chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

28
Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas Mario Gazziro USP Stephen Saddow USF/EUA

Upload: mario-gazziro

Post on 27-Jun-2015

619 views

Category:

Education


0 download

DESCRIPTION

Resumo: Embora a pesquisa em interfaces cérebro-maquina tem evoluído com velocidade espantosa, ainda pouco se tem feito com relação a obtençãode soluções práticas e duradouras para os problemas estudados. A fim de usufruirdas vantagens descobertas até o momento, é crucial que uma solução de interface atenda os requisitos de biocompatibilidade de longo prazo, sem a utilização de fios ou baterias.Uma das possíveis soluções encontradas pela comunidade internacional tem sido omaterial semicondutor SiC (carbeto de silício). Nessa palestra serãoabordados o estado da arte nessa pesquisa - visando a fabricação de chips simples para implantes neurais - assim como será apresentada a proposta de parceria entre os pesquisadoresda Universidade do Sul da Flórida/EUA e o ICMC.

TRANSCRIPT

Page 1: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas

avançadas

Mario Gazziro

USP

StephenSaddow

USF/EUA

Page 2: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Utilização de interfaces cérebro-máquina

Direto via córtex motor

(experimental)

Motora

SubstituiçãoCibernética

Sensorial

RetinaArtificial

(inicio comercialização )Coclear

(120.000 pacientes)

Estimulação

Parkinsone Dor

Crônica(80.000 pacientes)

L. R. Hochberg, Nature, vol. 442, no. 7099, 2006.

http://www.brainharmonycenter.com/brain-facts.html P. Fromherz, 2003.

http://www.dekaresearch.com/deka_arm.shtml

http://www.artificialretina.energy.gov/http://www.gizmag.com/retinal-implant-treats-blindness/8841/picture/42306/

http://www.alsn.mda.org/article/robotic-caregiving-assistance-becoming-reality

Profunda

Tátil/Mot.

Page 3: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

EEG

ECoG - eletrocorticografia

Intracortical

Couro Cabeludonão-invasiva

SuperfícieCerebral

Invasiva

TecidoNeuralInvasiva

• Baixa relação sinal-ruído• Baixa largura de banda• Sem estimulação

• Boa relação sinal-ruído• Boa largura de banda• Estimulação com baixa seletividade

• Boa relação sinal-ruído• Boa largura de banda• Estimulação com alta seletividade

M. A. L. Nicolelis, Proc. NAS USA, vol. 100, no. 19, 2003.C. T. Nordhausen, Brain Res, vol. 637, no. 1-2, 1994.K. D. Wise, Proce. of the IEEE, vol. 96, no. 7, 2008.

http://www.rcsed.ac.uk/journal/vol47_5/47500001.html

Categorias de Interfaces Neurais mais comuns

Saddow et al.

Page 4: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Problemas conhecidos com interfaces cérebro-máquinas intracorticais

Em sua grande maioria, são formadas por uma matriz de eletrodos feita de silício.

Em geral, deixam de funcionar completamente (ou perdem muito de sua funcionalidade) em alguns meses.

Esses problemas ocorrem exclusivamente nas intefaces Motora e Tátil/Motora.

Page 5: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Utilização de interfaces cérebro-máquina

Direto via córtex motor

(experimental)

Motora

SubstituiçãoCibernética

Sensorial

RetinaArtificial

(inicio comercialização )Coclear

(120.000 pacientes)

Estimulação

Parkinsone Dor

Crônica(80.000 pacientes)

L. R. Hochberg, Nature, vol. 442, no. 7099, 2006.

http://www.brainharmonycenter.com/brain-facts.html P. Fromherz, 2003.

http://www.dekaresearch.com/deka_arm.shtml

http://www.artificialretina.energy.gov/http://www.gizmag.com/retinal-implant-treats-blindness/8841/picture/42306/

http://www.alsn.mda.org/article/robotic-caregiving-assistance-becoming-reality

Profunda

Tátil/Mot.

Page 6: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Diferentes reações à lesão traumáticacausada pela inserção dos micro-eletrodos

Fonte: Indwelling Neural Implants Strategies for Contending with the In Vivo Environment

Page 7: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Diferentes reações a lesão traumáticacausada pela inserção dos micro-eletrodos

Fonte: Indwelling Neural Implants Strategies for Contending with the In Vivo Environment

Page 8: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Diferentes reações a lesão traumáticacausada pela inserção dos micro-eletrodos

Fonte: Indwelling Neural Implants Strategies for Contending with the In Vivo Environment

Page 9: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Procurando alternativas ao Si: Fabricação do SiC

Reator de deposição de vapor químico operando a

1350 ºCPressão e

temperatura controlados

Filme de SiC sobre Si7-10 µm/hora

Inicia com WaferDe silício (2”)

Reator de SiC construído pela USF em 2006

Saddow et al.

Page 10: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Micro-eletrodo de 3C-SiC produzido na USF

Saddow et al.

Ampliado 50x

SiC

3C-SiC

Page 11: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Experimento com micro-eletrodo de SiC in vivo

Eletrodos customizados:~15µm espessura, 250µm largura (por perna) e 7mm de comprimento

• 3C-SiC comparado com Si e outros materiais biocompatíveis

• Pesquisa de substituição de metal por carbono (NCD)

Silício (Si)

Carbeto de Silicio Cúbico (3C-SiC)

Simulado (eletrodo removido)

Poliimida

Diamante nanocristralino (NCD)

Pt (ou Au) sobre Ti

15 µm de espessura 3C-SiC curva mas

não quebra!Si 3C-SiC

Saddow et al.

Page 12: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Análise do tecido neural após 30 dias

3C-SiCShard

Silício 3C-SiC

CD45 – Indicador de Microglia/ Macrófago - VERDE

GFAP – Indicador de Astrócitos VERMELHO

MAP2 – Indicador de Microtúbulos (Dendritos/ Axônios) -AZUL Micro-

eletrodoSaddow et al.

Page 13: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Análise do tecido neural após 30 dias

3C-SiCShard

Silício 3C-SiC

CD45 – Indicador de Microglia/ Macrófago - VERDE

GFAP – Indicador de Astrócitos VERMELHO

MAP2 – Indicador de Microtúbulos (Dendritos/ Axônios) -AZUL Micro-

eletrodoSaddow et al.

Page 14: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Interface com conectoresInterface com conectores

Estrutura de suporteEstrutura de suporte

3C-SiC eletrodo3C-SiC eletrodo

CondutoresCondutores

Deposição cristalina de 6H-SiC, LED verde

Deposição cristalina de 6H-SiC, LED verde

• 6H-SiC emite luz em ~ 550 nm (verde)

Componentes fabricados a partir de SiC: LEDs

Saddow et al.

Page 15: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Componentes fabricados a partir de SiC: Transistores

Saddow et al.

Page 16: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Componentes fabricados a partir de SiC: Antenas

Antena fabricada SiC

Saddow et al.

Page 17: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Uso de antenas: Absorção de energia pelo corpo

Modelagem simulada de SARatravés de elementos finitos

Avaliação efetiva de SAR através de phantom, a procura de

hot-spots, visíveis em câmera de tele-termografia

FCC: 1.6 Watt/Kg MAX!

Page 18: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Vasos sanguíneos foram visualizadas através do preenchimento com uma emulsão de plástico, após o qual o tecido cerebral foi dissolvido (Zlokovic e Apuzzo, 1998). Difícil atingir áreas ideias para posicionamento do chip e micro-eletrodos.

Desafios: “Espaço de trabalho”

Page 19: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Desafios: “Infiltrações”

Chip apresentou infiltração após 14 semanas de implantação em animal. Os dejetos infiltrados causam falha no funcionamento do chip (Zlokovic e Apuzzo, 1998). Infiltrações podem ocorrer pela conexão entre o chip e os micro-eletrodos

Page 20: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Proposta de parceria USP/USF através do Programa Ciência sem Fronteiras

Modalidade Pesquisador Visitante Especial• Atração de cientistas renomados e líderes de grupos de

pesquisa no exterior (1 à 3 meses por ano / de 2 à 3 anos)

• Vinda de pós-doutores da instituição do pesquisador visitante (de 6 à 12 meses)

• Envio de doutorandos (sanduíche) para a instituição do pesquisador visitante (de 3 à 12 meses)

• R$ 50.000,00 por ano para custeio do projeto (fora as bolsas)

Page 21: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Papel da USF/EUA na parceria

• USF: Especificar os detalhes técnicos para o projeto dos transistores e antenas MOSFET em SiC, bem como parâmetros de dos mesmos na linguagem Verilog-A. Acompanhar o projeto de layout dos chips desenvolvidos na USP. Realizar a fabricação e encapsulamento dos chips, uma vez gerados os arquivos com as máscaras pela USP, utilizando tecnologia desenvolvida para a plataforma SiC. Enviar os chips encapsulados para testes in vitro na USP. Realizar testes in vivo na USF com os chips projetados.

Page 22: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Papel da USP (ICMC e IFSC) na parceria

• ICMC: Detentor das licenças de software do programa universitário da empresa Mentor Graphics para projeto e fabricação de chips. Disponibilidade de recursos humanos especializados para projeto de hardware em linguagem Verilog (dentro da ementa do curso de engenharia de computação). Núcleo de matemática computacional para análise de elementos finitos aplicado a simulação de radiação absorvida.

• IFSC: Núcleos de pesquisa em neurociência aplicada, capaz de criarem demandas para projetos de chips, além de laboratórios especializados para realização de testes in vitro. Análise de radiação absorvida efetiva (utilizando por câmera de teletermografia em bonecos de gelatina - phantom de ágar).

Page 23: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Papel da USP (ICMC e IFSC) na parceria

Uma re-implementação do projeto apresentado no paper ao lado, mas dessa vez utilizando tecnologia de Carbeto de Sílicio seria um dos exemplos para um grande passo na criação de pré-amplificadores bio-compatíveis diretamente operando acoplados aos micro-eletrodos.

Demais projetos podem fazer uso de antenas SiC e criar chips biocompatíveis e sem fios.

Page 24: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Cronograma de Projeto e Vinda de PVE

Etapa A: Projeto e fabricação de chips acoplados a eletrodos, ambos biocompatíveis, encapsulados em plástico ou cerâmica, para experimentos com gânglios de neurônios in vitro;

Etapa B: Projeto e fabricação de chips, eletrodos e encapsulamento biocompatíveis, para experimentos in vivo implantados no córtex de ratos C56BL/6, com fios.

Etapa C: Projeto e fabricação de antenas, chips, eletrodos e encapsulamento biocompatíveis, para experimentos in vivo implantados no córtex de ratos C56BL/6, sem a utilização de fios (wireless).

Etapa D: Validação d radiação específica absorvida (SAR) entre chip e antena, realizada através de simulação e também com modelo de cabeça baseado em gelatina de ágar.

Page 25: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Orçamento Proposto (1 ano de projeto)

Page 26: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Conclusões

• O carbeto de silício se demonstra ideal para ser utilizado como material utilizado na fabricação (ou revestimento) de micro-eletrodos para interfaces cérebro-maquina.

• Os demais dispositivos (transistores, antenas, etc) também se demonstram totalmente funcionais para sua utilização como dispositivos biomédicos implantáveis.

• Por fim, uma eventual parceria entre a Universidade de São Paulo e a Universidade do Sul da Flórida no âmbito de serem projetados novos chips neurais biocompatíveis resultaria em benefícios para ambas as instituições.

Page 27: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

Primeira visita do Prof. Stephen Saddow em 2010

Page 28: Chips implantáveis utilizando materiais biocompatíveis para interfaces cibernéticas avançadas

FIM