ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · philip günthe responsável...

30
27 de junho de 2013 PAINEL 1: GESTÃO DE RESÍDUOS (Auditório) Moderador: Adriano Assi, Diretor Editora Ecobrasil Cradle to Cradle Ciclo fechado do “berço-ao-berço”: planejamento na gestão dos resíduos como nutrientes Palestrante: Alexandre Fernandes, EPEA Brasil segunda-feira, 24 de junho de 13

Upload: lyduong

Post on 08-Nov-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

27 de junho de 2013

PAINEL 1: GESTÃO DE RESÍDUOS (Auditório) Moderador: Adriano Assi, Diretor Editora Ecobrasil 9:00 A gestão de resíduos sólidos urbanos

em São Paulo Ariovaldo Caodaglio, Presidente Selur (Sindicato Das Empresas de Limpeza Urbana de SP)

9:30 Gestão de resíduos eletroeletrônicos no Brasil

Kami Saidi, Diretor de Operações & Sustentabilidade da HP Brasil

10:00 Gestão de resíduos eletroeletrônicos na Alemanha David Pintre, Diretor de Vendas na Sutco Iberica Recycling Technology S.L. Paulo Da Pieve, Gerente Geral na Steinert Latinoamericana Ltda

10:30 Ciclo fechado do berço-ao-berço: planejamento

na gestão dos resíduos como nutrientes Alexandre Fernandes, Co-fundador da EPEA Brasil 11:00 Utilização e aproveitamento energético de

resíduos sólidos com origem na agricultura Ives Ehlert, Gerente Regional DEG Mercosul 11h30 Discussão e Perguntas 12:30 Almoço 14:00 Tendências na área de gestão de resíduos

na Alemanha Cristiane Dias Pereira, Assistente de Pesquisa CREED (Center Research, Education and Demonstration in Waste Management)

14:30 Problemática da geração de resíduos sólidos urbanos no Brasil entre 2014 e 2016 Carlos Silva Filho, Diretor-Executivo da Associação Brasileira de Empresas de Limpeza Pública (ABRELPE)

15:00 Experiência alemã na gestão de resíduos

em grandes eventos Kathrin Zeller, Coordenadora do Projeto Green Rio 2014 Da Fundação Konrad Adenauer

15:30 Discussão e Perguntas

16:00 Encerramento

PAINEL 2: ENERGIA (Sala Seminários) Moderador: Dal Marcondes, Diretor da Envolverde 9:00 Energias renováveis complementam matriz

energética, mas podem não suprir a demanda Prof. Lineu Belico dos Reis, Professor da Universidade de São Paulo (USP)

9:30 Energias renováveis podem suprir eletricidade

durante 99,9% do tempo Goetz Schuchart, Co-fundador Fundação DESERTEC 10:00 Seguros em Energias Renováveis Gerson CMS Raymundo, Allianz 10:30 Reabilitação Energética dos Edifícios

Rodrigo Aguiar, Diretor Financeiro, da Associação Brasileira das Empresas de Serviços de Conservação de Energia (ABESCO)

11:00 Case Bayer: EcoCommercial Building India:

Edifício Autossuficiente em energia com emissão zero de carbono Fernando Resende, Head do Programa EcoCommercial Building (ECB) no Brasil

11:30 Eficiência energética na arquitetura alemã

Prof. Silvio Parucker, Pesquisador TU München 12:00 Discussão e Perguntas 12:30 Almoço 14:00 Painel Energia, Inovação e Clima (Coordenação

Konrad Adenauer Stifftung)

Dr. Eduardo Viola – Professor Relações Internacionais e Política Climática, Universidade de Brasília

João Ricardo R. Viégas – Técnico Pericial Patrimônio Histórico Cultural do Ministerio Público do Estado do Rio de Janeiro

Caetano Scannavino Filho – diretor e coordenador de projetos da organização Saúde e Alegria

Yves Ehlert – Gerente Regional DEG Mercosul Banco alemão de desenvolvimento KfW no Brasil

Cradle to CradleCiclo fechado do “berço-ao-berço”: planejamento na gestão dos resíduos como nutrientes

26 de junho de 2013

8:30 Credenciamento

9:30 Cerimônia de abertura - Ecogerma 2013 Marcelo Lacerda, Vice Presidente e Coordenador da Comissão de Sustentabilidade Câmara Brasil- Alemanha Isabella Teixeira, Ministra de Meio Ambiente (a confirmar) Bruno Covas, Secretário do Meio Ambiente de SP (a confirmar) Wilfried Grolig, Embaixador da Republica Federal da Alemanha no Brasil

Thomas Timm, Vice Presidente Executivo Câmara São Paulo

10:00 Cerimônia Prêmio von Martius de Sustentabilidade

12:00 Almoço

PAINEL 1: ENERGIA FOTOVOLTAICA (Auditório) Moderador: Peter Krenz, GIZ

14:00 Expectativas para o mercado brasileiro Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch

14:30 Projetos FV de médio e grande porte Enio Schöninger, Wirsol

15:00 Pequenos sistemas FV conectados à rede Hans Rauschmayer, Solarize

15:30 Mercado profissional e a experiência no Brasil Marco Nowak, Donauer

16:00 Incentivo a microgeração: o Fundo Solar Peter Krenz, GIZ/Ideal

16:30 Discussão e Perguntas

PAINEL 2: MOBILIDADE (Sala Seminários) Moderadora: Cilene Victor, Diretora Revista Com Ciência Ambiental

14:00 Smart for Vision Egidio Vieira Batista Júnior, Responsável por Vendas Técnicas, BASF

14:25 Programa Veículo Elétrico com ênfase no Projeto Bateria de Sódio Nacional

Celso Novais, Gerente da Assessoria de Mobilidade Elétrica Sustentável da Itaipu Binacional

14:45 Contribuição de sistemas de sinalização horizontal de Plástico a frio para vias mais Seguras e Sustentáveis Débora Rebuelta, Regional Sales Manager South America, Evonik

15:10 Carro elétrico na Alemanha Dr. Jan Fritz Rettberg, Diretor do Centro de Competência de NRW para Eletromobilidade, Infraestrutura e Redes na Universidade Técnica Dortmund

15:35 Preocupação com espaço para carros e bicicletas / mobilidade em SP Andréa Mendes Leal, Coordenadora do Projeto de Mobilidade Corporativa do Banco Mundial

16:00 Células de combustível Carsten Krause, Diretor do HyCologne Projects &

Solutions GmbH 16:25 Discussão e Perguntas 16:50 Encerramento

Palestrante:Alexandre Fernandes, EPEA Brasil

segunda-feira, 24 de junho de 13

Page 2: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

EPEA Brasil assessora organizações para criar produtos e sistemas Cradle to Cradle, positivos para as pessoas e para natureza.

“EPEA Brasil é o parceiro que confio para disseminar o conceito Cradle to Cradle® no Brasil”

Prof. Dr. Michael Braungart, idealizador de Cradle to Cradle.

segunda-feira, 24 de junho de 13

Page 3: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

EPEA Internacional GmbH

Especialistas em diversas áreas:• química• biologia• toxicologia• geoecologia• engenharia de embalagens• engenharia de produção• engenharia ambiental• engenharia de materiais• design industrial• arquitetura

“Nossa missão é integrar a ciência à industrial para a inovação de materiais, produtos e processos com impactos ambientais positivos.”

consultoria científica com 25 anos de experiência, presente em 18 países

segunda-feira, 24 de junho de 13

Page 4: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Então,qual é o plano?

segunda-feira, 24 de junho de 13

Page 5: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

“Economia Circular: uma oportunidade global que excede 2 trilhões USD”Relatório Towards the Circular Economy da Mckinsey Co. e Ellen Mcarthur Foundation, 2012

segunda-feira, 24 de junho de 13

Page 6: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

"O que é conhecida por ‘cadeia de resíduos’ podem ser transformada em sistemas de recuperação de recursos seguros, saudáveis e positivos, pois agregam valor às comunidades.” William McDonough

A maior empresa dos EUA em serviços e reciclagem de resíduos

segunda-feira, 24 de junho de 13

Page 7: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

3/2/12 11:08 AMLes déchets, cela n’existe pas.

Page 2 of 2http://fr.oce.be/consommables/Gansewinkel/default.aspx

“A meta é ser uma provedora de serviços para resíduos, fornecedora de materiais para a Industria.”

Empresa européia de gestão de resíduos com receita anual de mais de €1,2 bi.

segunda-feira, 24 de junho de 13

Page 8: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Senseo Viva Café Eco

segunda-feira, 24 de junho de 13

Page 9: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Pegada regenerativa

Fixação de carbono

Diversidade

Fluxo de materiaise de energia

Adaptação, suporte

Balançopositivo

Um sistema que prospera há 3,8 bilhões de anos

segunda-feira, 24 de junho de 13

Page 10: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Prof. Taherzadeh, University of Borås

ENERGIA

segunda-feira, 24 de junho de 13

Page 11: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

“O edifício mais ecológico é aquele que nunca é construído.“

— Whit Faulconer, GreenBlue

?segunda-feira, 24 de junho de 13

Page 12: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Minimizar impactos negativos

Extrair Fabricar Descartar

Sustentabilidade =

segunda-feira, 24 de junho de 13

Page 13: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Matéria-prima mais cara...

segunda-feira, 24 de junho de 13

Page 14: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Qual o Impacto de uma árvore?

+ habitat+ água limpa + ar fresco+ solo fértil+ alimento+ beleza

segunda-feira, 24 de junho de 13

Page 15: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

segunda-feira, 24 de junho de 13

Page 16: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Two Interdependent Metabolisms

Interdependência

segunda-feira, 24 de junho de 13

Page 17: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

"Qualidade total nos anos 80, Reengenharia nos anos 90, Base da Pirâmide em 2000... nos próximos anos, uma das principais

correntes é o Cradle to Cradle”

William McDonough & Michael Braungart

segunda-feira, 24 de junho de 13

Page 18: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

• Eliminar o conceito de resíduos.• Valorizar os resíduos como nutrientes (técnicos ou biológicos).• Eliminar a contaminação do ar, solo, água e das pessoas.• Maximizar os impactos positivos ambientais.

Fechar o ciclo do berço-ao-berço é...

segunda-feira, 24 de junho de 13

Page 19: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Princípios Cradle to Cradleinspiração no sistema produtivo da natureza

Resíduos =Nutrientes

Usar a Energia do Sol

Celebrar a Diversidade

segunda-feira, 24 de junho de 13

Page 20: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

segunda-feira, 24 de junho de 13

Page 21: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Plano de desenvolvimento

“Eco-eficiente é Insuficiente...”

segunda-feira, 24 de junho de 13

Page 22: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Fonte: McDonough and Braungart

segunda-feira, 24 de junho de 13

Page 23: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

• Upcycling. A process of converting materials into new materials of higher quality and increased functionality.

Biochemicals extractionApplying biomass conversion processes and equipment to produce low-volume but high-value chemical products, or low-value high-volume liquid transport fuel—and thereby generating electricity and process heat fuels, power, and chemicals from biomass. In a ‘biorefinery’ such processes are combined to produce more than one product or type of energy.

CompostingA biological process during which naturally occurring microorganisms (e.g., bacteria and fungi), insects, snails, and earthworms break down organic materials (such as leaves, grass clippings, garden debris, and certain food wastes) into a soil-like material called compost. Composting is a form of recycling, a natural way of returning biological nutrients to the soil.

Anaerobic digestionA process in which microorganisms break down organic materials, such as food scraps, manure, and sewage sludge, in the absence of oxygen. Anaerobic digestion produces biogas and a solid residual. Biogas, made primarily of methane and carbon dioxide, can be used as a source of energy similar to natural gas. The solid residual can be applied on the land or composted and used as a soil amendment.

Energy recoveryThe conversion of non-recyclable waste materials into useable heat, electricity, or fuel through a variety of so-called waste-to-energy processes, including combustion, gasification, pyrolysis, anaerobic digestion, and landfill gas recovery.

LandfillingDisposing of waste in a site used for the controlled deposit of solid waste onto or into land.

technological and biological nutrient-based products and materials cycle through the economic system, each with their own set of characteristics—which will be detailed later in this chapter.

Terminology39

Reuse of goodsThe use of a product again for the same purpose in its original form or with little enhancement or change. This can also apply to what Walter Stahel calls ‘catalytic goods’, e.g., water used as a cooling medium or in process technology.

Product refurbishmentA process of returning a product to good working condition by replacing or repairing major components that are faulty or close to failure, and making ‘cosmetic’ changes to update the appearance of a product, such as cleaning, changing fabric, painting or refinishing. Any subsequent warranty is generally less than issued for a new or a remanufactured product, but the warranty is likely to cover the whole product (unlike repair). Accordingly, the performance may be less than as-new.

Component remanufacturingA process of disassembly and recovery at the subassembly or component level. Functioning, reusable parts are taken out of a used product and rebuilt into a new one. This process includes quality assurance and potential enhancements or changes to the components.

Cascading of components and materialsPutting materials and components into different uses after end-of-life across different value streams and extracting, over time, stored energy and material ‘coherence’. Along the cascade, this material order declines (in other words, entropy increases).

Material recycling • Functional recycling. A process of recovering materials for the original purpose or for other purposes, excluding energy recovery.40

• Downcycling. A process of converting materials into new materials of lesser quality and reduced functionality.

24 | TOWARDS THE CIRCULAR ECONOMY TOWARDS THE CIRCULAR ECONOMY | 25

2. From linear to circularContinued

FIGURE 6 The circular economy—an industrial system that is restorative by design

Farming/collection1

Biochemical feedstock

Restoration

Biogas

Anaerobic digestion/ composting

Extraction of biochemical feedstock2

Cascades

Collection

Energy recovery

Leakage to be minimised

Parts manufacturer

Product manufacturer

Service provider

Landfill

Collection

User

Biosphere

Mining/materials manufacturing

Technical nutrients

Recycle

Refurbish/remanufacture

Reuse/redistribute

Maintenance

1 Hunting and fishing2 Can take both post-harvest and post-consumer waste as an inputSource: Ellen MacArthur Foundation circular economy team

6 2803 0006 9

Consumer

Biological nutrients

The drive to shift the material composition of consumables from technical towards biological nutrients and to have those cascade through different applications before extracting valuable feedstock and finally re-introducing their nutrients into the biosphere, rounds out the core principles of a restorative circular economy. Figure 6 illustrates how technological and biological nutrient-based products and materials cycle through the economic system, each with their own set of characteristics—which will be detailed later in this chapter.

39 Our understanding of reuse, refurbishing, and cascading is in line with definitions developed by the Centre for Remanufacturing and Reuse (CRR). With respect to remanufacturing, our focus is on recovery at module/component level, whereas the CRR defines remanufacturing as ‘returning a used product to at least its original performance with a warranty that is equivalent to or better than that of the newly manufactured product’— Adrian Chapman et al., ‘Remanufacturing in the U.K. – A snapshot of the U.K. remanufacturing industry’; Centre for Remanufacturing & Reuse report, August 2010

40 This definition is in line with Article 3(7) of Directive 94/62/EC. This article additionally states that recycling includes organic recycling

Oportunidades na Economia Circular

Towards the Circular Economy Report, Ellen Mcarthur Foundation

segunda-feira, 24 de junho de 13

Page 24: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

• Upcycling. A process of converting materials into new materials of higher quality and increased functionality.

Biochemicals extractionApplying biomass conversion processes and equipment to produce low-volume but high-value chemical products, or low-value high-volume liquid transport fuel—and thereby generating electricity and process heat fuels, power, and chemicals from biomass. In a ‘biorefinery’ such processes are combined to produce more than one product or type of energy.

CompostingA biological process during which naturally occurring microorganisms (e.g., bacteria and fungi), insects, snails, and earthworms break down organic materials (such as leaves, grass clippings, garden debris, and certain food wastes) into a soil-like material called compost. Composting is a form of recycling, a natural way of returning biological nutrients to the soil.

Anaerobic digestionA process in which microorganisms break down organic materials, such as food scraps, manure, and sewage sludge, in the absence of oxygen. Anaerobic digestion produces biogas and a solid residual. Biogas, made primarily of methane and carbon dioxide, can be used as a source of energy similar to natural gas. The solid residual can be applied on the land or composted and used as a soil amendment.

Energy recoveryThe conversion of non-recyclable waste materials into useable heat, electricity, or fuel through a variety of so-called waste-to-energy processes, including combustion, gasification, pyrolysis, anaerobic digestion, and landfill gas recovery.

LandfillingDisposing of waste in a site used for the controlled deposit of solid waste onto or into land.

technological and biological nutrient-based products and materials cycle through the economic system, each with their own set of characteristics—which will be detailed later in this chapter.

Terminology39

Reuse of goodsThe use of a product again for the same purpose in its original form or with little enhancement or change. This can also apply to what Walter Stahel calls ‘catalytic goods’, e.g., water used as a cooling medium or in process technology.

Product refurbishmentA process of returning a product to good working condition by replacing or repairing major components that are faulty or close to failure, and making ‘cosmetic’ changes to update the appearance of a product, such as cleaning, changing fabric, painting or refinishing. Any subsequent warranty is generally less than issued for a new or a remanufactured product, but the warranty is likely to cover the whole product (unlike repair). Accordingly, the performance may be less than as-new.

Component remanufacturingA process of disassembly and recovery at the subassembly or component level. Functioning, reusable parts are taken out of a used product and rebuilt into a new one. This process includes quality assurance and potential enhancements or changes to the components.

Cascading of components and materialsPutting materials and components into different uses after end-of-life across different value streams and extracting, over time, stored energy and material ‘coherence’. Along the cascade, this material order declines (in other words, entropy increases).

Material recycling • Functional recycling. A process of recovering materials for the original purpose or for other purposes, excluding energy recovery.40

• Downcycling. A process of converting materials into new materials of lesser quality and reduced functionality.

24 | TOWARDS THE CIRCULAR ECONOMY TOWARDS THE CIRCULAR ECONOMY | 25

2. From linear to circularContinued

FIGURE 6 The circular economy—an industrial system that is restorative by design

Farming/collection1

Biochemical feedstock

Restoration

Biogas

Anaerobic digestion/ composting

Extraction of biochemical feedstock2

Cascades

Collection

Energy recovery

Leakage to be minimised

Parts manufacturer

Product manufacturer

Service provider

Landfill

Collection

User

Biosphere

Mining/materials manufacturing

Technical nutrients

Recycle

Refurbish/remanufacture

Reuse/redistribute

Maintenance

1 Hunting and fishing2 Can take both post-harvest and post-consumer waste as an inputSource: Ellen MacArthur Foundation circular economy team

6 2803 0006 9

Consumer

Biological nutrients

The drive to shift the material composition of consumables from technical towards biological nutrients and to have those cascade through different applications before extracting valuable feedstock and finally re-introducing their nutrients into the biosphere, rounds out the core principles of a restorative circular economy. Figure 6 illustrates how technological and biological nutrient-based products and materials cycle through the economic system, each with their own set of characteristics—which will be detailed later in this chapter.

39 Our understanding of reuse, refurbishing, and cascading is in line with definitions developed by the Centre for Remanufacturing and Reuse (CRR). With respect to remanufacturing, our focus is on recovery at module/component level, whereas the CRR defines remanufacturing as ‘returning a used product to at least its original performance with a warranty that is equivalent to or better than that of the newly manufactured product’— Adrian Chapman et al., ‘Remanufacturing in the U.K. – A snapshot of the U.K. remanufacturing industry’; Centre for Remanufacturing & Reuse report, August 2010

40 This definition is in line with Article 3(7) of Directive 94/62/EC. This article additionally states that recycling includes organic recycling

Towards the Circular Economy Report, Ellen Mcarthur Foundation

segunda-feira, 24 de junho de 13

Page 25: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

• Upcycling. A process of converting materials into new materials of higher quality and increased functionality.

Biochemicals extractionApplying biomass conversion processes and equipment to produce low-volume but high-value chemical products, or low-value high-volume liquid transport fuel—and thereby generating electricity and process heat fuels, power, and chemicals from biomass. In a ‘biorefinery’ such processes are combined to produce more than one product or type of energy.

CompostingA biological process during which naturally occurring microorganisms (e.g., bacteria and fungi), insects, snails, and earthworms break down organic materials (such as leaves, grass clippings, garden debris, and certain food wastes) into a soil-like material called compost. Composting is a form of recycling, a natural way of returning biological nutrients to the soil.

Anaerobic digestionA process in which microorganisms break down organic materials, such as food scraps, manure, and sewage sludge, in the absence of oxygen. Anaerobic digestion produces biogas and a solid residual. Biogas, made primarily of methane and carbon dioxide, can be used as a source of energy similar to natural gas. The solid residual can be applied on the land or composted and used as a soil amendment.

Energy recoveryThe conversion of non-recyclable waste materials into useable heat, electricity, or fuel through a variety of so-called waste-to-energy processes, including combustion, gasification, pyrolysis, anaerobic digestion, and landfill gas recovery.

LandfillingDisposing of waste in a site used for the controlled deposit of solid waste onto or into land.

technological and biological nutrient-based products and materials cycle through the economic system, each with their own set of characteristics—which will be detailed later in this chapter.

Terminology39

Reuse of goodsThe use of a product again for the same purpose in its original form or with little enhancement or change. This can also apply to what Walter Stahel calls ‘catalytic goods’, e.g., water used as a cooling medium or in process technology.

Product refurbishmentA process of returning a product to good working condition by replacing or repairing major components that are faulty or close to failure, and making ‘cosmetic’ changes to update the appearance of a product, such as cleaning, changing fabric, painting or refinishing. Any subsequent warranty is generally less than issued for a new or a remanufactured product, but the warranty is likely to cover the whole product (unlike repair). Accordingly, the performance may be less than as-new.

Component remanufacturingA process of disassembly and recovery at the subassembly or component level. Functioning, reusable parts are taken out of a used product and rebuilt into a new one. This process includes quality assurance and potential enhancements or changes to the components.

Cascading of components and materialsPutting materials and components into different uses after end-of-life across different value streams and extracting, over time, stored energy and material ‘coherence’. Along the cascade, this material order declines (in other words, entropy increases).

Material recycling • Functional recycling. A process of recovering materials for the original purpose or for other purposes, excluding energy recovery.40

• Downcycling. A process of converting materials into new materials of lesser quality and reduced functionality.

24 | TOWARDS THE CIRCULAR ECONOMY TOWARDS THE CIRCULAR ECONOMY | 25

2. From linear to circularContinued

FIGURE 6 The circular economy—an industrial system that is restorative by design

Farming/collection1

Biochemical feedstock

Restoration

Biogas

Anaerobic digestion/ composting

Extraction of biochemical feedstock2

Cascades

Collection

Energy recovery

Leakage to be minimised

Parts manufacturer

Product manufacturer

Service provider

Landfill

Collection

User

Biosphere

Mining/materials manufacturing

Technical nutrients

Recycle

Refurbish/remanufacture

Reuse/redistribute

Maintenance

1 Hunting and fishing2 Can take both post-harvest and post-consumer waste as an inputSource: Ellen MacArthur Foundation circular economy team

6 2803 0006 9

Consumer

Biological nutrients

The drive to shift the material composition of consumables from technical towards biological nutrients and to have those cascade through different applications before extracting valuable feedstock and finally re-introducing their nutrients into the biosphere, rounds out the core principles of a restorative circular economy. Figure 6 illustrates how technological and biological nutrient-based products and materials cycle through the economic system, each with their own set of characteristics—which will be detailed later in this chapter.

39 Our understanding of reuse, refurbishing, and cascading is in line with definitions developed by the Centre for Remanufacturing and Reuse (CRR). With respect to remanufacturing, our focus is on recovery at module/component level, whereas the CRR defines remanufacturing as ‘returning a used product to at least its original performance with a warranty that is equivalent to or better than that of the newly manufactured product’— Adrian Chapman et al., ‘Remanufacturing in the U.K. – A snapshot of the U.K. remanufacturing industry’; Centre for Remanufacturing & Reuse report, August 2010

40 This definition is in line with Article 3(7) of Directive 94/62/EC. This article additionally states that recycling includes organic recycling

Towards the Circular Economy Report, Ellen Mcarthur Foundation

segunda-feira, 24 de junho de 13

Page 26: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

• We are able to increase each of the reuse, refurbishment, and remanufacturing cycles by an additional cycle, i.e., instead of discarding the product after the first two years, we can run the product through an extra cycle before it becomes unfit for purpose (given wear and tear or any of the other limits to repeated use—see sidebar on the factors driving premature obsolescence).

The differences between the BAU and the circular scenarios for both new virgin material required and the build-up of stock highlight the substantial savings effect of the circular setup (Figure 10).

• Need for virgin material extraction would decrease substantially. The impact of a circular set-up on virgin material extractions needs is considerable. This does not represent a temporary effect—the widening spread between the two lines continues even after growing collection rates and reuse/refurbishing rates come to a plateau (a point which can be seen visually as the ‘kink’ in the line that represents circular demand).

• Growth of landfill and total material stock would decrease as a consequence of these substitution effects. Most importantly, the growth rate would not resume the same speed of material demand as in the BAU scenario, as the substitution at product level will proportionally save more raw material than a comparative product created from virgin material. As a result the underlying run rates are reduced.

This model assumes that, at any of these stages, the economic trade-offs between the cost of virgin inputs and the cost of material that has been kept in the cycle via circular streams would always favour the circular setup. Obviously, this would not hold true if the price of the virgin material is at a level below the cost of keeping materials in the reverse cycles. Other trade-offs must be considered as well. As Peter Guthrie, who leads the Centre of Sustainable Development at Cambridge University’s Department of Engineering, puts it: ‘There will always need to be consumption of virgin materials, and the process of

The time seems right, now, to embrace more widely and accelerate the circular design philosophy. Resource prices are soaring, and the implicit or explicit costs of disposal drastically increasing. At the same time, progress in technologies and material science is yielding longer-lasting and more reusable designs whilst increased visibility along the value chain enables better tracking of the whereabouts of products and materials, and consumers and corporations have grown more accustomed to commercial practices based on performance instead of ownership.

Long-term effects of circularity on material stocks and mix

The combined effect of these value creation levers will profoundly change for the better both the mix as well as the run rate at which our extracted material stocks will grow. To illustrate these long-term effects, we prepared a simple theoretical example consisting of a single product (made of one material) over a 30-year time frame with and without reverse cycles. We first modelled the business-as-usual (BAU) scenario and then modified this scenario by gradually introducing the circular value-creation levers.

For the circular scenario, we assumed that:

• We have the same efficiency losses along the value chain from one product step to the next as for BAU • We face the same demand growth of 3% p.a., but:

• We build up reverse cycle treatment capacities, also at the rate of 4 percentage points per annum, with a cap at 40% each for reuse/refurbishment and remanufacturing for the end-of-life flows

• We recycle the share of the collected material that exceeds the 40% limits on our reverse treatment capacities

cycling will always require some energy use. The balance of resource use for different options needs to be carefully considered.’ Still, Guthrie says, ‘The whole approach of circularity is precisely the direction of travel for improved sustainability performance.’

To provide a perspective on how robust this arbitrage opportunity is in practice, Chapter 3 examines the effects and costs of reverse treatments and disposal options for a number of selected products in detail, and identifies what building blocks need to be put in place to capture the potential benefits. Chapter 4 then assesses how large this potential could be if scaled up across the economy. Chapter 5 puts forward strategies that will allow companies to extract maximum value from moving towards more circular business models.

32 | TOWARDS THE CIRCULAR ECONOMY TOWARDS THE CIRCULAR ECONOMY | 33

2. From linear to circularContinued

FIGURE 8 The impact of more circular production processes accumulates across several layers of inputs

1 Including impact on biodiversity and ecosystem services Source: Ellen MacArthur Foundation circular economy team

FIGURE 9 Cascading keeps materials in circulation for longer—textile example

1 Furniture stuffing material can be reused several times 2 Examples of reuse include donation, exchange, resale

Source: Ellen MacArthur Foundation circular economy team

Farming/collection

Extraction of biochemical feedstock

Restoration Biosphere

Biogas

Anaerobic digestion/ composting

Parts manufacturer

Insulation

Fibre

Insulationmaterial

Insulationmaterial sales

Furniture

Stuffing1

Furniture

Furnituresales

Garment

Yarn recycling

Yarn, cloth

Apparel

Apparelsales

Products manufacturer

Biochemicalfeedstock

Service provider

Reuse2

Energy recovery

Landfill

Leakage to be minimised

Collection Collection Collection

6 2803 0006 9

Consumer

6 2803 0006 9

Consumer

6 2803 0006 9

Consumer

segunda-feira, 24 de junho de 13

Page 27: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Gestão de Recursos: “círculo de suprimento”

fonte: Ellen Mcarthur Foundation

segunda-feira, 24 de junho de 13

Page 28: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Critérios de Qualidade de Produtos C2C Products Innovation Institute

Seleção de materiais para saúde : pessoas e meio ambiente

Reciclabilidade total : eliminar o conceito de resíduos

Escolha por fontes de energia : limpa e renovável

Qualidade da água : gestão como um recurso precioso

Justiça social : ao ser humano e ao ecossistema natural

Copyright 2013 Cradle to Cradle Products Innovation Institute ©

segunda-feira, 24 de junho de 13

Page 29: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

Os produtos devem deixar uma marca positiva no mundo, este selo garante isso.

Programa de Certificação C2C Products Innovation Institute

segunda-feira, 24 de junho de 13

Page 30: Ciclo fechado do “berço-ao-berço”: planejamento na gestão ... · Philip Günthe Responsável pelo Setor de FV da Bosch Solar Energy AG Bosch 14:30 Projetos FV de médio e grande

[email protected]: +55 11 97219-0228

www.epeabrasil.com

Contato:

www.epeabrasil.comwww.epeabrasil.com

Cradle to Cradle® e C2C® são marcas registradas da MBDC.

Mais informações:

OBRIGADO!

segunda-feira, 24 de junho de 13