apostila_tecnicas de resolução circuito cc

16
 Coordenadoria de Automação Industrial Técnicas de Análise de Circuitos Eletricidade Geral  Serra – 10/2005 

Upload: paulomusic

Post on 07-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 1/16

Coordenadoria de Automação Industrial

Técnicas de Análisede Circuitos

Eletricidade Geral

Serra – 10/2005

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 2/16

Centro Federal de Educação Tecnológica do Espírito Santo 1

LISTA DE FIGURAS

Figura 1 - Definição de nó, malha e ramo ...................................................................3 Figura 2 – LKC ............................................................................................................4 Figura 3 – Exemplo 1 da LKC .....................................................................................5 Figura 4 – Aplicação do exemplo 1 da LKC ................................................................5 Figura 5 – Exemplo 1 da LKC .....................................................................................6 Figura 6 – Aplicação do exemplo 2 da LKC ................................................................6 Figura 7 – LKT.............................................................................................................7 Figura 8 – Exemplo 1 da LKT......................................................................................8 Figura 9 – Aplicação do exemplo 1 da LKT.................................................................8 Figura 10 – Exemplo 2 da LKC ...................................................................................9

Figura 11 – Aplicação do exemplo 2 da LKT...............................................................9 Figura 12 – Transformação de fontes .......................................................................11 Figura 13 – Equivalência entre fonte de tensão e fonte de corrente .........................11 Figura 14 – Exemplo de transformação de fonte.......................................................11 Figura 15 – Exemplo da aplicação do teorema da superposição..............................12 Figura 16 – Efeito da fonte de 60 V no circuito..........................................................12 Figura 17 – Efeito da fonte de 36 V no circuito..........................................................12 Figura 18 – Circuito equivalente de Thévenin ...........................................................13 Figura 19 – Exemplo da aplicação do teorema de Thévenin ....................................13 Figura 20 – Retirando a carga do circuito, para análise de Thévenin .......................13

Figura 21 – Calculo da resistência equivalente de Thévenin ....................................14 Figura 22 – Calculo da tensão de Thévenin..............................................................14 Figura 23 – Circuito equivalente de Thévenin do exemplo........................................14

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 3/16

Centro Federal de Educação Tecnológica do Espírito Santo 2

SUMÁRIO

1 INTRODUÇÃO........................................................................................................3

2 LEIS DE KIRCHHOFF............................................................................................4

2.1 LEI DE KIRCHHOFF PARA AS CORRENTES (LKC)..........................................4

2.1.1 Como utilizar a LKC, procedimentos: ...........................................................4

2.2 LEI DE KIRCHHOFF PARA TENSÃO (LKT)........................................................7

2.2.1 Como utilizar a LKT, procedimentos:............................................................7

3 TRANSFORMAÇÃO DE FONTES .......................................................................11

4 SUPERPOSIÇÃO .................................................................................................12

5 TEOREMA DE THÉVENIN...................................................................................13

6 REFERÊNCIAS ....................................................................................................15

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 4/16

Centro Federal de Educação Tecnológica do Espírito Santo 3

1 INTRODUÇÃO

Em alguns circuitos, como a ponte de wheaststone e circuitos com mais de uma fonte,observa-se a necessidade de utilização de outros métodos mais avançados para análise eresolução de circuitos, pois os métodos utilizados para circuitos série-paralelo nem semprepodem ser aplicados.Para a utilização de métodos mais sofisticados devem ser entendidas algumas definições:

• Nó: É a junção de três ou mais elementos de um circuito.• Ramo: É um caminho entre dois nós.• Malha: É um caminho elétrico fechado.

Figura 1 - Definição de nó, malha e ramo

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 5/16

Centro Federal de Educação Tecnológica do Espírito Santo 4

2 LEIS DE KIRCHHOFF

Esta técnica foi desenvolvida pelo físico alemão Gustav Robert Kirchhoff e é descrita emduas formas.

2.1 Lei de kirchhoff para as correntes (LKC)

“A soma das intensidades de correntes que chegam em um nó de um circuito é igual a somadas intensidades de correntes que saem desse mesmo nó.”

I1I4

I2

Figura 2 – LKC

CHEGAM SAEM

2 3 5 1 4

I I- SÍMBOLO DE SOMATÓRIO

I I I I I

=

+ + = +

∑ ∑∑

2.1.1 Como utilizar a LKC, procedimentos:

1) Adotar quais serão os nós principais e qual será o nó de referência do circuito (o terra docircuito, potencial é nulo, ou seja, 0V);

2) Definir, arbitrariamente, os sentidos das correntes nos ramos do circuito;3) Aplicar a LKC,

CHEGAM SAEM

I I=

∑ ∑, nos nós principais;

4) Cálculo da corrente I do ramo pela seguinte expressão:

N N

eq Ramo

N

N

V V EI =

R

V : Tensão do nó onde a corrente sai

V : Tensão do nó onde a corrente chega

+E: Caso haja uma fonte de tensão que favorece a corrente

-E: Caso haja uma fonte de tensão que desfavor

− ±

eq Ramo

ece a corrente

R : Resitência equivalente do ramo

5) Resolver o sistema de equações da LKC, caso alguma corrente resultante seja negativa,o sentido real está ao contrário ao adotado.

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 6/16

Centro Federal de Educação Tecnológica do Espírito Santo 5

Exemplo 1:

R1

R3

R2V1 V2

B

A

Figura 3 – Exemplo 1 da LKC

1) Adotando nó A como nó principal e o nó B como nó de referência (0V);2) Adotar os sentidos das correntes nos ramos;3) Aplicar a LKC,

CHEGAM SAEMI I=∑ ∑ , nos nós principais;

Figura 4 – Aplicação do exemplo 1 da LKC

Obtendo a seguinte expressão: 1 2 3I I I+ =

4) Cálculo da corrente I em cada ramo:

a 1 a 11

1 1

0 - V + V - V + VI =

R R= , a corrente sai do nó B (0V), chega ao nó A (Va) e a fonte

V1 favorece a corrente;

a 2 a 22

3 3

0 - V + V - V + VI =

R R= , a corrente sai do nó B (0V), chega ao nó A (Va) e a fonte

V2 favorece a corrente;

a a3

2 2

V - 0 VI =

R R

= , a corrente sai do nó A (Va), chega ao nó B (0V) e não existe fonte no

ramo.

5) Resolver o sistema

1 2 3

a 1 a 2 a

1 3 2

I I I

- V + V - V + V V

R R R

+ =

⎛ ⎞⎛ ⎞+ =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

Como V1, V2, R1, R2 e R3 são dados, determinam-se Va, e posteriormente, ascorrentes I1, I2, I3. Caso uma das correntes seja negativa, o sentido real da correnteestá ao contrário em relação ao sentido adotado.

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 7/16

Centro Federal de Educação Tecnológica do Espírito Santo 6

Exemplo 2:

Calcule as correntes em cada ramo do circuito abaixo.

Figura 5 – Exemplo 1 da LKC

1) Adotando nó A como nó principal e o nó B como nó de referência (0V);2) Adotar os sentidos das correntes nos ramos;3) Aplicar a LKC,

CHEGAM SAEMI I=∑ ∑ , nos nós principais.

Figura 6 – Aplicação do exemplo 2 da LKC

Obtendo a seguinte expressão: 1 2 3I I I= +

4) Cálculo da corrente I em cada ramo:

a a1

0 - V + 60 - V + 60I =

4 4= , a corrente sai do nó B (0V), chega ao nó A (Va) e a

fonte de 60 V favorece a corrente;

a a2

V - 0 VI =

3 3= , a corrente sai do nó A (Va), chega ao nó B (0V) e não existe fonte

no ramo;

a a3

V - 0 - 36 V 36I =

12 12

−= , a corrente sai do nó A (Va), chega ao nó B (0V) e.fonte

36 V desfavorece a corrente

5) Resolver o sistema

1 2 3

a a a

a a a

a

a

I I I

- V + 60 V V - 36

4 3 12

- 3V 180 4V V 36

12 12- 8V - 216

V = 27 V

= +

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

+ + −=

=

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 8/16

Centro Federal de Educação Tecnológica do Espírito Santo 7

Como:

a1

- V + 60 - 27 + 60I = = = 8,25 A

4 4

a2

V 27I = = = 9 A

3 3

a3

V - 36 27 - 36I = = = - 0,75 A12 12 Observa-se que a corrente I3 está negativa, ou seja, o sentido adotado está inverso.

2.2 Lei de Kirchhoff para tensão (LKT).

“A soma de todas as tensões no sentido horário de uma malha, ou num circuito fechado, éigual às somas das tensões no sentido anti-horário.” ou

“A soma de todas as quedas de tensões de uma malha, ou num circuito fechado, é igual àsoma de todos os aumentos de tensão em relação à corrente adotada na malha, ou seja, asoma de todas as tensões na malha é igual à zero.”

Figura 7 – LKT

Para realização de soma algébrica das tensões no circuito elétrico, deve-se estabelecer:

• Para um aumento de tensão atribuir um sinal positivo;• Para uma queda de tensão atribuir um sinal negativo.

Resolvendo o circuito por LKT:1 2 3

V = 0

V V V 0− − =

Observa-se que V1 é um aumento de tensão em relação a corrente I, pois a fonte V1 auxiliaa corrente I, que foi adotada, e V2 e V3 são quedas de tensão, pois como são resistências(oposição à passagem de corrente elétrica) as diferenças de potencial nas resistências

sempre é contrária a corrente.

2.2.1 Como utilizar a LKT, procedimentos:

1) Definir o sentido das correntes nas malhas (horário ou anti-horário), na prática defini-se omesmo sentido da corrente para todas as malhas;

2) Aplicar a LKT, V = 0∑ ;

3) Resolver o sistema de equações originado da aplicação da LKT, caso alguma correnteseja negativa o sentido real está ao contrário ao adotado.

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 9/16

Centro Federal de Educação Tecnológica do Espírito Santo 8

Exemplo 1:

R1

R3

R2V1 V2

B

AC

D F

E

Figura 8 – Exemplo 1 da LKT

1) Definir o sentido das correntes nas malhas (horário)2) Aplicar a LKT, V = 0∑ ;

Figura 9 – Aplicação do exemplo 1 da LKT

Malha A: ACDBAMalha B: AEFBAObserva-se que o ramo “AB” pertence à malha A e também a malha B.

Malha A

1 3 4 5

V = 0

V V V V 0− − + =

• V1 e V5 são aumentos de tensão, pois auxiliam a corrente I1;• V3 e V4 são quedas de tensão, pois estão ao contrário da corrente I1, isto é devido por

serem quedas nas resistências;• V5 está na equação da malha A, pois é uma tensão provocada por I2 no ramo “AB”

que pertence à malha A.

Como 3 1 1 4 2 1 5 2 2V =R .I , V =R .I , V =R .I

( )1 1 1 2 1 2 2

1 2 1 2 2 1

V - R .I - R .I + R .I 0

R + R .I - R .I V

=

=

Malha B

2 6 5 4

V = 0

V V V V 0− − − + =

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 10/16

Centro Federal de Educação Tecnológica do Espírito Santo 9

• V4 são aumentos de tensão, pois auxiliam a corrente I2;• V2, V5 e V6 são quedas de tensão, pois estão ao contrário da corrente I2. V5 e V6 é

devido por serem quedas nas resistências;• V4 está na equação da malha B, pois é uma tensão provocada por I1 no ramo “AB”

que pertence a malha B.

Como 4 2 1 5 2 2 6 3 2V =R .I , V =R .I , V =R .I

( )2 3 2 2 2 3 1

2 1 2 3 2 2

-V - R .I - R .I + R .I 0

- R .I + R R .I V

=

+ = −`

3) Resolver o sistema de equações originado da aplicação da LKT, caso alguma correnteseja negativa o sentido real está ao contrário ao adotado.

( )

( )1 2 1 2 2 1

2 1 2 3 2 2

R + R .I - R .I V

- R .I + R R .I V

=⎧⎪⎨

+ = −⎪⎩

Exemplo 2:

Calcule as correntes em cada malha do circuito abaixo.

Figura 10 – Exemplo 2 da LKC

1) Definir o sentido das correntes nas malhas (horário)2) Aplicar a LKT, V = 0∑ ;

Figura 11 – Aplicação do exemplo 2 da LKT

Malha 1

1 2 5 6

1 1 2

1 2

V = 0

V V V V 0

60 - 4I - 3I + 3I =0

-7I 3I 60

− − + =

+ = −

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 11/16

Centro Federal de Educação Tecnológica do Espírito Santo 10

• V1 e V6 são aumentos de tensão, pois auxiliam a corrente I1;• V2 e V3 são quedas de tensão, pois estão ao contrário da corrente I1, isto é devido por

serem quedas nas resistências;• V6 está na equação da malha A, pois é uma tensão provocada por I2 no ramo “AB”

que pertence à malha 1.

Malha 2

4 3 6 5

2 2 1

1 2

V = 0

-V V V V 0

-36 - 12I - 3I + 3I =0

3I 15I 36

− − + =

− =

• V5 são aumentos de tensão, pois auxiliam a corrente I2;• V3, V4 e V6 são quedas de tensão, pois estão ao contrário da corrente I2. V3 e V6 é

devido por serem quedas nas resistências;

• V5 está na equação da malha B, pois é uma tensão provocada por I1 no ramo “AB”que pertence a malha 2.

4) Resolver o sistema de equações

1 2

1 2

7I + 3I 60

3I - 15I 36

− = −⎧⎨

=⎩

Multiplicando a primeira equação por 5 e somando as duas equações tem-se:

1 2

1 2

35I + 15I 300

3I - 15I 36

− = −⎧

⎨ =⎩

1

1

- 32I = - 264

I = 8,25 A

1 2

2

2

2

3I - 15I = 36

3 8,25 - 15I =36

-15I = 11,25

I = - 0,75 A

×

Observe-se que a corrente I2 está negativa, ou seja, o sentido adotado está invertido.

A corrente no ramo AB, resistor de 3Ω, é igual a 1 2I - I , ou seja, 8,25 – (0,75) igual a

9Ω.

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 12/16

Centro Federal de Educação Tecnológica do Espírito Santo 11

3 TRANSFORMAÇÃO DE FONTES

Existe uma equivalência entre uma fonte de tensão em série com uma resistência com umafonte de corrente em paralelo com uma resistência, mantendo as mesmas característicasnos terminais da fonte, obedecendo à lei de ohm V = R x I.

r

V

B

A

I r

B

A

Figura 12 – Transformação de fontes

Dado os circuitos abaixo, existe uma equivalência entre eles, a corrente percorrida noresistor RL é a mesma nos dois circuitos.

r

RLV

B

A

I r RL

B

A

IL IL

Figura 13 – Equivalência entre fonte de tensão e fonte de corrente

Exemplo:

Calcular a corrente IL no resistor de 3Ω, utilizando transformação de fontes.

Figura 14 – Exemplo de transformação de fonte

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 13/16

Centro Federal de Educação Tecnológica do Espírito Santo 12

4 SUPERPOSIÇÃO

“Dado um circuito, contendo somente elementos lineares e com mais de uma fonte detensão (e/ou corrente), a corrente em qualquer trecho do circuito é igual à soma algébricadas correntes individuais causadas por cada fonte independente atuando sozinha, comtodas as outras fontes de tensão substituída por curtos-circuitos e todas as outras fontes decorrente substituídas por circuitos abertos".

Exemplo:

Calcular a corrente IL no resistor de 3Ω, utilizando o teorema da superposição.

Figura 15 – Exemplo da aplicação do teorema da superposição

Analisando o efeito da fonte de 60 V

Figura 16 – Efeito da fonte de 60 V no circuito

Analisando o efeito da fonte de 36 V

Figura 17 – Efeito da fonte de 36 V no circuito

Calculo da corrente IL e a tensão VL no resistor de 3 Ω será a soma algébrica do efeito decada fonte.

IL = IL’ + IL’’IL = 7,5 + 1,5IL = 9 A

VL = VL’ + VL’’VL = 22,5 + 4,5VL = 27 V

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 14/16

Centro Federal de Educação Tecnológica do Espírito Santo 13

5 TEOREMA DE THÉVENIN

O teorema de Thévenin foi desenvolvido pelo engenheiro francês M.L.Thévenin. Esteteorema tem como objetivo reduzir parte ou todo circuito num gerador de tensão, ou seja,uma fonte de tensão em série com uma resistência.

O teorema de Thévenin descreve “para qualquer circuito de elementos resistivos e fonte de

energia com um par de terminais identificado (em aberto), o circuito pode ser substituído por uma combinação série de uma fonte de tensão (V TH ) e uma resistência (R TH )”.

Resistência equivalente de Thévenin: RTH é igual à resistência equivalente vista entre osterminais identificados (em aberto), quando substituindo as fontes de tensão por um curto-circuito e as fontes de corrente pó um circuito aberto.

Fonte equivalente de Thévenin: VTH é igual à tensão vista entre os terminais identificados(em aberto).

RTH

VTH

B

A

I

Circuito Elétrico Linear

RL

A

B

RL

I

Circuito equivalente de Thévenin

Figura 18 – Circuito equivalente de Thévenin

Exemplo:

Calcular a corrente IL no resistor de 3Ω, utilizando o teorema de Thévenin.

Figura 19 – Exemplo da aplicação do teorema de Thévenin

Primeiramente deve ser retirada a carga, ou seja, o resistor de 3Ω.

Figura 20 – Retirando a carga do circuito, para análise de Thévenin

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 15/16

Centro Federal de Educação Tecnológica do Espírito Santo 14

• Cálculo da resistência de Thévenin (RTH): substitui-se as fontes de tensão por um curto-circuito e as fontes de corrente por um circuito aberto e calcular a resistência equivalenteentre os pontos A e B.

Observa-se que a resistência equivalente entre os pontos A e B é o paralelo entre osresistores de 4 Ω e 12 Ω.

4

B

12A

RTH

3

B

A

Figura 21 – Calculo da resistência equivalente de Thévenin

• Cálculo da tensão de Thévenin (VTH): calcular a tensão entre os pontos A e B.

Figura 22 – Calculo da tensão de Thévenin

( )

TH

60 - 36I = = 1,5 A4 + 12

V = 60 - 4 1,5 = 54 V×

Calculo da corrente na carga de 3 Ω, através do circuito equivalente de Thévenin.

IL= 9 A

VTH

54 V

A

B

RTH = 3

Circuito equivalente deThévenin

Carga3

VTH

54 V

A

B

RTH = 3

Cálculo da corrente nacarga

Figura 23 – Circuito equivalente de Thévenin do exemplo

Observa-se que o circuito equivalente de Thévenin, em alguns casos, pode ser obtidoatravés do teorema de transformação de fontes.

8/6/2019 Apostila_Tecnicas de resolução circuito CC

http://slidepdf.com/reader/full/apostilatecnicas-de-resolucao-circuito-cc 16/16

Centro Federal de Educação Tecnológica do Espírito Santo 15

6 REFERÊNCIAS

1 BARTKOWIAK, ROBERT A. Circuitos Elétricos. Editora Makron Books do Brasil,1999.

2 GUSSOW, MILTON. Eletricidade Básica. Editora McGraw-Hill do Brasil, 1985.

3 MARKUS, OTÁVIO. Circuitos Elétricos – Corrente Contínua e Corrente Alternada.Editora Érica, 2ª Edição, 2002.