dinâmica estrutural ii_pontes_01

15
 Universidade do Estado do Rio de Janeiro, UERJ  Centro de Tecno log ia e Ciênci as, CTC Facul dade de Eng enharia, FEN  A nálise Dinâmi c a de Tabulei r os Rod o v iári o s  A náli s e no Domínio d o Tem p o Efeito do Peso dos Veículos Efeito das Irr egu laridades da Pis ta Prof. José Guilherme Santos da Silva, DSc. Coordenador da Área de Con centração de Estrut ur as Pro gr ama de Pós -gradu ação em Eng enharia Civil, PGECIV

Upload: kassia-cristina

Post on 04-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 1/15

 

Universidade do Estado do Rio de Janeiro, UERJ 

Centro de Tecnologia e Ciências, CTC 

Faculdade de Engenharia, FEN 

 Análise Dinâmica de Tabuleiros Rodoviários Análise no Domínio do Tempo

Efeito do Peso dos VeículosEfeito das Irregularidades da Pista

Prof. José Guilherme Santos da Silva, DSc.Coordenador da Área de Concentração de EstruturasPrograma de Pós-graduação em Engenharia Civil, PGECIV

Page 2: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 2/15

 

ÍNDICE

1. Introdução2. Modelagem da carga móvel

3. Modelagem do sistema veículo-ponte

4. Exemplos: efeito do peso dos veículos5. Conclusões

Page 3: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 3/15

1. INTRODUCTION

Number of vehicles on the bridge is an important point in the evaluationof their dynamical actions;

Effect of the interaction of their masses with the bridge deck mass;

Crossing frequency of the moving load which can produce a steady-state response situation;

The moving load is taken as an infinite series of vehicles, regularlyspaced and moving at constant velocity, to allow the observation of thesteady state response of the structure.

Page 4: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 4/15

2. INFINITE TRAIN OF VEHICLES

3. MODEL OF THE VEHICLE-BRIDGE SYSTEM

Page 5: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 5/15

4. EXAMPLES

4.1. Vehicles Properties

Two classes: 450kN and 120kN;Regularly spaced: l=5.0m;

Frequencies: 3Hz and 20Hz;Damping factor: =0.1.

Page 6: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 6/15

 

0

0

u

u

k k k 

k k 

u

u

ccc

cc

u

u

m0

0m

1

v

vpvsvs

vsvs

1

v

vpvsvs

vsvs

1

v

ns

s

 

 

00

0

0

θu

u

u

 dk k dk dk dk k d-k k k 0k 

dk 0k k k 

 dk k k k k k 

θ

u

u

u

 dccdcdcdcc

dccc0c

dc0ccc

 dcccccc

θ

u

u

u

I000

0m00

00m0

000m

v

2

1

v

2

vs2vs1vs2vs1vs2vs1

vs2vp2vs2vs2

vs1vp1vs1vs1

vs2vs1vs2vs1vs2vs1

v

2

1

v

2

vs2vs1vs2vs1vs2vs1

vs2cp2vs2vs2

vs1vp1vs1vs1

vs2vs1vs2vs1vs2vs1

v

2

1

v

v

ns2

ns1

s

 

Page 7: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 7/15

 

 

0

0

0

0

0

θ

u

u

u

u

 dk k dk 0dk dk k 

d-k k k 00k 

00k k 0k 

dk 00k k k 

 dk k k k k k k k 

θ

u

u

u

u

 dccdc0dcdcc

dccc00c

00cc0c

dc00ccc

 dcccccccc

θu

u

u

u

I00000m000

00m00

000m0

0000m

v

3

2

1

v

2

vs3vs1vs3vs1vs3vs1

vs3vp3vs3vs3

vp2vs2vs2

vs1vp1vs1vs1

vs3vs1vs3vs2vs1vs3vs2vs1

v

3

2

1

v

2

vs3vs1vs3vs1vs3vs1

vs3cp3vs3vs3

cp2vs2vs2

vs1vp1vs1vs1

vs3vs1vs3vs2vs1vs3vs2vs1

v

3

2

1

v

v

ns3

ns2

ns1

s

 

The moving load is modelled by an infinite series of equal vehicles, regularly spaced, and running

at constant velocity, . Each vehicle is considered by a two, three or four masses model,respectively, with in plane degrees of freedom (translational and rotational) and one, two or even

three axles. If l is the distance between two successive vehicles and as these cars enter one byone into the bridge deck, it is created a time repeated movement variation governed by the

frequency, f t = /l (traversing frequency), associated with the movement of the vehicles on thebridge. After a certain time period, t1 (crossing period), the first vehicle in the train reaches the farend of the bridge and from this instant, on the total mass of the vehicles on the bridge remains

practically constant. Under these conditions the bridge will soon reach a steady-state responsesituation, which includes repetition of maximum values directly related to the fatigue strength.

Page 8: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 8/15

4.2. Simple Supported Beam Deck

Inertia moment: I=3.98m

4

;Young’s modulus: E=3x107kN/m

2;

Distributed mass: m=9200kg/m;Frequency (unloaded deck): 6.3Hz;Frequency (loaded deck: vehicles 120kN and 450kN): 6.6Hz and 7.2Hz;

Damping factor: =0.03;Finite Element Model.

0,12m

2,50m

10,00m

0,30m

0,12m

2,26m

9,20m 0,40m0,40m

...

17

13

L

m1 m2 m10 m11...

 

Page 9: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 9/15

 Time Response: displacement.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

t/t1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

v/vest

Displacement: load mobility effectSimple supported beam: L=30mInfinite train of vehicles: V=125km/h e P=450kNSteady-state phase: t/t1 > 0,80

 

Time Response: bending moment.

0.80

1.00

1.20

Bending moment: load mobility effectSimple supported beam: L=30mInifinite train of vehicles: V=125km/h e P=450kNSetady-state phase: t/t1 > 0,80

Page 10: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 10/15

 Time Response: reaction force.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

t/t1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

R/Rest

Reaction force: load mobility effectSimple supported beam: L=30mInfinite train of vehicles: V=125km/h e P=450kNSteady-state phase: t/t1 > 0,80

 

Response Spectra: displacement.

1.08

1.10

1.12

Load mobility effect

Weight of the vehicles: 450kN

Weight of the vehicles: 120kN

Response spectraLoad mobility effectDisplacement

Page 11: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 11/15

 Response Spectra: bending moment.

0.0 1.0 2.0 3.0

Beta=v/l.f01

1.00

1.02

1.04

1.06

1.08

1.10

1.12

FA=M/Mest

Response spectraLoad mobility effect

Bending moment

Load mobility effect

Weight of the vehicles: 450kN

Weight of the vehicles: 120kN

 

Response Spectra: reaction force.

1.08

1.10

1.12

Response spectraLoad mobility effectReaction force

Load mobility effect

Weight of the vehicles: 450kN

Weight of the vehicles: 120kN

Page 12: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 12/15

4.3. Continuous Beam Deck

Finite Element Model

m1 m34 m35m2 ......

L Le = 0.83LLb = 0.25L Le = 0.83L Lb = 0.25L

1 2 34 2614 36

399 3120

 

Variations of Beam Fundamental Frequency with Bridge Geometry 

MiddleSpan

End Span OverhangsSectionSpacing

Unloaded Deck Loaded Deck

L(m) Le(m) Lb(m) Ls(m)Lowest Mode

Frequency (Hz)Lowest Mode

Frequency (Hz)

24.00 20.00 6.00 2.00 9.12 9.22

30.00 25.00 7.50 2.50 7.43 7.78

36.00 30.00 9.00 3.00 5.20 5.86

Page 13: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 13/15

 Maximum Displacements: FA= v/vest.

BRIDGE: Continuous beams deck with overhangs. Spans 24m, 30m e 36m.CRITICAL VELOCITY (km/h): 130, 140 e 125, respectively.SECTIONS: S1 and S20.

Middle SpanL(m)

Maximum amplification factor: FA = v/vest

Section S1 Section S20

24.0m 2.68 1.54

30.0m 2.42 1.77

36.0m 1.98 1.54

Maximum Bending Moments: FA= M/Mest.

BRIDGE: Continuous beams deck with overhangs. Spans 24m, 30m e 36m.CRITICAL VELOCITY (km/h): 130, 140 e 125, respectively.SECTIONS: S4, S14 and S20.

Middle SpanL(m)

Maximum amplification factor: FA = M/MestSection S4 Section S14 Section S20

24.0m 1.15 1.29 1.42

30.0m 1.15 1.33 1.62

36.0m 1.12 1.30 1.44

Page 14: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 14/15

 Maximum Reaction Forces: FA= R/Rest.

BRIDGE: Continuous beams deck with overhangs. Spans 24m, 30m e 36m.

CRITICAL VELOCITY (km/h): 130, 140 e 125, respectively.SECTIONS: S4 and S14.

Middle SpanL(m)

Maximum amplification factor: FA = R/Rest

Section S4 Section S14

24.0m 1.23 1.2130.0m 1.25 1.20

36.0m 1.22 1.19

Page 15: Dinâmica Estrutural II_Pontes_01

8/13/2019 Dinâmica Estrutural II_Pontes_01

http://slidepdf.com/reader/full/dinamica-estrutural-iipontes01 15/15

5. CONCLUSIONS

Infinite Train of Vehicles  suitable solution to the computation ofmoving load response values for highwaybridge decks where the steady-stateresponse can be a major concern as in the

case of the bridge fatigue behaviour;

Response Values  dynamic amplification factors (DAF), due to theload mobility, more than twice of those obtained

with only one moving vehicle;Irregular Pavement Surface  the amplifications can be still much

larger than those due to the load

mobility;The Redundant Beam Problem  deserves more attention to widely

be verified the DAF, when the staticvalues obtained according todesign codes are considered.