columbia - editora opirus · 2020. 4. 20. · em um teste recém-realizado, o veículo percorreu,...

15
MOVIMENTOS CIRCULARES 01. (Fuvest 2020) Em julho de 1969, os astronautas Neil Armstrong e Buzz Aldrin fizeram o primeiro pouso tripulado na superfície da Lua, enquanto seu colega Michael Collins permaneceu a bordo do módulo de comando Columbia em órbita lunar. Considerando que o Columbia estivesse em uma órbita perfeitamente circular a uma altitude de 260 km acima da superfície da Lua, o tempo decorrido (em horas terrestres – h) entre duas passagens do Columbia exatamente acima do mesmo ponto da superfície lunar seria de Note e adote: Constante gravitacional: 13 3 2 G 9 10 km (kg h ); Raio da Lua 1.740 km; Massa da Lua 22 8 10 kg; 3. a) 0,5 h. b) 2 h. c) 4 h. d) 8 h. e) 72 h. 02. (Espcex (Aman) 2020) Duas polias, A e B, ligadas por uma correia inextensível têm raios A R 60 cm e B R 20 cm, conforme o desenho abaixo. Admitindo que não haja escorregamento da correia e sabendo que a frequência da polia A é A f 30 rpm, então a frequência da polia B é a) 10 rpm. b) 20 rpm. c) 80 rpm. d) 90 rpm. e) 120 rpm. TEXTO PARA A PRÓXIMA QUESTÃO: As agências espaciais NASA (norte-americana) e ESA (europeia) desenvolvem um projeto para desviar a trajetória de um asteroide através da colisão com uma sonda especialmente enviada para esse fim. A previsão é que a sonda DART (do inglês, “Teste de Redirecionamento de Asteroides Duplos”) será lançada com a finalidade de se chocar, em 2022, com Didymoon, um pequeno asteroide que orbita um asteroide maior chamado Didymos. 03. (Unicamp 2020) O asteroide satélite Didymoon descreve uma órbita circular em torno do asteroide principal Didymos. O raio da órbita é r 1,6 km e o período é T 12 h. A aceleração centrípeta do satélite vale a) 1 2 8,0 10 km h . b) 1 2 4,0 10 km h . c) 1 2 3,125 10 km h . d) 2 2 6,667 10 km h .

Upload: others

Post on 28-Oct-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

MOVIMENTOS CIRCULARES 01. (Fuvest 2020) Em julho de 1969, os astronautas Neil Armstrong e Buzz Aldrin fizeram o primeiro pouso

tripulado na superfície da Lua, enquanto seu colega Michael Collins permaneceu a bordo do módulo de comando Columbia em órbita lunar. Considerando que o Columbia estivesse em uma órbita perfeitamente circular a uma altitude de 260 km acima da superfície da Lua, o tempo decorrido (em horas terrestres – h) entre duas passagens do Columbia exatamente acima do mesmo ponto da superfície lunar seria de Note e adote: Constante gravitacional: 13 3 2G 9 10 km (kg h ); Raio da Lua 1.740 km; Massa da Lua 228 10 kg;

3. a) 0,5 h. b) 2 h. c) 4 h. d) 8 h. e) 72 h.

02. (Espcex (Aman) 2020) Duas polias, A e B, ligadas por uma correia inextensível têm raios AR 60 cm e

BR 20 cm, conforme o desenho abaixo. Admitindo que não haja escorregamento da correia e sabendo que a frequência da polia A é Af 30 rpm, então a frequência da polia B é

a) 10 rpm. b) 20 rpm. c) 80 rpm. d) 90 rpm. e) 120 rpm.

TEXTO PARA A PRÓXIMA QUESTÃO:

As agências espaciais NASA (norte-americana) e ESA (europeia) desenvolvem um projeto para desviar a trajetória de um asteroide através da colisão com uma sonda especialmente enviada para esse fim. A previsão é que a sonda DART (do inglês, “Teste de Redirecionamento de Asteroides Duplos”) será lançada com a finalidade de se chocar, em 2022, com Didymoon, um pequeno asteroide que orbita um asteroide maior chamado Didymos. 03. (Unicamp 2020) O asteroide satélite Didymoon descreve uma órbita circular em torno do asteroide

principal Didymos. O raio da órbita é r 1,6 km e o período é T 12 h. A aceleração centrípeta do satélite vale a) 1 28,0 10 km h . b) 1 24,0 10 km h . c) 1 23,125 10 km h . d) 2 26,667 10 km h .

Page 2: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

2

04. (Uece 2019) Considere um carro que se desloque em linha reta de modo que um de seus pneus execute um movimento circular uniforme em relação ao seu eixo. Suponha que o pneu não desliza em relação ao solo. Considere as porções do pneu que estão com a estrada. No exato instante desse contato, a velocidade relativa dessas porções em relação ao solo é a) proporcional à velocidade angular do pneu. b) igual à velocidade do centro da roda. c) zero. d) proporcional à velocidade linear do carro.

05. (Ufrgs 2019) A figura abaixo representa um sistema de coroas dentadas de uma bicicleta, que está se

movendo com velocidade constante. As coroas dentadas giram sem atrito em torno de seus eixos.

A coroa dentada dianteira de raio DR é movimentada pelos pedais e está ligada à coroa traseira de raio ER pela correia de massa desprezível. PF é a força aplicada no pedal cujo comprimento é PR a partir do centro da coroa. Nessa situação, o módulo do torque transmitido à roda traseira, através da coroa de raio ER , é a) E P P DR R F R . b) E D P PR R F R . c) D P P ER R F R . d) P P E DR F (R R ). e) E P P DR F (R R ).

06. (Uerj 2019) Em um equipamento industrial, duas engrenagens, A e B, giram 100 vezes por segundo e

6.000 vezes por minuto, respectivamente. O período da engrenagem A equivale a AT e o da engrenagem B, a BT .

A razão A

B

TT

é igual a:

a) 16

b) 35

c) 1 d) 6

07. (Famerp 2019) Uma pessoa parada sobre a linha do equador terrestre apresenta uma velocidade

tangencial, devido à rotação da Terra, de módulo próximo a 1.700 km h.

Page 3: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

Exercícios Complementares

3

Sabendo que sen 21 0,36 e cos 21 0,93, uma pessoa em repouso sobre o solo, em São José do Rio Preto, cuja latitude é aproximadamente 21 Sul, tem uma velocidade tangencial de módulo próximo a a) 1.830 km h. b) 610 km h. c) 1.700 km h. d) 4.700 km h. e) 1.580 km h.

08. (Uel 2019) Considere a composição formada pelos dois sistemas mecânicos, na figura a seguir.

Na parte superior, a haste rígida fixa no centro (ponto O) executa um movimento circular uniforme. Na parte de baixo, uma massa m executa um movimento harmônico simples ao longo da superfície horizontal sem atrito, sob ação de uma mola de constante elástica k. A amplitude do deslocamento da massa ao longo da superfície horizontal é exatamente igual ao diâmetro da trajetória circular desenvolvida pela haste. A partir dessas informações, responda aos itens a seguir. a) Deseja-se sincronizar o movimento circular da haste com o movimento periódico do sistema massa-

mola. A constante da mola vale k 100 N m e a massa é de 4 kg. Se o comprimento da haste é de 20 cm, determine o valor do módulo da velocidade linear (v) imposta à esfera para que os dois movimentos estejam sincronizados. Justifique sua resposta, apresentando os cálculos envolvidos na resolução deste item.

b) Deseja-se sincronizar o movimento periódico do sistema massa-mola com o movimento circular da haste. Se o período de rotação é T 0,62 s e a constante da mola é k 100 N m determine o valor da massa para que os dois movimentos estejam sincronizados. Justifique sua resposta, apresentando os cálculos envolvidos na resolução deste item.

09. (Uece 2019) Um disco, do tipo DVD, gira com movimento circular uniforme, realizando 30 rpm. A

velocidade angular dele, em rad s, é a) 30 . b) 2 . c) . d) 60 .

10. (Fmp 2019) Uma aeronave, antes de aterrissar no Aeroporto Santos Dummont no Rio de Janeiro, faz uma

curva no ar, mostrando aos passageiros a bela vista da Baía de Guanabara. Suponha que essa curva seja um círculo de raio 6000 m e que a aeronave trace essa trajetória com velocidade de módulo constante igual a 1432,0 km h em relação ao solo. A aceleração centrípeta da aeronave, em relação ao solo, vale, em 2m s , aproximadamente a) 7,200 b) 9,800 c) 2,400 d) 31,10 e) 2,000

Page 4: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

4

11. (Uemg 2019) Após estudar física exaustivamente para as provas de vestibular, Lívia sentiu-se mal e precisou receber a visita de um médico.

Com base nas informações do diálogo apresentado e considerando uma roda que gire em torno do seu próprio eixo com velocidade angular ( ) constante, o período de rotação dessa roda é dado por: a) 12 ( ) . b) 12 . c) 2 . d) 1(2 ) .

12. (Enem 2019) Na madrugada de 11 de março de 1978, partes de um foguete soviético reentraram na

atmosfera acima da cidade do Rio de Janeiro e caíram no Oceano Atlântico. Foi um belo espetáculo, os inúmeros fragmentos entrando em ignição devido ao atrito com a atmosfera brilharam intensamente, enquanto “cortavam o céu”. Mas se a reentrada tivesse acontecido alguns minutos depois, teríamos uma tragédia, pois a queda seria na área urbana do Rio de Janeiro e não no oceano.

De acordo com os fatos relatados, a velocidade angular do foguete em relação à Terra no ponto de reentrada era a) igual à da Terra e no mesmo sentido. b) superior à da Terra e no mesmo sentido. c) inferior à da Terra e no sentido oposto. d) igual à da Terra e no sentido oposto. e) superior à da Terra e no sentido oposto.

Page 5: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

Exercícios Complementares

5

13. (Uece 2019) Considere um carrossel que gira com velocidade angular tal que cada cavalo percorre duas voltas completas em 4 3 segundos. Assim, a velocidade angular do carrossel, em radianos s, é a) 4 3. b) 4 3. c) 2 3. d) 3.

14. (Upf 2019) Um corpo descreve um movimento circular uniforme cuja trajetória tem 5 m de raio.

Considerando que o objeto descreve 2 voltas em 12 s, é possível afirmar que sua velocidade tangencial, em m s, é de, aproximadamente (Considere 3,14 rad) a) 3,14 b) 5,2 c) 15,7 d) 6,28 e) 31,4

15. (Uece 2019) Considere um carrinho sobre trilhos em uma trajetória circular, como em um brinquedo de

parque de diversões. Por questões de segurança, foi necessário duplicar o raio da trajetória sem que haja mudança na velocidade linear do carrinho. Para isso, a velocidade angular do móvel deve a) dobrar de valor. b) ser reduzida à metade. c) manter-se constante. d) quadruplicar.

16. (Insper 2019) A figura mostra uma réplica do Benz Patent Motorwagen, de 1885, carro de dois lugares e

três rodas. O diâmetro da roda dianteira mede 60 cm, e o das rodas traseiras mede 80 cm.

Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante. Assim, considerando 3, a frequência de giro das rodas dianteira e traseiras deve ter sido, em Hz, aproximada e respectivamente, de a) 5,5 e 4,2. b) 5,5 e 4,4. c) 5,6 e 4,2. d) 5,6 e 4,4. e) 5,8 e 4,5.

17. (Fuvest 2019) Em uma fábrica, um técnico deve medir a velocidade angular de uma polia girando. Ele

apaga as luzes do ambiente e ilumina a peça somente com a luz de uma lâmpada estroboscópica, cuja frequência pode ser continuamente variada e precisamente conhecida. A polia tem uma mancha branca na lateral. Ele observa que, quando a frequência de flashes é 9 Hz, a mancha na polia parece estar parada. Então aumenta vagarosamente a frequência do piscar da lâmpada e só quando esta atinge 12 Hz é que, novamente, a mancha na polia parece estar parada. Com base nessas observações, ele determina que a velocidade angular da polia, em rpm, é a) 2.160 b) 1.260 c) 309 d) 180 e) 36

Page 6: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

6

18. (Ufsc 2019) A cadeira de rodas é um instrumento muito utilizado por pessoas que apresentam dificuldades de locomoção. As mais simples movimentam-se por meio da força do próprio usuário ou da força da pessoa que a empurra. Todavia, existem as elétricas, cuja força motriz provém de um motor elétrico acoplado a ela. Hoje, muitas delas são encontradas em residências, no entanto seu uso é bem comum em hospitais e clínicas médicas.

Considere um senhor de 80 kg que percorreu com movimento uniforme 18,0 m em 10 s utilizando uma dessas cadeiras. A roda traseira da cadeira mede 60,0 cm de diâmetro e a roda dianteira mede 20,0 cm de diâmetro. Com base no exposto acima, é correto afirmar que: 01) a velocidade linear da roda dianteira da cadeira de rodas é maior que a velocidade linear da roda

traseira. 02) em 10 s a roda traseira realiza dez voltas completas. 04) o período de rotação da roda traseira da cadeira de rodas é 1,0 s. 08) a velocidade angular da roda dianteira da cadeira de rodas é igual à velocidade angular da roda

traseira. 16) o conjunto homem + cadeira realizou um movimento retilíneo e uniforme. 32) a frequência de rotação da roda dianteira da cadeira de rodas é de 3 Hz.

19. (Mackenzie 2019)

As engrenagens A, B e C, de raios A BR , R e CR , acima desenhadas, fazem parte de um conjunto que funciona com um motor acoplado à engrenagem de raio AR 20 cm, fazendo-a girar com frequência constante de 120 rpm, no sentido horário. Conhecendo-se o raio BR 10 cm e CR 25 cm, pode-se afirmar que no SI (Sistema Internacional de Unidades) a aceleração de um ponto da periferia da engrenagem C, tem módulo igual a (Considere 2 10) a) 1,6 b) 16,0 c) 25,6 d) 32,0 e) 2560

Page 7: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

Exercícios Complementares

7

20. (Uece 2019) Considere dois pares de polias. Em cada par, as polias giram mecanicamente acopladas uma à outra. Em cada conjunto de duas polias acopladas, uma tem diâmetro 20 cm e a outra 50 cm. O par identificado pela letra C tem cada polia girando em eixos independentes e as polias são acoplados por uma correia (C) que não desliza. Nesse conjunto, as velocidades angulares das polias são C

20 e C50. O par

identificado pela letra E gira em um mesmo eixo (E) que não desliza em relação às polias. Nesse outro

conjunto, as velocidades angulares das polias são E20 e E

50. Os índices 20 e 50 indicam os diâmetros das polias. Assim, é correto afirmar que

a) C50C20

25

e

E50E20

1.

b) C50C20

1

e

E50E20

5 .2

c) C50C20

52

e

E50E20

1.

d) C50C20

1

e

E50E20

2 .5

21. (Ufsc 2019) Finalmente, o momento mais aguardado pela plateia do Circo da Física: o Globo. Em uma

esfera de aço com 4,84 m de diâmetro cujo coeficiente de atrito entre o pneu e o aço é 0,2, cinco destemidos pilotos fazem manobras radicais com suas motos. No ponto alto da apresentação, o Globo se abre, deixando a plateia apreensiva e extasiada, e três pilotos parecem flutuar no ar com suas motos, como mostrado na figura abaixo.

Com base no exposto acima e na figura, é correto afirmar que: 01) o período da rotação do piloto 1, quando está com a velocidade mínima para realizar a manobra, é de

2,0 s. 02) a velocidade angular mínima do piloto 1 é de aproximadamente 4,54 rad s. 04) a velocidade mínima para o piloto 1 realizar a manobra é de 11,0 m s. 08) a velocidade mínima para o piloto 1 realizar a manobra aumenta se o raio do Globo aumentar. 16) a força centrífuga sobre o sistema piloto-moto tem o sentido para o centro da trajetória. 32) um piloto com massa menor do que o piloto 1 poderia realizar a manobra com menor velocidade.

Page 8: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

8

22. (Ime 2019)

Uma partícula carregada efetua um movimento circular na região onde há um campo magnético, conforme mostra a figura. Durante todo o movimento, uma antena situada no ponto mais à esquerda da trajetória acompanha rigorosamente a imagem da partícula refletida em um espelho plano, que se desloca para a esquerda em velocidade constante, conforme mostra a figura.

Em função do tempo t e dos dados da questão, determine: a) as componentes x e y da posição da imagem da partícula em relação à antena; b) as componentes x e y da velocidade da imagem da partícula; e c) a velocidade angular da antena, a partir dos resultados obtidos nos itens anteriores.

Considerações: - no instante t 0, a partícula está no ponto mais à direita da trajetória; - no instante t 0, o espelho parte da posição onde está situada a antena; e - despreze o efeito gravitacional.

Dados: - carga da partícula: Q; - massa da partícula: m; - módulo da velocidade do espelho: u; - módulo da densidade de campo magnético da região: B; e - raio da trajetória: r.

TEXTO PARA A PRÓXIMA QUESTÃO: Nas questões a seguir, quando necessário, use:

- Aceleração da gravidade: 2g 10 m s ; - Calor específico da água: c 1,0 cal g C;

- sen 45 cos 45 2 2. 23. (Epcar (Afa) 2019) Uma partícula, de massa 1 kg, descreve um movimento circular uniformemente

variado, de raio 2,25 m, iniciando-o a partir do repouso no instante 0t 0. Em t 2 s, o módulo de sua velocidade vetorial (v)

é de 6 m s, conforme figura abaixo.

A intensidade da força resultante sobre a partícula, no instante t 1 s, em N, vale a) 1 b) 5 c) 9 d) 12

Page 9: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

Exercícios Complementares

9

Gabarito: 01. B

A força de atração gravitacional atua como resultante centrípeta. Logo: 2 2

grav cp 2 3

GMm GMF F m RR R

Como 2T

e LR R h, temos que:

32

L3

L

R h2 GM T 2T GMR h

Substituindo os valores, chegamos a:

3 9

13 22 9

1740 260 8 10T 2 3 69 10 8 10 9 8 10

T 2 h

02. D

Para a situação dada, temos que: A B

A A B B

B

B

v v2 f R 2 f R30 60 f 20

f 90 rpm

03. B

A aceleração centrípeta será dada por: 2

2cp

2

cp 2

2a r rT

4 raT

Substituindo os valores, com 3, obtemos: 2

cp 2

1 2cp

4 3 1,6a 0,412

a 4 10 km h .

04. C

A velocidade relativa será nula, pois o pneu consegue girar graças ao atrito, na qual a porção em contato com o solo funciona como “pivô” para o giro.

05. A

O torque em módulo é dado pelo produto da força aplicada pela distância entre o ponto de aplicação dessa força e o eixo de rotação. T F d Torque no pedal:

P P PT F R Torque na coroa dianteira: Tem o mesmo valor do torque fornecido pelo pedal, pois existe conexão entre as peças, então:

P D

P P T D

P PT

D

T TF R F R

F RFR

Torque na coroa traseira: E T ET F R

Da mesma forma, como a roda traseira está ligada à coroa traseira pelo mesmo eixo de rotação, seus torques serão iguais.

E R

T E R

T TF R T

Page 10: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

10

Substituindo o valor de TF na equação acima, temos:

P PR E

D

F RT RR

06. C

A AA

B BB

A

B

1f 100 Hz T 0,01 sf

6000 1f Hz 100 Hz T 0,01 s60 f

T 1T

07. E

A velocidade angular é a mesma para todos os pontos da Terra.

eq SJeq SJ SJ eq SJ

v v v v cos 1700 0,93 v 1.580m s.R R cos

08.

a) Para movimentos sincronizados entre MHS e MCU, o módulo da componente horizontal da velocidade e da aceleração centrípeta da esfera deve corresponder com a velocidade e a aceleração da massa, respectivamente, para as mesmas posições horizontais. Assim, a velocidade angular do sistema massa-mola deve ser igual a da esfera.

2k 100 N m 25 s 5 rad sm 4 kg

Usando a relação entre a velocidade angular, velocidade tangencial e o raio da curva, temos: v R v 25 rad s 0,2 m v 1 m s

b) A expressão para o período do sistema massa-mola é:

mT 2k

Isolando a massa, ficamos com:

222 2

2 2

0,62 100 N mm T kT 4 m m 0,975 kg 1 kgk 4 4

09. C

Problema simples de MCU onde o aluno deve cuidar para utilizar as unidades corretamente. Aqui o principal problema é colocar a frequência em hertz. Passando a frequência para hertz:

1 Hzf 30 rpm f 0,5 Hz60 rpm

A velocidade angular em função da frequência é dada por: 2 f

Assim: 2 05 Hz rad s

Page 11: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

Exercícios Complementares

11

10. C Primeiramente devemos adequar as unidades, isto requer passar a velocidade dada em km h para m s.

km 1000 m 1 hv 432,0 120,0 m sh 1 km 3600 s

A aceleração centrípeta é dada por:

22 2 22

c c

120,0 m sv 14400 m sa a 2,400 m sR 6000 m 6000 m

11. B

O período de rotação é dado por:

1

1 2Tf

T 2

12. B

Como as partes do foguete reentraram a atmosfera e caíram mais a frente (levando em consideração o sentido de rotação da Terra) do ponto de reentrada, a velocidade angular do foguete era superior à da Terra e no mesmo sentido.

13. D

Temos que: 2 2 rad

4t s3

3 rad s

14. B

Como são duas voltas, temos: s 2 2 R 2 2 3,14 5vt t 12

v 5,2 m s

15. B

A velocidade angular é dada por: vv RR

Como v se mantém constante, ao se duplicar R, deve ser reduzida à metade. 16. A

Para a roda dianteira: d d d

d

d

v 2 R f7200 2 0,3 f12 60f 5,5 Hz

Para as rodas traseiras: t t t

t

t

v 2 R f7200 2 0,4 f12 60f 4,2 Hz

17. A

Como a mancha branca parece estar parada, a frequência de rotação da polia deve ser um número múltiplo das frequências de 9 Hz e 12 Hz. E o menor valor para o qual isto é possível deve ser o mínimo múltiplo comum entre eles:

2 2 2 2mmc 9,12 mmc 3 ,3 2 3 2 36

Sendo assim, a sua frequência é de: f 36 Hz 36 60 rpm

f 2160 rpm

Obs: rpm é unidade de frequência e não de velocidade angular.

Page 12: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

12

18. 02 + 04 + 32 = 38. [01] Falsa. As velocidades lineares das duas rodas são iguais, pois definem como a cadeira de rodas anda, pois ambas deslocam 18,0 m. [02] Verdadeira. Devemos fazer a razão entre a distância e o comprimento de cada volta da roda traseira. Comprimento da roda traseira:

t t tC 2 R 2 3 0,3 m C 1,8 m Número de voltas:

18 mN N 10 voltas1,8 m

[04] Verdadeira. O período (T) é o tempo total dividido pelo número de voltas: t 10 sT T T 1,0 s

N 10

[08] Falsa. Por ser três vezes menor, a roda dianteira tem velocidade angular três vezes maior que a roda traseira. [16] Falsa. No enunciado não é dito que o movimento é retilíneo, podendo ter feito alguma curva no trajeto, sendo assim, não há certeza absoluta para afirmar a proposição. [32] Verdadeira. Como a roda traseira é três vezes maior que a dianteira, ela tem três vezes menos frequência que a roda dianteira. Então como a frequência da roda traseira é 1 Hz, a frequência da roda dianteira é3 Hz.

19. C

O acoplamento das engrenagens é de tal modo que as velocidades tangenciais nos seus pontos de periferia são iguais.

A B Cv v v Como a velocidade tangencial é dada por: v 2 R f, então:

2 A AR f 2 B BR f 2 C C

A A B B C C

R fR f R f R f

E, com isso, temos como calcular a frequência da engrenagem C :

A AA A C C C C C

C

R f 20 cm 120 rpmR f R f f f f 96 rpmR 25 cm

Passando essa frequência para hertz, temos:

C C1 Hzf 96 rpm f 1,6 Hz

60 rpm

Finalmente, a aceleração centrípeta da engrenagem C é dada por:

22 22

Cc C

C

4 0,25 m2 0,25 m 1,6 HzvaR 0,25 m

211,6 s

0,25 m

2c Ca 25,6 m s

20. A

Para o par girando com eixos independentes: C C50 20C C50 20

C50C20

v v

50 20

25

Para o par girando em um mesmo eixo:

E E50 20

E50E20

1

21. 02 + 04 + 08 = 14.

Análise das afirmativas: [01] Falsa. Para calcularmos o período de rotação precisamos primeiramente achar a velocidade mínima do piloto. O diagrama de forças na figura abaixo, indicados no piloto 2 servem para qualquer outro piloto que efetua um movimento circular na altura média do globo.

Page 13: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

Exercícios Complementares

13

Para o equilíbrio de forças na vertical, temos:

atm gF P N m g N eq.1

Na horizontal, a resultante centrípeta é a força normal.

cmF N

2v mR

míng R gv

4,84R R 2,42 m2

Assim, substituindo os valores:

2

mín mín2,42 m 10 m sv v 11 m s

0,2

O período máximo do movimento circular está relacionado com a velocidade mínima com a equação a seguir.

máx2 R 2 R 2 3,14 2,42 mv T T 1,38 sT v 11 m s

[02] Verdadeira. A velocidade angular mínima mín é:

mínmín mín mín

v 11 m s 4,54 rad sR 2,42 m

[04] Verdadeira. Ver cálculo feito no item [01]. [08] Verdadeira. A expressão que relaciona a velocidade mínima com o raio foi obtida anteriormente mostra que a velocidade é proporcional à raiz quadrada do raio.

mínR gv

Assim, ao quadruplicar o raio, duplica a velocidade mínima, ou seja, aumentando o raio aumenta também a velocidade mínima. [16] Falsa. A força que aponta para o centro da curva é chamada de centrípeta. [32] Falsa. Como visto no item [01], para chegarmos numa expressão da velocidade mínima, as massas são canceladas, isto é, a velocidade independe da massa. m 2v m

R

g

Page 14: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

14

22. a) Velocidade angular da partícula:

2

cp m

m rmv BQF F BQv BQr r m

Coordenadas da partícula em relação à antena:

p p

p p

BQx r cos t r x r cos t 1m

BQy r sen t y r sen tm

Coordenadas da imagem da partícula em relação à antena:

i

i

BQx r cos t 1 2utm

BQy r sen tm

b) Derivando as funções posição da imagem, chegamos a:

i

i

ix

iy

dx rBQ BQv sen t 2udt m mdy rBQ BQv cos tdt m m

c) Sendo o ângulo da antena com a horizontal para determinado instante t, temos:

r sen ttg

r 1 cos t 2ut

Sendo A a velocidade angular da antena, derivando a relação, obtemos:

2A 2

2A 2

2

A

r cos t r 1 cos t 2ut r sen t r sen t 2usec

r 1 cos t 2ut

r cos t r 1 cos t 2ut r sen t r sen t 2u1 tg

r 1 cos t 2ut

r cos t r 1 cos t 2r sen t1

r 1 cos t 2ut

2

A 2 2 2

ut r sen t r sen t 2u

r 1 cos t 2ut

r 2u t cos t sen t r cos t 1 BQ,mr 1 cos t 2ut r sen t

Page 15: Columbia - Editora Opirus · 2020. 4. 20. · Em um teste recém-realizado, o veículo percorreu, em linha reta, 7,2 km em 12 minutos, mantendo sua velocidade praticamente constante

Exercícios Complementares

15

23. B Cálculo da magnitude da aceleração angular ( ) do MCUV (Movimento Circular Uniformemente Variado) em 2 s :

0

2

v(2 s) t eR

6 m s 0 2 s2,25 m

6 m s 4 rad s2,25 m 2 s 3

Cálculo da intensidade da aceleração tangencial t(a )

t

2 2t t

a R4a rad s 2,25 m a 3 m s3

Cálculo do módulo da velocidade angular ( ) em 1 s :

0

2

t4(1 s) 0 rad s 1 s3

4(1 s) rad s3

Cálculo do módulo da aceleração centrípeta c(a ) em 1 s :

22 2

c c c4a (1 s) ( (1 s)) R a (1 s) rad s 2,25 m a (1 s) 4 m s3

Usando o Teorema de Pitágoras, obtemos a intensidade da aceleração resultante r(a ).

2 22 2 2 2 2r t c r ra a a a 3 m s 4 m s a 5 m s

A intensidade da força resultante r(F ) é obtida pelo Princípio Fundamental da Dinâmica.

r r2

r r

F m aF 1 kg 5 m s F 5 N