caracterização fisico-química e atividade antioxidante de

121
CAMPUS UNIVERSITÁRIO DE GURUPI PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA CARACTERIZAÇÃO FISICO-QUÍMICA E ATIVIDADE ANTIOXIDANTE DE PSEUDOFRUTOS DE CAJU E CAJUÍ NATIVOS DO TOCANTINS. Gurupi 2013

Upload: truongthien

Post on 09-Jan-2017

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: caracterização fisico-química e atividade antioxidante de

CAMPUS UNIVERSITÁRIO DE GURUPI PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA

CARACTERIZAÇÃO FISICO-QUÍMICA E ATIVIDADE ANTIOXIDANTE DE PSEUDOFRUTOS DE CAJU E

CAJUÍ NATIVOS DO TOCANTINS.

Gurupi

2013

Page 2: caracterização fisico-química e atividade antioxidante de

Gurupi 2013

CARACTERIZAÇÃO FISICO-QUÍMICA E ATIVIDADE ANTIOXIDANTE DE PSEUDOFRUTOS DE CAJU E

CAJUÍ NATIVOS DO TOCANTINS.

Trabalho de Dissertação apresentado à Universidade Federal do Tocantins - UFT junto ao Programa de Pós-Graduação Strictu Sensu em Biotecnologia como requisito para a obtenção do título de Mestre em Biotecnologia. Orientador: Prof.º Dr. Luiz Gustavo de Lima Guimarães Co-orientadora: Prof.ª Dr. Elisângela Elena Nunes Carvalho

RENATA COSTA FRANÇA

Page 3: caracterização fisico-química e atividade antioxidante de

Dados Internacionais de Catalogação na Publicação (CIP) Biblioteca da Universidade Federal do Tocantins

Campus Universitário de Palmas

F814c França, Renata Costa Caracterização físico-química e atividade antioxidante de

pseudofrutos de caju e cajuí nativos do Tocantins. / Renata Costa França. - Palmas, 2013.

122f.

Dissertação de Mestrado – Universidade Federal do Tocantins, Programa de Pós-Graduação em Biotecnologia, 2013. Linha de pesquisa: Biotecnologia Agroalimentar. Orientador: Prof. Dr. Luiz Gustavo de Lima Guimarães.

1. Atividade biológica. 2. Anacardium occidentale. 3. Anacardium humile. I. Guimarães, Luiz Gustavo de Lima Guimarães II. Universidade Federal do Tocantins. III. Título.

CDD 577.2

Bibliotecária: Emanuele Santos CRB-2 / 1309

TODOS OS DIREITOS RESERVADOS – A reprodução total ou parcial, de qualquer forma ou por qualquer meio deste documento é autorizado desde que citada a fonte. A violação dos direitos do autor (Lei nº 9.610/98) é crime estabelecido pelo artigo 184 do Código Penal.

Page 4: caracterização fisico-química e atividade antioxidante de

Aprovada em 16 de dezembro 2013.

Banca Examinadora:

____________________________________________ Gessiel Newton Scheidt

_____________________________________________

Ildon Rodrigues do Nascimento

_____________________________________________ Luiz Gustavo de Lima Guimarães

____________________________________________

Tarcisio Castro Alves de Barros Leal

CARACTERIZAÇÃO FISICO-QUÍMICA E ATIVIDADE ANTIOXIDANTE DE PSEUDOFRUTOS DE CAJU E

CAJUÍ NATIVOS DO TOCANTINS.

Trabalho de Dissertação apresentado à Universidade Federal do Tocantins - UFT junto ao Programa de Pós Graduação Strictu Sensu em Biotecnologia como requisito para a obtenção do título de Mestre em Biotecnologia. Orientador: Prof.º Dr. Luiz Gustavo de Lima Guimarães Co-orientadora: Prof.ª Dr. Elisângela Elena Nunes Carvalho

RENATA COSTA FRANÇA

Page 5: caracterização fisico-química e atividade antioxidante de

A Deus o companheiro inseparável das horas, alegres, tristes, trabalhosas e deliciosas,

das derrotas e vitórias.

DEDICO

À minha família, por todo incentivo, orações e suporte, aos meus amigos pela torcida e apoio

e ao meu amor pela paciência.

OFEREÇO

Page 6: caracterização fisico-química e atividade antioxidante de

Agradecimentos

A Deus a honra a glória e o louvor para todo o sempre, pois foi Ele quem esteve ao meu lado em todo o percurso desse trabalho, providenciando os meios e as pessoas para que este fosse realizado e em nenhum momento me desamparou.

Á minha família que sempre me incentivou a seguir em frente.

Aos meus orientadores que se empenharam na execução deste projeto, tornando-o realidade.

A Universidade Federal do Tocantins por oferecer o curso, estrutura e suporte para realização do curso.

Aos responsáveis pelos Laboratórios dos Campus de Gurupi e os laboratórios da Engenharia de Alimentos do Campus de Palmas.

A Universidade Federal de São João Del Rei e aos técnicos responsáveis dos laboratórios do Departamento de Química.

A Universidade Federal de Lavras e aos alunos do laboratório da professora Maria das Graças Cardoso.

Aos professores do curso do mestrado que mostraram empenho e dedicação em nos repassar seus conhecimentos, mesmo sem os subsídios e estruturas necessária.

Aos colegas do curso de mestrado que me ensinaram sobre superar limites e companheirismo.

A técnica Gabriela Eustáquio Lacerda por me substituir nas minhas atividades durante o período em que estive ausente.

Aos amigos e irmãos que me ajudaram a recolher amostras, me incentivaram, torceram, brigaram e que vibraram comigo nessa conquista.

Page 7: caracterização fisico-química e atividade antioxidante de

RESUMO

Tendo em vista o potencial apresentado pelo estado do Tocantins para a fruticultura, a importância de preservação do cerrado, além da necessidade de desenvolvimento de práticas de manejo que gerem renda para a população, por meio da exploração sustentável dos recursos naturais, este trabalho teve como objetivo coletar mais informações a cerca dos pseudofrutos do caju (Anacardium occidentale) e de sua espécie primitiva o cajuí (Anacardium humile) coletados de plantas nativas do cerrado tocantinense. Foram feitas algumas comparações de certos parâmetros físico-químicos em pseudofrutos verdes e maturados destas espécies, além da avaliação do potencial antioxidante, frente a diversos ensaios in vitro dos frutos maturados. Observou-se que os pseudofrutos deste estudo apresentaram-se ácidos e com potencial hidrogeniônico maiores no estágio verde da maioria das amostras, com sólidos solúveis superiores a 20 ºBrix. As amostras pertencentes à região de Gurupi apresentaram teores de vitamina C superiores a 200 mg/100 g de pseudofruto. Constatou-se o decréscimo do teor de clorofila nos pseudofrutos maduros em relação aos verdes das duas espécies. Os pseudofrutos de caju e cajuí apresentaram baixa concentração de compostos fenólicos totais e flavonoides, quando comparados a pseudofrutos de caju colhidos em outras regiões do Brasil. Entretanto, apresentaram concentrações superiores a determinados frutos como a manga, a qual também pertence a família anacardiacea. Algumas amostras se destacaram quanto a capacidade antioxidante perante os métodos FRAP e ABTS. Pelo método ABTS observou-se que as amostras do Cerrado Tocantinense se assemelharam a capacidade antioxidante de outros frutos usualmente consumidos, como acerola e abacaxi. As amostras de cajuí se mostraram superiores quanto a capacidade antioxidante frente a frutos como maracujá, goiaba, açaí, uva e morango. Diante dos resultados obtidos conclui-se que os penducúlos de caju e cajuí coletados de plantas nativas do estado do Tocantins possuem características físico-químicas particulares que podem ser melhoradas para sua exploração comercial. Havendo a necessidade de incentivos para cultivo dessas espécies frutíferas como também subsídios para a preservação das mesmas.

PALAVRAS-CHAVE: Anacardium occidentale, Anacardium humile, frutos do

cerrado.

Page 8: caracterização fisico-química e atividade antioxidante de

ABSTRACT

Considering the potential presented by the state of Tocantins for horticulture, the importance of preservation of the Cerrado, as well as the need to develop management practices that generate income for the population through the sustainable exploitation of natural resources, this work was aimed at collecting more information on the accessory fruits of cashew (Anacardium occidentale) and its primitive species, the Cajuí (Anacardium humile), collected from native plants of Tocantins' Cerrado. A few comparisons of certain physicochemical parameters in green and matured accessory fruits of these species were made, besides the assessment of the antioxidant potential, against several in vitro assays of matured fruits. It was observed that the accessory fruits of this study were acids and with greater hydrogen potential in the green stage of most of the samples, with soluble solids above 20 °Brix. Samples belonging to the region of Gurupi showed levels of vitamin C above 200 mg/100 g of accessory fruits. It was noticed that there was a decrease in chlorophyll content in mature accessory fruits in relation to the green ones of the two species. The cashew and cashew Cajuí showed low concentration of total phenolics and flavonoids compared to cashew accessory fruits harvested in other regions of Brazil. However, they showed higher concentrations than certain fruits like mangoes, which also belongs to anacardiacea family. Some samples stood out as for the antioxidant capacity before FRAP and ABTS methods. By ABTS assay, it was observed that the samples of Tocantins' Cerrado resembled the antioxidant capacity of other fruits usually consumed, such as acerola and pineapple. Cajuí samples showed higher antioxidant capacity as compared to fruits such as passion fruit, guava, acai, grape and strawberry. Based on these results, the conclusion is that cashew and “cajuí” peduncles collected from native plants in the state of Tocantins have specific physicochemical characteristics that can be improved for commercial exploitation, with the need for incentives for cultivation of these fruit species as well as grants for the preservation of the same. KEYWORDS: Anacardium occidentale, Anacardium humile, fruits of the Cerrado.

Page 9: caracterização fisico-química e atividade antioxidante de

ÍNDICE

CAPÍTULO 1: INTRODUÇÃO GERAL ...................................................................................... 15

1 INTRODUÇÃO GERAL ........................................................................................................... 16

2 REFERENCIAL TEÓRICO ...................................................................................................... 18

2.1 Cerrado ................................................................................................................................. 18

2.2 O cerrado tocantinense ...................................................................................................... 19

2.3 O caju .................................................................................................................................... 21

2.4 O cajuí ................................................................................................................................... 27

2.5 Compostos bioativos e antioxidantes .............................................................................. 29

2.6 Os métodos de determinação da atividade antioxidante ................................................ 36

3 REFERÊNCIA BIBLIOGRÁFICA ............................................................................................ 37

CAPÍTULO 2: CARACTERIZAÇÃO FÍSICO QUÍMICA DE PSEUDOFRUTOS DE CAJU E CAJUÍ DO CERRADO TOCANTINENSE ......................................................................................................... 43

1 INTRODUÇÃO ......................................................................................................................... 46

2 METODOLOGIA ...................................................................................................................... 48

2.1 Localização e sistema de identificação das amostras .................................................... 48

2.2 Coleta das amostras ........................................................................................................... 48

2.3 Caracterização física ........................................................................................................... 49

2.4 Teste de determinação da firmeza da fruta ...................................................................... 49

2.5 Acidez titulável em ácido orgânico ................................................................................... 50

2.6 Determinação de pH ............................................................................................................ 50

2.7 Sólidos solúveis .................................................................................................................. 51

2.8 Colorimetria ......................................................................................................................... 51

2.9 Determinação do teor de vitamina C ................................................................................. 52

2.10 Determinação de clorofila ................................................................................................ 52

2.11 Análise estatística ............................................................................................................. 53

Page 10: caracterização fisico-química e atividade antioxidante de

3 RESULTADOS E DISCUSSÕES............................................................................................. 54

3.1 Coleta das amostras ........................................................................................................... 54

3.2 Caracterização física ........................................................................................................... 54

3.3 Teste de determinação da dureza da fruta ....................................................................... 55

3.4 Acidez Titulável, pH e Sólidos Solúveis ........................................................................... 57

3.5 Colorimetria ......................................................................................................................... 63

3.6 Vitamina C ............................................................................................................................ 67

3.7 Determinação de clorofila .................................................................................................. 70

4 CONCLUSÃO .......................................................................................................................... 78

5 REFERÊNCIAS BIBLIOGRÁFICAS........................................................................................ 79

CAPÍTULO 3: DETERMINAÇÃO DA ATIVIDADE ANTIOXIDANTE E QUANTIFICAÇÃO DOS

TEORES DE COMPOSTOS FENÓLICOS E FLAVONÓIDES EM PEDÚNCULOS DE CAJU E CAJUÍ DO CERRADO TOCANTINENSE. ........................................................................................................ 83

1 INTRODUÇÃO ......................................................................................................................... 86

2 MATERIAL E MÉTODOS ........................................................................................................ 88

2.1 Material ................................................................................................................................. 88

265 m .......................................................................................................................................... 88

2.2 Reagentes ............................................................................................................................ 88

2.3 Extração ............................................................................................................................... 89

2.4 Determinação do teor de flavonóides totais .................................................................... 89

2.5 Determinação do teor de fenólicos totais ......................................................................... 89

2.6 Determinação da atividade antioxidante total pelo método de redução do ferro (FRAP) ..................................................................................................................................................... 90

2.7 Determinação da atividade antioxidante total pela captura do Radical Livre ABTS•+ . 90

2.8 Determinação da atividade antioxidante total pela captura do Radical Livre DPPH• .. 91

2.9 Análise estatística ............................................................................................................... 91

3 RESULTADOS E DISCUSSÕES............................................................................................. 92

3.1 Flavonóides totais ............................................................................................................... 92

Page 11: caracterização fisico-química e atividade antioxidante de

3.2 Fenólicos totais ................................................................................................................... 94

3.3 Determinação da atividade antioxidante pelo método de redução do ferro (FRAP).... 96

3.4 Determinação da atividade antioxidante pela captura do Radical Livre ABTS•+ .......... 98

3.5 Determinação da atividade antioxidante pelo método de captura do Radical Livre DPPH• ....................................................................................................................................... 100

4 CONCLUSÃO ........................................................................................................................ 102

5 REFERÊNCIAS BIBLIOGRÁFICAS...................................................................................... 103

CONSIDERAÇÕES FINAIS ...................................................................................................... 106

ANEXOS ................................................................................................................................... 107

ANEXO A – Curvas Padrão para compostos fenólicos e flavonóides ............................. 107

ANEXO B – Curvas Padrão para os métodos FRAP, ABTS e DPPH ................................. 108

ANEXO C – QUADROS DE ANÁLISE ESTATÍSTICA ........................................................... 110

Page 12: caracterização fisico-química e atividade antioxidante de

LISTA DE FIGURAS

Figura 1.1: Cajueiro e seus pseudofrutos. ................................................................................. 21

Figura 1.2: Comparação das quantidades importadas e exportadas de castanha de caju no 1º semestre de 2011 e 1º semestre de 2012 e evolução das quantidades importadas e exportadas de castanha de caju, no período de 2005 a 2011 (em milhares de toneladas). ......................... 25

Figura 1.3: Percentagem de aproveitamento da polpa de suco produzido em relação a parte comestível de alguns frutos tropicais.. ........................................................................................ 26

Figura 1.4: Espécie arbórea do cajuí (Anacardium humile) e seu pseudofruto. ........................ 27

Figura 1.5: O estresse oxidativo na DPOC gera danos diretos aos componentes pulmonares e participa como desencadeador e amplificador dos outros mecanismo etiopatogênicos. . ......... 29

Figura 1.6: Fontes e respostas celulares aos Radicais Livres (RL): espécies Reativas de Oxigênio (ERO), de Nitrogênio (ERN), derivados do Enxofre (ERS), do Cloro (ERCl), do carbono (ERC) e metais de transição livres. .............................................................................. 30

Figura 2.1: Esquema de medida das amostras ......................................................................... 49

Figura 2.2: O valor de L* representado no centro axial. O a* aparece no plano horizontal. ..... 51

Figura 2.3: (a) e (b) amostras de cajuí e caju verdes; (c) e (d) amostras correspondentes aos frutos maturados cajuí e caju, respectivamente, provenientes de Palmas. ................................ 55

Figura 2.4: Resultado do teste de dureza do pseudofruto de caju, em estágios verde pequeno, verde médio e maduro. I = estágio 1 de maturação, II = estágio 2 de maturação.. ................... 56

Figura 2.5: Potencial hidrogênionico de amostras verdes e maduras de caju provenientes de Palmas e Gurupi.. ........................................................................................................................ 57

Figura 2.6: Potencial hidrogênionico de amostras de cajuí verdes e amostras maduras correspondentes. ......................................................................................................................... 58

Figura 2.7: Acidez titulável de amostras de caju e cajuí verdes e amostras maduras correspondentes provenientes de Palmas.. ................................................................................ 59

Figura 2.8: Acidez titulável de amostras de caju e cajuí verdes e amostras maduras correspondentes provenientes de Gurupi.. ................................................................................. 60

Figura 2.9: Sólidos solúveis (º Brix) para amostras de caju e cajuí nos estágios verde e maduro.. ...................................................................................................................................... 62

Figura 2.10: (A) Amostra de cajuí proveniente de Palmas CIMP2, (B) Amostra de caju proveniente de Palmas CJMP2, (C) Amostra de caju proveniente de Gurupi CJMG2, (C) Amostra de caju proveniente de Gurupi (CJVG4)....................................................................... 65

Figura 2.11: Amostra CJVG5 de caju proveniente de Gurupi. ................................................... 67

Figura 2.12: Teor de vitamina C para amostras verdes e maduras de cajuí provenientes de Palmas e Gurupi, nos estágios verde e maduro.. ....................................................................... 68

Figura 2.13: Teor de vitamina C para amostras verdes e maduras de cajuí provenientes de Palmas e Gurupi.. ........................................................................................................................ 69

Page 13: caracterização fisico-química e atividade antioxidante de

Figura 2.14:Teor de clorofila a, b e total (µg.mL-1) de amostras de cajus verdes provenientes de Palmas e Gurupi. ......................................................................................................................... 74

Figura 2.15:Teor de clorofila a, b e total (µg.mL-1) de amostras de cajus maduros provenientes de Palmas e Gurupi. .................................................................................................................... 75

Figura 2.16: Teor de clorofila a, b e total (µg.mL-1) de pseudofrutos de cajuís provenientes de Palmas e Gurupi. ......................................................................................................................... 76

Figura 2.17: Teor de clorofila a,b e total (µg.mL-1) para pseudofrutos de cajuí maturados. ..... 76

Figura 3.1: Teores de Flavonóides totais dos pseudofrutos de caju (A) e cajuí (B) expressos em mg de quercetina/100 g de peso fresco.. .............................................................................. 92

Figura 3.2: Teores de compostos fenólicos totais para amostras de caju (A) e cajuí (B) expressos em mg de ácido gálico equivalente / 100 g de peso fresco.. .................................... 95

Figura 3.3: Valores médios da atividade antioxidante, determinada pelo ensaio FRAP para amostras maturadas de caju (A) e cajuí (B) provenientes de Palmas e Gurupi expressos em (µM de sulfato ferroso/g de fruta).. .............................................................................................. 97

Figura 3.4: Média dos resultados para o método ABTS para amostras de caju e cajuí provenientes de Palmas e Gurupi expressos em µM de trolox/g de fruta.. ................................ 98

Figura 3.5: Atividade antioxidante para amostras de caju e cajuí pelo método de captura do radical livre DPPH (g fruta/ g DPPH).. ...................................................................................... 100

Page 14: caracterização fisico-química e atividade antioxidante de

LISTA DE TABELAS

Tabela 1.1: Compostos fenólicos e atividade antioxidante de alguns frutos. ............................ 35

Tabela 2.1: Identificação e coordenadas de localização das amostras. .................................... 54

Tabela 2.2: Valores médios das coordenadas valor L*, a* e b*, cromaticidade (C*) e ângulo Hue (°h) de pedúnculos de cajuí em dois estádios de maturação, coletados nos municípios de Gurupi e Palmas/ Tocantins. ....................................................................................................... 64

Tabela 2.3: Valores médios das coordenadas valor L*, a* e b*, cromaticidade (C*) e ângulo Hue (°h) de pedúnculos de caju em dois estádios de maturação, coletados nos municípios de Gurupi e Palmas/ Tocantins. ....................................................................................................... 66

Tabela 2.4: Teor de clorofila a, b e total (µg.mL-1) para amostras verdes e maduras de caju provenientes de Palmas. ............................................................................................................. 71

Tabela 2.5: Teor de clorofila a, b e total (µg.mL-1) para amostras verdes e maduras de cajuí provenientes de Palmas. ............................................................................................................. 72

Tabela 2.6: Teor de clorofila a, b e total (µg.mL-1) para amostras verdes e maduras de caju provenientes de Gurupi. .............................................................................................................. 73

Tabela 2.7: Teor de clorofila a, b e total (µg.mL-1) para amostras verdes e maduras de cajuí provenientes de Gurupi. .............................................................................................................. 73

Tabela 3.1: Coordenadas dos locais de colheita dos pseudofrutos de caju e cajuí. ................. 88

Page 15: caracterização fisico-química e atividade antioxidante de

15

CAPÍTULO 1: INTRODUÇÃO GERAL

Page 16: caracterização fisico-química e atividade antioxidante de

16

1 INTRODUÇÃO GERAL

O cerrado é o segundo maior ecossistema brasileiro e destaca-se pela

sua grande biodiversidade, além de ser uma importante fronteira agrícola do

mundo. No entanto, o processo de desenvolvimento agrícola tem prejudicado a

sustentabilidade desse ecossistema e contribuído para extinção de muitas

espécies animais e vegetais, incluindo as fruteiras nativas, base de

sustentação da vida silvestre e fonte de alimentos para as populações locais

(SILVA et al., 2013)

Neste contexto o Estado do Tocantins localiza-se em uma região de

importância ecológica, com características únicas, onde encontra-se a

importante bacia hidrográfica dos rios Tocantins e Araguaia, fazendo parte de

uma área de transição entre três dos maiores biomas brasileiro: Amazônico,

Cerrado e Caatinga, porém devido a forte influencia antrópica, já apresenta

muitas áreas devastadas (SILVA, 2007). Dessa forma torna-se necessário

conhecer os potenciais e explorar de forma sustentável as fruteiras nativas

desse bioma singular, bem como desenvolver técnicas de cultivo e

preservação. Entre estas espécies encontra-se o cajuí (Anacardium humile)

que consiste em uma fruteira melífera, largamente utilizada na medicina

popular (HIRSCHMANN e ARIAS, 1990; SILVA et al., 2013)

As condições edafoclimáticas do Tocantins favorecem o

desenvolvimento da fruticultura, a qual proporciona geração de emprego e

renda. Entre as principais fruteiras cultivadas no estado encontra-se o caju,

além do abacaxi, banana e melancia (SEAGRO, 2011). No entanto, a cultura

do caju é de pouca importância no estado quando comparada a região

Nordeste.

O caju é um fruto não climatérico com propriedades únicas das quais

destacam-se o de alto teor em vitamina C. Porém sua cadeia produtiva

necessita de ajustes logísticos para aproveitamento de seu pedúnculo (BANCO

DO BRASIL, 2010). Tendo em vista, estimativas da CONAB (Companhia

Nacional de Abastecimento), os quais demonstram que o Brasil em 2011

atingiu uma produção de mais de 291,3 mil toneladas de castanha de caju. Seu

pedúnculo possui alta suculência sendo indicado para produção de sucos,

Page 17: caracterização fisico-química e atividade antioxidante de

17

doces e bebidas, como a cajuína. Além de ser um resíduo agroindustrial

promissor para fertilização do solo (FRAGOSO et al., 1999).

As frutas e vegetais são conhecidos por conterem uma vasta variedade

de antioxidantes que podem promover proteção contra o desenvolvimento de

inúmeras doenças (WOOTTON-BEARD et al., 2011). Tendo em vista o

potencial apresentado pelo Estado do Tocantins para a fruticultura, e a

importância de preservação do cerrado além da necessidade de

desenvolvimento de práticas de manejo que gerem renda para a população,

por meio da exploração sustentável dos recursos naturais, este trabalho teve

como objetivo coletar mais informações a cerca dos pseudofrutos do caju

(Anacardium occidentale) e de sua espécie primitiva, o cajuí (Anacardium

humile) coletados de plantas nativas do cerrado tocantinense.

Neste trabalho foram feitas algumas comparações de certos parâmetros

físico-químicos em pseudofrutos verdes e maturados de caju (Anacardium

occidentale) e de cajuí (Anacardium humile), além da avaliação do potencial

antioxidante, frente a diversos ensaios in vitro dos frutos maturados de ambas

as espécies.

Page 18: caracterização fisico-química e atividade antioxidante de

18

2 REFERENCIAL TEÓRICO

2.1 Cerrado

A região do cerrado brasileiro abrange uma área de 204 milhões de

hectares, representando aproximadamente 25% do território nacional (AVIDOS

e FERREIRA, 2000), distribuídos principalmente na região Centro Oeste, parte

de Minas Gerais, Tocantins e em alguns Estados do nordeste, como Maranhão,

Ceará e Piauí (SILVA et al., 2001).

O cerrado brasileiro é rico em diversidade vegetal com 10.000 espécies

estimadas, entre arbóreas, arbustivas e herbáceas. Dentre as espécies

arbóreas as mais conhecidas estão o ipê, pequi, pau-terra, barbatimão, entre

outros. Dentre as herbáceas, tem-se o capim-flecha, o cajuzinho–do-campo, a

douradinha e a catuaba (FRANCO e UZUNIAN, 2010).

De acordo com Aguiar et al., (2004), o estado de conservação do

cerrado brasileiro é muito precário, somente após o Seminário de “Ações e

áreas prioritárias para a conservação da biodiversiade do Pantanal e Cerrado”

realizado em 1999, ações mais concretas foram tomadas para a definição de

uma política de conservação para o bioma Cerrado. Devido a boas condições

topográficas, tipo de terreno e facilidade de desmatamento o cerrado tornou-se

a principal região brasileira produtora de grãos e gado de corte do Brasil, o que

acelerou o processo de ocupação dessas áreas. A conversão da área original

do cerrado para áreas antrópicas é bastante preocupante, e sua preservação é

de vital importância para conservação de sua biodiversidade, bem como para

as populações humanas (MARINHO-FILHO et al., 2010).

Segundo Lima et al., (2000), os solos deste ecossistema apresentam acidez

elevada, toxidez alumínica e baixo teor matéria orgânica e nutrientes. Segundo

os esses autores, as unidades pedogenéticas de maior evidência na região são

os Latossolo Vermelho-Amarelo e Latossolo Vermelho-Escuro, com texturas

variáveis de média a argilosa, associados a Areias Quartzosas, Podzólico

Vermelho-Amarelo e Cambissolo. A microrregião na qual está inserida a região

de Gurupi possui solos classificados como: Latossolo Vermelho-Amarelo,

Latossolo Vermelho-Escuro, Areias Quartzosas, Podzólico Vermelho-Amarelo.

De acordo com Lima et al., (2000) estas áreas apresentam potenciais para

plantação de fruteiras tropicais, incluindo a cultura do caju.

Page 19: caracterização fisico-química e atividade antioxidante de

19

Klink e Machado (2005) elaborando um trabalho de revisão sobre a

conservação do cerrado mencionaram que o estabelecimento de prioridades

deveria considerar os habitats e ecossistemas existentes no cerrado e que o

envolvimento dos vários setores da sociedade, inclusive o produtivo seriam

úteis para melhor utilização e conservação do mesmo. Por meio da criação de

mecanismos de compensação para uma melhor conservação desse bioma.

Diniz-Filho et al. (2009), em suas considerações sobre o cerrado brasileiro,

afirmam que mudanças climáticas são esperadas e irão afetar a agricultura

padrão. E sugerem que a expansão da agricultura geograficamente estruturada

para a parte norte do bioma, também favorecida pelas mudanças climáticas

nesta direção, promoverá até mesmo maiores razões de perda de habitat na

região norte do bioma. Estes autores também mencionam que se uma onda de

ocupação humana continuar para a parte norte do bioma, como esperado, as

porcentagens ainda existentes irão diminuir rapidamente, induzindo até mesmo

a perda de habitat mais forte e eventualmente da biodiversidade, na escala do

bioma.

Almeida (2008) discutiu questões de acesso, controle e uso dos recursos

naturais do cerrado do norte de Minas Gerais, onde a distribuição política dos

recursos não corresponde à distribuição natural acarretando situações de

conflito, de impacto e destruição.

As fruteiras nativas ocupam lugar de destaque no ecossistema do cerrado e

seus frutos já são comercializados em feiras com grande aceitação popular.

Esses frutos apresentam sabores “sui generis” e elevados teores de açúcares,

proteínas, vitaminas e sais minerais e podem ser consumidos “in natura” ou na

forma de sucos, licores, sorvetes, geleias entre outros. Existem mais de 58

espécies de frutas nativas do cerrado conhecidas e utilizadas pela população

(AVIDOS e FERREIRA, 2000).

2.2 O cerrado tocantinense

O Estado do Tocantins está localizado na região norte do Brasil, no Planalto

Central brasileiro, faz parte da Amazônia Legal e está localizado no centro

geográfico do país, entre os paralelos 5º e 13º sul e os meridianos 46º e 51º,

longitude oeste (CAVALCANTE, 1994). Encontra-se na zona de transição

Page 20: caracterização fisico-química e atividade antioxidante de

20

geográfica entre o cerrado e a floresta amazônica. Sendo que dos cinco

grandes tipos de vegetação que formam as províncias vegetacionais que

cobrem o país, o Tocantins apresenta duas: a Floresta Amazônica de terra

firme, e a Savana, denominados, respectivamente, de Bioma Amazônia e

Bioma Cerrado. No entanto, mais da metade do seu território é ocupada pelos

cerrados (SILVA, 2007; ESTADOS BRASILEIROS, 2013). Além desses biomas

são encontrados no território tocantinense os chamados ecótonos, que são

importantes contatos entre dois ou mais biomas, sendo encontrado no

Tocantins duas das três zonas de transição do Brasil, inseridas parcialmente na

Região Hidrográfica Tocantins-Araguaia, o ecótono Cerrado-Amazônia e o

Cerrado-Caatinga. Desta forma, a biodiversidade da vegetação tocantinense é

formada pelo cerrado, o campo sujo, o campo limpo, a floresta equatorial e a

floresta tropical (CAVALCANTE, 1994).

A Secretaria da Agricultura, Pecuária e Abastecimento do Tocantins

(SEAGRO) vem incentivando o consumo e o processamento de frutos nativos

do cerrado (JUSBRASIL, 2013). Tendo em vista, que apesar dos frutos das

espécies nativas do cerrado oferecerem um elevado valor nutricional, além de

atrativos como cor, sabor e aroma peculiares e intensos, ainda são pouco

explorados comercialmente.

Dentre as diversas espécies frutíferas encontradas no cerrado tocantinense,

se destacam baru, pequi, babaçu, mangaba, cagaita, cupuaçu, buriti, araticum,

jatobá-do-cerrado, jenipapo, macaúba, mutamba, murici, entre outras. Segundo

dados da SEAGRO (2013), as principais fruteiras produzidas no Tocantins são

o abacaxi, a banana, o caju e a melancia.

Investimentos em biotecnologia na área da agricultura são de grande

importância para aumento de produtividade em menos área plantada,

diminuindo assim o desmatamento dessa área de grande biodiversidade que é

o cerrado brasileiro. Incentivos para utilização das plantas nativas desse bioma,

também serviriam para melhor preservação e conhecimento dos potenciais

dessa área, tendo em vista a grande importância tanto econômica, como social

e ambiental da mesma.

Page 21: caracterização fisico-química e atividade antioxidante de

21

2.3 O caju

O cajueiro (Anacardium occidentale, Linn.), constitui-se em uma das mais

importantes fruteiras do Brasil, possiu grande valor alimentício como também

elevado valor comercial pertencendo ao gênero Anacardium.

O fruto do cajueiro (Anacardium occidentale), o caju (Figura 1.1) é um

aquênio reniforme constituído pelo pericarpo, formado pelo epicarpo,

mesocarpo e o endocarpo e pela amêndoa (que abriga o embrião). A parte

carnosa ligada ao fruto é o pedúnculo floral hipertrofiado, chamado hipocarpo

ou pseudofruto, este é rico em suco e apresenta formato variado, podendo ser

cilíndrico, piriforme ou alongado. É a parte comestível “in natura” do caju, e é

também de onde se obtém sucos, cajuína e fibras alimentares, representando

cerca de 90% do peso total (SEBRAE, 2005).

Figura 1.1: Cajueiro e seus pseudofrutos.

O pseudofruto tem um crescimento lento, em relação ao fruto, atingindo o

tamanho máximo somente perto da completa maturação, devido a grande

variação da relação peso do fruto/peso do falso fruto onde o fruto representa de

8 a 12% do peso total (BARROS, 2013).

Rufino et al (2007b) apresenta a classificação botânica do gênero

Anacardium proposta por Bailey em 1964:

IV Divisão – Spermatophyta

II Subdivisão – Angiospermae

II Classe – Dicotyledoneae

Page 22: caracterização fisico-química e atividade antioxidante de

22

I Subclasse – Archichlamideae

39ª Ordem – Sapindales

Família – Anarcadiaceae

Gênero – Anacardium

Á família Anacardiaceae pertencem também, os gêneros Mangifera, cujo

principal representante é a espécie Mangifera indica (manga), importante

frutífera dos trópicos; gênero Pistacia, cuja espécie Pistacia viva produz uma

noz pistáque ou amêndoa verde. O cajá (Spondia. mombim L.), umbu

(Spondia. tuberosa, Arr. Cam.), ciriguela (Spondia purpurea L.) e a cajá manga

(Spondia cytherea Sonn.) - do gênero das Spondias também pertencem à

família Anacardiaceae dentre outros gêneros produtores de tanino, mástique

para fabricação de resinas e laca, um verniz natural de importância econômica

(BARROS, 1995; BARROS et al., 2002).

A coloração do pedúnculo do cajueiro varia desde o amarelo-canário

passando pelo laranja até ao vermelho vinho. Possui conformações variadas,

podendo assumir formato piriforme, cilíndrico, musóide, pomóide, cardióide,

tronco-cônico, fusiforme, alongado e ficóide, todas com tipos médios, pequenos

e grandes (Lima, 1988). O fruto é a castanha, um aquênio reniforme que varia

em peso de 3 a 32 g tendo a seguinte classificação: Castanha miúda – peso

menor que 4 g; castanha pequena – peso entre 5 e 8 g, castanha média – peso

entre 9 e 12 g; castanha grande- peso entre 13 e 16 g e castanha gigante –

peso maior que 17 g (LIMA, 1988).

O cajueiro é uma planta andromonóica com flores masculinas

(estaminadas) e hermafroditas perfeitas. O seu período de florescimento varia

com o genótipo e o ambiente, e geralmente dura de 5 a 7 meses entre os

meses de julho/agosto a dezembro/janeiro, isto para os de tipo comum, e de 6

a 8 meses para o tipo anão-precoce (junho/julho a janeiro/fevereiro) (BARROS

et al., 2002). Atinge altura de 5-10 m, porém em solos argilosos pode atingir até

20 m de altura, apresenta tronco tortuoso de 25-40 cm de diâmetro e possui o

pedúnculo super desenvolvido e com grande suculência, sendo geralmente

Page 23: caracterização fisico-química e atividade antioxidante de

23

confundido como fruto, quando na verdade a castanha é o verdadeiro fruto

(LORENZI, 2000).

O caju possui em seus tecidos um líquido claro, que dependendo da

variedade pode ser insípido, doce ou azedo No entanto, também há os

rançosos e os extremamente ácidos, devido ao pH dos vacúolos vegetais.

Segundo Taiz e Zeiger (2006) embora o pH do vacúolo de algumas espécies

podem ser moderadamente ácidos (5,5), algumas apresentam valores muito

menores, fenômeno conhecido como hiperacidificação, o qual é a causa do

gosto ácido de certas frutas como os limões.

Na sua grande maioria, os cajus são doces, sem ranço e saborosos. É

uma importante fonte de vitamina C, apresentando teores de 160 a mais de

200 mg por 100 g de pseudofruto. Apresentam em seu peso teores próximos a

86% de água, 8,4% de glicose e 3,06% de taninos (GOMES, 2007). Lorenzi et

al. (2006) apresentam uma tabela de valores calóricos e nutricionais por 100 g

de pseudofruto e fruto onde para a polpa do caju observa-se 38 calorias, contra

566 calorias da castanha, 0,2% de gordura contra 42% de gordura da

castanha, 0,8% de proteína contra 18% para a castanha. Apresentando

também as seguintes porcentagens de minerais 3% de cálcio, 14% de fósforo,

0,4% de ferro, 28% de potássio e ainda quantidades significativas de vitaminas

A, B1, B2, C e B3 (niacina) da ordem de 0,4; 0,02; 0,2; 259 e 0,3 mg,

respectivamente. Segundo Menezes e Alves (1995) os principais açúcares

encontrados no pedúnculo do caju são: maltose, sacarose, glicose, celobiose e

rafinose. E os principais aminoácidos são: Asp, Ser, Gly, Glu, Ala, Tre, Ile, Leu

e Lys.

Diante de tais informações, observa-se que o caju, além de conter diversos

aminoácidos, também apresenta vitaminas, sais minerais, carboidratos e

ácidos orgânicos. Do ponto de vista dietético e médico o mesmo pode ser de

grande importância nutricional. Podendo ser utilizado, segundo Lima (1988),

como um reconstituinte geral, como um tônico de primeira ordem,

principalmente para o sistema nervoso, além de possuir propriedades de

desintoxicador, antientérico, diurético e levemente depurativo. Também pode

ser usado no combate às enterites e diarréias crônicas, devido a presença de

taninos em sua constituição.

Page 24: caracterização fisico-química e atividade antioxidante de

24

Sendo um fruto encontrado praticamente em todas as regiões tropicais, a

sua cadeia produtiva gera renda e divisas cambiais para os países produtores

e exportadores. A Índia é o maior produtor de castanha, com cerca de 440.000

ton.ano-1 e o maior consumidor de amêndoa. No Brasil, cerca de 94% do caju é

produzido na região Nordeste. Em 2006 o país produziu 243 mil toneladas de

castanha de caju em uma área de cerca de 710 mil hectares. Entre os

principais estados produtores encontram-se o Ceará, Rio Grande do Norte e o

Piauí (BANCO DO BRASIL, 2010).

Entretanto, segundo CODEVASF (2012), o pedúnculo é pouco explorado, o

que representa um desperdício em torno de 90%. O mesmo poderia ser

aproveitado para preparo de diversos produtos como cajuína, doce em pasta,

caju passa, hamburguer de caju, farinhas, barras dietéticas, ração animal entre

outras. Pinho et al. (2011) desenvolveram hamburguer com substituição parcial

da carne pelo resíduo do pseudofruto de caju, o qual apresentou alta qualidade

nutricional, alto conteúdo em fibras e baixa concentração de lipídeos, além de

possuir maior teor de proteína quando comparado aos hambúrgueres vegetais

convencionais.

Guedes (2008) relata que 88% da produção do pedúnculo não é utilizada.

Banco do Brasil (2010) em estudo sobre desenvolvimento regional sustentável

abordou alguns pontos fracos da cadeia produtiva do caju sendo que um deles

é o pouco aproveitamento do pedúnculo, sendo o mesmo inferior a 12% de

toda a produção. Desta forma, é necessário mais estudos para um melhor

aproveitamento e destinação desse pseudofruto.

Na Figura 1.2 pode-se observar que a produção de castanha de caju é de

cerca 14 mil toneladas por semestre no Brasil, se supormos que para cada 1

tonelada são necessários 100.000 frutos e supondo que estes tenham um peso

médio de 10,5 g, tem se 1.050 Kg de caju.ton-1 de castanha produzida,

resultando em 945 kg de caju desperdiçado.ton-1 de castanha produzida, o que

equivale dizer que o desperdício chega a quase 1:1.

Page 25: caracterização fisico-química e atividade antioxidante de

25

Figura 1.2: Comparação das quantidades importadas e exportadas de castanha de caju no 1º semestre de 2011 e 1º semestre de 2012 e evolução das quantidades importadas e exportadas de castanha de caju, no período de 2005 a 2011 (em milhares de toneladas). Fonte: CODEVASF (2012).

O caju é classificado como fruto não climatérico, onde há decréscimo

contínuo na taxa respiratória pós-colheita, não havendo aumento na produção

de etileno, nem alterações no amadurecimento, ocasionando a necessidade de

colheita do fruto maduro (BANCO DO BRASIL, 2010). Essa característica

talvez explique o baixo nível de aproveitamento comercial do pedúnculo, pois

há necessidade de uma operação logística ajustada entre a colheita e o

processamento, o que requer colheita manual seletiva, a qual é consumidora

de mão-de-obra exaustiva, pois não há disponibilidade comercial de

equipamento para a operação (BANCO DO BRASIL, 2010).

Apesar dos custos de produção para aproveitamento do pedúnculo de caju,

Santos et al. (2007) estudando a produção e caracterização de cinzas do

bagaço de caju, encontraram os seguintes compostos na fase cristalina: KCO3

(54,17%), K2SO4 (34,08%) e MgKPO4.6H2O (10,06%). A presença destes

compostos faz do pedúnculo de caju um resíduo agroindustrial promissor,

podendo ser uma fonte não perecível de potássio, enxofre, fósforo e magnésio

para fertilização do solo e ração animal, além de possíveis aplicações geradas

pela presença de bicarbonato de potássio. Fragoso (1999) em estudo de

macronutrientes encontrou teores de potássio de até 10,44 g Kg-1 de resíduo e

teores de nitrogênio de 7,13 g Kg-1 de resíduo.

Menezes e Alves (1995) apresentam dados sobre a porcentagem de

aproveitamento do caju para produção de suco (Figura 1.3), neles observa-se

Page 26: caracterização fisico-química e atividade antioxidante de

26

que o aproveitamento do fruto para suco de caju é superior aos demais frutos

como abacaxi, graviola, goiaba e manga.

Figura 1.3: Percentagem de aproveitamento da polpa de suco produzido em relação a parte comestível de alguns frutos tropicais. Fonte: Adaptado de Menezes e Alves (1995).

Devido à grande aceitação nos mercados local e nacional o suco de caju

integral é o subproduto da cajucultura de maior relevância econômica para

região nordeste (CAJUCULTURA, 2013). Entretanto a representatividade do

suco de caju no volume das exportações brasileiras de sucos é muito pequena,

sendo assim institutos de pesquisas e universidades vêm estudando formas

alternativas de beneficiamento do pedúnculo (LEITE e PAULA PESSOA, 2002),

já que segundo dados da CONAB (Companhia Nacional de Abastecimento) do

Ministério da Agricultura e Abastecimento até setembro de 2011 o Brasil teve

uma produção de 291,3 mil toneladas de castanha de caju, onde não há

registros de aproveitamento do pseudofruto (COMPANHIA NACIONAL DE

ABASTECIMENTO, 2011).

Não são encontradas referências quanto ao pedúnculo de caju produzido no

Tocantins, informações a respeito das características químicas e do seu valor

nutricional são ferramentas básicas para avaliação do consumo e formulação

de novos produtos com os pedúnculos de caju produzidos no Estado.

Page 27: caracterização fisico-química e atividade antioxidante de

27

2.4 O cajuí

O cajuízeiro (Anacardium humile) (Figura 1.4) é uma frutífera nativa do

cerrado aberto das regiões Sudeste e Centro-oeste, Norte, Nordeste. Produz

um pseudofruto conhecido como cajuí, cajuzinho, caju-anão, caju-do-campo.

(LORENZI et al, 2006).

Figura 1.4: Espécie arbórea do cajuí (Anacardium humile) e seu pseudofruto.

É uma espécie não cultivada, mas facilmente encontrada em seu habitat

natural. Produz flores perfumadas, formadas de julho a setembro e contendo os

dois sexos, (LORENZI et al., 2006). Segundo Silva et al., (2013) observa-se a

seguinte classificação botânica do cajuí:

Divisão: Magnoliophyta (Angiospermae)

Classe: Magnoliopdida (Dicotiledonae)

Ordem: Sapindales

Família: Anacardiaceae

Espécie: Anacardium humile St. Hil.

Nome Popular: cajuzinho-do-cerrado, cajuí, caju, caju-do-campo.

Ocorrência: Campo Sujo, Cerrado

Distribuição: Bahia, Distrito Federal, Goiás, Minas Gerais, Mato Grosso, Mato

Grosso do Sul, São Paulo.

Floração: Entre junho e novembro com pico em agosto.

Page 28: caracterização fisico-química e atividade antioxidante de

28

Frutificação: Normalmente de outubro a novembro, às vezes estendendo-se até

janeiro.

O fruto verdadeiro, a castanha possui cerca de 1,5 a 2 x 1 cm, é de aspecto

acinzentado, reniforme, brilhante e com semente única (ALMEIDA et al., 1998)

O cajuí é uma planta melífera que também é utilizada na medicina popular.

Sendo utilizadas praticamente todas as partes da planta, desde a raiz que é

usada como purgativo até as folhas que são usadas como expectorante

(HIRSCHMANN e ARIAS, 1990; SILVA et al., 2013;).

Alguns estudos já foram realizados quanto ao controle de pragas utilizando

a folha do Anacardium humile, tais como no controle da mosca branca (Bemisia

tuberculata) principal praga da cultura da mandioca (Mahihot esculenta Crantz);

no controle da cigarrinha-das-raízes (Mahanarva fimbriolata), importante praga

da cultura da cana-de-açúcar (ANDRADE FILHO et al., 2013; PISTORI et al.,

2013). Também extratos e frações das folhas de A. humile coletados em

Tocantins foram avaliados quanto a atividade antiulcerogênica em ratos onde

inibiram significativamente as lesões ulcerativas (FERREIRA, 2005; LUIZ-

FERREIRA et al., 2012).

Apesar de já terem sido realizadas pesquisas quanto a prevalência desta

espécie em áreas de alta frequência de queimadas (LOIOLA et al., 2010) não

há estudos realizados com o seu pseudofruto. Silva et al. (2008) caracterizaram

o caju-do-cerrado (Anacardium othonianum Rizz) onde determinou o valor

energético total (38,27 Kcal por 100 g); umidade 86,57; proteínas 1,18; lipídios

0,63; carboidratos 6,97; cinzas 0,33 e fibra alimentar 4,26 expressos em g 100

g de pseudofruto. A composição mineral do caju-do-cerrado para cálcio, zinco e

ferro demonstrou teores de 15; 0,65 e 0,26 mg por 100 g de polpa,

respectivamente (SILVA et al., 2008).

Tendo em vista, a necessidade de dotar o Estado do Tocantins de

tecnologias que proporcionem a exploração sustentável dos recursos naturais,

e a falta de conhecimento das matérias-primas que possuam propriedades

funcionais, e que são encontradas de forma abundante no cerrado

tocantinense faz com que o estudo do cajuí seja de grande importância, não

apenas para sua exploração comercial, como também para preservação de sua

espécie.

Page 29: caracterização fisico-química e atividade antioxidante de

29

2.5 Compostos bioativos e antioxidantes

Segundo “Food Ingredients” Brasil (2009), os antioxidantes são um

conjunto heterogêneo de substâncias formadas por vitaminas, minerais,

pigmentos naturais e outros compostos vegetais, como também enzimas, que

bloqueiam o efeito danoso dos radicais livres. São definidos como o que

impede a oxidação de outras substâncias químicas por radicais livres formados

nas reações metabólicas ou por fatores exógenos, como as radiações

ionizantes.

Pesquisas têm demonstrado que diversas doenças crônicas, como as

doenças cardiovasculares e pelo menos algumas formas de câncer, são

iniciadas devido a oxidação de lipídeos, ácidos nucleicos ou de proteínas por

radicais livres (CARLSON, 2005).

Cavalcante e Bruin (2009) esquematizaram o efeito do estresse

oxidativo para doença pulmonar obstrutiva crônica (DPOC) como ilustrado na

Figura 1.5.

Figura 1.5: O estresse oxidativo na DPOC gera danos diretos aos componentes pulmonares e participa como desencadeador e amplificador dos outros mecanismo etiopatogênicos. Fonte: Cavalcante e Bruin (2009).

A Figura 1.6 exemplifica as diversas fontes que podem ocasionar a

liberação de radicais livres e consequentemente o desequilíbrio oxidativo,

causando danos à célula, bem como o efeito protetor dos antioxidantes.

Page 30: caracterização fisico-química e atividade antioxidante de

30

Oxidantes são gerados como resultado do metabolismo normal como na

mitocôndria, em peroxissomas e em uma variedade de enzimas citosólicas.

Existem ainda diversas fontes exógenas de produção de radicais livres. Por

outro lado, o sistema de defesa antioxidante (AO) enzimático e não enzimático,

quando atuam eficientemente, mantém a homeostase fisiológica e, quando

estão ineficientes permitem a instalação do estresse oxidativo, representado

pelo dano celular em macromoléculas fundamentais à vida como o DNA,

proteínas e lipídios, que se expressam clinicamente como envelhecimento ou

doença ou pela morte celular, seja diretamente ou indiretamente no curso da

doença. A morte celular pode ser programada (apoptose) ou não programada

(necrose), pelas células sob estresse oxidativo.

Figura 1.6: Fontes e respostas celulares aos Radicais Livres (RL): espécies Reativas de Oxigênio (ERO), de Nitrogênio (ERN), derivados do Enxofre (ERS), do Cloro (ERCl), do carbono (ERC) e metais de transição livres. Fonte: Vasconcelos, Silva e Goulart, 2006.

Bianchi e Antunes (1999) listam algumas doenças possivelmente

relacionadas com a geração de radicais livres, tais como: artrite, arterosclerose,

diabetes, câncer, cardiopatias dentre outras. Por isso a ingestão de alimentos

Page 31: caracterização fisico-química e atividade antioxidante de

31

em quantidades suficientes de substâncias antioxidantes é de grande

importância para proteção do organismo a fim de evitar o desequilíbrio celular.

Dos vegetais são formados compostos bioativos advindos de

metabólitos secundários que defendem estes contra herbívoros e patógenos,

dentre estes compostos encontram-se terpenos, compostos fenólicos, como os

flavonoides que constituem a maior classe de fenólicos vegetais, taninos entre

outros (TAIZ e ZAIGER, 2006).

Os compostos fenólicos são diferentes em tamanho que incluem desde

simples fenólicos como os ácidos hidroxibenzóicos até grandes polímeros

como os taninos, que possuem alta massa molecular (DEY e HARBONE,

1989). Estes compostos são relevantes para a qualidade dos alimentos

vegetais, estando relacionados com a aparência, sabor, flavor, e suas

propriedades funcionais benéficas a saúde (TOMÁS-BARBERÁN e ESPÍN,

2001).

Vários trabalhos avaliando as propriedades antioxidantes de frutos e

extratos foliáceos têm sido relatados na literatura (RAMFUL et al., 2010;

CONTRERAS-CALDERÓN et al., 2011; SANCHO et al., 2011; PALAFOX-

CARLOS et al., 2012). Souza et al. (2012), estudando os compostos bioativos e

atividade antioxidante de frutos do cerrado brasileiro, encontraram grande

potencial antioxidante e alto conteúdo de compostos fenólicos na polpa de

marolo (Annona crassiflora). Mais de 30 compostos fenólicos foram

identificados, em frutos do cerrado como a gabiroba (Camporcanesia

cambessedeana Berg), murici (Byrsonoma verbascifolia Rich) e guapeva

(Pouteria guardneriana Radlk), demonstrando assim a importância desses

frutos como fonte de compostos fenólicos (MALTA et al., 2013).

Kornsteiner et al. (2006), quantificaram tocoferóis e fenólicos totais em

dez diferentes tipos de castanhas, onde verificaram maiores teores destes

entre as castanhas de pistácia e nozes, por outro lado, observaram baixos

teores nas castanhas de caju e pinhas.

Vieira et al. (2011), encontraram teores de fenólicos totais iguais a

201,61 ± 19,15 e 165,07 ± 4,10 mg/100 g, para os extratos aquosos e

hidroalcoólicos, respectivamente, de polpas congeladas de caju (Anacardium

occidentale) e teores iguais a 70,92 ± 1,31 e 6,62 ± 0,90 mg/100 g em extratos

Page 32: caracterização fisico-química e atividade antioxidante de

32

aquosos e hidroalcoólicos, respectivamente, para polpas congeladas de cajá

(Spondias mombin L.).

Vissoto et al. (2013), quantificando compostos fenóliocs em cajá e caju

encontraram valores de 11 ± 3 e 4 ± 0,5 mg CE/100 g para flavonoides totais;

51 ± 4 e 95 ± 13 mg GAE/100 g para compostos fenólicos totais e para ácido

ascórbico 1 ± 0 e 167 ± 24 mg/100 g, respectivamente. Os autores também

relatam valores de fenólicos totais, flavonoides e ácido ascórbico de 38 ± 6 mg

GAE/100 g; 6 ± 1 mg CE/100 g e 18 ± 1 mg/100 g, respectivamente, para

manga (Mangifera indica L.)

Dorta (2007) destacou os efeitos citoprotetor e citotóxico de cinco

flavonoides, quercetina, luteolina, galangina, taxifolina e catequina, onde as

três primeiras apresentaram efeito protetor substancialmente mais potente que

as demais no sentido de conferir proteção contra a lipoperoxidação, muito

embora somente a quercetina tenha tido um efetivo efeito sequestrador tanto

de DPPH•, quanto de O2• ˉ. O autor também observou a influência de alguns

grupamentos da estrutura dos flavonoides no processo de apoptose, tendo em

vista a possível interação destes compostos com a membrana mitocondrial,

diminuindo a sua fluidez, e também a capacidade de inibir a cadeia respiratória

das mitocôndrias.

A vitamina C, sinônimo do ácido ascórbico, possui muitas funções no

organismo humano. Entretanto, o mesmo não é capaz de sintetizar tal

composto, que é obtido por meio da ingestão de alimentos que o contém. A

vitamina C é um composto de baixo peso molecular, que se transforma em

ácido di-hidro-ascórbico, também com atividade vitamínica. Possui ação

durante a atividade física, elevando a resistência à fadiga, proporcionando mais

disposição e diminuindo os níveis de colesterol (LORENZI, et al., 2006).

Segundo Costa e Liberato (2003) a vitamina C é um doador de elétrons,

antioxidante ou agente redutor que promove a absorção de ferro não-heme,

reduzindo a anemia.

Os antioxidantes dietéticos são substâncias presentes nos alimentos que

reduzem significativamente os efeitos adversos de espécies reativas, como as

de oxigênio (ROS) e de nitrogênio (RNS), nas condições fisiológicas normais

do organismo. A sua definição baseia-se nos seguintes critérios: a substância

Page 33: caracterização fisico-química e atividade antioxidante de

33

deve ser encontrada nos alimentos em teores comumente consumidos na dieta

humana e reduzir os efeitos adversos de espécies reativas in vivo em humanos

(COSTA e LIBERATO, 2003). Sendo a vitamina C pertencente a esta classe de

antioxidantes.

Das vitaminas hidrossolúveis a vitamina C é a menos estável. É uma

molécula ácida com atividade redutora forte, sintetizada a partir de açúcares-

hexoses, entre elas a glicose. A enzima final em seu caminho biossintético é a

L-gluconolactona oxidase, que atua em vários caminhos de biossíntese por

aceleração de reação de hidroxilação e amidação. Nas fases aquosas das

células, a vitamina C atua modificando radicais livres, participando do sistema

de proteção antioxidante, agindo em conjunto com a vitamina E, reciclando a

mesma e regenerando sua forma antioxidante (SOARES, 2009).

A vitamina C é doadora de elétrons para 11 enzimas, três das quais estão

presentes em fungos e envolvidas nas rotas de reutilização das pirimidinas ou

da porção desoxiribose dos desoxinucleosídeos. Nos mamíferos a vitamina C é

um co-fator para oito enzimas diferentes, que são monooxigenases ou

dioxigenases. Duas enzimas dioxigenase utilizam vitamina C na rota

biossintética da carnitina, necessária para o transporte de ácidos graxos para a

mitocôndria na síntese de trifosfato de adenosina (LEVINE et al., 2009). Sendo

assim o escorbuto, causado pela deficiência dessa vitamina, pode ser em

parte, o resultado de deficiência na função dessas enzimas (LEVINE et al.,

2009). Segundo estes mesmos autores, as funções não enzimáticas da

vitamina C podem ser devido ao seu potencial redox e/ou do seu radical livre

intermediário (L-ascorbila). Também mencionam a possibilidade da vitamina C

impedir a oxidação intracelular de proteínas, pois a mesma é encontrada em

tecidos em concentrações milimolares.

Roncada et al., (1977), analisando sucos industrializados e sucos obtidos

de frutas frescas, para determinar a concentração de ácido ascórbico,

chegaram a conclusão de que os sucos integrais de caju apresentaram a maior

concentração de ácido ascórbico entre todos os sucos industrializados

analisados, e que as necessidades diárias de ácido ascórbico recomendadas

poderiam ser preenchidas de maneira menos dispendiosa pelas diluições

necessárias de suco de caju processado ou por suco fresco de laranja.

Page 34: caracterização fisico-química e atividade antioxidante de

34

Tendo em vista a baixa estabilidade da vitamina C, a sua concentração em

alimentos vegetais pode variar de acordo com a estação do ano, o transporte, o

tempo de permanência na prateleira, a estocagem e as formas de cozimento

(LEVINE et al., 2009).

Queiroz et al. (2011) quantificaram ácido ascórbico, polifenóis e

proantocianidinas em pseudofruto de caju, encontrando teores de 163 mg de

ácido ascórbico por 100 g de peso fresco, 17 mg ácido gálico equivalente/100 g

de peso fresco em extratos solúveis. Também verificaram que as temperaturas

de armazenamento e injúrias afetam os compostos bioativos em cortes de caju,

comprometendo a qualidade do pseudofruto.

Canuto et al. (2010) realizando a caracterização físico-química de polpas

de frutos da amazônia e suas capacidades de neutralizarem radicais livres,

observaram capacidade antioxidante semelhantes a soluções de trolox nas

concentrações de 1,8 ± 0,4 e 1,5 ± 0,2 µmol.L-1 para as polpas de cajá e caju,

respectivamente. As concentrações de ácido ascórbico foram de 0,3 ± 0,0 e

12,4 ± 0,0 mg/100 g de polpa para o cajá e o caju, respectivamente, e o teor de

fenólicos totais foi igual a 0,6 ± 0,0 mmol.L-1 de ácido gálico para ambas as

frutas.

Diversos trabalhos relatam a capacidade antioxidante de extratos de

frutas, uma das fontes potenciais de compostos antioxidantes. No trabalho de

Rufino et al. (2011) é relatado a capacidade antirradical de frutos como bacuri,

cajá, camu-camu, carnaúba, gurguri, jaboticaba, jambolão, juçara, murta e puçá

em ensaios utilizando-se o radical 2,2-difenil-1-picrahidrazil (DPPH•.) sendo que

a maior fonte de compostos antioxidantes se deu no camu-camu (Myrcuarua

dubia) um fruto da Amazônia, na ordem de 69,24 k2/(L/mol g.s) (k2: constante

de segunda ordem da cinética de reação).

Broinizi et al. (2007) avaliando a atividade antioxidante dos compostos

fenólicos naturalmente presentes em subprodutos do pseudofruto de caju

(Anacardium occidentale L.) chegaram a conclusão de que as frações do

bagaço e do pedúnculo de caju demonstraram atividade antioxidante superior

aos extratos e ao BHT. Estes resultados abrem a perspectiva de se ter um

melhor aproveitamento dos resíduos resultantes do processamento do

pedúnculo de caju.

Page 35: caracterização fisico-química e atividade antioxidante de

35

A Tabela 1.1 mostra a atividade antioxidante de alguns frutos do Brasil e de

outros países, bem como os seus teores de compostos fenólicos.

Tabela 1.1: Compostos fenólicos e atividade antioxidante de alguns frutos. Fruto estudado Compostos fenólicos DPPH Referências

Açaí (Euterpe oleraceae Mart.)

3437 ± 154 fenólicos totais (mg GAEa/100 g

peso seco)

Gordon et al., 2012.

Jujuba (Ziziphus

jujuba Mill.) 813,20 (mg GAE/100 g

peso seco) 51,30 mg

AEAC/100 g peso seco

Zhang et al., 2010.

Cajá(Spondias

mombin) 72,0 mg GAE/100 g 9397 g/g DPPH Rufino et al.,

2010.

Caju (Anacardium occidentale)

118 mg GAE/100 g 7142 g/g DPPH Rufino et al., 2010.

Bayberry (Myrica

rubra) 281,5 mg GAE/100 g Bao et al., 2005.

Manga (Mangifera

indica L., cv. Ataulfo) 313,4 mg TE/100

g peso fresco Palafox-Carlos et

al., 2012.

Mamey sapote (Pouteria sapota)

234 µg GAE/g peso fresco

Torres-Rodríguez et al., 2011.

Acerola (Malpighia

glabra) 4524 mg.100 g-1

equivalente a catequina em peso fresco

Lima et al., 2005.

Fruto de aroeira

(Schinus terebinthifolius Raddi)

125,4 µg/L Bernardes et al., 2011.

Marolo (Annona crassiflora Mart.)

739,37 mg GAE/100 g Souza et al., 2012.

Murici (Byrsonima

crassifolia L. RICH) 334,37 mg GAE/100 g ( Souza et al.,

2012.

Jenipapo (Genipa americana L.)

47,94 mg GAE/100 g Souza et al., 2012.

Vieira et al. (2011), utilizando o radical livre DPPH•, encontraram valores

de EC50 da capacidade antioxidante de 154,95 e 259,18 μg/mL para extrato

aquoso e hidroalcoólico de caju e 535,53 e 486,65 μg/mL para cajá,

respectivamente. Para valor TEAC (Capacidade Antioxidante Total Equivalente

ao TROLOX) pelo método ABTS foram encontrados valores de 0,140 ± 0,016 e

0,212 ± 0,022 mM TROLOX/ g polpa para extratos aquosos de cajá e caju,

Page 36: caracterização fisico-química e atividade antioxidante de

36

respectivamente, e 0,219 ± 0,113 e 0,561 ± 0,033 mM TROLOX/ g para

extratos hidroalcoólicos de cajá e caju, respectivamente.

2.6 Os métodos de determinação da atividade antioxidante

Os métodos de determinação da atividade antioxidante são vários, e se

dividem em in vitro e in vivo. Os testes in vitro têm se tornado importantes

ferramentas que auxiliam na busca por substâncias bioativas, bem como na

seleção de matéria-prima para estudo. Também têm demonstrado a

importância de dietas ricas em frutas e vegetais, comprovando a presença de

substâncias antioxidantes, as quais auxiliam no combate aos radicais livres

(ALVES et al., 2010). Neste trabalho foram utilizados três métodos in vitro,

sendo estes os métodos que avaliam a captura do radical livre ABTS•+, a

captura do radical livre DPPH e o poder de redução do ferro (FRAP – Ferric

reducing Antioxidant Power).

Segundo Kuskoski et al. (2005) um dos ensaios mais utilizados para

medir a atividade antioxidante é o método de captura do radical 2,2´-azinobis(3-

etilbenzotiazolina-6-ácido sulfônico) (ABTS•+). Este radical pode ser gerado por

meio de reações químicas ou enzimáticas.

O método de captura do radical livre DPPH (2,2-difenil-1-picril-hidrazil)

por antioxidantes foi descrito por Brand-Williams, Cuvelier e Berset (1995). Este

método está baseado na reação dos compostos antioxidantes com o DPPH

ocorrendo a perda da coloração do meio reacional; o grau de descoloração

indica o potencial de reduzir o radical DPPH e, consequentemente, a atividade

antioxidante (JAYAPRAKASHA et al., 2007).

O método FRAP (poder antioxidante de redução do ferro) foi

desenvolvido para determinar a redução do ferro em fluidos biológicos e

soluções aquosas de compostos puros (PULIDO et al., 2000).O complexo

férrico tripiridiltriazina é reduzido ao ferroso, em meio ácido, onde na presença

de um antioxidante sua coloração muda para o azul e os resultados são

expressos em capacidade antioxidante, equivalente a 1 mM do sulfato ferroso

(FeSO4) (MORGADO et al., 2010).

Page 37: caracterização fisico-química e atividade antioxidante de

37

3 REFERÊNCIA BIBLIOGRÁFICA

AGUIAR, L. M. de; MACHADO, R. B.; MARINHO-FILHO, J. A diversidade biológica do Cerrado. In: AGUIAR. L. M. de S.; CAMARGO, A. J. A. de, Cerrado: ecologia e caracterização. Brasília, 2004. p. 17-40. ALMEIDA, N. A. R. L. de Conservação no cerrado, território, política pública: mosaico Sertão Veredas-Peruaçu. 2008. 316 f. Tese ( Doutorado em Geografia) – Faculdade de Filosofia, Letras e Ciências Humanas, Universidade de São Paulo, São Paulo, 2008. ALMEIDA, S. P., et al.,. Cerrado: espécies vegetais úteis. Embrapa. Planaltina, 1998. 464p. ALVES, C. Q. et al. Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Química Nova, v. 33, n. 10, p. 2202-2210, 2010. ANDERSON, L. et al. Nutrição. Rio de Janeiro: Guanabara, 1988. 737 p. ANDRADE FILHO, N. N. et al.Toxicity of oil from Anacardium humile Saint Hill (Anacardiaceae), on Bemisia tuberculata (Bondar, 1923) (Hemipttera: Aleyrodidae) on cassava plants. Revista Brasileira de Agroecologia, v. 8, n. 2, p. 185-190, 2013. ANDRADE, P. F. de S. Fruticultura: análise da conjuntura agropecuária. 2012. Disponível em:< http://www.agricultura.pr.gov.br/arquivos/File/deral/Prognosticos/fruticultura_2012_13.pdf> Acesso em: 25 nov. 2013. ÁVIDOS, M. F. D.; FERREIRA, L. T. Frutos dos cerrados: preservação gera muitos frutos. Biotecnologia Ciência e Desenvolvimento, v. 3, n.15, jul./ago. 2000. BANCO DO BRASIL, Fruticultura: Desenvolvimento regional sustentável. Série cadernos de propostas para atuação em cadeias produtivas, Brasília, v. 4, p. 1-42, set. 2010. BAO, J. et al. Anthocyanins, Flavonols, and Free Radical Scavenging Activity of Chinese Bayberry (Myrica rubra) Extracts and Their Color Properties and Stability. Journal Agriculture Food Chemistry, Amsterdan, n.53, p. 2327-2332, 2005. BARROS, L. de M. Árvore do conhecimento caju: características da planta. AGEITEC: Agência Embrapa de Informação Tecnológica. Disponível em: http://www.agencia.cnptia.embrapa.br/gestor/caju/arvore/CONT000fi8wxjm202wyiv80z4s473zfjkkt9.html Acesso em: 22 nov. 2013. BARROS, L. de M. In: ARAÚJO, J.P.P. de; SILVA, V.V. da. Cajucultura: modernas técnicas de produção. Fortaleza, 1995. p. 55-56 BARROS, L. de M., et al. In: EMBRAPA INFORMAÇÃO TECNOLÓGICA. Caju: produção aspectos técnicos. Brasília, 2002. 148p. BELITZ, H. D.; GROSCH, W. Química de los alimentos. 2. ed. Zaragoza: Acribia, 1997. 1087 p. BERNARDES, N. R. et al. Quantificação dos Teores de Taninos e Fenóis Totais e Avaliação da Atividade Antioxidante dos Frutos de Aroeira. VÉRTICES, Campos dos Goytacazes/RJ, v. 13, n. 3, p. 117-128, set./dez. 2011. BIANCHI, M. de L. P.; ANTUNES, L. M. G. Radicais livres e os principais antioxidantes da dieta free radicals and the main dietary antioxidants. Revista Nutrição, Campinas, v. 12, n .2, p. 123-130, maio/ago., 1999. BRAND-WILIAMS, W.; CUVELIER, M.E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. Food Science and Technology, v.28, p.25-30. 1995.

Page 38: caracterização fisico-química e atividade antioxidante de

38

BRITO, E. S. de Determination of the flavonoid components of cashew apple (Anacardium occidentale) by LC-DAD-ESI/MS. Food Chemistry, Amsterdan, n.105,1112–1118, 2007. BROINIZI, P. R. et al. Avaliação da atividade antioxidante dos compostos fenólicos naturalmente presentes em subprodutos do pseudofruto de caju (Anacardium occidentale L.). Ciência Tecnologia Alimentos, Campinas, v. 27, n.4 p. 902-908, out./dez. 2007. CAJUCULTURA. História do Cajueiro. Disponível em: < http:www.cajucultura.com.br >. Acesso em 23 nov. 2013. CANUTO, G. A. B. et al Caracterização físico-química de polpas de frutos da amazônia e sua correlação com a atividade anti-radical livre. Revista Brasileira Fruticultura, Jaboticabal, v. 32, n. 4, p. 1196-1205, dez. 2010. CARLSON, T. H. Dados Laboratoriais na avaliação nutricional. In.: MAHAN, L. K.; ESCOTT-STUMP, S. Alimentos, nutrição e dietoterapia, São Paulo, 2005. p. 418-436. CAVALCANTE, A. G. de M.; BRUIN, P. F. C. de O papel do estresse oxidativo na DPOC: conceitos atuais e perspectivas. Jornal Brasileiro Pneumologia, v. 35, n. 12, p.1227-1237, 2009.

CAVALCANTE, M. de L. A. Geografia do Tocantins. Palmas: SEBRAE-TO, 1994. CODEVASF, Boletim informativo dos Perímetros da Codevasf, n. 10, ago, p. 1-4, 2012. Disponível em:<www.codevasf.gov.br/principal/.../bip-10a-ed.pdf> Acesso em 10/06/2013. COMPANHIA NACIONAL DE ABASTECIMENTO – CONAB. Cenário sobre castanha de caju. Disponível em: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/11_11_11_09_08_41_conab_-_conjuntura_semanal_2011_-_castanha_de_caju_-__ceara.pdf Acesso em: 20 nov. 2013. CONTRERAS-CALDERÓN, J. et al. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, n. 44, p. 2047–2053, 2011. COSTA, N. M. B.; LIBERATO, S. C. Biotecnologia na nutrição e saúde. In: COSTA, N. M. B.; CARVALHO, V. F. (Org.). Biotecnologia e nutrição: saiba como o DNA pode enriquecer a qualidade dos alimentos. São Paulo: Nobel, 2003. p.71-127 DEY, P.M.; HARBORNE, J.B. Methods in Plant Biochemistry. v. 1, London: Academic Press, 1989. 111 p. DINIZ-FILHO, J. A. F., Agriculture, habitat loss and spatial patterns of human occupation in a biodiversity hotspot. Science Agriculture, Piracicaba, v.66, n.6, p.764-771, nov./dez. 2009. DORTA, D. J. Efeitos citoprotetor e/ou citotóxico dos flavonoides: estudo estrutura-atividade envolvendo mecanismos mitocondriais, com ênfase na apoptose. 2007. 134 f. Tese (Doutorado em Toxicologia) – Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2007. DOUGLAS, C. R. Fisiologia aplicada à nutrição. Ed. Guanabara Koogan, 2 ed. , Rio de Janeiro, 2006. 1074 p. EBRAHIMABADI, A. H. et al. Composition and antioxidant and antimicrobial activity of the essential oil and extracts of Stachys inflata Benth from Iran. Food Chemistry, London, v. 119, n. 2, p. 452-458, 2010.

Page 39: caracterização fisico-química e atividade antioxidante de

39

ESTADOS BRASILEIROS. Estado do Tocantins: aspectos geográficos. KERDNA produção editorial Ltda. Disponível em: < http://estados-brasileiros.info/mos/view/Estado_do_Tocantins/> Acesso em: 03 out. 2013. FERREIRA, A. L. Atividade antiulcerogênica da espécie Anacardium humile St. Hil. (Anacardiaceae). 2005. 164 f. Dissertação (Mestrado em Farmacologia) – Universidade Estadual de Campinas, Campinas, 2005. FOOD INGREDIENTS BRASIL, Os antioxidantes, n.6 , 2009. Disponível em www.revista-fi.com acesso em 20 ago. 2013. FRAGOSO, H. A. Exportação de macronutrientes pela castanha e pseudofruto de dois clones de cajueiro anão-precoce. Revista Brasileira Ciência do Solo, n. 23, p. 603-608, 1999. FRANCO, J. M. V.; UZUNIAN, A. Cerrado Brasileiro. ed. HARBRA, 2. ed., São Paulo, 2010. 64 p. GOMES, R. P. Fruticultura brasileira. 13.ed., São Paulo: Nobel, 2007. p.136-148 GORDON, A. et al. Chemical characterization and evaluation of antioxidant properties of açaí fruits (Euterpe oleraceae Mart.) during ripening. Food Chemistry, Amsterdan, n. 133, p. 256-263, 2012. GORINSTEIN, S. et al. Antioxidant properties and bioactive constituents of some rare exotic Thai fruits and comparison with conventional fruits In vitro and in vivo studies. Food Research International. n. 44, p. 2222–2232, 2011. GUEDES, F. Negócios do caju. Revista Frutas e Derivados, ano 3 10 ed. jun. p. 27-29, 2008. HIRSCHMANN, G. S.; ARIAS, A. R. de A survey of medicinal plants of Minas Gerais, Brazil. Journal of Ethnopharmacology, n. 29 , p.159- 172,1990. JAYAPRAKASHA, G. K. et al. Antioxidant and antimutagenic activities of Cinnamomum zeylanicum fruit extracts. Journal of Food Composition and Analysis, San Diego, v. 20, n. 3/4, p. 330-336, 2007. JUSBRASIL. Cerrado tocantinense oferece variados frutos para usos alternativos. Disponível em:< http://governo-to.jusbrasil.com.br/noticias/199879/cerrado-tocantinense-oferece-variados-frutos-para-usos-alternativos> Acesso em: 03 out. 2013. KLINK, C. A.; MACHADO, R. B. A conservação do Cerrado brasileiro. Megadiversidade, v.1, n. 1, jul., p. 148-153, 2005. KORNSTEINER,M.; WAGNER, K.; ELMADFA, I. Tocopherols and total phenolics in 10 different nut types. Food Chemistry, n. 98, p. 381–387, 2006. KUKOSKI, E. M. et al., Aplicacíon de diversos métodos químicos para determinar actividad antioxidante em pulpa de frutos. Ciência Tecnologia Alimentos, Campinas, v. 25, n. 4 p. 726-732, 2005. LEITE, L. A. de S.; PAULA PESSOA, F. A. P. Aspectos Socioeconômicos. In: BARROS, L. de Moura (Org.). Caju, Produção: Aspectos Técnicos. Embrapa Agroindústria Tropical (Fortaleza, CE).– Brasília: Embrapa Informação Tecnologia, 148 p.; (Frutas do Brasil; 30). 2002. LEVINE, M.; KATZ, A.; PADAYATTY, S. J. Vitaminas. In: SHILS, M. E. et al. Nutrição moderna na saúde e na doença. Barueri, 2009. p. 543-561

Page 40: caracterização fisico-química e atividade antioxidante de

40

LIMA, A. A. C.; OLIVEIRA, F.N.S.; AQUINO, A.R.L. de. Solos e aptidão agrícola das terras do Estado do Tocantins. Fortaleza: Embrapa AgroindústriaTropical, 2000. 27p. (Embrapa Agroindústria Tropical. Documentos, 31). LIMA, S. da S. et al. Nível tecnológico e fatores de decisão para adoção de tecnologia na produção de caju no Ceará. Revista de Economia e Agronegócio. v. 8, n. 1, 2010. Disponível em: <http://ageconsearch.umn.edu/bitstream/94800/2/Artigo%206.pdf> Acesso em: 23 nov. 2013. LIMA, V. de P. M. S. Cultura do cajueiro no nordeste do Brasil. Ed. Banco do Nordeste do Brasil, Escritório Técnico de Estudos Econômicos do Nordeste, Fortaleza, 1988. 486p. LIMA, V. L. A. G. et al.Total phenolic and carotenoid contents in acerola genotypes harvested at three ripening stages. Food Chemistry, Amsterdan, n.90, p.565–568, 2005. LOIOLA, P. de P. et al. Functional diversity of herbaceous species under different fire frequencies in Brazilian savannas. Flora, n. 205, p. 674–681, 2010. LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 3.ed, Nova Odessa: Instituto Plantarum, 2000. v. 1 p.352 LORENZI, H. et al.Frutas brasileiras e exóticas cultivadas: (de consumo in natura). São Paulo: Instituto Plantarum de Estudos da Flora, 2006. 640p. LUIZ-FERREIRA, A. et al. Antiulcerogenic activity of the aqueous fraction of Anacardium humile St. Hil (Anacardiaceae). Journal of Medicinal Plants Research, v. 6, n.40, p. 5337-5343, out. 2012. MALTA, L. G. et al. Assessment of antioxidant and antiproliferative activities and the identification of phenolic compounds of exotic Brazilian fruits. Food Research International, n.53, p. 417–425, 2013. MARINHO-FILHO, J.; MACHADO, R. B.; HENRIQUES, R. P. B. Evolução do conhecimento e da conservação do Cerrado brasileiro. In: DINIZ, I. R. et al (org.) Cerrado: conhecimento quantitativo como subsídio para as ações de conservação. Brasília: Thesaurus, 2010. p. 15-31 MENEZES, J.B.; ALVES, R.E. Fisiologia e tecnologia pós-colheita do pedúnculo do caju. Fortaleza: Embrapa Agroindústria Tropical, 1995. 20p. (Documentos, 17). MISHRA, K.; OJHA, H.; CHAUDHURY, N. K. Estimation of antiradical properties of antioxidants using DPPH assay:A critical review and results. Food Chemistry, Amsterdan, n. 130, p. 1036–1043, 2012. MOLYNEUX, P. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal Science Technology. n. 26, p. 211–219, 2004. MORGADO, C. M. A.; et al. Conservação pós-colheita de goiabas “Kumagai”:efeito do estádio de maturação e da temperatura de armazenamento. Revista Brasileira Fruticultura., v.32, n.4, p. 1001-1008, 2010. O GIRASSOL.Seagro, Embrapa e parceiros buscam fortalecer Plano ABC no Tocantins. Disponível em:< http://www.ogirassol.com.br/materia.php?u=seagro.-embrapa-e-parceiros-buscam-fortalecer-plano-abc-no-tocantins> Acesso em 26 nov. 2013. OSMAN, A. M.; WONG, K. K. Y.; FERNYHOUGH, A. Isolation and the characterization of the degradation products of the mediator ABTS-derived radicals formed upon reaction with polyphenols. Biochemical and Biophysical Research Communications, n. 340, p. 597–603, 2006.

Page 41: caracterização fisico-química e atividade antioxidante de

41

PALAFOX-CARLOS, H. et al. Effect of ripeness stage of mango fruit (Mangifera indica L., cv. Ataulfo) on physiological parameters and antioxidant activity. Scientia Horticulturae, n.135 p. 7–13, 2012. PINHO, L. X. et al The use of cashew apple residue as source of fiber in low fat hamburgers. Ciência Tecnologia Alimentos, Campinas, v. 31, n.4, p. 941-945, out./dez. 2011. PISTORI, M. G. B. et al. Effect of Anacardium humile St. Hill (Anacardiaceae) Aqueous Extract on Mahanarva fimbriolata (Stal, 1854) (Hemiptera: Cercopidae). Acta Scientiarum, Maringá, v. 35, n. 4, p. 413-417, out./dez., 2013. PULIDO R, BRAVO L, SAURA-CALIXTO F. Antioxidant of dietary polyphenols as determined by a modified Ferric Reducing Antioxidant Power assay. Journal Agriculture Food Chemistry. n.46, p. 3396-3402, 2000. QUEIROZ, C. et al Changes in bioactive compounds and antioxidant capacity of fresh-cut cashew apple. Food Research International, n. 44, p. 1459–1462, 2011. RAMFUL, D., et al., 2010. Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: potential prophylactic ingredients for functional foods application. Toxicology, n. 278, p.75–87, 2010. RIBEIRO, E. P.; SERAVALLI, E. A. G. Química de alimentos, ed. Blucher, 2 ed. São Paulo, 2007. 184 p. RONCADA, M. J.; WILSON, D.; SUGUIMOTO, L. Concentração de ácido ascórbico em sucos de diversas frutas brasileiras e sua relação com preço e necessidades diárias recomendadas de vitamina C. Revista Saúde Pública, São Paulo, n. 11, p. 39-46, 1977. RUFINO, M. do S. et al. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, Amsterdan, n. 121, p. 996–1002, 2010. RUFINO, M. S. M. et al. Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Research International, n.44 p. 2072–2075, 2011. RUFINO, M. S. M et al. Metodologia Científica: determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). Fortaleza: EMBRAPA, 2006. 4 p. (Comunicado Técnico, 125). RUFINO, M. S. M et al. Metodologia Científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS.+. Fortaleza: EMBRAPA, 2007a. 4 p. (Comunicado Técnico, 128). RUFINO, M. do S. M. et al. Suporte tecnológico para a exploração racional do cajuizeiro. Fortaleza: Embrapa Agroindústria Tropical, 2007c. 30 p. (Embrapa Agroindústria Tropical. Documentos, 107). Disponível em:< http://www.cnpat.embrapa.br/cnpat/cd/jss/acervo/Dc_107.pdf> Acesso em: 5 dez. 2013. SANCHO, L. E. G.; YAHIA, E. M.; GONZÁLEZ-AGUILAR, G. A. Identification and quantification of phenols, carotenoids, and vitamin C from papaya (Carica papaya L., cv. Maradol) fruit determined by HPLC-DAD-MS/MS-ESI. Food Research International, n.44, p. 1284–1291, 2011. SANTOS, R. P. et al. Production and caracterization of cashew (Anacardium occidentale L.) penducle bagasse ashes. Journal of Food Engineering, n. 79 , p. 1432-1437, 2007. SEAGRO – Secretaria da Agricultura e Pecúaria do Tocantins. Agricultura, 2011. Disponível em: < http://seagro.to.gov.br/agricultura/> Acesso em: 03 out. 2013.

Page 42: caracterização fisico-química e atividade antioxidante de

42

SEBRAE – Serviço Brasileiro de Apoio às Micro e Pequenas Empresas. Estudo setorial: cajucultura, 2005. Disponível em:< http://201.2.114.147/bds/bds.nsf/49B5115DFC028E11832574FD006FC0E4/$File/NT0003A40E.pdf> Acesso em: 22 nov. 2013. SHARMA, O. P.; BHAT, T. K. DPPH antioxidant assay revisited, Food Chemistry, Amsterdan. n.113, p. 1202–1205, 2009. SILVA, A. P. P.; MELO, B.; FERNANDES, N. Fruteiras do cerrado. Disponível em:< http://www.fruticultura.iciag.ufu.br/fruteiras%20do%20cerrado.html> Acesso em: 03 out. 2013. SILVA, L. A. G. C. Biomas presentes no estado do Tocantins. Biblioteca Digital da Câmara dos Deputados, 2007. Disponível em:<

http://bd.camara.leg.br/bd/bitstream/handle/bdcamara/1424/biomas_tocantins_silva.pdf?sequence=2> Acesso em: 22 nov. 2013. SILVA, M. R. et al. Caracterização química de frutos nativos do cerrado. Ciência Rural, Santa Maria, v.38, n.6, p.1790-1793, set, 2008. SOARES, E. G. (Org.). Patologia nutricional. Rio de Janeiro: Guanabara Koogan, 2009. 125 p. SOUZA, V. R. de et al. Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chemistry, Amsterdan, n.134,p. 381–386, 2012. TAIZ, L. ZEIGER, E. Fisiologia vegetal. 3. ed., Porto Alegre:Artmed, 2006. 719 p. TOMÁS-BARBERÁN, F.; ESPÍN, J. C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, London, v. 81, p. 853- 876, 2001. TORRES-RODRÍGUEZ, A. et al. Soluble phenols and antioxidant activity in mamey sapote (Pouteria sapota) fruits in postharvest. Food Research International, n. 44, p. 1956–1961, 2011. VASCONCELOS, S. M. L.; SILVA, M. A. M.; GOULART, M. O. F. Low molecular weight pro-antioxidants and antioxidants from diet: structure and function.Nutrire, São Paulo, v. 31, n. 3, p. 95-118, dez. 2006. VIEIRA, L. M. et al Fenólicos totais e capacidade antioxidante in vitro de polpas de frutos tropicais. Revista Brasileira Fruticultura, Jaboticabal, v. 33, n. 3, p. 888-897, set. 2011. VISSOTTO, L. C. et al. Correlation, by multivariate statistical analysis, between the scavenging capacity against reactive oxygen species and the bioactive compounds from frozen fruit pulps. Ciência e Tecnologia Alimentos, Campinas, v.33, n.1, p. 57-65, fev. 2013. WOOTTON-BEARD, P. C.; MORAN, A.; RYAN, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Research International, n. 44, p. 217–224, 2011. ZHANG, H. et al. Systematic evaluation of antioxidant capacities of the ethanolic extract of different tissues of jujube (Ziziphus jujuba Mill.) from China. Food and Chemical Toxicology, n. 48, p. 1461–1465, 2010.

Page 43: caracterização fisico-química e atividade antioxidante de

43

CAPÍTULO 2: CARACTERIZAÇÃO FÍSICO QUÍMICA DE

PSEUDOFRUTOS DE CAJU E CAJUÍ DO CERRADO

TOCANTINENSE

Page 44: caracterização fisico-química e atividade antioxidante de

44

RESUMO

Neste trabalho comparou-se alguns parâmetros físico-químicos em frutos verdes e maturados de caju (Anacardium occidentale) e de cajuí (Anacardium humile) colhidos de plantas nativas do estado do Tocantins. Observou-se que os pseudofrutos deste estudo apresentaram-se ácidos, com acidez titulável expressa em ácido málico variando de 0,62 a 2,12 m/v e com potencial hidrogeniônico maior no estágio verde na maioria das amostras. Porém apresentaram bom grau de doçura, independente do estágio de maturação, variando de 10,67 a 16,27 °Brix. O diâmetro apical dos cajuís variaram de 7,56 a mais de 23 mm entre amostras verdes e maduras. As amostras da região de Gurupi se mostraram mais brilhantes com destaque para amostra de cajuí, a qual apresentou teor de vitamina C superior a 200 mg/100g. Observou-se que o teor de clorofila decresce do estágio verde para o maduro indicando que há degradação da mesma no processo de maturação. Diante dos resultados conclui-se que os penducúlos de caju e cajuí coletados de plantas nativas das duas regiões do estado do Tocantins, possuem características físico-químicas particulares que podem ser melhoradas para sua exploração comercial. Ressaltando-se a necessidade de preservação das plantas nativas, de cajuí.

PALAVRAS-CHAVE: Anacardium occidentale, Anacardium humile, frutos do

cerrado.

Page 45: caracterização fisico-química e atividade antioxidante de

45

ABSTRACT

In this paper, some physicochemical parameters in green and matured cashews (Anacardium occidentale) and Cajuí (Anacardium humile) harvested from native plants in the state of Tocantins was compared. It was observed that the accessory fruits of cashew in this study were acid, with titrated acidity expressed as malic acid ranging from 0.62 to 2.12 w/v with more hydrogen potential in the green stage in most samples. However, they showed high level of sweetness, regardless of the maturation stage, ranging from 10.67 to 16.27 °Brix. The apical diameter of cajuís ranged from 7.56 to over 23 mm among green and ripe samples. Samples from the Gurupi area were more bright especially Cajuí sample, which showed vitamin C content greater than 200 mg/100 g. It was found that chlorophyll content decreases from green stage to mature stage indicating that it degrades in the maturation process. With the results, the conclusion is that cashew and Cajuí peduncles collected from native plants of both regions of the state of Tocantins have specific physicochemical characteristics that can be improved for commercial exploitation, with emphasis on the need to preserve native plants of Cajuí. KEYWORDS: Anacardium occidentale, Anacardium humile, fruits of the Cerrado.

Page 46: caracterização fisico-química e atividade antioxidante de

46

1 INTRODUÇÃO

O Cerrado é o segundo maior bioma da América do Sul, e representa cerca

de 22 % do território nacional possui elevado potencial aquífero e grande

biodiversidade (MINISTÉRIO DO MEIO AMBIENTE, 2013). O Tocantins insere-

se nesse cenário como área de transição de importantes biomas onde 91% de

seu território é ocupado pelo Bioma Cerrado (SILVA, 2007). O Estado tem

destaque nacional com produção de melancia, exportador em grande escala

para vários países do mundo. (AGÊNCIA TOCANTINENSE DE NOTÍCIAS,

2013).

Além dos aspectos ambientais, o cerrado tem grande importância social,

onde muitas populações sobrevivem de seus recursos naturais e detêm um

conhecimento tradicional de sua biodiversidade, consumindo e comercializando

frutos como pequi (Caryocar brasiliense), buriti (Mauritia flexuosa) e o cajuzinho

do cerrado (Anacardium humile) (FRANCO e UZUNIAN, 2010; MINISTÉRIO

DO MEIO AMBIENTE, 2013).

O cajuí (Anacardium humile) conhecido também como cajuzinho, caju-anão

e caju-do-campo é uma frutífera nativa do cerrado aberto das regiões Sudeste

e Centro-oeste sendo encontrado também no estado do Tocantins (SILVA,

2007). É uma espécie não cultivada, mas facilmente encontrada em seu habitat

natural. Sendo utilizadas praticamente todas as partes da mesma, desde a raiz

que é usada como purgativo até as folhas que são usadas como expectorante

(HIRSCHMANN e ARIAS, 1990; SILVA et al, 2013). O estudo do cajuí como

espécie nativa do cerrado Tocantinense é relevante para preservação de áreas

onde esta planta está inserida, como também para exploração econômica

desse pseudofruto pouco conhecido em termos científicos.

O cajueiro (Anacardium occidentale Linn.), constitui-se em uma das mais

importantes fruteiras do Brasil, tem grande valor alimentício como também

elevado valor comercial. Em termos de produção mundial de frutas o Brasil

ocupa a terceira colocação no ranking mundial com uma produção aproximada

de 41,5 milhões de toneladas, com colheitas significativas de laranja, banana,

coco, abacaxi, mamão, castanha de caju, caju e castanha do Brasil

(INSTITUTO BRASILEIRO DE FRUTAS, 2011; ANDRADE, 2012).

Page 47: caracterização fisico-química e atividade antioxidante de

47

A parte carnosa ligada ao fruto do caju é o pedúnculo floral hipertrofiado

chamado hipocarpo ou pseudofruto, possui formato que pode variar entre

cilíndrico, piriforme e alongado, e é onde se encontra o suco do caju.

(SEBRAE, 2005). É rico em água, a qual pode representar cerca de 86% de

seu peso, apresenta teores de glicose e de taninos de 8,4% e 3,06%,

respectivamente (GOMES, 2007).

Em relação a cadeia produtiva do caju, um dos principais problemas é o

pouco aproveitamento do pedúnculo, sendo o mesmo inferior a 12% de toda a

produção. Desta forma é necessário mais estudos para um melhor

aproveitamento e destinação desse pseudofruto (BANCO DO BRASIL, 2010).

Tendo em vista a necessidade de dotar o estado do Tocantins de

tecnologias que proporcionem a exploração sustentável dos recursos naturais,

o conhecimento das matérias-primas que possuam propriedades funcionais, e

que são encontradas de forma abundante no cerrado tocantinense, torna-se

indispensável, dentro deste contexto, o estudo dos pseudofrutos do caju e do

cajuí como espécies encontradas em abundância nesta região é de grande

importância, não apenas para fins econômicos como também ambientais.

Diante do exposto, este trabalho se propôs ao estudo dos pedúnculos de

caju e do cajuí, coletados de plantas nativas do estado do Tocantins colhidos

em dois estágios de maturação, sendo realizada sua caracterização

morfológica e análises físico-químicas do pseudofruto.

Page 48: caracterização fisico-química e atividade antioxidante de

48

2 METODOLOGIA

2.1 Localização e sistema de identificação das amostras

Foram definidas duas cidades para coleta das amostras de caju

(Anacardium occidentale) e cajuí (Anacardium humile), sendo elas Palmas e

Gurupi localizadas no Estado do Tocantins, Brasil. Palmas (capital do Estado)

situada a uma altitude de 267,3 m e Gurupi localizada a 223 Km ao sul de

Palmas, com altitude de 287 m. As amostras provenientes da cidade de

Palmas foram colhidas em terrenos e praças sendo muitas dessas nativas. Em

Gurupi os pseudofrutos foram coletados em complexo das fazendas Angra III e

IV localizadas a 37 Km da cidade no sentido Dueré. As coordenadas foram

pontuadas utilizando-se GPS (Garmin modelo GPSmap 60CSx)

As amostras foram identificadas da seguinte forma:

A primeira e a segunda letra descrevem a espécie CJ para caju, CI para

cajuí, a terceira letra descreve o estágio da amostra, V para verde e M para

maduro, e a última letra descreve a cidade de origem P para Palmas e G para

Gurupi, o número final descreve qual a repetição da amostra. Então para

exemplificação temos cajuí verde de Palmas amostra 1 (CIVP1).

2.2 Coleta das amostras

A coleta das amostras foram realizadas no período de julho a setembro

de 2012, tendo o cuidado de não causar danos físicos, exigindo-se que a coleta

fosse procedida manualmente.

As amostras provenientes de Palmas foram acondicionadas em caixa de

isopor contendo gelo e encaminhadas ao Laboratório de Tecnologia de Frutas

e Hortaliças – LAFRUHTEC da Universidade Federal do Tocantins Campus de

Palmas, lavadas com solução de hipoclorito de sódio e procedida a captura de

imagens, análises de pH, acidez e sólidos solúveis e acondicionadas em

freezer vertical (Brastemp Modelo BVR 28) a -20º C. Da mesma forma as

amostras coletadas em Gurupi foram acondicionadas e encaminhadas ao

Laboratório de Controle de Pragas da Universidade Federal do Tocantins,

Campus de Gurupi. Onde foram submetidas às mesmas análises realizadas

Page 49: caracterização fisico-química e atividade antioxidante de

49

com as amostras colhidas em Palmas. Foram acondicionadas em Ultra Freezer

(Cold Lab CL374-80V) a -80º C.

2.3 Caracterização física

A caracterização física se deu pela medida do diâmetro apical e basal do

pedúnculo e diâmetro horizontal e longitudinal das castanhas com uso de

paquímetro digital 6” (Zaas Precision) (Figura 2.1).

Figura 2.1: Esquema de medida das amostras

2.4 Teste de determinação da firmeza da fruta

A medida de firmeza das amostras frescas foi realizada utilizando-se

penetrômetro (PTR-100) com probe de 7,9 mm de diâmetro com precisão de ±

0,1. Utilizou-se amostras verdes e maduras de caju (Anacardium occidentale)

em tamanho pequeno e médio para amostras verdes. Os diâmetros

longitudinal, basal e apical foram medidos, bem como suas firmezas, que foram

determinadas em Kg/cm2. As medidas foram realizadas em triplicata somente

para os frutos de caju.

A firmeza das frutas foi expressa pela pressão do penetrômetro (N)

dividida pela unidade de área (S) onde o quociente representa a dureza (P).

P = N/S

Onde:

Page 50: caracterização fisico-química e atividade antioxidante de

50

P = o valor da dureza da fruta 10 Pa ou Kg/cm2

N = pressão do penetrômetro expresso em (N) ou Kg

S = a área da pressão expressa em m2 ou cm2

2.5 Acidez titulável em ácido orgânico

A acidez titulável das amostras de caju e cajuí nos estágios verde e

maduro foi quantificada por titulação com solução de hidróxido de sódio

(NaOH) 0,1N, utilizando como indicador a fenolftaleína, de acordo com o

Instituto Adolfo Lutz (2008). Os resultados foram expressos em porcentagem

de ácido málico, a partir dos seguinte cálculo:

Cálculo

V = volume da solução de hidróxido de sódio gasto na titulação em mL

M = molaridade da solução de hidróxido de sódio

P = massa da amostra em g ou volume pipetado em mL

PM = peso molecular do ácido correspondente em g

n = número de hidrogênios ionizáveis

F = fator de correção da solução de hidróxido de sódio

2.6 Determinação de pH

O pH foi determinado por meio de potenciômetro (Tecnal), segundo

técnica da AOAC (1990).

V x F x M x PM = g de ácido málico por cento m/v 10 x P x n

Page 51: caracterização fisico-química e atividade antioxidante de

51

2.7 Sólidos solúveis

Os sólidos solúveis foram determinados por refratometria, utilizando-se

refratômetro de Abbé sendo os resultados expressos em °Brix, conforme AOAC

(1990).

2.8 Colorimetria

Foi determinada com colorímetro Minolta, modelo CR 400, no modo CIE

L*a*b*. Estes dois últimos valores foram usados para calcular o ângulo Hue (ºh)

e a cromaticidade (C*), usando-se as seguintes fórmulas: hº=arctang(b*/a*) e

C*=(a*2 + b*2)1/2. (Konica Minolta Sensing Americas, Minolta, 1998).

Coloração: em três pontos aleatórios da casca por meio de colorímetro Minolta,

modelo CR-400, com iluminante C, no sistema CIE L* a* b*. As variáveis a*

(+70 vermelho; -70 verde) e b* (+70 amarelo; -70 azul) foram utilizadas para o

cálculo do valor C* (cromaticidade) e h° (ângulo de cor), conforme

recomendado por McGuire (1992). A Figura 2.2 ilustra como é padronizada a

leitura de cor.

Figura 2.2: O valor de L* representado no centro axial. O a* aparece no plano horizontal. Fonte: http://www.xrite.com/documents/literature/en/L10-001_Understand_Color_en.pdf

Page 52: caracterização fisico-química e atividade antioxidante de

52

A média da cor foi realizada em triplicata de pseudofrutos escolhidos ao

acaso e os resultados expressam a média das leituras.

2.9 Determinação do teor de vitamina C

A determinação do teor de vitamina C foi realizada seguindo o método com

iodato de potássio estabelecido pelo Instituto Adolfo Lutz (2008). Este método é

aplicado para a determinação de vitamina C ou ácido L-ascórbico, em

alimentos in natura ou enriquecidos, quando a concentração da referida

vitamina é maior que 5 mg. Baseia-se na oxidação do ácido ascórbico pelo

iodato de potássio. As amostras foram maceradas com auxílio de pistilo e

pesadas de 2 a 10 g de amostra, as quais foram transferidas para frasco

Erlenmeyer de 250 mL com auxílio de aproximadamente 50 mL de água em

seguida foram adicionados 10 mL de solução de ácido sulfúrico a 20%. As

misturas foram homogeneizadas e filtradas para outro frasco Erlenmeyer,

lavando o filtro com água e, logo após, com mais 10 mL da solução de ácido

sulfúrico a 20%. Em seguida, adicionou-se 1 mL da solução de iodeto de

potássio a 10% e 1 mL da solução de amido a 1%. Titulou-se com solução de

iodato de potássio até coloração azul. Dependendo da quantidade de vitamina

C contida na amostra, utilizou-se solução de iodato de potássio 0,02 M ou

0,002 M.

Cálculo para determinação do teor de vitamina C:

V = volume de iodato gasto na titulação

F = 8,806 ou 0,8806, respectivamente para KIO3 0,02 M ou 0,002 M

P = n° de g ou mL da amostra

2.10 Determinação de clorofila

Também para efeito de comprovação do estágio de desenvolvimento dos

pseudofrutos foi realizada a determinação de clorofila, utilizando a metodologia

100 x V x F = vitamina C mg por cento (massa/massa) P

Page 53: caracterização fisico-química e atividade antioxidante de

53

de Moran (1982) com adaptação de Paula Neto (2009). Foram retirados

pedaços de aproximadamente 0,1 g da casca das amostras verdes e maduras

de caju e cajuí, e transferidos para eppendorfs, protegidos da luz. Adicionou-se

1,0 mL de N,N-dimetilformamida sob os mesmo, em seguida foram incubados

no escuro a temperatura ambiente por 72 h. Após o tempo de incubação, fez-

se as leituras de absorbância da solução em espectrofotômetro a 646,8 e 663,8

ηm. As análises foram realizadas em triplicadas, sendo os resultados

expressos em µg.mL-1 e os cálculos realizados segundo a fórmula:

Clorofila a = 12 x ABS 663,8 – 3,11 x ABS 646,8

Clorofila b = 20,78 x ABS 646,8 – 4,88x ABS 663,8

Clorofila total = clorofila a + b

2.11 Análise estatística

O delineamento experimental utilizado foi o inteiramente casualizado

(DIC), com três repetições. Para comparação de médias foi aplicado o teste de

Tukey, a 5% de significância. Os softwares utilizados foram Assistat 7.6 beta.

Page 54: caracterização fisico-química e atividade antioxidante de

54

3 RESULTADOS E DISCUSSÕES

3.1 Coleta das amostras

Na Tabela 2.1 são apresentadas as coordenadas dos locais de coleta dos

cajus e cajuís verdes as quais correspondem também às amostras maturadas.

Tabela 2.1: Identificação e coordenadas de localização das amostras. Fruto Local Amostra Coordenadas

Latitude UTM* Altitude

Cajuí

Gurupi CIVG1 22L 0694812 8725022 330 m CIVG2 22L 0695375 8725603 299 m CIVG3 22L 0695341 8725609 306 m

Palmas CIVP1 22L 0791356 8872823 261 m CIVP2 22L 0792578 8874993 266 m CIVP3 22L 0791865 8870225 265 m

Caju

Gurupi CJVG1 22L 0693598 8723736 336 m CJVG2 22L 0693613 8723714 364 m CJVG3 22L 0693629 8723688 363 m CJVG4 22L 0695396 8725644 299 m CJVG5 22L 0695368 8725597 306 m

Palmas CJVP1 22L 0791278 8872805 259 m CJVP2 22L 0789492 8873741 218 m CJVP3 22L 0791865 8870225 265 m

*UTM (Universal Transverse Mercator) sistema de coordenadas.

3.2 Caracterização física

O diâmetro apical dos cajuís verdes variaram de 7,56 ± 1,29 a 9,89 ± 4,03

mm e diâmetro basal de 11,57 ± 0,52 a 20,02 ± 2,59 mm. Já para os cajus

verdes a variação foi de 10,20 ± 2,29 a 27,72 ± 1,07 mm para diâmetro apical e

20,02 ± 2,59 a 36,14 ± 2,85 mm para diâmetro basal. Os pedúnculos de cajuí

maduro variaram de 16,47 ± 1,60 a 23,02 ± 3,15 mm de diâmetro apical e

18,90 ± 0,85 a 35,71 ± 4,19 mm de diâmetro basal. Enquanto que os de caju

maduro os diâmetro apical e basal variaram de 19,61 ± 1,42 a 27,55 ± 3,13 mm

e 31,87 ± 2,70 a 51,30 ± 1,93 mm, respectivamente. Lopes et al. (2011)

avaliando a caracterização física de pedúnculos de clones de cajueiro anão

precoce em diferentes estádios de maturação observaram que os diâmetros

basal e apical aumentaram gradualmente com o decorrer do desenvolvimento e

maturação para todos os clones avaliados, sendo o mesmo observado nesse

trabalho.

Page 55: caracterização fisico-química e atividade antioxidante de

55

A Figura 2.3 ilustra os estádios de coleta das amostras de cajuí e caju

provenientes de Palmas. Para as amostras verdes foram coletados dois

estádios de maturação como pode ser observado.

Figura 2.3: (a) e (b) amostras de cajuí e caju verdes; (c) e (d) amostras correspondentes aos frutos maturados cajuí e caju, respectivamente, provenientes de Palmas. Foto: Renata Costa França

3.3 Teste de determinação da dureza da fruta

Segundo Costa et al. (2001), geralmente a dureza das frutas é dada pela

protopectina em conjunto com o amido, sendo esta predominante em frutas

verdes e transformada em pectina durante o amadurecimento. Após

desmetoxilação e simplificação das cadeias por ação enzimática, ocorre

solubilização até a degradação total, quando a fruta está madura.

A Figura 2.4 apresenta a média dos cálculos de determinação da firmeza do

caju, em ensaio teste para observação da perda de firmeza do fruto, dada em

N.

Page 56: caracterização fisico-química e atividade antioxidante de

56

Caju verde P Caju verde M Caju maduro

2

3

4

5

6

7

8

9

a

b

c

Firm

eza

(N)

Amostras de caju

Figura 2.4: Resultado do teste de dureza do pseudofruto de caju, em estágios verde pequeno, verde médio e maduro. I = estágio 1 de maturação, II = estágio 2 de maturação. Médias seguidas pela mesma letra minúscula não diferem significativamente pelo Teste de Tukey (p ≤ 0,05).

Figuereido et al. (2007) indicam que o tratamento pós-colheita com cálcio a

2% (p/v) promove maior incorporação do mesmo nos tecidos de pedúnculos de

caju e, consequentemente, uma maior resistência pós-colheita. Abreu (2007),

encontrou valor de 8,19 a 13,61 N em clones de caju provenientes de Pacajus,

Ceará, Brasil. Figueiredo et al. (2002) encontraram valores variando de 8,57 a

45,61 N para pseudofrutos de caju em sete estágios de maturação onde o

menor valor representa o estágio mais avançado de maturação. Já Lopes et al.

(2011) em pedúnculos provenientes de Pacajus, Ceará, Brasil para sete

estágios de maturação em diferentes clones encontraram valores variando de

33,2 a 7,77 N sendo o último valor para o estágio mais avançado de

maturação. Considerando apenas a pressão do equipamento de medição, a

qual é expressa em Newtons (N), para as amostras estudadas foram

encontrados valores entre 8,3 a 2,7 N. os valores encontrados do estágio I

equivalem ao último estágio dos trabalhos de Lopes et al. (2011) e Figueiredo

et al. (2002). Tais resultados demonstram que esta amostra possui menor

firmeza já no estágio verde, o que representa a maior possibilidade destes

pseudofrutos sofrerem danos mecânicos pós colheita. Por outro lado, tais

resultados podem indicar maior suculência desse pseudofruto.

Page 57: caracterização fisico-química e atividade antioxidante de

57

ee

adcd

ecd

bcee

ccd

dd

abd

CJVP1CJVP2CJVP3

CJVG1

CJVG2CJVG3CJVG4

CJVG5CJMP1CJMP2

CJMP3CJMG1

CJMG2CJMG3CJMG4

CJMG5--

0 1 2 3 4

pH

Am

ostr

as v

erde

s e

mad

uras

de

caju

3.4 Acidez Titulável, pH e Sólidos Solúveis

A maior parte dos alimentos apresentam valores de pH na faixa de 5,0 a

6,5. Assim, os pedúnculos de caju e cajuí podem ser classificados como sendo

muito ácidos, uma vez que o valor médio de pH encontrado, 3,70 está próximo

ao pH do abacaxi (3,54) que é um produto classificado como muito ácido

(AZEREDO e BRITO, 2004) e do murici, (3,6) (SILVA, SILVA e OLIVEIRA,

2004). A acidez nas frutas está relacionada com a presença de ácidos

orgânicos. Os ácidos orgânicos contribuem para a acidez e o aroma

característico, devido à volatilidade de alguns componentes. A acidez é

calculada com base no principal ácido presente no alimento, portanto a acidez

das amostras de caju foram expressas em ácido málico.

Os valores do potencial hidrogeniônico das amostras de caju verdes e

maduras são apresentados na Figura 2.5.

Figura 2.5: Potencial hidrogênionico de amostras verdes e maduras de caju provenientes de Palmas e Gurupi. Colunas seguidas pelas mesmas letras, para cada gráfico, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤ 0,05).

Observou-se que entre as amostras de Gurupi houve diferença estatística

para as amostras CJVG1 e CJVG2 das suas amostras maturadas

correspondentes. Nas amostras de Palmas as amostras CJVP1 e CJVP2

diferiram também estatisticamente de suas amostras maturadas

correspondentes. No geral verificou-se que o potencial hidrogeniônico diferiu

Page 58: caracterização fisico-química e atividade antioxidante de

58

estatisticamente (p≤0,05) nos estágios de desenvolvimento dos pseudofrutos

(verdes e maduros) em 50% das amostras.

A Figura 2.6 apresenta o potencial hidrogênionico para amostras de cajuí

verdes e maduras das cidades de Palmas e Gurupi. Diante dos resultados

observou-se que não houve diferença significativa (p ≤ 0,05) pelo teste de

Tukey entre as amostras verdes e suas correspondentes maduras.

Entre as amostras verdes de Gurupi a amostra CIVG2 diferiu das demais,

apresentando o menor valor de pH. No conjunto de amostras de Palmas não

houve diferença significativa entre CIVP1 e as demais, enquanto que CIVP3

diferiu de CIVP2. No conjunto de regiões (Palmas e Gurupi) para as amostras

verdes CIVP1 não diferiu das amostras de Gurupi enquanto que CIVG1 diferiu

significativamente de CIVP2 e CIVG2 diferiu da amostra CIVP3.

Quanto às amostras maturadas CIMP3 de Palmas, observa-se diferença

entre as mesmas e as amostras maturadas de Gurupi. As amostras CIMG2 e

CIMG3 diferiram das amostras CIMP1 e CIMP3.

abcde

cdef

a

ab

ef

abcd

abc

abcd

a

bcdef

f

def

CIVP1

CIVP2

CIVP3

CIVG1

CIVG2

CIVG3

CIMP1

CIMP2

CIMP3

CIMG1

CIMG2

CIMG3

--

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

pH

Am

ostr

as v

erde

s e

mad

uras

de

caju

í

Figura 2.6: Potencial hidrogênionico de amostras de cajuí verdes e amostras maduras correspondentes. Colunas seguidas pelas mesmas letras, para cada gráfico, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤0,05).

Numa análise geral, as amostras verdes não diferiram estatisticamente de

suas correspondentes maduras, independente da região, no entanto quando

contrapõem-se amostras verdes versus amostras maturadas independente de

sua correspondente, observa-se diferença significativa, principalmente das

Page 59: caracterização fisico-química e atividade antioxidante de

59

amostras CIVP3 que diferiu estatisticamente de todas as amostras maturadas

de Gurupi e a amostra CIVG2 que diferiu estatisticamente de todas as

amostras maturadas de Palmas.

As Figuras 2.7 e 2.8 apresentam a acidez titulável em ácido málico para

amostras verdes e maduras de caju e cajuí provenientes de Palmas e Gurupi.

Figura 2.7: Acidez titulável de amostras de caju e cajuí verdes e amostras maduras correspondentes provenientes de Palmas. Colunas seguidas pelas mesmas letras, para cada gráfico, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤0,05).

Observou-se que as amostras verdes, de ambos os pseudofrutos

encontravam-se com altos valores de acidez titulável, sendo estes inferiores a

um (1) para algumas das amostras.

a

a

c

b

b

c

CJVP1

CJVP2

CJVP3

CJMP1

CJMP2

CJMP3

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

A

Acidez (g de ácido málico.100-1(m.v-1))

Am

ost

ras

de

ca

ju

a

b

bc

bc

c

c

CIVP1

CIVP2

CIVP3

CIMP1

CIMP2

CIMP3

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

B

Acidez (g de ácido málico.100-1 (m.v-1))

Am

ost

ras

de

ca

juí

Page 60: caracterização fisico-química e atividade antioxidante de

60

Figura 2.8: Acidez titulável de amostras de caju e cajuí verdes e amostras maduras correspondentes provenientes de Gurupi. Colunas seguidas pelas mesmas letras, para cada gráfico, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤0,05).

A maioria das amostras verdes de caju diferiram de suas amostras maduras

correspondentes independente da região, no entanto para as amostras de cajuí

apenas a amostra CIVG2 diferiu de sua amostra madura correspondente.

Andrade et al. (2008), encontraram valores de pH de 4,4 a 4,6 em

pedúnculos de cajueiro-anão, observou-se que para as amostras maturadas

bc

a

b

c

b

bc

CIVG1

CIVG2

CIVG3

CIMG1

CIMG2

CIMG3

0,0 0,5 1,0 1,5 2,0

B

Acidez (g de ácido málico.100-1 (m.v-1))

Am

ostr

as d

e ca

juí

bc

bcd

de

cde

ab

e

bcde

a

f

e

CJVG1

CJVG2

CJVG3

CJVG4

CJVG5

CJMG1

CJMG2

CJMG3

CJMG4

CJMG5

--

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4

A

Acidez (g de ácido málico.100-1 (m.v-1))

Am

ostr

as d

e ca

ju

Page 61: caracterização fisico-química e atividade antioxidante de

61

deste estudo que os valores de pH encontrados foram todos abaixo de 4,

exceto para amostra CJMG4 onde o pH foi de 4,16. Michodjehoun-Mestres et

al. (2009) na caracterização de pedúnculos de caju dos países Brasil e Bénin

encontraram valores de pH que variaram de 3,85 a 4,60 e acidez titulável em

ácido málico de 0,3 a 1,1 %. Canuto et al. (2010), para o pseudofruto do caju

relatam valores de 4,7 para pH e 0,2 mg de ácido cítrico/100 g para acidez.

Carvalho et al. (2013) estudando pseudofrutos de caju de três regiões do

Estado de Goiás, observaram variação de pH de 3,32 a 3,76 de acidez titulável

de 11,96 a 19,24 mL g-1 e de sólidos solúveis de 10,50 a 13,58 º Brix. Os

resultados encontrados das amostras analisadas corroboram com os descritos

por Carvalho et al. (2013) quanto ao pH, entretanto para acidez os resultados

encontram-se acima dos mencionados por Michodjehoun-Mestres et al. (2009).

Não foi possível comparar com os dados de Carvalho et al. (2013), devido a

diferença de metodologias.

Observou-se no geral que as amostras de caju e cajuí não diferiram

estatisticamente em termos de pH com média de 3,68 para ambas as espécies,

quanto aos sólidos solúveis as amostras de caju e cajuí maduras também se

assemelharam com média de 13,04 e 16,27 ºBrix, respectivamente, onde as

amostras de cajuí apresentaram-se com grau de doçura superior, como

também as amostras verdes de caju e cajuí com 10,67 e 11,89 ºBrix,

respectivamente.

Um importante atributo associado à qualidade dos frutos é o sabor. O

conteúdo e a composição de açúcares possuem papel fundamental sobre este,

sendo também indicadores do estágio de maturação dos mesmos (SANDRI,

SILVA e PASTRO, 2011).

O amadurecimento de um modo geral proporciona uma maior doçura

devido ao aumento nos teores de açúcares simples, decorrentes de processos

de biossíntese ou de degradação dos polissacarídeos existentes nos frutos,

apesar do consumo de uma parte destes constituintes pela oxidação

respiratória (CHEFTEL e CHEFTEL, 1992).

A Figura 2.9 apresenta a variação de sólidos solúveis das diferentes

amostras nos distintos estágios de maturação, onde se observou que, para as

amostras verdes, as que se apresentaram com maior grau de doçura, para

Page 62: caracterização fisico-química e atividade antioxidante de

62

ambas as espécies, foram as provenientes de Gurupi. Para as amostras em

estágio maduro, a amostra CIMG1 foi a que mais se destacou com 19,92 º Brix

seguida da amostra CJMP1 com aproximadamente 15º Brix, observando-se

que sua amostra verde correspondente apresentou menor valor entre as

amostras. Estatisticamente, apenas três das amostras analisadas

apresentaram diferença significativa ao nível de 5% quando contrapostas entre

estágio verde e maduro, sendo elas as amostras 1 de caju e 2 de cajuí de

Palmas e amostra 2 de caju de Gurupi.

Figura 2.9: Sólidos solúveis (º Brix) para amostras de caju e cajuí nos estágios verde e maduro. Colunas seguidas pelas mesmas letras, para cada gráfico, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p<0,05), n = 3.

No trabalho de Michodjehoun-Mestres et al. (2009) em estudo sobre fenóis

monoméricos de pseudofrutos de caju, foram determinadas algumas

características físico-químicas do pedúnculo, sendo o maior teor de sólidos

solúveis encontrado entre as diversas amostras, igual 13,5 ± 0,1 ºBrix, onde as

amostras maturadas de caju apresentaram valor semelhante (13,04 ºBrix).

Figueiredo et al. (2002) estudando as mudanças físico-químicas em

pseudofruto de caju durante o desenvolvimento e maturação encontrou valores

de sólidos solúveis para o estágio 1 de desenvolvimento na ordem de 6,49 º

Brix (este estágio corresponde ao pseudofruto verde com castanha verde). Os

valores aqui encontrados foram superiores, tanto para os pseudofrutos de caju

(10,67º Brix) como para os pedúnculos de cajuí (11,89º Brix).

Lucena (2006), qualificando fruto e pseudofruto de caju encontrou valores

de sólidos solúveis variando de 7,25 a 13,75 ºBrix, resultados que concordam

ab

b

ab

ab

ab

ab

ab

ab

ab

ab

ab

a

ab

ab

CJMP1

CJMP2

CJMP3

CJMG1

CJMG2

CJMG3

CJMG4

CJMG5

CIMP1

CIMP2

CIMP3

CIMG1

CIMG2

CIMG3

--

0 5 10 15 20 25

B

Sólidos solúveis (º Brix)

Am

ost

ras

ma

tura

da

s d

e c

aju

e c

aju

í

a

a

a

a

a

a

a

a

a

a

a

a

a

a

CJVP1

CJVP2

CJVP3

CJVG1

CJVG2

CJVG3

CJVG4

CJVG5

CIVP1

CIVP2

CIVP3

CIVG1

CIVG2

CIVG3

--

0 2 4 6 8 10 12 14 16 18

A

Sólidos solúveis (º Brix)

Am

ost

ras

verd

es

de

ca

ju e

ca

juí

Page 63: caracterização fisico-química e atividade antioxidante de

63

com os aqui encontrados. Canuto et al. (2010), em estudo sobre frutos da

Amazônia encontrou valor de 5 º Brix para o caju. De um modo geral,

observou-se na literatura que há uma grande variação de sólidos solúveis para

esta espécie dependendo do local e das condições edafoclimáticas, as

amostras desse estudo apresentaram média de 12,81 º Brix, as quais

concordam com os resultados de Michodjehoun-Mestres et al. (2009) e Lucena

(2006) e a amostra de cajuí CIMG1 apresentou valor superior (19,92º Brix) aos

citados pela literatura.

3.5 Colorimetria

A cor é o atributo mais importante no processo de escolha pelos

consumidores (CHITARRA e CHITARRA, 2005)

A cromaticidade ou croma (C*) expressa a intensidade da cor, ou seja, a

saturação em termos de pigmentos desta cor. Valores de croma próximos de

zero representam cores neutras (cinzas), enquanto valores próximos de 60

expressam cores vívidas (PINHEIRO, 2009). As escalas utilizadas foram: L*, a*,

b*; e L*, C*, H*. A cor dos pedúnculos foi avaliada pela medida de Hunter L

(luminosidade, branco = 100, preto = 0), a (+, vermelho; -, verde) e b (+,

amarelo; -, azul) pelos parâmetros de reflectância do colorímetro.

A Tabela 2.2 a seguir apresenta os valores médios das coordenadas

valor L*, a* e b*, cromaticidade (C*) e ângulo Hue (°h) de pedúnculos de cajuí

em dois estádios de maturação, coletados nos municípios de Gurupi e Palmas/

Tocantins.

Para L* não foi observada diferença significativa entre as amostras

maduras, entretanto, as amostras verdes CIVP2 e CIVP3 diferiram de CIVG1 e

CIVG2. Constatou-se também que os valores médios de L* não diferiram das

amostras verdes para as maduras correspondentes. Porém, em relação à

luminosidade não observou-se diferença significativa.

Para os valores de a*, os valores quanto mais negativos indicam mais

intensidade de cor verde para as amostras verdes. Entretanto a amostra

CIMP2, considerada madura, apresentou valor negativo, estando seu estágio

de maturação determinado pelas castanhas cinzas, como pode ser atestado

com a Figura 2.8 (A).

Page 64: caracterização fisico-química e atividade antioxidante de

64

Tabela 2.2: Valores médios das coordenadas valor L*, a* e b*, cromaticidade (C*) e ângulo Hue (°h) de pedúnculos de cajuí em dois estádios de maturação, coletados nos municípios de Gurupi e Palmas/ Tocantins.

* Médias seguidas pelas mesmas letras na coluna, não diferem estatisticamente entre

si, de acordo com o Teste de Tukey (p<0,05), n = 3.

A cromaticidade C* observada não diferiu entre as amostras verdes e

nem entre as amostras maduras, como também entre amostras verdes e

maduras correspondentes. O ângulo Hue (H), indica que 0º corresponde ao

vermelho, 90º amarelo, 180º verde e 270º azul (ALMEIDA, 2004). Observou-se

que as amostras verdes tiveram ângulos variando de 96,48 a 114º, o que indica

cor entre amarelo e verde, e as amostras maduras dos pseudofrutos de cajuí

obtiveram ângulos variando de 26,10 a 94,77º indicando que suas cores

variaram do vermelho ao amarelo.

A Figura 2.10 apresenta as amostras de cajuí CIMP2 (A) e cajus CJMP2

(B), CJMG2 (C) e CJVG4 (D).

Onde suas medidas de cor *a, apresentaram-se mais negativas apesar de

três delas terem sido classificadas como maduras, todas são de cor amarelas

ou quase esbranquiçadas, apresentando valores que se aproximam das

amostras verdes, no entanto, sua maturidade é atestada pela cor das

castanhas cinzas.

Amostras L* a* b* C* H

(p≤0,05)

CIVP1 35,99abc -9,62 26,26abc 21,61bc 109,19ab

CIVP2 22,05c -6,06 12,33cd 24,53abc 114,83a

CIVP3 23,63c -2,74 8,14d 15,08c 108,58ab

CIVG1 49,04ab -8,06 31,73a 32,11abc 106,14ab

CIVG2 49,50a -8,79 30,03ab 28,25abc 103,68ab

CIVG3 24,65c -2,74 17,73abcd 22,23bc 96,48ab

CIMP1 31,28bc 28,07 22,80abcd 34,22abc 39,37d

CIMP2 28,13c

-2,13 27,89abc 38,42ab 94,77bc

CIMP3 25,23c 5,59 18,96abcd 23,88abc 75,97c

CIMG1 32,95abc 36,46 19,06abcd 42,34a 27,58d

CIMG2 22,51c 25,29 15,27bcd 33,11abc 29,28d

CIMG3 28,59c 34,12 15,66bcd 35,44ab 26,10d

Page 65: caracterização fisico-química e atividade antioxidante de

65

Figura 2.10: (A) Amostra de cajuí proveniente de Palmas CIMP2, (B) Amostra de caju proveniente de Palmas CJMP2, (C) Amostra de caju proveniente de Gurupi CJMG2, (C) Amostra de caju proveniente de Gurupi (CJVG4).

Na Tabela 2.3 são apresentados os valores médios das coordenadas valor

L*, a* e b*, cromaticidade (C*) e ângulo Hue (°h) de pedúnculos de caju em

dois estádios de maturação, coletados nos municípios de Gurupi e Palmas/

Tocantins.

Para os valores médios da coordenada L* entre as amostras verdes houve

diferença significativa entre as amostras de Palmas CJVP1 e CJVP3 das de

Gurupi.

Entre as amostras maduras CJMG2 diferiu estatisticamente das demais

(L*= 82,51) indicando que a amostra tende a cor branca o que pode ser

constatado pela Figura 2.10 (C). Para o valor médio de a* os valores negativos

indicam a cor verde, exceto para a amostra CJVG5, que apesar de verde,

apresenta cor vermelha, o que pode ser observado na Figura 2.11. Note-se que

quanto mais negativo os valores de a* mais verde a amostra se encontrava,

destaque para as amostras CJVG2 e CJVG4.

A amostra CJVG5 para o valor de a* apresentou valor positivo, mas seu

estágio pode ser verificado pela Figura 2.11 onde é possível observar que a

mesma possui cor vermelha desde seu estágio verde, note-se pela castanha

verde.

Page 66: caracterização fisico-química e atividade antioxidante de

66

Tabela 2.3: Valores médios das coordenadas valor L*, a* e b*, cromaticidade (C*) e ângulo Hue (°h) de pedúnculos de caju em dois estádios de maturação, coletados nos municípios de Gurupi e Palmas/ Tocantins.

*Médias seguidas pelas mesmas letras na coluna, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤0,05).

Em b* observou-se que as amostras dos pseudofrutos de caju verdes não

diferiram significativamente das amostras maduras correspondentes, exceto a

amostra CJVG1 de sua correspondente CJMG1 em que a cor amarela é mais

intensa na amostra verde e mais azul na amostra madura.

Para os valores de C* a cromaticidade foi mais elevada para as amostras

de Gurupi enquanto verdes ou maduras, ou seja, a pureza de cor foi melhor

observada. A variação para o ângulo Hue entre as amostras verdes foi de

46,89 a 118,68º, indicando que a cor foi do vermelho ao verde influenciada pela

amostra CJVG5 e para as amostras maduras a variação foi de 24,57 a 92,83º,

indicando que a cor variou do vermelho ao amarelo.

Amostras L* a* b* C* H

(p≤0,05)

CJVP1 27,65ef -8,50 21,85cd 29,98cd 111,98a

CJVP2 43,14cde -12,18 30,33abcd 31,10bcd 113,03a

CJVP3 18,09f -8,80 23,16bcd 27,03d 111,59a

CJVG1 70,60ab -4,38 40,37a 40,96abcd 94,18c

CJVG2 61,85abc -18,67 40,98a 45,36 abcd 114,63a

CJVG3 60,76bcd -13,86 38,26abc 40,65 abcd 109,43ab

CJVG4 51,53 bcd -18,45 33,41abcd 38,12 abcd 118,68a

CJVG5 51,66 bcd 19,60 20,67d 28,58d 46,89d

CJMP1 26,96ef 16,90 27,57abcd 34,41bcd 56,18d

CJMP2 50,27 bcd -2,26 39,70ab 34,40bcd 92,83c

CJMP3 12,11f 18,30 20,45d 27,18d 46,44d

CJMG1 40,93cde 48,87 22,49cd 53,62a 24,57e

CJMG2 82,51a -4,99 40,65a 40,55abcd 97,07bc

CJMG3 43,97cde 42,64 21,24cd 48,34abc 26,20e

CJMG4 40,54de 45,07 21,16cd 50,16ab 25,16e

CJMG5 40,00de 46,86 25,72abcd 53,80a 28,71e

Page 67: caracterização fisico-química e atividade antioxidante de

67

Figura 2.11: Amostra CJVG5 de caju proveniente de Gurupi.

Apesar do colorímetro ser um instrumento de cor eficaz, outro critério foi

adotado para determinação do estágio de maturação dos pseudofrutos, como a

cor da castanha.

Canuto et al. (2010) encontraram valores para polpa de caju proveniente da

região amazônica com L* = 57,6; H* = 79 e C* = 31,9. Valores de H* próximo

ou acima de 70 indicam tonalidade cromática alta. Abreu (2007) encontrou

média de L* = 60,45; C* = 48,43 e H*= 52,42. Azevedo et al. (2008) observou

em frutos de mamão papaya (Carica papaya L. cv. Golden) que os valores de L

acima de 50% indicavam que depois do pico de emissão do etileno as frutas

tornavam-se gradualmente mais claras.

A intensidade de cor das amostras analisadas apresentaram-se maiores

que os dados apresentados pela literatura já que estas foram analisadas em

seu estado original, sem processamento.

3.6 Vitamina C

O ácido ascórbico ou vitamina C é uma das substâncias com maior

significado para a nutrição humana e encontra-se presente nas frutas e

hortaliças (LEE e KADER, 2000). O ácido ascórbico desempenha várias

funções biológicas relacionadas ao sistema imune, formação de colágeno,

absorção de ferro, inibição da formação de nitrosaminas e atividade

antioxidante (VANNUCHI e JORDÃO JÚNIOR, 1998; SILVA et al., 2004).

Entre as amostras verdes e maduras de cajuí a amostra CIMG2, diferiu

estatisticamente das demais ao nível de significância de 5%, com teor médio

de vitamina C de 226,19 mg/100g (Figura 2.12)

Page 68: caracterização fisico-química e atividade antioxidante de

68

ab

b

a

b

ab

a

CIVP1

CIVP2

CIVP3

CIMP1

CIMP2

CIMP3

0 20 40 60 80 100 120

A

Teor de Vitamina C (mg.100 g-1)

Am

ostr

as d

e ca

juí

Figura 2.12: Teor de vitamina C para amostras verdes e maduras de cajuí provenientes de Palmas e Gurupi, nos estágios verde e maduro. Colunas seguidas pelas mesmas letras, para cada gráfico, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p<0,05), n = 3.

Entre as amostras de caju (Figura 2.13) a amostra CJMP3 diferiu das

demais com teor médio de vitamina C 119,58 mg/100 g. Entre as amostras de

caju de Gurupi todas as amostras maduras diferiram estatisticamente (p≤0,05)

das amostras verdes correspondentes, exceto CJMG1.

b

b

b

b

a

b

CIVG1

CIVG2

CIVG3

CIMG1

CIMG2

CIMG3

0 50 100 150 200 250

B

Teor de Vitamina C (mg.100 g-1)

Am

ostr

as d

e ca

juí

Page 69: caracterização fisico-química e atividade antioxidante de

69

b

b

b

b

b

a

CJVP1

CJVP2

CJVP3

CJMP1

CJMP2

CJMP3

0 20 40 60 80 100 120 140

A

Vitamina C (mg. 100 g-1)

Am

ostr

as d

e ca

ju

Figura 2.13: Teor de vitamina C para amostras verdes e maduras de cajuí provenientes de Palmas e Gurupi. Colunas seguidas pelas mesmas letras, para cada gráfico, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p<0,05), n = 3.

Sherer et al. (2008), quantificaram através de cromatografia líquida de

alta eficiência (HPLC), a concentração dos ácidos tartárico, málico, ascórbico e

cítrico do caju encontrando valores máximos de 32,72 ± 3,89; 293,21 ± 28,33;

186,42 ± 0,59 e 9,89 ± 0,38 mg.100 mL-1, respectivamente.

Andrade et al. (2008) encontraram valores de vitamina C de 111,7 e

89,41 mg/100g em pedúnculos de caju cultivados nos sistemas de produção

integrada e convencional, respectivamente. Silva, et al. (2004) encontraram

valor de 36,92 mg/100g para vitamina C em pseudofruto in natura de caju-do-

de

cd

e

e

bc

e

a

ab

bc

a

CJVG1

CJVG2

CJVG3

CJVG4

CJVG5

CJMG1

CJMG2

CJMG3

CJMG4

CJMG5

--

0 10 20 30 40 50

B

Teor de Vitamina C (mg.100 g-1)

Am

ostr

as d

e ca

ju

Page 70: caracterização fisico-química e atividade antioxidante de

70

cerrado (Anacardium spp), algumas das amostras de cajuí apresentaram

valores próximos ao encontrado por estes autores. Oliveira et al. (1999) em

polpas congeladas de caju provenientes de indústrias de Pernambuco e

Paraíba, Brasil, encontraram teor médio de vitamina C de 162,89 mg/100g,

havendo uma variação nos teores de 76,95 a 228,02 mg/100g. Vissotto et al.

(2013) encontraram valores de 167 mg/100 g para polpa de caju provenientes

de São Paulo, entretanto Canuto et al. (2010) em pseudofrutos de caju

provenientes da floresta amazônica do estado de Roraima encontraram valores

de 12,4 mg/100 g de polpa.

O teor de vitamina C de um modo geral, entre as amostras verdes e

maduras, independente da espécie (caju ou cajuí), variou de 17,43 ± 4,71 a

227,31 ± 4,75 mg/100 g estando de acordo com os resultados apresentados

por outros pesquisadores, entretanto quando observadas separadamente,

verifica-se que a maioria das amostras possuem baixo teor de vitamina C se

comparadas a outras regiões do país.

Souza et al. (2012), em estudo sobre frutos do cerrado de marolo

(Annona crassiflora Mart.), jenipapo (Genipa americana L.), murici (Byrsonima

crassifolia L. RICH), graviola (Annona muricata, L.) e maracujá doce (Passiflora

alata Dryand), encontraram valores para vitamina C variando de 21,83 a 59,05

mg/ 100 g de polpa, o que indica que as variedades de caju e cajuí estudadas

contém maior conteúdo em vitamina C em comparação a estas espécies.

3.7 Determinação de clorofila

O mais ativo dos tecidos fotossintéticos das plantas superiores é o

mesófilo foliar. As células do mesófilo possuem muitos cloroplastos, os quais

contêm os pigmentos verdes especializados na absorção da luz, as clorofilas

(TAIZ e ZEIGER, 2006). As clorofilas são porfirinas que formam complexos

com magnésio, sendo as principais a clorofila a e clorofila b (WONG, 1995). As

clorofilas, pigmentos verdes, comuns em células fotossintéticas, possui

estrutura química instável e de fácil degradação que modificam a percepção e

qualidade dos alimentos (STREIT et al., 2005). Estão envolvidos no processo

de amadurecimento, a síntese do etileno e a ação de enzimas péctica como a

pectinametilesterase (PME) e poligalacturonase (PG) (PRADO et al., 2013).

Page 71: caracterização fisico-química e atividade antioxidante de

71

Neste estudo foram quantificadas os teores de clorofilas a, b e total dos

pedúnculos verdes e maduros de caju e cajuí, a fim de atestar seu estágio de

maturação.

A Tabela 2.4 apresenta as amostras de caju verdes e maturadas

provenientes de Palmas com a média e desvio padrão para clorofila a, b e total.

Observou-se pelo teste de Tukey que as amostras verdes diferiram

estatisticamente (p≤0,05) para clorofila a das amostras maduras, exceto a

amostra CJVP1 da CJMP3. Quando comparado os teores apresentados pelas

amostras verdes e aqueles apresentados pelas amostras maduras, observa-se

diferença significativa, sendo os teores das amostras verdes inferiores aos das

amostras maduras. O teor de clorofila a não diferiu estatisticamente entre as

amostras maduras, no entanto entre as amostras verdes foi observada

diferença estatística da amostra CJVP3 das demais.

Tabela 2.4 Teor de clorofila a, b e total (µg.mL-1) para amostras verdes e maduras de caju provenientes de Palmas.

Amostras Clorofila a Clorofila b Clorofila Total

CJVP1 3,18 ± 1,19bc* 14,59 ± 1,33a 17,77 ± 2,51ab

CJVP2 4,02 ± 1,24b 14,31 ± 0,90a 18,33 ± 2,09ab

CJVP3 6,66 ± 0,60a 14,64 ± 0,51a 21,30 ± 1,06a

CJMP1 0,30 ± 0,00d 12,94 ± 0,00a 13,03 ± 0,39c

CJMP2 0,08 ± 0,00d 12,87 ± 0,00a 12,95 ± 0,00c

CJMP3 1,19 ± 0,47cd 14,43 ± 0,99a 15,61 ± 1,46bc

*Médias seguidas pelas mesmas letras na coluna, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p ≤ 0,05).

Para clorofila b as amostras dos pseudofrutos verdes e maduros não

apresentaram diferença estatística pelo teste de Tukey (p<0,05). Verificou-se

que para clorofila total as amostras verdes de caju diferiram das amostras

maduras, com exceção da amostra madura CJMP3 que se assemelhou

estatisticamente das amostras verdes CJVP1 e CJVP2, mas não a sua

correspondente verde.

A Tabela 2.5 apresenta os dados para clorofila a, b e total para amostras

dos pseudofrutos verdes e maduros de cajuí provenientes de Palmas. Para

clorofila a observou-se que as amostras verdes diferiram das maduras, exceto

Page 72: caracterização fisico-química e atividade antioxidante de

72

a amostra CIVP2 a qual se assemelhou às amostras maturadas, pelo teste de

Tukey (p≤0,05). Para clorofila b o mesmo foi observado, exceto a amostra

CIVPI que diferiu das amostras maduras CIMP2 e CIMP3 pelo teste de Tukey

(p<0,05). Na quantificação da clorofila total não foi observada diferença

significativa entre as amostras verdes e nem entre as amostras maduras, pelo

teste de Tukey (p≤0,05). No entanto a amostra CIMP1 se assemelhou em

conteúdo de clorofila total às amostras verdes CIVP2 e CIVP3 e a amostra

verde CIVP2 se assemelhou às amostras maduras em teor de clorofila total.

Tabela 2.5: Teor de clorofila a, b e total (µg.mL-1) para amostras verdes e maduras de cajuí provenientes de Palmas.

Amostras Clorofila a Clorofila b Clorofila Total

CIVP1 5,05 ± 1,09a* 15,04 ± 0,33a 20,09 ± 1,37a

CIVP2 2,13 ± 0,54ab 14,04 ± 0,56ab 16,17 ± 1,04abc

CIVP3 5,29 ± 3,05a 13,58 ± 0,58ab 18,87 ± 3,63ab

CIMP1 0,62 ± 0,54b 13,84 ± 0,78ab 14,46 ± 1,31bc

CIMP2 0,33 ± 0,00b 13,16 ± 0,00b 13,49 ± 0,00c

CIMP3 0,46 ± 0,42b 13,28 ± 0,81b 13,74 ± 1,20c

*Médias seguidas pelas mesmas letras na coluna, não diferem estatisticamente entre si, de acordo com o Teste de Tukey, (p ≤0,05).

Verifica-se na Tabela 2.6 o teor de clorofila a, b e total, expressas em

(µg.mL-1), para amostras verdes e maduras de caju provenientes de Gurupi.

Observa-se que entre as amostras maduras para clorofila a não houve

diferença significativa (p≤0,05) pelo Teste de Tukey, a amostra verde CJVG3

se assemelhou a sua amostra madura correspondente CJMG3.

Para clorofila b observou-se que não houve diferença significativa entre

as amostras verdes, como também entre as maduras, sendo o teor de clorofila

b das amostras verdes estatisticamente semelhante à suas amostras maduras

correspondentes.

Verificou-se na determinação de clorofila total que não houve diferença

significativa entre as amostras verdes, como também entre as amostras

maduras. A amostra verde CJVG4 diferiu estatisticamente de sua amostra

madura correspondente CJMG4 pelo teste de Tukey (p≤0,05).

Page 73: caracterização fisico-química e atividade antioxidante de

73

Tabela 2.6: Teor de clorofila a, b e total (µg.mL-1) para amostras verdes e maduras de caju provenientes de Gurupi.

Amostras Clorofila a Clorofila b Clorofila Total

CJVG1 5,08 ± 0,15bc* 5,93 ± 0,28a 11,02 ± 0,93ab

CJVG2 6,23 ± 1,30a 4,30 ± 0,69ab 10,53 ± 1,99abc

CJVG3 4,76 ± 1,63abcd 5,87 ± 1,37a 10,63 ± 2,59abc

CJVG4 6,82 ± 1,70a 4,84 ± 1,49ab 11,66 ± 2,93a

CJVG5 5,15 ± 0,14ab 5,52 ± 0,55a 10,67 ± 0,64abc

CJMG1 2,31 ± 0,39de 4,14 ± 0,31ab 6,45 ± 0,48bcd

CJMG2 1,84 ± 0,14e 2,77 ± 0,55b 4,61 ± 0,64d

CJMG3 2,91 ± 0,57bcde 4,67 ± 0,96ab 7,58 ± 1,49abcd

CJMG4 2,22 ± 0,41de 3,98 ± 0,73ab 6,20 ± 1,14cd

CJMG5 2,49 ± 0,67cde 4,45 ± 1,20ab 6,94 ± 1,87abcd

*Médias seguidas pelas mesmas letras na coluna, não diferem estatisticamente entre si, de acordo com o Teste de Tukey, (p≤0,05).

A Tabela 2.7 apresenta o teor de clorofila a, b e total para amostras

verdes e maduras de cajuí provenientes de Gurupi. Na análise de clorofila a

observou-se diferença significativa (p≤0,05) pelo teste de Tukey entre as

amostras verdes CIVG1 e CIVG3, já entre as amostras maduras não houve

diferença significativa. Para clorofila b não houve diferença significativa

(p≤0,05) entre as amostras verdes e suas correspondentes maduras. Para

clorofila total as amostras verdes não diferiram entre si, entretanto as amostras

dos pseudofrutos verdes CIVG1 e CIVG3 diferiram estatisticamente (p≤0,05) de

suas amostras maduras correspondentes.

São apresentados, na Figura 2.14, os teores de clorofila a, b e total para

as amostras de cajus verdes provenientes de Palmas e Gurupi, onde notou-se

maior conteúdo em clorofilas b e total nas amostras de Palmas quando

comparadas às de Gurupi com destaque para a amostra CJVP3.

Tabela 2.7: Teor de clorofila a, b e total (µg.mL-1) para amostras verdes e maduras de cajuí provenientes de Gurupi.

Amostras Clorofila a Clorofila b Clorofila Total

CIVG1 7,07 ± 1,28a* 4,74 ± 0,70ab 11,80 ± 1,05a

CIVG2 6,10 ± 0,45ab 5,91 ± 0,47a 12,01 ± 0,28a

CIVG3 4,82 ± 0,32bc 4,68 ± 0,83ab 9,50 ± 1,01ab

Page 74: caracterização fisico-química e atividade antioxidante de

74

CIMG1 2,85 ± 0,85d 4,31 ± 0,89ab 7,15 ± 1,71bc

CIMG2 3,62 ± 0,19cd 5,94 ± 0,33a 9,56 ± 0,38ab

CIMG3 2,55 ± 0,19d 4,04 ± 0,33b 6,59 ± 0,38c

*Médias seguidas pelas mesmas letras na coluna, não diferem estatisticamente entre si, de acordo com o Teste de Tukey, (p≤0,05).

b aba

abab

aba

ab

a a

a

b b b b b

aa

a

b b bb

b

CJVP1 CJVP2 CJVP3 CJVG1 CJVG2 CJVG3 CJVG4 CJVG5 --0

5

10

15

20

25

30

35

40

45

Teo

r de

clo

rofil

a (µ

.mL

-1)

Amostras de cajus verdes

Clorofilaa Clorofilab ClorofilaTo

Figura 2.14:Teor de clorofila a, b e total (µg.mL-1) de amostras de cajus verdes provenientes de Palmas e Gurupi. Médias seguidas pelas mesmas letras na coluna, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤0,05).

A Figura 2.15 apresenta o teor de clorofila a, b e total das amostras de

caju maduros provenientes de Palmas e Gurupi.

Observou-se que as amostras de Palmas apresentaram maior conteúdo

em clorofila, indicando que as amostras de Gurupi, encontravam-se em estágio

mais avançado de maturação.

São apresentados, na Figura 2.16 os teores de clorofila a, b e total das

amostras de pseudofrutos de cajuí verdes provenientes de Palmas e Gurupi,

onde o maior conteúdo de clorofila é observado nas amostras de Palmas.

Entretanto o menor conteúdo em clorofila a foi observado na amostra CIVP2. O

maior teor encontrado, com mais de 14 µg.mL-1 de clorofila b, ocorreu nas

amostras de Palmas.

A Figura 2.17 apresenta o teor de clorofila a, b e total para amostras de

pseudofrutos de cajuí maturados, onde o teor de clorofila a foi menor para as

Page 75: caracterização fisico-química e atividade antioxidante de

75

amostras de Palmas, entretanto para as clorofilas b e total as amostras de

Palmas apresentaram-se superiores às de Gurupi.

c cbc

ab aba ab a

a a

a

bb

bb b

a a

a

b

b

b

bb

CJMP1 CJMP2 CJMP3 CJMG1 CJMG2 CJMG3 CJMG4 CJMG5 --

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32T

eor

de c

loro

fila

(µg.

mL-1

)

Amostras de cajus maduros

Clorofilaa Clorofilab Clorofilato

Figura 2.15:Teor de clorofila a, b e total (µg.mL-1) de amostras de cajus maduros provenientes de Palmas e Gurupi. Colunas seguidas pelas mesmas letras, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤0,05).

Observou-se que as amostras maduras de Palmas diferiram

estatisticamente (p≤0,05) das amostras maduras de Gurupi em teor de clorofila

b atingindo valor máximo de 14,42 µg.mL-1.

A decomposição das clorofilas é afetada pelo pH dos tecidos. O pH

básico (9,0) torna a clorofila mais estável ao calor, quando comparada ao pH

ácido (3,0) (STREIT et al., 2005).

Figueiredo et al. (2002) em pseudofrutos de caju provenientes de

Mossoró, Rio Grande Norte, Brasil relata decréscimo gradual do teor de

clorofila total nos sete estágios de maturação analisados o qual variou de 53,3

para o primeiro estágio a 6,52 mg/100 g observa-se o mesmo para as amostras

analisadas neste estudo (Tabela 2.8 e 2.9), porém, em teores bem menores

expressos em microgramas.

Page 76: caracterização fisico-química e atividade antioxidante de

76

ab

b

ab

a

ab

ab

a

a

a

b

b

b

a

ab

a

bc

bc

c

CIVP1

CIVP2

CIVP3

CIVG1

CIVG2

CIVG3

0 5 10 15 20

Teor de clorofila (µ.mL-1)

Am

ostr

as v

erde

s de

caj

Clorofilato Clorofilab Clorofilaa

Figura 2.16: Teor de clorofila a, b e total (µg.mL-1) de pseudofrutos de cajuís provenientes de Palmas e Gurupi. Colunas seguidas pelas mesmas letras, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤0,05).

b

b

b

a

a

a

a

a

a

bc

b

c

a

a

a

bc

b

c

CIMP1

CIMP2

CIMP3

CIMG1

CIMG2

CIMG3

0 2 4 6 8 10 12 14 16

Teor de clorofila (µg.mL-1 )

Am

ostr

as m

atur

adas

de

caju

í

Clorofilato Clorofilab Clorofilaa

Figura 2.17: Teor de clorofila a,b e total (µg.mL-1) para pseudofrutos de cajuí maturados. Colunas seguidas pelas mesmas letras, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤0,05).

Encontrou-se valores de 0,5 a 2,9 mg/g massa fresca para as espécie

frutíferas de graviola (Anonna muricata) e 0,7 a 2,6 mg/g massa fresca de

camu-camu (Myrciaria dubia) (LIMA, MENDES e MARENCO, 2009) os teores

Page 77: caracterização fisico-química e atividade antioxidante de

77

de clorofila destes frutos foram maiores do que os encontrados neste estudo

para os pseudofrutos de caju e cajuí.

Page 78: caracterização fisico-química e atividade antioxidante de

78

4 CONCLUSÃO

Observou-se que os pseudofrutos deste estudo apresentaram-se ácidos e

sendo que em 11 das 16 amostras analisadas o potencial hidrogênionico foi

maior no estágio de maturação verde.

As amostras apresentaram graus de doçura satisfatórios, independente do

estágio de maturação.

Quanto a cor, os pedúnculos da região de Gurupi se mostraram mais

brilhantes o que pode ser ocasionado pela variedade, região de cultivo e por

não haver interferência de poluição, já que os pseudofrutos de Palmas foram

colhidos na zona urbana da cidade.

Constatou-se que apenas uma amostra de cajuí proveniente da região de

Gurupi se destacou quanto ao teor de vitamina C com teor acima de 200

mg/100 g.

Observou-se que o teor de clorofila decresce do estágio verde para o

maduro indicando que há degradação da mesma e síntese de novos pigmentos

para composição da cor característica dos pseudofrutos.

Conclui-se que os penducúlos de caju e cajuí do estado do Tocantins, Brasil

possuem características físico-químicas particulares que podem ser

melhoradas para sua exploração comercial. No entanto, há a necessidade de

incentivos para cultivo dessas espécies frutíferas, bem como da preservação

das plantas nativas, principalmente do cajuí.

Page 79: caracterização fisico-química e atividade antioxidante de

79

5 REFERÊNCIAS BIBLIOGRÁFICAS

ABREU, C. R. A. Qualidade e atividade antioxidante total de pedúnculos de clones comerciais de cajueiro anão precoce. 2007. 111f. Dissertação (Mestrado em Tecnologia de Alimentos) – Universidade Federal do Ceará, Fortaleza. AGÊNCIA TOCANTINENSE DE NOTÍCIAS. Com período chuvoso, produtores iniciam plantio de frutas no Tocantins. Disponível em:<http://atn.to.gov.br/noticia/2013/11/7/com-periodo-chuvoso-produtores-iniciam-plantio-de-frutas-no-tocantins/> Acesso em: 26 nov. 2013. ALMEIDA, D. Fisiologia das alterações de cor: percepção e medição da cor. Faculdade de Ciências da Universidade do Porto, 2004. Disponível em:<

http://dalmeida.com/poscolheita/Cor1.pdf> Acesso em:15 out. 2013. ANDRADE, A. P. de et al. Qualidade de cajus-de-mesa obtidos nos sistemas de produção integrada e convencional. Revista Brasileira Fruticultura, Jaboticabal, v. 30, n.1, p. 176-179, mar., 2008. ANDRADE, P. F. de S. Fruticultura: análise da conjuntura agropecuária. 2012. Disponível em:< http://www.agricultura.pr.gov.br/arquivos/File/deral/Prognosticos/fruticultura_2012_13.pdf> Acesso em: 25 nov. 2013. AOAC. (ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS). 1990. Official methods of analysis. 15.ed. Washington: AOAC. AZEREDO, H. M. C.; BRITO, E. S. Tendências em Conservação de Alimentos. In: AZEREDO, H. M. C. Fundamentos de Estabilidade de Alimentos. Fortaleza: Embrapa Agroindústria Tropical, 2004. cap. 6, p. 135-150. BANCO DO BRASIL, Fruticultura: Desenvolvimento regional sustentável. Série cadernos de propostas para atuação em cadeias produtivas, Brasília, v. 4, p. 1-42, set. 2010. BARROS, L. M. et al Cajueiro In: BRUCKNER C. H. Melhoramento de fruteiras tropicais. ed. UFV, Viçosa, 2002, p.159-176. Disponível em:< http://www.cnpat.embrapa.br/cnpat/cd/jss/acervo/Dc_031.pdf> Acesso em: 18 maio 2013. CANUTO, G. A. B. et al. Caracterização físico-química de polpas de frutos da Amazônia e sua correlação com a atividade anti-radical livre. Revista Brasileira Fruticultura, Jaboticabal, v. 32, n. 4, p. 1196-1205, dez. 2010. CARVALHO, B. A. et al. Avaliação físico-química e capacidade antioxidante do pseudofruto do caju arbóreo do cerrado. Disponível em:< http://www.sbpcnet.org.br/livro/63ra/conpeex/pibic/trabalhos/BEATRIZ_.PDF> Acesso em: 10 out. 2013. CHEFTEL, J.C.; CHEFTEL, H. Introduccion a la bioquímica y tecnología de los alimentos. v. 1. Zaragoza: Acribia, 1992. CHITARRA, M. I. F.; CHITARRA, A. B. Pós-colheita de frutos e hortaliças: fisiologia e manuseio. Lavras: ESAL/FAEPe, 2005. 320 p. COSTA, M. A.; TORNISIELO, V. L.; WALDER, J. M. M. Resíduos de 14C-PROCHLORAZ em mangas irradiadas. Pesticidas: R.Ecotoxicol. e Meio Ambiente, Curitiba, v. 11, jan./dez. 2001. COSTA, N. M. B. Alimentos: componentes nutricionais e funcionais. In: COSTA, N. M. B.; CARVALHO, V. F. (Org.). Biotecnologia e nutrição: saiba como o DNA pode enriquecer a qualidade dos alimentos. São Paulo: Nobel, 2003. p.31-69

Page 80: caracterização fisico-química e atividade antioxidante de

80

COSTA, N. M. B.; LIBERATO, S. C. Biotecnologia na nutrição e saúde. In: COSTA, N. M. B.; CARVALHO, V. F. (Org.). Biotecnologia e nutrição: saiba como o DNA pode enriquecer a qualidade dos alimentos. São Paulo: Nobel, 2003. p.71-127 FACHINELLO, J.C.; NACHTIGAL, J. C.; KERSTEN, E. Fruticultura: fundamentos e práticas. Disponível em: <http://www.cpact.embrapa.br/publicacoes/download/livro/fruticultura_fundamentos_pratica/1.2.htm>. Acesso em: 13 set. 2013. FIGUEIREDO, R. W. et al. Physical–chemical changes in early dwarf cashew pseudofruits during development and maturation. Food Chemistry, Amsterdan, v. 77, p. 343–347, 2002. FIGUEIREDO, R. W. de et al. Qualidade de pedúnculos de caju submetidos à aplicação pós-colheita de cálcio e armazenados sob refrigeração. Pesquisa Agropecuária Brasileira, Brasília, v. 42, n. 4, p. 475-482, abr., 2007. FRANCO, J.M. V.; UZUNIAN , A.. Cerrado Brasileiro. São Paulo: ed. Harbra., 2004. GOMES, R. P. Fruticultura brasileira. 13.ed., São Paulo: Nobel, 2007. p.136-148 GUEDES, F. Negócios do caju. Revista Frutas e Derivados, ano 3 10 ed. jun. p. 27-29, 2008. HIRSCHMANN, G. S.; ARIAS, A. R. de A survey of medicinal plants of Minas Gerais, Brazil. Journal of Ethnopharmacology, n. 29 , p.159- 172,1990. http://www.xrite.com/documents/literature/en/L10-001_Understand_Color_en.pdf Acesso em: 24 jun. 2013.

HUBER, L. S.; RODRIGUEZ-AMAYA, D. B. Flavonóis e flavonas: fontes brasileiras e fatores que influenciam a composição em alimentos. Alimentação Nutrição, Araraquara, v. 19, n.1 p. 97-108, na./mar. 2008. INSTITUTO ADOLFO LUTZ. Métodos físico-químicos para análise de alimentos. São Paulo, 2008. 1020 p. INSTITUTO BRASILEIRO DE FRUTAS – IBRAF.Frutas frescas:exportação. Disponível em:< http://www.ibraf.org.br/estatisticas/Exporta%C3%A7%C3%A3o/Comparativo_das_Exporta%C3%A7%C3%B5es_Brasileiras_de_Frutas_frescas_2010-2009.pdf> Acesso em: 24 nov. 2013. LIMA, A. A. C.; OLIVEIRA, F. N. S.; AQUINO, A. R. L. Solos e aptidão agrícola das terras do estado do Tocantins, Embrapa Agroindústria Tropical, Fortaleza, 2000. 27 p. LIMA, P. S.; MENDES, K. R.; MARENCO, R. Teores absolutos e relativos de clorofila em espécies frutíferas tropicais. In: XII CONGRESSO BRASILEIRO DE FISIOLOGIA VEGETAL, Fortaleza, 2009. Anais do XII Congresso Brasileiro de Fisiologia Vegetal. Fortaleza, 2009. LOPES, M. M. de A., et al.Caracterização física de pedúnculos de clones de cajueiro anão precoce em diferentes estádios de maturação. Revista Ciência Agronômica, Fortaleza, v. 42, n. 4, p. 914-920, out./dez. 2011. LORENZI, H. et al Frutas brasileiras e exóticas cultivadas: de consumo in natura. Instituto Plantarum de Estudos da Flora, São Paulo, 2006. 672p. LUCENA, V. M. X. Diversidade genética entre genótipos de cajueiro (Anacardium

occidentale L.) e qualidade do fruto e pseudofruto. 2006. 89 f. Dissertação (Mestrado em Recursos Naturais) – Universidade Federal de Roraima, Boa Vista, 2006. MCGUIRE, R.G. Reporting of objective color measurements. Hort Science. n. 27, v. 12, p. 1254-1255, dez. 1992.

Page 81: caracterização fisico-química e atividade antioxidante de

81

MEDEIROS, M. F. D. et al. Drying of pulps of tropical fruits in spouted bed: effect of composition on dryer performance. Drying Technology. v. 20, n. 4-5, 2002. MICHODJEHOUN-MESTRES, L. et al Monomeric phenols of cashew apple (Anacardium occidentale L.). Food Chemistry. Amsterdan, n. 112, p. 851–857, 2009.

MINISTÉRIO DO MEIO AMBIENTE. Bioma cerrado. Disponível em:< http://www.mma.gov.br/biomas/cerrado> Acesso em: 26 nov. 2013. MORAN, R. Formulae for determination of chlorophyllous pigments extracted with N,N- dimethylformamide. Plant Physiology, Rockville, v. 69, p. 1376-1381, 1982. OLIVEIRA, M. E. B. de et al. Avaliação de parâmetros de qualidade físico-químicos de polpas congeladas de acerola, cajá e caju. Ciência Tecnologia Alimentos, Campinas, v.19, n.3, set./dez. 1999. PAULA NETO, A. Metabolismo do nitrogênio e concentração de nutrientes no cafeeiro irrigado em razão da dose de N. 2009. 94 f. (Mestrado em Ciências – Fitotecnia) – Escola Superior de Agricultura “Luiz de Queiroz” Piracicaba, 2009. PRADO, A. et al. Avanços biotecnológicos no controle do amadurecimento de frutos carnosos. Disponível em:< http://felix.ib.usp.br/bib133/semin_grupo4.pdf> Acesso em: 20 dez. 2013. PINHEIRO, J. M. S. Tecnologia pós-colheita para conservação de bananas da cultivar tropical. 2009. Dissertação (Mestrado em Produção Vegetal). Universidade Estadual de Montes Claros, Janaúba, 2009. SANDRI, D. de O.; SILVA, F. S. da; PASTRO, D. C. Análise físico-química do cilindro central e polpa do abacaxi cultivar pérola in natura em diferentes posições do fruto. In: CONGRESSO DE INICIAÇÃO CIENTÍFICA, n. 4, 2011, Cáceres. Anais. Cáceres: Universidade do Estado de Mato Grosso. V. 7. Disponível em:< http://siec.unemat.br/anais/conic/impressao-resumo_expandido.php?fxev=MQ==&fxid=ODM5&fxcod=NTEyMA==&fxdl=I> Acesso em: 5 dez. 2013. SCHERER, R.; RYBKA , A. C. P.; GODOY, H. T. Determinação simultânea dos ácidos orgânicos tartárico, málico, ascórbico e cítrico em polpas de acerola, açaí e caju e avaliação da estabilidade em sucos de caju.Quimica nova. v. 31, n. 5, p.1137-1140, 2008. SEBRAE – Serviço Brasileiro de Apoio às Micro e Pequenas Empresas. Estudo setorial: cajucultura, 2005. Disponível em:< http://201.2.114.147/bds/bds.nsf/49B5115DFC028E11832574FD006FC0E4/$File/NT0003A40E.pdf> Acesso em: 22 nov. 2013. SILVA, A. P. P.; MELO, B.; FERNANDES, N. Fruteiras do cerrado. Disponível em:< http://www.fruticultura.iciag.ufu.br/fruteiras%20do%20cerrado.html> Acesso em: 03 out. 2013. SILVA, D. B. da et al, Frutas do cerrado. Embrapa Informação Tecnológica, Brasília, 2001. 179 p. SILVA, L. A. G. C. Biomas presentes no estado do Tocantins. Biblioteca Digital da Câmara dos Deputados, 2007. Disponível em:<

http://bd.camara.leg.br/bd/bitstream/handle/bdcamara/1424/biomas_tocantins_silva.pdf?sequence=2> Acesso em: 22 nov. 2013. SILVA, L. M. R. da Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, Amsterdan, n. 143, p. 398–404, 2014

Page 82: caracterização fisico-química e atividade antioxidante de

82

SILVA, M. R.; SILVA, M. S.; OLIVEIRA, J. S. Estabilidade de ácido ascórbico em pseudofrutos de caju-do-cerrado refrigerados e congelados. Pesquisa Agropecuária Tropical, v. 34, n.1, p.9-14, 2004. SILVA, W. S. Qualidade e atividade antioxidante em frutos de variedades de aceroleira. Dissertação (Mestrado em Tecnologia de Alimento) - Universidade Federal do Ceará; 2008. SOARES, E. G. (Org.). Patologia nutricional. Rio de Janeiro: Guanabara Koogan, 2009. 125 p. SOUZA, V. R. de et al Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chemistry. Amsterdan, n. 134, p. 381–386, 2012. STREIT, N. M. As clorofilas. Ciência Rural, Santa Maria, v. 35, n. 3, p. 748-755, mai./jun., 2005. TAIZ, L. ZEIGER, E. Fisiologia vegetal. 3. ed., Porto Alegre:Artmed, 2006. 719 p. TIVERON, A. P. Atividade antioxidante e composição fenólica de legumes e verduras consumidos no Brasil. 2010. 102 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) – Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2010. VISSOTTO, L. C. et al. Correlation, by multivariate statistical analysis, between the scavenging capacity against reactive oxygen species and the bioactive compounds from frozen fruit pulps. Ciência e Tecnologia Alimentos, Campinas, v.33, n.1, p. 57-65, fev. 2013. WONG, D. W. S. Química de lós alimentos: mecanismos y teoria. Zaragoza: Acribia, 1995. 476 p.

Page 83: caracterização fisico-química e atividade antioxidante de

83

CAPÍTULO 3: DETERMINAÇÃO DA ATIVIDADE

ANTIOXIDANTE E QUANTIFICAÇÃO DOS TEORES DE

COMPOSTOS FENÓLICOS E FLAVONÓIDES EM

PEDÚNCULOS DE CAJU E CAJUÍ DO CERRADO

TOCANTINENSE.

Page 84: caracterização fisico-química e atividade antioxidante de

84

RESUMO

A presença de radicais livres no organismo, quando em excesso pode causar efeitos adversos ao mesmo, tais como doenças crônicas não transmissíveis. Os antioxidantes são capazes de interceptar os radicais livres, impedindo o ataque sobre os lipídeos, as proteínas e bases do DNA, evitando a formação de lesões e perda da integridade celular. Os compostos com antioxidantes obtidos por meio da dieta são extremamente importantes na intercepção dos radicais livres. O pedúnculo de caju (Anacardium occidentale L.) e do cajuí (Anacardium. humile) são ricos em vitamina C, fibras e compostos fenólicos onde avaliou-se as atividades antioxidantes dos mesmos, por diferentes metodologias, como também quantificou-se os teores de compostos fenólicos totais e flavonoides. Observou-se que os pseudofrutos possuem baixa concentração de fenólicos totais (1,79 mg de quercetina/100 g de peso fresco) e flavonoides (3,27 mg ácido gálico equivalente/ 100 g de peso fresco) quando comparados aos mesmos pseudofrutos coletados em outras regiões do Brasil. Para o método FRAP a amostra de caju de Palmas teve destaque significativo apresentando atividade antioxidante de 415,07 µM de sulfato ferroso/g de fruta. Pelo método ABTS observou-se que as amostras de caju do Cerrado Tocantinense assemelharam-se a capacidade antioxidante de outros frutos usualmente consumidos como acerola e abacaxi, apresentando amostra com poder antioxidante de 129,05 µM de trolox/ g de fruta. Pelo método de DPPH as amostras de caju apresentaram melhores resultados frente às amostras de cajuí com capacidade antioxidante variando de 1798,55 a 9565,74 g fruta/ g DPPH. A maioria das amostras do cerrado Tocantinense apresentaram baixo poder antioxidante, indicando a necessidade de melhoramento genético das espécies nativas.

PALAVRAS-CHAVE: Compostos fenólicos, Anacardium occidentale, Anacardium humile, análise biológica.

Page 85: caracterização fisico-química e atividade antioxidante de

85

ABSTRACT

When in excess, free radicals can cause adverse effects to the body, such as non-communicable chronic diseases. Antioxidants are able to trap free radicals preventing the attack on lipids, proteins and DNA bases, avoiding the formation of lesions and loss of cell integrity. The compounds obtained by antioxidants in the diet are extremely important in intercepting free radicals. Peduncles of cashew (Anacardium occidentale L.) and Cajuí (Anacardium humile) are rich in vitamin C, fiber and phenolic compounds for which their antioxidant activities were analyzed, using varied methodologies, and the levels of total phenolic compounds and flavonoids were quantified. It was observed that accessory fruits have low concentration of total phenolics (1.79 mg of quercetina/100 g of fresh weight) and flavonoids (3.27 mg Gallic acid equivalent / 100 g of fresh weight) compared to the same accessory fruits collected in other regions of Brazil. For the FRAP assay, sample cashew of Palmas had significant distinction showing antioxidant activity of 415.07 µM of ferrous sulfate / g of fruit. By the ABTS assay, it was observed that the samples of Tocantins Savannah (Cerrado) resembled the antioxidant capacity of other commonly consumed fruits such as acerola and pineapple, showing sample with antioxidant power of 129.05 µM of Trolox / g of fruit. By the DPPH assay, cashew samples showed better results against Cajuí samples with antioxidant capacity ranging from 1798.55 to 9565.74 g fruit / g DPPH. Most samples of Tocantins Cerrado showed low antioxidant power, indicating the need for genetic improvement of native species. KEYWORDS: Phenolic compounds, Anacardium occidentale, Anacardium humile, biological analysis.

Page 86: caracterização fisico-química e atividade antioxidante de

86

1 INTRODUÇÃO

A presença de radicais livres no organismo pode causar diversos efeitos

adversos ao mesmo, uma vez que estes compostos estão envolvidos em

processos degenerativos que conduzem a doenças crônicas não

transmissíveis.

Os radicais livres podem ser gerados pelo próprio organismo no

citoplasma, nas mitocôndrias ou na membrana. Entre seus principais alvos

celulares estão as proteínas, os lipídeos e até mesmo o DNA. O estresse

oxidativo se dá quando a quantidade de reações oxidativas ultrapassa a

capacidade de defesa antioxidante de nosso organismo. Tal efeito causa danos

em moléculas importantes como o DNA, proteínas e lipídios de membranas

celulares, entre outras, resultando em doenças como diabetes, doenças

cardiovasculares, câncer, catarata, envelhecimento, doenças inflamatórias,

entre outras (PENAFORTE, JORDÃO JUNIOR e CHIARELLO, 2008).

Os antioxidantes são capazes de interceptar os radicais livres gerados

pelo metabolismo celular ou por fontes exógenas, impedindo o ataque sobre os

lipídeos, as proteínas, a dupla ligação dos ácidos graxos poliinsaturados e as

bases do DNA. Os antioxidantes obtidos da dieta, tais como as vitaminas C, E

e A, os flavonóides e carotenóides são extremamente importantes na

intercepção dos radicais livres (BIANCHI e ANTUNES, 1999). A natureza

autocatalítica das reações com radicais livres é o fator mais importante na

deterioração oxidativa de substratos orgânicos.

Além dos nutrientes antioxidantes como o ascobarto, tocoferol, β-

caroteno e alguns minerais, tem-se também substâncias antioxidantes não-

nutrientes tais como compostos fenólicos de plantas (incluindo fenóis simples,

ácidos fenólicos, derivados do ácido hidroxinâmico e os flavonoides) (RIBEIRO

et al., 2008).

As frutas são ricas em antioxidantes e seu baixo consumo está entre os

dez principais fatores de risco associados à ocorrência de doenças crônicas

não transmissíveis (ESQUIVEL, 2013). As frutas nativas brasileiras como o

cambuci, o açaí, a cagaita entre outras podem ser consideradas excelentes

fontes de compostos bioativos de natureza fenólica (RODRIGUEZ, 2013).

Page 87: caracterização fisico-química e atividade antioxidante de

87

O cajueiro é uma planta rústica, típica de regiões de clima tropical, a

principal espécie de ocorrência é o Anacardium occidentale L., cujas árvores

apresentam pequeno e médio porte. Nas regiões de cerrado do Brasil Central

as espécies nativas podem apresentar porte médio, como o cajueiro-arbóreo-

do cerrado (A. othonianum), porte arbustivo, como o cajueiro-do-campo (A.

humile) ou até porte rasteiro (A. nanum e A. corymbosum). As espécies do

cerrado produzem pseudofrutos aromáticos conhecidos como cajuí, caju-do-

campo, cajuzinho-do-campo, caju-docerrado, caju-rasteiro, caju-de-árvore-do-

cerrado, que possuem sabor muito agradável e tamanho bem menor do que o

caju produzido no Nordeste (AGOSTINI-COSTA, VIEIRA e NAVES, 2005). O

cajuí apresenta-se como um fruto pequeno de baixo pH e sólidos solúveis

elevado com conteúdo de flavonoides na faixa de 0,22 a 3,12 mg/100g

(ROCHA, 2011). O pedúnculo de caju é rico em vitamina C, fibras e compostos

fenólicos, que além do potencial vitamínico conferem potencial antioxidante à

polpa do caju (AGOSTINI-COSTA, VIEIRA e NAVES, 2005).

Estudos têm sido realizados no intuito de quantificar os compostos

bioativos e atividade antioxidante de frutos provenientes do cerrado, do

nordeste e sul do Brasil (ALMEIDA et al., 2011; SOUZA et al., 2012; PEREIRA

et al., 2013). Dentro desse contexto Michodjehoun-Mestres et al., (2009a;

2009b) determinaram o conteúdo de taninos em quatro genótipos de

pseudofrutos de caju (Anacardium occidentale L.) e observaram que a casca é

muito rica em fenólicos simples. Broinizi et al. (2007; 2008) determinaram as

propriedades antioxidantes em subprodutos do pedúnculo de caju

demonstrando efeitos efetivos na redução da lipoperoxidação.

Tendo em vista as características nutricionais do caju, bem como a sua

importância na fruticultura brasileira e a ausência de estudos de seus

pseudofrutos, bem como dos pseudofrutos de cajuí, produzidos por plantas

nativas no cerrado tocantinense, objetivou-se neste estudo avaliar as

atividades antioxidantes dos pendúnculos destes dois pseudofrutos, por

diferentes metodologias, bem como quantificar os teores totais de compostos

fenólicos e flavonoides.

Page 88: caracterização fisico-química e atividade antioxidante de

88

2 MATERIAL E MÉTODOS

2.1 Material

Foram coletadas quartoze amostras maturadas dos pseudofrutos de caju

(Anacardium occidentale L.) e cajuí (Anacardium humile) no período de julho a

setembro de 2012, em duas regiões do estado do Tocantins. As amostras

foram acondicionadas, em caixa isotérmica contendo gelo durante a coleta, e

armazenadas no laboratório em temperaturas inferiores a -20º C.

As amostras foram identificadas da seguinte forma: a primeira e a segunda

letra descrevem a espécie CJ para caju, CI para cajuí, a terceira letra descreve

o estágio da amostra, M para maduro, e a última letra descreve a cidade de

origem P para Palmas e G para Gurupi, o número final descreve qual a

repetição da amostra. Os locais de coleta bem como suas coordenadas

encontram-se na Tabela 3.1.

Tabela 3.1: Coordenadas dos locais de colheita dos pseudofrutos de caju e cajuí.

Fruto Local Amostra Coordenadas

Latitude UTM* Elevação

Cajuí

Gurupi CIMG1 22L 0694812 8725022 330 m CIMG2 22L 0695375 8725603 299 m CIMG3 22L 0695341 8725609 306 m

Palmas CIMP1 22L 0791356 8872823 261 m CIMP2 22L 0792578 8874993 266 m CIMP3 22L 0791865 8870225 265 m

Caju

Gurupi CJMG1 22L 0693598 8723736 336 m CJMG2 22L 0693613 8723714 364 m CJMG3 22L 0693629 8723688 363 m CJMG4 22L 0695396 8725644 299 m CJMG5 22L 0695368 8725597 306 m

Palmas CJMP1 22L 0791278 8872805 259 m CJMP2 22L 0789492 8873741 218 m CJMP3 22L 0791865 8870225 265 m

*UTM (Universal Transverse Mercator) sistema de coordenadas.

2.2 Reagentes Os reagentes ABTS (2,2-azino-bis (áciod 3-etilbenzo-tiazolino-6-

sulfônico) sal diamônio (PM = 548,68), Trolox (ácido 6-hidroxi-2,5,7,8-

tetrametilcroman-2-carboxílico) (PM = 250, 29), DPPH (2,2- difenil-1-picril-

hidrazil) (PM = 394,3), TPTZ (2,4,6-Tris (2-piridil)-s-triazina) (PM = 312,34),

quercetina, Folin Ciocalteu 2M foram adquiridos da Sigma Aldrich.

Page 89: caracterização fisico-química e atividade antioxidante de

89

2.3 Extração

As amostras do pseudofruto (casca e polpa) foram trituradas com auxílio

de pistilo, em seguida pesou-se (10 – 15 g) do material triturado de cada

amostra. O extrato para avaliação da atividade antioxidante foi obtido de

acordo com Rufino et al. (2007a), seguido de pequenas adaptações.

Inicialmente adicionou-se 40 mL de metanol 50% sob o material resultante da

maceração, agitou-se a mistura resultante em seguida deixou-se em repouso

por 60 minutos à temperatura ambiente. Após, a mesma foi, centrifugada a

3200 rpm durante 15 minutos. O sobrenadante foi transferido para um balão

volumétrico de 100 mL. Sobre o resíduo resultante da primeira extração,

adicionou-se 40 mL de acetona (70%), agitou-se a mistura e deixou-a em

repouso por 60 min à temperatura ambiente. Centrifugou-se a mesma nas

condições anteriores, transferiu-se o sobrenadante para o balão volumétrico

contendo o primeiro sobrenadante e completou-se o volume com água

destilada. Os extratos foram acondicionados em frascos protegidos da luz e

armazenados a ± 8 º C.

2.4 Determinação do teor de flavonóides totais

O conteúdo de flavonoides totais foi determinado pelo método

colorimétrico segundo Bao et al. (2005) seguido de pequenas modificações.

Alíquotas de 0,5 mL das amostradas foram pipetadas para tubos de ensaio de

15 mL contendo 2 mL de água destilada, em seguida adicionou-se 0,15 mL de

NaNO2 5%. Após 5 min, foi adicionado 0,15 mL de solução de AlCl3.6H2O a

10%, deixando o sistema em repouso por outros 5 min. Posteriormente

adicionou-se 1 mL de NaOH 1 M,agitou-se a solução reacional e a manteve em

repouso por 15 min. Após o tempo de repouso, a absorbância foi lida a 415 nm

em espectrofotômetro Biospectro modelo SP 220. O conteúdo total de

flavonoides foi calculado usando uma curva padrão de quercetina sendo o

mesmo expresso em miligrama de quercetina por 100 g de peso fresco dos

pseudofrutos.

2.5 Determinação do teor de fenólicos totais

O conteúdo de fenólicos totais foi avaliado pelo método colorimétrico

segundo Zhou et al. (2009), utilizando o reagente Folin-Ciocalteu. Inicialmente,

Page 90: caracterização fisico-química e atividade antioxidante de

90

50 µL do extrato em diluição apropriada foi adicionado em 5 mL de água

destilada. Em seguida adicionou-se 500 µL do reagente Folin-Ciocalteu (1M) e

500 µL de uma solução de de Na2CO3 ( 20% m/v), a solução foi agitada e

mantida em repouso por 60 min a temperatura ambiente. Após o tempo de

repouso a absorbância da solução foi medida a 765 nm (Biospectro modelo SP

220). O resultado final foi expresso como ácido gálico equivalente (GAE) em

miligramas por grama de peso fresco dos pseudofrutos.

2.6 Determinação da atividade antioxidante total pelo método de redução

do ferro (FRAP)

Para a avaliação da capacidade antioxidante dos extratos de caju e

cajuí, perante o ensaio FRAP, utilizou-se a metodologia de acordo com Rufino

et al. (2006). Foram utilizadas cinco diluições diferentes (em triplicata) do

extrato metanol/acetona, previamente preparado. O reagente FRAP foi obtido a

partir da combinação de 25 mL de tampão acetato 0,3 M, 2,5 mL de uma

solução de TPTZ 10 mM e 2,5 mL de uma solução aquosa de cloreto férrico 20

mM, sendo o mesmo utilizando imediatamente após sua preparação. Em

ambiente escuro, transferiu-se 90 µL de cada diluição do extrato para tubos de

ensaio, adicionou-se 270 µL de água destilada, 2,7 mL do reagente FRAP,

homogeneizou-se a mistura em agitador de tubos e a manteve em banho-maria

a 37º C por 30 minutos. A leitura foi realizada a 595 nm, em espectrofotômetro

Biospectro modelo SP 220, utilizando o reagente FRAP como branco. O

resultado foi expresso em µM de sulfato ferroso/g de fruta.

2.7 Determinação da atividade antioxidante total pela captura do Radical

Livre ABTS•+

A capacidade total antioxidante dos extratos de caju e cajuí, foi

determinada pelo ensaio que avalia a neutralização do radical ABTS de acordo

com a metodologia descrita por Rufino et al., (2007a). O radical ABTS•+ foi

preparado a partir da reação de 5 mL da solução estoque de ABTS, com 88 µL

da solução de persulfato de potássio 140 mM. A solução estoque de ABTS foi

obtida por meio da dissolução em água destilada de 192 mg de ABTS em balão

Page 91: caracterização fisico-química e atividade antioxidante de

91

volumétrico de 50 mL. A mistura foi mantida no escuro, à temperatura

ambiente, por 16 horas. Em seguida, diluiu-se 1 mL desta mistura em álcool

etílico até obter uma absorbância de 0,70 ± 0,05 nm a 734 nm. Foram utilizadas

cinco diluições diferentes em triplicata a partir do extrato original. Em ambiente

escuro foi transferido 30 µL de cada diluição do extrato para tubos de ensaio

contendo 3 mL da solução do radical ABTS•+ previamente preparada, a mistura

foi homogeneizada e a absorbância medida a 734 nm após 6 minutos, as

medidas de absorbância foram feitas em espectrofotômetro Biospectro modelo

SP 220. Como branco foi utilizado álcool etílico. O resultado final foi expresso

em µM trolox/ g de fruta.

2.8 Determinação da atividade antioxidante total pela captura do Radical

Livre DPPH• A avaliação da atividade antioxidante dos extratos de caju e cajuí diante

do consumo de DPPH foi realizada de acordo com a metodologia de Rufino et

al. (2007b). A partir do extrato obtido, foi preparado em tubos de ensaio cinco

diluições diferentes dos extratos, em triplicata. Para as amostras de Palmas as

diluições variaram de 10 a 100% e para as amostras de Gurupi de 5 a 75%. A

solução metanólica do radical DPPH foi preparada dissolvendo-se 2,4 mg de

DPPH em álcool metílico e completando-se o volume para 100 mL em balão

volumétrico. Em seguida a solução foi homogeneizada e transferida para um

frasco de vidro âmbar. Para a realização das análises antioxidantes, transferiu-

se uma alíquota de 0,1 mL de cada diluição do extrato para tubos de ensaio

com 3,9 mL do radical DPPH. As leituras foram realizadas depois de 40

minutos em espectrofotômetro Biospectro modelo SP 220 a 515 nm, utilizando

álcool metílico como branco. Antes de realizar a leitura das amostras mediu-se

0,1 mL da solução controle com 3,9 mL do radical DPPH. A solução controle é

constituída de álcool metílico, acetona e água nas mesmas concentrações da

solução de extração dos extratos. O resultado foi expresso em g fruta/g DPPH.

2.9 Análise estatística O delineamento experimental utilizado foi o inteiramente casualizado (DIC),

com três repetições e cinco diferentes diluições para cada amostra. Para

Page 92: caracterização fisico-química e atividade antioxidante de

92

comparação de médias foi aplicado o teste de Tukey, a 5% de significância. Os

softwares utilizados foram Assistat 7.6 beta.

3 RESULTADOS E DISCUSSÕES

3.1 Flavonóides totais

Os teores de flavonoides expressos em mg de quercetina/100 g de peso

fresco das amostras de pseudofrutos de caju e cajuí se encontram na Figura

3.1.

b

d

d

b

c

a

CIMP1

CIMP2

CIMP3

CIMG1

CIMG2

CIMG3

0,0 0,2 0,4 0,6 0,8 1,0 1,2

Teor de flavonóides (mg de quercetina/100 g de peso fresco)

Am

ost

ras

ma

tura

da

s d

e c

aju

í

e

e

c

d

b

a

b

b

CJMP1

CJMP2

CJMP3

CJMG1

CJMG2

CJMG3

CJMG4

CJMG5

--

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

Teor de flavonóides (mg de quercetina/100 g de peso fresco)

Am

ost

ras

ma

tura

da

s d

e c

aju

Figura 3.1: Teores de Flavonóides totais dos pseudofrutos de caju (A) e cajuí (B) expressos em mg de quercetina/100 g de peso fresco. Colunas seguidas pelas mesmas letras, para cada gráfico, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤0,05).

Dentre as amostras de caju, observa-se que as amostras coletadas na

região de Gurupi, foram as que apresentaram os maiores teores de

Page 93: caracterização fisico-química e atividade antioxidante de

93

flavonoides, 0,13 a 1,79 mg de quercetina/100 g de peso fresco, quando

comparadas com os teores das amostras colhidas na Região de Palmas, que

variaram de 0,17 a 1,19 mg de quercetina/100 g de peso fresco. Para as

amostras de cajuí, observa-se que o maior teor de flavonoides, 1,19 mg de

quercetina/100 g de peso fresco, foi apresentado por uma das amostras

coletadas em Gurupi, seguido por outra amostra coletada em Palmas (0,93) e

por uma das amostras coletadas em Gurupi (0,87) em mg de quercetina/100 g

de peso fresco. Brito et al. (2007), identificaram e quantificaram 13 flavonóides

glicosilados em extratos do pseudofruto do caju,coletados no estado do Ceará

tais como 3-O-galactosídeo, 3-O-glucosídeo, 3-O-arabinopiranosídeo dentre

outros.

Michodjehoun-Mestres et al. (2009a) em trabalho sobre fenóis monoméricos

no pseudofruto de caju, observaram que os compostos fenólicos se

concentram mais no pericarpo, entretanto os frutos provenientes do Brasil

apresentaram-se de modo contrário, e concluiram que esse fruto é pobre em

flavonoides (1,00 e 3,72 mg/100 g). Vissotto et al. (2013) encontraram 4 mg

catequina equivalente/100 g em polpa de caju provenientes de São Paulo,

Brasil. Oliveira et al. (2002) identificaram fenóis, taninos condensados,

flavonóis, catequinas, flavonóides, xantonas, flavononas, antocianinas e

esteróis em clone de pedúnculo de caju. Huber e Rodriguez-Amaya (2008)

apresentam os teores de flavonoides e flavonas em alimentos brasileiros dentre

os quais encontra-se o pedúnculo de caju com 13 µg/g parte comestível para

quercetina, traços de kampferol e 20 µg/g parte comestível para miricetina,

valores este semelhantes para quercetina em variedades de goiaba branca e

morango grande, 12 e 11 µg/g parte comestível, respectivamente. Estes

autores chamam a atenção quanto às perdas de flavonóides no

processamento, especialmente nos derivados de caju onde a polpa de caju

apresentou três a seis vezes menos de miricetina e três a oito vezes menos de

quercetina em relação à fruta fresca. No trabalho de Agostini-Costa et al.

(2000) a quercetina foi o único flavonol identificado nos pseudofrutos de caju. O

valor médio dos flavonóides totais para os pseudofrutos de cajuí (0,65 mg de

quercetina/100 g de peso fresco) foi superior aos apresentados por Sousa et al.

(2011) para resíduos de frutas tropicais 1,01 µg/g. Entretanto, os resultados

Page 94: caracterização fisico-química e atividade antioxidante de

94

deste estudo foram bem abaixo dos encontrados por Rufino et al. (2010), que

encontraram 63,8 mg/100 g de peso fresco de flavonoides amarelo, em

polpas de caju proveniente de Pacajus-CE, Brasil, .Esta diferença reforça a

hipótese de que a localização, as condições de solo e espécie influenciam na

constituição final do fruto. Rocha (2011) estudando pseudofrutos de

Anacardium humile≤ coletados na região de cerrado em Teresina, Piauí, Brasil

encontrou teores de flavonoides iguais a 3,12 mg/100g de polpa fresca, porém

estes resultados não corroboram com os valores encontrados nos pseudofrutos

de cajuí em estudo. Tendo em vista que os mesmos apresentaram teores

inferiores aos relatados por Rocha (2011), na ordem de 1,19 mg de

quercetina/100 g de peso fresco.

3.2 Fenólicos totais

Os teores de fenólicos totais, expressos em mg de GAE/ 100 g de peso

fresco, dos pseudofrutos de caju e cajuí, colhidos em diferentes localidades nas

regiões de Gurupi e Palmas, encontram- se na Figura 3.2.

Os maiores teores de compostos fenólicos, em frutos de caju, foram

apresentados pelas amostras colhidas na região de Gurupi com valores

variando de 1,94 a 3,27 mg de ácido gálico equivalente/100 g de peso fresco.

Apenas uma delas apresentou teor semelhante a algumas amostras de

Palmas, que apresentaram menores valores, 0,57 a 1,74 mg de ácido gálico

equivalente/100 g de peso fresco.

Nas amostras de pedúnculo de cajuí o teor de fenólicos totais variaram

de 0,68 a 2,61 mg de ácido gálico equivalente/100 g de peso fresco para as

amostras de Palmas e 1,98 a 2,17 mg de ácido gálico equivalente/100 g de

peso fresco para as amostras de Gurupi. A amostra CIMP3 diferiu

estatisticamente das demais amostras analisadas apresentando menor

conteúdo em fenólicos totais, com teor igual a 0,68 mg de ácido gálico

equivalente/100 g de peso fresco. A amostra CIMG1 não diferiu

estatisticamente das amostras de Palmas CIMP1 e CIMP2, apresentando

valores de 2,17; 2,61 e 2,14 mg de ácido gálico equivalente/100 g de peso

fresco, respectivamente.

Page 95: caracterização fisico-química e atividade antioxidante de

95

a

ab

c

ab

b

b

CIMP1

CIMP2

CIMP3

CIMG1

CIMG2

CIMG3

0,0 0,5 1,0 1,5 2,0 2,5 3,0

Teor de fenólicos (mg de GAE/ 100 g de peso fresco)

Am

ostr

as m

atur

adas

de

caju

í

d

c

c

bc

a

a

a

ab

CJMP1

CJMP2

CJMP3

CJMG1

CJMG2

CJMG3

CJMG4

CJMG5

--

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Teor de fenólicos totais (mg de GAE/ 100 g de peso fresco)

Am

ost

ras

ma

tura

da

s d

e c

aju

Figura 3.2: Teores de compostos fenólicos totais para amostras de caju (A) e cajuí (B) expressos em mg de ácido gálico equivalente / 100 g de peso fresco. Colunas seguidas pelas mesmas letras, para cada gráfico, não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤0,05).

O teor de fenólicos totais variou de 0,68 a 2,62 mg ácido gálico

equivalente/100 g de peso fresco para as amostras de cajuí e de 0,57 a 3,27

mg de ácido gálico equivalente/100 g de peso fresco para as amostras de caju.

Melo et al. (2008), encontraram valores de fenólicos totais expressos em

equivalente de catequina (µg/mL) em extrato aquoso de caju na ordem de

808,05 ± 32,32, em contrapartida ao extrato acetônico apresentou teor igual a

629,85 ± 31,49. No trabalho de Vieira et al. (2011) os teores de compostos

fenólicos totais encontrados para o extrato aquoso do caju foi de 201,61 ±

19,15 mg de ácido gálico/100 g de polpa, enquanto que para o extrato

hidroalcóolico observou-se teor igual a 165,07 ± 4,10 mg de ácido gálico/ 100 g

de polpa. Estas observações sugerem que para alguns frutos como o caju a

forma de obtenção dos extratos interfere na quantificação dos fenólicos totais.

Rufino et al. (2010) classificou o caju como pobre em polifenóis. Tomáz-

Barberán e Espín (2001) afirmam que a composição fenólica dos frutos é

determinada por fatores genéticos e ambientais, mas pode ser modificada por

Page 96: caracterização fisico-química e atividade antioxidante de

96

reações oxidativas que ocorrem durante o período de pós-colheita, resultado

do processamento e/ou estocagem. Queiroz et al. (2011), quantificou polifenóis

totais em pedúnculos de caju em diferentes condições de temperaturas de

estocagem e encontrou valores variando de 10,52 a 14,46 em extratos solúveis

e 16,86 a 21,23 em extratos hidrolisados expressos em mg ácido gálico

equivalente/100 g de peso fresco. Vissoto et al. (2013) encontraram para

fenólicos totais em polpa de caju 95 mg de ácido gálico equivalente/100 g.

Oliveira et al. (2002) encontraram 0,1 mg ácido gálico equivalente/100 g em

clone de pedúnculo de caju. No entanto, Silva et al. (2014) relataram valor de

5286,49 mg de ácido gálico equivalente/100 g para pedúnculo de caju

proveniente do Ceará, Brasil.

Lima et al. (2007) encontraram para o fruto do cerrado pequi (Caryocar

brasiliense, Camb.) teor de fenólicos na ordem de 209 mg/100 g. Melo et al.

(2008) encontraram teor de fenólicos expressos em catequina equivalente na

ordem de 173,45 µg.mL-1 para manga rosa (Mangifera indica L. var. rosa) e

157,55 µg.mL-1 para manga espada (Mangifera indica L. var espada) em

extratos aquosos e 84,15 e 99,45 e µg.mL-1 em extrato acetônico dos mesmos

frutos, respectivamente.

Pelos dados apresentados, podemos perceber que a região de origem

influencia de forma direta a composição dos teores de compostos fenólicos

presentes nos frutos.

3.3 Determinação da atividade antioxidante pelo método de redução do

ferro (FRAP)

A capacidade antioxidante avaliada pela metodologia FRAP, para os

pseudofrutos de caju e cajuí, coletados em diferentes localidades das regiões

de Gurupi e Palmas, encontram-se na Figura 3.3

A maior atividade antioxidante foi apresentada pelos pseudofrutos de caju

coletados na região de Palmas 415,07 µM de sulfato ferroso/g de fruta, sendo

muito superior aos valores apresentados pelas demais amostras, que

apresentaram atividade antioxidante variável entre 18,41 a 141,10 µM de

sulfato ferroso/g de fruta.

Page 97: caracterização fisico-química e atividade antioxidante de

97

a

b

b

a

b

a

CIMP1

CIMP2

CIMP3

CIMG1

CIMG2

CIMG3

0 10 20 30 40 50

Atividade antioxidante (µM de sulfato ferroso/g de fruta)

Am

ostr

as m

atur

adas

de

caju

í

A B

d

d

a

b

cd

cd

bc

cd

CJMP1

CJMP2

CJMP3

CJMG1

CJMG2

CJMG3

CJMG4

CJMG5

--

0 50 100 150 200 250 300 350 400 450 500

Atividade antioxidante (µM de sulfato ferroso/g de fruta)

Am

ostr

as m

atur

adas

de

caju

Figura 3.3: Valores médios da atividade antioxidante, determinada pelo ensaio FRAP para amostras maturadas de caju (A) e cajuí (B) provenientes de Palmas e Gurupi expressos em (µM de sulfato ferroso/g de fruta). Colunas seguidas pelas mesmas letras, para cada gráfico , não diferem estatisticamente entre si, de acordo com o Teste de Tukey (p≤0,05).

Para as amostras de cajuí destacou-se dentre as demais três amostras

sendo estas a CIMG1, CIMG3 e CIMP1, as quais não diferiram

estatisticamente entre si obtendo-se valores na faixa de 38,2 a 46,30 µM de

sulfato ferroso/g de fruta. Contreras-Calderón et al. (2011) na parte comestível

do caju da Colômbia encontraram valor de 125 µmol de trolox equivalente/g de

peso fresco, já Rufino et al. (2010) relatam valor de 22,9 µM de sulfato

ferroso/g de fruta para o caju proveniente do nordeste brasileiro. Park et al.

(2011) encontraram valores variando de 11 a 94,4 µM de equivalente de

trolox/g para cultivares de kiwi resultados estes menores que os encontrados

para a amostra em destaque deste estudo. Os menores resultados

encontrados para as amostras de caju assemelharam-se a fruto do cerrado

como a mangaba 18,3 µmol Fe2SO4/g e o maior valor superior a atividade

antioxidante da jaboticaba 87,9 µmol Fe2SO4/g (RUFINO et al., 2010). Para a

maioria das amostras de caju os resultados apresentaram-se superiores a

frutos como buriti (Mauritia flexuosa) 27,8 µmol de trolox equivalente/g de peso

fresco e cupuaçu (Theobrama grandiflorum) 4,07 27,8 µmol de trolox

equivalente/g de peso fresco (CONTRERAS-CALDERÓN et al. 2011). Todas

as amostras mostraram-se superiores a vegetais e legumes comumente

consumidos no Brasil como abóbora, beterraba, cenoura e cebola sendo estes

com atividade antioxidante inferior a 0,1 µmol Fe2+/mg (TIVERON, 2010).

Page 98: caracterização fisico-química e atividade antioxidante de

98

3.4 Determinação da atividade antioxidante pela captura do Radical Livre

ABTS•+

Os resultados da atividade antioxidante pelo ensaio ABTS•+ estão

expressos em µM de trolox/g de fruta (Figura 3.4 ), assim quanto maior o valor

mais forte é o potencial antioxidante (SOUSA, VIEIRA e LIMA, 2011).

Verificou-se que para as amostras de caju não houve diferença

significativa (p≤0,05) pelo teste de Tukey entre as amostras de Gurupi,

entretanto estas diferiram das amostras de Palmas, por sua vez a amostra

CJMP3 diferiu estatisticamente dentre as demais com média de 129,05 µM de

trolox/ g de fruta. Contreras-Calderón (2011) relatam valor de 115 µM de trolox

equivalente /g de fruta para o mesmo método em pedúnculo de caju colhido,

resultado que corrobora com o encontrado nesta amostra.

Figura 3.4: Média dos resultados para o método ABTS para amostras de caju e cajuí provenientes de Palmas e Gurupi expressos em µM de trolox/g de fruta. Colunas seguidas pelas mesmas letras, para cada gráfico, não diferem estatisticamente entre si de acordo com o Teste de Tukey (p≤0,05).

Vieira et al. (2011) relatam melhores valores 0,212 em extrato aquoso de

caju e 0,561 em extrato hidroalcoólico expressos em mM Trolox/ g de polpa,

para capacidade antioxidante total equivalente ao trolox pelo método ABTS e

para o cajá, a qual pertence também a família Anarcadiacea, os mesmos

autores encontraram valores de 0,140 e 0,219 mM trolox/ g de polpa para

extrato aquoso e hidroalcoólico, respectivamente. Canuto et al. (2010) para

polpa de caju da Amazônia descreve valores de 1,8 ± 0,4 e 1,5 ± 0,2 µmol.L-1

b

c

c

a

b

b

CIMP1

CIMP2

CIMP3

CIMG1

CIMG2

CIMG3

0 2 4 6 8 10 12 14 16 18 20 22

Atividade antioxidante (µM de trolox/g de fruta)

Am

ostr

as m

atur

adas

de

caju

í

c

c

a

b

b

b

b

b

CJMP1

CJMP2

CJMP3

CJMG1

CJMG2

CJMG3

CJMG4

CJMG5

--

0 20 40 60 80 100 120 140

Atividade antioxidante (µM de trolox/g de fruta)

Am

ostr

as m

atur

adas

de

caju

Page 99: caracterização fisico-química e atividade antioxidante de

99

de Trolox para atividade antirradical livre de polpas de cajá e caju,

respectivamente. Dembitsky et al. (2011) relatam valores de 5,28 a 27,31 µM

equivalente de trolox/g de extrato seco em diferentes extratos de manga, o

resultado máximo encontrado equiparam-se aos teores médios das amostras

de Gurupi que foram de 21,80 a 24,15 µM de trolox/ g de fruta. Sousa, Vieira e

Lima (2011) encontraram valores variando de 0,04 a 0,17 mM.g-1 para resíduos

de goiaba (Psidium guayaba L.), acerola (Malpighia glabra L.), abacaxi (Ananas

comosus L.), graviola (Annona muricata), bacuri (Platonia insignis) e cupuaçu

(Theobrama grandiflorum) provenientes de Teresina-PI, estes valores se

assemelham ao maior teor encontrado entre as amostras de caju. A

capacidade antioxidante para os pedúnculos de cajuí apresentaram-se abaixo

do menor valor encontrado para os resíduos de frutos relatados por Sousa,

Vieira e Lima (2011). Entretanto Kukoski et al. (2005) relatam valor de 11,8 a

13,2 µM de trolox/ g de fruta para manga (Mangifera indica L.), valores

semelhantes foram encontrados para as amostras de cajuí provenientes de

Gurupi 11,48 a 18,68 µM de trolox/ g de fruta, valores estes superiores ao

maracujá (Passiflora sp), cupuaçu, graviola , pinha (Ananas comosus L.),

goiaba, açaí (Euterpe oleracea Mart.), uva (Vitis vinifera) e morango (Fragaria

vesca var.) que variaram de 1,7 a 9,4 µM de trolox/ g de fruta (KUKOSKI et

al.,2005). Souza et al. (2012) para o mesmo método encontraram valores

variando de 7,31 a 131,58 µmol de trolox equivalente/ g peso fresco em frutos

do cerrado. Frutas do nordeste brasileiro apresentaram valores variando de

0,63 a 15,73 µmol de trolox equivalente/g peso fresco (ALMEIDA et al., 2011).

Observou-se que os extratos de caju e cajuí apresentaram melhores resultados

com variação de 6,1 a 129,05 µM de trolox/ g de fruta e 4,73 a 18,68 µM de

trolox/ g de fruta, respectivamente, valores estes superiores a fruto largamente

consumido no Brasil como o açaí (Euterpe oleraceae Mart.) com valor de 2,78

µmol trolox/100 g em matéria seca (GÓRDON et al., 2012).

Page 100: caracterização fisico-química e atividade antioxidante de

100

3.5 Determinação da atividade antioxidante pelo método de captura do

Radical Livre DPPH• Os resultados da atividade antioxidante dos pseudofrutos de caju e cajuí,

determinada pelo método do radical livre DPPH (2,2-Difenil-1-picril-hidrazil),

encontram-se apresentados na Figura 3.6

Para as amostras de caju de Gurupi não houve diferença significativa

(p≤0,05) entre as mesmas. Para as amostras de Palmas a amostra CJMP3

diferiu estatisticamente das demais, entretanto não diferiu estatisticamente da

amostra CJMG2.

Figura 3.5: Atividade antioxidante para amostras de caju e cajuí pelo método de captura do radical livre DPPH (g fruta/ g DPPH). Colunas seguidas pelas mesmas letras, para cada gráfico, não diferem estatisticamente entre si de acordo com o Teste de Tukey (p≤0,05).

Entre as amostras de Palmas, a amostra CIMP2 diferiu estatisticamente

das demais, apresentando menor poder antioxidante, já que quanto maior o

resultado menor sua capacidade antioxidante. Rufino et al. (2010) relatam

valores para o mesmo método para amostra de caju de 906 g/g DPPH em

matéria seca, os resultados aqui constatados são expressos em peso fresco.

Para os padrões ácido ascórbico e BHT utilizados foram encontrados valores

de 1,04 ± 0,00 e 1,24 ± 0,31 g/ g DPPH, respectivamente.

Os resultados variaram de 2743,25 a 11995,83 g fruta/ g DPPH para as

amostras de cajuí e de 1798,55 a 9565,74 g fruta/ g DPPH para as amostras de

caju, evidenciando-se que as amostras de cajuí possuem mais poder

antioxidante. Rufino et al. (2010) relatam valores de 9387 g/g DPPH para cajá e

A B

a

a

b

c

bc

c

c

c

CJMP1

CJMP2

CJMP3

CJMG1

CJMG2

CJMG3

CJMG4

CJMG5

--

0 2000 4000 6000 8000 10000 12000

Atividade antioxidante (g fruta/ g DPPH)

Am

ostr

as m

atur

adas

de

caju

b

a

b

d

cd

c

CIMP1

CIMP2

CIMP3

CIMG1

CIMG2

CIMG3

0 2000 4000 6000 8000 10000 12000

Atividade antioxidante (g fruta/g de DPPH)

Am

ostr

as m

atur

adas

de

caju

í

Page 101: caracterização fisico-química e atividade antioxidante de

101

7142 g/g DPPH para caju proveniente de Pacajus, Ceará, Brasil. No entanto

para caju arbóreo proveniente do cerrado de Goiás são relatados melhores

valores variando de 821,31 a 1546,63 g fruta/g DPPH (CARVALHO et al.

2013). Estes dados são compatíveis com grande parte dos resultados

encontrados.

Page 102: caracterização fisico-química e atividade antioxidante de

102

4 CONCLUSÃO

Os pseudofrutos possuem baixa concentração de fenólicos totais e

flavonoides quando comparados a pseudofrutos de outras regiões do Brasil,

entretanto, em concentrações superiores a frutos como a manga que pertence

a mesma família.

Algumas amostras se destacam quanto a capacidade antioxidante, quando

avaliadas pelos métodos FRAP e ABTS.

Pelo método ABTS observa-se que as amostras do Cerrado Tocantinense

se assemelham a capacidade antioxidante de resíduos de polpa de frutas como

acerola e abacaxi. As amostras de cajuí se mostram superiores quanto a

capacidade antioxidante frente a frutos como maracujá, açaí, uva, goiaba e

morango. Quanto a captura do radical livre DPPH• os pseudofrutos do Cerrado

Tocantinense apresentam baixo poder antioxidante quando comparados aos

pseudofrutos do estado de Goiás, onde as amostras de cajuí apresentam-se

com melhores resultados.

Page 103: caracterização fisico-química e atividade antioxidante de

103

5 REFERÊNCIAS BIBLIOGRÁFICAS

AGOSTINI-COSTA, T. DA S.; VIEIRA, R. F.; NAVES, R. V. Caju, identidade tropical que exala saúde. In: CENARGENDA on line. Embrapa Recursos Genéticos, ano 1, n. 50, 19 a 25 dez., 2005. Disponível em:<http://www.cenargen.embrapa.br/cenargenda/divulgacao2005/caju.pdf> Acesso em: 30 out. 2013. AGOSTINI-COSTA, T. S. et al. Caracterização, por cromatografia em camada delgada, dos compostos fenólicos presentes em pedúnculos de caju (Anacardium ocidentale L.). B. CEPPA, Curitiba, v. 18, n. 1, p. 129-137, jan./jun.2000. ALMEIDA, M. M. B. et al. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, n. 44, p.2155–2159, 2011. ASAKURA, L.; CASTRO, T. G. de; TOMITA, L. Y. Vitamina A, Retinóides e Carotenóides. In: CARDOSO, M. A. Nutrição humana: nutrição e metabolismo. Rio de Janeiro: Guanabara Koogan, 2006, p. 81-103. BAO, J. et al. Anthocyanins, Flavonols, and Free Radical Scavenging Activity of Chinese Bayberry (Myrica rubra) Extracts and Their Color Properties and Stability. Journal Agriculture Food Chemistry, Amsterdan, n.53, p. 2327-2332, 2005. BELITZ, H. D.; GROSCH, W. Química de los alimentos. 2. ed. Zaragoza: Acribia, 1997. 1087 p. BIANCHI, M. de L. P.; ANTUNES, L. M. G. Radicais livres e os principais antioxidantes da dieta free radicals and the main dietary antioxidants. Revista Nutrição, Campinas, v. 12, n .2, p. 123-130, maio/ago., 1999. BRITO, E. S. de et al. Determination of the flavonoid components of cashew apple (Anacardium occidentale) by LC-DAD-ESI/MS. Food Chemistry. Amsterdan, n. 105 , p.1112–1118, 2007. BROINIZI, P. R. B. et al. Avaliação da atividade antioxidante dos compostos fenólicos naturalmente presentes em subprodutos do pseudofruto de caju (Anacardium occidentale L.). Ciência Tecnologia Alimentos, Campinas, v.27, n.4, p. 902-908, out./dez. 2007. BROINIZI, P. R. B. et al. Propriedades antioxidantes em subproduto do pedúnculo de caju (Anacardium occidentale L.): efeito sobre a lipoperoxidação e o perfil de ácidos graxos poliinsaturados em ratos. Revista Brasileira de Ciências Farmacêuticas, v. 44, n. 4, out./dez., 2008. BROINIZI, P. R. B et al. Avaliação da atividade antioxidante dos compostos fenólicos naturalmente presentes em subprodutos do pseudofruto de caju (Anacardium occidentale L.). Ciência Tecnologia Alimentos, Campinas, v. 27, n.4 p. 902-908, out./dez. 2007. CARVALHO, B. A. et al. Avaliação físico-química e capacidade antioxidante do pseudofruto do caju arbóreo do cerrado. Disponível em:< http://www.sbpcnet.org.br/livro/63ra/conpeex/pibic/trabalhos/BEATRIZ_.PDF> Acesso em: 10 out. 2013. CONTRERAS-CALDERÓN, J. et al. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International. n. 44, p. 2047–2053, 2011. DEMBITSKY, V. M. et al. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Research International, n. 44, p. 1671–1701, 2011.

Page 104: caracterização fisico-química e atividade antioxidante de

104

ESQUIVEL, A. Frutas antioxidants para prolonger a juventude e a saúde. Disponível em: < http://www.clinicacedig.com.br/dicas/nutricao/item/frutas-antioxidantes-para-prolongar-a-juventude-e-a-saude.html> Acesso em: 27 nov. 2013. GORDON, A. et al. Chemical characterization and evaluation of antioxidant properties of açaí fruits (Euterpe oleraceae Mart.) during ripening. Food Chemistry, Amsterdan, n. 133, p. 256-263, 2012. HUBER, L. S.; RODRIGUEZ-AMAYA, D. B. Flavonóis e flavonas: fontes brasileiras e fatores que influenciam a composição em alimentos. Alimentação Nutrição, Araraquara, v. 19, n.1 p. 97-108, na./mar. 2008. KUSKOSKI, E. M. et al. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciências Tecnologia Alimentos, Campinas, v. 25, n. 4, p. 726-732, out./dez. 2005. LIMA, A. de Composição química e compostos bioativos presentes na polpa e na amêndoa do pequi (Caryocar brasiliense, Camb.). Revista Brasileira Fruticultura, Jaboticabal, v. 29, n. 3, p. 695-698, dez. 2007. MELO, E. de A. et al.Capacidade antioxidante de frutas. Revista Brasileira de Ciências Farmacêuticas Brazilian Journal of Pharmaceutical Science, v. 44, n. 2, abr./jun., 2008. MICHODJEHOUN-MESTRES, L. et al Monomeric phenols of cashew apple (Anacardium occidentale L.). Food Chemistry. Amsterdan, n. 112, p. 851–857, 2009a. MICHODJEHOUN-MESTRES, L. et al. Characterisation of highly polymerised prodelphinidins from skin and flesh of four cashew apple (Anacardium occidentale L.) genotypes. Food Chemistry, Amsterdan, n. 114, p. 989–995, 2009b. OLIVEIRA, M. S. C. Atividade antioxidante e perfil dos ácidos graxos do clone BRS 226 de caju (Anacardium occidentale L.). In: 25.a Reunião Anual da Sociedade Brasileira de Química – SBQ, Poços de Caldas, 2002. Resumos, Poços de Caldas: SBQ, 2002. p. 1-2. Disponível em:< http://sec.sbq.org.br/cdrom/32ra/resumos/T2163-1.pdf> Acesso em: 22 out. 2013. PARK, Y. S. Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars. Journal of Food Composition and Analysis, n.24, p. 963–970, 2011. PENAFORTE, F. R. de O.; JORDÃO JÚNIOR, A. A.; CHIARELLO, P. G. Antioxidantes, vitaminas e dietas. In: DUTRA-DE-OLIVEIRA, J. E. e MARCHINI, J. S. Ciências nutricionais: aprendendo a aprender. São Paulo: SARVIER, 2. ed., 2008, p. 637-650. PEREIRA, M. C. et al. Characterization, bioactive compounds and antioxidant potential of three Brazilian fruits. Journal of Food Composition and Analysis, n. 29, 19–24, 2013. QUEIROZ, C. et al Changes in bioactive compounds and antioxidant capacity of fresh-cut cashew apple. Food Research International, n. 44, p. 1459–1462, 2011. ROCHA, M. S. Compostos bioativos e atividade antioxidante (in vitro) de frutos do cerrado Piauiense. 2011. 93 f. Dissertação (Mestrado em Alimentos e Nutrição) – Universidade Federal do Piauí, Teresina, 2011. RIBEIRO, S. M. R. et al. Antioxidantes da dieta. In: COSTA, N. M. B.; PELUZIO, M. do C. G. Nutrição básica e metabolismo. Viçosa: UFV, 2008. p. 392-400. RODRIGUEZ, M. I. G. Efeito dos compostos fenólicos de frutas nativas brasileiras na glicemia pós-prandial. Disponível em:< http://www.bv.fapesp.br/pt/auxilios/29973/efeito-dos-

Page 105: caracterização fisico-química e atividade antioxidante de

105

compostos-fenolicos-de-frutas-nativas-brasileiras-na-glicemia-pos-prandial/> Acesso em 27 nov. 2013. RUFINO, M. do S. et al. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry. Amsterdan, n. 121, p. 996–1002, 2010. RUFINO, M. S. M et al. Metodologia Científica: determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). Fortaleza: EMBRAPA, 2006. 4 p. (Comunicado Técnico, 125). RUFINO, M. S. M et al. Metodologia Científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS•+. Fortaleza: EMBRAPA, 2007a. 4 p. (Comunicado Técnico, 128). RUFINO, M. S. M et al. Metodologia Científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Fortaleza: EMBRAPA, 2007b. 4 p. (Comunicado Técnico, 127). RUFINO, M. S. M. et al. Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Reseach International, n. 44, p. 2072-2075, 2011. SOUSA, M. S. B. et al. Caracterização nutricional e compostos antioxidantes em resíduos de polpas de frutas tropicais. Ciências agrotecnológica, Lavras, v. 35, n. 3, p. 554-559, maio/jun., 2011. SOUSA, M. S. B.; VIEIRA, L. M.; LIMA, A. de Fenólicos totais e capacidade antioxidante in

vitro de resíduos de polpas de frutas tropicais. Brazilian Journal Food Technology, Campinas, v. 14, n. 3, p. 202-210, jul./set., 2011. SOUZA, V. R. de Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chemistry, Amsterdan, n.134,p. 381–386, 2012. TOMÁS-BARBERÁN, F.; ESPÍN, J. C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, London, v. 81, p. 853- 876, 2001. VIEIRA, L. M. et al. Fenólicos totais e capacidade antioxidante in vitro de polpas de frutos tropicais. Revista Brasileira Fruticultura. Jaboticabal, v. 33, n. 3, p. 888-897, set. 2011. ZHOU, S. et al. Phenolics and antioxidant properties of bayberry (Myrica rubra Sieb. et Zucc.) pomace. Food Chemistry, Amsterdan, n. 112, p. 394–399, 2009.

Page 106: caracterização fisico-química e atividade antioxidante de

106

CONSIDERAÇÕES FINAIS

O trabalho dá subsídios para pesquisas de melhoramento das plantas nativas de caju e

cajuí do Estado do Tocantins e oferece informações para trabalhos posteriores na área

agrotecnológica. A cultura do caju é importante no cenário do desenvolvimento regional

sustentável, do nordeste brasileiro a qual pode vir a ser significante para o Estado do Tocantins

quando agregado ao conhecimento, houver incentivos financeiros, logística de produção e

tecnologias que proporcionem um melhor aproveitamento dos pendúculos de caju.

Page 107: caracterização fisico-química e atividade antioxidante de

107

ANEXOS

ANEXO A – Curvas Padrão para compostos fenólicos e flavonóides

Figura A- 1: Curva padrão para fenólicos totais.

Figura A- 2: Curva padrão para flavonóides totais.

Page 108: caracterização fisico-química e atividade antioxidante de

108

ANEXO B – Curvas Padrão para os métodos FRAP, ABTS e DPPH

Figura B- 1: Curva padrão para o método FRAP.

Figura B- 2: Curvas padrão para o método ABTS.

Page 109: caracterização fisico-química e atividade antioxidante de

109

Figura B- 3: Curvas padrão para o método DPPH.

Page 110: caracterização fisico-química e atividade antioxidante de

110

ANEXO C – QUADROS DE ANÁLISE ESTATÍSTICA Tabela C - 1: Análise estatística para determinação de firmeza.

ANÁLISE ESTATÍSTICA PARA DETERMINAÇÃO DE FIRMEZA

Clorofila total: Amostras verdes Palmas e Gurupi – Caju

FV GL SQ QM F

Tratamentos 2 49,06082 24,53041 13,23,3185** Resíduo 6 0,11122 0,01854

Total 8 49,17204 F-crit 10,9248 MG dms CV% Ponto Médio

5,32222 0,34115 2,56 5,43167

Tabela C - 2: Quadro de análise estatística para pH.

ANÁLISE ESTATÍSTICA pH

pH: Amostras verdes e maduras de Palmas e Gurupi – Caju

FV GL SQ QM F

Tratamentos 15 4,38103 0,29207 53,0231** Resíduo 32 0,17627 0,00551

Total 47 4,5573 F-crit 2,6556 MG dms CV% Ponto

Médio 3,68354 0,22475 2,01 3,79

pH: Amostras verdes e maduras de Palmas e Gurupi - Cajuí

FV GL SQ QM F

Tratamentos 11 1,7486 0,15896 11,6386** Resíduo 24 0,3278 0,01366

Total 35 2,0764 F-crit 3,0936 MG dms CV% Ponto

Médio 3,68 0,34412 3,18 3,695

Page 111: caracterização fisico-química e atividade antioxidante de

111

Tabela C - 3: Quadro de análise estatística para acidez.

ANÁLISE ESTATÍSTICA ACIDEZ

Acidez: Amostras verdes e maduras de Palmas - Caju

FV GL SQ QM F

Tratamentos 5 1,94332 0,38866 41,5548** Resíduo 12 0,11224 0,00935

Total 17 2,05556 F-crit 5,0643 MG Dms CV% Ponto

Médio 0,98144 0,26522 9,85 0,99939

Acidez: Amostras verdes e maduras de Palmas - Cajuí

FV GL SQ QM F

Tratamentos 5 1,46538 0,29308 24,5913** Resíduo 12 0,14301 0,01192

Total 17 1,6084 F-crit 5,0643 MG Dms CV% Ponto

Médio 0,97267 0,29939 11,22 1,01446

Acidez: Amostras verdes e maduras de Gurupi - Caju

FV GL SQ QM F

Tratamentos 9 1,72163 0,19129 30,1948** Resíduo 20 0,12671 0,00634

Total 29 1,84834 F-crit 3,4567 MG Dms CV% Ponto

Médio 0,82608 0,23023 9,64 0,87162

Acidez: Amostras verdes e maduras de Gurupi - Cajuí

FV GL SQ QM F

Tratamentos 5 2,16528 0,43306 18,0779** Resíduo 12 0,28746 0,02395

Total 17 2,45274 F-crit 5,0643 MG Dms CV% Ponto

Médio 1,46737 0,42445 10,55 1,53611

Page 112: caracterização fisico-química e atividade antioxidante de

112

Tabela C - 4: Quadro de análise estatística para sólidos solúveis.

ANÁLISE ESTATÍSTICA SÓLIDOS SOLÚVEIS

Sólidos solúveis: Amostras verdes Palmas e Gurupi – Caju e Cajuí

FV GL SQ QM F

Tratamentos 13 103,6012 7,96932 2,3675* Resíduo 28 94,25 3,36607

Total 41 197,8512 F-crit 2,0884 MG dms CV% Ponto

Médio

11,19048 5,48544 16,4 12,375

Sólidos solúveis: Amostras maduras Palmas e Gurupi – Caju e Cajuí

FV GL SQ QM F

Tratamentos 13 206,4941 15,88416 2,1238* Resíduo 28 209,4167 7,47917

Total 41 415,9107 F-crit 2,0884 MG dms CV% Ponto

Médio

14,42857 8,17666 18,95 18,75

Page 113: caracterização fisico-química e atividade antioxidante de

113

Tabela C - 5: Quadro de análise estatística para colorimetria do cajuí.

ANÁLISE ESTATÍSTICA COLORIMETRIA

Cor L* : Amostras verdes e maduras Gurupi e Palmas - Cajuí

FV GL SQ QM F Tratamento

s 11 2971,3637 270,12397 7,1028**

Resíduo 24 912,7366 38,03069 Total 35 3884,1003 F-crit 3,0936 MG dms CV% Ponto

Médio 31,12972 18,15836 19,81 36,055

Cor b* : Amostras verdes e maduras Gurupi e Palmas - Cajuí

FV GL SQ QM F Tratamento

s 11 1777,12588 161,5569 5,7469**

Resíduo 24 674,6878 28,1199 Total 35 2451,81368 F-crit 3,0936 MG dms CV% Ponto

Médio 20,4875 15,61189 25,88 19,91

C : Amostras verdes e maduras Gurupi e Palmas - Cajuí

FV GL SQ QM F Tratamento

s 11 2106,01001 191,45546 4,4855**

Resíduo 24 1024,39187 42,68299 Total 35 3130,40188 F-crit 3,0936 MG dms CV% Ponto

Médio 29,2675 19,23698 22,32 29,665

H : Amostras verdes e maduras Gurupi e Palmas – Cajuí

FV GL SQ QM F Tratamento

s 11 43328,89816 3938,99074 90,1721**

Resíduo 24 1048,39307 43,68304 Total 35 44377,29123 F-crit 3,0936

MG dms CV% Ponto

Médio 77,66639 19,46104 8,51 70,08

Page 114: caracterização fisico-química e atividade antioxidante de

114

Tabela C - 6: Quadro de análise estatística para colorimetria do caju.

ANÁLISE ESTATÍSTICA COLORIMETRIA

Cor L* : Amostras verdes e maduras Gurupi e Palmas – Caju

FV GL SQ QM F

Tratamentos 15 15621,95843 1041,4639 21,6787** Resíduo 32 1537,31093 48,04097

Total 47 17159,26937 F-crit 2,6556 MG dms CV% Ponto

Médio 45,16083 20,98895 15,35 47,4

Cor b* : Amostras verdes e maduras Gurupi e Palmas - Caju

FV GL SQ QM F

Tratamentos 15 3100,1696 206,67797 6,4611** Resíduo 32 1023,6116 31,98786

Total 47 4123,7812 F-crit 2,6556 MG dms CV% Ponto

Médio 29,25 17,12685 19,34 26,39

C : Amostras verdes e maduras Gurupi e Palmas - Caju

FV GL SQ QM F

Tratamentos 15 3816,9779 254,46519 6,3935** Resíduo 32 1273,61333 39,80042

Total 47 5090,59123 F-crit 2,6556

MG dms CV% Ponto Médio

39,01688 19,10419 16,17 37,615 H : Amostras verdes e maduras Gurupi e Palmas - Caju

FV GL SQ QM F

Tratamentos 15 64443,94938 4296,2633 199,9196** Resíduo 32 687,67867 21,48996

Total 47 65131,62805 F-crit 2,6556

MG dms CV% Ponto Médio

76,09771 14,03792 6,09 71,925

Page 115: caracterização fisico-química e atividade antioxidante de

115

Tabela C - 7: Quadro de análise estatística para vitamina C.

ANÁLISE ESTATÍSTICA VITAMINA C

Vitamina C: Amostras verdes e maduras Palmas - Cajuí

FV GL SQ QM F

Tratamentos 5 9367,82244 1873,56449 6,4683** Resíduo 12 3475,84213 289,65351

Total 17 12843,6646 F-crit 5,0643 MG dms CV% Ponto

Médio 74,46959 46,67372 22,85 78,71692

Vitamina C: Amostras verdes e maduras Gurupi - Cajuí

FV GL SQ QM F

Tratamentos 5 87206,3726 17441,2745 119,4025** Resíduo 12 1752,85545 146,07129

Total 17 88959,228 F-crit 5,0643 MG dms CV% Ponto

Médio 72,55619 33,1448 16,66 121,78633

Vitamina C: Amostras verdes e maduras Palmas - Caju

FV GL SQ QM F

Tratamentos 5 9012,22806 1802,4456 14,1572** Resíduo 12 1527,79775 127,31648

Total 17 10540,0258 F-crit 5,0643 MG dms CV% Ponto

Médio 74,00254 3094392 15,25 93,62842

Vitamina C: Amostras verdes e maduras Gurupi - Caju

FV GL SQ QM F

Tratamentos 9 4257,1228 473,01364 34,6522** Resíduo 20 273,00632 13,65032

Total 29 4530,12912 F-crit 3,4567 MG dms CV% Ponto

Médio

32,59921 10,68682 11,33 35,60408

Page 116: caracterização fisico-química e atividade antioxidante de

116

Tabela C - 8: Quadro de análise estatística para clorofila a.

ANÁLISE ESTATÍSTICA PARA DETERMINAÇÃO DE PIGMENTOS

Clorofila a: Amostras verdes e maduras de caju de Palmas

FV GL SQ QM F

Tratamentos 5 97,32752 19,4655 33,2728** Resíduo 12 7,02033 0,58503

Total 17 104,3479 F-crit 5,0643 MG dms CV% Ponto

Médio 2,57167 2,09759 29,74 3,63

Clorofila a: Amostras verdes e maduras de caju de Gurupi

FV GL SQ QM F

Tratamentos 9 90,46567 10,05174 11,9976** Resíduo 20 16,7562 0,83781

Total 29 107,2219 F-crit 3,4567 MG dms CV% Ponto

Médio 3,981 2,64759 22,99 5,09

Clorofila a: Amostras verdes e maduras de cajuí de Palmas

FV GL SQ QM F

Tratamentos 5 79,94218 15,98844 8,5166** Resíduo 12 22,52787 1,87732

Total 17 102,47 F-crit 5,0643 MG dms CV% Ponto

Médio 2,31444 3,75753 59,2 4,235

Clorofila a: Amostras verdes e maduras de cajuí de Gurupi

FV GL SQ QM F

Tratamentos 5 49,65512 9,93102 21,8708** Resíduo 12 5,44893 0,45408

Total 17 55,10405 F-crit 5,0643 MG dms CV% Ponto

Médio 4,50167 1,84798 14,97 5,19

Page 117: caracterização fisico-química e atividade antioxidante de

117

Tabela C - 9: Quadro de análise estatística para clorofila b.

ANÁLISE ESTATÍSTICA PARA DETERMINAÇÃO DE PIGMENTOS

Clorofila b: Amostras verdes e maduras de Palmas – Caju

FV GL SQ QM F

Tratamentos 5 10,83129 2,16626 3,4126* Resíduo 12 7,6174 0,63478

Total 17 18,44869 F-crit 3,1059 MG dms CV% Ponto

Médio 13,94944 2,18497 5,71 14,455

Clorofila b: Amostras verdes e maduras Gurupi - Caju

FV GL SQ QM F

Tratamentos 9 25,04405 2,78267 3,3819* Resíduo 20 16,45627 0,82281

Total 29 41,50032 F-crit 2,3928 MG dms CV% Ponto

Médio 4,646 2,62378 19,52 4,79

Clorofila b: Amostras verdes e maduras Palmas – Cajuí

FV GL SQ QM F

Tratamentos 5 6,99913 1,39983 4,1543* Resíduo 12 4,04347 0,33696

Total 17 11,0426 F-crit 3,1059 MG dms CV% Ponto

Médio 13,82333 1,59191 4,2 13,885

Clorofila b: Amostras verdes e maduras de Gurupi - Cajuí

FV GL SQ QM F

Tratamentos 5 9,82572 1,96514 4,8995* Resíduo 12 4,81313 0,40109

Total 17 14,63885 F-crit 3,1059 MG dms CV% Ponto

Médio 4,935 1,73683 12,83 4,88

Page 118: caracterização fisico-química e atividade antioxidante de

118

Tabela C - 10: Quadro de análise estatística para clorofila total.

ANÁLISE ESTATÍSTICA PARA DETERMINAÇÃO DE PIGMENTOS

Clorofila total: Amostras verdes e maduras Palmas – Caju

FV GL SQ QM F

Tratamentos 5 157,9669 31,59338 13,5975** Resíduo 12 27,88167 2,32347

Total 17 185,8486 F-crit 5,0643 MG dms CV% Ponto

Médio 16,51889 4,18025 9,23 17,435

Clorofila total: Amostras verdes e maduras Gurupi – Caju

FV GL SQ QM F

Tratamentos 9 172,3679 19,15199 6,9549** Resíduo 20 55,07467 2,75373

Total 29 227,4425 F-crit 3,4567 MG dms CV% Ponto

Médio 8,62767 4,79997 19,23 9,46

Clorofila total: amostras verdes e maduras Palmas – Cajuí

FV GL SQ QM F

Tratamentos 5 116,0894 23,21788 7,2312** Resíduo 12 38,52967 3,21081

Total 17 154,619 F-crit 5,0643 MG dms CV% Ponto

Médio 16,13556 4,91406 11,11 17,5

Clorofila total: Amostras verdes e maduras Gurupi – Cajuí

FV GL SQ QM F

Tratamentos 5 76,73671 15,34734 17,0764** Resíduo 12 10,78493 0,89874

Total 17 87,52164 F-crit 5,0643 MG dms CV% Ponto

Médio 9,43556 2,59987 10,05 8,935

Page 119: caracterização fisico-química e atividade antioxidante de

119

Tabela C - 11: Quadro de análise estatística comparativo dos locais de coleta para clorofila a.

ANÁLISE ESTATÍSTICA PARA DETERMINAÇÃO DE PIGMENTOS

Clorofila a: Amostras verdes Palmas e Gurupi – Caju

FV GL SQ QM F

Tratamentos 7 34,45405 4,92201 3,7323* Resíduo 16 21,1 1,31875

Total 23 55,55405 F-crit 2,6572 MG dms CV% Ponto

Médio 5,2375 3,24875 21,93

Clorofila a: Amostras maduras Palmas e Gurupi - Caju

FV GL SQ QM F

Tratamentos 7 22,74532 3,24933 19,4241** Resíduo 16 2,67653 0,16728

Total 23 25,42185 F-crit 4,0259 MG dms CV% Ponto

Médio 1,6675 1,15708 24,53 1,82

Clorofila a: Amostras verdes Palmas e Gurupi – Cajuí

FV GL SQ QM F

Tratamentos 5 41,46443 8,29289 3,9126* Resíduo 12 25,43453 2,11954

Total 17 66,89896 F-crit 3,1059 MG dms CV% Ponto

Médio 5,07722 3,99259 28,67 5,045

Clorofila a: amostras maduras Palmas e Gurupi – Cajuí

FV GL SQ QM F

Tratamentos 5 30,88811 6,17762 29,1596** Resíduo 12 2,54227 0,21186

Total 17 33,43038 F-crit 5,0643 MG dms CV% Ponto

Médio 1,738889 1,26227 26,47 1,92

Page 120: caracterização fisico-química e atividade antioxidante de

120

Tabela C - 12: Quadro de análise estatística comparativo dos locais de coleta para clorofila b.

ANÁLISE ESTATÍSTICA PARA DETERMINAÇÃO DE PIGMENTOS

Clorofila b: Amostras verdes Palmas e Gurupi – Caju

FV GL SQ QM F

Tratamentos 7 484,538 69,21971 71,14445** Resíduo 16 15,56713 0,97295

Total 23 500,1051 F-crit 4,0259 MG dms CV% Ponto Médio

8,74958 2,79049 11,27 9,88 Clorofila b: Amostras maduras Palmas e Gurupi – Caju

FV GL SQ QM F

Tratamentos 7 506,9283 72,41832 136,2121** Resíduo 16 8,50653 0,53166

Total 23 515,4348 F-crit 4,0259 MG dms CV% Ponto Médio 7,52 2,06278 9,7 8,85

Clorofila b: Amostras verdes Palmas e Gurupi - Cajuí

FV GL SQ QM F

Tratamentos 5 380,0081 76,00162 211,7364** Resíduo 12 4,30733 0,35894

Total 17 384,3154 F-crit 5,0643

MG dms CV% Ponto Médio

9,66444 1,64303 6,2 9,73 Clorofila b: Amostras maduras Palmas e Gurupi - Cajuí

FV GL SQ QM F

Tratamentos 5 344,9092 68,98183 181,9594** Resíduo 12 4,54927 0,37911

Total 17 349,4584 F-crit 5,0643 MG dms CV% Ponto Médio

9,09389 1,68855 6,77 8,975

Page 121: caracterização fisico-química e atividade antioxidante de

121

Tabela C - 13: Quadro de análise estatística comparativo dos locais de coleta para clorofila total.

ANÁLISE ESTATÍSTICA PARA DETERMINAÇÃO DE PIGMENTOS

Clorofila total: Amostras verdes Palmas e Gurupi – Caju

FV GL SQ QM F

Tratamentos 7 405,4161 57,91658 14,6184** Resíduo 16 63,39013 3,96188

Total 23 468,8062 F-crit 4,0259 MG dms CV% Ponto

Médio 13,98792 5,63101 14,23 14,825

Clorofila total: Amostras maduras Palmas e Gurupi - Caju

FV GL SQ QM F

Tratamentos 7 348,7518 49,82168 40,7410** Resíduo 16 19,5662 1,22289

Total 23 368,318 F-crit 4,0259 MG dms CV% Ponto

Médio 9,18583 3,12845 12,04 10,55

Clorofila total: Amostras verdes Palmas e Gurupi - Cajuí

FV GL SQ QM F

Tratamentos 5 273,9057 54,78115 17,9572** Resíduo 12 36,60787 3,05066

Total 17 310,5136 F-crit 5,0643 MG dms CV% Ponto

Médio 14,74 4,78994 11,85 15,575

Clorofila total: Amostras maduras Palmas e Gurupi- Cajuí

FV GL SQ QM F

Tratamentos 5 185,4156 37,08313 35,0206** Resíduo 12 12,70673 1,05889

Total 17 198,1224 F-crit 5,0643 MG dms CV% Ponto

Médio 10,83111 2,82202 9,5 10,52