnal 72

throughout the dry and rainy seasons, overlapping most of their daily activity, but segregating 73

the peaks of greater activity, which may represent a coexistence mechanism. Meanwhile, 74

Herpailurus yagouaroundi was diurnal, avoiding encounters with competitors and 75

Page 18: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

14

synchronizing its activity with potential prey. 3) Spatially, the other mesocarnivores used the 76

habitat regardless L. pardalis’ presence, with the exception again of H. yagouaroundi, which 77

seems to prefer the same locations as this dominant mesopredator, probably because they have 78

better conditions and resources, while temporal segregation decreases the risk of aggressive 79

encounters. 4) MLSM occurred mainly in patches of forest vegetation, which represent a key 80

habitat for the persistence of this group in a degraded landscape under prolonged drought, and 81

where many species showed an extremely low abundance. Therefore, these environments must 82

be protected to guarantee MLSM’s persistence in Caatinga. Our results reinforce the relevance 83

of priority areas and habitats for mammals’ conservation in the Brazilian dry tropical forest, in 84

addition to elucidating the intraguild coexistence strategies that maintain the mesocarnivores 85

diversity in this semiarid environment. 86

Keywords: Activity pattern; Dry tropical forest; Interspecific interactions; Occupancy 87

models; Semiarid; Species distribution; Threatened species. 88

89

90

91

92

93

94

95

96

97

98

Page 19: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

15

INTRODUÇÃO GERAL 99

Mamíferos terrestres de médio e grande porte (MMGP; e.g., > 1 kg, Chiarello et al., 2000) 100

desempenham importantes papeis ecológicos nas florestais tropicais (Bello et al., 2016), mas 101

estão entre os grupos mais afetados pelas pressões antropogênicas presentes nestes ambientes 102

(Benítez-Lopes et al., 2017). Do controle de herbívoros que estruturam a vegetação a dispersão 103

de sementes, a perda de espécies de MMGP pode afetar a estrutura e a capacidade de 104

regeneração dos ecossistemas (Bello et al., 2016; Ripple et al., 2014). Relativamente baixas 105

densidades e taxas reprodutivas tornam mais difícil para populações de espécies de MMGP se 106

recuperarem da caça intensa e da perda e degradação dos seus habitats (Chiarello et al., 2000; 107

Ripple et al., 2014), fazendo desse grupo um importante indicador de integridade biótica de um 108

ecossistema (Cheyne et al., 2016). 109

Entre os MMGP, os grandes carnívoros são especialmente ameaçados principalmente 110

pela perda de habitat, diminuição da disponibilidade de presas e perseguição humana decorrente 111

de conflitos pela predação de animais domésticos (Ripple et al., 2014). Por isso, as populações 112

de predadores de topo de cadeia têm declinado por todo o mundo, gerando, entre outros efeitos, 113

um aumento nas abundâncias de mesopredadores, uma vez que estes ficam liberados do 114

controle top-down (Ripple et al., 2014). Consequentemente, dentre outros efeitos, os 115

mesopredadores pressionam ainda mais suas presas e intensificam as interações intraguilda 116

(Croocks e Soulé, 1999; Jiménez et al., 2019), Neste contexto, espécies dominantes dessa guilda 117

(e.g., maiores) podem se tornar predadores de topo emergentes (Prugh et al., 2009). Desta 118

forma, é essencial investigar os padrões de ocorrência e coexistência de MMGP em 119

ecossistemas tropicais para entender melhor quais fatores determinam a diversidade de 120

mamíferos terrestres e garantem a persistência das comunidades desse grupo em paisagens onde 121

os impactos antropogênicos ameaçam significativamente a biodiversidade. 122

Page 20: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

16

As florestas sazonalmente secas estão entre os ecossistemas tropicais menos conhecidos 123

e protegidos (Santos et al., 2011; Banda et al., 2016). A Caatinga brasileira consiste na maior 124

formação desse tipo de bioma na região Neotropical (Silva et al., 2017). Coberta por um 125

mosaico vegetacional que vai da formações mais arbustivas e abertas até florestas secas densas, 126

de acordo com o grau de aridez e degradação (Velloso et al., 2002; Silva e Souza, 2018), a 127

Caatinga é marcada por um clima semiárido, apresentando altas temperaturas, elevada 128

evapotranspiração e baixas precipitações concentradas em poucos meses do ano (Sampaio, 129

2010). Essa ecorregião já perdeu aproximadamente 50% da sua cobertura original 130

(Antongiovanni et al., 2018), e o restante se encontra sob elevados níveis de distúrbio 131

antropogênico crônico (Ribeiro et al., 2015). 132

Entre as maiores ameaças para a biodiversidade da Caatinga estão a conversão da 133

vegetação em culturas agrícolas de ciclo curto, a extração de madeira para usos doméstico, 134

industrial e produção de carvão vegetal, a caça intensa e amplamente difundida, e a criação 135

extensiva de gado bovino, ovino e caprino, que somam mais de 10 milhões de cabeças (Leal et 136

al., 2005; Silva et al., 2017). Essas atividades são desenvolvidas por uma população humana de 137

mais de 28 milhões de habitantes distribuídos ao longo dos 735.000 km² dessa região semiárida 138

(Leal et al. 2005; Silva et al., 2017). As mudanças climáticas representam uma ameaça 139

adicional, uma vez que devem intensificar a escassez de chuvas na região (Seddon et al., 2016). 140

Além disso, a baixa cobertura de áreas integralmente protegidas, que somam menos de 2 % da 141

área da Caatinga (Fonseca et al., 2017), e o ainda escasso, embora crescente, conhecimento 142

sobre as espécies da região, dificultam a elaboração e implementação de estratégias eficientes 143

de conservação e manejo, bem como o avanço no entendimento dos seus padrões ecológicos. 144

Os mamíferos se destacam entre os grupos biológicos menos conhecidos na Caatinga. 145

Reconhecida por muito tempo como pobre em espécies e endemismos desse grupo faunístico 146

(Mares et al., 1981), só nos últimos anos têm surgido esforços significativos de pesquisas sobre 147

Page 21: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

17

a ecologia de mamíferos na região, revelandouma riqueza de pelo menos 183 espécies, sendo 148

45 delas de MMGP (incluindo primatas) e 11 endêmicas (Carmignotto e Astúa, 2017). Entre os 149

estados brasileiros, o Rio Grande do Norte sempre foi apontado como uma grande lacuna de 150

conhecimento sobre o grupo (Feijó e Langguth, 2013), o que só nos últimos anos tem sido 151

revertido (Marinho et al., 2018; Vargas-Mena et al., 2018). Um aspecto da ecologia de MMGP 152

que foi pouco investigado até aqui, é como mesocarnívoros coexistem em paisagens onde 153

predadores de topo como onças pardas (Puma concolor) e pintadas (Panthera onca) estão 154

extintos localmente ou funcionalmente, o que representa grande parte da floresta tropical seca 155

brasileira (Feijó e Langguth, 2013; Carmignotto e Astúa, 2017). Além disso, precisamos 156

entender melhor como MMGP lidam com a marcada sazonalidade de ambientes semiáridos 157

como a Caatinga (Stoner e Timm, 2011; Carmignotto e Astúa, 2017), e quais características da 158

paisagem beneficiam a persistência das espécies em um contexto de elevada degradação 159

antropogênica e estiagem prolongada, que tendem a se intensificar no futuro. 160

Para abordar estas temáticas, esta tese está dividida em quatro capítulos. No Capítulo 1 161

descrevemos a riqueza e composição de MMGP da Caatinga do Rio Grande do Norte, a partir 162

de um significativo esforço amostral que cobriu 10 áreas prioritárias para a conservação dessa 163

ecorregião no estado. A partir dos resultados do armadilhamento fotográfico, discutimos a 164

relevância das espécies registradas, as ausências preocupantes e a importância das áreas de 165

estudo para o conhecimento e conservação da biodiversidade local. Optamos por publicar esse 166

capítulo em português por entendemos que ele preenche uma lacuna sobre informações básicas 167

de ocorrência de mamíferos no estado, e que assim deve ser utilizado tanto para pequisa 168

cientídica quanto por técnicos de órgãos ambienatsi e tomadores de decisão. 169

Nos Capítulos 2 e 3 investigamos os mecanismos de coexistência de mesocarnívoros 170

através da análise de sobreposição dos eixos temporal e espacial do nicho das espécies, 171

respectivamente, em uma área prioritária para conservaçãoda Caatinga do Rio Grande do Norte 172

Page 22: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

18

onde predadores de topo estão virtualmente ausentes, e onde a jaguatirica (Leopardus pardalis) 173

atua como mesocarnívoro dominante. Além disso, consideramos potenciais efeitos da 174

sazonalidade e de fatores como disponibilidade de presas e interferências antrópicas nesses 175

padrões espaço-temporais. 176

No Capítulo 4 testamos os efeitos relativos de preditores ambientais e antropogênicos na 177

ocupação de MMGP em uma paisagem da Caatinga de alta relevância para conservação, mas 178

que se encontra sob sobrepastejo no norte da Bahia. Neste trabalho tentamos identificar quais 179

mecanismos permitem a persistência das espécies em um ambiente perturbado durante um 180

período de seca extrema através de modelos Bayesianos de ocupação baseados em uma 181

abordagem multi-espécies. 182

Com os resultados desta tese, esperamos melhorar o entendimento sobre aspectos 183

ecológicos de MMGP em uma região semiárida sob forte interferência humana, de forma que 184

essas informações auxiliem na tomada de decisão e na elaboração e execução de estratégias de 185

conservação e manejo das espécies e paisagens da Caatinga. Além disso, esperamos que nossos 186

resultados estimulem o desenvolvimento de novas pesquisas que avancem nossa capacidade de 187

entendimento de como mamíferos lidam com ecossistemas semiáridos. 188

189

Referências 190

Antongiovanni M, Venticinque EM, Fonseca CR. 2018. Fragmentation patterns of the Caatinga 191

drylands. Landscape Ecology 33:1353-1367. 192

Banda RK, Delgado-Salinas A, Dexter KG et al. 2016. Plant diversity patterns in neotropical 193

dry forests and their conservation implications. Science 353:1383-1387. 194

Bello C, Galetti M, Pizo MA et al. 2015. Defaunation affects carbon storage in tropical forests. 195

Science Advances 1:e1501105. 196

Page 23: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

19

Benítez-López A, Alkemade R, Schipper AM, Ingran DJ, Verweij PA, Eikeboom JAJ, 197

Huijbregts MAJ. 2017. The impact of hunting on tropical mammal and bird populations. 198

Science 356:180-183. 199

Carmignotto AP, Astúa D. 2017. Mammals of the Caatinga: diversity, ecology, biogeography, 200

and conservation. In: Silva MC, Leal IR, Tabarelli M (eds). Caatinga: The largest tropical 201

dry forest region in South America. Springer, Cham, pp. 211-254. 202

Cheyne SM, Sastramidjaja WJ, Muhalir, Rayadin Y, Macdonald DW. 2016. Mammalian 203

communities as indicators of disturbance across Indonesian Borneo. Global Ecology and 204

Conservation 7:157-173. 205

Chiarello AG. 2000. Density and population size of mammals in remnants of Brazilian Atlantic 206

Forest. Conservation Biology 14:1649-1657. 207

Fonseca CR, Antongiovanni M, Matsumoto M, Bernard E, Venticinque EM. 2017. 208

Conservation opportunities in the Caatinga. In: Silva MC, Leal IR, Tabarelli M (eds). 209

Caatinga: The largest tropical dry forest region in South America. Springer, Cham, pp. 429-210

443. 211

Jiménez J, Nuñez-Arjona JC, Mougeot F et al. 2019. Restoring apex predators can reduce 212

mesopredator abundances. Biological Conservation 238:108234. 213

Mares MA, Willig MR, Steilein KE, Lacher-Jr TE. 1981. The mammals of Northeastern Brazil: 214

a preliminary assessment. Annals of the Carnegie Museum 50:81-137. 215

Marinho PH, Bezerra D, Antongiovanni M, Fonseca CR, Venticinque EM. 2018. Mamíferos 216

de médio e grande porte da Caatinga do Rio Grande do Norte, nordeste do Brasil. 217

Mastozoología Neotropical 25:345-362. 218

Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Bashares JS. 2009. The 219

rise of the mesopredator. Bioscience 59:779-791. 220

Page 24: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

20

Ribeiro E, Arroyo-Rodríguez V, Santos BA, Tabarelli M, Leal IR. 2015. Chronic anthropogenic 221

disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. 222

Journal of Applied Ecology 52:611-620. 223

Ripple WJ, Estes JA, Beschta RL et al. 2014. Status and ecological effects of the world’s largest 224

carnivores status and ecological effects of the world’s largest carnivores. Science 225

343:1241484. 226

Sampaio EVSB. 2010. Características e potencialidades. In: Gariglio MA, Sampaio EVSB, 227

Cestaro LA, Kageyama PY (eds). Uso sustentável e conservação dos recursos florestais da 228

Caatinga. Serviço Florestal Brasileiro, Brasília, pp 29-48. 229

Santos JC, Leal IR, Almeida-Cortez JS, Fernandes GW, Tabarelli M. 2011. Caatinga: the 230

scientific negligence experienced by a dry tropical forest. Tropical Conservation Science 231

4:276-286. 232

Seddon AWR, Macias-Fauria M, Long PR, Benz D, Willis KJ. 2016. Sensitivity of global 233

terrestrial ecosystems to climate variability. Nature 531:229-232. 234

Silva AC, Souza AF. 2018. Aridity drives plant biogeographical sub regions in the Caatinga, 235

the largest tropical dry forest and woodland block in South America. Plos One 13:e0196130. 236

Silva JMC, Leal IR, Tabarelli M (eds). 2017. Caatinga: the largest tropical dry forest region in 237

South America. Springer, Cham. 238

Stoner K, Timm RM. 2011. Seasonally dry tropical forest mammals: Adaptations and seasonal 239

patterns. In: Dirzo R, Hillary S, Young S, Mooney HA, Ceballos G (eds). Seasonally dry 240

tropical forests: Ecology and conservation. Island Press, Washington. 241

Vargas-Mena JC, Alves-Pereira K, Barros MAS et al. 2018. Te bats of Rio Grande do Norte 242

state, northeastern Brazil. Biota Neotropica 18:e20170417. 243

Page 25: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

21

Velloso AL, Sampaio E, Pareyn F (eds). 2002. Ecorregiões propostas para o bioma Caatinga. 244

Associação de Plantas do Nordeste/Instituto para Conservação Ambiental/The Nature 245

Conservancy do Brasil, Recife. 246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Page 26: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

22

Capítulo 1 270

271

MAMÍFEROS DE MÉDIO E GRANDE PORTE DA CAATINGA DO RIO GRANDE 272

DO NORTE, NORDESTE DO BRASIL 273

274

275

276

277

Capítulo publicado na revista Mastozoología Neotropical (https://www.sarem.org.ar/wp-278

content/uploads/2019/01/SAREM_MastNeotrop_25-2_08_Marinho.pdf). 279

Page 27: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

23

Mamíferos de médio e grande porte da Caatinga do Rio Grande do Norte, 280

nordeste do Brasil 281

282

Paulo H. Marinho¹, Daniel Bezerra¹, Marina Antongiovanni¹, Carlos R. Fonseca¹ e 283

Eduardo M. Venticinque¹ 284

285

¹Programa de Pós-graduação em Ecologia, Departamento de Ecologia, Centro de Biociências, 286

Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal, RN, Brasil 287

288

Resumo. Mamíferos de médio e grande porte são especialmente afetados pela caça e perda de 289

habitat, ao mesmo tempo que desempenham importantes funções no ecossistema. O 290

conhecimento sobre esse grupo na Caatinga, a floresta tropical sazonalmente seca do nordeste 291

do Brasil, contudo, ainda é escasso. Neste trabalho realizamos o primeiro levantamento 292

sistemático de mamíferos de médio e grande porte no estado do Rio Grande do Norte, através 293

de armadilhamento fotográfico em 188 pontos distribuídos em 10 áreas prioritárias para a 294

conservação da biodiversidade da Caatinga. Com um esforço amostral de 7271 câmeras-dias, 295

obtivemos 1607 registros de 14 espécies nativas, distribuídas em seis ordens e 10 famílias: oito 296

espécies da ordem Carnivora, duas espécies da ordem Cingulata, e uma espécie para cada uma 297

das demais ordens (Artiodactyla, Didelphimorphia, Pilosa e Primates). A riqueza encontrada 298

representa 31% das 45 espécies de mamíferos de médio e grande porte que ocorrem na 299

Caatinga, e 50% das espécies deste grupo registradas no domínio da Caatinga ao norte do Rio 300

São Francisco, ampliando significativamente o conhecimento sobre o grupo na região. Entre as 301

espécies registradas estão três felinos ameaçados de extinção, incluindo um grande predador de 302

topo (Leopardus tigrinus, Herpailurus yagouaroundi e Puma concolor). O baixo número de 303

registros de algumas espécies e a ausência de outras indicam o estado crítico da mastofauna do 304

Page 28: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

24

estado e sugerem a importância e urgência do estabelecimento de novas unidades de 305

conservação na Caatinga do Rio Grande do Norte. 306

Palavras chave: Armadilha fotográfica. Conservação da Biodiversidade. Espécies ameaçadas. 307

Floresta sazonalmente tropical seca. Riqueza de espécies. 308

309

Abstract. Medium to large-sized mammals are the most affected by habitat loss and hunting, 310

while at the same time playing important roles in the ecosystem. The knowledge about this 311

group in the Caatinga, the dry tropical forest of northeastern Brazil, however, is still scarce. In 312

this study, we carried out the first systematic survey of medium to large-sized mammals in the 313

Rio Grande do Norte state, with camera traps installed in 188 points distributed in 10 priority 314

areas for the conservation of the Caatinga biodiversity. With a sampling effort of 7271 camera-315

days, we obtained 1607 records of 14 native medium to large-sized mammals, distributed in six 316

orders and 10 families: eight species of the order Carnivora, two species of the order Cingulata, 317

and one species for each of the other orders (Artiodactyla, Didelphimorphia, Pilosa e Primates). 318

The richness recorded represents a third of the 45 large and medium-sized mammal species 319

found in the Caatinga, and half of the large and medium-sized mammal species recorded in 320

northern Caatinga dominium, significantly increasing the knowledge about the group in the 321

region. Among the recorded species are three threatened felids, including a large top predator 322

(Leopardus tigrinus, Herpailurus yagouaroundi, and Puma concolor). The low number of 323

records of some species and the absence of others indicate the critical status of the mammal 324

fauna in the state and highlight the importance and urgency of the creation of new protected 325

areas in the Caatinga of the Rio Grande do Norte. 326

Key words: Biodiversity conservation. Camera trap. Seasonally dry tropical forest. Species 327

richness. Threatened species. 328

329

Page 29: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

25

Introdução 330

O conhecimento regional sobre a presença e distribuição das espécies é essencial para 331

planejar e avaliar estratégias de conservação da biodiversidade (Tobler et al. 2008). Esse tipo 332

de informação ajuda a definir a distribuição espacial das espécies, monitorar a diversidade ao 333

longo do espaço e do tempo e avaliar o impacto de atividades humanas sobre as espécies 334

vulneráveis (Tobler et al. 2008; Cheyne et al. 2016; Rosas-Ribeiro et al. 2017). Mamíferos de 335

médio e grande porte (> 1 kg; e.g. Chiarello 1999) são especialmente afetados por ameaças 336

como a caça e a perda e fragmentação dos seus habitats, uma vez que apresentam baixas 337

densidade e fecundidade, e geralmente elevados requerimentos tróficos e de área de vida 338

(Chiarello 1999; Cardillo et al. 2005; Peres 2001). Ao mesmo tempo, esses grandes vertebrados 339

são responsáveis por importantes funções e serviços ecossistêmicos, como o controle de 340

populações de herbívoros, a modulação do ciclo de nutrientes através do consumo da biomassa 341

vegetal e a dispersão de sementes grandes (Chiarello 1999; Terborgh et al. 2001; Cardillo et al. 342

2005; Galetti & Dirzo 2013; Sobral et al. 2017). Além disto, muitas vezes mamíferos de médio 343

e grande porte, devido a questões éticas, estéticas e culturais, são importantes espécies guarda-344

chuva ou bandeira em ações de conservação (Linnell et al. 2000). 345

As florestas tropicais secas abrigam uma relevante diversidade de mamíferos e estão entre 346

os ecossistemas tropicais mais ameaçados e pouco protegidos do mundo (Banda et al. 2016). A 347

Caatinga, localizada no nordeste do Brasil, é a maior floreta tropical seca das Américas (Banda 348

et al. 2016) e já foi considerada uma das 37 grandes regiões selvagens do planeta (Mittermeier 349

et al. 2002). Apesar do déficit histórico de estudos (Santos et al. 2011), uma revisão recente 350

evidencia que a Caatinga abriga uma elevada diversidade de animais e plantas (Silva et al. 351

2017a). Por outro lado, 45,5% da sua cobertura vegetal original já foi perdida (MMA 2016a) e 352

áreas integralmente protegidas cobrem menos de 2% do seu território (Fonseca et al. 2017). 353

Além disso, os fragmentos de Caatinga remanescentes, embora relativamente conectados 354

Page 30: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

26

(Antongiovanni et al. 2018), encontram-se sob forte distúrbio antrópico crônico, resultado de 355

atividades como a criação extensiva de rebanhos, a retirada de madeira e a caça ilegal (Alves et 356

al. 2016; Marinho et al. 2016; Ribeiro et al. 2015), todas amplamente praticadas por uma 357

população humana de 28.6 milhões de habitantes (Silva et al. 2017b). E todas essas ameaças 358

devem ser agravadas pela intensificação na aridez da região resultante das mudanças climáticas 359

(Seddon et al. 2016). 360

A Caatinga abriga 183 espécies de mamíferos, sendo 11 delas endêmicas e 45 de médio e 361

grande porte (Carmignotto & Astúa 2017). Embora o número de inventários e investigações 362

ecológicas tenha crescido nos últimos anos, especialmente com a disseminação de técnicas 363

como o armadilhamento fotográfico (e.g. Dias & Bocchiglieri 2016; Delciellos 2016; Astete et 364

al. 2017), uma grande porção desse bioma brasileiro permanece desconhecida ou subamostrada 365

(Santos et al. 2011; Albuquerque et al. 2012). Ao comportamento elusivo, hábitos noturnos e 366

baixas densidades, que contribuem para o desconhecimento dos mamíferos na região, soma-se 367

o historicamente baixo investimento em pesquisa (Santos et a. 2011) e a visão inicial 368

equivocada de que a mastofauna da Caatinga seria depauperada (Mares et al. 1981). 369

No estado do Rio Grande do Norte, extremo nordeste do Brasil e limite da distribuição de 370

muitas espécies, a lacuna de conhecimento sobre mamíferos é ainda mais evidente (Brito et al. 371

2009; Feijó & Langguth 2013), indo de marsupiais (Melo & Sponchiado 2012) até médios e 372

grandes mamíferos (Feijó & Langguth 2013). A lacuna para quirópteros era igualmente grande 373

até levantamentos recentes (e.g. Vargas-Mena et al. 2018). Diferente dos estados vizinhos, o 374

Rio Grande do Norte não foi visitado por expedições históricas, que realizadas a partir do século 375

XVII impulsionaram o conhecimento sobre mamíferos no restante do nordeste do Brasil (Feijó 376

& Langguth 2013). Para mamíferos de médio e grande porte os trabalhos no estado são 377

relativamente recentes e representados basicamente por inventários paleontológicos (Araújo-378

Júnior & Porpino 2011), atualizações de distribuição e primeiros registros de ocorrência 379

Page 31: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

27

(Ferreira et al. 2009; Dantas et al. 2016; Marinho et al. 2017; Rosas-Ribeiro et al. 2017). Ainda 380

mais escassos são os trabalhos sobre a ecologia de espécies, até o momento focados restritos a 381

Sapajus libidinosus (Ferreira et al. 2010; Emidio & Ferreira 2012) e Leopardus tigrinus 382

(Marinho et al. 2018a; b). 383

A melhoria do conhecimento biológico em áreas prioritárias para a conservação é uma ação 384

relevante para fortalecer a aptidão dessas áreas em conservar a biodiversidade (Silva et al. 385

2004), sobretudo em uma região com baixa cobertura de unidades de conservação como a 386

Caatinga. Neste contexto, o objetivo deste estudo foi caracterizar a composição e riqueza de 387

mamíferos de médio e grande porte da Caatinga do estado do Rio Grande do Norte, Brasil, 388

através de armadilhamento fotográfico em 10 áreas prioritárias para a conservação da 389

biodiversidade do bioma. Com este trabalho esperamos (i) preencher a lacuna existente no 390

estado de registros de mamíferos de médio e grande porte, (ii) caracterizar a qualidade relativa 391

das 10 áreas prioritárias em termos de mamíferos de médio e grande porte e (iii) fornecer 392

subsídios para a criação de novas unidades de conservação no Rio Grande do Norte. 393

394

Material e métodos 395

Área de estudo 396

Nossa área de estudo compreende a Caatinga do estado do Rio Grande do Norte (Fig. 1, 397

Tabela 1), sendo que as amostragens foram realizadas em 10 paisagens disjuntas consideradas 398

áreas prioritárias para a conservação da biodiversidade do bioma tanto em nível estadual 399

(https://brasil.wcs.org/pt-br/Lugares-naturais/Projeto-Caatinga.aspx) quanto em nível nacional 400

(MMA, 2016b; Tabela 1). Todas as áreas estudadas são formadas basicamente por 401

propriedades privadas e não possuem proteção legal, com exceção de Dunas Rosado, que 402

recentemente se tornou uma Área de Proteção Ambiental (APA) estadual (IDEMA 2018) 403

(Tabela 1). 404

Page 32: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

28

405

406

Fig. 1. Localização das 10 áreas prioritárias para a conservação da Caatinga do Rio Grande do Norte, 407

nordeste do Brasil, onde foram realizados levantamentos de mamíferos de médio e grande porte (para 408

mais informações sobre as áreas acessar: https://brasil.wcs.org/pt-br/Lugares-naturais/Projeto-409

Caatinga.aspx). Embora Martins e Serrinha dos Pintos componham uma mesma área prioritária, estas 410

áreas foram amostradas de forma independente. 411

412

Mais de 90% do território do Rio Grande do Norte está inserido no domínio da Caatinga 413

(IDEMA 2014). O clima da região é quente e semiárido, com chuvas irregulares e concentradas 414

em poucos meses do ano (e.g. fevereiro a maio), com médias pluviométricas entre 400 e 800 415

mm (Ab’Sáber 1974; Velloso et al. 2002). A vegetação da Caatinga é um mosaico de formações 416

arbustivas, manchas arbóreas e florestas secas (Santos et al. 2011) que variam de acordo com o 417

relevo, solo, clima local e nível de antropização (Velloso et al. 2002). Entre as nossas áreas de 418

estudo, três (Felipe Guerra, Dunas do Rosado e Caiçara do Norte) se encontram em altitudes 419

baixas (média de 20 a 75 m acima do nível do mar) (Tabela 1), onde predomina uma vegetação 420

mais baixa e espaçada, embora existam manchas arbóreas em solos mais ricos e com menos 421

Page 33: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

29

pressão antrópica. Já as demais áreas cobrem principalmente ambientes elevados e inclinados 422

(e.g. serras e encostas, respectivamente) (médias entre 250 e 480 metros de altitude) (Tabela 423

1), onde predominam as formações vegetais densas e arbóreas, mas também manchas arbustivas 424

nas áreas mais baixas e pressionadas. Semelhante ao que acontece com o restante do bioma, 425

45% da cobertura original da Caatinga no estado já foi modificada por atividades como 426

agricultura, pecuária e corte de lenha para uso doméstico e industrial (IDEMA 2014). 427

Fruticultura irrigada, exploração de calcário para produção de gesso e expansão de usinas 428

eólicas e solares são vetores adicionais de perda de cobertura vegetal na região (obs. pessoal). 429

430

431

432

433

434

435

436

437

438

439

Page 34: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

30

Tabela 1. Esforço amostral empregado para levantar a composição e riqueza de mamíferos de médio e grande porte em 10 áreas prioritárias para a conservação

da Caatinga do Rio Grande do Norte, nordeste do Brasil. A área amostral foi medida a partir do mínimo polígono convexo dos pontos amostrais em cada área e

somados para todo o estudo. São apresentados os códigos dos polígonos prioritários que cobrem totalmente ou parcialmente as áreas de estudo, de acordo com

lei federal (MMA 2016b). Unidade de conservação (UC). DP: desvio padrão.Para mais informações sobre as áreas acessar: https://brasil.wcs.org/pt-br/Lugares-

naturais/Projeto-Caatinga.aspx (Projeto Caatinga Potiguar – Cartograma).

Localidade Elevação

média

(DP)

Período Nº pontos Esforço

(câmeras-dias)

Área

(km²)

Coordenadas

principais

Área prioritária /

UC

Serra de Santana 401,89

(199,50) 05 Mai - 18 Jun

19 703 13452.0 6°10’ e 6°0’S;

36°50’ e 36°35’W CA045 /

Não

Lajes 355,9

(101,09)

26 Mai -

06 Jul 20 793 20184.5

5°57’ e 5°43’S,

36°5’ e 36°17’W

CA078 /

Não

Cerro Corá 468,05 (83,25)

01 Jun - 08 Jul

19 654 7476.6 6°13’ e 6°2’S;

36°15’ e 36°22’W CA096 /

Não

Martins 303,2

(83,48)

22 Jun - 30

Jul 20 742 6074.1

6°0’ e 5°4’S;

37°50’ e 38°0’W

CA045 /

Não Serrinha dos

Pintos

345,42

(68,25)

28 Jun - 05

Ago 20 740 4035.1

6°15’ e 6°5’S;

37°50’ e 38°00’W

CA063 /

Não

Felipe Guerra 75,25

(18,57) 09 Jul - 16

Ago 20 736 30116.7

5°38’ e 5°23’S; 37°30’ e 37°43’W

CA078 / Não

Caiçara do Norte 20,13

(9,34)

19 Jul - 22

Set 15 845 7497.4

5°13’ e 5°5’S;

36°1’ e 36°10W

CA102 /

Não

Luis Gomes 482,23 (95,69)

02 Ago - 23 Set

17 846 2976.5 6°25’ e 6°20’S;

38°19’ e 38°26’W CA088 /

Não

Dunas do Rosado 62,26

(33,81)

08 Ago -

04 Set 19 499 5979.0

5°1’ e 5°8’S;

36°48’ e 36°55’W

CA087 /

Sim

Coronel Ezequiel 351,684

(67,25)

18 Ago -

25 Set 19 713 7439.5

6º28’ e 6°15’S;

36°5’ e 36°14’W

CA088 /

Não

Amostragem total 05 Mai -

25 Set 188 7271 105231

Page 35: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

31

Levantamento de dados

De maio a setembro de 2014, na transição entre as estações chuvosa e seca, 20 armadilhas

fotográficas (Bushnell® Trophy Cam ™) foram instaladas em cada uma das 10 áreas

prioritárias, permanecendo ativas 24 h por dia durante um a dois meses (média de 38 dias)

(Tabela 1). Essas câmeras acionadas por calor e movimento foram posicionadas a 30-40 cm do

solo e programadas para registrar a data e hora de cada registro fotográfico, com intervalos

mínimos de cinco minutos entre dois disparos consecutivos. Nós estabelecemos uma distância

mínima de um km entre câmeras de forma a minimizar a dependência espacial entre os pontos

amostrais, exceto em locais que as dificuldades de acesso não permitiram esta padronização.

No geral, as câmeras foram posicionadas a uma distância média de 1,6 km (0,8 – 3 km) uma da

outra, ao longo de trilhas feitas por pessoas ou de animais de criação, estradas abandonadas e

leito de rios intermitentes. Nenhuma isca foi utilizada para atrair os animais.

O banco de imagens foi triado com auxílio do programa Camera Base v.1.6 (Tobler 2007).

A nomenclatura e taxonomia das espécies seguiu Kitchener et al. (2017) para os felinos e

Carmignotto e Astúa (2017) para as demais espécies. O estado de conservação global e nacional

das espécies está de acordo com a IUCN (2017) e o MMA (2014), respectivamente.

Análise dos dados

A suficiência amostral foi investigada através de uma curva de acumulação de espécies

(randomizada 1000 vezes) agrupando os dados de todas as áreas. A riqueza de espécies

estimada para a Caatinga do Rio Grande do Norte foi obtida através do estimador Jackknife de

primeira ordem, considerado ideal para dados de médios e grandes mamíferos a partir de

armadilhas fotográficas (Tobler et al. 2008). Todas as análises foram realizadas usando o

programa livre EstimateS 9.1.0 (Colwell 2013). Nas análises, para uma determinada espécie

em um mesmo ponto, consideramos apenas registros consecutivos com intervalos maiores do

que uma hora para minimizar problemas de dependência temporal. Apresentamos o índice de

Page 36: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

32

abundância relativa (uma estimativa do sucesso de detecção) para cada espécie registrada,

calculado como a razão entre o número de registros independentes (registros da mesma espécie

no mesmo local com mais de uma hora) e o esforço amostral total (em câmeras-dias)

multiplicado por 100 (Rovero et al. 2014). Embora esse índice deva ser interpretado com cautela

por sofrer influência de fatores ambientais e espécie-específicos que dificultam generalizações

(ver Sollman et al. 2013), ele pode servir como parâmetro populacional inicial para estudar

espécies (Rovero et al. 2014) em um contexto de escassez de informação.

Resultados

Um total de 14 espécies de mamíferos silvestres de médio e grande porte foi registrado na

Caatinga do estado do Rio Grande do Norte (Fig. 2, Tabela 2), sendo que o número médio de

espécies por área foi 8,2 (DP = 1,23), variando de seis a 10 (Tabela 2). No total, 1607 registros

independentes foram obtidos a partir de um esforço de 7.271 câmera-dias distribuído em 188

pontos amostrais (12 equipamentos apresentaram problemas ou foram roubados) que cobriram

uma área total de 1052 km² (Tabela 1). As 14 espécies pertencem a seis ordens e 10 famílias,

sendo a ordem Carnivora a mais representativa, com oito espécies (57% do total), seguida pela

ordem Cingulata com duas espécies, e as demais ordens apresentaram uma espécie cada. Dentre

as famílias, Felidae foi a que apresentou o maior número de espécies, com quatro ao todo (28%

do total). Entre as espécies registradas, três (21%) estão sob algum nível de ameaça (nacional

ou global), sendo todos felinos (Tabela 2).

Page 37: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

33

Fig. 2. Mamíferos de médio e grande porte registrados através de armadilhamento frotográfico

em 10 áreas prioritárias para a conservação da Caatinga do Rio Grande do Norte, extremo

Page 38: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

34

nordeste do Brasil; (a) Cerdocyon thous, (b) Procyon cancrivorus, (c) Conepatus amazonicus,

(d) Galictis cuja, (e) Leopardus tigrinus, (f) Leopardus pardalis, (g) Herpailurus

yagouaroundi, (h) Puma concolor, (i) Mazama gouazoubira, (j) Tamandua tetradactyla, (k)

Euphractus sexcinctus, (l) Dasypus novemcinctus, (m) Sapajus libidinosus e (n) Didelphis

albiventris.

Além dos mamíferos silvestres, registramos sete espécies de mamíferos domésticos ou

asselvajados (caso de algumas populações de Equus asinus) nas nossas áreas estudo: vaca (Bos

taurus, 469 registros), cabra (Capra hircus, 440), burro (E. asinus, 74), ovelha (Ovis aries, 65),

cavalo (Equus caballus, 25), cão (Canis lupus familiaris, 39) e gato-doméstico (Felis catus,

12). Esses registros (1124) representam 41% de todos os registros de médios e grandes

mamíferos (considerando silvestres e domésticos). Obtivemos ainda 83 registros de pessoas,

algumas acompanhadas por cães e com apetrechos utilizados em atividades de caça.

A curva de acumulação de espécies para o Rio Grande do Norte, ou seja, considerando

todas as amostras conjuntamente, apresentou uma tendência à estabilização com pouco mais da

metade das unidades amostrais (Fig. 3A). Contudo, o estimador de riqueza Jacknife de primeira

ordem indicou que cerca de duas espécies ainda poderiam ser registradas com um maior esforço

amostral (Fig. 3A). Isto é mais evidente para as áreas com maior riqueza como Lajes e Serrinha

dos Pintos, com exceção de áreas como Martins, Caiçara do Norte e Dunas do Rosado, as curvas

das demais áreas permanecem crescentes (Fig. 3B).

As espécies com o maior número de registros e consequentemente maiores índices de

abundância relativa foram Cerdocyon thous, D. albiventris, Mazama gouazoubira e L. tigrinus

(respectivamente, Fig. 4, Tabela 2). Por outro lado, Puma concolor e Galictis cuja foram

registrados uma única vez cada, exibindo assim os menores índices de abundância relativas,

Page 39: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

35

seguidos por Leopardus pardalis e H. yagouaroundi (Fig. 4, Tabela 2). C. thous, D. albiventris,

L. tigrinus e Euphractus sexcinctus foram registrados em todas as 10 áreas (Tabela 2).

No presente trabalho não consideramos registros de Callithrix jacchus como mamífero

de médio porte, enquanto que D. albiventris foi incluído neste grupo por seu maior tamanho

(500-2700 g) e hábito escansorial (Paglia et al. 2012) que facilita sua detecção por

armadilhamento fotográfico.

Page 40: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

36

Tabela 2. Mamíferos de médio e grande porte registrados em 10 áreas prioritárias para a conservação da Caatinga do Rio Grande do Norte, nordeste do Brasil.

N – número de registros. Dieta ou grupo funcional de acordo com Paglia et al., 2012: Ca – Carnívoro, Fr – Frugívoro, Hb – Herbívoro pastador, In – Insetívoro,

Myr – Mirmecófago, On – Onívoro. Estado de conservação segundo a IUCN (2017) ou MMA (2014): LC (pouco preocupante), VU (vulnerável), EN (em

perigo), NC (não consta na lista). Os símbolos para as áreas amostradas são: Serra de Santana (SS), Lajes (LA), Cerro Corá (CC), Martins (MA), Serrinha dos

Pintos (SP), Felipe Guerra (FG), Caiçara do Norte (CN), Luís Gomes (LG), Dunas do Rosado (DR), Coronel Ezequiel (CE). Para mais informações sobre as

áreas acessar: https://brasil.wcs.org/pt-br/Lugares-naturais/Projeto-Caatinga.aspx.

Táxon Nome comum Áreas prioritárias

N Dieta IUCN/

MMA SS LA CC MA SP FG CN LG DR CE

ORDEM CETARTIODACTYLA

Família Cervidae

Mazama gouazoubira

(G, Fischer [von Waldheim], 1814) Veado-catingueiro X X X X X X X X 176 Fr/Hb LC/NC

ORDEM CARNIVORA

Família Canidae

Cerdocyon thous (Linnaeus, 1766)

Cachorro-do-mato X X X X X X X X X X 693 In/On LC/NC

Família Felidae

Leopardus tigrinus

(Thomas, 1904)

Gato-do-mato-

pintado X X X X X X X X X X 157 Ca VU/EN

Leopardus pardalis (Linnaeus, 1758)

Jaguatirica X 4 Ca LC/NC

Herpailurus yagouaroundi

(É, Geoffroy Saint-Hilare, 1803) Gato-mourisco X X X 7 Ca LC/VU

Puma concolor (Linnaeus, 1771)

Onça-parda X 1 Ca LC/VU

Família Procyonidae

Page 41: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

37

Procyon cancrivorus

(G,[Baron] Cuvier, 1798) Mão-pelada X X X X X X X X 29 Fr/On LC/NC

Família Mephitidae

Conepatus amazonicus

(Lichtenstein, 1838) Jaritataca X X X X X X 20 In/On LC/NC

Família Mustelidae

Galictis cuja (Molina, 1782)

Furão X 1 Ca LC/NC

ORDEM CINGULATA

Família Dasypodidae

Dasypus novemcinctus

Linnaeus, 1758 Tatu-galinha X X X X X 22 In/On LC/NC

Euphractus sexcinctus

(Linnaeus, 1758) Tatu-peba X X X X X X X X X X 90 In/On LC/NC

ORDEM PILOSA

Família Myrmecophagidae

Tamandua tetradactyla (Linnaeus, 1758)

Tamanduá-mirim X X X X X 10 Myr LC/NC

ORDEM PRIMATES

Família Cebidae

Sapajus libidinosus (Spix, 1823)

Macaco-prego X X X X 38 Fr/On LC/NC

ORDEM DIDELPHIMORPHIA

Família Didelphidae

Didelphis albiventris

(Lund, 1840)

Gambá-de-orelha-

branca X X X X X X X X X X 359 Fr/On LC/NC

Page 42: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

38

Fig. 3: Curva de acumulação de espécies observada (linha preta) com intervalo de confiança de 95%

(linhas tracejadas cinzas) e curva de riqueza estimada por Jacknife 1 (círculos pretos) para a comunidade

de mamíferos de médio e grande porte de 10 áreas prioritárias da Caatinga do Rio Grande do Norte,

nordeste do Brasil (A); também são apresentadas individualmente as curvas aleatorizadas de

acumulação de espécies para cada uma das 10 áreas prioritárias para a conservação estudadas (B).

Page 43: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

39

Fig. 4: Índice de abundância relativa (ou sucesso de captura) das 14 espécies de mamíferos de médio e

grande porte registrados em 10 áreas prioritárias para a conservação da Caatinga do Rio Grande do

Norte, nordeste do Brasil. Fonte das ilustrações: De Angelo et al. 2008.

Discussão

As 14 espécies de mamíferos silvestres de médio e grande porte registradas neste trabalho

compreendem cerca de um terço das 45 espécies que ocorrem em toda Caatinga (Carmignotto

& Astúa 2017), e metade das 28 espécies registradas na Caatinga dos estados de Alagoas,

Pernambuco, Paraíba e Ceará (Feijó & Langguth 2013). É preciso ressaltar, contudo, que

Carmignotto e Astúa (2017) incluem espécies com ocorrência atual bastante restrita no bioma

como Panthera onca e Tapirus terrestris; enquanto Feijó e Langguth (2013) abrangem espécies

restritas a brejos de altitude como Coendou baturitensis e Nasua nasua. Nossos resultados são

fruto de um dos maiores investimentos em armadilhamento fotográfico já realizados até o

Page 44: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

40

momento na Caatinga, tanto em termos de esforço quanto em abrangência espacial (Tabela 3).

Além disto, este trabalho contribui para diminuir a lacuna de dados mastozoológicos existente

no Rio Grande do Norte, evidenciada por Feijó e Langguth (2013). Inventários de mamíferos

realizados em outros estados registraram de cinco a 25 espécies de médios e grandes mamíferos

(ver Tabela 3), com as maiores riquezas geralmente registradas em ambientes mésicos como

brejos de altitude e melhor protegidos como unidades de conservação (Tabela 3). Contudo,

diferenças no esforço amostral, abrangência espacial e métodos de levantamento também

devem ser considerados. Além disso, variações na riqueza e composição entre as áreas

amostradas neste estudo devem ser consideradas.

Page 45: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

41

Tabela 3. Riqueza de mamíferos de médio e grande porte registrados em levantamentos em áreas de Caatinga (clima semiárido), brejos de altitude (ambientes

mésicos relacionados a florestas tropicais úmidas) e outras formações associadas dentro do domínio da Caatinga, com seus respectivos métodos empregados

(armadilhamento fotográfico - af; armadilhas de queda ou captura viva - aq; busca ativa por espécimes e vestígios aleatória ou através de transectos - ba;

entrevistas - en; espécimes de coleção ou museu - ec; parcelas de pegadas - pp; registros oportunistas – ro). Para o método armadilhamento fotográfico é

apresentado (entre parênteses) o respectivo esforço amostral em câmeras-dias. Levantamentos realizados em Unidades de Conservação estão indicados na coluna

(UC). Não consideramos registros de Callithrix jacchus, enquanto Didelphis albiventris foi avaliado como mamífero de médio e grande porte. Dias et al. (2014)

é focado somente em carnívoros.

Estado Local, município (s) Ambiente UC Riqueza Métodos e esforço Referência

Ceará PARNA de Ubajara, Ubajara Brejo de altitude Sim 19 ba, en Guedes et al. (2000)

Ceará, Pernambuco e Paraíba

RPPN Serra das Almas (CE), RPPN

Maurício Dantas (PE), Parque Estadual Pedra da

Boca (PB), vários municípios

Caatinga Sim 13 aq, en, op Cruz et al. (2005)

Bahia PARNA da Chapada Diamantina e

arredores, vários municípios

Formações de Caatinga, Cerrado e

Floresta Atlântica

Sim 25 aq, ec, en, op Pereira & Geise (2009)

Sergipe Fazenda São Pedro, Porto da Folha Caatinga stricto

sensu Não 5 ba, ni Freitas et al. (2011)

Sergipe, Alagoas e Bahia

14 locais amostrais, vários municípios

Caatinga stricto sensu

Não 5 aq, bc, en Bezerra et al. (2014)

Sergipe Serra dos Macacos, Tobias Barreto Caatinga stricto sensu

Não 7 ap, ba, en Dias et al. (2014)

Alagoas Serra do Mamão, Traipu Brejo de altitude Não 18 aq, ba Silva & Palmeira (2014)

Ceará Maciço de Baturité, vários

municípios Brejo de altitude Não 18 ec, aq, ro, en

Fernandes-Ferreira et al.

(2015)

Page 46: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

42

Sergipe e Bahia

Serra da Guia, Poço

Redondo (SE) e Pedro Alexandre

(BA)

Caatinga stricto sensu

Não 8 Ba Rocha et al. (2015)

Paraíba Serra de Santana, vários municípios Caatinga stricto

sensu Não 11 af (475), aq, ba Campos et al. (2016)

Piauí e Pernambuco Ouricuri (CE) e São João do Piauí

(PI)

Caatinga stricto

sensu Não 13 af (721), aq, ba Delciellos (2016)

Sergipe

MONA Grota do Angico, Poço

Redondo e Canindé do São Francisco

Caatinga stricto

sensu Sim 12 af (2.912), pp

Dias & Bocchiglieri

(2016)

Ceará e Piauí RPPN Serra das Almas, Crateús (CE) e Buriti dos Montes (PI)

Caatinga stricto sensu

Sim 17 af (3.600), aq, ba,

ro Dias et al. (2017)

Bahia Serra de Santana, Senhor do Bonfim

e Jaguarari

Caatinga stricto

sensu Não 13 ba, en

Pereira & Peixoto

(2017)

Rio Grande do

Norte

10 áreas prioritárias, vários

municípios

Caatinga stricto

sensu

Sim (1 área),

Não (9 áreas) 14 af (7.221) Este estudo

Page 47: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

43

Três dos felinos registrados (L. tigrinus, H. yagouaroundi e P. concolor) encontram-1

se ameaçados de extinção, nacionalmente ou globalmente (Tabela 2), e são alvos de 2

Planos de Ação Nacionais para a Conservação das Espécies Ameaçadas de Extinção 3

(ICMBIO 2017). Como principais ameaças para essas espécies estão a perda de habitat, 4

a perseguição resultante de conflitos com criadores, os atropelamentos e a transmissão de 5

doenças por carnívoros domésticos (Azevedo et al. 2013; Almeida et al. 2013; Oliveira 6

et al. 2013). Aqui optamos por seguir a última classificação dos felinos do mundo 7

(Kitchener et al. 2017) considerando sua relevância taxonômica e de conservação. 8

Contudo, pesquisas recentes sugerem que as populações de L. tigrinus das regiões 9

nordeste, parte do norte e Brasil central constituem uma espécie distinta e endêmica do 10

país, nomeada de Leopardus emiliae (Nascimento & Feijó 2017; Ruiz-García et al. 2017). 11

No caso de L. pardalis, embora tenha saído da lista nacional de espécies ameaçadas, a 12

espécie é classificada como Vulnerável no estado da Bahia (Cassano et al. 2017) e pode 13

se encontrar em estado semelhante em outros estados do nordeste do país (Feijó & 14

Langguth 2013; Marinho et al. 2017). De forma geral, trabalhos que abordam aspectos da 15

ecologia e conservação desses felinos na Caatinga têm surgido apenas nos últimos anos 16

e ainda são muito insipientes (Marinho et al. 2018a; b; Astete et al. 2017; Penido et al. 17

2017), especialmente se considerado o seu importante papel de predadores na 18

estruturação e regulação das comunidades biológicas. 19

Na Caatinga, P. concolor se encontra em estado mais crítico que o nacional, 20

classificada como Em Perigo (Azevedo et al. 2013), o que é reforçado pelo nosso único 21

registro desse predador de topo de cadeia em Luís Gomes. Nessa região a vegetação 22

arbórea é predominante e cobre serras íngremes e de difícil acesso que podem alcançar 23

até 800 m de altitude, podendo fornecer presas e refúgios que favorecem a persistência 24

da espécie. Contudo, a caça dessas presas potenciais e o desmatamento para agricultura 25

Page 48: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

44

são comuns na região, e por isso devem ser mitigados juntamente com os abates por 26

conflitos com criadores. O registro mais próximo e mais recente de P. concolor está a 27

aproximadamente 75 km, no estado da Paraíba (Campos et al. 2016), também em uma 28

área de altitude elevada. Na região entre Lajes e Cerro Corá, uma das mais relevantes em 29

termos de habitat e disponibilidade de presas, moradores locais relatam a presença recente 30

da espécie, contudo as evidências mais concretas são de animais abatidos há mais de 20 31

anos (P.H. Marinho obs. pessoal; Pichorim et al. 2014) (Fig. 5A). O avançado declínio 32

de predadores de topo como P. concolor implica em desequilíbrios ecológicos ainda 33

desconhecidos na Caatinga, como um possível aumento na abundância de 34

mesopredadores (Crooks & Soulé 1999), que no presente estudo representaram 50% das 35

espécies e 56% de todos os registros de mamíferos silvestres. 36

37

38

Page 49: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

45

Fig. 5. Registros de ameaças para mamíferos de médio e grande porte na Caatinga do Rio Grande 39

do Norte. Pele de Puma concolor abatido há mais de 20 anos na região de Lajes (A) e espécies 40

silvestres criadas como animais domésticos: Herpailurus yagouaroundi (B), Leopardus tigrinus 41

(C), Mazama gouazoubira (D) e Sapajus libidinosus (E). Fotos: P.H. Marinho (A e C), D. Bezerra 42

(B, D e E). 43

44

Entre os mamíferos com maior índice de abundância relativa e detectados em todas 45

as áreas estudadas estão espécies generalistas de hábitat. C. thous e D. albiventris são 46

espécies amplamente distribuídas, onívoras e tolerantes a perturbações antrópicas 47

(Aléssio et al. 2005; Beisiegel et al. 2013), estando entre as mais registradas em outros 48

estudos na Caatinga (e.g. Delciellos 2016; Dias & Bocchiglieri 2016; Dias et al. 2017). 49

E. sexcinctus também foi registrado em todas as 10 áreas e embora seja bastante caçada, 50

essa espécie de hábitos onívoros parece ser abundante e amplamente presente na Caatinga 51

(Feijó & Langgtuh 2013; Alves te al. 2016). Por sua vez, como sugerem nossos 52

resultados, L. tigrinus parece ser o felino mais abundante e amplamente presente em boa 53

parte da Caatinga (Feijó & Langguth, 2013), embora sua presença seja mais esperada em 54

áreas florestadas e com menor interferência antrópica (Marinho et al. 2018a). Outra 55

espécie que merece destaque é M. gouazoubira, não registrado somente em duas áreas 56

(Tabela 2). Embora esse cervídeo seja considerado relativamente tolerante a ambientes 57

perturbados (Duarte et al. 2012), a grande pressão de caça tem levado M. gouazoubira ao 58

declínio ou mesmo à extinção local em áreas mais perturbadas da Caatinga (Bezerra et al. 59

2014). 60

Nossa detecção, contudo, é imperfeita e a ausência de registros de algumas espécies 61

em determinadas áreas estudadas pode não representar a realidade, da mesma forma a 62

abundância relativa também deve ser interpretada com cautela (ver Sollmann et al. 2013). 63

Galictis cuja, por exemplo, se locomove rapidamente e prefere ambientes ripários, o que 64

Page 50: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

46

diminui suas chances de detecção (Magioli et al. 2014). No caso de H. yagouaroundi e L. 65

pardalis, embora não tenhamos registrado, provavelmente devido às suas baixas 66

densidades populacionais, esses dois felinos também ocorrem em Serra de Santana e 67

Lajes (Pichorim et al. 2014; Marinho et al. 2017; PH Marinho dados não publicados). 68

Todas as espécies encontradas são de ampla distribuição no Brasil, não endêmicas e 69

registradas para estados próximos como Paraíba e Ceará (e.g. Feijó & Langguth 2013), 70

de forma que sua ocorrência do Rio Grande do Norte já era esperada (e.g. Oliveira 2004; 71

Ferreira et al. 2009; Marinho et al. 2017), embora não documentada formalmente na 72

maioria dos casos. Contudo, algumas espécies com ocorrência confirmada para a 73

Caatinga do estado não foram registradas aqui. Sylvilagus brasilensis ocorre em uma área 74

a aproximadamente 35 km a sudeste de Caiçara do Norte (Dantas et al. 2016). Já Lontra 75

longicaudis, espécie semi-aquática, ocorre na faixa de transição da Caatinga com a 76

Floresta Atlântica (Rosas-Ribeiro al. 2017), região não amostrada neste trabalho. Por fim, 77

embora não tenha sido foco do presente estudo pelo seu menor porte (< 1 kg), Kerodon 78

rupestris merece nota por estar em estado Vulnerável no Brasil (MMA 2014) e ser 79

endêmico da Caatinga. Encontramos vestígios da presença desse roedor em afloramentos 80

rochosos de quase todas as áreas, com exceção de Dunas do Rosado e Caiçara do Norte, 81

onde essas formações são raras. 82

Nossos resultados revelam, por outro lado, o relativo grau de empobrecimento da 83

mastofauna do extremo nordeste da Caatinga. Entre as espécies com distribuição prevista 84

para o estado segundo os mapas de distribuição da IUCN (2017) e registros em estados 85

vizinhos (Feijó & Langguth 2013; Feijó et al. 2015), Dasyprocta prymnolopha, Pecari 86

tajacu e Tolypeutes tricinctus, por exemplo, não foram registrados neste estudo, mesmo 87

com o nosso significativo esforço amostral e abrangência espacial. Embora existam 88

relatos sobre a presença dessas espécies na Caatinga do estado, baseados principalmente 89

Page 51: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

47

em entrevistas e registros fósseis (Oliveira 2004; Ferreira et al. 2009; Araújo-Júnior & 90

Porpino 2011; Lucena & Freire 2012; Barboza et al. 2016), não obtivemos vestígios ou 91

mesmo informações seguras com os moradores locais da sua presença nas nossas áreas 92

de estudo (P.H. Marinho, dados não publicados). Relatos históricos sobre a extinção local 93

dessas espécies há mais de 50 anos em algumas regiões do estado citam a caça intensa 94

como principal causa (Faria 1961). Contudo, não podemos descartar a presença dessas 95

espécies na Caatinga do Rio Grande do Norte, uma vez que elas podem ocorrer em locais 96

mais bem protegidos e de difícil acesso, mas provavelmente em densidades extremamente 97

baixas e em declínio populacional, o que compromete a efetividade das funções 98

ecológicas desempenhadas por delas (Galetti & Dirzo 2013). 99

Entre as principais ameaças para os mamíferos de médio e grande porte da Caatinga 100

estão aquelas globalmente comuns ao grupo como a caça e a perda e degradação dos 101

habitats (Alves et al. 2016; Feijó & Langguth 2013). A degradação da vegetação da 102

Caatinga para fins domésticos e industriais associada à pecuária extensiva compromete a 103

conservação e regeneração dos habitats. O grande número de animais domésticos 104

registrados por nós reforça a gravidade desse problema mesmo em áreas prioritárias para 105

a conservação. Da mesma forma, a caça vem promovendo o declínio de médios e grandes 106

mamíferos no bioma há séculos (Faria 1961; Fernandes-Ferreira 2014), seja para fins de 107

alimentação ou por conflitos com predadores (Alves et al. 2016; Barboza et al. 2016) 108

(Fig. 5A). A caça está muito presente na Caatinga do Rio Grande do Norte, vide nossos 109

registros fotográficos e a grande quantidade de vestígios de caça encontrados durante as 110

amostragens. Além disso, a criação de animais silvestres como domésticos é 111

relativamente comum na região (Fernandes-Ferreira et al. 2015; Alves te al. 2016; 112

Delciellos 2016) e atinge espécies como H. yagouaroundi, L. tigrinus, M. gouazoubira e 113

S. libidinosus (Pichorim et al. 2014; P.H. Marinho obs. pessoal) (Fig. 5). Adicionalmente, 114

Page 52: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

48

obras de infraestrutura e estradas elevam o grau de perda e fragmentação dos habitats da 115

Caatinga (Silva et al. 2017b). No Rio Grande do Norte parques eólicos e linhas de 116

transmissão de energia, por exemplo, tem se multiplicado nos últimos anos, com os seus 117

impactos sobre a fauna sendo geralmente subestimados (Bernard et al. 2014). 118

Relatamos aqui o primeiro amplo e intensivo inventário de mamíferos de médio e 119

grande porte para o estado do Rio Grande do Norte, nordeste do Brasil, uma região até 120

então subamostrada para o grupo. As áreas estudadas abrigam uma porção importante da 121

diversidade de mamíferos da Caatinga incluindo espécies ameaçadas, mas também 122

indicam ausência relevantes. Nossos resultados reforçam a importância e urgência da 123

criação de áreas protegidas nas áreas prioritárias estudadas e a efetivação e 124

implementação de iniciativas já em andamento como o Monumento Natural das Cavernas 125

de Martins (em discussão) e a Área de Proteção Ambiental Dunas do Rosado (recém-126

criada) (IDEMA 2018). Ações como fiscalização efetiva, políticas abrangentes de 127

educação ambiental e incentivo a práticas de manejo que busquem compatibilizar a 128

exploração de áreas privadas com a conservação da biodiversidade da Caatinga devem 129

ser priorizadas nas áreas sem proteção legal. 130

As informações aqui apresentadas devem estimular a realização de pesquisas 131

ecológicas sobre as espécies registradas e novos levantamentos no estado, especialmente 132

em áreas não cobertas neste estudo como a região centro-sul, conhecida como Seridó e a 133

faixa leste de transição com a Floresta Atlântica, além das suas unidades de conservação. 134

Esperamos ainda que esses resultados subsidiem avaliações regionais do estado de 135

conservação das espécies, instrumento essencial para considerar as particularidades das 136

populações locais (Cassano et al. 2017). Por fim, dada a escassez de conhecimento, as 137

informações apresentadas aqui podem auxiliar a avaliação de empreendimentos com 138

potencial de impactar a mastofauna terrestre da região. 139

Page 53: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

49

Agradecimentos 140

Agradecemos a Wildlife Conservation Society - Brasil pela parceria e assistência 141

geral. Também somos gratos ao Tropical Conservation Act (TFCA) através do Fundo 142

Brasileiro de Biodiversidade (FUNBIO) (chamada 04/2012) e à Fundação Grupo 143

Boticário de Proteção à Natureza (projeto 0982-20132) pelo o apoio financeiro; ao Centro 144

de Pesquisas Ambientais do Nordeste (CEPAN) pela assistência institucional. A A.F. 145

Oliveira, D. Valdenor, M.C. Bezerra, A. Galvão, F.P. Marinho e W. Pessoa somo gratos 146

pela assistência de campo; a T.G. Oliveira pela assistência na identificação dos pequenos 147

felinos pintados; e a C. Lisboa pelos comentários que ajudaram a melhorar o texto. A 148

João B. de Lima (seu João) e vário outros moradores locais da Caatinga seremos 149

eternamente gratos por sua assistência no campo e hospitalidade, essenciais para o 150

sucesso deste trabalho. PHM (130648 / 2013-2), CRF (305304 / 2013-5) e EMV 151

(308040/2017-1) foram financiados pelo Conselho Nacional de Desenvolvimento 152

Científico e Tecnológico (CNPq) e PHM, DB e MAF foram apoiados pela Coordenação 153

de Aperfeiçoamento de Pessoal de Nível Superior -Brasil (CAPES) - Código de 154

Financiamento 001. 155

156

Literatura citada 157

AB’SÁBER, N. A. 1974. O domínio morfoclimático semi-árido das caatingas brasileiras. 158

Geomorfologia 43:1-36. 159

ALBUQUERQUE, U. P. ET AL. 2012. Caatinga revisited: ecology and conservation of 160

an important seasonal dry forest. The Scientific World Journal 2012. 161

ALÉSSIO, F. M., A. R. M. PONTES, & V. L. SILVA. 2005. Feeding by Didelphis 162

albiventris on tree gum in the northeastern Atlantic Forest of Brazil. Mastozoología 163

Neotropical 12:53-56. 164

Page 54: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

50

ALMEIDA, L. B., D. QUEIROLO, B. M. BEISIEGEL, & T. G. OLIVEIRA. 2013. 165

Avaliação do risco de extinção do gato-mourisco Puma yagouaroundi (É. Geoffroy Saint-166

Hilaire, 1803) no Brasil. Biodiversidade Brasileira 1:99-106. 167

ALVES, R. R. N. ET AL. 2016. Game mammals of the Caatinga biome. Ethnobiology 168

and Conservation 5:1-51. 169

ANTONGIOVANNI, M., E. M. VENTICINQUE, & C. F. FONSECA. 2018. 170

Fragmentation patterns of the Caatinga drylands. Landscape Ecology 33:1353-1367. 171

ARAÚJO-JÚNIOR, H. I., & K. O. PORPINO. 2011. Assembleias fossilíferas de 172

mamíferos do Quaternário do Estado do Rio Grande do Norte, Nordeste do Brasil: 173

diversidade e aspectos tafonômicos e paleoecológicos. Pesquisas em Geociências 38:67-174

83. 175

ASTETE, S. ET AL. 2017. Living in extreme environments: modeling habitat suitability 176

for jaguars, pumas, and their prey in a semiarid habitat. Journal of Mammalogy 98:464-177

474. 178

AZEVEDO, F. C. ET AL. 2013. Avaliação do risco de extinção da onça-parda, Puma 179

concolor (Linnaeus, 1771) no Brasil. Biodiversidade Brasileira 3:107-121. 180

BANDA, K. ET. AL. 2016. Plant diversity patterns in neotropical dry forests and their 181

conservation implications. Science 353:1383-1387. 182

BARBOZA, R. D., S. F. LOPES, W. M. S. SOUTO, H. FERNANDES-FERREIRA, & 183

R. R. N. ALVES. 2016. The role of game mammals as bushmeat in the Caatinga, 184

northeast Brazil. Ecology and Society 21:2. 185

BEISIEGEL, B. M., F. C. LEMOS, F. C. AZEVEDO, D. QUEIROLO, & R. S. P. 186

JORGE. 2013. Avaliação do risco de extinção do Cachorro-do-mato Cerdocyon thous 187

(Linnaeus, 1766) no Brasil. Biodiversidade Brasileira 3:138-145. 188

Page 55: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

51

BERNARD, E., A. PAESE, R. B. MACHADO, & L. M. S. AGUIAR. 2014. Blown in 189

the wind: bats and wind farms in Brazil. Natureza & Conservação 12:106-111. 190

BEZERRA, A. M. R., A. LAZAR, C. R. BONVICINO, & A. CUNHA. 2014. Subsidies 191

for a poorly known endemic semiarid biome of Brazil: non-volant mammals of an eastern 192

region of Caatinga. Zoological Studies 53:1-16. 193

BRITO, D., L. C. OLIVEIRA, M. OPREA, & M. A. R. MELLO. 2009. An overview of 194

Brazilian mammalogy: trends, biases and future directions. Zoologia 26:67-73. 195

CAMPOS, B. A. T. P. ET AL. 2016. Mastofauna da Serra de Santa Catarina. 196

Biodiversidade na Serra de Santa Catarina – PB: uma proposta de criação do Parque 197

Estadual das Águas Sertanejas. (H. F. P. Araujo & A. H. Vieira-Filho, orgs.). Areia. 198

CARDILLO, M. ET AL. 2005. Multiple Causes of High Extinction Risk in Large 199

Mammal Species. Science 309:1239-1241. 200

CARMIGNOTTO, A. P., & D. ASTÚA. 2017. Mammals of the Caatinga: diversity, 201

ecology, biogeography, and conservation. Caatinga: The largest tropical dry forest 202

region in South America. (J. M. C. Silva, I. R. Leal & M. Tabarelli, eds.). Springer, 203

Cham. 204

CASSANO, C. R. ET AL. 2017. Primeira avaliação do status de conservação dos 205

mamíferos do estado da Bahia, Brasil. Oecologia Australis 21:156-170. 206

CHEYNE, S. M., W. J. SASTRAMIDJAJA, Y. RAYADIN, & D. W. MACDONALD. 207

2016. Mammalian communities as indicators of disturbance across Indonesian Borneo. 208

Global Ecology and Conservation 7:157-173. 209

CHIARELLO, A. G. 1999. Effects of fragmentation of the Atlantic forest on mammal 210

communities in south-eastern Brazil. Biological Conservation 89:71-82. 211

Page 56: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

52

COLWELL, R. K. 2013. EstimateS: Statistical estimation of species richness and shared 212

species from samples. Version 9. User's Guide and application 213

<http://purl.oclc.org/estimates>. 214

CROOKS, K. R., & M. E. SOULÉ. 1999. Mesopredator release and avifaunal extinctions 215

in a fragmented system. Nature 400:563-566. 216

CRUZ, M. A. O. M. ET AL. 2005. Diversidade de mamíferos em áreas prioritárias para 217

conservação da Caatinga. Análise das Variações da Biodiversidade do Bioma Caatinga: 218

Suporte a Estratégias Regionais de Conservação (F. S. Araujo, M. J. Rodal & M. R. V. 219

Barbosa, eds.). Ministério do Meio Ambiente, Brasília. 220

DANTAS, A. R. C., F. H. MENEZES, K. S. SERRA, E. D. O. BARBOSA, & H. 221

FERNANDES-FERREIRA. 2016. First record of Sylvilagus brasiliensis (Linnaeus, 222

1758) (Lagomorpha: Leporidae) in Rio Grande do Norte state, Northeast Brazil. Check 223

List 12:1856. 224

DE ANGELO. C., A. PAVIOLO, Y. DI BLANCO, M. DI BITETTI, & A. CHIAPPE. 225

2008. Guía de huellas de los mamíferos de Misiones y otras áreas del subtrópico de 226

Argentina. Ediciones del Subtrópico, Tucumán. 227

DELCIELLOS, A.C. 2016. Mammals of four Caatinga areas in northeastern Brazil: 228

inventory, species biology, and community structure. Check List 12:1916. 229

DIAS, D. M., & A. BOCCHIGLIERI. 2016. Riqueza e uso do habitat por mamíferos de 230

médio e grande porte na Caatinga, nordeste do Brasil. Neotropical Biology and 231

Conservation 11:38-46. 232

DIAS, D. M., A. S. RIBEIRO, A. BOCCHIGLIERI, & T. C. PEREIRA. 2014. 233

Diversidade de carnívoros (Mammalia: Carnivora) da serra dos macacos, Tobias Barreto, 234

Sergipe, Brasil. Bioscience Journal 30:1192-1204. 235

Page 57: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

53

DIAS, D. M., P. G. GUEDES, S. S. P. SILVA, & L. M. M. SENA. 2017. Diversity of 236

nonvolant mammals in a Caatinga area in northeastern Brazil. Neotropical Biology and 237

Conservation 12:200-208. 238

DUARTE, J. M. B. ET AL. 2012. Avaliação do Risco de Extinção do Veado-catingueiro, 239

Mazama gouazoubira G. Fischer (von Waldheim), 1814, no Brasil. Biodiversidade 240

Brasileira 2:50-58. 241

EMIDIO, R. A., & R. G. FERREIRA. 2012. Energetic Payoff of Tool Use for Capuchin 242

Monkeys in the Caatinga: Variation by Season and Habitat Type. American Journal of 243

Primatology 74:332–343. 244

FARIA, O. L. 1961. A Caça nos sertões do Seridó. Ministério da Agricultura, Serviço de 245

Informação Agrícola, Rio de Janeiro. 246

FEIJÓ, A., & A. LANGGUTH. 2013. Mamíferos de Médio e Grande Porte do Nordeste 247

do Brasil: Distribuição e Taxonomia, com Descrição de Novas Espécies. Revista 248

Nordestina de Biologia 22:3-225. 249

FEIJÓ, A., G. S. T. GARBINO, B. A. T. P. CAMPOS, P. A. ROCHA, S. F. FERRARI, 250

& A. LANGGUTH. 2015. Distribution of Tolypeutes Illiger, 1811 (Xenarthra: Cingulata) 251

with comments on its biogeography and conservation. Zoological Science 32:77-87. 252

FERNANDES-FERREIRA, H. 2014. A caça no Brasil: panorama histórico e atual. Tese 253

de doutorado. Universidade Federal da Paraíba, João Pessoa-PB, Brasil. 254

FERNANDES-FERREIRA, H., N. M. GURGEL-FILHO, A. FEIJÓ, S. V. 255

MENDONÇA, R. R. N. ALVES, & A. LANGGUTH. 2015. Non-volant mammals from 256

Baturité Ridge, Ceará state, Northeast Brazil. Check List 11:1630. 257

FERREIRA, R. G. ET AL. 2009. On the occurrence of Cebus flavius (Schreber 1774) in 258

the Caatinga, and the use of semi-arid environments by Cebus species in the Brazilian 259

state of Rio Grande do Norte. Primates 50:357-362. 260

Page 58: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

54

FERREIRA, R. G., R. A. EMIDIO, & L. JERUSALINSKY. 2010. Three stones for three 261

seeds: natural occurrence of selective tool use by capuchins (Cebus libidinosus) based on 262

an analysis of the weight of stones found at nutting sites. American Journal of 263

Primatology 72:270-275. 264

FONSECA, C. R., M. ANTONGIOVANNI, M. MATSUMOTO, E. BERNARD, & E. 265

M. VENTICINQUE. 2017. Conservation opportunities in the Caatinga. The largest 266

tropical dry forest region in South America. (J. M. C. Silva, I. R. Leal & M. Tabarelli, 267

eds.). Springer, Cham. 268

FREITAS, E. B., C. B. DE-CARVALHO, & S. F. FERRARI. 2011. Abundance of 269

Callicebus barbarabrownae (Hershkovitz 1990), (Primates: Pitheciidae) and other 270

nonvolant mammals in a fragment of arboreal Caatinga in northeastern Brazil. Mammalia 271

75:339-343. 272

GALETTI, M., & R. DIRZO. 2013. Ecological and evolutionary consequences of living 273

in a defaunated world. Biological Conservation 163:1–6. 274

GUEDES, P. G. ET AL. 2000. Diversidade de Mamíferos do Parque Nacional de Ubajara 275

(Ceará, Brasil). Mastozoología Neotropical 7:95-100. 276

ICMBIO. 2017. Planos de Ação Nacional. 277

<http://www.icmbio.gov.br/portal/faunabrasileira/planos-de-acao-nacional> 278

IDEMA. 2014. Perfil do Rio Grande do Norte. Instituto de Desenvolvimento Econômico 279

E Meio Ambiente, Natal. 280

<http://adcon.rn.gov.br/ACERVO/seplan/DOC/DOC000000000129527.PDF> 281

IDEMA. 2018. Unidades Estaduais de Conservação Ambiental do RN. 282

<http://www.idema.rn.gov.br/Conteudo.asp?TRAN=ITEM&TARG=334&ACT=null&283

PAGE=0&PARM=null&LBL=Unidades+de+Conserva%C3%A7%C3%A3o> 284

Page 59: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

55

IUCN. 2017. The IUCN Red List of Threatened Species. Version 2017-2. 285

<http://www.iucnredlist.org> 286

KITCHENER, A. C. ET AL. 2017. A revised taxonomy of the Felidae. The final report 287

of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. Cat News 288

Special, Issue 11:80. 289

LINNELL, J. D. C., J. E. SWENSON, & R. ANDERSEN. 2000. Conservation of 290

biodiversity in Scandinavian boreal forests: large carnivores as flagships, umbrellas, 291

indicators, or keystones?. Biodiversity and Conservation 9:857-868. 292

LUCENA, M. M., & E. M. X. FREIRE. 2012. Environmental perception and use of fauna 293

from a Private Natural Heritage Reserve (RPPN) in Brazilian semiarid. Acta Scientiarum 294

34:335-341. 295

MAGIOLI, M., K. M. P. M. B. FERRAZ, & M. G. RODRIGUES. 2014. Medium and 296

large-sized mammals of an isolated Atlantic Forest remnant, southeast São Paulo State, 297

Brazil. Check List 10:850-856. 298

MARES, M. A., M. R. WILLIG, K. E. STEILEIN, & T. E. LACHER-JR. 1981. The 299

mammals of Northeastern Brazil: a preliminary assessment. Annals of the Carnegie 300

Museum 50:81-137. 301

MARINHO, F. P., G. G. MAZZOCHINI, A. P. MANHÃES, W. W. WEISSER, & G. 302

GANADE. 2016. Effects of past and present land use on vegetation cover and 303

regeneration in a tropical dryland forest. Journal of Arid Environment 132:26-33. 304

MARINHO, P. H., A. FEIJÓ, A. S. GALIVAN, E. O. MOURA, & E. M. 305

VENTICINQUE. 2017. First records of Ocelot Leopardus pardalis (Linnaeus, 1758) 306

(Carnivora: Felidae) from Rio Grande do Norte, northeastern Brazil. Check List 13:2087. 307

Page 60: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

56

MARINHO, P. H., D. BEZERRA, M. ANTONGIOVANNI, C. R. FONSECA, & E. M. 308

VENTICINQUE. 2018a. Estimating occupancy of the vulnerable northern tiger cat 309

Leopardus tigrinus in Caatinga drylands. Mammal Research 83:33–42. 310

MARINHO, P. H., D. BEZERRA, M. ANTONGIOVANNI, C. R. FONSECA, & E. M. 311

VENTICINQUE. 2018b. Activity patterns of the threatened northern tiger cat Leopardus 312

tigrinus and its potential prey in a Brazilian dry tropical forest. Mammalian Biology 313

89:30-36. 314

MELO, G. L., & J. SPONCHIADO. 2012. Distribuição geográfica dos marsupiais do 315

Brasil. Os Marsupiais do Brasil, Revisada e Ampliada (N. C. Cáceres, ed.). 2 ed. Editora 316

da UFMS, Campo Grande. 317

MITTERMEIER, R. A. ET AL. 2002. Wilderness: earth’s last wild places. CEMEX, 318

Agrupacion Serra Madre. 319

MMA. 2014. Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção. 320

Ministério do Meio Ambiente, Brasília. 321

<http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?jornal=1&pagina=121&data322

=18/12/2014> 323

MMA. 2016a. Caatinga - Monitoramento do Desmatamento dos Biomas Brasileiros por 324

Satélite - Relatório Técnico 2010 – 2011. Ministério do Meio Ambiente, Brasília. 325

<http://www.mma.gov.br/index.php/comunicacao/agencia-326

informma?view=blog&id=2096> 327

MMA. 2016b. Áreas Prioritárias para a Conservação, Utilização Sustentável e Repartição 328

de Benefícios da Biodiversidade do Cerrado, do Pantanal e da Caatinga. Ministério do 329

Meio Ambiente, Brasília. <http://www.mma.gov.br/biodiversidade/biodiversidade-330

brasileira/%C3%A1reas-priorit%C3%A1rias/item/10724> 331

Page 61: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

57

NASCIMENTO, F. O., & A. FEIJÓ. 2017. Taxonomic revision of the Tigrina Leopardus 332

tigrinus (Schreber, 1775) species group (Carnivora, Felidae). Papéis Avulsos de Zoologia 333

57:231-264. 334

OLIVEIRA, J. A. 2004. Diversidade de mamíferos e o estabelecimento de áreas 335

prioritárias para a conservação do bioma Caatinga. Biodiversidade da Caatinga: Áreas e 336

ações prioritárias para a conservação. (J. M. C. Silva, M. Tabarelli, M. T. Fonseca & L. 337

V. Lins, eds.). Ministério do Meio Ambiente, Brasília. 338

OLIVEIRA, T. G., M. A. TORTATO, L. B. ALMEIDA, C. B. CAMPOS, & B. M. 339

BEISIEGEL. 2013. Avaliação do risco de extinção do gato-do-mato Leopardus tigrinus 340

no Brasil. Biodiversidade Brasileira 5:56-65. 341

PAGLIA, A. P. ET AL. 2012. Lista Anotada dos Mamíferos do Brasil / Annotated 342

Checklist of Brazilian Mammals. 2ª Edição / 2nd Edition. Occasional Papers in 343

Conservation Biology 6:1-76. 344

PENIDO, G. ET AL. 2017. Mesocarnivore activity patterns in the semiarid Caatinga: 345

limited by the harsh environment or affected by interspecific interactions?. Journal of 346

Mammalogy 98:1732-1740. 347

PEREIRA, C. J., & R. S. PEIXOTO. 2017. Levantamento de mamíferos terrestres em 348

uma área de Caatinga em Senhor do Bonfm, Bahia. Revista Brasileira de Zoociências 349

183:33-44. 350

PEREIRA, L. G., & L. GEISE. 2009. Non-flying mammals of Chapada Diamantina 351

(Bahia, Brazil). Biota Neotropica 9:185-196. 352

PERES, C. A. 2001. Synergistic effects of subsistence hunting and habitat fragmentation 353

on amazonian forest vertebrates. Conservation Biology 15:1490-1505. 354

PICHORIM, M., T. P. F. CÂMARA, T. M. OLIVEIRA-JÚNIOR, D. V. OLIVEIRA, E. 355

P. G. NASCIMENTO, & J. A. MOBLEY. 2014. A population of Blue-winged Macaw 356

Page 62: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

58

Primolius maracana in northeastern Brazil: recommendations for a local conservation 357

action plan. Tropical Conservation Science 7:488-507. 358

RIBEIRO, E. M. S., V. ARROYO-RODRÍGUEZ, B. A. SANTOS, M. TABARELLI, & 359

I. R. LEAL. 2015. Chronic anthropogenic disturbance drives the biological 360

impoverishment of the Brazilian Caatinga vegetation. Journal of Applied Ecology 361

52:611-620. 362

ROCHA, P. A., J. RUIZ-ESPARZA, R. BELTRÃO-MENDES, A. S. RIBEIRO, B. A. T. 363

P. CAMPOS, & S. F. FERRARI. 2015. Nonvolant mammals in habitats of the Caatinga 364

scrub and cloud forest enclave at Serra da Guia, state of Sergipe. Revista Brasileira de 365

Zoociências 16:93-103. 366

ROSAS-RIBEIRO, P. F., R. RANULPHO, & E. M. VENTICINQUE. 2017. New records 367

and update on the geographic distribution of Lontra longicaudis (Olfers, 1818) 368

(Carnivora: Mustelidae) in Seasonally Dry Tropical Forests of northeastern Brazil. Check 369

List 13:2108. 370

ROVERO, F., E. MARTIN, M. ROSA, J. A. AHUMADA, & D. SPITALE. 2014. 371

Estimating species richness and modelling habitat preferences of tropical forest mammals 372

from camera trap data. PLoS One 9:e103300. 373

RUIZ-GARCÍA, M., M. PINEDO-CASTRO, & J. M. SHOSTELL. 2017. Small spotted 374

bodies with multiple specific mitochondrial DNAs: existence of diverse and differentiated 375

tigrina lineages or species (Leopardus spp: Felidae, Mammalia) throughout Latin 376

America. Mitochondrial DNA Part A 29:993-1014. 377

SANTOS, J. C., I. R. LEAL, J. S. ALMEIDA-CORTEZ, G. W. FERNANDES, & M. 378

TABARELLI. 2011. Caatinga: the scientific negligence experiencedby a dry tropical 379

forest. Tropical Conservation. Science 4:276-286. 380

Page 63: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

59

SEDDON, A. W. R., M. MACIAS-FAURIA, P. R. LONG, D. BENZ, & K. J. WILLIS. 381

2016. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531:229–382

232. 383

SILVA, J. M. C., I. R. LEAL, & M. TABARELLI (eds.). 2017a. Caatinga: the largest 384

tropical dry forest region in South America. Springer, Cham. 385

SILVA, J. M. C., L. C. F. BARBOSA, I. R. LEAL, & M. TABARELLI. 2017b. The 386

Caatinga: understanding the challenges. The largest tropical dry forest region in South 387

America. (J. M. C. Silva, I. R. Leal & M. Tabarelli, eds.). Springer, Cham. 388

SILVA, J. M. C., M. TABARELLI, M. T. FONSECA, & L. V. LINS (orgs.). 2003. 389

Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação. Ministério do 390

Meio Ambiente, Brasília. 391

SILVA, U. G., & C. N. S. PALMEIRA. 2014. Mamíferos de um brejo de altitude, Traipu, 392

Alagoas. Revista Ourici 4:31-59. 393

SOBRAL, M., K. M. SILVIUS, H. OVERMAN, L. F. B. OLIVEIRA, T. K. RABB, & J. 394

M. V. FRAGOSO. 2017. Mammal diversity influences the carbon cycle through trophic 395

interactions in the Amazon. Nature Ecology & Evolution 1:1670–1676. 396

SOLLMANN, R., A. MOHAMED, H. SAMEJIMA, & A. WILTING. 2013. Risky 397

business or simple solution – Relative abundance indices from camera-trapping. 398

Biological Conservation 159:405-412. 399

TERBORGH, J. ET AL. 2001. Ecological meltdown in predator-free forest fragments. 400

Science 294:1923–1926. 401

TOBLER, M. W. 2007. Camera base version 1.6. Atrium biodiversity information 402

system. <http://www.atrium-biodiversity.org/tools/camerabase/> 403

Page 64: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

60

TOBLER, M. W., S. E. CARRILHO-PERCASTEGUI, R. LEITEPITMAN, R. MARES, 404

& G. POWELL. 2008. An evaluation of camera traps for inventorying large- and 405

medium-sized terrestrial rainforest mammals. Animal Conservation 11:169-178. 406

VARGAS-MENA, J. C. ET AL. 2018. The bats of Rio Grande do Norte state, 407

northeastern Brazil. Biota Neotropica 18:e20170417. 408

VELLOSO, A. L., E. V. S. B. SAMPAIO, & F. G. C. PAREYN. 2002. Ecorregiões 409

propostas para o Bioma Caatinga. Associação Plantas do Nordeste, Instituto de 410

Conservação Ambiental, The Nature Conservancy do Brasil, Recife. 411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

Page 65: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

61

Capítulo 2 430

431

TEMPORAL NICHE OVERLAP AMONG MESOCARNIVORES IN A 432

CAATINGA DRY FOREST 433

434

435

436

437

438

Capítulo publicado na revista European Journal of Wildlife Research (link: 439

https://link.springer.com/article/10.1007/s10344-020-1371-6). 440

Page 66: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

62

Temporal niche overlap among mesocarnivores in a Caatinga dry forest 441

442

Paulo Henrique Marinho1,2 (ORCID: 0000-0001-7205-3089), Carlos Roberto Fonseca1, 443

Pedro Sarmento2, Carlos Fonseca2 and Eduardo Martins Venticinque1 444

445

1 Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande 446

do Norte, Natal, Rio Grande do Norte, Brazil 447

2 Departamento de Biologia & Centro de Estudos do Ambiente e do Mar (CESAM), 448

Universidade de Aveiro, Campus Universitário Santiago, Aveiro, Portugal 449

450

Corresponding author: Paulo Henrique Marinho ([email protected]) 451

452

453

454

Page 67: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

63

Abstract 455

Agonistic encounters among carnivores can be potentially avoided or minimized by shifts 456

in daily activity patterns. Here, we investigated the temporal ecology of mesocarnivores 457

which co-occur in a semiarid area where top predators are virtually absent. More 458

specifically, we (i) describe the daily activity patterns of six mesocarnivore species, (ii) 459

evaluate possible seasonal changes in their daily activity patterns, (iii) examine patterns 460

of temporal overlap among mesocarnivores, and (iv) test the overlap in daily activity 461

between mesocarnivores and their potential prey. Using camera trapping data (13,976 462

camera-days) and circular and overlapping analyzes, we studied six out of the seven 463

mesocarnivore species recorded. Striped hog-nosed skunk and the crab-eating raccoon 464

were nocturnal, crab-eating fox and northern tiger cat were nocturnal-crepuscular, ocelot 465

was mainly nocturnal, and jaguarundi was diurnal. With the exception of jaguarundi, we 466

fail to find strong temporal segregation among mesocarnivore and interspecific 467

interactions did not vary seasonally, but we observed separation in their activity peaks 468

and significant difference in their activity distributions. This partial temporal segregation 469

can potentially contribute to interspecific coexistence, reducing the chances of 470

interspecific killing, mainly in relation to the dominant species (ocelot). Mesocarnivores 471

did not exhibit a significant synchrony of their activity with any of the preys evaluated, 472

with the exception of jaguarundi, which significantly overlapped its distribution of 473

activity with some preys. Temporal segregation contributes but does not seem to be the 474

only mechanism behind the coexistence of mesocarnivores in Caatinga dry forest, thus 475

other strategies such as spatial and dietary segregation should be considered. 476

Keywords: activity pattern; intraguild interaction; predator-prey interaction; seasonal 477

activity; semiarid; temporal segregation. 478

Page 68: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

64

Introduction 479

Patterns of daily activity are a crucial component of mammalian ecology and 480

behavior, through which species respond to variations in biotic, abiotic, and 481

anthropogenic factors (Schoener 1974; Bennie et al. 2014; Gaynor et al. 2018). Many 482

species avoid being active in periods of intense heat or cold to avoid hypo- or 483

hyperthermia (Terrien et al. 2011), or during full moon nights, which can make predators 484

and prey more exposed to mutual detection (Prugh and Golden 2014). Predators can 485

adjust their daily activity in order to maximize the chances of prey encounter thus 486

minimizing the energy expenditure, while pressing the prey to avoid encounters with 487

potential predators (Foster et al. 2013; Monterroso et al. 2013). In addition, the negative 488

effects of interspecific competition can also be minimized through temporal segregation, 489

which is an important mechanism of coexistence among species with similar ecology and 490

morphology (Lucherini et al. 2009; Di Bitetti et al. 2010; Monterroso et al. 2014). This 491

strategy contributes to the avoidance of agonistic encounters which minimize interference 492

competition levels and reduce the chances of intraguild predation and interspecific killing 493

among mammalian carnivores (Carothers and Jaksic 1984; Polis et al. 1989; Palomares 494

and Caro 1999). 495

Mesocarnivores (<15 kg) usually occupy a trophic position just below the top 496

predators (Roemer et al 2009; Ritchie and Johnson 2009), being submitted to top-down 497

control by apex predators while competing for habitat and food resources (Ritchie and 498

Johnson 2009). So, the reduction in numbers or even the absence of top-predators can 499

contribute to increase the abundance of mesocarnivores, which can expand their 500

ecological niche intensifying predation and intraguild competition effects (Crooks and 501

Soulé 1999; Prugh et al. 2009). Under these circumstances, larger and generally dominant 502

mesocarnivores (Oliveira and Pereira 2014) may emerge as apex predators affecting 503

Page 69: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

65

subordinate species (Prugh et al. 2009). However, there are only a few studies on the 504

ecology of sympatric neotropical mesocarnivores in areas where top predators were 505

locally extinct, which usually correspond to unprotected areas (Woodroffe and Ginsberg 506

1998). This type of knowledge is essential to the conservation of biological communities 507

(Bu et al. 2016; Wang et al. 2015) in a world with increasingly anthropogenic 508

disturbances. 509

The Caatinga, a seasonally dry tropical forest in northeastern Brazil, is a naturally 510

stressful environment which has been suffering high anthropogenic impacts (Silva et al. 511

2017; Antongiovanni et al. 2018) that can be expected to modulate species ecology 512

(Stoner and Timm 2011; Astete et al. 2017a, 2017b). In most of the Caatinga, top 513

predators such as the jaguar Panthera onca Linnaeus, 1758 and the puma Puma concolor 514

Linnaeus, 1771 are declining or absent (Azevedo et al. 2013; Feijó and Langguth 2013; 515

Morato et al. 2013; Marinho et al. 2018a). In such sites, mesocarnivores coexist while 516

being released from top down regulation. In Caatinga, the mesocarnivore assemblage is 517

most commonly formed by seven more widely distributed species (Feijó and Langguth 518

2013; Marinho et al. 2018a): three omnivorous species, represented by crab-eating 519

raccoon Procyon cancrivorus (G.[Baron] Cuvier, 1798) (adult body mass = 5.4-8.8 kg), 520

crab-eating fox Cerdocyon thous Linnaeus, 1766 (5.7-6.5 kg), and striped hog-nosed 521

skunk Conepatus amazonicus Lichtenstein, 1838 (2.4 kg), and four species that are 522

strictly carnivorous, represented by the felids ocelot Leopardus pardalis Linnaeus, 1758 523

(8-11 kg), jaguarundi Herpailurus yagouaroundi É, Geoffroy Saint-Hilare, 1803 (3-6 kg), 524

and northern tiger cat Leopardus tigrinus Thomas, 1904 (1.5-3 kg), along with the 525

mustelid lesser grison Galictis cuja Molina, 1782 (1-3 kg) (Paglia et al. 2012; Oliveira 526

and Pereira 2014). This overlap in terms of ecological niche, associated with the virtual 527

absence of top-predators, can result in the increase of competition effects, which, in turn, 528

Page 70: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

66

can be lowered by deviations in the use of trophic, spatial and temporal resources 529

(Schoener 1974). For the symtopic mesocarnivores, especially with analogous 530

morphology and hunting strategies, alterations in activity patterns can improve 531

coexistence. In Brazilian semiarid regions, studies regarding mesocarnivore activity 532

patterns and temporal interactions are focused on a single species or in a sub-set of the 533

mesocarnivore guild, while they usually don't consider the seasonal effect (Dias and 534

Bocchiglieri 2016; Dias 2017; Penido et al. 2017; Dias et al. 2018, 2019; Marinho et al. 535

2018b). 536

In this study we use camera trapping data to examine the temporal ecology of a 537

syntopic mesocarnivore guild in a Caatinga dry forest area virtually free of top predators. 538

Puma seems absent from the area for over 10 years (Marinho et al. 2018a), while no 539

mention is provided on current or previous presence of the jaguar, the other Caatinga top 540

predator. Our objectives were: (i) to describe the daily activity patterns of the 541

mesocarnivore species, (ii) to evaluate possible seasonal changes in their daily activity 542

patterns, (iii) to examine patterns of segregation or temporal overlap among 543

mesocarnivores, and (iv) to test the overlap in daily activity between mesocarnivores and 544

their potential prey. According to previous information, we expected mesocarnivores to 545

be nocturnal or mainly nocturnal (Dias 2017; Penido et al. 2017; Marinho et al. 2018b; 546

Dias et al. 2018, 2019), except for jaguarundi, which has a well-documented diurnal habit 547

throughout its distribution (Giordano 2016). 548

We expected that mesocarnivores with closely related ecology and morphology, 549

particularly the felids, would exhibit greater temporal segregation, at least during their 550

peaks of activity (Penido et al. 2017; Dias et al. 2019), to avoid aggression risk and 551

competition for resources (exploitative competition), while omnivorous species would 552

differentiate their activity mainly in relation to the ocelot, the largest mesocarnivore 553

Page 71: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

67

known in the area. An alternative hypothesis is that the activity patterns of the 554

mesocarnivores are more synchronized with their preferential prey, especially to the 555

hypercarnivorous felids (Linkie and Ridout 2011; Foster et al. 2013; Porfirio et al. 2016). 556

Considering that the Caatinga dry forest is a highly seasonal environment, we 557

hypothesized that temporal niche segregation would be larger during the dry season, when 558

water and food resources are more scarce and concentrated and the visual contact among 559

the mesocarnivores is potentially more common due to the lower understory leaf density, 560

which may increase interference competition (Valeix et al. 2007; Vanak et al. 2013). In 561

general, we expected a possible lower daytime activity in the dry season related to the 562

avoidance of high daytime temperatures (Pita et al. 2011), considering the low humidity 563

and the poor protection of vegetation cover in this period. 564

565

Methods 566

Study site 567

This study was developed in a seasonally dry tropical forest (Caatinga) area between 568

the Feiticeiro and Bonfim mountains in Lajes municipality, Rio dos Ventos, Rio Grande 569

do Norte state, northeastern Brazil (5º44’-5º51’S latitude, 36º11’-36º06’W longitude, Fig. 570

1). The region is considered a priority for the conservation of the Caatinga domain (MMA 571

2016; Fonseca et al. 2017). The climate is semiarid, with high temperatures and low 572

rainfall. The higher precipitations usually occur between March and May, with average 573

annual rainfall varying from 400 to 650 mm. The vegetation varies from open shrub 574

formations, generally more disturbed and occurring at lower altitudes, to more forested 575

and dense patches, mainly covering higher and steeper areas (Velloso et al. 2002). 576

577

Page 72: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

68

578

Fig. 1 Study area and distribution of the 50 camera trap stations (A) used to investigate the 579

temporal niche and coexistence of a mesocarnivore guild in a Caatinga dry forest in Ljes 580

municipality, Rio Grande do Norte state (B), northeastern Brazil (C). 581

582

Despite being the largest continuous remnant of Caatinga vegetation in the Rio 583

Grande do Norte state (Projeto Caatinga Potiguar 2015), the area has no legal protection 584

and is under several anthropogenic disturbances developed in private properties, such as 585

extensive livestock, cutting wood for charcoal production and conversion of natural 586

habitats to temporary agriculture. Poaching is another intense activity in the area 587

(Marinho et al. 2018a). The last reliable reports of presence of puma in the region are 588

more than 10 years old (Marinho et al. 2018a), being probably locally extinct (at least 589

functionally) due to hunting and conflicts with cattle ranchers. Finally, the region is the 590

target of mineral exploration, and is being prospected for installation of wind power 591

plants. 592

Sampling design 593

Page 73: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

69

Mesocarnivore occurrences were recorded through camera trapping in an area of 594

approximately 70 km2, between May 2016 and February 2019, totaling a sampling effort 595

of 13,976 camera-days divided into three sampling periods and along a total of 50 596

sampling points (Table S1). In the first survey (24 stations from May to June 2016), we 597

used stations with double cameras aiming to estimate the density of the wild cats, while 598

in the remaining two surveys we used stations with a single camera (43 stations from 599

January to October 2017 and 37 stations from October 2018 to February 2019, Table S1). 600

The sampling effort was divided in wet (7,337 camera-days, January - June) and dry 601

season (6,639 camera-days, July - December) (adapted from Tomasella et al. 2018). 602

We used camera traps with heat and motion sensor (model Bushnell® Trophy Cam 603

™ HD). For the installation of the cameras we prioritized trails used by people and/or 604

livestock, dirt roads, and temporary streams. The distance between cameras was in 605

average 929.5 m (SD = 262.1). We set the camera traps to record the date and time of the 606

detections, with a minimum interval of 5 minutes between consecutive records, and we 607

programmed them to take three photos per shot or one photo and one video of 10 seconds, 608

remaining active 24 hours every day. We considered the records of the same species at 609

the same sampling point with more than 1 hour apart as independent (Goulart et al. 2009). 610

We did not use any bait to attract the animals. 611

Potential prey 612

The diet of mesocarnivores in the Caatinga is poorly known, but few existing studies 613

can give an idea of their potential prey (Ximenez 1982; Olmos 1993; Dias and 614

Bocchiglieri 2015, 2016). The striped hog-nosed skunk feeds mainly on arthropods and 615

lizards preyed on burrows, and occasionally on fruits and small mammals such as 616

marsupials (Olmos 1993). The crab-eating fox diet in the region is based mainly on 617

arthropods, but also fruits, lizards, birds and some small rodents such as Spix's cavy Galea 618

Page 74: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

70

spixii (Wagler, 1831) (Olmos 1993; Dias and Bocchiglieri 2016). The crab-eating raccoon 619

can consume mainly arthropods, followed by fruits, and small vertebrates such as lizards, 620

birds and small rodents (Dias and Bocchiglieri 2015). In the Serra da Capivara National 621

Park, northern tiger cat fed on large number of lizards such as Ameiva ameiva (Linnaeus, 622

1758) and Tropidurus hispidus (Spix, 1825), as well as on arthropods, birds and a smaller 623

proportion of unidentified small rodents (Olmos 1993). Ximenez (1982) also reported the 624

presence of lizard scales in the stomach contents of the northern tiger cat. With respect to 625

jaguarundi diet in Caatinga, there are reports of predation of common marmoset Callithrix 626

jacchus (Linnaeus, 1758) (Ximenez 1982), rock cavy Kerodon rupestris F. Cuvier, 1825, 627

Spix's cavy, punaré rat Thrichomys laurentius Thomas, 1904 and other small rodents, as 628

well as, birds, lizards and arthropods (Olmos 1993; Dias and Bocchiglieri 2015). Finally, 629

birds and lizards were more present in the diet of ocelot in Caatinga, although punaré rat 630

and white-eared opossum Didelphis albiventris (Lund, 1840) also had been predated 631

(Dias and Bocchiglieri 2015). However, due to its larger body size, the ocelot can also 632

feed on larger prey such as armadillos (Wang 2002; Moreno et al. 2006). 633

Data analysis 634

We divided the independent records of each species in one-hour intervals over the 24 635

h circadian cycle. The uniformity of species records throughout the circadian cycle was 636

tested using the Rayleigh test in the Oriana v.4 program (Kovach Commuting Services, 637

Wales, UK). In order to describe the activity patterns, we classified the records in diurnal 638

(between 1 h after sunrise and 1 h before sunset), nocturnal (between 1 h after sunset and 639

1 h before sunrise), and crepuscular (± 1 h of sunrise or sunset) (Porfirio et al. 2016). To 640

define the exact time of sunrise and sunset we used the software Tropsolar 5.0 (Cabus 641

2004). Since the samplings were carried out throughout the year, we estimated the 642

monthly variations in the sunrise and sunset times from the 15th day of each month to 643

Page 75: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

71

classify the species records. For sunrise, the average value was 5:20 h, with an annual 644

variation from 04:57 h to 05:35 h, while for sunset the average value was 17:18 h, with a 645

variation of 17:09h to 17:40 h throughout the year. For these analyzes we used legal time 646

as a reference, since annual variations in the daytime period are lower at low latitudes 647

(Nouvellet et al. 2012). 648

We tested the existence of temporal segregation between the activity patterns of 649

species pairs, within the mesocarnivore guild and between mesocarnivores and their 650

potential prey species, with the Mardia-Watson Wheeler test (MWW test) in the software 651

Oriana v.4. For each species, the same method was performed to test for shifts in daily 652

activity patterns between the dry and wet season. In addition, we used the non-parametric 653

Kernel density function to estimate the activity overlap coefficient (Δ) between 654

mesocarnivores, as well as with their prey and between seasons (Ridout and Linkie 2009; 655

Linkie and Ridout 2011). This coefficient, defined as the area under the curves formed 656

by the two density functions in each time unit, ranges from 0 (no overlap) to 1 (total 657

temporal overlap of activity) (Ridout and Linkie 2009). We obtained the 95% confidence 658

intervals of the overlap coefficients estimated through 1000 bootstrap samples (Linkie 659

and Ridout 2011; Meredith and Ridout 2018). According to Ridout and Linkie (2009) we 660

used the coefficient Δ1 for small samples (<75 records for at least one of the pairs 661

compared) and the coefficient Δ4 for large samples (> 75 records). These analyzes were 662

done with the R package overlap (Meredith and Ridout 2018; R Development Core Team 663

2012). Finally, we classified the activity overlap between each comparison as follows: 664

low overlap (Δ ≤ 0.5), moderate overlap (0.5 < Δ ≤ 0.75), and high overlap (Δ > 0.75) 665

(Monterroso et al. 2014). We performed the analysis of activity overlap only with pairs 666

of data (intra or between species) with more than 10 records in each pair evaluated. 667

668

Page 76: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

72

Results 669

We recorded all seven species of mesocarnivores expected for the study area (Table 670

1). The number of records ranged from 1133 for the crab-eating fox to just five records 671

for the lesser grison. Due to the low number of records of the lesser grison, this species 672

was excluded from all posterior analyses. 673

The species activity patterns were not homogenous throughout the circadian cycle 674

according to Rayleigh test (Fig. 2; Table 1). The striped hog-nosed skunk was nocturnal, 675

starting its activities during dusk but avoided the dawn (Fig. 2a). The crab-eating fox was 676

nocturnal-crepuscular, this canid started its activity at dusk, remained active throughout 677

the night and reached the peak of activity at dawn, with some residual activity during the 678

first part of the day (Fig. 2b). The crab-eating raccoon was nocturnal, but had a peak 679

activity during dusk and another just before dawn (Fig. 2c). The ocelot was mostly 680

nocturnal, but it initiated strongly its activities during dusk and slowed down continuously 681

until the first hours of the morning (Fig. 2d). The northern tiger cat was nocturnal-682

crepuscular, but it was relatively generalist, performing a fair amount of its activities 683

during day hours (Fig. 2e). Finally, the jaguarundi was diurnal, but it also presented a 684

high activity during the dawn and dusk periods (Fig. 2f). 685

686

Page 77: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

73

687

Fig. 2 Daily activity pattern of mesocarnivores in a Caatinga dry forest, northeastern Brazil. Each 688

circular histogram is divided into 24 intervals of 60 minutes, and their bars represent the 689

percentage of the total number of camera-trap detections in each interval. Day (on average, 06:20 690

h - 16:18 h), night (after 18:18 h - 04:20 h), and twilight (± 1 before and after 5:20 h and 17:18 h) 691

correspond to white, black and gray, respectively. Species are: (a) striped hog-nosed skunk, (b) 692

crab-eating fox, (c) crab-eating raccoon, (d) ocelot, (e) northern tiger cat, and (f) jaguarundi. 693

Origin of the specie’s images: De Angelo et al. (2015). 694

695

Daily activity distribution patterns were very similar between dry and wet periods for 696

all mesocarnivore species; differences in activity distributions between seasons being 697

non-significant (Fig. 3; Table 1). The crab-eating fox (Δ = 0.94 [0.90-0.97]) showed the 698

highest activity overlap between seasons, while jaguarundi exhibited the lowest (Δ = 0.78 699

[0.63-0.90]), with some decrease in its sunset peak of activity during dawn in dry season 700

(Fig. 3; Table 1). 701

702

Page 78: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

74

703

Fig. 3 Density estimates of daily activity patterns and extension of overlap within mesocarnivore 704

species between dry and wet season in a Caatinga dry forest, northeastern Brazil. Overlap is 705

represented by the shaded grey area. The dashed vertical lines represent the average legal time of 706

sunrise [5:20 h] and sunset [17:18 h]) during the study period. The time of the records is shown 707

as ticks in the bottom of the figures.708

Page 79: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

75

Intraguild interactions

Overlap of daily activity patterns among mesocarnivore species varied widely, from 0.14 to 0.92

(Fig. 4). The activity distribution test indicated that there were significant differences in the activity

patterns for 10 of the 15 mesocarnivore contrasts (Table 2). The lower overlap coefficients (0.14-

0.48) appeared between the diurnal jaguarundi and all other species, showing a strong and significant

temporal niche differentiation (Fig. 4; Table 2). The higher overlap coefficients occurred between

crab-eating raccoon and all other mesocarnivores (0.76-0.83), except jaguarundi, and between crab-

eating fox and northern tiger cat (0.92) (Fig. 4; Table 2), which indicate temporal niche similarity.

The remaining species contrasts had moderate to high overlap coefficient (0.70-0.79), but always

showing significant temporal niche differences through their activity distributions (Fig. 4; Table 2).

It should be highlighted that we found no evidence of change in intraguild interactions between dry

and wet seasons (Table S2).

Predator-prey temporal overlap

Camera trapping detected several mammal (N = 1184 records), bird (N = 1031), and lizard (N =

179) species that could be potential preys of mesocarnivores (Table S3). Among the mammals, we

recorded: Spix's cavy, punaré rat, rock cavy, white-eared opossum, yellow armadillo Euphractus

sexcinctus (Linnaeus, 1758), and nine-banded armadillo Dasypus novemcinctus (Linnaeus, 1758). In

relation to the ground-dwelling and ground-foraging birds, we recorded several species of doves,

including Columbina spp., Zenaida auriculata (Des Murs, 1847), and Leptotila verreauxi (Bonaparte,

1855), as well as tinamou species of the genera Crypturellus and Nothura. Among the lizards we

recorded A. ameiva, T. hispidus, Tropidurus semitaeniatus (Spix, 1825), and Ameivula ocellifera

(Spix, 1825) (Table S3). Due to identification uncertainties, in the following analyses, doves,

tinamous, and lizards were analyzed as groups (Table S3).

Most potential mammalian preys exhibited nocturnal or mainly nocturnal activity, with the

exception of rock cavy and yellow armadillo which were cathemeral and mostly diurnal, respectively

(Table S3; Fig S1). For birds, doves were diurnal while tinamous were crepuscular (Table S3; Fig.

Page 80: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

76

S1). Finally, lizards were diurnal (Table S3; Fig. S1). Most preys had similar daily activity patterns

throughout the year, with the exception of yellow armadillo and the doves which exhibited significant

difference between the dry and wet season (Table S3).

Among the omnivorous mesocarnivores (Table 3; Fig. S1), the daily distributions of records of

the striped hog-nosed skunk differed significantly from the pattern exhibited by most potential preys,

except from punaré rat and white-eared opossum (Table 3; Fig. S1). The distribution of activity of

the crab-eating fox was significantly different from all potential preys, although it had a reasonable

temporal overlap with some small mammals (Table 3; Fig. S1). Finally, the activity pattern of crab-

eating raccoon was similar to Spix's cavy and punaré rat (Table 3; Fig. S1), and to the white-eared

opossum during dry season (Table S4), but differed from the other potential preys.

Regarding the felids (Table 3; Fig. S1), the ocelot and the northern tiger cat differed significantly

their activity distributions from all potential preys, although they had a reasonably high activity

overlap with some small mammal species such as Spix’s cavy and white-eared opossum (Table 3;

Fig. S1). In fact, in the wet season, the distribution of activity of the ocelot did not differ from the

white-eared opossum (Table S4). Finally, the activity pattern of jaguarundi was similar to that

exhibited by rock cavy and tinamous in both seasons (Table S4), but differed from other potential

prey (Table 3; Fig. S1). Except to the ocelot, predator-prey temporal interactions were extremely

conserved across seasons (Table S4).

Page 81: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

77

Table 1 Daily activity patterns of mesocarnivores in a Caatinga dry forest, northeastern Brazil. Rayleigh Z tested the homogeneity of the species daily activity using

the total number of records. Species were classified into activity categories based on the percentage of records falling in different day periods (day, night and twilight).

N is the number of records total and in each season. ∆ measures the species overlap in their temporal niche between the dry and wet seasons (with the respective 95%

confidence intervals). Mardia-Watson-Wheller (MWW) tested the temporal niche segregation between dry and wet seasons. Significant results are presented in bold.

The few records of lesser grison prevented any analysis.

Mesocarnivores N

(total) Rayleigh Z

(p) Activity

(% day/night/twilight) N

(dry/wet) ∆dry-wet

(95% CI) MWWdry-wet

(p)

Striped hog-nosed skunk 288 147.4

(<0.001)

Nocturnal

(0.3 / 94.1 / 5.6) 154 / 134

0.91

(0.83-0.97)

1.27

(0.53)

Crab-eating fox 1133 214.6

(<0.001)

Nocturnal-crepuscular

(10.3 / 61.9 / 27.8) 640 / 493

0.94

(0.90-0.97)

2.02

(0.36)

Crab-eating raccoon 36 12.0

(<0.001)

Nocturnal

(2.8 / 88.9 / 8.3) 10 / 26

0.79

(0.57-0.96)

1.57

(0.46)

Ocelot 143 44.1

(<0.001)

Mostly nocturnal

(7.0 / 79.7 / 13.3) 79 / 64

0.83

(0.73-0.92)

0.02

(0.99)

Northern tiger cat 524 78.5

(<0.001) Nocturnal-crepuscular

(16.2 / 60.1 / 23.7) 252 / 272

0.92 (0.86-0.97)

0.78 (0.68)

Jaguarundi 84 11.2

(<0.001)

Diurnal

(52.4 / 3.6 / 44.0) 33 / 51

0.78

(0.63-0.90)

0.92

(0.63)

Lesser grison 5 - Unclassified

(100 / 0 / 0) 1 / 4 - -

Page 82: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

78

Fig. 4 Density estimates of daily activity patterns and extension of their overlap among pairs of mesocarnivores in a Caatinga dry forest, northeastern Brazil. Overlap

is represented by the shaded grey area. The dashed vertical lines represent the average legal time of sunrise [5:20 h] and sunset [17:18 h]) during the study period.

Page 83: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

79

Significant differences in MWW test are indicated by an asterisk after overlap coefficient values (∆). The time of the records is shown as ticks in the bottom of the

figures. Origin of the specie’s images: De Angelo et al. (2008).

Table 2 Temporal niche overlap values of mesocarnivores in a Caatinga dry forest, northeastern Brazil. Overlapping coefficient values (∆) with their respective

95% confidence intervals (between parentheses) are represented above the diagonal while the Mardia-Watson-Wheller test values (W), with its respective statistical

significance (p, between parentheses) are represented below the diagonal. Statistically significant values are shown in bold.

Mesocarnivores Striped hog-nosed

skunk

Crab-eating

fox

Crab-eating

raccoon Ocelot

Northern tiger

cat Jaguarundi

Striped hog-nosed skunk - 0.70 0.83 0.79 0.71 0.14

(0.66-0.74) (0.70-0.93) (0.71-0.85) (0.66-0.75) (0.10-0.23)

Crab-eating fox 100.1

- 0.77 0.78 0.92 0.46

(<0.001) (0.65-0.87) (0.72-0.84) (0.88-0.94) (0.38-0.53)

Crab-eating raccoon 3.7 4.3

- 0.79 0.76 0.29

(0.16) (0.11) (0.64-0.92) (0.64-0.87) (0.18-0.40)

Ocelot 12.5 25.1 4.2

- 0.77 0.31

(<0.01) (<0.001) (0.12) (0.70-0.84) (0.23-0.40)

Northern tiger cat 83.1 0.08 5.2 25.8

- 0.48

(< 0.001) (0.96) (0.07) (<0.001) (0.40-0.54)

Jaguarundi 170.4 115.8 62.9 117.5 104.6

- (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Page 84: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

80

Table 3 Temporal niche overlap coefficient (∆), with its respective 95% confidence intervals (between parentheses), among mesocarnivores and potential prey in a

Caatinga dry forest, northeastern Brazil. The ∆ values with asterisk indicate significant difference (p <0.05) in pairwise activity distribution according to Mardia-

Watson-Wheller test. We considered yellow-armadillo, which is a medium-sized mammal (5.4 kg, Paglia et al. 2012), a potential prey only for larger mesocarnivore

in the area, the ocelot.

Potential prey Striped hog-

nosed skunk

Crab-eating

fox

Crab-eating

raccoon Ocelot

Northern tiger

cat Jaguarundi

Mammals

Spix's cavy 0.76*

(0.70-0.82) 0.81*

(0.77-0.85) 0.83

(0.72-0.93) 0.73*

(0.66-0.80) 0.80*

(0.76-0.85) 0.32*

(0.24-0.40)

Punaré rat 0.93

(0.86-0.98)

0.69*

(0.63-0.74)

0.82

(0.69-0.92)

0.73*

(0.64-0.81)

0.70*

(0.64-0.76)

0.16*

(0.09-0.23)

Rock cavy 0.34*

(0.24-0.44)

0.53*

(0.42-0.62)

0.45*

(0.33-0.57)

0.50*

(0.38-0.61)

0.58*

(0.47-0.68)

0.71

(0.61-0.81)

White-eared opossum 0.92

(0.85-0.97)

0.68*

(0.62-0.73)

0.78*

(0.65-0.90)

0.81*

(0.73-0.88)

0.67*

(0.61-0.72)

0.14*

(0.07-0.21)

Yellow armadillo - - - 0.37*

(0.31-0.44) - -

Birds

Dove 0.04*

(0.02-0.06)

0.26*

(0.24-0.29)

0.10*

(0.03-0.19)

0.14*

(0.09-0.21)

0.27*

(0.24-0.31)

0.70*

(0.62-0.78)

Tinamous 0.19*

(0.07-0.31) 0.45*

(0.32-0.57) 0.26*

(0.10-0.43) 0.27*

(0.14-0.41) 0.46*

(0.32-0.59) 0.75

(0.56-0.91)

Reptiles

Lizard <0.01*

(<0.01-0.02) 0.08*

(0.05-0.11) 0.03*

(<0.01-0.10) 0.08*

(0.04-0.13) 0.14*

(0.10-0.17) 0.41*

(0.31-0.51)

Page 85: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

81

Discussion

This study provides a broad description of the temporal ecology of a complete guild of

mesocarnivores, including intraguild and predator-prey temporal interactions, in an area of the

Brazilian Caatinga where top predators are locally extinct or functionally absent. The observed

activity patterns are qualitatively similar to those described in the literature: striped hog-nosed skunk

is classified as nocturnal (Cavalcanti et al. 2014; Dias 2017), crab-eating fox as nocturnal-crepuscular

(Bianchi et al. 2016; Dias and Bocchiglieri 2016; Penido et al. 2017), crab-eating raccoon as nocturnal

(Gómez et al. 2005; Bianchi et al. 2016), ocelot as mainly nocturnal (Di Bitetti et al. 2010; Oliveira-

Santos et al. 2012; Massara et al. 2016; Penido et al. 2017; Dias et al. 2018, 2019; Nagy-Reis et al.

2019), northern tiger cat as nocturnal-crepuscular (Penido et al. 2017; Marinho et al. 2018b; Dias et

al. 2019), and jaguarundi as diurnal (Giordano 2016; Massara et al. 2016; Dias et al. 2019). In the

case of the lesser grison, although the low number of records prevented any analysis, all five records

were obtained between 06:15 and 07:15 h, suggesting a daytime activity as already reported in the

literature (Kasper et al. 2013).

Potential competitor species tend to develop mechanisms to alleviate competition, especially in

the case of morphologically similar and closely related species (Schoener 1974). In the case of

carnivorous mammals, besides the exploitation competition, the risk of aggression (interference

competition) and intraguild predation can induce submissive species to be active at hours with a lower

probability of finding a dominant competitor (Polis et al. 1989). Thus, temporal avoidance is often

the most important mechanism of coexistence (Bianchi et al. 2016; Carothers and Jaksic 1984). Our

results provide partial support for the hypothesis that temporal segregation represents a mechanism

that facilitates the coexistence of mesocarnivores in a semiarid region. Although most pairs of species

exhibited a high or moderate activity overlap, almost all mesocarnivores segregated at least their

activity peaks throughout the circadian cycle, suggesting a partial avoidance that may decrease

competition as well as the risk of intraguild predation (Carothers and Jaksic 1984), especially in

relation to the larger species in the area (i.e. the ocelot). For example, the ocelot has a relatively

Page 86: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

82

continuous higher activity between 18:00 p.m. and 2:00 a.m., followed by a decrease until

approximately 5:00 a.m., while the other species exhibited a higher proportion of activity in the

second part of the night, with two of them (crab-eating fox and northern tiger cat) displaying a larger

peak near sunrise hours similar to diurnal jaguarundi. The studies have pointed out a high activity

overlap between ocelot and omnivorous mesocarnivore species (Bianchi et al. 2016; Massara et al.

2016), and a low to moderate temporal overlap between ocelot and small sympatric felid species (Di

Bitetti et al. 2010; Massara et al. 2016; Nagy-Reis et al. 2019).

Regarding generalist or omnivorous species, we found some evidence of temporal segregation

between the striped hog-nosed skunk and the crab-eating fox, but no segregation between the crab-

eating raccoon and the other two species. In the case of the crab-eating raccoon, its larger body size

in relation to the other mesocarnivores prevents it from being attacked or predated (Oliveira and

Pereira 2014). In addition, its preference for environments near water bodies (Cheida et al. 2013), as

well as the consumption of aquatic and semi-aquatic prey, may decrease competition with other

mesocarnivores through spatial and dietary segregation, respectively, at least when there are enough

water bodies. However, considering the scarcity of water bodies in the Caatinga, especially in the dry

season, it is possible that during most of the year there is a considerable trophic niche overlap among

all omnivorous mesocarnivores. In an environment with greater resource availability such as the

Pantanal, temporal segregation was more important for generalist mesocarnivores, including crab-

eating fox and crab-eating raccoon (Bianchi et al. 2016). Further studies are necessary for a better

understanding of the ecology of the crab-eating raccoon in a semiarid and seasonal environment like

the Brazilian Caatinga.

The three felid species, which due to their ecological similarities can be strong competitors,

partially segregated their temporal activity. While the diurnal jaguarundi exhibited a daily activity

pattern very different from the other two felids, the ocelot and the northern tiger cat separated their

peaks of higher activity despite overlapping much of their daily activity. This pattern is similar to that

found in other areas of the Caatinga where larger predators occur (Penido et al. 2017; Dias et al.

Page 87: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

83

2019), but it is somewhat different from the pattern reported for a very closely related species, the

southern tiger cat Leopardus gutullus Hensel, 1872 (Massara et al. 2016; Nagy-reis et al. 2019). In

the mesic Atlantic Forest of southern and southeastern Brazil, the southern tiger cat exhibited a

nocturnal behavior in the absence of the ocelot and the puma (Oliveira-Santos et al. 2012) compared

to a cathemeral or mostly diurnal activity where larger felids are present with the overlap between

them ranging from moderate to low (Oliveira-Santos et al. 2012; Massara et al. 2016; Nagy-Reis et

al. 2019). Unlike what happens in these more humid environments, where temporal segregation seems

to be stronger (Massara et al. 2016; Nagy-Reis et al. 2019), in the Brazilian semiarid, differentiation

in spatial dimensions may be important to promote mesocarnivore coexistence (Dias et al. 2019). In

this sense, future studies should investigate whether spatial segregation is acting in main or

complementary way toward coexistence of this carnivore guild.

We found a high overlap in temporal activity patterns between northern tiger cat and crab-eating

fox, which contrasts with the temporal segregation found in an area of Caatinga where large felids

coexist with such mesocarnivores (Penido et al. 2017). Their coexistence can be facilitated by the fact

that these two species partially differ in their diet, with crab-eating fox being omnivorous and northern

tiger cat strictly carnivorous. The crab-eating fox, for instance, can be found near human habitations

looking for food resources, while the northern tiger cat normally avoids such areas (Marinho et al.

2018b). These observations also suggest that an alternative mechanism of coexistence can be in the

space use. Spatial segregation could alleviate possible agonistic interactions, despite the chances for

intraguild predation are considered to be low (Oliveira and Pereira 2014). It should be notice that the

temporal overlap between these two mesocarnivores may be forced by the avoidance of the peak

activity of ocelot and hottest part of the day.

In addition to interspecific interactions, the environmental conditions may also be critical in

shaping the species activity. In semiarid environments such as the Caatinga, where there are high

solar radiation and high diurnal temperatures, both predators and prey are expected to be active during

nocturnal and twilight periods to avoid overheating and water loss (Terrien et al. 2011; Penido et al.

Page 88: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

84

2017). Thus, this should limit the temporal window within the circadian cycle available for species

to adjust their activity in response to competition or predation risk. The considerable overlap in

activity of even ecologically close species such as the ocelot and the northern tiger cat suggests this

limitation. Thus, the differentiation in activity peaks may be a more efficient mechanism of

coexistence.

In contrast to what one could expect, we did not detect important variations in the daily activity

patterns of mesocarnivores between dry and wet periods. Since the Brazilian Caatinga experiences a

marked seasonal variation in precipitation and resource availability along the year (Andrade et al.

2017), our results indicate that mesocarnivores are well adapted to such variable conditions. Possible

behavioral mechanisms explain such resilience include diet and spatial shifts. For instance, during

months of greater heat and water stress, the animals may be moving to more mesic locations such as

mountains or to sites with water sources (Carmignotto and Astúa 2017).

Predators tend to manage the pressure for intraguild segregation, but they also need to

synchronize their activity with their main prey to reduce energy expenditure on food hunting (Foster

et al. 2013; Monterroso et al. 2013). According to our results, for most mesocarnivores, the activity

pattern seems to reflect a balance between partial temporal segregation with competitors/predators

and partial temporal overlap with as many potential prey as possible, since few species such as

jaguarundi synchronized their activity with specific potential prey. All of the mesocarnivore species

have a high or moderate activity overlap with at least one type of prey, although the peaks of activity

were generally different. This may allow a sequential exploration of the resources while decreasing

the chances of agnostic encounters (Monterroso et al. 2013). Indeed, the other mesocarnivores that

exhibited high overlap and synchrony in their activity with potential prey are the omnivorous striped

hog-nosed skunk and crab-eating raccoon, which should only occasionally feed on small mammals

(Olmos 1993; Dias and Bochiglieri 2015).

In the case of the jaguarundi, the significant overlap in the distribution of activity with the rocky

cavy and tinamous suggests that these must be important preys in the region, while the other wild

Page 89: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

85

felid species should exploit these preys in a complementary way. In other Caatinga areas, the rocky

cavy has a more nocturnal activity which is more overlapped by the activity of the northern tiger cat

(Penido et al. 2017; Dias et al. 2019) and the ocelot (Dias et al. 2018) than by the jaguarundi. Dias et

al. (2018) also found a high and significant overlap of the ocelot activity with the nine-banded

armadillo, a species apparently rare in our area, while the yellow armadillo is abundant but has a

markedly distinct activity compared to the ocelot.

However, it is important to highlight that the temporal overlap alone does not define the

vulnerability of the prey or the preference of the predator, since there must also be spatial overlap,

not investigated here. In addition, some prey can be captured while resting or taking refuge in their

dens (Emsens et al. 2013), such as suggested to crab-eating fox and hog-nosed skunk in Caatinga,

which seem to prey on lizards removing them from their dens (Olmos 1993). Therefore, studies on

spatial interactions and diet of mesocarnivores in this semiarid region are important to elucidate

predator-prey relationships and the level of feeding overlap between mesocarnivores.

Finally, our results suggest that the mesocarnivore species have generally a higher proportion of

nighttime activity, and that there is a separation in their activity peaks rather than a stronger temporal

segregation which remains throughout the seasons, possibly as a trade-off between avoiding the

aggressive encounters with competitors/predators and hotter periods of the circadian cycle. Although

mesocarnivores presented a high overlap with at least one prey, species such as the crab-eating fox,

the northern tiger cat, and the ocelot did not exhibit a strong synchrony of their activity with any of

the preys evaluated, suggesting a more generalist behavior that could contribute to mediate intraguild

interactions. Our results contribute to the understanding of the ecology of mesocarnivores, intraguild

interactions and predator-prey relationships in semiarid environments in a scenario of potential

disturbance caused by the eradication of top predators. It is important to keep in mind that high

overlap of daily activity between species does not necessarily determine a high potential of encounter

if these species segregate spatially, so further studies should seek to understand the role of the spatial

Page 90: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

86

and trophic dimensions of the ecological niche in intraguild interactions, and ideally to compare the

ecology of species in areas with different degrees of carnivore guild integrity.

Acknowledgments

We are grateful to João B. de Lima (Seu João) and Joana Darc for the field assistance and

hospitality, and to Eugenia C. Schmidt, Juan C. V. Mena, Felipe Marinho, Raul dos Santos, Maria L.

Falcão, V. Paixão and T. Oliveira for field or analysis assistance. We would like to thank two

anonymous reviewers who helped to improve the work. This study was partially supported by

Restaurante Camarões and The Mohamed bin Zayed Species Conservation Fund (#172516360).

PHM, PS and CF would like to thank University of Aveiro and FCT/MEC for the financial support

to CESAM RU (UID/AMB/50017) through national funds and co-financed by the FEDER, within

the PT2020 Partnership Agreement. EMV (308040/2017-1) and CRF (305304/2013-5; 306812/2017-

7) were supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and

PHM was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil

(CAPES; financing code 001) and Santander Universities (Santander Mundi scholarship).

References

Andrade EM, Aquino DN, Chaves LCG, Lopes FB (2017) Water as capital and its uses in the

Caatinga. In: Silva JC, Leal I, Tabarelli M (eds) Caatinga: the largest tropical dry forest region in

South America. Springer, Cham, pp 281–302.

Antongiovanni M, Venticinque EM, Fonseca CR (2018) Fragmentation patterns of the Caatinga

drylands. Land Ecol 33:1353–1367. https://doi.org/10.1007/s10980-018-0672-6

Astete S, Marinho-Filho J, Kajin M, Penido G, Zimbres B, Sollmann R, Jácomo ATA, Tôrres NM,

Silveira L (2017a). Forced neighbours: Coexistence between jaguars and pumas in a harsh

environment. J Arid Environ 146:27–34. https://doi.org/10.1016/j.jaridenv.2017.07.005

Page 91: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

87

Astete S, Marinho-Filho J, Machado RB, Zimbres B, Jácomo ATA, Sollmann R, Tôrres NM, Silveira

L (2017b) Living in extreme environments: modeling habitat suitability for jaguars, pumas, and

their prey in a semiarid habitat. J Mammal 98:464–474.

http://dx.doi.org/10.1093/jmammal/gyw184.

Azevedo FC, Lemos FG, Almeida LB, Campos CB, Beisiegel BDM, Paula RC, Crawshaw Junior

PG, Ferraz KMP, Barros M, De Oliveira TG (2013). Avaliação do risco de extinção da onça-parda

Puma concolor (Linnaeus, 1771) no Brasil. Biodiv Brasil 3:107–121.

Bennie JJ, Duffy JP, Inger R, Gaston KJ (2014) Biogeography of time partitioning in mammals. P

Natl A Sci 111:13727–13732. https://doi.org/10.1073/pnas.1216063110

Bianchi RC, Olifiers N, Gompper ME, Mourão G (2016) Niche partitioning among pesocarnivores

in a Brazilian Wetland. PLoS ONE 11:e0162893. https://doi.org/10.1371/journal.pone.0162893

Bu H, Wang F, McShea WJ, Lu Z, Wang D, Li S (2016) Spatial co-occurrence and activity patterns

of mesocarnivores in the temperate forests of Southwest China. PLoS ONE 11:e0164271.

https://doi.org/10.1371/journal.pone.0164271

Cabús R (2015) Tropsolar 5.0. Grupo de Pesquisa em Iluminação (GRILU).

http://www.ctec.ufal.br/grupopesquisa/gril. Accessed 15 April 2019

Carmignotto AP, Astúa D (2017). Mammals of the Caatinga: diversity, ecology, biogeography, and

conservation. In: Silva JC, Leal I, Tabarelli M (eds) Caatinga: the largest tropical dry forest region

in South America. Springer, Cham, pp 211–254.

Carothers JH, Jaksic FM (1984) Time as a niche difference: the role of interference competition.

Oikos 42:403–406. https://doi.org/10.2307/3544413

Cavalcanti GN, Alfaro-Alvarado LD, Rodrigues FHG (2014) Home range and activity of Conepatus

semistriatus (Carnivora, Mephitidae) in Emas National Park, Brazil. Anim Biol 64:151–162.

https://doi.org/10.1163/15707563-00002436

Cheida, CC, Rodrigues FHG, Beisiegel BM (2013) Avaliação do risco de extinção do Guaxinim

Procyon cancrivorus (Cuvier, 1798) no Brasil. Biodiv Brasil 3:283–90.

Page 92: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

88

Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system.

Nature 400:563–566. https://doi.org/10.1038/23028

De Angelo C, Paviolo A, Di Blanco Y, Di Bitetti M, Chiappe A (2008) Guía de huellas de los

mamíferos de Misiones y otras áreas del subtrópico de Argentina. Ediciones del Subtrópico,

Tucumán

Di Bitetti MS, De Angelo CD, Di Blanco YE, Paviolo A (2010) Niche partitioning and species

coexistence in a Neotropical felid assemblage. Acta Oecol 36:403e412.

https://doi.org/10.1016/j.actao.2010.04.001

Dias DM (2017) Spatiotemporal ecology of the striped hog-nosed skunk Conepatus semistriatus

(Carnivora, Mephitidae) in a seasonally dry forest of northeastern Brazil. Anim Biol 2:119–131.

https://doi.org/10.1163/15707563-00002525

Dias DM, Bocchiglieri A (2015) Dieta de carnívoros (Mammalia, Carnivora) em um remanescente

de Caatinga, Nordeste do Brasil. Bioikos 29:13–19.

Dias DM, Bocchiglieri A (2016) Trophic and spatio-temporal niche of the crab-eating fox, Cerdocyon

thous (Linnaeus, 1766) (Carnivora: Canidae), in a remnant of the Caatinga in northeastern Brazil.

Mammalia 80:281–291. https://doi.org/10.1515/mammalia-2014-0108

Dias DM, Campos CB, Rodrigues FHG (2018) Behavioural ecology in a predator-prey system.

Mamm Biol 92:30–36. https://doi.org/10.1016/j.mambio.2018.04.005

Dias DM, Massara RL, Campos CB, Rodrigues FHG (2019) Feline predator-prey relationships in a

semi-arid biome in Brazil. J Zool 307:282-291. https://doi.org/10.1111/jzo.12647

Emsens WJ, Hirsch BT, Kays R, Jansen PA (2013) Prey refuges as predator hotspots: ocelot

(Leopardus pardalis) attraction to agouti (Dasyprocta punctata) dens. Acta Theriol 59:257–262.

https://doi.org/10.1007/s13364-013-0159-4

Feijó A, Langguth A (2013). Mamíferos de médio e grande porte do Nordeste do Brasil: distribuição

e taxonomia, com descrição de novas espécies. Rev Nord Biol 22:3–225.

Page 93: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

89

Fonseca CR, Antongiovanni M, Matsumoto M, Bernard E, Venticinque EM (2017) Conservation

opportunities in the Caatinga. In: Silva JC, Leal I, Tabarelli M (eds) Caatinga: the largest tropical

dry forest region in South America. Springer, Cham, pp 429–443.

Foster VC, Sarmento P, Sollmann R, Tôrres N, Jácomo ATA, Negrões N, Fonseca C, Silveira L

(2013) Jaguar and puma activity patterns and predator-prey interactions in four Brazilian biomes.

Biotropica 45:373–379. https://doi.org/10.1111/btp.12021

Gaynor KM, Hojnowski CE, Cater NH, Bashares JS (2018) The influence of human disturbance on

wildlife nocturnality. Science 360:1232–123. https://doi.org/10.1126/science.aar7121

Giordano AJ (2016) Ecology and status of the jaguarundi Puma yagouaroundi: a synthesis of existing

knowledge. Mammal Rev 46:30–43. https://doi.org/10.1111/mam.12051

Gómez H, Wallace RB, Ayala G, Tejada R (2005) Dry season activity periods of some Amazonian

mammals. Stud Neotrop Fauna Environ 40:91–95. https://doi.org/10.1080/01650520500129638

Goulart FVB, Cáceres NC, Graipel ME, Tortato MA, Ghizoni Jr IR, Oliveiras-Santos LGR (2009)

Habitat selection by large mammals in a southern Brazilian Atlantic Forest. Mamm Biol 74:182–

190. https://doi.org/10.1016/j.mambio.2009.02.006

Kasper CB, Leuchtenberger C, Bornholdt R, Pontes ARM, Beisiegel BM (2013) Avaliação do risco

de extinção do furão Galictis cuja (Molina, 1782) no Brasil. Biodiv Brasil 3:203-210.

Linkie M, Ridout MS (2011) Assessing tiger-prey interactions in Sumatran rainforests. J Zool

284:224–229. https://doi.org/10.1111/j.1469-7998.2011.00801.x

Lucherini M, Reppucci JI, Walker RS, Villalba ML, Wurstten A, Gallardo G, Iriarte A, Villalobos R,

Perovic P (2009) Activity pattern segregation of carnivores in the high Andes. J Mammal 90:1404–

1409. https://doi.org/10.1644/09-MAMM-A-002R.1

Marinho PH, Bezerra D, Antongiovanni M, Fonseca CR, Venticinque EM (2018a). Mamíferos de

médio e grande porte da Caatinga do Rio Grande do Norte, nordeste do Brasil. Mastozool Neotrop

25:345–362. https://doi.org/10.31687/saremMN.18.25.2.0.15

Page 94: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

90

Marinho PH, Bezerra D, Antongiovanni M, Fonseca CR, Venticinque EM (2018b). Activity patterns

of the threatened northern tiger cat Leopardus tigrinus and its potential prey in a Brazilian dry

tropical forest. Mamm Biol 89:30–36. https://doi.org/10.1016/j.mambio.2017.12.004

Massara RL, Paschoal AMO, Bailey LL, Doherty PFJr, Chiarello AG (2016). Ecological interactions

between ocelots and sympatric mesocarnivores in protected areas of the Atlantic Forest,

southeastern Brazil. J Mammal 97:1634–1644. https://doi.org/10.1093/jmammal/gyw129

Meredith M, Ridout M (2018) Overview of the overlap package. R Project. 1–9. https://cran.r

project.org/web/packages/overlap/vignettes/overlap.pdf. Accessed 04 February 2019

MMA (2016) Áreas Prioritárias para conservação, uso sustentável e repartição de benefícios da

biodiversidade do bioma Caatinga – 2ª atualização - Portaria N°223, de 21 de junho de 2016.

Ministério do Meio Ambiente. http://www.mma.gov.br/areas-protegidas/cadastro-nacional-de-

ucs/item/10724-resultados-da-2%C2%B0-atualiza%C3%A7%C3%A3o-das-%C3%A1reas-

priorit%C3%A1rias.html Accessed 20 December 2018

Monterroso P, Alves PC, Ferreras P (2013) Catch me if you can: diel activity patterns of mammalian

prey and predators. Ethology 119:1044–1056. http://dx.doi.org/10.1111/eth.12156

Monterroso P, Aves PC, Ferreras P (2014) Plasticity in circadian activity patterns of mesocarnivores

daily activity coexistence. Behav Ecol Sociobiol 68:1403–1417.

http://dx.doi.org/10.1007/s00265-014-1748-1

Morato RG, Beisiegel BM, Ramalho EE, Campos CB, Boulhosa RLP (2013) Avaliação do risco de

extinção da onça-pintada Panthera onca (Linnaeus, 1758) no Brasil. Biodiv Brasil 3:122–132.

Moreno RS, Kays RW, Samudio RJr (2006) Competitive release in diets of ocelot (Leopardus

pardalis) and puma (Puma concolor) after jaguar (Panthera onca) decline. J Mamm 87:808–816.

https://doi.org/10.1644/05-MAMM-A-360R2.1

Nagy-Reis MB, Iwakami VHS, Estevo CA, Setz EZF (2019) Temporal and dietary segregation in a

Neotropical small-felid assemblage and its relation to prey activity. Mamm Biol 95:1–8.

https://doi.org/10.1016/j.mambio.2018.12.005

Page 95: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

91

Nouvellet P, Rasmussen GSA, MacDonald DW, Courchamp F (2012) Noisy clocks and silent

sunrises: measurement methods of daily activity pattern. J Zool 286:179–184.

https://doi.org/10.1111/j.1469-7998.2011.00864.x

Oliveira TG, Pereira JA (2013) Intraguild predation and interspecific killing as structuring forces of

carnivoran communities in South America. J Mammal Evol 21:427–436.

https://doi.org/10.1007/s10914-013-9251-4

Oliveira-Santos LGR, Graipel ME, Tortato MA, Zucco CA, Cáceres NC, Goulart FVB (2012)

Abundance changes and activity flexibility of the northern tiger cat, Leopardus tigrinus

(Carnivora: Felidae), appear to reflect avoidance of conflict. Zoologia 29:115–120.

https://doi.org/10.1590/S1984-46702012000200003

Olmos F (1993) Notes on the food habitats of Brazilian “Caatinga” carnivores. Mammalia 57:126–

130.

Paglia AP, Fonseca GAB, Rylands AB, Herrmann G, Aguiar LMS, Chiarello AG, Leite YLR, Costa

LP, Siciliano S, Kierulff MCM, Mendes SL, Tavares VC, Mittermeier RA, Patton JL (2012)

Annotated Checklist of Brazilian Mammals. 2nd Edition. Occasional Papers in Conservation

Biology 6:1–76.

Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. Am. Naturalist

153:492–508. https://doi.org/10.1086/303189

Penido G, Astete S, Jácomo ATA, Sollmann R, Tôrres N, Silveira L, Marinho Filho J (2017)

Mesocarnivore activity patterns in the semiarid Caatinga: limited by the harsh environment or

affected by interspecifc interactions? J Mammal 98:1732–1740.

https://doi.org/10.1093/jmammal/gyx119

Pita R, Mira A, Beja P (2011) Circadian activity rhythms in relation to season, sex and interspecific

interactions in two Mediterranean voles. Anim Behav 81:1023–1030.

https://doi.org/10.1016/j.anbehav.2011.02.007

Page 96: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

92

Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential

competitors that eat each other. Annu Rev Ecol Syst 20:297–330.

https://doi.org/10.1146/annurev.es.20.110189.001501

Porfirio G, Foster VC, Fonseca C, Sarmento P (2016) Activity patterns of ocelots and their potential

prey in the Brazilian Pantanal. Mamm Biol 81:511–517.

https://doi.org/10.1016/j.mambio.2016.06.006

Projeto Caatinga Potiguar (2015) Projeto Caatinga Potiguar – Cartograma. WCS-Brazil/UFRN.

http://programs.wcs.org/brazil/Lugares-naturais/Projeto-Caatinga.aspx. Accessed 02 November

2017

Prugh LR, Golden CD (2014) Does moonlight increase predation risk? Meta-analysis reveals

divergent responses of nocturnal mammals to lunar cycles. J Anim Ecol 83:504–514.

https://doi.org/10.1111/1365-2656.12148

Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Bashares JS (2009) The rise of

the mesopredator. Bioscience 59:779–791. https://doi.org/10.1525/bio.2009.59.9.9

R Development Core Team (2012) R: a Language and Environment for Statistical Computing. R

Foundation for Statistical Computing. http://www.R-project.org/. Accessed 30 April 2018

Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. J

Agr Biol Envir St 14:322-337. https://doi.org/10.1198/jabes.2009.08038

Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity

conservation. Ecol Lett 12:982–998. https://doi.org/10.1111/j.1461-0248.2009.01347.x

Roemer GW, Gompper ME, Valkenburgh BV (2009) The ecological role of the mammalian

mesocarnivore. BioScience 59:165–173. https://doi.org/10.1525/bio.2009.59.2.9

Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27-39.

https://doi.org/10.1126/science.185.4145.27

Page 97: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

93

Silva JMC, Barbosa LCF, Leal I, Tabarelli M (2017) The Caatinga: understanding the challenges. In:

Silva JC, Leal I, Tabarelli M (eds) Caatinga: the largest tropical dry forest region in South America.

Springer, Cham, pp 3–19.

Stoner K, Timm RM (2011) Seasonally dry tropical forest mammals: adaptations and seasonal

patterns. In: Dirzo R, Young HS, Mooney HA, Ceballos G (eds) Seasonally Dry tropical forests:

ecology and conservation. Island Press, Washington, pp 85-106.

Terrien J, Perret M, Aujard F (2011) Behavioral thermoregulation in mammals: a review. Front.

Biosci 16:1428–1444. https://doi.org/10.2741/3797

Tomasella J, Silva RMPV, Barbosa AA, Rodriguez DA, Oliveira MS, Sestini MF (2018)

Desertification trends in the Northeast of Brazil over the period 2000–2016. Int J Appl Earth Obs

73:197–206. https://doi.org/10.1016/j.jag.2018.06.012

Vanak AT, Fortin D, Thaker M, Ogden M, Owen C, Greatwood S, Slotow R (2013) Moving to stay

in place: behavioral mechanisms for coexistence of African large carnivores. Ecology 94:2619–

2631. https://doi.org/10.1890/13-0217.1

Velloso AL, Sampaio EVSB, Pareyn FGC (2002) Ecorregiões propostas para o Bioma Caatinga.

Associação Plantas do Nordeste, Instituto de Conservação Ambiental, The Nature Conservancy

do Brasil, Recife.Valeix M, Chamaillé-Jammes S, Fritz H (2007) Interference competition and

temporal niche shifts – elephants and herbivore communities at waterholes. Oecologia 153:739–

748. https://doi.org/10.1007/s00442-007-0764-5

Wang E (2002) Diets of Ocelots (Leopardus pardalis), Margays (L. wiedii), and Oncillas (L. tigrinus)

in the Atlantic Rainforest in Southeast Brazil. Stud. Neotrop. Fauna E 37:207–212.

https://doi.org/10.1076/snfe.37.3.207.8564

Wang Y, Allen ML, Wilmers CC (2015) Mesopredator spatial and temporal responses to large

predators and human development in the Santa Cruz Mountains of California. Biol

Conserv.190:23–33. https://doi.org/10.1016/j.biocon.2015.05.007

Page 98: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

94

Woodroffe R, Ginsberg JR (1998) Edge effects and the extinction of populations inside protected

areas. Science 280:2126–2128. https://doi.org/10.1126/science.280.5372.2126

Ximenez A (1982) Notas sobre felidos neotropicales viii observaciones sobre el contenido estamacal

y el comportamiento alimentar de diversas espécies de felinos. Rev Nord de Biol 5:89–91.

Page 99: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

95

Supplementary Material 1

2

Table S1 Data from three camera-trapping campaigns carried out to collect mesocarnivore activity data in a Caatinga dry forest, northeastern Brazil. 3

Survey period Cameras/station Stations (N) Effort (camera-days)

May - June 2016 2 24 1,114

January - October 2017 1 43 9,255

October 2018 - February 2019 1 37 3,607

Total 50 13,976

4

Page 100: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

96

Table S2 Temporal niche overlap coefficient (∆), with its respective 95% confidence intervals (between parentheses), among mesocarnivores during wet 5

(upper diagonal) and dry season (lower diagonal) in a Caatinga dry forest, northeastern Brazil. The ∆ values with asterisk indicate significant difference in 6

activity distribution (p<0.05) according to Mardia-Watson-Wheller test. 7

Mesocarnivores Striped hog-nosed skunk

Crab-eating fox

Crab-eating raccoon

Ocelot Northern tiger cat

Jaguarundi

Striped hog-nosed skunk - 0.70*

(0.65-0.76)

0.79

(0.65-0.91)

0.73*

(0.63-0.81)

0.71*

(0.64-0.78)

0.17*

(0.06-0.27)

Crab-eating fox 0.72*

(0.66-0.77) -

0.75

(0.61-0.87)

0.77*

(0.69-0.85)

0.92

(0.88-0.96)

0.44*

(0.32-0.55)

Crab-eating raccoon 0.87*

(0.67-1.00) 0.81

(0.61-0.97) -

0.69 (0.53-0.83)

0.75 (0.62-0.88)

0.28* (0.15-0.41)

Ocelot 0.80

(0.71-0.88)

0.78*

(0.70-0.85)

0.87

(0.66-1.00) -

0.80*

(0.71-0.89)

0.37*

(0.26-0.48)

Northern tiger cat 0.71*

(0.64-0.78)

0.91

(0.87-0.95)

0.79

(0.58-0.95)

0.75*

(0.65-0.84) -

0.45*

(0.36-0.54)

Jaguarundi 0.23*

(0.12-0.34)

0.50*

(0.38-0.61)

0.34*

(0.14-0.55)

0.31*

(0.19-0.44)

0.52*

(0.39-0.64) -

8

Page 101: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

97

Table S3 Description of the activity patterns of mosocarnivore’s potential prey based on records obtained in a Caatinga dry forest, northeastern Brazil). 9

Statistically significant values of uniformity Rayleigh test (based in all records) and of Mardia-Watson-Wheller test (based on the comparison of dry and wet 10

season records) are presented in bold. ∆ represents the overlap coefficient values with their respective 95% confidence intervals (95% CI). The few records of 11

nine-banded armadillo and tinamou prevented some analysis. 12

Potential prey (N)

Total

Rayleigh Z

(p)

Activity

(%day/night/twilight)

N

(dry/wet)

∆dry-wet (95%

CI)

MWWdry-wet

(p)

Mammals

Spix's cavy 362 120.4

(<0.001) Nocturnal-crepuscular

(1.9 / 66.9 / 31.2) 139 / 223

0.94 (0.86-0.99)

1.45 (0.48)

Punaré rat 142 78.0

(<0.001)

Nocturnal

(0.0 / 93.7 / 6.3) 86 / 56

0.92

(0.82-0.99)

0.25

(0.88)

Rock cavy 74 3.2

(0.04)

Cathemeral (48.5 / 25.0 / 26.5)

43 / 31 0.79

(0.64-0.91) 0.40

(0.82)

White-eared opossum 151 82.2

(<0.001)

Nocturnal

(0.0 / 96.0 / 4.0) 94 / 57

0.94

(0.84-1.00)

0.51

(0.77)

Yellow armadillo 448 98.9

(<0.001)

Mostly diurnal

(69.2 / 19.9 / 10.9) 232 / 216

0.78

(0.71-0.86)

20.64

(<0.001)

Nine-banded armadillo 7 - Unclassified

(0.0 / 100 / 0.0) 1 / 6 - -

Birds

Dove 1015 466.1

(<0.001) Diurnal

(79.0 / 0.0 / 21.0) 306 / 709

0.90 (0.84-0.95)

13.51 (<0.01)

Tinamou 16 6.37

(<0.001)

Crepuscular

(37.5 / 0.0 / 62.5) 6 / 10 - -

Reptiles

Lizard 179 134.3

(<0.001)

Diurnal

(100.0 / 0.0 / 0.0) 95 / 84

0.88

(0.79-0.96) 3.18 (0.20)

13

Page 102: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

98

Table S4 Temporal niche overlap coefficient (∆), with its respective 95% confidence intervals (between parentheses), among mesocarnivores and potential 14

prey during dry and wet season in a Caatinga dry forest, northeastern Brazil. The ∆ values with asterisk indicate significant difference (p <0.05) in activity 15

distribution according to Mardia-Watson-Wheller test. 16

Mesocarnivores

Potential prey

Spix's cavy Punaré rat Rock cavy White-eared

opossum

Yellow

armadillo Dove Lizard

Dry season

Striped hog-nosed skunk 0.71*

(0.62-0.79)

0.89

(0.79-0.98)

0.37*

(0.25-0.50)

0.96

(0.89-1.00) -

0.07*

(0.01-0.09)

0.01*

(<0.01-0.03)

Crab-eating fox 0.80*

(0.72-0.86)

0.71*

(0.62-0.78)

0.53*

(0.41-0.66)

0.69*

(0.62-0.76) -

0.29*

(0.25-0.33)

0.08*

(0.04-0.12)

Crab-eating raccoon 0.78

(0.56-0.93)

0.84

(0.62-1.00)

0.47*

(0.28-0.66)

0.86

(0.66-1.00) -

0.15*

(<0.01-0.31)

0.04*

(<0.01-0.16)

Ocelot 0.71*

(0.60-0.81)

0.73*

(0.60-0.84)

0.48*

(0.34-0.62)

0.80*

(0.69-0.90)

0.26*

(0.19-0.33)

0.12*

(0.05-0.19)

0.04*

(<0.01-0.09)

Northern tiger cat 0.78*

(0.70-0.85) 0.72*

(0.62-0.80) 0.57*

(0.44-0.69) 0.68*

(0.60-0.76) -

0.30* (0.25-0.36)

0.12* (0.08-0.17)

Jaguarundi 0.39*

(0.25-0.52)

0.25*

(0.13-0.37)

0.68

(0.53-0.82)

0.22*

(0.12-0.33) -

0.73*

(0.60-0.83)

0.43*

(0.29-0.58) Wet season

Striped hog-nosed skunk 0.81*

(0.72-0.90 )

0.94

(0.84-1.00)

0.32*

(0.18-0.48)

0.87

(0.79-0.92) -

0.04*

(<.01-0.08)

<0.01*

(<0.01-0.03)

Crab-eating fox 0.83*

(0.76-0.90 ) 0.68*

(0.60-0.75) 0.54*

(0.39-0.68) 0.68*

(0.60-0.76) -

0.27* (0.23-0.31)

0.09* (0.06-0.13)

Crab-eating raccoon 0.81

(0.67-0.92)

0.80

(0.65-0.93)

0.44*

(0.26-0.61)

0.75*

(0.60-0.88) -

0.11*

(0.02-0.20)

0.05*

(<0.01-0.13)

Ocelot 0.73*

(0.64-0.82)

0.72*

(0.59-0.84)

0.54*

(0.39-0.69)

0.78

(0.67-0.88)

0.50*

(0.41-0.60)

0.22*

(0.14-0.32)

0.16*

(0.08-0.24)

Northern tiger cat 0.82* 0.68* 0.59* 0.68* - 0.27* 0.15*

Page 103: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

99

(0.75-0.88) (0.60-0.77) (0.45-0.74) (0.59-0.76) (0.22-0.32) (0.10-0.21)

Jaguarundi 0.29*

(0.21-0.38)

0.16*

(0.08-0.26)

0.74

(0.60-0.87)

0.16*

(0.07-0.25) -

0.67*

(0.56-0.77)

0.42*

(0.30-0.54)

17

Page 104: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

100

18

Page 105: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

101

Fig. S1 Density estimates of daily activity patterns and extension of overlap between mesocarnivores and their potential prey in a Caatinga dry 19

forest, northeastern Brazil. Overlap is represented by the shaded grey area. The dashed vertical lines represent the average legal time of sunrise 20

[5:20 h] and sunset [17:18 h]) during the study period. Significant differences in MWW test are indicated by an asterisk after overlap coefficient 21

values (∆). The time of the records is shown as ticks in the bottom of the figures. We considered yellow-armadillo, which is a medium-sized 22

mammal (5.4 kg, Paglia et al. 2012), a potential prey only for larger mesocarnivore in the area, the ocelot. 23

24

Page 106: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

102

Capítulo 3 25

26

CO-OCCURRENCE PATTERNS BETWEEN OCELOT AND SYMPATRIC 27

MESOCARNIVORES IN A BRAZILIAN DRY FOREST 28

29

30

31

32

33

Este capítulo está escrito de acordo com as regras da revista Mammalian Biology 34

(www.journals.elsevier.com/mammalian-biology). 35

Page 107: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

103

Running title: Co-occurrence between ocelot and mesocarnivores 36

37

Co-occurrence patterns between ocelot and sympatric mesocarnivores in a Brazilian 38

dry forest 39

40

Paulo Henrique Marinhoa*, Carlos Roberto Fonsecaa, and Eduardo Martins Venticinquea 41

42

a Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande 43

do Norte, Natal, Rio Grande do Norte, Brazil 44

45

*Corresponding author: Paulo Henrique Marinho, Programa de Pós-graduação em 46

Ecologia, Departamento de Ecologia, Centro de Biociências, Universidade Federal do 47

Rio Grande do Norte (UFRN), Campus Universitário UFRN, Lagoa Nova, Natal, RN, 48

59078-970, Brasil 49

[email protected] 50

51

52

53

54

55

56

57

58

⸭ 59

Page 108: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

104

Abstract 60

Understanding the mechanisms for maintaining the diversity of mesocarnivores is 61

important for the management and conservation of altered communities. Related species 62

compete strongly through exploitation or interference competition through aggressive 63

encounters; thus they can develop mechanisms of coexistence to avoid competitive 64

exclusion. Subordinate mesocarnivores are generally pressured to occupy suboptimal 65

habitats that minimize intraguild interference competition with competitively superior 66

species, which tend to become more intense whether a dominant mesopredator benefits 67

from the absence of top predators. We aimed to investigate the effects of dominant 68

ocelot’s presence on the habitat use and detection of subordinate mesocarnivores in an 69

area of Caatinga dry forest where top predators are functionally absent. We used camera 70

trapping data associated with occupancy models of single and two species, also 71

considering the potential effect of seasonality, prey availability, and anthropogenic 72

pressures on species' habitat use. Our results suggest that most submissive 73

mesocarnivores occur regardless of the presence of ocelot, while the jaguarundi uses 74

more habitats shared with this dominant mesopredator, probably due to their strong 75

temporal segregation. The absence of spatial avoidance among mesocarnivores may be 76

related to a probable ocelot’s low density in the area, reducing the effects of intraguild 77

suppression. Our results allow us to better understand how mesocarnivores interact 78

spatially in semiarid environments, where top predators have become extinct or are in 79

decline due to chronic human disturbance. 80

Keywords: Caatinga; Intraguild competition; Mesopredator; Semiarid; Two-species 81

occupancy models. 82

83

Page 109: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

105

Introduction 84

Mammalian carnivores structure biological communities and regulate the functioning 85

of ecosystems through control of prey populations and intraguild interactions (Terborgh 86

et al., 1999; Miller et al., 2001; Ripple et al., 2014). They directly or indirectly affect 87

various taxa and ecological processes through trophic cascades and thus, representing a 88

key group for the maintenance of healthy and resilient ecosystems, so that the current and 89

accentuated decline in top predators has negative consequences for the entire environment 90

(Woodroffe, 2000; Miller et al., 2001; Beschta and Ripple, 2009; Ripple et al. 2014). One 91

of the consequences of the local extinction or top predator populations’ depletion is the 92

mesopredator release from top-down control (Crooks and Soulé, 1999; Ritchie and 93

Johnson, 2009). In this new situation, mesocarnivores (mammalian carnivores < 15 kg; 94

Roemer et al., 2009) tend to become more abundant and generate greater pressure on their 95

prey (Crooks and Soulé, 1999; Jiménez et al., 2019). Consequently, understanding the 96

mechanisms for maintaining the diversity of mesocarnivores is essential for the 97

management and conservation of altered communities (Bu et al. 2016). 98

Many mammalian carnivores, especially more related species, compete strongly 99

through exploitation, which reduces limiting resources for competitors, or interference 100

competition, through direct aggressive encounters (Case and Gilpin, 1974; Schoener, 101

1974a). Interspecific killing and intraguild predation of a subordinate (usually smaller or 102

solitary predator) by a dominant (larger or social) predator are additional pressures that 103

regulate coexistence in carnivore guild (Palomares and Caro, 1999; Oliveira and Pereira, 104

2014). Two morphologically or ecologically similar species must develop coexistence 105

mechanisms to avoid competitive exclusion (Hutchinson, 1959; Macarthur and Levins, 106

1964; Diamond, 1978), such as diverge in their diet or segregate temporally and/or 107

spatially (Schoener, 1974a,b). Where spatial segregation is the most efficient strategy for 108

Page 110: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

106

reducing competition, subordinate species can be pressured to occupy suboptimal habitats 109

to minimize competition and the risks of agonistic encounters with competitively superior 110

species (Harrison et al., 1989). Therefore, habitat (space) can be an important dimension 111

in promoting the coexistence of closely related species (Schoener, 1974a; Harrison et al., 112

1989). 113

In neotropical ecosystems, the ocelot Leopardus pardalis Linnaeus, 1758 (8-11 kg) 114

acts as the main competitor and potential intraguild predator of the mesocarnivore 115

community (Oliveira and Pereira, 2014). In locations where top predators are absent, the 116

ocelot can expand its realized ecological niche and emerge as a surrogate top predator 117

(Terborgh et al., 1999; Moreno et al., 2006; Prugh et al., 2009). However, other studies 118

have found a positive relationship between the presence of ocelot and top predators, 119

probably due to the higher habitat quality that benefits both (Massara et al., 2015, 2018). 120

Different theoretical and empirical studies have indicated the negative effect of ocelot on 121

the abundance, distribution and activity patterns of smaller carnivores, especially felids 122

(Oliveira et al., 2010; Di Bitetti et al., 2010; Oliveira-Santos et al., 2012; Oliveira and 123

Pereira, 2014; Massara et al., 2016). This might occur mainly via the potential for 124

intraguild predation and killing (Polis et al., 1989; Oliveira et al., 2010) since most 125

neotropical mesocarnivores are 2.0–5.4 times smaller than the dominant ocelot (Donadio 126

and Buskirk 2006). Indeed, different studies have documented the predation of 127

mesocarnivores by ocelot (Moreno et al., 2006; Bianchi et al., 2010; Bolze et al., 2019). 128

However, studies have also demonstrated the absence of ocelot’s effects on some species, 129

especially those with different diets (Massara et al., 2016). 130

In the seasonally dry tropical forests of northeastern Brazil (Caatinga), most of the 131

places where puma Puma concolor Linnaeus, 1771 and jaguar Panthera onca Linnaeus, 132

1758 are locally extinct, which represent a large part of this semiarid ecoregion (Paula et 133

Page 111: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

107

al., 2013; Azevedo et al., 2013), the ocelot remains the largest predator acting in the 134

control of potential prey and competitors’ suppression. This study aimed to investigate 135

the effects of ocelot’s presence on the occupancy and detection of sympatric 136

mesocarnivores in a not legally protected arera of the Caatinga. In this region top 137

predators have not been recorded for approximately 10 years (Marinho et al., 2018a). We 138

predicted that the subordinate mecocarnivores would occupy less places most occupied 139

by ocelot to avoid agonistic encounters and explotative competition, especially those that 140

strongly overlap their nighttime activity with this dominant mesopredator (Marinho et al., 141

2020). Considering that competition and intraguild interactions may vary seasonally with 142

resource availability and habitat structure (Schmitt and Holbrook, 1986; Vanak et al., 143

2013), we evaluated potential changes in the relationships between ocelot and 144

mesocanivores considering the well-marked dry and wet seasons of the Caatinga. The 145

occurrence of carnivores is closely related to prey availability (Santos et al., 2019), as 146

well as impacted by anthropogenic activities (Cruz et al., 2018; Marinho et al., 2018b). 147

In addition, we assessed the role of resource availability (e.g. prey and water), 148

anthropogenic threats (hunters and their dogs), and disturbances (livestock) on habitat use 149

of species, considering that these factors may modulate interspecific interactions and 150

species distributions (Wang et al., 2015; Nagy-Reis et al., 2017; Dias et al., 2019a; Santos 151

et al., 2019). 152

At least seven species of mesocarnivores occur in our study area (Marinho et al., 153

2020). Three of these mesocarnivores have a generalist diet: crab-eating fox Cerdocyon 154

thous Linnaeus, 1766 (adult body mass = 5.7-6.5 kg), crab-eating raccoon Procyon 155

cancrivorus (G. [Baron] Cuvier, 1798) (5.4-8.8 kg ), and striped hog-nosed skunk 156

Conepatus amazonicus Lichtenstein, 1838 (2.4 kg); the other four are mostly strict 157

carnivorous: lesser grison Galictis cuja (Molina, 1782) (1-3 kg), northern tiger cat 158

Page 112: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

108

Leopardus tigrinus Thomas, 1904 (1.5-3 kg), jaguarundi Herpailurus yagouaroundi (É. 159

Geoffroy Saint-Hilaire, 1803) (3- 6 kg), and ocelot Leopardus pardalis (8-11 kg) (Paglia 160

et al., 2012; Oliveira and Pereira 2014). Northern tiger cat and jaguarundi are threatened 161

with extinction in Brazil (MMA, 2014) and the former is categorized as vulnerable by the 162

IUCN (IUCN, 2020). 163

Our group has studied this area since 2014, and despite the large sampling effort 164

employed in it (more than 16,800 camera-days), we have never recorded the presence of 165

puma in the area, not even through tracks and feces. In fact, the most convincing reports 166

of its presence in the region are over 20 years old (Pichorim et al., 2014; Marinho et al., 167

2018a), and for the jaguar, probably extinct during the beginning of the region's 168

colonization, there are not even old reports. 169

170

Material and methods 171

Study area 172

Our study was carried out in an area composed of private properties in Lajes 173

municipality, in Rio Grande do Norte state, northeastern Brazil (5º44'-5º51'S latitude, 174

36º11'-36º06'W longitude, Fig. 1). This region, which lies between Feiticeiro and Bonfim 175

mountains, is considered a priority area for the conservation of the Caatinga (Fonseca et 176

al., 2017); however, it does not have any legal protection. The main economic activity in 177

the region is cattle raising (cows, goats, and sheep), in addition to cutting firewood from 178

exotic and native species for charcoal production. The region is strongly impacted by the 179

illegal hunting of mammals and birds (Marinho et al., 2018a). The vegetation varies from 180

thorny shrub formations in the lower areas to arboreal habitats (~ 5 m canopy height) in 181

the mountains, typical phytophysiognomies of the Caatinga dry tropical forest. The 182

climate is semiarid, with high temperatures (average of 27 ° C and maximum of 33 ° C), 183

Page 113: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

109

and low rainfall (350 mm) that usually concentrate between February and May (Szilagyi, 184

2007; Tomasella et al., 2018). 185

186

187

Fig. 1 Study area and distribution of the 43 camera trap stations used to investigate spatial co-188

occurrence patterns between the ocelot and sympatric mesocarnivore in a Caatinga dry forest area 189

in northeastern Brazil. 190

191

Camera trapping 192

We obtained records of mesocarnivores through camera trapping carried out from 193

January to October 2017 and from October 2018 to February 2019. These periods covered 194

both the wet (January to June) and the dry season (July to December) (adapted from 195

Tomasella et al., 2017). We distributed 43 sampling points over an area of approximately 196

70 km² (as estimated by minimum convex polygon). At each point, we installed a camera 197

trap (Bushnell® Trophy Cam ™ HD) on trails used by people and livestock, dirt roads, 198

and temporary stream, which are preferred places for the movement of carnivores 199

(Goulart et al., 2009). These cameras remained active 24 hours a day and were 200

programmed to take two or three photos per shot at minimum intervals of 5 minutes. 201

Page 114: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

110

Seeking to follow a minimum distance of 1 km between cameras, our points were away 202

from each other at an average of 929.5 m (SD = 262.1 m). We did not use any type of bait 203

to attract animals. We considered consecutive records of the same species at the same 204

point after 1 hour to be independent (Goulart et al. 2009). 205

Covariates 206

We used the number of records of small mammals detected in the camera traps, 207

divided by the sampling effort in camera-days times 100 (the relative abundance index or 208

RAI), expecting a positive effect of this covariate on the species’ habitat use, especially 209

for strictly carnivorous species like wild cats (Santos et al., 2019). We used data of 210

potential prey like rock cavy Kerodon rupestris (Wied-Neuwied, 1820), Spix's cavy 211

Galea spixii (Wagler et al., 1831), and punaré rat Thrichomys laurentius Thomas, 1904. 212

One of the main threats to neotropical mammals is hunting (Ferreguetti et al., 2019), 213

especially in unprotected environments such as our study area. In addition to the direct 214

persecution of carnivores to prevent or in retaliation for livestock or poultry predation, 215

hunting also reduces their prey (Peters et al., 2017; Ferreguetti et al., 2019). Thus, we 216

used the relative abundance index of hunters and dogs recorded during sampling with 217

camera trapping, which are widely used in this activity in the region, as a covariate with 218

a potential negative effect on mesocarnivore’s occurrence. Another anthropic disturbance 219

present in semiarid environments is cattle, which degrades vegetation and displaces native 220

species (Marinho et al., 2016; Pudyatmoko, 2017). We expected that RAI of cattle (cows, 221

sheep, and goats recorded during camera trapping) would negatively affect the presence 222

of mesocarnivores, mainly for species such as ocelot that prefer less degraded habitats 223

and avoid human activities (Cruz et al., 2018). Finally, considering the variations in our 224

effort between points due to operational problems and logistical limitations, we used the 225

sampling effort in camera-days as a detection covariate, expecting a positive relationship 226

Page 115: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

111

between them (Massara et al., 2016). We assumed that our sampling points vary little in 227

relation to habitat structure and integrity, so we did not model any habitat variables. 228

Based on a Pearson’s correlation, we found no indication of collinearity between the used 229

covariates (e.g. |r |< 0.6) (Table S1). 230

Occupancy and co-occurrence analysis 231

MacKenzie et al. (2002, 2006) developed hierarchical models based on maximum 232

likelihood capable to estimate the occupancy of a species in an area (ψ, biological 233

parameter) considering the possibility of false absences when estimating the probability 234

of detection (p, observational parameter) and to correct the occupancy estimate. From 235

these models, Richmond et al. (2010) developed a new approach that allows the modeling 236

of conditional two-species occupancy incorporating predictor covariates. This 237

parameterization makes it possible to estimate the occupancy probability of a subordinate 238

species B conditioned to the presence of a dominant species A (ψA x ψAB or ψAb) 239

(Richmond et al., 2010). In addition, it allows modeling if the detection of the subordinate 240

species changes in the absence (pB) or presence (rBA or rBa) of the dominant species 241

(Richmond et al., 2010). This approach also allows estimating the species interaction 242

factor (SIF) (MacKenzie et al., 2004; Richmond et al., 2010). SIF values < 1 suggest that 243

the species occur together less than expected by chance, suggesting spatial avoidance, 244

while SIF values >1 indicate that they co-occur more than expected by chance, suggesting 245

aggregation, and finally, a SIF value =1 suggests that the two species occur independently 246

(MacKenzie et al., 2004; Richmond et al., 2010). Considering that the home range of the 247

species studied in general covers more than one sample point, we interpreted occupancy 248

as the probability of habitat use (MacKenzie et al., 2006; Nagy-Reis et al., 2017). 249

We created the detection (1) and non-detection (0) histories for each mesocarnivore 250

species with sufficient data for modeling using 10-day occasions to maximize the 251

Page 116: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

112

detection estimates. We used 12 occasions in 2017 wet season (March to June, discarding 252

February data for a better balance between seasons), 11 occasions in the beginning of 253

2017 dry season (July to October) and 12 occasions at the end of 2018 dry season (October 254

2018 to January 2019) to balance the occasion number between seasons and sampling 255

years. To consider possible variations in the species' occupancy or habitat use over time 256

we incorporated potential seasonal variation into the modeling, what is an important 257

premise of this type of modeling (MacKenzie et al., 2002). For that, we used three groups 258

that represented the three sample periods throughout the wet and dry throughout the 259

seasons. As our main interest was the co-occurrence patterns rather than investigating 260

dynamic process such as colonization and extinction (e.g., multi-season modeling), we 261

chose to use single-season models considering the surveys in the dry period and in the 262

two wet periods as groups, which also decrease the number of parameters and may 263

improve the model convergence (Gutiérrez-González et al., 2017; Rich et al., 2017). 264

We opted for a two-step approach (Nagy-Reis et al., 2017). We used single-season 265

single-species models and then single-season two-species models with conditional 266

occupancy. First, we modeled the covariate effects on the occupancy or habitat use (prey 267

abundance, hunter pressure, and livestock abundance) and detection (sample effort) of the 268

species individually, besides considering the survey periods as three groups (one wet and 269

two dry season periods) for both parameters. We modeled all possible combinations 270

(Doherty et al. 2012), but we limited the maximum number of five covariates and their 271

additive effects per model to avoid lack of models’ convergence. 272

In the second step, we used the covariates from the top-ranked models (ΔAICc ≤ 2) 273

in the first step for each species in the investigation of conditional occupancy. We 274

considered ocelot as the dominant species capable of affecting habitat use and the 275

detection of subordinate mesocarnivores (Oliveira et al., 2010). We evaluated whether 276

Page 117: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

113

the subordinate species’ occupancy is affected by the presence of the dominant species 277

(ψBA≠ψBa) or not (ψBA=ψBa), as well as whether the detection of the other mesocarnivores 278

is affected by ocelot presence (pB≠rBA=rBa) or detection (pB≠rBA≠rBa). In this second step, 279

we also used all possible combinations of additive effects, not keeping the variables 280

ranked in the first step as fixed effects. All modeling was performed using the free 281

program Mark (White and Burnham, 1999). 282

The ranking of the candidate models was performed using the Akaike Information 283

Criterion corrected for small samples (AICc) (Burnham and Anderson, 2002). Models 284

with ΔAICc ≤ 2 were considered adjusted (Burnham and Anderson, 2002). Akaike's 285

weight (w) was used to interpret the relative importance of each model and its covariates. 286

The balanced number of models at each step allowed us to use the cumulative AICc 287

weights (w+) as an indicator of relevance for each covariate evaluated (Burnham and 288

Anderson, 2002; Massara et al., 2016). In addition, continuous covariates with regression 289

coefficient (ß) that did not include zero were considered significantly important for 290

predicting habitat use and species detection. We used the model averaging to estimate the 291

overall occupancy and detection of species (general and per season when it was 292

important). We used the goodness-of-fit (GOF) test incorporated in program PRESENCE 293

(Hines, 2006) to correct possible cases of overdispersion and lack-of-fit (e.g. 𝑐̂ > 1 and P 294

< 0.05) of the most parameterized models (global) of each species in the single-season 295

single-species approach, through the Quasi Akaike Information Criterion (QAICc) 296

(Burnham and Anderson, 2002; MacKenzie and Bailey 2004). For species with 𝑐̂ values 297

> 1 we applied the QAIC, while for 𝑐̂ values < 1 we kept the value of 1 unchanged as 298

suggested by Cooch and White (2017). 299

300

Page 118: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

114

Results 301

Data collection 302

With a total effort of 12,862 camera-days (9,255 camera-days in January - October 303

2017 and 3,607 camera-days in October 2018 - February 2019), we obtained 2,035 304

records of the seven mesocarnivore species known for our study area (Table 1). We also 305

obtained 492 records of potential prey such as rock cavy (74), Spix's cavy (286), and 306

punaré rat (132). Regarding human activities, we obtained records of cows (2,054), goats 307

(170), sheep (107), in addition to hunters (113), and probable hunting dogs (89). For crab-308

eating raccoon and lesser grison, the low number of records and recaptures did not allow 309

further analysis. 310

311

Table 1 Number of records and naïve occupancy of mesocarnivores, their potential prey, and 312

anthropogenic activities (divided by seasons/sampling period and in general) in a Caatinga dry 313

forest area, northeastern Brazil. 314

Nº of records Naïve occupancy

Mesocarnivores General Wet

2017

Dry

2017

Dry

2018 General

Wet

2017

Dry

2017

Dry

2018

Striped hog-nosed

skunk 266 91 119 56 0.65 0.74 0.80 0.57

Crab-eating fox 1031 313 433 285 0.69 0.65 0.73 0.73

Crab-eating raccoon 29 19 10 0 0.14 0.23 0.17 0.00

Jaguarundi 75 38 26 11 0.32 0.44 0.44 0.19

Northern tiger cat 494 198 171 125 0.79 0.84 0.90 0.76

Ocelot 137 46 52 39 0.42 0.51 0.46 0.38

Lesser grison 4 3 0 1 0.03 0.07 0.00 0.03

315

Occupancy patterns 316

For all analyzed species the GOF test suggested some level of overdispersion or 317

underdispersion in data, as follows: jaguarundi (𝑐̂ = 0.51, P = 0.49), striped hog-nosed 318

skunk (𝑐̂ = 1.59, P = 0.10), crab-eating fox (c-hat = 1.75, P < 0.01), ocelot (𝑐̂ = 2.12, P = 319

0.06), and northern tiger cat (𝑐̂ = 4.72, P < 0.01). For the jaguarundi, the global model 320

Page 119: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

115

used was simpler (ψ [season + prey], p [season]), since more parameterized models did 321

not reach convergence, probably due to the low detection rate of this species (p < 0.10). 322

Thus, for jaguarundi eight additive models were built with all possible combinations, 323

while for the other species 63 additive models were run in each analysis, considering all 324

possible combinations of up to five covariates per model (including season) (Table 2). 325

We found little evidence of the effect of continuous covariates on habitat use and 326

detection of mesocarnivores (Table 2; Table 3). Although factors such as hunter and 327

livestock, in the case of striped hog-nosed skunk, and prey for crab-eating fox, presented 328

a high cumulative weight (w+> 0.50), the coefficient (ß) of all covariates overlapped with 329

zero values (Table 3), suggesting that there is no clear effect of these covariates on the 330

evaluated parameters. On the other hand, the results suggest that the detection of the 331

striped hog-nosed skunk and the crab-eating fox varied between the sampled seasons, the 332

same occurred for the habitat use of the jaguarundi (Table 2; Table 3; Fig. 2; Table S2). 333

For the northern tiger cat and the ocelot the top ranked models had no effect of the 334

covariates (e.g. ψ[.], p[.]) (Table 2), suggesting no effect of the evaluated factors (Table 335

3). Based on the model averaging, the detection probability varied widely between 336

species, from 0.07 (jaguarundi) to 0.45 (for crab-eating fox) (Fig. 1A; Table S2), 337

meanwhile, in general, the species presented a moderate to high estimated occupancy (e.g. 338

ψ = 0.50 - 0.99) over the seasons and sampled years (Fig. 1B; Table S2). 339

340

Table 2 Models used to assess the patterns of occupancy and detection of mesocarnivores in a 341

Caatinga dry forest area, northeastern Brazil. Only the models considered adjusted (ΔQ/AICc ≤ 342

2) are presented. Akaike’s weight (w). Number of parameters (K). 343

Species

Model Q/AICc ΔQ/AICc w Likelihood K QDeviance -2log(L)

Striped hog-nosed skunk

ψ(prey+hunt+livest), p(season) 623.107 0.000 0.105 1.000 7 608.116 966.904

Page 120: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

116

ψ(hunt+livest), p(season) 623.308 0.201 0.095 0.904 6 610.571 970.808

ψ(season+hunt), p(.) 624.215 1.108 0.060 0.575 5 613.693 975.772

ψ(season+hunt+livest), p(season) 624.858 1.751 0.044 0.417 8 607.572 966.040

ψ(prey+hunt+livest), p(season) 625.007 1.900 0.040 0.387 8 607.721 966.277

Crab-eating fox

ψ(prey), p(season) 735.148 0.000 0.213 1.000 5 724.627 1268.097

ψ(prey), p(season+effort) 736.546 1.398 0.106 0.497 6 723.809 1266.666

ψ(prey+livest), p(season) 736.770 1.622 0.095 0.445 6 724.033 1267.058

ψ(.), p(season) 736.840 1.691 0.091 0.429 4 728.495 1274.866

Jaguarundi*

ψ(season+prey), p(.) 431.988 0.000 0.407 1.000 5 421.466 421.466

ψ(season), p(.) 433.054 1.066 0.239 0.587 4 424.709 424.709

Northern tiger cat

ψ(.), p(.) 276.076 0.000 0.204 1.000 2 271.974 1283.717

ψ(livest), p(.) 277.952 1.876 0.080 0.391 3 271.747 1282.645

Ocelot

ψ(.), p(.) 306.099 0.000 0.112 1.000 2 301.997 634.195

ψ(livest), p(.) 306.298 0.199 0.101 0.905 3 300.093 630.195

ψ(hunt), p(.) 307.300 1.201 0.061 0.549 3 301.095 632.299

ψ(hunt+livest), p(.) 307.392 1.293 0.058 0.524 4 299.048 628.000

ψ(.), p(effort) 307.609 1.510 0.052 0.470 3 301.404 632.948

ψ(livest), p(effort) 308.083 1.984 0.041 0.371 4 299.738 629.450

344

Table 3 Cumulative weight (w+) and coefficient estimates (β) with their respective standard errors 345

(SE) and 95% confidence intervals (CI) of the covariates used to assess the occupancy and 346

detection patterns of mesocarnivores in a Caatinga dry forest area, northeastern Brazil. Estimates 347

were obtained using single-season single-species models. Duplicate values for beta estimates are 348

related to the modeling of the three separate sampling periods (one wet season and two dry 349

seasons). 350

Species Covariates w+ β SE (β) Lower CI (β) Upper CI (β)

Striped hog-nosed

skunk

Seasonp* 0.623 -0.378/0.362 0.325/0.308 -1.016/-0.242 0.258/0.966

Effortp 0.253 -0.003 0.005 -0.012 0.006

Seasonψ 0.456 0.874/2.754 0.756/1.704 -0.608/-0.586 2.357/6.094

Preyψ 0.373 -0.078 0.056 -0.188 0.031

Huntψ 0.711 -0.652 0.363 -1.363 0.060

Livestψ 0.526 0.365 0.193 -0.013 0.744

Crab-eating fox

Seasonp* 0.985 -0.677/0.098 0.243/0.228 -1.154/-0.349 -0.200/0.546

Effortp 0.325 -0.004 0.004 -0.012 0.004

Seasonψ 0.097 -0.228/-0.171 0.756/0.753 -1.710/-1.647 1.253/1.305

Preyψ 0.700 -0.068 0.041 -0.148 0.012

Page 121: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

117

Huntψ 0.268 -0.023 0.051 -0.124 0.078

Livestψ 0.299 -0.010 0.012 -0.034 0.014

Jaguarundi

Seasonp 0.202 0.739/0.743 0.433/0.430 -0.109/-0.100 1.587/1.585

Seasonψ* 0.724 2.217/2.733 1.085/1.374 0.089/0.041 4.344/5.427

Preyψ 0.565 0.131 0.103 -0.072 0.333

Northern tiger cat

Seasonp 0.186 0.220/0.475 0.377/0.408 -0.506/-0.325 0.946/1.274

Effortp 0.255 -0.001 0.007 -0.014 0.012

Seasonψ 0.132 0.709/-0.442 1.793/1.499 -2.805/-3.382 4.224/2.498

Preyψ 0.262 0.026 0.112 -0.194 0.245

Huntψ 0.262 0.045 0.170 -0.288 0.378

Livestψ 0.276 0.019 0.049 -0.077 0.115

Ocelot

Seasonp 0.266 -0.618/-0.018 0.497/0.450 -1.592/-0.892 0.357/0.870

Effortp 0.314 -0.006 0.008 -0.021 0.009

Seasonψ 0.138 0.632/0.649 0.847/0.831 -1.028/-0.980 2.292/2.278

Preyψ 0.255 0.009 0.047 -0.083 0.101

Huntψ 0.351 0.066 0.088 -0.106 0.239

Livestψ 0.461 -0.022 0.018 -0.058 0.013

351

352

Page 122: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

118

353

Fig. 2. Estimates of detection probability (A) and occupancy probability (B) of mesocarnivores 354

in a Caatinga dry forest area, northeastern Brazil, obtained through single-season single-species 355

models. The general estimates and for each season/sampling period are shown. 356

357

Co-occurrence patterns 358

We found no evidence of spatial avoidance among any of the four assessed potential 359

competitors pairwise (e.g., SIF = 1; Table 4; Table 5). In fact, our results suggest that the 360

jaguarundi used more the sites where ocelot was present (Table 4; Table 5). Regarding 361

Page 123: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

119

detection, three subordinate mesocarnivores (striped hog-nosed skunk, crab-eating fox 362

and northern tiger cat) were more detected in locations where ocelot was present (Table 363

4; Table 5). The ocelot, in turn, was more detected on sites most used by crab-eating fox 364

and jaguarundi (Table 4; Table 5). 365

366

367

Page 124: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

120

Table 4 Co-occurrence occupancy models used to evaluate the role of a dominant competitor (ocelot, A or a) on the habitat use and detect ion of sympatric 368

mesocarnivores (B or b) in a Caatinga dry forest area, northeastern Brazil. Only the models considered adjusted (AICc ≤ 2) are presented. 369

Model AICc ΔAICc w Likelihood K Deviance -2log(L)

Ocelot – Striped hog-nosed skunk

ψA, ψBA=ψBa, pA=rA, pB≠rBA=rBa(season) 1620.07 0.00 0.14 1.00 7 1605.08 1605.08

ψA, ψBA=ψBa, pA=rA, pB≠rBA=rBa 1620.11 0.04 0.13 0.98 5 1609.59 1609.59

ψA, ψBA=ψBa, pA≠rA, pB≠rBA=rBa(season) 1620.35 0.28 0.12 0.87 8 1603.07 1603.07

ψA, ψBA=ψBa, pA≠rA, pB≠rBA=rBa 1620.45 0.38 0.11 0.83 6 1607.71 1607.71

ψA, ψBA≠ψBa, pA=rA, pB≠rBA=rBa 1621.52 1.45 0.07 0.48 6 1608.79 1608.79

ψA, ψBA≠ψBa, pA=rA, pB≠rBA=rBa(season) 1621.74 1.67 0.06 0.43 8 1604.46 1604.46

ψA, ψBA≠ψBa, pA≠rA, pB≠rBA=rBa 1621.91 1.83 0.05 0.40 7 1606.91 1606.91

ψA, ψBA≠ψBa, pA≠rA, pB≠rBA=rBa(season) 1621.99 1.92 0.05 0.38 9 1602.37 1602.37

Ocelot – Crab-eating fox

ψA, ψBA=ψBa, pA≠rA, pB≠rBA=rBa(season) 1857.33 0.00 0.52 1.00 8 1840.04 1840.04

Ocelot – Jaguarundi

ψA, ψBA≠ψBa(season), pA≠rA, pB=rBA=rBa 1056.14 0.00 0.37 1.00 8 1038.85 1038.85

ψA, ψBA≠ψBa(season), pA≠rA, pB≠rBA≠rBa 1058.00 1.86 0.15 0.39 9 1038.38 1038.38

Ocelot – Northern tiger cat

ψA, ψBA=ψBa, pA=rA, pB≠rBA=rBa 1917.71 0.00 0.25 1.00 5 1907.18 1907.18

ψA, ψBA=ψBa, pA≠rA, pB≠rBA=rBa 1918.13 0.43 0.20 0.81 6 1905.40 1905.40

ψA, ψBA=ψBa, pA=rA, pB≠rBA≠rBa 1919.27 1.56 0.11 0.46 6 1906.53 1906.53

ψA, ψBA≠ψBa, pA≠rA, pB≠rBA=rBa 1919.40 1.69 0.11 0.43 7 1904.41 1904.41

370

371

Page 125: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

121

Table 5 Occupancy probability (ψ), detection probability (p and r), and species interaction factor (SIF) estimated from co-occurrence occupancy models used 372

to evaluate the role of a dominant competitor (ocelot, A or a) on the habitat use and detection of sympatric mesocarnivores (B or b) in a Caatinga dry forest 373

area, northeastern Brazil. According to the ranking of the models, general values or estimates for each season/sample period are shown. 374

Species pairwise ψA(SE) ψBA(SE) ψBa(SE) pA(SE) rA(SE) pB(SE) rBA(SE) rBa(SE) SIF(SE)

Ocelot-Striped hog-nosed sunk 0.60(0.06) 0.88(0.05) 0.92(0.07) 0.19(0.06) 0.14(0.01) 0.06(0.03) 0.08(0.04)

0.06(0.03)

0.25(0.05) 0.30(0.04)

0.26(0.04)

0.29(0.03) 0.26(0.04)

0.25(0.04)

1(0.00)

Ocelot-Crab-eating fox 0.66(0.05) 0.82(0.05) 0.83(0.11) 0.24(0.05) 0.12(0.01)

0.06(0.02)

0.12(0.03) 0.09(0.03)

0.43(0.05)

0.64(0.04) 0.56(0.05)

0.43(0.04)

0.64(0.03) 0.56(0.03)

1(0.00)

Ocelot-Jaguarundi 0.55(0.06)

0.98(0.03)

0.97(0.03)

0.77(0.14)

0.74(0.29)

0.68(0.26)

0.29(0.31)

0.54(0.09) 0.14(0.02) 0.06(0.02) 0.07(0.02) 0.06(0.01)

1.16(0.16)

1.20(0.15)

1.65(0.21)

Ocelot-Northern tiger cat 0.58(0.07) 0.85(0.06) 0.88(0.09) 0.13(0.05) 0.17(0.02) 0.22(0.04) 0.37(0.04) 0.39(0.03) 1(0.00)

375

376

377

Page 126: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

122

Discussion 378

In the absence of pumas and jaguars in neotropical environments, ocelot should 379

emerge as a secondary top predator (Prugh et al., 2009; Ritchie and Johnson, 2009). 380

However, in general, the habitat use of submissive mesocarnivores was not affected by 381

the presence of ocelot in the seasonally dry tropical forest area that we studied. The results 382

described here, together with previous work in the same area (e.g., Marinho et al., 2020), 383

indicate that this dominant mesopredator does not affect the mesocarnivore community 384

to the point of significantly changing its behavior or distribution to minimize interference 385

competition. However, the absence of control areas in the present study limits our ability 386

to extrapolate these results. 387

Species like the striped hog-nosed skunk, crab-eating fox and northern tiger cat seem 388

to use the habitat regardless of the presence of ocelot. Meanwhile, we found a suggestion 389

of spatial aggregation between ocelot and jaguarundi. In this case, it is likely that this 390

apparent aggregation is related to places with greater prey availability preferred by 391

jaguarundi, and that it is allowed by the clear temporal segregation between a diurnal and 392

a mainly nocturnal species, respectively (Dias et al., 2019b; Marinho et al., 2020). 393

Jaguarundi was the species that prey abundance was most explanatory, although we have 394

not found a clear effect of this covariate on the occurrence of mesocarnivores, which may 395

be related to the low detection of this wild cat in our study. In the Caatinga, jaguarundi 396

feeds mainly small mammals (Olmos, 1993; Dias and Bocchiglieri, 2015) and 397

synchronizes its activity with rock cavy (Marinho et al., 2020), the least represented prey 398

species in our records, probably because it inhabits mainly rocky outcrops, environments 399

that are spatially constrained and poorly recorded in our study. 400

It is well established in the literature that competitors need to differentiate one or 401

more dimensions of their ecological niche in order to reduce exploitation and interference 402

Page 127: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

123

competition and allow coexistence (Case and Gilpin, 1974; Schoener, 1974a, 1974b). 403

Mainly in the case of mammalian carnivores, it means reducing the chances of 404

interspecific killing and intraguild predation (Polis et al., 1989; Palomares and Caro, 405

1999; Oliveira and Pereira, 2014). However, a recent study investigated patterns of co-406

occurrence among carnivores on a worldwide scale and suggested that pairs of more 407

ecologically similar species (e.g., body size, diet and activity pattern) are more likely to 408

share the same habitat than segregate or occur independently (Davis et al., 2018). 409

Spatial interactions between carnivores can vary with prey and water availability, 410

habitat type, ecosystem productivity, and the abundance of competitors (Rich et al., 2017; 411

Davis et al., 2018). It is true that competition relationships can be more severe in stressful 412

environments such as seasonally dry tropical forests (Stoner and Timm, 2011). However, 413

there is evidence that in environments with low productivity the coexistence of predators 414

may be facilitated because higher predators may not reach sufficient density to suppress 415

smaller species (Ritchie and Johnson, 2009). Studies on intraguild interaction of 416

carnivores like big cats in semiarid environments have found more evidence of spatial 417

aggregation than segregation. Astete et al. (2017) suggest that the jaguar and puma are 418

forced to live closely together to escape warmer habitats and human pressure in the 419

Caatinga and that the lower density of jaguar in this environment would facilitate this 420

coexistence. Similarly, in the dry tropical forest of northern Mexico, pumas and jaguars 421

overlap much of their habitat, which was related to the lower density and worse adaptation 422

of the jaguar to semiarid conditions compared to puma (Gutiérrez-González and López-423

González, 2017). Human persecution is another factor that decreases the density of wild 424

cats in these areas (Astete et al., 2017; Gutiérrez-González and López-González, 2017). 425

In fact, the density of ocelot in the Caatinga is one of the lowest in its entire 426

distribution (Penido et al., 2016), which may facilitate coexistence with other smaller 427

Page 128: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

124

mesocarnivores, especially in areas where intense hunting can reduce the abundance of 428

predators. Other studies have found the absence of effect of ocelot on the distribution or 429

habitat use of mesocarnivores in the Atlantic Forest (Massara et al., 2016; Nagy-Reis et 430

al., 2017). Meanwhile, other authors have reported an apparent avoidance from places 431

where this dominant mesopredator is present by the southern tiger cat in the Atlantic 432

Forest (Cruz et al., 2018) and northern tiger cat in a large and well preserved Caatinga 433

area (Dias et al., 2019b). In most of these areas there is an opposite pattern to that 434

presented here, with northern tiger cat being less abundant than ocelot. Thus, these 435

differences in species interaction may be related to variations in the conditions and 436

resources of the study areas as well as in ocelot density throughout its wide distribution. 437

Temporal segregation is an important mechanism for promoting interspecific 438

coexistence and avoiding agonistic interactions (Carothers and Jaksić, 1984), which can 439

be used especially by mesocarnivores that overlap much of their diet and morphology to 440

co-occur (Bianchi et al., 2016; Di Bitetti et al., 2010; Massara et al., 2016). However, 441

previous studies in the same area reported that species segregate only its peak activity 442

(Marinho et al., 2020), which is when there is a greater risk of encounters (Rafiq et al., 443

2020), suggesting that other mechanisms should mediate this coexistence in a 444

complementary way. 445

The possible inclusion of larger prey in the ocelot diet in the absence of top predators 446

(Moreno et al., 2006) can lessen the pressure on smaller prey shared with other 447

mesocarnivores, and thus minimize competition for exploitation in an environment with 448

scarce resources. This mechanism has already been suggested to explain the co-449

occurrence of African golden cats Caracal aurata and sympatric mesocarnivores in the 450

absence of the leopard Panthera pardus in the forests of Uganda (Mills et al., 2019). 451

Page 129: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

125

It is difficult to explain behaviorally how the ocelot presence increases the detection 452

of striped hog-nosed skunk, crab-eating fox, and northern tiger cat since we expected the 453

opposite to occur as a mechanism to avoid aggressive encounters. Other studies have 454

found this type of relationship between subordinate and dominant species (Cruz et al., 455

2015; Nagy-Reis et al., 2017; Astete et al., 2017; Mills et al., 2019). Associating camera 456

trapping with scat sampling data, Nagy-Reis et al. (2017) suggest that the use of scent 457

marks to avoid aggressive encounters may increase the detection of the southern tiger cat 458

(Leopardus guttulus) in the presence of ocelot. Another possible explanation would be 459

the greater availability of prey in the places where the dominant species occurs (Mills et 460

al., 2019). However, we have found no evidence on the effect of prey considered. 461

The detection probability or the photographic rate might be correlated with the local 462

species abundance (Carbone et al., 2001; Royle and Nichols, 2003). Therefore, it is 463

possible that the sites occupied by ocelot represent more favorable refuges and food 464

resources (although we have not been able to detect variations here) for other 465

mesocarnivores, with those being more abundant in these sites, and consequently more 466

detected. This goes for the opposite case, with ocelot being more detected in the presence 467

of jaguarundi and crab-eating fox, which in turn can guarantee coexistence through the 468

temporal and food niche, respectively. However, studies on species density are essential 469

to advance this issue, especially considering that the theory suggests that ocelot 470

negatively affect the abundance of small neotropical cats (Oliveira et al., 2010). 471

Habitat preferences and prey availability may be more important than interspecific 472

interactions in the mesocarnivore distribution and spatial structure of this guild (Cruz et 473

al., 2015; Nagy-Reis et al., 2017; Santos et al., 2019). A study on a regional scale 474

suggested that the occurrence of the northern tiger cat in the Caatinga may be higher in 475

more forested and far from human settlements environments (Marinho et al., 2018b). In 476

Page 130: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

126

our case, mesocarnivores used much or practically the entire studied landscape, with little 477

variation between seasons and no effect of the investigated covariates. It is likely that on 478

larger scales that better cover the heterogeneity of Caatinga environments, clearer patterns 479

of habitat use will be found. On the other hand, mesocarnivores are more tolerant of 480

human presence than apex predators (Roemer et al., 2009), and the absence of 481

anthropogenic activities’ effects (hunters and cattle) on the use of the species' habitat 482

suggests some level of tolerance. However, we do not know how much hunting of these 483

species and the degradation of habitats due to grazing, so common in this semiarid region 484

(Alves et al., 2016; Melo, 2015), affect other populations and behavioral parameters. 485

The spatial structure of the studied mesocarnivore guild seems to have remained 486

stable over time. The same is not true for species detection. Semiarid and highly seasonal 487

environments put pressure on mammals to develop physiological, behavioral, and 488

ecological strategies to deal with the scarcity and fluctuation of resources (Stoner and 489

Timm, 2011). However, we found no evidence of change in habitat use for most species 490

between seasons. The only suggestion of a change in habitat use was for jaguarundi, 491

which seems to have shrunken its distribution in the drier season (2018). However, the 492

uncertainty linked to these estimates due to the low detection of this species decreases its 493

reliability. Regarding detection, striped hog-nosed skunk and mainly crab-eating fox were 494

more detected in the dry seasons. Other studies in the Caatinga have already shown that 495

the activity of these species increases during the dry season (Dias and Bocchiglieri, 2015; 496

Dias, 2017), when the species need to move more to forage and obtain food, consequently 497

increasing their home range (Stoner and Timm, 2011). Thus, future sampling of these 498

species in the Caatinga focused on the dry period can optimize data collection and save 499

financial resources. 500

Page 131: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

127

Our results suggest that most submissive mesocarnivores occur regardless of the 501

ocelot’s presence, while the jaguarundi uses more habitats shared with this dominant 502

mesopredator, probably due to the strong temporal segregation between these two 503

species. As the temporal segregation within the studied guild is low and generally 504

restricted to the species’ activity peaks (Marinho et al., 2020), the absence of spatial 505

avoidance among mesocarnivores may be related to a probable low density of ocelot in 506

the area, reducing the effects of intraguild suppression. However, it is necessary to 507

investigate how much the species' diets overlap in order to understand the 508

mesocarnivores’ coexistence mechanisms in this seasonal environment and with scarce 509

resources, where top predators are increasingly rare due to intense human interference. 510

Our results allow us to better understand how mesocarnivores interact spatially in 511

semiarid environments and where top predators have become extinct or are in decline due 512

to chronic human disturbance. 513

514

Acknowledgments 515

We are very grateful to João B. de Lima (seu João) and Joana Darc for the field 516

assistance and hospitality, and to Eugenia C. Schmidt, Juan C. V. Mena, Felipe Marinho, 517

Raul dos Santos, Maria L. Falcão, V. Paixão, and T. Oliveira for field or analysis 518

assistance. We would like to thank Claudia Campos, Mauro Pichorim, Fabiana Rocha, 519

and Rodrigo Massara for the valuable suggestions that helped to improve the manuscript. 520

This study was partially supported by Restaurante Camarões and The Mohamed bin 521

Zayed Species Conservation Fund (#172516360). EMV (#308040/2017-1) and CRF 522

(#305304/2013-5; #306812/2017-7) were supported by Conselho Nacional de 523

Desenvolvimento Científico e Tecnológico (CNPq) and PHM was supported by 524

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES; 525

Page 132: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

128

financing code 001), and by Santander Universities (Santander Mundi scholarship) during 526

internship in Portugal. 527

528

References 529

Alves RRRN, Feijó A, Barboza RRD, Souto WMD, Fernandes-Ferreira H, Cordeiro-530

Estrela P, Langguth A (2016) Game mammals of the Caatinga biome. Ethnobio 531

Conserv 5:1-51. https://doi.org/10.15451/ec2016-7-5.5-1-51 532

Astete S, Marinho-Filho J, Kajin M, Penido G, Zimbres B, Sollmann R, Jácomo ATA, 533

Tôrres NM, Silveira L (2017) Forced neighbours: Coexistence between jaguars and 534

pumas in a harsh environment. J Arid Environ 146:27-34. 535

https://doi.org/10.1016/j.jaridenv.2017.07.005 536

Azevedo FC, Lemos FG, Almeida LB, Campos CB, Beisiegel BM, Paula RC, Crawshaw 537

PGJr, Ferraz KMMB, Oliveira TG (2013). Avaliação do risco de extincão da onca-538

parda Puma concolor (Linnaeus, 1771) no Brasil. Biodiv Bras 3:107-121. 539

Beschta RL, William JR (2009) Large predators and trophic cascades in terrestrial 540

ecosystems of the western United States. Biol Conserv 142:2401-2414. 541

https://doi.org/10.1016/j.biocon.2009.06.015 542

Bianchi RdC, Mendes SL, Marco Júnior PD (2010) Food habits of the ocelot, Leopardus 543

pardalis, in two areas in southeast Brazil. Stud Neotrop Fauna E 45:111-119. 544

https://doi.org/10.1080/01650521.2010.514791 545

Bianchi RdC, Olifiers N, Gompper ME, Mourão G (2016) Niche Partitioning among 546

mesocarnivores in a Brazilian wetland. Plos One 11:e0162893. 547

https://doi.org/10.1371/journal.pone.0162893 548

Page 133: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

129

Bolze GJ, Tirelli FP, Horn PE, Almeida LR, Figueiró HV, Kessler A, Eizirik E, Pereira 549

MJR (2019) Registro de interação antagonista entre Leopardus pardalis e Cerdocyon 550

thous no limite sul da Mata Atlântica. Bol Soc Bras Mastozool 85: 110-113. 551

Bu H, Wang F, McShea WJ, Lu Z, Wang D, Li S (2016) Spatial Co-Occurrence and 552

Activity Patterns of Mesocarnivores in the Temperate Forests of Southwest China. 553

Plos One 11:e0164271. https://doi.org/10.1371/journal.pone.0164271 554

Burnham KP, Anderson D (2002) Model selection and multi-model inference: A practical 555

information–theoretic approach. Springer Science, New York 556

Carbone C, Christie S, Conforti K et al (2001) The use of photographic rates to estimate 557

densities of tigers and other cryptic mammals. Anim Conserv 4:75-79. 558

https://doi.org/10.1017/S1367943001001081 559

Carothers JH, Jaksić FM (1984) Time as a niche difference: The role of interference 560

competition. Oikos 42:403-406. http://www.jstor.org/stable/3544413 561

Case TJ, Gilpin ME (1974) Interference competition and niche theory. P Natl Acad Sci 562

USA 71:3073-3077. https://doi.org/10.1073/pnas.71.8.3073 563

Cooch EG, White GC (2017) Program MARK: A gentle introduction, seventeenth ed. 564

Colorado State University, Fort Collins, 565

Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a 566

fragmented system. Nature 400:563-566. https://doi.org/10.1038/23028 567

Cruz J, Sarmento P, White PCL (2015) Influence of exotic forest plantations on 568

occupancy and co-occurrence patterns in a Mediterranean carnivore guild. J Mammal 569

96:854-865. https://doi.org/10.1093/jmammal/gyv109 570

Cruz P, Iezzi ME, De Angelo C, Varela D, Di Bitetti MS, Paviolo A (2018) Effects of 571

human impacts on habitat use, activity patterns and ecological relationships among 572

Page 134: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

130

medium and small felids of the Atlantic Forest. Plos One 13:e0200806. 573

https://doi.org/10.1371/journal.pone.0200806 574

Davis CL, Rich LN, Farris ZJ et al (2010) Ecological correlates of the spatial co-575

occurrence of sympatric mammalian carnivores worldwide. Ecol Lett 21:1401-1412. 576

https://doi.org/10.1111/ele.13124 577

Di Bitetti MS, De Angelo CD, Di Blanco YE, Paviolo A (2010) Niche partitioning and 578

species coexistence in a Neotropical felid assemblage. Acta Oecol 36:403e412. 579

https://doi.org/10.1016/j.actao.2010.04.001 580

Diamond JM (1978) Niche Shifts and the Rediscovery of Interspecific Competition. Am 581

Sci 66:322-331. 582

Dias DM (2017) Spatiotemporal ecology of the striped hog-nosed skunk Conepatus 583

semistriatus (Carnivora, Mephitidae) in a seasonally dry forest of northeastern Brazil. 584

Anim Biol 2:119-131. https://doi.org/10.1163/15707563-00002525 585

Dias DM, Bocchiglieri A (2015) Trophic and spatio-temporal niche of the crabeating fox, 586

Cerdocyon thous (Linnaeus, 1766) (Carnivora: Canidae), in a remnant of the Caatinga 587

in northeastern Brazil. Mammalia 80:281-291. https://doi.org/10.1515/mammalia-588

2014-0108 589

Dias DM, Massara RL, Campos CB, Rodrigues FHG (2019a) Feline predator-prey 590

relationships in a semi-arid biome in Brazil. J Zool 307:282-291. 591

https://doi.org/10.1111/jzo.12647 592

Dias DM, Massara RL, Campos CB, Rodrigues FHG (2019b) Human activities influence 593

the occupancy probability of mammalian carnivores in the Brazilian Caatinga. 594

Biotropica 51:253-265. https://doi.org/10.1111/btp.12628 595

Doherty PF, White GC, Burnham KP (2012) Comparison of model building and selection 596

strategies. J Ornithol 152:S317-S323. https://doi.org/10.1007/s10336-010-0598-5 597

Page 135: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

131

Donadio E, Buskirk SW (2006) Diet, morphology, and interspecific killing in carnivora. 598

Am Nat 167:524-36. https://doi.org/10.1086/501033 599

Ferreguetti AC, Rocha CFD, Bergallo HG (2019) Poaching in non–volant mammals in 600

the Neotropical region: the importance of a metric to assess its impacts. Anim Biodiv 601

Conserv 42.2:203-211. https://doi.org/10.32800/abc.2019.42.0203 602

Fonseca CR, Antongiovanni M, Matsumoto M, Bernard E, Venticinque EM (2017) 603

Conservation opportunities in the Caatinga. In: Silva JC, Leal I, Tabarelli M (eds) 604

Caatinga: the largest tropical dry forest region in South America. Springer, Cham, pp 605

429–443 606

Goulart FVB, Cáceres NC, Graipel ME, Tortato MA, Ghizoni Jr IR, Oliveiras-Santos 607

LGR (2009) Habitat selection by large mammals in a southern Brazilian Atlantic 608

Forest. Mamm biol 74:182–190. https://doi.org/10.1016/j.mambio.2009.02.006 609

Gutiérrez-González CE, López-González CA (2017). Jaguar interactions with pumas and 610

prey at the northern edge of jaguars’ range. PeerJ 5:e2886. 611

https://doi.org/10.7717/peerj.2886 612

Harrison DJ, Bissonette JA, Sherburne JA (1989) Spatial Relationships between Coyotes 613

and Red Foxes in Eastern Maine. J Wildlife Manage 53: 181-185. 614

https://doi.org/10.2307/3801327 615

Hines JE (2006) PRESENCE - Software to estimate patch occupancy and related 616

parameters. USGS-PWRC. www.mbr-pwrc.usgs.gov/software/presence.html 617

Accessed 20 April 2018 618

Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of 619

animals? Am Nat 93:145-159. https://www.jstor.org/stable/2458768 620

IUCN (2020) The IUCN Red List of Threatened Species, version 2020-1. 621

https://www.iucnredlist.org. Accessed 19 March 2020 622

Page 136: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

132

Jiménez J, Nuñez-Arjona JC, Mougeot F et al (2019) Restoring apex predators can reduce 623

mesopredator abundances. Biol Conserv 238:108234. 624

https://doi.org/10.1016/j.biocon.2019.108234 625

MacArthur R, Levins R (1964) Competition, habitat selection, and character 626

displacement in a patchy environment. P Natl Acad Sci USA 51:1207–1210. 627

https://doi.org/10.1073/pnas.51.6.1207 628

MacKenzie DI, Bailey LL (2004) Assessing the fit of site-occupancy models. J Agr Biol 629

Envir St 9:300-318. https://doi.org/10.1198/108571104X3361 630

MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) 631

Estimating site occupancy rates when detection probabilities are less than one. Ecology 632

83:2248-2255. https://doi.org/10.1890/0012-633

9658(2002)083[2248:ESORWD]2.0.CO;2 634

MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) 635

Occupancy estimation and modeling: inferring patterns and dynamics of species 636

occurrence. Elsevier/Academic Press, Burlington 637

Marinho FP, Mazzochini GG, Manhães AP, Weisser WW, Ganade G (2016) Effects of 638

past and present land use on vegetation cover and regeneration in a tropical dryland 639

forest. J Arid Environ 132:26–33. http://dx.doi.org/10.1016/j.jaridenv.2016.04.006 640

Marinho PH, Bezerra D, Antongiovanni M, Fonseca CR, Venticinque EM (2018a) 641

Mamíferos de médio e grande porte da Caatinga do Rio Grande do Norte, nordeste do 642

Brasil. Mastozool Neotrop 25:345-362. 643

https://doi.org/10.31687/saremMN.18.25.2.0.15 644

Marinho PH, Fonseca CR, Sarmento P, Fonseca C, Venticinque EM (2020) Temporal 645

niche overlap among mesocarnivores in a Caatinga dry forest. Eur J Wildl Res 66:34. 646

https://doi.org/10.1007/s10344-020-1371-6 647

Page 137: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

133

Massara R, Paschoal AMO, Bailey L, Doherty PF Jr, Hirsch A, Chiarello AG (2018) 648

Factors influencing ocelot occupancy in Brazilian Atlantic Forest reserves. Biotropica 649

50:125–34. https://doi.org/10.1111/btp.12481 650

Massara RL, Paschoal AMO, Bailey LL, Doherty PFJr, Chiarello AG (2016) Ecological 651

interactions between ocelots and sympatric mesocarnivores in protected areas of the 652

Atlantic Forest, southeastern Brazil. J Mammal 97:1634–1644. 653

https://doi.org/10.1093/jmammal/gyw129 654

Massara RL, Paschoal AMO, Doherty PF Jr, Hirsch A, Chiarello AG (2015) Ocelot 655

population status in protected Brazilian Atlantic Forest. Plos One 10:e0141333. 656

https://doi.org/10.1371/journal.pone.0141333 657

Melo FPL (2017) The socio-ecology of the Caatinga: understanding how natural resource 658

use shapes an ecosystem. In: Silva JMC, Leal IR, Tabarelli M (eds) Caatinga: The 659

largest tropical dry-forest region in South America. Springer, Cham, pp 369-382 660

Miller B, Dugelby B, Foreman D, Martinez del Rio C, Noss R, Phillips M, Reading R, 661

Soulé ME, Terborgh J, Willcox L (2001) The importance of large carnivores to healthy 662

ecosystems. Endanger Species Updat 18:202-210. 663

Mills DR, San EDL, Robinson H, Isoke S, Slotow R, Hunter L (2019) Competition and 664

specialization in an African forest carnivore community. Ecol Evol 9:10092-10108. 665

https://doi.org/10.1002/ece3.5391 666

MMA (2014) Lista Nacional Oficial de Espécies da Fauna Ameaçadas de 667

Extinção. Ministério do Meio Ambiente. 668

https://www.icmbio.gov.br/portal/images/stories/biodiversidade/fauna-669

brasileira/portarias/PORTARIA_N_445_DE_17_DE_DEZEMBRO_DE_2014670

.pdf. Accessed 16 June 2019 671

Page 138: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

134

Moreno RS, Kays RW, Samudio R (2006) Competitive release in diets of ocelot 672

(Leopardus pardalis) and puma (Puma concolor) after jaguar (Panthera onca) decline. 673

J Mammal 87:808–816. https://doi.org/10.1644/05-mamm-a-360r2.1 674

Nagy-Reis MB, Nichols JD, Chiarello AG, Ribeiro MC, Setz EZF (2017) Landscape use 675

and co-occurrence patterns of Neotropical spotted cats. Plos One 12: e0168441. 676

https://doi.org/10.1371/journal.pone.0168441 677

Oliveira TG, Pereira JA (2014) Intraguild predation and interspecific killing as structuring 678

forces of carnivoran communities in South America. J Mamm Evol 21:427–436. 679

https://doi.org/10.1007/s10914-013-9251-4 680

Oliveira TG, Tortato MA, Silveira L et al (2010) Ocelot ecology and its effect on the 681

small-felid guild in the lowland neotropics. In: Macdonald DW, Loveridge A (eds) 682

Biology and conservation of wild felids. Oxford University Press, Oxford, pp 563-584 683

Oliveira-Santos LGR, Graipel ME, Tortato MA, Zucco CA, Cáceres NC, Goulart FVB 684

(2012) Abundance changes and activity flexibility of the oncilla, Leopardus tigrinus 685

(Carnivora: Felidae), appear to reflect avoidance of conflict. Zoologia 29:115–120. 686

https://doi.org/10.1590/S1984-46702012000200003 687

Olmos F (1993) Notes on the food habitats of Brazilian “Caatinga” carnivores. Mammalia 688

57:126–130. 689

Paglia AP, Fonseca GAB, Rylands AB et al (2012) Annotated Checklist of Brazilian 690

Mammals. 2nd Edition. Occasional Papers in Conservation Biology 6:1–76. 691

Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. The 692

Am Nat 153:492-508. https://doi.org/10.1086/303189 693

Paula RC, Campos CB, Oliveira TG (2012) Red list assessment for the jaguar in the 694

Caatinga Biome. Cat News 7:19–24. 695

Page 139: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

135

Penido G, Astete S, Furtado MM, Jácomo ATA, Sollmann R, Torres N, Silveira L, 696

Marinho-Filho J (2016) Density of Ocelots in a semiarid environment in northeastern 697

Brazil. Biota Neotropica 16:e20160168. https://doi.org/10.1590/1676-0611-bn-2016-698

0168 699

Peters FB, Mazim FD, Favarini MO, Soares JBG, Oliveira TG. (2016) Caça preventiva 700

ou retaliativa de felinos por humanos no extremo sul do Brasil. In: Castanõ-Uribe C, 701

Lasso CA, Hoogesteijn R, Diaz-Pulido A, Payán E (eds) Conflictos entre felinos y 702

Humanos em América Latina. Instituto de Investigación de Recursos Biológicos 703

Alexander von Humboldt, Bogotá, pp. 311-325. 704

Pichorim M, França Câmara TP, Oliveira-Júnior TM, Valdenor-de-Oliveira D, Galvão-705

do-Nascimento EP, Mobley JÁ (2014) A population of Blue-winged Macaw Primolius 706

maracana in northeastern Brazil: recommendations for a local conservation action 707

plan. Trop Conserv Sci 7:488–507. https://doi.org/10.1177/194008291400700309 708

Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: 709

potential competitors that eat each other. Annu Rev Ecol Syst 20:297-330. 710

https://doi.org/10.1146/annurev.es.20.110189.001501 711

Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Bashares JS (2009) 712

The rise of the mesopredator. Bioscience 59:779-791. 713

https://doi.org/10.1525/bio.2009.59.9.9 714

Pudyatmoko S (2017) Free-ranging livestock influence species richness, occupancy, and 715

daily behaviour of wild mammalian species in Baluran National Park, Indonesia. 716

Mamm Biol 86:33–41. http://dx.doi.org/10.1016/j.mambio.2017.04.001 717

Rafiq K, Jordan NR, Wilson AM, McNutt JW, Hayward MW, Meloro C, Wich SA, 718

Golabek KA (2019) Spatio‐temporal factors impacting encounter occurrences between 719

Page 140: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

136

leopards and other large African predators. J Zool 310:191-720

200. https://doi.org/10.1111/jzo.12746 721

Rich LN, Miller DAW, Robinson HS, McNutt JW, Kelly MJ (2017) Carnivore 722

distributions in Botswana are shaped by resource availability and intraguild species. J 723

Zool 303:90–98. https://doi.org/10.1111/jzo.12470 724

Richmond OMW, Hines JE, Beissinger SR (2010) Two-species occupancy models: a new 725

parameterization applied to co-occurrence of secretive rails. Ecol App 20:2036–2046. 726

https://doi.org/10.1890/09-0470.1 727

Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, 728

Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing 729

AJ (2014) Status and ecological effects of the world’s largest carnivores status and 730

ecological effects of the world’s largest carnivores. Science 343:1241484. 731

https://doi.org/10.1126/science.1241484 732

Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and 733

biodiversity conservation. Ecol Lett 12:982–998. https://doi.org/10.1111/j.1461-734

0248.2009.01347.x 735

Roemer GW, Gompper ME, Valkenburgh BV (2009) The ecological role of the 736

mammalian mesocarnivore. BioScience 59:165-173. 737

https://doi.org/10.1525/bio.2009.59.2.9 738

Royle A, Nichols JD (2003) Estimating abundance from repeated presence absence data 739

or point counts. Ecology 84:777-790. https://doi.org/10.1890/0012-740

9658(2003)084[0777:EAFRPA]2.0.CO;2 741

Santos F, Carbone C, Wearn OR, Rowcliffe JM, Espinosa S, Lima MGM, Ahumada JA, 742

Gonçalves ALS, Trevelin LC, Alvarez-Loayza P, Spironello R, Jansen PA, Juen L, 743

Peres CA. (2019) Prey availability and temporal partitioning modulate felid 744

Page 141: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

137

coexistence in Neotropical forests. Plos One 14:e0213671. 745

https://doi.org/10.1371/journal.pone.0213671 746

Schmitt RJ, Holbrook SJ (1986) Seasonally fluctuating resources and temporal variability 747

of interspecific competition. Oecologia 69:1-11. https://doi.org/10.1007/BF00399030 748

Schoener TW (1974a) The compression hypothesis and temporal resource partitioning. 749

Proc Natl Acad Sci USA 71:4169-4172. https://doi.org/10.1073/pnas.71.10.4169 750

Schoener TW (1974b) Resource partitioning in ecological communities. Scince 185: 27-751

39. https://doi.org/10.1126/science.185.4145.27 752

Stoner K, Timm RM (2011) Seasonally dry tropical forest mammals: adaptations and 753

seasonal patterns. In: Dirzo R, Young HS, Mooney HA, Ceballos G (eds) Seasonally 754

dry tropical forests: Ecology and conservation. Island Press, Washington, pp 85-105 755

Szilagyi G (2007) Diagnóstico ambiental do processo de desertificação do município de 756

Lajes/RN. Dissertation, Universidade Federal do Rio Grande do Norte 757

Terborgh J, Estes JA, Paquet P, Ralls K, Boyd-Heigher D, Miller BJ, Noss RF (1999) 758

The role of top carnivores in regulating terrestrial ecosystems. In: Terborgh J, Soulé 759

M (eds) Continental Conservation: Scientific foundations of regional reserve 760

networks. Island Press, Washington, pp 39-64 761

Tomasella J, Silva RMPV, Barbosa AA, Rodriguez DA, Oliveira MS, Sestini MF (2018) 762

Desertification trends in the Northeast of Brazil over the period 2000–2016. Int J Appl 763

Earth Obs 73:197-206. https://doi.org/10.1016/j.jag.2018.06.012 764

Vanak AT, Fortin D, Thaker M, Ogden M, Owen C, Greatwood S, Slotow R (2013) 765

Moving to stay in place: behavioral mechanisms for coexistence of African large 766

carnivores. Ecology 94:2619–2631. https://doi.org/10.1890/13-0217.1 767

Page 142: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

138

Wang Y, Allen ML, Wilmers CC (2015) Mesopredator spatial and temporal responses to 768

large predators and human development in the Santa Cruz Mountains of California. 769

Biol Conserv 190:23–33. http://dx.doi.org/10.1016/j.biocon.2015.05.007 770

White GC, Burnham KP 1999 Program mark: survival estimation from populations of 771

marked animals. Bird Study 46:120-139. https://doi.org/10.1080/00063659909477239 772

Woodroffe R (2000) Predators and people: using human densities to interpret declines of 773

large carnivores. Anim Conserv 3:165-173. https://doi.org/10.1111/j.1469-774

1795.2000.tb00241.x 775

776

Supplementary Material 777

778

Table S1. Correlation coefficients and range of covariates used to investigate patterns of habitat 779

use and detection of mesocarnivores in an area of dry tropical forest in northeastern Brazil. 780

Period Pearson's correlation coefficients Covariate range

Covarite Effort Prey Livestock Hunter Mean Min. Max.

Wet - 2017

Effort 1.000 -0.298 0.276 -0.121 86.490 23.000 110.000

Prey 1.000 -0.010 -0.113 4.225 0.000 48.000

Livestock 1.000 0.114 19.547 0.000 123.809

Hunter 1.000 1.102 0.000 6.780

Dry - 2017

Effort 1.000 -0.247 0.228 -0.120 96.950 0.000 110.000

Prey 1.000 -0.022 -0.014 3.229 0.000 71.739

Livestock 1.000 -0.035 17.433 0.000 114.414

Hunter 1.000 2.597 0.000 29.333

Dry - 2018

Effort 1.000 0.076 0.144 -0.147 78.910 0.000 112.000

Prey 1.000 0.029 0.123 5.654 0.000 38.462

Livestock 1.000 0.128 2.529 0.000 22.727

Hunter 1.000 2.426 0.000 40.385

781

782

783

Page 143: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

139

Table S2 Estimates of probability of detection (A) and occupancy (B) of mesocarnivores in an 784

area of dry tropical forest in northeastern Brazil obtained through single-season single-species 785

models. The general estimates and for each season/sampling period are shown. Estimates in bold 786

(varying by season or general) were more adjusted according to the ranking of the models. 787

Species Parameter Estimate SE Lower CI Upper CI

Striped hog-nosed

skunk

p(general) 0.217 0.020 0.179 0.260

p(wet2017) 0.175 0.042 0.108 0.272

p(dry2017) 0.240 0.034 0.181 0.312

p(dry2018) 0.205 0.038 0.140 0.291

ψ(general) 0.992 0.018 0.604 1.000

ψ(wet2017) 0.858 0.135 0.406 0.982

ψ(dry2017) 0.916 0.105 0.429 0.994

ψ (dry2018) 0.778 0.208 0.249 0.974

Crab-eating fox

p(general) 0.449 0.023 0.404 0.494

p(wet2017) 0.336 0.042 0.260 0.422

p(dry2017) 0.518 0.039 0.442 0.592

p(dry2018) 0.494 0.043 0.410 0.578

ψ(general) 0.724 0.060 0.594 0.825

ψ(wet2017) 0.721 0.066 0.576 0.831

ψ(dry2017) 0.723 0.064 0.582 0.831

ψ(dry2018) 0.724 0.065 0.581 0.832

Jaguarundi

p(general) 0.073 0.016 0.047 0.110

p(wet2017) 0.073 0.018 0.045 0.116

p(dry2017) 0.072 0.018 0.044 0.116

p(dry2018) 0.069 0.023 0.036 0.129

ψ(general) 0.672 0.140 0.372 0.877

ψ(wet2017) 0.761 0.176 0.322 0.955

ψ(dry2017) 0.815 0.190 0.272 0.981

ψ(dry2018) 0.421 0.231 0.102 0.823

Northern tiger cat

p(general) 0.314 0.034 0.251 0.385

p(wet2017) 0.306 0.044 0.228 0.397

p(dry2017) 0.315 0.039 0.243 0.396

p(dry2018) 0.326 0.050 0.237 0.430

ψ(general) 0.850 0.081 0.618 0.952

ψ(wet2017) 0.854 0.097 0.561 0.964

ψ(dry2017) 0.862 0.089 0.591 0.964

ψ(dry2018) 0.844 0.100 0.549 0.960

Ocelot

p(general) 0.181 0.030 0.130 0.247

p(wet2017) 0.167 0.042 0.100 0.267

p(dry2017) 0.192 0.040 0.126 0.282

p(dry2018) 0.190 0.042 0.120 0.287

ψ(general) 0.509 0.083 0.352 0.664

ψ(wet2017) 0.521 0.112 0.312 0.724

Page 144: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

140

ψ(dry2017) 0.513 0.095 0.334 0.689

ψ(dry2018) 0.497 0.102 0.308 0.687

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

Page 145: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

141

Capítulo 4 811

812

MULTI-SPECIES OCCUPANCY MODELLING REVEALS MAMMALS’ 813

PREFERENCE FOR FORESTED HABITATS IN AN OVERGRAZED 814

SEMIARID LANDSCAPE 815

816

817

818

819

820

821

Este capítulo foi escrito de acordo com as regras da revista Journal of Arid Environments 822

(https://www.journals.elsevier.com/journal-of-arid-environments). 823

Page 146: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

142

Multi-species occupancy modelling reveals mammals’ preference for forested 824

habitats in an overgrazed semiarid landscape 825

826

Paulo Henrique Marinhoa,*, Camile Lugarinib, Gabriel Penidoc, Carlos Roberto 827

Fonsecaa, Eduardo Martins Venticinquea 828

829

a Departamento de Ecologia, Cendro de Biociências, Universidade Federal do Rio 830

Grande do Norte, Campus Universitário, Lagoa Nova, Natal, 59078-970, Rio Grande do 831

Norte, Brazil 832

b Centro Nacional de Pesquisa e Conservação das Aves Silvestres (CEMAVE), 833

ICMBio, BR 230 - KM 10 Floresta Nacional da Restinga de Cabedelo, Cabedelo, 834

58108-012, Paraíba, Brazil 835

c Laboratório de Ecomorfologia e Macroevolução LEMA, Departamento de Ecologia, 836

Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Campus do 837

Vale, Porto Alegre, 91501-970 UFGRS, Rio Grnde do Sul, Brazil 838

839

*Corresponding author. 840

E-mail address: [email protected] (P. H. Marinho) 841

842

843

844

845

846

Page 147: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

143

Highlights 847

Generalist and threatened terrestrial mammal species can benefit from forested 848

environments in disturbed semiarid landscapes under intense drought. 849

More productive and structurally complex semiarid environments can benefit the 850

persistence of mammals by providing better resources and refuges. 851

The expansion of protected areas in perturbed semiarid landscapes should consider 852

forested habitats, as well as the recovery of degraded vegetation. 853

854

Abstract 855

Arid and semiarid environments challenge species to adapt to extreme conditions. The 856

association between low productivity and high rates of human occupation has led to high 857

levels of degradation in these regions. In this scenario, medium to large-sized mammals 858

are especially vulnerable. We investigated the occupancy patterns of medium to large-859

sized mammals in an overgrazed landscape in Brazilian Caatinga. We collected camera 860

trapping data at the end of an extreme drought period and used Bayesian hierarchical 861

multi-species occupancy models to investigate the relative effects of anthropogenic 862

disturbance and environmental predictors on species-specific and community occupancy. 863

We obtained 566 records from 12 medium to large-sized wild mammal species. Among 864

the environmental and anthropogenic predictors evaluated, forest cover influenced 865

significantly and positively the occupancy rate of Cerdocyon thous, Dasypus 866

novemcintus, Leopardus tigrinus, Mazama gouazoubira, and Herpailurus yagouaroundi 867

as well as the community level occupancy. C. thous and Euphractus sexcinctus were more 868

detected on wider trails, which affected the community level as well. More forested 869

habitats can provide better resources and shelters, being an important predictor of 870

mammal’s occurrence in a disturbed semiarid landscape with scarce resources, benefiting 871

Page 148: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

144

both generalist and endangered species. On the other hand, anthropogenic factors did not 872

affect mammals’ occurrence, suggesting some level of adaptation, especially for the most 873

recorded species, since we obtained rare records of the most sensitive ones. Our results 874

must serve as a baseline for future mammals’ population monitoring in semiarid regions, 875

as well as for the expansion of protected areas and degraded vegetation restoration in 876

Caatinga. 877

Keywords: Bayesian occupancy models; Caatinga; Dry tropical forest; Extreme drought; 878

Terrestrial mammals. 879

880

Introduction 881

Drylands cover approximately 41% of Earth's surface (Niemeijer et al., 2005) and 882

are among the most threatened and least known environments in the world (Sunderland 883

et al., 2015; Banda et al., 2016). The association between low productivity and high rates 884

of human occupation has led to high levels of degradation (Niemeijer et al., 2005; Davies 885

et al., 2012). Extensive livestock farming, for example, is one of the most widespread 886

human activities in arid and semiarid regions, where is 50% of all cattle in the world 887

(Niemeijer et al., 2005). In this scenario, where natural resources play a key role in the 888

local economy and combating poverty (Davies et al., 2012), the growing impacts of 889

human activities on wildlife and which semiarid landscapes’ attributes guarantee the 890

persistence of the species still poorly understood (Drouilly et al., 2018). 891

Arid and semiarid environments challenge mammals to adapt to extreme conditions 892

(Stoner and Timm, 2010; Astete et al., 2016), making it harder for animals to resist the 893

intense human pressures in these places. Many mammals, for example, persist in semiarid 894

conditions under low population densities and with increased nocturnal activity (Bennie 895

et al., 2014; Jędrzejewski et al., 2017; Santini et al., 2018), usually occupying 896

Page 149: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

145

environments with forest structure to take refuge and obtain better resources (Stoner and 897

Timm, 2010). In this scenario, medium to large-sized mammals (> 1 kg) are especially 898

vulnerable due to their generally higher food and habitat requirements (Stoner and Timm, 899

2010; Astete et al., 2017), besides they are heavily hunted (Benítez-López et al., 2017). 900

At the regional level, for instance, jaguar (Panthera onca) populations are less resistant 901

to human persecution in the driest regions of Venezuela, since poor environmental quality 902

makes the recovery of impacted populations difficult (Jędrzejewski et al., 2017). 903

The seasonally dry tropical forest of northeastern Brazil (Caatinga) is one of the most 904

diverse and populous semiarid environments in the world, harboring 28 million 905

inhabitants (Silva et al., 2017). In this ecoregion, large and iconic Neotropical mammals 906

such as top predators (Panthera onca and Puma concolor) and ungulates (Tayassu pecari 907

and Pecari tajacu) still persist (Carmignotto and Astúa, 2017), however, they restricted 908

to the small number of protected and less impacted sites of this ecosystem. Indeed, less 909

than 2% of the Caatinga’s territory is fully protected (Fonseca et al., 2017), and the 910

remaining original vegetation that covers 50% of the region (Antongiovanni et al., 2018) 911

is under high levels of chronic anthropogenic disturbance (Ribeiro et al., 2015; 912

Antongiovanni et al., in press) such as the overgrazing promoted by 19 million goats and 913

sheep present in this semiarid region (Silva et al., 2017). Unlike strictly forest 914

environments, the Caatinga is covered by a mosaic of shrub formations and patches of 915

dry forests and woody vegetation that are distributed according to environmental and 916

anthropic factors (Velloso et al., 2002; Silva et al., 2017), since chronic anthropogenic 917

disturbance has converted more accessible forested environments into open shrub 918

formations (Ribeiro et al., 2015). In addition, between 2012 and 2017, the region 919

experienced the most intense drought in the last decades, which tends to become more 920

frequent with climate change (Brito et al., 2018). 921

Page 150: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

146

It is necessary, however, to better understand how medium to large-sized mammals 922

persist in semiarid landscapes under intense anthropogenic disturbance and long periods 923

of extreme resource scarcity (Drouilly et al., 2018), especially bearing in mind that both 924

factors tend to become more common. This knowledge is essential for the conservation 925

of these environments considering the ecological roles played by mammals in ecosystem 926

functioning and forest regeneration (Magioli et al., 2020), as well as being urgent for the 927

compatibility of human activities that rely on natural resources with biodiversity 928

conservation. 929

In this study, we investigated the occupancy of medium to large-sized mammals in a 930

Brazilian Caatinga landscape marked by intense and historical anthropogenic 931

disturbances, mainly through extensive cattle raising. Specifically, with data collected 932

during the sixth year of a long drought period, we investigated the relative effects of 933

attributes related to anthropogenic disturbance and environmental predictors on mammal 934

occupancy using Bayesian hierarchical multi-species modelling. 935

Site occupancy is an ecological parameter widely used for investigating habitat use 936

and monitoring the status of animal populations through hierarchical models (Ferreira et 937

al., 2017; Drouilly et al., 2018). This approach does not require specimen 938

individualization, while it considers imperfect detection and allows modeling of predictor 939

covariate effects from multiple sampling (Mackenzie et al., 2002). These hierarchical 940

models have been extended to a multi-species approach that allows for further 941

understanding of community occurrence and richness patterns including those rare and 942

low-deteced species, thereby improving species-specific estimates from whole 943

community data (Dorazio and Royle, 2005; Royle and Dorazio, 2008; Zipkin et al., 2010). 944

We expected a lower mammal’s occurrence in locations closer to human residences 945

and to roads due to increased hunting and habitat disturbances (Benítez-López et al., 946

Page 151: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

147

2017). Cattle, in turn, could displace wild species spatially or temporally, through 947

environmental degradation, competition for space and resources, and through an 948

increased probability of interaction with human ranchers (Pudyatmoko, 2017; Gaynor et 949

al., 2018). Finally, we expected that more arboreal and productive environments, 950

generally related to drainage (riparian habitats) and on the humid slopes of hills and 951

mountains, will benefit the persistence of the species, as these places may represent better 952

resources and refuges (Stoner and Timm, 2010), as well as being less accessible to human 953

activities (Lopes et al., 2017). 954

955

Methods 956

Study area 957

This study was conducted in a landscape between Curaçá and Juazeiro 958

municipalities, in the north of the Bahia state, northeastern Brazil (Fig. 1). Recently, two 959

protected areas have been established in the region: the Blue Macaw Environmental 960

Protection Area (89,996 ha) and Wildlife Refuge (29,986 ha). Both reserves were created 961

to protect the remaining habitats that historically housed the last population of the blue 962

macaw (Cyanopsitta spixii), currently extinct in the wild, and where its reintroduction is 963

planned for the coming years. The climate of the region is semiarid, with high 964

temperatures (21.1 − 30.1 °C, annual average: 24.9 °C) and one of the lowest annual 965

average rainfall of the Caatinga (452 mm) (Freitas et al., 2005). This region was one of 966

the most affected by the intense drought that occurred between 2012 and 2017 (Brito et 967

al., 2018). 968

Regarding vegetation in our study area, in the flatter, low-lying places, there is 969

mainly shrubby vegetation, while in higher altitude forested formations predominate, with 970

denser and arboreal vegetation. Along rivers and streams, gallery forests predominate, 971

Page 152: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

148

where large trees of Tabebuia aurea can reach up to 20 m height (Freitas et al., 2005). 972

The exploitation and degradation of native vegetation in the region are historic and 973

intense, either for domestic use by the various existing communities or as food for the 974

abundant herds of extensively raised cattle and spectially goats and sheep, which in the 975

region reach the largest abundances in Brazil (IBGE, 2016). 976

977

978

Fig. 1. Study area where medium to large-sized mammals were surveyed in an overgrazed 979

semiarid landscape in Caatinga dry forest, northeastern Brazil. The 60 camera trap stations and 980

the polygons of the newly created protected areas are shown (Environmental Protection Area and 981

Wildlife Refuge of the Blue Macaw, Área de Proteção Ambiental - APA and Refúgio de Vida 982

Silvestre - RVS da Ararinha Azul, respectively) in northern Bahia, northeathern Brazil. 983

984

Data collection 985

We used automatic camera traps (Bushnell Essential E2 and Bushnell Trophy Cam 986

HD) triggered by heat and motion to study the mammal presence. We followed the 987

Tropical Ecology Assessment and Monitoring Network - TEAM (2011) protocol for 988

Page 153: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

149

surveying terrestrial vertebrates in tropical forests. We established 60 sample stations 989

seeking to establish a minimum distance of 1.5 km between nearest. The stations were 990

established considering the possibility of access, seeking to homogeneously cover the 991

main environments (riparian forest, shrub, and arboreous vegetation), as well as covering 992

the altitudinal gradient of the area, as suggested by TEAM (2011). We installed camera 993

traps on human and animal trails (livestock and wild mammals), 30-40 cm from the 994

ground, programmed to shot 2 or 3 pictures, with at least 5 minutes intervals, running 24 995

hours. We concentrated sampling in dry months of the year (October to December) when 996

there is little or no rainfall in the region. We did not use any bait for animals. Due to 997

equipment restrictions, sampling was performed in two blocks of 30 sample stations each 998

time, trying to keep the equipment at least 30 days in each sample station. We have 999

accumulated a sampling effort of 2,250 camera-days, with the 60 camera trap stations 1000

remaining on average 37.5 days in the field (standard deviation: 2.9; range: 17-40 days). 1001

Data analysis 1002

Descriptive analysis 1003

We calculated the capture success or RAI (relative abundance index) as the ratio 1004

between the number of records and sampling effort times 100, for each species (Rovero 1005

et al., 2017). For all analyzes, we used records considered to be independent, those over 1006

60 minutes (1 h) between consecutive detections of the same species at the same station 1007

(i.e. Rovero et al., 2017). The efficiency of our effort to characterize the mammalian 1008

community was ascertained through the species accumulation curve based on 1009

independent records and randomized 1000 times in the free program i-NEXT (Chao et 1010

al., 2016). We obtained the naïve occupancy (observed) as a simple proportion of 1011

sampling sites in which each species was recorded in relation to total sampling sites 1012

surveyed (Zimbres et al., 2018). 1013

Page 154: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

150

Occupancy and detection covariates 1014

Occupancy site modeling allows the investigation of which biological factors may 1015

explain the occupancy of a species (i.e., habitat use), while correcting for the probability 1016

of the species being detected (i.e., sampling bias) when present, allowing those 1017

probabilities to be a function of site or sample covariates (Mackenzie et al., 2002). We 1018

listed eight environmental and anthropic covariates that are potentially capable of 1019

explaining the occupancy probabilities of the sampled species (Table 1). Among 1020

anthropic covariates are the distance of nearest residence, nearest road distance, and 1021

relative abundance index (RAI) of goats, sheep, and cows (cattle) (Table 1), while forest 1022

cover, elevation, terrain roughness, and temporary watercourse distance were the 1023

environmental covariates investigated (see Table 1 for details). 1024

Regarding detection, all camera traps were installed on pre-existing trails in the area, 1025

however, these trails varied in width and intensity of use, and this may influence species 1026

detectability (Ferreira et al., 2017). Therefore, we classified as main trails those relatively 1027

wide (i.e. > 0.5 m) and with signs of intense use by animals (wild or domestic), while the 1028

secondary trails (i.e. < 0.5 m) were those less marked and trails that are usually branches 1029

of a main trail or road. We assumed that wider trails could benefit the detection of species 1030

that often move along trails or roads, such as carnivores (Goulart et al., 2009; Harmsen et 1031

al., 2010). 1032

We investigated possible correlations between covariates using Pearson's correlation 1033

coefficient in program R (R Core Team, 2016) and covariates with r > | 0.6 | were 1034

excluded from modeling. Altitude was strongly correlated with forest cover, river 1035

distance, and terrain roughness (Table S1), so it was excluded from modeling. 1036

1037

1038

Page 155: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

151

Table 1 1039

Covariates used to model detection and occupancy probabilities of medium to large-sized wild mammals in an overgrazed semiarid 1040

landscape in Caatinga dry forest, northeastern Brazil. 1041

Covariate (code) Description Parameter

of interest

Expected

effect

Mean

(SD; min. – max.)

Source

Trail type (trail) Main trails are wider (e.g.> 0.5 m)

and apparently more used by animals and people than secondary

trails (e.g. <0.5 m)

Detection + / - 1 (principal trail),

0 (secondary trail)

Classification in the

field

Forest cover (forest) Percentage of vegetation with a predominance of continuous

canopy (forested steppe-savannah

and seasonal semideciduous and

deciduous forest) within 1 km of camera (buffer)

Occupancy + 31.9% (34.2; 0 – 99.3)

MAPBIOMAS

Elevation (elevat) Elevation average within 1 km of

camera (buffer)

Occupancy + 459 m

(69.4; 367 – 619)

SRTM

Terrain roughness (rough) Altitude standard deviation within 1

km of camera (buffer)

Occupancy + 13.4

(19.4; 1.6 – 76.5)

DPI/INPE

River or stream distance (river) Euclidean distance to the nearest waterway, usually temporary

Occupancy + 1319.2 m (1363.7; 0 – 7106)

Measured on Google Earth Pro

Livestock abundance (livest) Relative abundance index (RAI) of

cows, sheep and goats (together)

Occupancy - 104.4 records/100

camera-days

(112.9; 0 – 469.4)

Camera trapping

data

Proximity to a road (road) Euclidean distance to the nearest

road

Occupancy - 818.3 m

(742.6; 0 – 3029)

Measured on

Google Earth Pro

Proximity of a residence (house) Euclidean distance to the nearest human residence

Occupancy - 2476 m (2085.2; 270 – 8112)

Measured on Google Earth Pro

1042

Page 156: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

152

Modelling framework 1043

We applied the model developed by Zipkin et al. (2009), with modifications, to 1044

determine site-specific occupancy (𝒛) for each species (𝒊 = 𝟏, 𝟐, … , 𝑵) at every site (𝒋 =1045

𝟏, 𝟐, … , 𝑱). In this form, 𝒛(𝒊, 𝒋) = 𝟏 if species i occurred at site j, and 𝒛(𝒊, 𝒋) = 𝟎, if not. 1046

Thus, we can specify the model for occurrence as a Bernoulli random variable 1047

𝒛(𝒊, 𝒋)~𝑩𝒆𝒓𝒏(𝝍𝒊,𝒋), where 𝝍𝒊,𝒋 is the probability of that species i occurs at site j. 1048

However, we do not observe directly this state variable 𝒛(𝒊, 𝒋), instead, we gather 1049

information on observational data, 𝒙(𝒊, 𝒋, 𝒌), for species i, at site j during sample k. This 1050

observational data is also considered as a Bernoulli random variable if species i is present 1051

𝒛(𝒊, 𝒋) = 𝟏 or, otherwise, 𝒙(𝒊, 𝒋, 𝒌) = 𝟎 if 𝒛(𝒊, 𝒋) = 𝟎. This is a logical statement because 1052

it is not possible to observe species i at site j during any sample k if that species does not 1053

occur at site j in the first place. Hence, the model of the observational process is specified 1054

as: 𝒙(𝒊, 𝒋, 𝒌)~𝑩𝒆𝒓𝒏(𝜽𝒊,𝒋,𝒌 ∗ 𝒛(𝒊, 𝒋)) where 𝜽𝒊,𝒋,𝒌 represents the probability of detection for 1055

species i at site j in the kth sampling period, conditional on the species being present (i.e. 1056

𝒛(𝒊, 𝒋) = 𝟏). 1057

The effects of a site (environmental and anthropogenic) and survey (trail) covariates 1058

on both occupancy and detection probabilities, 𝝍 and 𝜽, respectively, can be incorporated 1059

in the linear model in the logit scale: 𝒍𝒐𝒈𝒊𝒕(𝝍𝒊,𝒋) = 𝒖𝒊 + 𝜶𝒋 and 𝒍𝒐𝒈𝒊𝒕(𝜽𝒊,𝒋) = 𝒗𝒊 + 𝜷𝒋, 1060

where 𝒖𝒊 and 𝒗𝒊 are different species effects and 𝜶𝒋 and 𝜷𝒋 are habitat effects on 1061

occupancy and detection respectively. Hence the model for the occurrence of species i at 1062

site j is: 1063

𝒍𝒐𝒈𝒊𝒕(𝝍𝒊,𝒋) = 𝒖𝒊 + 𝜶𝟏𝒊𝒇𝒐𝒓𝒆𝒔𝒕𝒋 + 𝜶𝟐𝒊𝒓𝒐𝒖𝒈𝒉𝒋 + 𝜶𝟑𝒊𝒉𝒐𝒖𝒔𝒆𝒋 + 𝜶𝟒𝒊𝒍𝒊𝒗𝒆𝒔𝒕𝒋1064

+ 𝜶𝟓𝒊𝒓𝒊𝒗𝒆𝒓𝒋 + 𝜶𝟔𝒊𝒓𝒐𝒂𝒅𝒋 1065

Considering closure of the community, i.e. there was no increases or decreases in the 1066

species numbers during the study, the detection model, then, is specified as: 1067

Page 157: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

153

𝒍𝒐𝒈𝒊𝒕(𝜽𝒊,𝒋,𝒌) = 𝒗𝒊 + 𝜷𝟏𝒊𝒕𝒓𝒂𝒊𝒍𝒋 1068

We then considered a community-level response to all variables by assuming that 1069

occupancy and detection on a species level (𝒖𝒊, 𝒗𝒊) are random effects regulated by a 1070

“hyper-parameter” (Zipkin et al. 2009, 2010), for example, 𝜶𝟏𝒊~𝑵(𝝁𝜶𝟏, 𝝈𝜶𝟏), where 1071

𝝁𝜶𝟏 is the mean effect for parameter 𝜶1𝒊 (forest cover) across all species, and 𝝈𝜶1 is the 1072

standard deviation. In this manner, the mean response, and its variance, for each 1073

occupancy and detection covariates, 𝜶𝒋 and 𝜷𝒋, for all species, is the hyper-parameter for 1074

the community distribution. In other words, if the estimative of a covariate hyper-1075

parameter is deemed significant (i.e. its posterior distribution does not overlap 0), it would 1076

suggest that the mean occupancy and/or detection probabilities for every species – the 1077

community – is a response to that specific covariate. Although all recorded species were 1078

considered in community modeling and to estimate the occupancy and detection 1079

probabilities, in relation to species-specific responses to covariates, we considered only 1080

species with more than five records in the interpretation of species-level results. 1081

All model parameters and analysis were estimated using a Bayesian framework, 1082

through the package R2jags within the R3.4.4 (R Core Team, 2016), which implemented 1083

a Markov Chain Monte Carlo (MCMC) to estimate the posterior distribution of the 1084

variables. We used vague priors for hyper-parameters (see code in supplementary 1085

material) and random initial values for all variables. We run 3 chains with 15,000 1086

iterations, discarding the first 3,000 as burn-ins. Convergence was checked visually and 1087

through the Gelman-Rubin statistic (Rhat, where values �̂� < 𝟏. 𝟏 suggests convergence; 1088

Kéry et al., 2010). We also assessed model fitness using a Bayesian P-value approach 1089

(Zipkin et al., 2010), described in the supplementary material. 1090

1091

Page 158: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

154

Results 1092

General results 1093

We obtained a total of 3082 records of wild and domestic mammals; of these, 566 1094

records were from 12 medium to large-sized wild mammal species (Table 2, Fig. S1), and 1095

other 69 records were from small mammals (Galea spixii [33 records], Kerodon rupestris 1096

[25], Thrichomys sp. [7], and non-identified species [4]). Among the recorded species, 1097

three are considered threatened globally, nationally or regionally (Table 2). The lack of 1098

stabilization of the species accumulation curve suggests that more species occur in the 1099

area (Fig. S2). In addition to wild species, we obtained 2,447 records of domestic 1100

mammals (goats [1745], sheep [512], cows [108], donkeys [59], horses [10], dogs [12], 1101

and cat [1]), which is more than 300% higher than records of medium to large-sized wild 1102

mammals, besides six people records. 1103

Cerdocyon thous was by far the most recorded species, representing just over 50% 1104

of medium to large-sized wild mammal records, followed by Dasypus novemcinctus, 1105

Euphractus sexcinctus and Leopardus tigrinus (Table 2). Following Zimbres et al. (2018), 1106

of the remaining species, three of them were rare (< 30 records) and the other five species 1107

were recorded very rarely (< 10 records) (Table 2).1108

Page 159: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

155

Table 2 1109

Checklist of medium to large-sized wild mammal species detected by camera trapping in an overgrazed semiarid landscape in Caatinga dry forest, 1110

northeastern Brazil. 1111

Taxon Common name Body mass

(Kg) Feeding

guild Conservation status

(Bahia/Brazil/IUCN) Records RAI

PILOSA

Tamandua tetradactyla Southern tamanduá 5.2 In LC/LC/LC 18 0.80

CINGULATA

Dasypus novemcinctus Nine-banded armadillo 3.6 In/On LC/LC/LC 85 3.78

Euphractus sexcinctus Yellow armadillo 5.4 In/On LC/LC/LC 66 2.93

CARNIVORA

Leopardus tigrinus Nothern tiger cat 2.2 Ca VU/EN/VU 40 1.78

Herpailurus yagouaroundi Jaguarundi 4.5 Ca VU/VU/LC 7 0.31

Puma concolor Puma 46 Ca VU/VU/LC 1 0.04

Cerdocyon thous Crab-eating fox 6.5 In/On LC/LC/LC 317 14.09

Conepatus amazonicus Striped hog-nosed skunk 2.4 In/On LC/LC/LC 11 0.49

ARTIODACTYLA

Mazama gouazoubira Gray brocket deer 20 Fr/Hb LC/LC/LC 17 0.76

Pecari tajacu Collared peccary 26 Fr/Hb NT/LC/LC 1 0.04

RODENTIA

Dasyprocta nigriclunis Highland black-rumped agouti

3 Fr/Gr LC/LC/LC 2 0.09

DIDELPHIMORPHIA

Didelphis albiventris White-eared opossum 1.6 Fr/On LC/LC/LC 1 0.04

Conservation status are based on Cassano et al. (2017, Bahia state), MMA (2014, Brazil) and IUCN (2020). Body mass and feeding guild are based on Paglia et al. 1112 (2012) (Fr = frugivore; On = omnivore; In = insectivore; Myr = myrmecophage; Hb = herbivore grazer; Gr = granivore; Ca = carnivore.). RAI (relative abundance 1113 index = detection events per camera trap days x 100). 1114

Page 160: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

156

Occupancy and detection patterns 1115

Considering the naïve occupancy rate, C. thous was also the most widely distributed 1116

species in our study area, being registered in 79% of the sampled sites (Table 3), while 1117

Euphractus sexcinctus was detected in 50% of the sites, and the other species occurred in 1118

35% or less of the sites, with four of them being record at a single sample site (2%) (Table 1119

3). Regarding the average occupancy, the species exhibited a dissimilar pattern, varying 1120

from 0.89 for E. sexcinctus to 0.13 for D. nigriclunis (Table 3). Most of the recorded 1121

species showed low average detection (< 0.10; Table 3), while C. thous exhibited the 1122

highest detection rate (0.48; Table 3). 1123

Among the environmental and anthropogenic covariates that we hypothesized to be 1124

able to explain the occupancy of medium to large-sized wild mammals, only forest cover 1125

(forest) influenced significantly and positively the occupancy rate of five out of 12 1126

analyzed species: C. thous, L. tigrinus, M. gouazoubira, D. novemcintus, and H. 1127

yagouaroundi (Table 4; Fig. 2). In addition, community-level occupancy was also 1128

correlated with the percentage of forested habitat on the sampled site (Table 4). For all 1129

other predictors evaluated, besides forest cover for some species, the confidence intervals 1130

of beta coefficients overlapped zero, which suggests the absence of significant effect 1131

(Table 4). Regarding the detection probability, only C. thous and E. sexcinctus presented 1132

a significant variation in their detection between trail types (Table 4; Fig. 3), both species 1133

were more detected in main trails (wider) than on secondary trails, which also influenced 1134

the community-level detection (Table 4). 1135

1136

1137

1138

1139

Page 161: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

157

Table 3 1140

Naïve occupancy (observed) and average occupancy (ѱ) and detection (Ɵ), and their average 1141

standard deviations (SD), of medium to large-sized mammal species recorded by camera trapping 1142

in an overgrazed semiarid landscape in Caatinga dry forest, northeastern Brazil. The estimates 1143

come from the model with all the variables investigated. 1144

Species Naïve

occupancy ѱ (SD) Ɵ (SD)

C. thous 0.79 0.81 (0.10) 0.48 (0.04)

E. sexcinctus 0.50 0.89 (0.14) 0.13 (0.02)

D. novemcinctus 0.35 0.41 (0.16) 0.33 (0.06)

L. tigrinus 0.33 0.58 (0.18) 0.12 (0.04)

T. tetradactyla 0.22 0.86 (0.20) 0.05 (0.02)

M. gouazoubira 0.12 0.26 (0.10) 0.14 (0.04)

C. amazonicus 0.12 0.65 (0.32) 0.05 (0.03)

H. yagouaroundi 0.12 0.43 (0.26) 0.04 (0.02)

D. nigriclunis 0.02 - -

D. albiventris 0.02 - -

P. tajacu 0.02 - -

P. concolor 0.02 - -

1145

1146

1147

Page 162: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

158

Table 4 1148

Regression coefficients (and 95% credible confidence intervals) for all covariates tested to influence detection probability (Ɵ) and occupancy probability (ѱ) of 1149

medium to large-sized mammal species and entire community in an overgrazed semiarid landscape in Caatinga dry forest, northeastern Brazil. Coefficients that 1150

do not overlap zero considering their 95% Bayesian confidence intervals are shown in bold. Estimates are shown only for species with more than five records, 1151

but all 12 species were considered in the modeling. The estimates come from the model with all the variables investigated. 1152

Detection (Ɵ) Occupancy (ѱ)

Species Trail Forest Rough River Livest Road House

C. thous

0.40

(0.18 − 0.62)

3.03

(0.95 − 6.15)

0.41 (-0.77 − 2.08)

-0.67 (-1.65 − 0.17)

0.15 (-0.52 − 0.87)

0.12 (-0.84 − 1.40)

0.11 (-0.85 − 1.32)

D. novemcinctus

0.25

(-0.10 − 0.61) 1.15

(0.05 − 3.78)

0.56

(-0.21 − 1.76)

-0.37

(-1.22 − 0.39)

0.286

(-0.30 − 1.01)

-0.37

(-1.31 − 0.41)

-0.38

(-1.45 − 0.41) E. sexcinctus

0.61

(0.28 − 0.97)

2.51

(-0.06 − 6.42)

-0.52

(-3.38 − 1.95)

-0.24

(-1.59 − 1.31)

0.21

(-0.89 − 1.46)

0.40

(-1.11 − 2.56)

-0.57

(-2.77 − 1.47)

L. tigrinus

0.13

(-0.26 − 0.51) 3.60

(1.27 − 7.12)

-0.01

(-1.65 − 2.29)

-0.45

(-1.47 − 0.50)

0.36

(-0.41 − 1.38)

0.28

(-0.87 − 1.80)

-0.69

(-2.48 − 0.75) T. tetradactyla

0.32

(-0.10 − 0.76)

2.62

(-0.59 − 7.73)

0.26

(-1.99 − 3.11)

-0.26

(-1.67 − 1.28)

0.23

(-0.97 − 1.48)

0.27

(-1.65 − 2.57)

-0.07

(-2.39 − 2.44)

M. gouazoubira

0.18 (-0.33 − 0.66)

4.79

(1.87 − 11.33)

-0.67 (-3.56 − 1.03)

-0.12 (-1.39 − 1.55)

0.09 (-1.13 − 1.17)

0.30 (-1.19 − 2.14)

0.12 (-1.25 − 1.96)

C. amazonicus

0.16

(-0.37 − 0.67)

2.31

(-1.15 − 8.26)

0.53

(-1.57 − 3.23)

-0.76

(-2.84 − 0.69)

0.16

(-1.03 − 1.42)

0.17

(-1.72 − 2.47)

-0.41

(-2.64 − 1.57)

H. yagouaroundi

0.42 (-0.13 − 1.04)

3.26

(0.69 - 7.31)

-0.53 (-3.87 - 2.12)

-0.58 (-2.26 - 0.79)

0.03 (-1.25 - 1.10)

0.77 (-0.63 − 3.12)

-0.24 (-2.08 − 1.54)

Community

0.305

(<0.01 − 0.60)

3.05

(1.21 − 6.50)

-0.02

(-1.59 − 1.30)

-0.43

(-1.32 − 0.38)

0.17

(-0.52 − 0.87)

0.16

(-0.77 − 1.27)

-0.27

(-1.48 − 0.90)

1153

Page 163: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

159

Fig. 2 Relationship between forest cover and estimated occupancy probability (with their 95%

Bayesian confidence intervals) of medium to large-sized wild mammals in an overgrazed semiarid

landscape in Caatinga dry forest, northeastern Brazil. Only significant species-specific responses

to the investigated predictors are presented: (a) Cerdocyon thous, (b) Dasypus novemcinctus, (c)

Leopardus tigrinus, (d) Mazama gouazoubira, and (e) Herpailurus yagouaroundi. Illustrations

by Aldo Chiappe (use permitted).

Page 164: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

160

Fig. 3 Effect of trail type (main and secondary) on the detection probability of medium to large-

sized mammals in an overgrazed semiarid landscape in Caatinga dry forest, northeastern Brazil.

Only significant species-specific responses to the trail type are presented: (a) Cerdocyon thous,

(b) Euphractus sexcinctus. The bars represent the 95% Bayesian confidence intervals.

Discussion

Mammals’ occupancy and detection patterns

The proportion of forested habitat was important to explain the medium to large-

sized mammals’ occupancy in a landscape of the Caatinga dry forest historically impacted

by intense grazing and dominated by shrub and more sparse vegetation. Tallest and

densest vegetation is an important predictor of terrestrial mammal’s occurrence in

different tropical ecosystems (Desbiez et al., 2009; Vynne et al., 2011; Nagy-Reis et al.,

2017; Goulart et al., 2009). Structurally more complex habitats can provide better food

resources and shelters for rest and thermoregulation to mammals, especially in more

modified landscapes and in periods of resource scarcity (Debiez et al., 2009; Vynne et al.,

2011). In seasonally dry tropical forests, forested patches associated with riparian and

higher altitude environments conserve moisture and harbor strictly forest mammals,

especially during periods of greatest resource scarcity (Stone and Timm, 2011), but they

Page 165: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

161

also benefit more generalist species, as shown here. In the case of elevated and sloping

areas, these environments may guarantee greater protection against anthropogenic threats

due to less accessibility (Morato et al., 2014; Lopes et al., 2017).

Our results indicate that in a context of disturbance and resource scarcity the entire

community of medium to large-sized mammals can benefit from a greater proportion of

forested habitat, but the effect was especially strong for Cerdocyon thous, Mazama

gouazoubira, Dasypus novemcinctus, Leopardus tigrinus and Herpailurus yagouaroundi,

including from generalist to threatened species. C. thous is a generalist and tolerant of

anthropogenic impacts (Dias and Bocchiglieri, 2016; Dias et al., 2019a), which is

reinforced by its arge amount of records and considerable high occupancy rate even in

non-forested sites found here. However, more forested environments can provide greater

food availability for these species during intense drought periods, when the insect

abundance, its main food item during the dry season (Dias and Bocchiglieri, 2016), falls

significantly (Vasconcellos et al., 2010).

Mazama gouaozubira is known as an ecologically flexible deer, often preferring open

and managed areas, but generally depending on forest patches as a refuge (Ferreguetti et

al., 2015; Rodrigues et al., 2017). However, our results suggest that in highly disturbed

semiarid environments the relationship of this species with more forested habitats appears

to be stronger. In fact, other studies have suggested this (Astete et al., 2016), which may

be related to its dependence of more abundant leaves and fruits on the woody vegetation,

especially in periods of drought and greater resource scarcity, when competition with

livestock may be more intense (Serbent et al., 2011). Similarly, although D. novemcinctus

is relatively abundant and habitat generalist in some environments (Michalski and Peres,

2007; Zimbres et al., 2018), the more facility for thermoregulation and greater

invertebrate availability may favor the occurrence of these species within forested areas

Page 166: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

162

(Goulart et al., 2009; Ferreguetti et al., 2016; Rodrigues and Chiarello, 2018). Dense

environments can also guarantee a better capacity for camouflage and escape for prey

species (Goulart et al., 2009). In addition, these places can protect species such as M.

gouazoubira and D. novemcinctus against intense hunting practiced in the Caatinga that

has led some populations to local extinction (Bezerra et al., 2014; Alves et al., 2016;

Marinho et al., 2018a).

Among the species most benefited by the most forested areas area also small wild

cats threatened with extinction. L. tigrinus and H. yagouaroundi are threatened mainly by

habitat loss, human persecution, roadkill, and negative interactions with domestic

carnivores (Oliveira et al., 2013; Giordano, 2016). In the Caatinga, a study in 10 different

landscapes concluded that the occurrence of this species is higher in more forested

habitats and far from human settlements, where there would be better resources and

refuges against anthropic threats (Marinho et al., 2018b). In the case of the less abundant

H. yagouaorundi, its preference for forested habitats is less known in the Caatinga but

corroborates the greater use of deciduous forests with undergrowth in dry environments

(Giordano, 2016). Another factor that has been used to explain the neotropical wild cat’s

abundance and distribution is its potential negative interaction with ocelot (Leopardus

pardalis) (Oliveira et al., 2013; Marinho et al., 2018b; Dias et al., 2019b). The absence

of records from this dominant mesopredator did not allow us to investigate this possible

effect, but on the other hand it suggests an ocelot’s low density in our study area, which

could benefit smaller wild cats.

Puma concolor, Pecari tajacu, and Dasyprocta nigriclunis are among the least

recorded species in our study area and were recorded only in forested sites associated

with mountains, corroborating the relevance of this habitat for the persistence of less

tolerant species. Indeed, these species are among the most affected by habitat disturbance

Page 167: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

163

and human persecution in the Caatinga (Alves et al., 2016; Bezerra et al., 2014; Marinho

et al., 2018a, 2019). The extremely low number of records of these species is a cause for

concern and suggests that they may be functionally extinct or shrinking for this if no

action is taken to reverse this scenario (Tilker et al., 2019). This can lead to the loss of

important ecological functions in tropical regions such as large seed dispersion and

population control of prey and mesocarnivores (Magioli et al., 2020).

Despite being one of the most abundant species in Caatinga and other ecosystems

for being omnivorous and tolerant (Freitas et al., 2005; Bezerra et al., 2014; Marinho et

al., 2018a), Didelphis albiventris was only recorded once during our study precisely at a

forested site. Among the species with more than 10 records, Conepatus amazonicus and

Euphractus sexcinctus are habitat generalists or related with more open areas (Dias, 2017;

Ferreguetti et al., 2016) and did not have their distribution explained by any factors

analyzed here. On the other hand, the scansorial Tamandua tetradactyla is usually

associated with forested environments (Desbiez et al., 2009), but it was not associated

with this habitat type.

The distance from rivers and streams was not an important predictor to explain the

mammal occurrence, probably because in many stretches of these environments the

vegetation is restricted to a small and degraded open forest strip because of anthropogenic

pressure like grazing cattle. However, considering other studies and that the forest cover

category used here includes riparian forests, we believe that these places are important

for species’ movement between most degraded and preserved environments in the region

(Goulart et al., 2009; Ferreguetti et al., 2016; Rodrigues and Chiarello, 2018; Zimbres et

al., 2018), functioning as ecological corridors, especially in semiarid environments

(Shuette et al., 2013; Drouilly et al., 2018).

Page 168: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

164

In landscapes with high modification or historical and intense anthropogenic

disturbance, it is possible that species pass through an environmental filter and that only

those most tolerant to degradation persist with viable populations, becoming true

“survivors” (Prugh et al., 2008). This may explain the effect’s absence of the investigated

anthropogenic factors on species occupancy in our study area, while these are the main

predictors of abundance and distribution of large and medium-sized mammals in other

tropical landscapes (Nagy-Reis et al., 2017; Tilker et al., 2019; Dias et al., 2019a).

Another possibility is that anthropic factors not investigated here may affect the species’

distribution. In a study in the rainforest of South Asia, Tilker et al. (2019) demonstrated

that dense forests explained the mammal’s distribution in degraded habitats while hunting

pressure measured through village density was more important in conserved

environments. Studies in more preserved areas of the Caatinga, where sensitive species

such as Panthera onca still occur, have found negative anthropic effects on large

mammals’ occupancy (Astete et al., 2017; Dias et al., 2019b). Similarly, an investigation

that included landscapes with different integrity degrees, detected this negative

anthropogenic effect on L. tigrinus in the Caatinga (Marinho et al., 2018b). According to

our results, it is possible that “surviving” species in semiarid environments may be less

impacted using more forested patches and beyond that, taking into account that human

activities occur mainly during daytime (except hunting), greater nocturnality may favor

this coexistence (Gaynor et al., 2018), what should be investigated in future studies.

Additionally, considering the possible impacts of the livestock on vegetation and

fauna of drylands (Tabeni and Ojeda, 2003; Yoshihara et al., 2008; Marinho et al., 2016;

Pudyatmoko, 2017), it is likely that a possible significant effect of livestock disturbance

on native species’ occupancy in Caatinga should be better detected at controlled levels of

grazing pressure, while in our study area it might be widespread in the landscape. So the

Page 169: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

165

wild mammal species that occur in this landscape in apparent greater abundance must be

those best able to resist the chronic anthropogenic disturbance using mechanisms as the

higher use of forested and more productive habitats to persist.

In methodological terms, the trail type affected the detection of C. thous and E.

sexcinctus, as well as at the community level detection, with species being better detected

in wider and more intensively used by livestock trails. The positive effect of sampling

mammals on trails is well recognized but varies between species (Goulart et al., 2009;

Harmsen et al., 2010; Ferreira et al., 2017). Carnivores, for example, are best detected on

wide, long-established trails (Harmsen et al., 2010). C. thous and E. sexcinctus are two

species relatively tolerant to disturbance and seem to move better along more open trails,

which must be considered to optimize future sampling.

Conclusions and recommendations

The association between a minimum protocol for survey of tropical mammals

(TEAM, 2011) and Bayesian hierarchical multispecies occupancy modeling proved to be

efficient and must serve as a baseline for future mammals’ studies and population

monitoring programs in ecologically relevant, little known semiarid landscapes like ours.

This type of approach is especially important to obtain robust information on rare species’

ecology, which is essential to improve biodiversity conservation and management in

semiarid environments (Zipkin et al., 2010; Drouilly et al., 2018).

In this study, we assessed the occupancy patterns of medium to large-sized wild

mammals to understand how species persist in a semiarid region of great ecological

relevance historically impacted by anthropogenic disturbance, and which from 2012 to

2017 experienced the most severe drought of the last decades. Our results suggest that

more forested habitats can be an important refuge to terrestrial mammals in disturbed

semiarid landscapes, benefiting both generalist and threatened species. In this context,

Page 170: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

166

apparently more abundant species can be considered “survivors” while those more

sensitive are heading towards their functional extinction. Therefore, conservation

strategies for these species and their ecological functions must prioritize the maintenance

of forested habitats and restoration of degraded areas. The knowledge generated here is

especially important in a scenario of intensification of extreme drought events due to

climate change.

The conflict between extensive livestock farming and wildlife conservation is a

concern in semiarid landscapes worldwide (Tabeni and Ojeda, 2003; Kinnaird et al.,

2012), considering that herds are often the only income source for local people. In this

context, Kinnaird et al. (2012) suggest some actions to improve the coexistence between

people and wildlife in these places, which we adapted to our reality, as follows: a)

incentive to ecotourism and access of local residents to the gains with this activity; b)

assistance and incentive for the restoration of degraded areas; c) technical assistance and

credit to improve livestock farming efficiency, prioritizing ecologically more sustainable

techniques; and d) in the case of the landscape studied here, it is important to seek the

ensurance of effective protection of the more dense and forested vegetation remnants in

the mountains and riparian zones. This is essential considering that most of these

remnants are outside the recently created protected areas and that these places can serve

as refuge and source of wild species, besides still generate benefits for communities

through tourism to contemplate its relevant scenic beauty.

Acknowledgments

We are grateful to Ararinha na Natureza Project, carried out by the Centro Nacional

de Pesquisa e Conservação de Aves Silvestres (CEMAVE/ICMBio) and financed by Vale

through the Fundo Brasileiro para a Biodiversidade (Funbio). I would like to thank

Page 171: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

167

Cristine Prates, Sueli Damasceno, Damilys Oliveira, Mércia Milena, Tatiane Alves,

Rogério Santos, Paulo da serra, and Leomar Martins (Babá) for their important assistance

during data collection. We thank Virgínia Paixão, Fernanda Lamim, and Barbara Zimbres

for their support in text review or graphics’ elaboration. We would like to thank Claudia

Campos, Mauro Pichorim, Fabiana Rocha, and Rodrigo Massara for the valuable

suggestions that helped to improve the manuscript. EMV (#308040/2017-1) and CRF

(#305304/2013-5; 306812/2017-7) were supported by Conselho Nacional de

Desenvolvimento Científico e Tecnológico (CNPq) and PHM was supported by

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES;

financing code 001).

References

Alves, R.R.R.N., Feijó, A., Barboza, R.R.D., Souto, W.M.D., Fernandes-Ferreira, H.,

Cordeiro-Estrela, P., Langguth, A., 2016. Game mammals of the Caatinga biome.

Ethnobio. Conserv. 5, 1–51. https://doi.org/10.15451/ec2016-7-5.5-1-51

Antongiovanni, M., Venticinque, E.M., Fonseca, C.R., 2018. Fragmentation patterns of

the Caatinga drylands. Landscape Ecol. 33, 1353–1367.

https://doi.org/10.1007/s10980-018-0672-6

Astete, S., Marinho-Filho, J., Machado, R.B., Zimbres, B., Jácomo, A.T.A., Sollmann,

R., Tôrres, N.M., Silveira, L., 2017. Living in extreme environments: modeling habitat

suitability for jaguars, pumas, and their prey in a semiarid habitat. J. Mammal. 98,

464–474. https://doi.org/10.1093/jmammal/gyw184

Astete, S., Marinho-Filho, J., Machado, R.B., Zimbres, B., Jácomo, A.T.A., Sollmann,

R., Tôrres, N.M., Silveira, L., 2017. Living in extreme environments: modeling habitat

Page 172: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

168

suitability for jaguars, pumas, and their prey in a semiarid habitat. J. Mammal. 98,

464–474. https://doi.org/10.1093/jmammal/gyw184

Banda, R.K., Delgado-Salinas, A., Dexter, K.G., Linares-Palomino, R., Oliveira-Filho,

A., Prado, D., Pullan, M., Quintana, C., Riina, R., Rodríguez, G.M., Weintritt, J.,

Acevedo-Rodríguez, P., Adarve, J., Álvarez, E., Anairamiz, A.B., Arteaga, J.C.,

Aymard, G., Castaño, A., Ceballos-Mago, N., Cogollo, Á., Cuadros, H., Delgado, F.,

Devia, W., Dueñas, H., Fajardo, L., Fernández, Á., Fernández, M.Á., Franklin, J.,

Freid, E.H., Galetti, L.A., Gonto, R., González-M, R., Graveson, R., Helmer, E.H.,

Idárraga, Á., López, R., Marcano-Vega, H., Martínez, O.G., Maturo, H.M., McDonald,

M., McLaren, K., Melo, O., Mijares, F., Mogni, V., Molina, D., Moreno, N.P., Nassar,

J.M., Neves, D.M., Oakley, L.J., Oatham, M., Olvera-Luna, A.R., Pezzini, F.F.,

Dominguez, O.J.R., Ríos, M.E., Rivera, O., Rodríguez, N., Rojas, A., Särkinen, T.,

Sánchez, R., Smith, M., Vargas, C., Villanueva, B., Pennington, R.T., 2016. Plant

diversity patterns in neotropical dry forests and their conservation implications.

Science 353, 1383-1387. http://dx.doi.org/10.1126/science.aaf5080

Bennie, J.J., Duffy, J.P., Inger, R., Gaston, K.J., 2014. Biogeography of time partitioning

in mammals. P. Natl. Acad. Sci.-Biol. 111, 13727–

13732. https://doi.org/10.1073/pnas.1216063110

Bezerra, A.M.R., Lazar, A., Bonvicino, C. R., & Cunha, A. S. (2014). Subsidies for a

poorly known endemic semiarid biome of Brazil: non-volant mammals of an eastern

region of Caatinga. Zool. Stud. 53, 16. https://doi.org/10.1186/1810-522X-53-16

Carmignotto, A.P., Astúa, D., 2017. Mammals of the Caatinga: diversity, ecology,

biogeography, and conservation, in: Silva, J.M.C., Leal, I.R., Tabarelli, M. (Eds.),

Caatinga: The largest tropical dry forest region in South America. Springer

International Publishing, Cham, pp. 211-254.

Page 173: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

169

Cassano, C.R., Almeida-Rocha, J.M., Alvarez, M.R., Bernardo, C.S.S., Bianconi, G.V.,

Campiolo, S., Campos, C.B., Danilewicz, D., Falcão, F.C., García, F.V., Giné, G.A.F.,

Guidorizzi, C.E., Jerusalinsky, L., Pendu, Y.L., Marcondes, C.C., Melo, V.L., Mendes,

F.R., Miretzki, M., Neves, L.G., Oliveira, L.C., Pereira, A.R., Silva, K.F.M., Reis,

M.S., Vleeschouwer. K.M., Vieira, E.M., Ximenes, G.E.I., 2017. Primeira avaliação

do status de conservação dos mamíferos do estado da Bahia, Brasil. Oecol. Aust. 21,

156-170. 10.4257/oeco.2017.2102.06

Chao, A., Ma, K.H., Hsieh, T.C., 2016. iNEXT (iNterpolation and EXTrapolation)

Online: software for interpolation and extrapolation of species diversity.

http://chao.stat.nthu.edu.tw/wordpress/software_download/ (accessed 13 March 2020)

Davies, J., Poulsen, L., Schulte-Herbrüggen, B., Mackinnon, K., Crawhall, N., Henwood,

W.D., Dudley, N., Smith, J., Gudka, M., 2012. Conserving dryland biodiversity. IUCN

Drylands Initiative, Nairobi.

Desbiez, A.L., Bodmer, R.E., Aparecida, S., 2009. Wildlife habitat selection and

sustainable resources management in a Neotropical wetland. Int. J. Biodivers.

Conserv. 1, 11–20.

Dias, D.M., 2017. Spatiotemporal ecology of the striped hog-nosed skunk Conepatus

semistriatus (Carnivora, Mephitidae) in a seasonally dry forest of northeastern Brazil.

Anim. Biol. 2, 119 – 131. https://doi.org/10.1163/15707563-00002525

Dias, D.M., Bocchiglieri, A., 2016. Trophic and spatio-temporal niche of the crabeating

fox, Cerdocyon thous (Linnaeus, 1766) (Carnivora: Canidae), in a remnant of the

Caatinga in northeastern Brazil. Mammalia 80, 281–291.

https://doi.org/10.1515/mammalia-2014-0108

Page 174: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

170

Dias, D.M., Massara, R.L., Campos, C.B., Rodrigues, F.H.G., 2019a. Human activities

influence the occupancy probability of mammalian carnivores in the Brazilian

Caatinga. Biotropica 51, 253-265. https://doi.org/10.1111/btp.12628

Dias, D.M., Massara, R.L., Campos, C.B., Rodrigues, F.H.G., 2019b. Feline predator-

prey relationships in a semi-arid biome in Brazil. J. Zool. 307, 282-291.

https://doi.org/10.1111/jzo.12647

Dorazio, R.M., Royle, J.A., 2005. Estimating size and composition of biological

communities by modeling the occurrence of species. J. Am. Stat. Assoc. 100, 389–

398. https://doi.org/10.1198/016214505000000015

Ferreguetti, A.C., Tomas, W.M., Bergallo, H.G., 2015. Density, occupancy, and activity

pattern of two sympatric deer (Mazama) in the Atlantic Forest, Brazil. J. Mamm. 96,

1245–1254. https://doi.org/10.1093/jmammal/gyv132

Ferreguetti, A.C., Tomas, W.M., Bergallo, H.G., 2016. Density and niche segregation of

two armadillo species (Xenarthra: Dasypodidae) in the Vale Natural Reserve, Brazil.

Mamm. Biol. 81, 138–145. http://dx.doi.org/10.1016/j.mambio.2015.10.007

Fonseca, C.R., Antongiovanni, M., Matsumoto, M., Bernard, E., Venticinque, E.M.,

2017. Conservation opportunities in the Caatinga, in: Silva, J.M.C., Leal, I.R.,

Tabarelli, M. (Eds.), Caatinga: The largest tropical dry forest region in South America.

Springer International Publishing, Cham, pp. 429-444.

Freitas, R.R., Rocha, P.L.B., Simões-Lopes, P.C., 2005. Habitat structure and small

mammals abundances in one semiarid landscape in the Brazilian Caatinga. Rev. Bras.

Zool. 22, 119–129. http://dx.doi.org/10.1590/S0101-81752005000100015

Gaynor, K.M., Hojnowski, C.E., Cater, N.H., Bashares, J.S., 2018. The influence of

human disturbance on wildlife nocturnality. Science 360, 1232–123.

https://doi.org/10.1126/science.aar7121

Page 175: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

171

Giordano, A.J., 2016. Ecology and status of the jaguarundi Puma yagouaroundi: a

synthesis of existing knowledge. Mammal Rev. 46, 30–43.

https://doi.org/10.1111/mam.12051

Goulart, F.V.B., Cáceres, N.C., Graipel, M.E., Tortato, M.A., Ghizoni Jr, I.R., Oliveiras-

Santos, L.G.R., 2009. Habitat selection by large mammals in a southern Brazilian

Atlantic Forest. Mamm. Biol. 74, 182–190.

https://doi.org/10.1016/j.mambio.2009.02.006

Harmsen, B.J., Foster, R.J., Silver, S.C., Ostro, L.E.T., Doncaster, C.P., 2010. Differential

use of trails by forest mammals and the implications for camera-trap studies: a case

study from Belize. Biotropica 42, 126–133. https://doi.org/10.1111/j.1744-

7429.2009.00544.x

IBGE. 2016. Produção da pecuária municipal 2016, forty-fourth vol. Instituto Brasileiro

de Geografia e Estatística IBGE, Rio de Janeiro.

IUCN, 2020. The IUCN Red List of Threatened Species, version 2020-1.

https://www.iucnredlist.org (accessed19 March 2020).

Jędrzejewski, W., Boede, E.O., Abarca, M., Sánchez-Mercado, A., Ferrer-Paris, J.R.,

Lampo, M., Velasquez, G., Carreño, R., Viloria, A.L., Hoogesteijn, R., Robinson,

H.S., Stachowicz, I., Cerda, H., Weisz, M.M., Barros, T.R., Rivas, G.A., Borges, G.,

Molinari, J., Lew, D., Takiff, H., Schmidt, K., 2017. Predicting carnivore distribution

and extirpation rate based on human impacts and productivity factors; assessment of

the state of jaguar (Panthera onca) in Venezuela. Biol. Conserv. 206, 132–142.

http://dx.doi.org/10.1016/j.biocon.2016.09.027

Kéry, M., 2010. Introduction to WinBUGS for ecologists: a bayesian approach to

regression, ANOVA and related analyses. Academic Press, Cambridge.

Page 176: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

172

Kinnaird, M.F., O’brien, T.G., 2012. Effects of private-land use, livestock management,

and human tolerance on diversity, distribution, and abundance of large African

mammals. Conserv. Biol. 26, 1026–1039. http://dx.doi.org/10.1111/j.1523-

1739.2012.01942.x

Lopes, S.F., Ramos, M.B., Almeida, G.R., 2017. The role of mountains as refugia for

biodiversity in Brazilian Caatinga: conservationist implications. Tropical

Conservation Science 10, 1-12. https://doi.org/10.1177/1940082917702651

MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A., Langtimm, C.A.,

2002. Estimating site occupancy rates when detection probabilities are less than one.

Ecology 83, 2248–2255. https://doi.org/10.1890/0012-

9658(2002)083[2248:ESORWD]2.0.CO;2

Magioli, M., Ferraz, K.M.P.M.B., Chiarello, A.G., Galetti, M., Setz, E.Z.F., Paglia, A.P.,

Abrego, N., Ribeiro, M.C., Ovaskainen, O., 2020. Defaunation leads to functional loss

in a tropical biodiversity hotspot. Curr. Biol. http://dx.doi.org/10.2139/ssrn.3550245

Marinho, F.P., Mazzochini, G.G., Manhães, A.P., Weisser, W.W., Ganade, G., 2016.

Effects of past and present land use on vegetation cover and regeneration in a tropical

dryland forest. J. Arid Environ. 132, 26–33.

http://dx.doi.org/10.1016/j.jaridenv.2016.04.006

Marinho, P.H., Bezerra, D., Antongiovanni, M., Fonseca, C.R., Venticinque, E.M.,

2018a. Mamíferos de médio e grande porte da Caatinga do Rio Grande do Norte,

nordeste do Brasil. Mastozool. Neotrop. 25, 345–362.

https://doi.org/10.31687/saremMN.18.25.2.0.15

Marinho, P.H., Bezerra, D., Antongiovanni, M., Fonseca, C.R., Venticinque, E.M.,

2018b. Estimating occupancy of the Vulnerable northern tiger cat Leopardus tigrinus

Page 177: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

173

in Caatinga drylands. Mamm. Res. 63, 33–42. https://doi.org/10.1007/s13364-017-

0330-4

Marinho, P.H., Fonseca, C.R., Sarmento, P., Fonseca, C., Venticinque, E.M., 2020.

Temporal niche overlap among mesocarnivores in a Caatinga dry forest. Eur. J.

Wildlife Res. 66, 34. https://doi.org/10.1007/s10344-020-1371-6

Marinho, P.H., Silva, M., Lisboa, C.M.C.A., 2019. Presence of the collared peccary

Pecari tajacu (Artiodactyla, Tayassuidae) in the far northeast of its Brazilian

distribution. Neotrop. Biol. Conserv. 14, 499–509.

https://doi.org/10.3897/neotropical.14.e48716

Michalski, F., Peres, C.A., 2007. Disturbance-mediated mammal persistence and

abundance-area relationships in Amazonian forest fragments. Conserv. Biol. 21, 1626-

1640. https://doi.org/10.1111/j.1523-1739.2007.00797.x

MMA, 2014. Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção.

https://www.icmbio.gov.br/portal/images/stories/biodiversidade/fauna-

brasileira/portarias/PORTARIA_N_445_DE_17_DE_DEZEMBRO_DE_2014

.pdf

Morato, R.G., Ferraz, K.M.P.M.B., Paula, R.C., Campos, C.B., 2014. Identification of

priority conservation areas and potential corridors for jaguars in the Caatinga Biome,

Brazil. Plos One 9, e92950. https://doi.org/10.1371/journal.pone.0092950

Nagy-Reis, M.B., Estevo, C.A., Setz, E.Z.F., Ribeiro, M.C., Chiarello, A.G., Nichols,

J.D., 2017. Relative importance of anthropogenic landscape characteristics on

Neotropical frugivores in a multiple scale perspective. Anim. Conserv. 20, 520–531.

https://doi.org/10.1111/acv.12346

Niemeijer, D., Puigdefabregas, J., White, R., Lal, R., Winslow, M., Ziedler, J., Prince, S.,

Archer, E., King, C., Shapiro, B., Wessels, K., Nielsen, T., Portnov, B., Reshef, I.,

Page 178: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

174

Thonell, J., Lachman, E., Mcnab, D., 2005. Dryland systems, in: Hassan, R., Scholes,

R., Neville, A. (Eds.). Ecosystems and human well-being: Current state and trends.

Island Press, Washington, pp. 623–662.

Oliveira, T.G., Tortato, M.A., Almeida, L.B., Campos, C.B., Beisiegel, B.M., 2013.

Avaliação do risco de extinção do gato-do-mato Leopardus tigrinus no Brasil.

Biodivers. Bras. 5, 56-65.

Paglia, A.P., Fonseca, G.A.B., Rylands, A.B., Herrmann, G., Aguiar, L.M.S., Chiarello,

A.G., Leite, Y.L.R., Costa, L.P., Siciliano, S., Kierulff, M.C.M., Mendes, S.L.,

Tavares, V.C., Mittermeier, R.A., Patton, J.L., 2012. Lista anotada dos mamíferos do

Brasil / Annotated checklist of Brazilian mammals, second Ed. Occasional Papers in

Conservation Biology, Conservation International, Arlington.

Prugh, L.R., Hodges, K.E., Sinclair, A.R.E., Brashares, J.S., 2008. Effect of habitat area

and isolation on fragmented animal populations. P. Natl. Acad. Sci.-Biol. 52, 20770-

20775. https://doi.org/10.1073/pnas.0806080105

Pudyatmoko, S., 2017. Free-ranging livestock influence species richness, occupancy, and

daily behaviour of wild mammalian species in Baluran National Park, Indonesia.

Mamm. Biol. 86, 33–41. http://dx.doi.org/10.1016/j.mambio.2017.04.001

R Core Team, 2016. R: A language and environment for statistical computing. R

Foundation for Statistical Computing. https://www.R-project.org/ (accessed 02 May

2016).

Ribeiro, E.M.S., Arroyo-Rodríguez, V., Santos, B.A., Tabarelli, M, Leal, I.R., 2015.

Chronic anthropogenic disturbance drives the biological impoverishment of the

Brazilian Caatinga vegetation. J. Appl. Ecol. 52, 611–620.

http://dx.doi.org/10.1111/1365-2664.12420

Page 179: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

175

Rodrigues, T.F., Chiarello, A.G., 2018. Native forests within and outside protected areas

are key for nine-banded armadillo (Dasypus novemcinctus) occupancy in agricultural

landscapes. Agric. Ecosyst. Environ. 266, 133–141.

https://doi.org/10.1016/j.agee.2018.08.001

Rovero, F., Owen, N., Jones, T., Canteri, E., Iemma, A., Tattoni, C., 2017. Camera

trapping surveys of forest mammal communities in the Eastern Arc Mountains reveal

generalized habitat and human disturbance responses. Biodiv. Conserv. 26, 1103–

1119. http://dx.doi.org/10.1007/s10531-016-1288-2

Royle, J.A., Dorazio, R.M., 2008. Hierarchical Modeling and Inference in Ecology.

Academic Press, Boston.

Santini, L., Isaac, N.J.B., Maiorano, L., Ficetola, G.F., Huijbregts, M.A.J., Carbone, C.,

Thuiller, W., 2018. Global drivers of population density in terrestrial vertebrates.

Global Ecol. Biogeogr. 27, 968–979. https://doi.org/10.1111/geb.12758

Schuette, P., Wagner, A.P., Wagner, M.E., Creel, S., 2013. Occupancy patterns and niche

partitioning within a diverse carnivore community exposed to anthropogenic

pressures. Biol. Conserv. 158, 301–312.

http://dx.doi.org/10.1016/j.biocon.2012.08.008

Serbent, M.P., Periago, M.E., Leynaud, G.C., 2011. Mazama gouazoubira (Cervidae) diet

during the dry season in the arid Chaco of Córdoba (Argentina). J. Arid Environ. 75,

87–90. https://doi.org/10.1016/j.jaridenv.2010.09.004

Silva, J.M.C., Leal, I.R., Tabarelli, M. (Eds.), 2017. Caatinga: The largest tropical dry

forest region in South America. Springer International Publishing, Cham.

Stoner, K., Timm, R.M., 2011. Seasonally dry tropical forest mammals: adaptations and

seasonal patterns, in: Dirzo, R., Young, H.S., Mooney, H.A., Ceballos, G. (Eds.),

Page 180: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

176

Seasonally dry tropical forests: Ecology and conservation. Island Press, Washington,

pp. 85-105.

Sunderland, T.C.H., Apgaua, D., Baldauf, C., Blackie, R., Colfer, C.J.P., Cunningham,

A.B., Dexter, K., Djoudi, H., Gautier, D., Gumbo, D., Ickowitz, A., Kassa, H.,

Parthasarathy, N., Pennington, R.T., Paumgarten, F., Pulla, S., Sola, P., Tng, D.,

Waeber, P., Wilmé, L., 2015. Global dry forests: a prologue. Int. For. Rev. 17, 1-9.

https://doi.org/10.1505/146554815815834813

Tabeni, S., Ojeda, R.A., 2003. Assessing mammal responses to perturbations in temperate

aridlands of Argentina. J. Arid Environ. 55, 715–726. https://doi.org/10.1016/S0140-

1963(02)00314-2

TEAM Network, 2011. Terrestrial vertebrate protocol implementation manual, v. 3.1.

Conservation International, Arlington.

http://www.teamnetwork.org/files/protocols/terrestrialvertebrate/TEAMTerrestrialVe

rtebrate-PT-EN-3.1.pdf

Tilker, A., Abrams, J.F., Mohamed, A., Nguyen, A., Wong, S.T., Sollmann, R., Niedballa

J, Bhagwat, T., Gray, T.N.E., Rawson, B.M., Guegan, F., Kissing, J., Wegman, M.,

Wilting, A., 2019. Habitat degradation and indiscriminate hunting differentially

impact faunal communities in the Southeast Asian tropical biodiversity hotspot.

Commun. Biol. 2, 396. https://doi.org/10.1038/s42003-019-0640-y

Vasconcellos, A., Andreazze, R., Almeida, A.M., Araujo, H.F.P., Oliveira, E.S., Oliveira,

U., 2010. Seasonality of insects in the semi-arid Caatinga of northeastern Brazil. Ver.

Bras. Entomol. 54, 471–476. https://doi.org/10.1590/S0085-56262010000300019

Velloso, A.L., Sampaio, E.V.S.B., Pareyn, F.G.C. (Eds.), 2002. Ecorregiões propostas

para o bioma Caatinga. Associação Plantas do Nordeste, Instituto de Conservação

Ambiental The Nature Conservancy do Brasil, Recife.

Page 181: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

177

Vynne, C., Keim, J.L., Machado, R.B., Marinho-Filho, J., Silveira, L., Groom, M.J.,

Wesser, S.K., 2011. Resource Selection and Its Implications for Wide-Ranging

Mammals of the Brazilian Cerrado. Plos One 6, e28939.

https://doi.org/10.1371/journal.pone.0028939

Yoshihara, Y., Ito, T.Y., Lhagvasuren, B., Takatsuki, S., 2008. A comparison of food

resources used by Mongolian gazelles and sympatric livestock in three areas in

Mongolia. J. Arid Environ. 72, 48–55. https://doi.org/10.1016/j.jaridenv.2007.05.001

Zimbres, B., Peres, C.A., Penido, G., Machado, R.B., 2018. Thresholds of riparian forest

use by terrestrial mammals in a fragmented Amazonian deforestation frontier.

Biodivers. Conserv. 27, 2815–2836. https://doi.org/10.1007/s10531-018-1571-5

Zipkin, E.F., DeWan, A., Royle, J.A., 2009. Impacts of forest fragmentation on species

richness: a hierarchical approach to community modelling. J. Appl. Ecol. 46, 815–822.

https://doi.org/10.1111/j.1365-2664.2009.01664.x

Zipkin, E.F., Royle, J.A., Dawson, D.K., Bates, S., 2010. Multi-species occurrence

models to evaluate the effects of conservation and management actions. Biol. Conserv.

143, 479–484. https://doi.org/10.1016/j.biocon.2009.11.016

Page 182: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

178

Supplementary Material

Fig. S1. Medium to large-sized wild mammal species (> 1 kg) recorded in an overgrazed

semiard landscape in Caatinga dry forest, northeastern Brazil. (A) Cerdocyon thous, (B)

Euphractus sexcinctus, (C) Dasypus novemcinctus, (D) Leopardus tigrinus, (E)

Tamandua tetradactyla, (F) Mazama gouazoubira, (G) Conepatus amazonicus, (H)

A

A

B

A

C

A

C

A

E

A

F

A D

A

G

A H

A

I

A

J

A

K

A

L

A

Page 183: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

179

Herpailurus yagouaroundi, (I) Dasyprocta nigriclunis, (J) Pecari tajacu, (K) Puma

concolor, and (L) Didelphis albiventris.

Fig. S2. Rarefaction (solid line) and extrapolation curves (dashed line) of medium and large-sized

wild mammal species richness in an overgrazed semiarid landscape in Caatinga dry forest,

northeastern Brazil. The triangle represents the number of recorded species in the area. The 95%

unconditional confidence intervals (gray-shaded regions) were based on 1000 bootstrap

repetitions.

Table S1

Pearson's correlation matrix of the covariates showing the coefficient values (upper diagonal) and

the p values (lower diagonal). High correlations and significant p-values are in bold.

Forest Livest River Road House Rough Elevat

Forest NA -0.06 0.51 0.37 0.44 0.25 0.66

Livest <0.01 NA -0.20 0.12 -0.08 -0.06 -0.17

River <0.01 0.12 NA 0.36 0.42 0.29 0.62

Road <0.01 0.36 0.01 NA 0.20 0.36 0.30

House <0.01 0.52 <0.01 0.12 NA 0.13 0.57

Rough <0.01 0.66 0.03 <0.01 0.31 NA 0.63

Elevat <0.01 0.19 <0.01 0.02 <0.01 <0.01 NA

Page 184: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

180

Model code based in Zipkin et al. (2009)

#model code (uses the R2WinBUGS package to run WinBUGS in program R)

sink("modelmulti.txt")

cat("

model{

#Prior distributions on the community level occupancy and detection covariates

psi.mean ~ dunif(0,1)

a <- log(psi.mean) - log(1-psi.mean)

theta.mean ~ dunif(0,1)

b <- log(theta.mean) - log(1-theta.mean)

mu.alpha1 ~ dnorm(0, 0.001)

mu.alpha2 ~ dnorm(0, 0.001)

mu.alpha3 ~ dnorm(0, 0.001)

mu.alpha4 ~ dnorm(0, 0.001)

mu.alpha5 ~ dnorm(0, 0.001)

mu.alpha6 ~ dnorm(0, 0.001)

mu.beta1 ~ dnorm(0, 0.001)

tau1 ~ dgamma(0.1,0.1)

tau2 ~ dgamma(0.1,0.1)

tau.alpha1 ~ dgamma(0.1,0.1)

tau.alpha2 ~ dgamma(0.1,0.1)

tau.alpha3 ~ dgamma(0.1,0.1)

tau.alpha4 ~ dgamma(0.1,0.1)

tau.alpha5 ~ dgamma(0.1,0.1)

tau.alpha6 ~ dgamma(0.1,0.1)

tau.beta1 ~ dgamma(0.1,0.1)

rho ~ dunif(-1,1) # medida de comunidade

var.v <- tau2 /(1.-pow(rho,2))

Page 185: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

181

sigma1 <- 1/sqrt(tau1)

sigma2 <- 1/sqrt(tau2)

for (i in 1:species) {

#Prior distributions for the occupancy and detection covariates for each species

u[i] ~ dnorm(a, tau1)

mu.v[i] <- b + (rho*sigma2 /sigma1)*(u[i]-a)

v[i] ~ dnorm(mu.v[i], var.v)

alpha1[i] ~ dnorm(mu.alpha1, tau.alpha1)

alpha2[i] ~ dnorm(mu.alpha2, tau.alpha2)

alpha3[i] ~ dnorm(mu.alpha3, tau.alpha3)

alpha4[i] ~ dnorm(mu.alpha4, tau.alpha4)

alpha5[i] ~ dnorm(mu.alpha5, tau.alpha5)

alpha6[i] ~ dnorm(mu.alpha6, tau.alpha6)

beta1[i] ~ dnorm(mu.beta1, tau.beta1)

#Estimate the occupancy probability (latent Z matrix) for each species at each point

for (j in 1:sites) {

logit(psi[j,i]) <- u[i] + alpha1[i]*forest[j] + alpha2[i]*rough [j] + alpha3[i]*house[j]

+ alpha4[i]*lives[j] + alpha5[i]*river[j] + alpha6[i]*road[j]

Z[j,i] ~ dbin(psi[j,i], 1)

#Estimate the species specific detection probability for every rep at each point where

the

#species occurs (Z=1)

for (k in 1:survey) {

logit(theta[j,k,i]) <- v[i] + beta1[i]*trail[j]

mu.theta[j,k,i] <- theta[j,k,i]*Z[j,i]

X[j,k,i] ~ dbin(mu.theta[j,k,i], 1)

Xnew[j,k,i] ~ dbin(mu.theta[j,k,i], 1)

#Create simulated dataset to calculate the Bayesian p-value

d[j,k,i]<- abs(X[j,k,i] - mu.theta[j,k,i])

dnew[j,k,i]<- abs(Xnew[j,k,i] - mu.theta[j,k,i])

Page 186: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

182

d2[j,k,i]<- pow(d[j,k,i],2)

dnew2[j,k,i]<- pow(dnew[j,k,i],2)

}

dsum[j,i]<- sum(d2[j,1:survey,i])

dnewsum[j,i]<- sum(dnew2[j,1:survey,i])

}

}

#Calculate the discrepancy measure, which is then defined as the mean(p.fit >

p.fitnew)

p.fit<-sum(dsum[1:sites,1:species])

p.fitnew<-sum(dnewsum[1:sites,1:species])

}

",fill=TRUE)

sink()

#####

#data

data<-

list("X"=captdata,"survey"=survey,"sites"=sites,"species"=species,"forest"=forest,

"trail"=trail,"house"=house, "rough"=rough,"lives"=lives, "river"=river,

"road"=road)

#inits

zinit <- array(dim = c(sites, species))

for (j in 1:sites) {

for (i in 1:species) {

zinit[j, i] <- max(captdata[j, ,i],na.rm=T)

}

Page 187: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

183

}

inits=function(){

list(

Z=zinit,

psi.mean=runif(1, 0, 1),

theta.mean=runif(1, 0, 1),

rho=runif(1, 0, 1),

tau1=runif(1, 0, 1),

tau2=runif(1, 0, 1),

mu.alpha1=runif(1, 0, 1),

mu.alpha2=runif(1, 0, 1),

mu.alpha3=runif(1, 0, 1),

mu.alpha4=runif(1, 0, 1),

mu.alpha5=runif(1, 0, 1),

mu.alpha6=runif(1, 0, 1),

tau.alpha1=runif(1, 0, 1),

tau.alpha2=runif(1, 0, 1),

tau.alpha3=runif(1, 0, 1),

tau.alpha4=runif(1, 0, 1),

tau.alpha5=runif(1, 0, 1),

tau.alpha6=runif(1, 0, 1),

mu.beta1=runif(1, 0, 1),

tau.beta1=runif(1, 0, 1)

)

}

#Parameters

para<-c("u","alpha1","alpha2","alpha3","alpha4","alpha5","alpha6","beta1",

"mu.alpha1","mu.alpha2","mu.alpha3","mu.alpha4","mu.alpha5","mu.alpha6","mu.beta

1",

Page 188: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

184

"tau.alpha1","tau.alpha2","tau.alpha3","tau.alpha4","tau.alpha5","tau.alpha6","tau.beta1

",

"v","p.fit","p.fitnew","psi")

#MCMC

nc<-3

nb<-2000

ni<-10000

nt<-3

#gibbs sampler

system.time(outJAGS <-

jags(data=data,inits=inits,parameters.to.save=para,model.file="modelmulti.txt",n.chains

=nc,n.iter=ni,n.burn=nb,n.thin=nt))

Page 189: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

185

CONCLUSÕES GERAIS

O conhecimento construído nos últimos anos, tem demonstrado a rica

biodiversidade da Caatinga brasileira e a relevância ecológica dessa floresta tropical

sazonalmente seca nos neotrópicos, embora esforços de conservação ainda estejam muito

aquém da sua importância. Essa tese traz à luz a diversidade de espécies e estratégias de

persistência de mamíferos de médio e grande porte nessa região semiárida.

Especificamete, demonstramos a relevância da mastofauna terrestre do Rio Grande do

Norte, até então desconhecida, através da caracterização das comunidades de 10 áreas

prioritárias para a conservação, que abrigam pelo menos 14 espécies de médio e grande

porte, incluindo felinos ameaçados de extinção como Puma concolor, que parece ser

extremamente raro na região atualmente. Este estudo deve representar um ponto de

partida para novas pesquisas sobre a mastofauna terrestre do estado, além de subsidiar o

planejamento e a execução de ações regionais de conservação e manejo.

Ao direcionarmos um maior esforço amostral de monitoramento de uma das áreas

prioritárias para a conservação mais relevantes do estado, a única reconhecida até aqui

como habitat de sete espécies de mesocarnívoros, e onde predadores de topo como Puma

concolor estão funcionalmente extintos, nós ajudamos a esclarecer os padrões de

coexistência espaço-temporal de mesocarnívoros na Caatinga. Neste ambiente as espécies

sobrepoem grande parte da sua atividade noturna enquanto segregam os picos de maior

atividade, o que parece ser uma estratégia que envolve o balanço entre evitar encontros

agressivos e as elevadas temperaturas durante o dia. Isso é reforçado pela ausência de

segregação espacial das demais espécies de mesocarnívoros com Leopardus pardalis, o

mesopredador dominante. Conforme esperado, a exceção é Herpailurus yagouaroundi,

que ao manter hábitos diurnos nesse ambiente extremo, pode diminuir a competição e as

chances de ataques intraguilda e utilizar ambientes mais frequentados pela espécie

Page 190: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

186

dominante, L. pardalis. Os padrões encontrados se mantém relativamente inalterados ao

longo das estações seca e chuvosa, apesar da marcada flutuação de recursos. Investigar o

uso do habitat e os padrões de atividade das espécies em ambientes com diferentes níveis

de integridade da guilda de carnívoros, bem como suas dietas, pode elucidar ainda mais

os mecanismos de manutenção da diversidade desse grupo em ecossistemas semiáridos

Caatinga.

Por fim, observamos que manchas de vegetação com estrutura florestal representam

habitats chave para mamíferos de médio e grande porte em uma paisagem da Caatinga

dominada pela criação extensiva de gado. Apesar da intensa degradação ambiental,

espécies relevantes de mamíferos, tais como Pecari tajacu e Puma concolor, persistem

na área, porém, aparentemente, em baixas abundâncias. Nossos resultados, portanto,

ressaltam características da paisagem que podem beneficiar a persistência desses

mamíferos, como uma maior proporção de vegetação arbórea, fornecendo informações

importantes para o manejo e a expansão de áreas protegidas, bem como para o

monitoramento do estado de conservação das populações.

Page 191: PADRÕES DE OCORRÊNCIA E COEXISTÊNCIA DE MAMÍFEROS DE … · 2020. 9. 27. · de Serrinha dos Pintos, Geílson e Geison de Felipe Guerra, Galego do Rela de Luís Gomes, seu Cícero

187

“Todo mundo sabe tratar-se de problema antes de tudo educacional. Mas o

indeferentismo com que vem sendo relegado faz pensar, sem qualquer pessimismo, que

na pisada em que vamos, o sertanejo herdará, em um amanhã bem próximo, um chão

sem rastros de bichos e silencioso de cantos dos pássaros. Paisagem morta e de fauna

sintética já galhofada no dizer matuto: “De bicho de cabelo só vai escapar escova; de

animal de quatro pés, tamborete e bicho de fôlego – o fole...””.

Oswaldo Lamartine (A Caça nos Sertões do Seridó, 1961)

Mata de galeria do riacho Melancia, antigo habitat da extinta ararinha-azul (Cyanopsitta spixii), Curaçá, Bahia.