apostila de matematica...assim, por exemplo, x 5 x 1 6= ⇔ + = é uma sentença verdadeira, pois as...

152
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS C C u u r r s s o o P P r r ó ó - - T T é é c c n n i i c c o o Disciplina: Matemática Texto Experimental – 1 a Edição Antonio José Bento Bottion e Paulo Henrique Cruz Pereira Varginha – Minas Gerais Dezembro de 2006

Upload: others

Post on 28-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

    DE MINAS GERAIS

    CCuurrssoo PPrróó--TTééccnniiccoo Disciplina:

    Matemática TTeexxttoo EExxppeerriimmeennttaall –– 11aa EEddiiççããoo

    Antonio José Bento Bottion e

    Paulo Henrique Cruz Pereira

    Varginha – Minas Gerais

    Dezembro de 2006

  • Álgebra

    Fonte: http://community.learnnc.org/dpi/math/archives/AlgArt.gif

    Geometria

    Fonte: http://ww2.wdg.uri.edu:81/testsite/fileadmin/advance_client/mathematics.gif

  • ............................................................................ Centro Federal de Educação Tecnológica de Minas Gerais – Campus VIII - Varginha

    Curso Pró-Técnico - Disciplina: Matemática – Professores Antonio José B. Bottion e Paulo Henrique C. Pereira

    MATEMÁTICA I Prof. Antônio José Bento Bottion

    ÍNDICE

    1. TEORIA DOS CONJUNTOS.................................................................................................................... 6

    1.1. SIMBOLOGIA ....................................................................................................................................... 6

    1.2. CONCEITOS PRIMITIVOS ...................................................................................................................... 6

    1.3. REPRESENTAÇÕES DE UM CONJUNTO .................................................................................................. 7

    1.4. MAIS DOIS POSTULADOS ..................................................................................................................... 8

    1.5. DEFINIÇÃO DE SUBCONJUNTO.............................................................................................................. 8

    1.6. TEOREMAS ......................................................................................................................................... 9

    1.7. COMPLEMENTAR............................................................................................................................... 10

    1.8. CONJUNTO UNIVERSO ....................................................................................................................... 10

    1.9. UNIÃO .............................................................................................................................................. 11

    1.10. INTERSECÇÃO .................................................................................................................................. 12

    1.11. DIFERENÇA ...................................................................................................................................... 13

    1.12. PAR ORDENADO................................................................................................................................ 15

    1.13. PRODUTO CARTESIANO ..................................................................................................................... 15

    2. CONJUNTOS NUMÉRICOS .................................................................................................................. 17

    2.1. NÚMEROS NATURAIS E NÚMEROS INTEIROS ........................................................................................ 17

    2.2. NÚMEROS RACIONAIS........................................................................................................................ 17

    2.3. NÚMEROS IRRACIONAIS..................................................................................................................... 19

    2.4. NÚMEROS REAIS............................................................................................................................... 19

    2.5. TEOREMAS ....................................................................................................................................... 19

    2.6. OUTRAS NOTAÇÕES .......................................................................................................................... 21

    2.7. INTERVALOS ..................................................................................................................................... 21

    3. ARITMÉTICA DOS INTEIROS............................................................................................................... 23

    3.1. MÚLTIPLO E DIVISOR ......................................................................................................................... 23

    3.2. NÚMERO PAR ................................................................................................................................... 23

    3.3. TEOREMA......................................................................................................................................... 25

    3.4. NÚMERO PRIMO ................................................................................................................................ 26

    3.5. NÚMERO COMPOSTO ........................................................................................................................ 26

    3.6. TEOREMA......................................................................................................................................... 26

    3.7. FORMA FATORADA ............................................................................................................................ 28

    3.8. DIVISÃO EUCLIDIANA ......................................................................................................................... 30

    3.9. MÁXIMO DIVISOR COMUM .................................................................................................................. 31

  • ............................................................................ Centro Federal de Educação Tecnológica de Minas Gerais – Campus VIII - Varginha

    Curso Pró-Técnico - Disciplina: Matemática – Professores Antonio José B. Bottion e Paulo Henrique C. Pereira

    3.10. NÚMEROS PRIMOS ENTRE SI .............................................................................................................. 32

    3.11. MÍNIMO MÚLTIPLO COMUM ................................................................................................................. 32

    3.12. TEOREMA......................................................................................................................................... 33

    4. TÉCNICAS DE FATORAÇÃO................................................................................................................ 34

    4.1. EXPRESSÃO ALGÉBRICA.................................................................................................................... 34

    4.2. VALOR NUMÉRICO............................................................................................................................. 34

    4.3. FATORAR – DESENVOLVER ............................................................................................................... 35

    4.4. CASOS DE FATORAÇÃO ..................................................................................................................... 36

    5. POTENCIAÇÃO...................................................................................................................................... 46

    5.1. DEFINIÇÃO ....................................................................................................................................... 46

    5.2. DEFINIÇÕES ..................................................................................................................................... 47

    5.3. SIMPLIFICAÇÃO DE EXPRESSÕES ....................................................................................................... 49

    5.4. PROPRIEDADES DAS POTÊNCIAS........................................................................................................ 50

    5.5. EQUAÇÕES EXPONENCIAIS ................................................................................................................ 53

    5.6. NOTAÇÃO CIENTÍFICA........................................................................................................................ 55

    5.7. RESUMO .......................................................................................................................................... 56

    6. RADICIAÇÃO ......................................................................................................................................... 58

    6.1. INTRODUÇÃO .................................................................................................................................... 58

    6.2. GENERALIZAÇÃO .............................................................................................................................. 58

    6.3. DEFINIÇÃO ....................................................................................................................................... 59

    6.4. PROPRIEDADES DOS RADICAIS........................................................................................................... 61

    6.5. REDUÇÃO DE RADICAIS AO MESMO ÍNDICE .......................................................................................... 64

    6.6. RACIONALIZAÇÃO DE DENOMINADORES .............................................................................................. 65

    6.7. POTÊNCIA DE EXPOENTE RACIONAL ................................................................................................... 66

    6.8. RADICANDO NEGATIVO ...................................................................................................................... 67

    6.9. PROPRIEDADE .................................................................................................................................. 68

    7. EQUAÇÃO DO 2º GRAU ....................................................................................................................... 69

    7.1. DEFINIÇÃO ....................................................................................................................................... 69

    7.2. RAIZ DA EQUAÇÃO ............................................................................................................................ 69

    7.3. CONJUNTO SOLUÇÃO ........................................................................................................................ 70

    7.4. FÓRMULA RESOLUTIVA...................................................................................................................... 70

    7.5. OBSERVAÇÕES................................................................................................................................. 70

    7.6. EQUAÇÕES INCOMPLETAS ................................................................................................................. 72

    7.7. A FORMA FATORADA ......................................................................................................................... 72

    7.8. SOMA E PRODUTO DAS RAÍZES........................................................................................................... 73

    7.9. EQUAÇÕES BIQUADRADAS................................................................................................................. 75

    8. TEORIA DAS FUNÇÕES ....................................................................................................................... 77

    8.1. FUNÇÃO DE A EM B .......................................................................................................................... 77

  • ............................................................................ Centro Federal de Educação Tecnológica de Minas Gerais – Campus VIII - Varginha

    Curso Pró-Técnico - Disciplina: Matemática – Professores Antonio José B. Bottion e Paulo Henrique C. Pereira

    8.2. UMA OUTRA NOTAÇÃO....................................................................................................................... 78

    8.3. DOMÍNIO DE UMA FUNÇÃO REAL DE VARIÁVEL REAL............................................................................. 80

    8.4. CONJUNTO IMAGEM .......................................................................................................................... 81

    8.5. GRÁFICO.......................................................................................................................................... 83

    8.6. CRESCIMENTO DE UMA FUNÇÃO......................................................................................................... 85

    8.7. CONJUNTO SIMÉTRICO ...................................................................................................................... 87

    8.8. PARIDADE DE UMA FUNÇÃO ............................................................................................................... 87

    9. A FUNÇÃO DO 1° GRAU....................................................................................................................... 89

    9.1. FUNÇÃO DO PRIMEIRO GRAU ............................................................................................................. 89

    9.2. TEOREMA......................................................................................................................................... 92

    10. A FUNÇÃO DO 2° GRAU .................................................................................................................. 94

    10.1. FUNÇÃO DO SEGUNDO GRAU ............................................................................................................. 94

    10.2. A PARÁBOLA..................................................................................................................................... 94

    10.3. CONSIDERAÇÕES.............................................................................................................................. 96

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 6

    1. Teoria dos conjuntos

    1.1. Simbologia

    Para termos uma linguagem precisa e concisa, serão utilizados os seguintes símbolos:

    Símbolo Leia-se

    ( )x∀ para todo x

    ( )x∃ existe x

    ( )x∃ existe um único x P Q⇒ se P, então Q

    P Q⇔ P se, e somente se, Q

    Na implicação P Q⇒ , deve-se entender que, parindo da proposição P, deduz-se a

    proposição Q. Assim, por exemplo, sendo x um número real, a sentença ( ) ( )x 5 x 3> ⇒ > é VERDADEIRA, pois todo número maior que 5 é maior que 3, enquanto que a sentença

    ( ) ( )x 3 x 5> ⇒ > é FALSA, pois existem números maiores que 3, que não são maiores que 5.

    A bi-implicação P Q⇔ é equivalente à sentença ( ) ( )P Q Q P⇒ ∧ ⇒ .

    Assim, por exemplo, x 5 x 1 6= ⇔ + = é uma sentença verdadeira, pois as sentenças

    x 5 x 1 6= ⇒ + = e x 1 6 x 5+ = ⇒ = são ambas verdadeiras.

    1.2. Conceitos primitivos

    O ponto de partida da teoria dos conjuntos consiste nos seguintes conceitos primitivos:

    − conjunto − elemento de um conjunto − igualdade de conjuntos

    Para indicar que x é um elemento do conjunto A, escrevemos x A∈ (leia-se também x

    pertence a A.)

    A notação x A∉ significa que x não é elemento do conjunto A.

    É importante observar que acima não consta o conceito de “elemento”, e sim o conceito de

    “elemento de um conjunto”. Assim, não há sentido em discutir se x é elemento ou não. Discute-se

    apenas se x é ou não elemento de um dado conjunto.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 7

    1.3. Representações de um conjunto

    Além de se representar um conjunto por uma letra (na maioria das vezes maiúscula), são

    usadas as seguintes representações:

    − {e1, e2, ..., en}, onde e1, e2, ..., em é a lista dos elementos do referido conjunto dispostos numa ordem qualquer, com ou sem repetição.

    − ( ){ }x A :S x∈ , onde S(x) é uma propriedade sobre a variável x, que tem por finalidade selecionar elementos de A; por exemplo, { }x A :x 5∈ > .

    Adotaremos também o seguinte postulado:

    Se todo elemento de A é elemento de B e todo elemento de B é elemento de A, então os

    conjuntos A e B são iguais.

    Exemplo 1

    { } { }1,2 2,1= e { } { }1,2 1,2,1, 2, 2=

    Exemplo 2

    Sendo { }0,1, 2,...,10,11,...=ℕ o conjunto dos números naturais, quantos são os

    elementos do referido conjunto: { }x :2x 5 17∈ + ≤ℕ ?

    2x 5 17 2x 12+ ≤ ⇒ ≤ e 2x 12 x 6≤ ⇒ ≤

    Tem-se então que x 6≤ e { }x 0,1,2,3, 4,5,6∈ . Logo, os elementos do referido conjunto são 0, 1, 2, 3, 4, 5 e 6, e, portanto, este possui 7

    elementos.

    Resposta: 7.

    Exemplo 3

    Quais são os elementos do conjunto ℕ dos números naturais que satisfazem à condição

    S(x) :x 2 1+ ≤ ?

    x 2 1 x 1+ ≤ ⇒ ≤ −

    Repare que não há número natural que satisfaz tal condição.

    Resposta: Nenhum.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 8

    1.4. Mais dois postulados

    Para que possamos operar com conjuntos, sem correr o risco de ficar operando com o

    “nada”, como no último exemplo, vamos estabelecer que:

    Existe um conjunto sem elementos, que chamamos de conjunto vazio e que indicaremos,

    sem preferência por { } ou por ∅ (Postulado).

    Sendo assim, podemos voltar ao item 2 e obter maior precisão, se ficar estabelecido que:

    Dados um conjunto A e uma sentença S(x), na qual a variável x ocorre pelo menos uma

    vez sem ser introduzida por “existe x”, nem por “para todo x”, existe sempre um conjunto B tal que

    ( ){ }B x A :S x= ∈ (Postulado).

    Assim,

    { } { }x :2x 5 17 0,1,2,3, 4,5,6∈ + ≤ =ℕ e

    { } { }x :x 2 1∈ + ≤ = = ∅ℕ

    1.5. Definição de subconjunto

    Dados os conjuntos A e B, dizemos que B é subconjunto de A se , e somente se, todo

    elemento de B é elemento de A.

    Notação: B A⊂ (leia-se B está contido em A).

    A

    B

    ( )( )B A x x B x A⊂ ⇔ ∀ ∈ ⇒ ∈

    Obs: A representação gráfica usada aqui foi proposta pelo matemático Venn.

    Por outro lado, tem-se que B A⊄ se, e somente se, existir pelo menos um elemento de

    B que não é elemento de A.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 9

    Em símbolos:

    ( ) ( )B A x x B e x A⊄ ⇔ ∃ ∈ ∉

    Exemplo 4

    Dado o conjunto { }{ }A 1,2,3, 3,4= , classificar em verdadeira (V) ou falsa (F) cada uma das seguintes proposições:

    a) A possui quatro elementos ( ) b) 1 A∈ e 2 A∈ ( ) c) { }1,2 A⊂ ( ) d) { }3,4 A⊂ ( ) e) { }{ }3,4 A⊂ ( )

    O conjunto A possui 4 elementos, a saber, os números 1, 2, 3 e o conjunto binário { }3,4 ;

    portanto, tem-se que 1 A∈ , 2 A∈ , 3 A∈ e { }3,4 A∈ .

    { }1,2 A⊂ , pois 1 e 2 são elementos de A

    { }3,4 A⊄ , pois 4 não é elemento de A

    { }{ }3,4 A⊂ , pois { }3,4 é elemento de A Sendo assim, a única afirmação falsa é a (d).

    1.6. Teoremas

    Qualquer que seja o conjunto A, tem-se que o conjunto vazio é subconjunto de A.

    Pois, se não o fosse, deveria existir pelo menos um elemento do conjunto vazio que não

    pertencesse a A (o que é absurdo).

    Qualquer que seja o conjunto A, tem-se que A é subconjunto de A.

    Pois todo elemento de A é elemento de A.

    Tem-se então que ( )( )A A A∀ ⊂ , mesmo com A = { }. Repare ainda que a expressão “todo elemento de A” não implica que o conjunto A tenha

    elementos. Assim, por exemplo, a afirmação “Toda tarefa deve ser cumprida.” não implica que

    haja tarefa.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 10

    Sendo A e B conjuntos, tem-se que:

    A B⊂ e B A⊂ se, e somente se, A = B.

    Sendo A um conjunto finito com n elementos, prova-se que o número de subconjuntos de

    A é 2n.

    O conjunto de todos os subconjuntos de A é chamado “o conjunto das partes de A” e será

    indicado por P(A).

    Exemplo 5

    Dado o conjunto { }A 1,2,3= , obter o conjunto das partes de A. Como o número de elementos de A é 3, conclui-se que o número de seus subconjuntos é

    23 = 8. Os subconjuntos de A são:

    { }

    {1} {2} {3}

    {1,2} {1,3} {2,3}

    A

    Resposta:

    O conjunto das partes de A é

    P(A)= {{ }, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, A}

    1.7. Complementar

    Dados os conjuntos A e B, com B A⊂ , chama-se de complementar de B em relação a A

    ao conjunto:

    A

    B

    { }ACB x A :x B= ∈ ∉

    1.8. Conjunto universo

    Em qualquer discussão na teoria dos conjuntos devemos fixar sempre um conjunto U, que

    contém todos os conjuntos que possam ser envolvidos. O conjunto U será chamado de conjunto

    universo.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 11

    Sendo u o conjunto universo e A um conjunto qualquer, chama-se complementar de A ao

    conjunto:

    A

    U

    { }UA CA x U :x A= = ∈ ∉ Exemplo 6

    Considerando como universo o conjunto { }U 0,1, 2,3,4,5,6= , e dados os conjuntos

    { }A 1,2,3,4= e { }B 2,4= , tem-se que:

    O complementar de B em relação a A é { }ACB 1,3= .

    O complementar de A em relação a A é { }ACA = .

    O complementar de B é { }B 0,1,3,5,6= .

    O complementar de A é { }A 0,5,6= .

    1.9. União

    Dados os conjuntos A e B num Universo U, chama-se de união (ou reunião) de A com B

    ao conjunto dos elementos que pertencem a pelo menos um dos conjuntos A ou B.

    A

    U

    B

    { }A B x U :x A ou x B∪ = ∈ ∈ ∈

    Exemplo 7

    a) { } { } { }1,2,3, 4 3,4,5 1,2,3, 4,5∪ = b) { } { } { }3,4,5 1, 2,3,4 1,2,3, 4,5∪ =

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 12

    c) { } { } { }1,2,3, 4 3,4 1,2,3, 4∪ = d) { } { } { }1,2,3, 4 1, 2,3,4∪ =

    Propriedades:

    A B B A∪ = ∪

    B A A B A⊂ ⇒ ∪ =

    { }A A∪ =

    ( ) ( )A B C A B C A B C∪ ∪ = ∪ ∪ = ∪ ∪

    1.10. Intersecção

    Dados os conjuntos A e B num universo U, chama-se de intersecção de A com B ao

    conjunto dos elementos comuns a A e B.

    A

    U

    B

    { }A B x U :x A e x B∩ = ∈ ∈ ∈

    Exemplo 8

    a) { } { } { }1,2,3, 4 3,4,5 3,4∩ = b) { } { } { }3,4,5 1,2,3, 4 3,4∩ = c) { } { } { }1,2,3, 4 3,4 3,4∩ = d) { } { } { }1,2,3, 4 ∩ =

    Propriedades:

    A B B A∩ = ∩

    B A A B B⊂ ⇔ ∩ =

    { } { }A∩ =

    ( ) ( ) ( ) ( )A B C A B C A B C A B A B∩ ∩ = ∩ ∩ = ∩ ∩ ∩ ⊂ ∪

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 13

    1.11. Diferença

    Dados os conjuntos A e B num universo U, chama-se de diferença entre A e B, nesta

    ordem, ao conjunto dos elementos de A que não são elementos de B.

    A

    U

    B

    { }A B x U :x A e x B− = ∈ ∈ ∉ Observe que aqui, ao contrário do que ocorreu na definição de complementar de B em

    relação a A, não é exigido que B seja subconjunto de A.

    Exemplo 9

    a) { } { } { }1,2,3, 4 3, 4,5 1,2− = b) { } { } { }3,4,5 1,2,3, 4 5− = c) { } { } { }1,2 1,2− = d) { } { } { }1,2− =

    Propriedades:

    ( )A B A− ⊂

    { }A A− =

    { } { }A− =

    AB A A B CB⊂ ⇔ − =

    ( )A A B A B− ∩ = −

    Exemplo 10

    Dados os conjuntos { }A 1,2,3,4= e { }B 3,4,5,6,7= , obter os conjuntos A B∩ ,

    A B∪ , A B− e B A− .

    { }A B 3,4∩ =

    { }A B 1,2,3, 4,5,6,7∪ =

    { }A B 1,2− =

    { }B A 5,6,7− =

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 14

    Exemplo 11

    Sejam A e B conjuntos num universo U tais que: o complementar de A é { }A e,f ,g, h,i=

    { }A B a,b,c,d,e, f ,g∪ =

    { }A B c,d∩ =

    Obter os conjuntos A e B.

    { }A B c,d∩ = ⇒ c e d são os únicos elementos que A e B têm em comum.

    a A a A∉ ⇒ ∈ e ( )a A B∉ ∩

    Logo, ( )a A B∈ − .

    Analogamente, conclui-se que ( )b A B∈ − .

    e A e A∈ ⇒ ∈ e

    ( )e A B∉ ∪

    Logo, ( )e B A∈ − . Analogamente para f, g.

    Repare que h e i não pertencem a A nem a B, pois não pertencem a A B∪ .

    Resposta: { }A a,b,c,d= e { }B c,d,e, f ,g=

    Exemplo 12

    Numa prova de Matemática caíram apenas dois problemas. Terminada a sua correção,

    constatou-se que:

    300 alunos acertaram somente um dos problemas

    260 acertaram o segundo

    100 acertaram os dois

    210 erraram o primeiro

    Quantos alunos fizeram esta prova?

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 15

    Resolução:

    Prb-1

    U

    Prb-2

    x y z

    Sendo x, y, z e w o número de elementos de cada partição indicada no diagrama acima,

    segue que:

    ( )( )( )( )

    x z 300 1

    y z 260 2

    y 100 3

    z w 210 4

    + = + = = + =

    Das equações (3) e (2) tem-se que z = 160.

    Substituindo z por 160 nas equações (1) e (4), obtêm-se respectivamente, os valores de x

    e w; x = 140 e w = 50.

    O número total de alunos que fizeram esta prova é x+y+z+w = 450.

    1.12. Par ordenado

    Sabemos que { }a,b representam o mesmo conjunto. No entanto há situações em que é conveniente que haja uma ordem entre a e b. Para isto

    existe o conceito de par ordenado.

    Definição: ( ) { } { }{ }a, b a , a, b= Observe aí a maneira sutil com que foi introduzida a noção de ordem, pois pela definição,

    é fácil concluir que, se a b≠ , então ( ) ( )a, b b,a≠ , pois ( ) { } { }{ }b,a b , b,a= , que é diferente

    de { } { }{ }a , a, b .

    1.13. Produto cartesiano

    Dados os conjuntos A e B, chama-se de produto cartesiano de A por B, nesta ordem, ao

    conjunto de todos os pares ordenados (x,y), onde x é elemento de A e y é elemento de B.

    ( ){ }A B x, y : x A e y B× = ∈ ∈

    Exemplo 13

    Dados os conjuntos { }A 1,2,3= e { }B 4,5= , obtenha os produtos cartesianos AXB, BXA e B2=BXB.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 16

    ( ) ( ) ( ) ( ) ( ) ( ){ }A B 1,4 , 1,5 , 2,4 , 2,5 , 3,4 , 3,5× =

    ( ) ( ) ( ) ( ) ( ) ( ){ }B A 4,1 , 4,2 , 4,3 , 5,1 , 5,2 , 5,3× =

    ( ) ( ) ( ) ( ){ }2B 4,4 , 4,5 , 5, 4 , 5,5=

    Repare que o produto cartesiano é uma operação não comutativa, isto é, AXB pode não

    ser igual a BXA.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 17

    2. Conjuntos numéricos

    2.1. Números naturais e números inteiros

    O conjunto dos números naturais { }0,1, 2,... , n, ... será representado por ℕ , e o

    conjunto dos números inteiros { }..., 2, 1,0,1,2, ...− − , por ℤ . Repare que todo natural é inteiro,

    isto é, ℕ éum subconjunto de ℤ .

    2.2. Números racionais

    Chamamos de número racional a todo número que pode ser expresso na forma a

    b, onde

    a e b são inteiros quaisquer, com b 0≠ .

    Assim, os números 55

    1

    =

    e -0,333333...1

    3

    − =

    são dois exemplos de números

    racionais.

    O conjunto dos números racionais é expresso por ℚ .

    Como todo inteiro é racional, podemos afirmar que ℤ ⊂ ℚ .

    Exemplo 1

    Obter uma representação decimal para os números:

    a) 3

    16 b)

    9

    7

    Resolução:

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 18

    a) 3, 16

    30 0,1875

    140

    120

    80

    0

    b) 9, 7

    20 1,285714285714...285714...

    60

    40

    50

    10

    30

    20

    Uma vez entendido o exemplo acima, é fácil concluir que todo número racional pode ser

    expresso por uma dízima exata (existe um último algarismo à direita) ou por uma dízima periódica

    infinita (não existe um último algarismo à direita, mas, sim, uma repetição indefinida de uma

    seqüência de algarismos).

    Exemplo 2

    Representar as seguintes dízimas por frações de inteiros (frações geratrizes):

    a) -1,23456 b) 5,644444...4... c) 5,645454545...45...

    Resolução:

    a) 1,23456 123456

    f1 100000

    − −= =

    b) Seja f = 5,644444...4... (I); então, multiplicando por 10, segue que 10f = 56,44444...4... (II). Calculando a diferença (II) – (I):

    10f 56,44444...4...

    f 5,644444...4...

    9f 50,8

    =

    = −

    =

    e, portanto, 50,8 508

    f9 90

    = =

    c) Seja f = 5,6454545454545...45... (I); então, multiplicando por 100, segue que 100f=564,54545454... (II). Calculando a diferença (II) – (I): 100f 564,54545454...

    f 5,64545454...

    99f 558,9

    =

    = −

    =

    e, portanto, 558,9 5589

    f99 990

    = =

    Resposta:

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 19

    a) 123456

    100000

    − b)

    508

    90 c)

    5589

    990

    Com estes exemplos, podemos perceber que toda dízima periódica é um número racional.

    Outro fato que pode chamar atenção é que a dízima periódica 0,999...9... é uma outra

    representação do número 1 (um).

    2.3. Números irracionais

    Existem dízimas infinitas e não periódicas; são os números irracionais. Como exemplos de

    números irracionais, podemos citar:

    3,1415926535...

    2 1,4142135623...

    3 1,7320508075...

    π=

    =

    =

    Os números irracionais não podem ser expressos na forma a

    b, com a e b inteiros e

    b 0≠ .

    2.4. Números reais

    A reunião do conjunto dos números irracionais com o dos racionais é o conjunto dos

    números reais (ℝ ).

    Dada uma reta, podemos estabelecer uma relação entre seus pontos e os números reais,

    de tal modo que a todo ponto corresponda um único real e a todo real corresponda um único

    ponto. Desta maneira podemos identificar todos os números reais por pontos da reta dada. A idéia

    é construir uma espécie de régua em que constam também os números negativos.

    Chamamos esta régua de reta (ou eixo) real.

    0

    0,5 1

    1,5 2

    -0,5-1

    2.5. Teoremas

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 20

    − Sendo m e n naturais quaisquer, tem-se que m+n, m ⋅ n e mn são todos naturais. (Lembre-se de que 00 = 1.)

    − Sendo h e k inteiros quaisquer, tem-se que h + k, h - k, h ⋅ k são todos inteiros.

    − Sendo r e s racionais quaisquer, r + s, r – s, r ⋅ s e r

    s são todos racionais. (Em

    r

    s, devemos ter

    s 0≠ .) − Sendo r um número racional e x um número irracional, tem-se que r + x é irracional. − Sendo r, r 0≠ , um racional e x um número irracional, tem-se que r ⋅ x é irracional.

    − Sendo x um irracional qualquer não nulo, tem-se que 1

    x é irracional.

    − Entre dois números racionais existem infinitos outros números racionais e infinitos números irracionais.

    − Entre dois números irracionais existem infinitos outros números irracionais e infinitos números racionais.

    Exemplo 3

    Quantos são os elementos do conjunto { }x /10 2 x 10 3∈ <

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 21

    Exemplo 5

    Mostre que o número 3 2 2 3 2 2+ + − é irracional.

    Resolução:

    Seja x 3 2 2 3 2 2= + + − .

    Observe que x é um número real positivo.

    Segue que:

    ( ) ( )2x 3 2 2 3 2 2 2 3 2 2 3 2 2= + + − + + −

    ( )( )2x 6 2 3 2 2 3 2 2= + + − 2x 6 2 9 8= + −

    2x 8=

    E como x > 0, tem-se que x 2 2= , que é irracional.

    2.6. Outras notações

    Sendo A um dos conjuntos ℤ , ℚ ou ℝ , usaremos ainda as seguintes notações:

    A∗ para indicar { }x A / x 0∈ ≠

    A+ para indicar { }x A / x 0∈ ≥ (os não negativos)

    A∗+ para indicar { }x A / x 0∈ > (os positivos)

    A− para indicar { }x A / x 0∈ ≤ (os não positivos)

    A∗− para indicar { }x A / x 0∈ < (os negativos)

    Assim, por exemplo, +ℝ é o conjunto de todos os números reais não negativos, isto é, o

    conjunto { }x / x 0∈ ≥ℝ .

    2.7. Intervalos

    Sendo a e b (a

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 22

    [ ] { }a, b x |a x b= ∈ ≤ ≤ℝ (intervalo fechado)

    ] [ { }a,b x |a x b= ∈ <

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 23

    3. Aritmética dos inteiros

    3.1. Múltiplo e divisor

    Dados dois números m e d, dizemos que m é um múltiplo de d se, e somente se, existir

    um inteiro k tal que m = k ⋅ d.

    Nestas condições, também se diz que d é um fator (ou divisor) de m.

    3.2. Número par

    Um número inteiro a é dito par se, e somente se, ele for múltiplo de 2.

    Todo número inteiro que não é par é dito número ímpar.

    Exemplo 1

    Determinar quantos são os múltiplos de 7 compreendidos entre os números -50 e +500.

    Resolução:

    Se considerarmos estes números em ordem crescente, temos a P.A. (-49, -42, -35, ... , an), cujo

    primeiro termo é a1 = -49, cuja razão é r = 7 e cujo último termo é an.

    Precisamos obter o maior valor possível de n tal que seja satisfeita a condição na < 500.

    Como ( )n 1a a n 1 r= + − ⋅ , segue que:

    -49 + (n – 1) ⋅ 7 < 500

    -49 + 7n < 556

    O maior valor possível de n que satisfaz tal condição é 79.

    Resposta: 79

    Exemplo 2

    Decompor o inteiro 1995 numa soma de cinco ímpares consecutivos.

    Resolução:

    Considere a seqüência destes ímpares em ordem crescente e seja x o termo médio. Deste modo,

    tem-se que

    ( ) ( ) ( ) ( )x 4 x 2 x x 2 x 4 1995− + − + + + + + =

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 24

    5x 1995= , ou ainda, x = 399.

    Resposta: 395 + 397 + 399 + 401 + 403

    Exemplo 3

    Seja um inteiro tal que a2 é ímpar. Prove que a é ímpar.

    Demosntração:

    (Método indireto) Suponhamos que a seja um número par, isto é, a = 2k, com k inteiro.

    Segue que a2 = 4n2, ou seja, a2 é par, o que é ABSURDO, pois contraria a hipótese.

    Observações importantes:

    Todo número ímpar, isto é, um inteiro não múltiplo de 2, pode ser representado,

    indiferentemente, pela expressão 2k + 1, ou por 2k – 1, com k inteiro, pois sempre existem dois

    números pares tais que ele seja o sucessor de um deles e o antecessor do outro.

    Assim, por exemplo, o número ímpar 17 é o sucessor de 16 e o antecessor de 18.

    Consideremos, agora, um inteiro x, não múltiplo de 3.

    Repare que há uma diferença entre afirmar que x é da forma 3k + 1 e afirmar que x é da

    forma 3k – 1, onde k é um inteiro.

    Assim, por exemplo, o número 4 é da forma 3k + 1 e não da forma 3k – 1, enquanto o

    número 5 é da forma 3k – 1, sempre considerando k inteiro.

    Observe que todo inteiro não múltiplo de 3, ou é da forma 3k + 1, ou é da forma 3k–1.

    Verifique a seguinte afirmação, com k inteiro:

    - Todo inteiro não múltiplo de 5 é de uma e apenas uma, das seguintes formas:

    5k + 1, 5k – 1, 5k + 2, 5k - 2

    Exemplo 4

    Sendo a um inteiro, não múltiplo de 5, mostre que o antecessor de a2 ou o sucessor de a2

    é um múltiplo de 5.

    Demosntração:

    Tem-se que a é da forma 5k + 1 ou da forma 5k + 2.

    No primeiro caso, tem-se que:

    2 2a 25k 10k 4= + + , isto é, ( )2 2a 1 5 5k 2k− = + No segundo caso, tem-se que:

    2 2a 25k 10k 4= + + e, portanto:

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 25

    ( )2 2 2a 1 25k 10k 5 5 5k 2k 1 (c.q.d.)+ = + + = + + 3.3. Teorema

    Sejam x, y e d inteiros. Se d é divisor de x, e d é divisor de (x + y), então d é divisor de y.

    Justificativa:

    Existe um inteiro k1 tal que x = d ⋅ k1

    Existe um inteiro k2 tal que x + y = d ⋅ k2

    Logo, d ⋅ k1 + y = d ⋅ k2

    y = d ⋅ k2 - d ⋅ k1

    y = d ⋅ (k2 – k1)

    Como k2 – k1 é inteiro, tem-se que d é divisor de y.

    (c.q.d.)

    Exemplo 5

    Obter os valores inteiros de n de modo que n + 3 seja um divisor de n + 13.

    Resolução:

    n + 3 é divisor de n + 11

    n + 3 é divisor de n + 3 + 8 (*)

    n + 3 é divisor de n + 3 (**)

    De (*) e (**) segue que:

    n + 3 é divisor de 8

    Portanto,

    { }n 3 1,2, 4,8, 1, 2, 4, 8+ ∈ − − − −

    { }n 2, 1,1,5, 4, 5, 7, 11∈ − − − − − − Resposta: -2, -1, 1, 5, -4, -5, -7 e -11.

    Exemplo 6

    Mostre que um inteiro ℕ com quatro algarismos é múltiplo de 3 se, e somente se, a soma

    dos algarismos for múltiplo de 3.

    Demosntração:

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 26

    Seja ( )a, b,c,d=ℕ , isto é, a é o algarismo dos milhares, b o das centenas, c o das dezenas e d o das unidades.

    1000a 100b 10c d= + + +ℕ

    999a 99b 9c a b c d= + + + + + +ℕ

    ( )3 333a 33b 3c a b c d= + + + + + +ℕ

    1a parte: se a + b + c + d = 3m, então ℕ é obviamente múltiplo de 3.

    2a parte: se ℕ for um múltiplo de 3, isto é, ℕ = 3h, então

    ( )3h 3 333a 33b 3c a b c d= + + + + + +

    ( )3h 3 333a 33b 3c a b c d− + + = + + + Logo, a + b + c + d é múltiplo de 3. (c.q.d.)

    Observação:

    Esta regra de divisibilidade por 3 vale para todos os inteiros, independentemente do

    número de algarismos. A mesma regra vale para a divisibilidade por 9.

    3.4. Número primo

    Um inteiro p é dito número primo, ou simplesmente primo, se, e somente se, ele possuir

    quatro e apenas quatro divisores distintos. (Os quatro divisores em questão são 1, -1, p e –p.)

    3.5. Número composto

    Os números inteiros não nulos que têm mais do que 4 divisores distintos são chamados de

    números compostos.

    Observações:

    − Os números 1, -1 e 0 não são primos nem compostos. − Os números 2 e -2 são os únicos números primos e pares. − Todo inteiro k positivo e diferente de 1 admite pelo menos um divisor primo positivo.

    3.6. Teorema

    Existem infinitos números primos.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 27

    Demosntração:

    Suponhamos que exista só um número finito de primos positivos p1, p2, p3, ... , pn e

    consideremos o número p = p1 ⋅ p2 ⋅ p3 ... ⋅ pn + 1.

    Como p é maior que qualquer um dos números primos enumerados, segue que p é um

    número composto e, portanto, um destes primos deve ser o divisor de p.

    Seja pk, com 1

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 28

    Resposta: 251 é primo

    Observação:

    A elegância deste procedimento chama a atenção pelo seguinte:

    Consideremos o produto d1 ⋅ d2.

    Se d1 > 15 e d2 > 15, então d1 ⋅ d2 > 251.

    Logo, se 251 admitisse um divisor d1, d1 > 15, deveríamos ter um inteiro d2, d2 < 15, de

    modo que d1 ⋅ d2 = 251, isto é, 251 teria um divisor menor ou igual a 15.

    Porém, isto é absurdo, pois, como foi verificado na tabela, 251 não admite divisor menor

    ou igual a 15.

    Exemplo 8

    Obter todos os inteiros a tais que a4 + a2 + 1 seja um número primo.

    Resolução:

    ( )( )( )

    4 2 4 2 2

    22 2

    2 2

    a a 1 a 2a 1 a

    a 1 a

    a 1 a a 1 a

    + + = + + −

    = + −

    = + − + +

    Repare que para este produto ser um número primo é necessário (mas não sufuciente) que um

    dos seus fatores seja igual a 1 ou igual a -1. Vejamos:

    2

    2

    2

    2

    a 1 a 1 a 1 ou a 0

    a 1 a 1 a não é int eiro

    a 1 a 1 a 1 ou a 0

    a 1 a 1 a não é int eiro

    + − = ⇒ = =

    + − = − ⇒

    + + = ⇒ = − =

    + + = − ⇒

    Os valores encontrados foram 1, -1 e 0.

    Substituindo, conclui-se que a4 + a2 + 1 é primo somente para a = 1 ou a = -1.

    Resposta: 1 e -1

    3.7. Forma fatorada

    Todo inteiro a, não nulo, diferente de 1 e diferente de -1, pode ser expresso na forma:

    31 2 n

    1 2 3 na p p p ...p , se a 0αα α α= + > , ou

    31 2 n

    1 2 3 na p p p ...p , se a 0αα α α= − <

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 29

    onde p1, p2, ... e pn são primos positivos e dois a dois distintos, e os expoentes α1, α2, ...,

    αn são números naturais não nulos.

    Exemplo 9

    Qual a forma fatorada de 528?

    Resolução:

    528 2

    264 2

    132 2

    66 2

    33 3

    11 11

    1

    Resposta: 24 ⋅ 3 ⋅ 11

    Exemplo 10

    Quantos divisores possui o número 53 ⋅ 114?

    Resolução:

    Consideremos os conjuntos:

    { }0 1 2 31D 5 ,5 ,5 ,5= e

    { }0 1 2 3 42D 11 ,11 ,11 ,11 ,11= Repare que todo produto do tipo d1 ⋅ d2 com 1 1d D∈ , 2 2d D∈ e apenas estes produtos são

    divisores positivos de 53 ⋅ 114.

    Para d1, temos (1 + 3) opções, e para d2 há (1 + 4) opções.

    Logo, existem (1 + 3)(1 + 4) = 20 divisores positivos.

    Consequentemente há 20 divisores negativos. Há, portanto, 40 divisores de 53 ⋅ 114.

    Resposta: 40

    Observação:

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 30

    Sendo 31 2 n1 2 3 np p p ...pαα α α a forma fatorada de um número natural n, pode-se concluir que

    o número de divisores positivos de n é ( )( ) ( )1 2 n1 1 ... 1α + α + α + .

    3.8. Divisão euclidiana

    Dados dois inteiros n e d, com d 0≠ , efetuar a divisão de n por d significa obter dois

    inteiros q e r tais que n = d ⋅ q + r e 0 r d≤ < .

    Os números n, d, q e r são, nesta ordem, chamados de dividendo, divisor, quociente e

    resto. Pode-se provar que para cada par (n,d), o quociente e o resto são únicos.

    Exemplo 11

    Efetuar a divisão de:

    a) 29 por 4 b) 29 por -4 c) -29 por 4

    Resolução:

    29 4a)

    1 7

    29 4b)

    1 7

    29 4c)

    3 8

    Observe que, em cada caso, o resto é não negativo e é menor que o módulo do divisor!

    Resposta:

    a) quociente 7, resto 1 b) quociente -7, resto 1 c) quociente -8, resto 3

    Exemplo 12

    Seja d um divisor comum dos inteiros não nulos x e y. Mostre que d é um divisor do resto

    da divisão de x por y.

    Demonstração:

    Sejam q e r, respectivamente, o quociente e o resto da divisão de x por y. Então:

    x y q r= ⋅ +

    Sendo x a d= ⋅ e y b d= ⋅ , segue que:

    ( )r x y a d b d d a b= − = ⋅ − ⋅ = − (c.q.d.)

    Exemplo 13

    Obter o conjunto dos inteiros positivos menores que 180 e que, quando divididos por 27,

    deixam um resto igual ao quociente.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 31

    Resolução:

    x 27r r= + com 0 r 27≤ ≤ e x 180<

    x 28r=

    { }r 1, 2,3, 4,..., 26∈

    { }x 28,56,84,112,140,168,196,...∈

    Como devemos ter x < 180, tem-se que o conjunto pedido é: { }28,56,84,112,140,168 .

    Resposta: { }28,56,84,112,140,168

    3.9. Máximo divisor comum

    Sendo a e b inteiros, não ambos nulos, chama-se de máximo divisor comum de a e b ao

    maior dos divisores que eles têm em comum.

    Notação: mdc(a,b)

    Exemplo 14

    Calcular mdc(1750,1400).

    Resolução:

    1a maneira:

    1 3 11750 2 5 7= ⋅ ⋅ e 3 2 11400 2 5 7= ⋅ ⋅

    O maior divisor (ou fator) comum é

    1 2 12 5 7 350⋅ ⋅ = .

    2a maneira (por divisões sucessivas):

    Efetua-se a divisão de um número pelo outro e, daí em diante, divide-se sucessivamente o último

    divisor obtido pelo resto, até obter um resto nulo. (Os quocientes são abandonados.)

    1750 1400 350

    restos: 350 0

    (O exemplo 12 justifica a validade deste processo.)

    Resposta: 350

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 32

    Exemplo 15

    Calcular mdc(2048,1935).

    Resolução:

    2048 1935 113 14 1

    restos: 113 14 1 0

    Resposta: 1

    3.10. Números primos entre si

    Dois inteiros quais quer são ditos primos entre si se, e somente se, o seu mdc for 1.

    Exemplo 16

    Os números 2048 e1935 são primos entre si.

    Exemplo 17

    Verificar se existe um inteiro k tal que 3k + 1 e 2k + 1 não sejam primos entre si.

    Resolução:

    Seja d, d > 0 um divisor comum; então tem-se que:

    3k 1 a d ( 2)

    2k 1 b d (3)

    + = ⋅ −

    + = ⋅

    ( )

    6k 2 2a d

    6k 3 3b d

    1 3b 2a d

    − − = − ⋅

    + = ⋅ +

    = − ⋅

    Como d=1, conclui-se que os números 3k + 1 e 2k + 1 são primos para todo inteiro k.

    (Tente resolver este exercício pelo método das divisões sucessivas.)

    Resposta: não

    3.11. Mínimo múltiplo comum

    Sendo a e b inteiros, não ambos nulos, chama-se de mínimo múltiplo comum de a e b ao

    menor dos múltipos positivos que eles têm em comum.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 33

    Notação: mmc(a,b)

    Exemplo 18

    Calcular mmc(1750,1400).

    Resolução:

    1 3 11750 2 5 7= ⋅ ⋅ e 3 2 11400 2 5 7= ⋅ ⋅

    O menor dos múltiplos positivos que estes números têm em comum é 3 3 12 5 7⋅ ⋅ .

    Resposta: 7000

    3.12. Teorema

    Sendo a e b inteiros, não ambos nulos, tem-se que: ( ) ( )mdc a,b mmc a,b a b⋅ = ⋅ .

    Exemplo 19

    Obter k, dado que o mdc e o mmc de k e 20 são, nesta ordem, iguais a 4 e 160.

    Resolução:

    20 k 4 160 k 32⋅ = ⋅ ⇒ = e 3 2 11400 2 5 7= ⋅ ⋅

    Resposta: 32 e -32

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 34

    4. Técnicas de fatoração

    4.1. Expressão algébrica

    Para estabelecer conceitos, definições, axiomas, teorema, etc., na Álgebra, usaremos,

    quase sempre, seqüências de caracteres, que podem ser letras, algarismos, sinais de operação,

    parênteses, colchetes ou chaves, dispostos numa ordem determinada. Seqüências desse tipo, em

    que pelo menos um dos caracteres é uma letra, são chamadas expressões algébricas.

    O uso de expressões algébricas traz várias conveniências, entre elas a precisão e a

    concisão de linguagem.

    Observe o quadro abaixo:

    Exemplo: Expressão Algébrica:

    O dobro de um número 2x

    O quadrado da soma de dois números (a + b)2

    A soma dos quadrados de dois números a2 + b2

    A soma do quadrado de um número com o

    seu dobro n2 + 2n

    4.2. Valor numérico

    Quando, numa expressão algébrica, cada letra for substituída por um número e as

    eventuais operações puderem ser efetuadas, obter-se-á um resultado chamado de valor numérico

    da expressão algébrica.

    Exemplo 1

    Obter o valor numérico de a2 – b2 + ab para:

    a) a = 1 e b = 2 b) a = 2 e b = 1

    Solução:

    a) Substituindo a por 1 e b por 2, obtemos:

    ( )( )2 21 2 1 2 1 4 2 1− + = − + = − .

    b) Substituindo a por 2 e b por 1, obtemos:

    ( ) ( )2 22 1 2 1 4 1 2 5− + = − + = .

    Exemplo 2

    Sendo a = 3 e b = 4, obter o valor numérico de ( )( ) ( )a 2 ab 1 a ab 2b 1+ + − + +

    Solução:

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 35

    Substituindo a por 3 e b por 4, obtemos:

    ( ) ( ) ( ) ( )( ) ( )( )3 2 12 1 3 12 8 1 5 13 3 21 2+ + − + + = − = .

    Exemplo 3

    Mostrar que o valor numérico de ( )( ) ( )a 2 ab 1 a ab 2b 1+ + − + + independe dos valores de a e b.

    Solução:

    Efetuando os produtos indicados, obtemos:

    2 2a b a 2ab 2 a b 2ab a 2+ + + − − − = .

    Portanto para quaisquer valores de a e b a expressão terá valor numérico 2.

    EXERCÍCIOS

    Sendo a = 5 e b = 2, obter os valores numéricos de:

    1) ( )2a b+ 2) 2 2a b+

    3) ( )2a b− 4) ( )2b a− 5) 2 2a b− 6) Mostrar que o valor numérico da expressão abaixo não depende do valor de b.

    ( )( ) ( )2a b ab 1 b a ab 1+ + − + + .

    4.3. Fatorar – Desenvolver

    Consideremos as expressões:

    ( )( )F x 2y 2x 3y= + + e 2 2D 2x 7xy 6y= + + Repare que:

    ( ) ( ) 2 22 2

    x 2y 2x 3y 2x 3xy 4xy 6y

    2x 7xy 6y

    + + = + + +

    = + +

    Denomina-se:

    • ( ) ( )x 2y 2x 3y+ + de FORMA FATORADA • 2 22x 7xy 6y+ + de FORMA DESENVOLVIDA

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 36

    Repare que, em geral, desenvolver um produto requer apenas mão-de-obra e, portanto,

    não oferece maiores dificuldades. O que pode dar problemas é a passagem no sentido contrário.

    Como fatorar? Isto é, como passar da forma desenvolvida para a forma fatorada?

    A seguir veremos algumas identidades fundamentais, que serão ferramentas

    indispensáveis para a técnica de fatoração.

    4.4. Casos de fatoração

    1° caso: o fator comum

    Pela propriedade distributiva, temos que ( )a b c ab ac+ = + e portanto:

    ( )a b a c a b c⋅ + ⋅ = +

    Observe que no membro esquerdo da igualdade acima h’uma soma (adição ou subtração)

    de produtos que, neles, a é um fator comum. No membro direito diremos que o fator comum a foi

    colocado em “evidência”.

    A igualdade acima pode ser ilustrada da seguinte maneira:

    b c

    a

    b+c

    ab ac

    A área da região hachurada é igual a ( )a b c ab ac+ = + . Exemplo 4

    Fatorar 2x xy ax+ − .

    Solução:

    Como x é fator comum, segue que:

    ( )2x xy ax x 2 y a+ − = + −

    Exemplo 5

    Fatorar 28x 4x− .

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 37

    Solução:

    Observe que 4x é fator comum!

    ( )

    28x 4x

    4x 2x 4x 1

    4x 2x 1

    − =

    = ⋅ − ⋅

    = −

    Exemplo 6

    Fatorar 3 2 2 3 6 5x y x y x y− + .

    Solução:

    O fator comum é 2 2x y :

    ( )

    3 2 2 3 6 5

    2 2 2 2 4 2 2 3

    2 2 4 3

    x y x y x y

    xx y x y y x x y y

    x y x y x y

    − + =

    = − +

    = − +

    EXERCÍCIOS

    Fatorar as seguintes expressões:

    7) 2a ab a+ − 8) ( ) ( )a x y b x y+ + + 9) ( ) ( )a 3x 2 b 3x 2− − − 10) ( ) ( )x a b y a b− + − 11) ( )x a b b a− + −

    OBSERVAÇÃO

    Pode haver aplicações repetidas deste caso. Vejamos um exemplo básico.

    ( ) ( )( ) ( )

    ( )( )

    ax ay bx by

    ax ay bx by

    a x y b x y

    a b x y

    + + + =

    = + + +

    = + + +

    = + +

    Exemplo 7

    Fatorar ax ay bx by+ − − .

    Solução:

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 38

    ( ) ( )( ) ( )

    ( )( )

    ax ay bx by

    ax ay bx by

    a x y b x y

    a b x y

    + − − =

    = + − +

    = + − +

    = − +

    Exemplo 8

    Fatorar ax ay bx by− − + .

    Solução:

    ( ) ( )( ) ( )

    ( )( )

    ax ay bx by

    ax ay bx by

    a x y b x y

    x y a b

    − − + =

    = − − −

    = − − −

    = − −

    EXERCÍCIOS

    Fatorar:

    12) 2 2ab a b a b− − + 13)

    2x 3x bx 3b− + − 14) ap by bp ay− + −

    15) 2x ax bx ab+ + + 16) ( )2x a b x ab+ − −

    2° caso: diferença de dois quadrados

    ( ) ( )2 2a b a b a b− = + −

    Assim, por exemplo, 52 – 32 é igual a ( )( )5 3 5 3+ − (verifique!). É claro que podemos justificar essa identidade partindo do membro direito e,

    desenvolvendo o produto, chegar ao membro esquerdo. Como ficaria se quiséssemos partir do

    membro esquerdo e, fatorando, chegar no direito?

    Repare que em 2 2a b a a b b− = ⋅ − ⋅ não há fator comum!

    Observe então a seguinte seqüência em que é usado um pequeno artifício: somando e

    subtraindo ab, obtemos fatores comuns sem alterar o valor da expressão.

    ( ) ( )( )( )

    2 2 2 2a b a ab ab b

    a a b b a b

    a b a b

    − = + − −

    = + − +

    = + −

    Veja na seguinte ilustração como podemos verificar a identidade em questão.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 39

    b

    b

    a

    2 2a b−

    b

    a - b

    a

    ( )( )a b a b+ −

    a

    As regiões hachuradas têm áreas iguais e ilustram o fato de que

    ( ) ( )2 2a b a b a b− = + − .

    Exemplo 9

    Fatorar 2x 25− .

    Solução:

    ( ) ( )

    2

    2 2

    x 25

    x 5

    x 5 x 5

    − =

    = −

    = + −

    Exemplo 10

    Fatorar 4 4a b− .

    Solução:

    ( ) ( )( )( )( )( )( )

    4 4

    2 22 2

    2 2 2 2

    2 2

    a b

    a b

    a b a b

    a b a b a b

    − =

    = −

    = + −

    = + + −

    (Observação: No conjunto dos números reais, a expressão a2 + b2 não é fatorável!)

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 40

    EXERCÍCIOS

    Fatorar as seguintes expressões em ℝ :

    17) 2x 1− 18)

    4x 1− 19) 2 2a b ax bx− + + 20) 2 2a b b a+ + − 21) 2 2 2a b a ab− + − 22) 2 2a b b a− + − 23) 3 2x 3x 4x 12− − +

    3° caso: trinômio quadrado perfeito

    ( )

    ( )

    22 2

    22 2

    a 2ab b a b

    a 2ab b a b

    + + = +

    − + = −

    Veja:

    ( ) ( )( ) ( )

    ( )( )

    ( )

    2 2

    2 2

    2 2

    2

    a 2ab b

    a ab ab b

    a ab ab b

    a a b b a b

    a b a b

    a b

    + + =

    = + + +

    = + + +

    = + + +

    = + +

    = +

    ( ) ( )( ) ( )

    ( ) ( )

    ( )

    2 2

    2 2

    2 2

    2

    a 2ab b

    a ab ab b

    a ab ab b

    a a b b a b

    a b a b

    a b

    − + =

    = − − +

    = − − −

    = − − −

    = − −

    = −

    Ilustrando:

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 41

    b

    b

    a

    2a

    2bab

    aba

    a + b

    ( )2a b+a + b

    Exemplo 11

    Desenvolver ( )222x 3y+ .

    Solução:

    ( )( ) ( )( ) ( )

    22

    22 2 2

    2 2 4

    2x 3y

    2x 2 2x 3y 3y

    4x 12xy 9y

    + =

    = + +

    = + +

    Exemplo 12

    Desenvolver

    21

    xx

    .

    Solução:

    ( )

    2

    2

    2

    2

    2

    1x

    x

    1 1x 2 x

    x x

    1x 2

    x

    − =

    = − +

    = + +

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 42

    Exemplo 13

    Fatorar 2 2 44a 20ab 25b+ + .

    Solução:

    ( ) ( ) ( ) ( )( )

    2 2 4

    22 2 2

    22

    4a 20ab 25b

    2a 2 2a 5b 5b

    2a 5b

    + + =

    = + +

    = +

    EXERCÍCIOS

    24) Desenvolver:

    21

    xx

    +

    Fatorar as seguintes expressões em ℝ :

    25) 2x 6x 9+ +

    26) 2x 10x 25− +

    27) 3 2x 16x 64x− +

    28) 2x 20x 100− + −

    29) 22x 1 x− −

    30) 4 21

    a a4

    + +

    31) 2 2 2a 2ab b c+ + − 32) 2 2x 2x 1 y+ + −

    33) ( )22x y 1− − 4° caso: soma e diferença de cubos

    ( ) ( )( )( )

    3 3 2 2

    3 3 2 2

    a b a b a ab b

    a b a b a ab b

    + = + − +

    − = − + +

    Justificativa:

    ( )( )2 23 2 2 2 2 3

    3 3

    a b a ab b

    a a b ab a b ab b

    a b

    + − + =

    = − + + − +

    = +

    ( ) ( )2 23 2 2 2 2 3

    3 3

    a b a ab b

    a a b ab a b ab b

    a b

    − + + =

    = + + − − −

    = −

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 43

    Exemplo 14

    Fatorar 3x 8+ .

    Solução:

    ( )( )( )( )

    3

    3 3

    2 2

    2

    x 8

    x 2

    x 2 x 2x 2

    x 2 x 2x 4

    + =

    = +

    = + − +

    = + − +

    Exemplo 15

    Fatorar 327x 1− .

    Solução:

    ( )

    ( ) ( ) ( ) ( )

    ( )( )

    3

    3 3

    2 2

    2

    27x 1

    3x 1

    3x 1 3x 3x 1 1

    3x 1 9x 3x 1

    − =

    = −

    = − + +

    = − + +

    Exemplo 16

    Fatorar 3 3 2 2a b a b a b− + − + − .

    Solução:

    ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

    3 3 2 2

    3 3 2 2

    2 2

    2 2

    2 2

    a b a b a b

    a b a b a b

    a b a ab b a b a b 1 a b

    a b a ab b a b 1

    a b a ab b a b 1

    − + − + − =

    = − + − + −

    = − + + + + − + −

    = − + + + + +

    = − + + + + +

    EXERCÍCIOS

    34) a) Fatorar x3 - 1

    b) Sendo x = 0,1, obter o valor numérico de 3x 1

    x 1

    −−

    35) Fatorar:

    a) 9 9x y+

    b) 9 9x y−

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 44

    5° caso: cubo da soma e cubo da diferença

    ( )

    ( )

    33 2 2 3

    33 2 2 3

    a 3a b 3ab b a b

    a 3a b 3ab b a b

    + + + = +

    − + − = −

    Justificativa:

    ( ) ( ) ( )( )( )

    3 2

    2 2

    3 2 2 2 2 3

    3 2 2 3

    a b a b a b

    a 2ab b a b

    a a b 2a b 2ab ab b

    a 3a b 3ab b

    + = + +

    = + + +

    = + + + + +

    = + + +

    ( ) ( ) ( )( )( )

    3 2

    2 2

    3 2 2 2 2 3

    3 2 2 3

    a b a b a b

    a 2ab b a b

    a a b 2a b 2ab ab b

    a 3a b 3ab b

    − = − −

    = − + −

    = − − + + −

    = − + −

    Exemplo 17

    Desenvolver ( )32x 5+ . Solução:

    ( )

    ( ) ( ) ( ) ( )( )

    3

    3 2 2 3

    3 2

    2x 5

    2x 3 2x 5 3 2x 5 5

    8x 60x 150x 125

    + =

    = + + +

    = + + +

    Exemplo 18

    Desenvolver ( )3x 2y− . Solução:

    ( )

    ( ) ( ) ( )

    3

    2 33 2

    3 2 2 3

    x 2y

    x 3x 2y 3x 2y 2y

    x 6x y 12xy 8y

    − =

    = − + −

    = − + −

    Exemplo 19

    Fatorar 3 2x 3x 3x 1+ + + .

    Solução:

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 45

    ( )

    3 2

    3 2 2 3

    3

    x 3x 3x 1

    x 3x 1 3x 1 1

    x 1

    + + + =

    = + ⋅ + ⋅ +

    = +

    EXERCÍCIOS

    36) Desenvolver as expressões:

    a) ( )32x yz+ b) ( )32x 1−

    Fatorar as expressões:

    37) 3 2 2 3x 3x y 3xy y+ + +

    38) 3 2 2 4 6x 6x y 12xy 8y+ + +

    39) 3 2x 9x 27x 27− + − 40) 3 2 2 3 3a 3a b 3ab b c+ + + +

    RESUMO

    1. ( )ab ac ad a b c d+ − = + + − 2. ( ) ( )2 2a b a b a b− = + − 3. ( )22 2a 2ab b a b+ + = + 4. ( )22 2a 2ab b a b− + = − 5. ( ) ( )3 3 2 2a b a b a ab b+ = + − + 6. ( )( )3 3 2 2a b a b a ab b− = − + + 7. ( )33 2 2 3a 3a b 3ab b a b+ + + = + 8. ( )33 2 2 3a 3a b 3ab b a b− + − = −

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 46

    5. Potenciação

    5.1. Definição

    Dado um número a, a∈ℝ , e um número inteiro n, n > 1, chama-se potência enésima de

    a, que se indica por an, ao produto de n fatores iguais a a. Assim:

    na a a a ... a

    n fatores

    = ⋅ ⋅�����

    O número a é chamado de base e n, de expoente.

    Exemplo 1

    a) 32 2 2 2 8= ⋅ ⋅ =

    b) ( ) ( ) ( ) ( )32 2 2 2 8− = − ⋅ − ⋅ − = −

    Exemplo 2

    Obter o valor de cada expressão:

    a) ( )224 3+ − b) 3

    21 1010

    c)

    2 32 3

    3 2

    − ⋅

    Solução:

    a) ( ) ( ) ( )224 3 4 4 3 3 16 9 25+ − = ⋅ + − ⋅ − = + =

    b)

    3

    21 1 11010 10 10

    ⋅ = ⋅

    1

    10

    10

    10⋅

    1

    10= ^

    c)

    2 32 3 2

    3 2

    ⋅ − = 3

    2⋅3

    3⋅ −

    2

    3 ⋅ −

    2

    3 3

    2 2

    ⋅ − = −

    OBSERVAÇÕES

    1) ( )2 22 2− ≠ − pois:

    ( ) ( ) ( )22 2 2 4− = − ⋅ − = e ( )22 2 2 4− = − ⋅ = −

    2) ( )n1 1− = , se n é par

    ( )n1 1− = − , se n é ímpar

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 47

    EXERCÍCIOS

    1) Calcular:

    a) 41 d) 34 g) 24−

    b) 40 e) ( )24− h)2

    2

    3

    c) 24 f) ( )34− i) 2

    2

    3

    − −

    2) Calcular:

    a) ( )2 24 3− −

    b) 3

    41 1010

    − ⋅

    c) 2 2

    2 3

    3 2

    ⋅ −

    5.2. Definições

    Considere, por exemplo, a potência 25, que é 32.

    Observe que, ao diminuirmos de 1(uma) unidade o expoente, o valor da potência fica

    dividido por 2, que é o valor da base. Veja:

    52 32= , 42 16= , 32 8= , 22 4=

    Continuando-se o raciocínio anterior, vem:

    12 2= , 02 1= , 11

    22

    − = , 21

    24

    − = e assim por diante.

    Tais resultados sugerem as definições:

    1a a= 0a 1= n

    n

    n

    1 1a ,a 0

    a a

    − = = ≠

    Exemplo 3

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 48

    a) 13 3= e) 2 21 1

    33 9

    − = =

    b) ( )13 3− = − f) 3 31 1

    33 27

    − = =

    c) 03 1= g) ( ) ( )2

    2

    1 13

    93

    −− = =

    d) ( )03 1− = h) ( ) ( )3

    3

    1 13

    273

    −− = = −

    Exemplo 4

    Calcular:

    a) 41− b)

    22

    3

    c)

    22

    3

    − −

    d) 2 22 2−⋅

    Solução:

    a) 44

    11 1

    1

    − = =

    b)

    2 22 3 9

    3 2 4

    − = =

    c)

    2 22 3 9

    3 2 4

    − − = − =

    d) 2 2 22

    12 2 2 1

    2

    −⋅ = ⋅ =

    EXERCÍCIOS

    3) Calcular:

    a) 15 d) ( )15− g) 1

    1

    5

    j)

    23

    4

    b) 05 e) ( )05− h) 0

    1

    5

    k)

    23

    4

    − −

    c) 15− f) ( ) 15 −− i) 1

    1

    5

    l)

    23

    4

    − − −

    4) Calcular:

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 49

    a)

    1

    1 122

    −−

    +

    b)

    2 12 1

    3 3

    − − − −

    5) Calcular o valor de ( ) 11 1x y −− −+ , sabendo que x = 0,1 e y = 0,9.

    5.3. Simplificação de expressões

    Numa expressão numérica com parêntesis ( ), colchetes [ ] e chaves { }, efetuamos

    inicialmente as operações que estão entre parênteses, depois as que estão entre colchetes e por

    fim aquelas que estão entre chaves, obedecendo à seguinte ordem de cáculo:

    1) as potenciações; 2) as multiplicações ou divisões na ordem em que aparecem; 3) as adições ou subtrações na ordem em que aparecem.

    Exemplo 5

    Simplificar a expressão:

    ( ){ }2 1 2 2 0 23 x 4 6 : 2 7 3 + − +

    Solução:

    Efetuando as operações entre parênteses na ordem dada:

    ( ){ }( ){ }

    { }

    2 1 2

    2 1 2

    2 1 2

    3 x 4 36 : 4 1 3

    3 x 4 9 1 3

    3 x 4 8 3

    + − +

    = + − +

    = + +

    Efetuando as operações entre colchetes na ordem dada:

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 50

    [ ]{ }{ }

    2 2

    2 2

    3 x 4 8 3

    3 x12 3

    + +

    = +

    Efetuando as operações entre chaves na ordem dada:

    { } 22

    9x12 3

    108 3

    108 9

    117

    +

    = +

    = +

    =

    EXERCÍCIOS

    6) Calcular:

    a) ( ){ }2 0 320 : 3 2 2 :8 1 + + − b) ( ){ }1 4 0 1 13 1 2 2 : 2− − − + − − c) ( ){ }2 1 3 010 x 10 : 6 :3 2 : 2− +

    5.4. Propriedades das potências

    Observe os cálculos:

    ( ) ( )( )

    ( )( )4 2 4 2A 2 2 2 2 2 2 2 2 2 B

    4 2 fatores

    +⋅ = ⋅ ⋅ ⋅ ⋅ =

    +�������

    ( )4

    2

    22A

    2=

    2⋅( )2 22

    ⋅ ⋅

    2⋅( ) ( )( )4 2

    4 2fatores

    2 2 2 B−

    = ⋅ =

    ( ) ( ) ( ) ( )( )

    ( )2

    4 4.2A 2 2 2 2 2 2 2 2 2 2 B

    4.2 fatores

    = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =���������

    ( ) ( )2 2

    2

    2 2 2 2 2 2A B

    3 3 3 3 3 3

    ⋅ = ⋅ = = ⋅

    ( ) ( ) ( )( ) ( )2 2 2A 2 3 2 3 2 3 2 2 3 3 2 3 B⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 51

    Imprimiremos maior rapidez aos cálculos se passarmos diretamente do estágio (A) para o

    estágio (B) e vice-versa. Tal passagem é garantida pelas chamadas propriedades das potências.

    Para todo a∈ℝ , b∈ℝ , m e n inteiros, prova-se:

    ( )

    ( )

    m n m n

    mm n

    n

    nm m n

    m m

    m

    m m m

    P1. a a a

    aP2. a , a 0

    a

    P3. a a

    a aP4. , b 0

    b b

    P5. a b a b

    +

    ⋅ =

    = ≠

    =

    = ≠

    ⋅ = ⋅

    Exemplo 6

    a) 7 3 7 3 102 2 2 2+⋅ = = (P1) b) ( )

    7 3 27 3 2 82 2 2 2 2+ + −−⋅ ⋅ = = (P1)

    c) 7 3 7 3 42 : 2 2 2−= = (P2)

    d) ( )35 152 2= (P3)

    e)

    4 4

    4

    2 2

    3 3

    =

    (P4)

    f) ( )3 3 32 5 2 5⋅ = ⋅ (P5) Exemplo 7

    1. Calcular:

    a) ( )23 7

    18

    5 5

    5

    ⋅ b)

    4

    43 55

    c) ( )31 7

    10

    10 10

    10

    − −

    Solução:

    a) ( ) ( )2 23 7 10 20

    2

    18 18 18

    5 5 5 55 25

    5 5 5

    ⋅= = = =

    b)

    4 44 4 4

    4

    3 35 5 3 81

    5 5

    ⋅ = ⋅ = =

    c) ( ) ( )

    31 7 3 7 10

    10 10 0

    10 10 10

    10 10 10 10 1010 10 1

    10 10 10

    − − − − −− − −

    − − −

    ⋅ ⋅= = = = =

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 52

    2. Calcular:

    a) ( )1

    20,01−

    b)

    1

    4 139

    − ⋅

    c) 323

    Solução:

    a) ( ) ( )1 1

    11 2 22 122

    2

    1 10,01 10 10 10

    100 10

    − −−− − = = = = =

    b) ( )1 1

    14 4 4 2 4 2 6

    2

    1 13 3 3 3 3 3 3 729

    9 3

    − −−− ⋅ = ⋅ = ⋅ = ⋅ = =

    c) ( )33 22 83 3 3 6561= = =

    OBSERVAÇÕES

    1) ( )2 24 42 2≠ , pois ( )2

    2 44 162 2 2= = e ( )24 82 2= 2) ( )2 2 22 3 2 3+ ≠ + , pois ( )2 22 3 5 25+ = = e 2 22 3 4 9 13+ = + =

    EXERCÍCIOS

    7) Transformar cada expressão abaixo numa única potência de base 2.

    a) 5 4 22 2 2−⋅ ⋅ d) 48

    b) 62

    2 e) 4 28 : 2−

    c) ( )432 f) 3

    3 18 :2

    −−

    8) Transformar cada expressão abaixo em uma única potência de base 10.

    a) 310 100⋅ c) 200

    500 110100

    − ⋅

    b) ( )2 3100 :10 d) 2310

    9) Calcular o valor de cada expressão.

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 53

    a) ( )2 20,001 100

    0,1

    b) ( )231000 0,001⋅

    10) A expressão ( )1992005 0,2⋅ é equivalente a:

    a) 5 d) 1

    10

    b) 10 e) 100

    c) 1

    5

    11) Assinalar V (verdadeira) ou F (falsa)

    a) 3 4 122 2 4⋅ = ( ) b) 2 2 45 5 5+ = ( ) c) 8 4 210 :10 10= ( )

    d) ( )32 610 10= ( ) e)

    32 810 10= ( ) 12) Assinalar V (verdadeira) ou F (falsa)

    a) x 3 x2 8 2+ = ⋅ ( )

    b) x

    x 1 222

    − = ( )

    c) ( )3 32x 8x= ( )

    13) Se 62,4 a= e 72,4 b= , então 132,4 é igual a:

    a) a + b d) a – b

    b) a ⋅ b e) 42

    c) 6a + 7b

    5.5. Equações exponenciais

    Sendo b > 0 e b 1≠ , tem-se 1 2x x 1 2b b x x= ⇔ =

    Exemplo 8

    x 52 2 x 5= ⇔ =

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 54

    Exemplo 9

    Resolver em ℝ

    a) 2x 1 73 3− =

    Solução:

    Sendo 3 > 0 e 3 1≠ , temos que:

    2x 1 7 2x 8 x 4− = ∴ = ∴ =

    Logo: S = {4}

    b)

    x 3 21 1 1

    2 2 2

    = ⋅

    Solução:

    x 51 1

    2 2

    =

    Sendo 1

    02

    > e 1

    12

    ≠ , temos que x = 5.

    Logo: S = {5}

    c) x9 9 27⋅ = Solução:

    ( )1 x1 x 2 3 2 2x 3 19 27 3 3 3 3 2 2x 3 x2

    ++ += ∴ = ∴ = ∴ + = ∴ =

    Logo: S = 1

    2

    d) 2x

    13

    3

    −=

    Solução:

    2 x 2

    x

    13 3 3

    3

    − − −= ⇔ =

    Sendo 3 > 0 e 3 1≠ , temos que:

    x 2 x 2− = − ∴ =

    Logo: S = { }2

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 55

    OBSERVAÇÃO

    Se a base for zero, um ou negativa, não se poderá concluir a igualdade entre os

    expoentes. De fato:

    1) 4 71 1= e no entanto 4 7≠ 2) 3 50 0= e no entanto 3 5≠

    3) ( ) ( )2 41 1− = − e no entanto 2 4≠

    EXERCÍCIOS

    14) Resolver em ℝ

    a) x 35 5= f) x1

    93

    =

    b) x 35 5− = g) x3 3 27= ⋅

    c) x5 25= h) x8 8 4⋅ =

    d) x25 125= i) x 1 x3 6 3 27+ + ⋅ =

    e)

    x1

    55

    − =

    j) 2x 2x 22 4 −=

    5.6. Notação científica

    Todo número N, não nulo, pode ser representado numa das formas:

    mN a 10= ⋅ ou mN a 10= − ⋅

    ( )1 a 10≤ ≤ e ( )m∈ℤ conforme N seja positivo ou negativo, respectivamente. Essa forma de se escrever um número é

    chamada de notação científica e é bastante utilizada na Química, Física, Matemática, etc.

    Por exemplo, os números 3 ⋅ 107 e -3 ⋅ 107 estão em notação científica.

    Para se escrever um número em notação científica, devem-se observar as seguintes

    propriedades:

    1) Multiplicar um número por p10 , p > 0, é o mesmo que deslocar a vírgula para a direita de p “casas” decimais. Se p é negativo, desloca-se a vírgula para a esquerda.

    Assim:

    a) 40,00037 10 3,7⋅ =

    b) 32500 10 2,5−⋅ =

    2) O valor de um número não se altera ao ser multiplicado por p p10 10−⋅ . De fato: p p 010 10 10 1−⋅ = = .

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 56

    As duas propriedades acima permitem escrever um número em sua notação científica.

    Exemplo 10

    a) 6 6 65000000 5000000 10 10 5 10−= ⋅ ⋅ = ⋅ b) 5 5 5170000 170000 10 10 1,7 10−= ⋅ ⋅ = ⋅

    c) 4 4 460200 60200 10 10 6,02 10−− = − ⋅ ⋅ = − ⋅

    d) 4 4 40,00032 0,00032 10 10 3,2 10− −= ⋅ ⋅ = ⋅

    EXERCÍCIOS

    15) Escrever em notação científica os números

    a) 230 e) 8000

    b) 23 f) 8237

    c) 2 g) -354,2

    d) 0,2 h) 0,01

    16) A carga de um elétron é 0,0000000000000000016 C. Escreva este número em notação científica.

    17) A vida na terra existe há aproximadamente 10 bilhões de anos. Escreva este número em notação científica.

    5.7. Resumo

    DEFINIÇÕES OBSERVAÇÕES

    b , n∈ ∈ℝ ℕ

    1) n

    n fatores

    b b b b ... b , n 2= ⋅ ⋅ ≥�����

    2) 1b b=

    3) 0b 1=

    4)

    n

    n

    n

    1 1b , b 0

    b b

    − = = ≠

    1) ( )22 4− =

    2) 22 4− = −

    3) a) ( )n1 1− = , se n é par

    b) ( )n1 1− = , se n é ímpar

    PROPRIEDADES OBSERVAÇÕES

    A , b , m e n int eiros∈ ∈ℝ ℝ

    1) 2 22 3 13+ =

    2) ( )22 3 25+ =

    3) ( )25 103 3=

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 57

    ( )

    ( )

    m n m n

    mm n

    n

    nm m n

    m m

    m

    m m m

    P1. a a a

    aP2. a , a 0

    a

    P3. a a

    a aP4. , b 0

    b b

    P5. a b a b

    +

    ⋅ =

    = ≠

    =

    = ≠

    ⋅ = ⋅

    4) 25 253 3=

    EQUAÇÃO EXPONENCIAL OBSERVAÇÃO

    b 0, b 1> ≠

    1 2x x

    1 2b b x x= ⇔ =

    Se a base for zero, um ou negativa, nada

    se poderá concluir.

    NOTAÇÃO CIENTÍFICA

    mN a 10= ⋅ ou mN a 10= − ⋅

    ( )1 a 10≤ < e ( )m∈ℤ

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 58

    6. Radiciação

    6.1. Introdução

    Consideremos o seguinte problema:

    Qual é a medida do lado de um quadrado com 5 cm2 de área?

    Para resolvermos esse problema, vamos supor que a medida do lado do quadrado seja x

    (x>0).

    x

    x x

    x

    A área desse quadrado é dada por x2, e pelo enunciado devemos ter:

    2x 5=

    Nessas condições, o problema estará resolvido somente quando determinarmos o valor

    positivo de x que torne verdadeira a sentença x2 = 5.

    O número x, não negativo, cujo quadrado é igual a 5, será indicado por 2 5 , que deve ser

    lido: “raiz quadrada de cinco”. Assim,

    2x 5=

    Portanto, o lado do quadrado mede 2 5 cm.

    6.2. Generalização

    Suponhamos a sentença xn=a onde n ∗∈ℕ e a 0≥ . O valor não negativo que satisfaz tal

    igualdade será indicado por n a e deve ser lido: “raiz enésima de a”. Adotaremos a seguinte

    nomenclatura para o novo símbolo apresentado:

    n a é o radical

    n é o índice do radical

    a é o radicando

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 59

    Exemplos

    Leitura Radical Índice Radicando

    5 4 Raiz quinta de

    quatro 5 4 5 4

    3 8 Raiz terceira ou

    Raiz cúbica de oito 3 8 3 8

    2 9

    Raiz segunda ou

    Raiz quadrada de

    nove

    2 9 2 9

    Observação

    Devido à raiz quadrada de um número não negativo a, isto é, 2 a , ser utilizada com muita

    freqüência, é comum denotá-la simplesmente, por a , suprimindo-se por comodidade, o índice 2.

    6.3. Definição

    Sendo a 0≥ e n ∗∈ℕ , tem-se:

    nn a b b a= ⇔ = e b 0≥

    onde b é um número real chamado raiz enésima de a.

    Exemplo 1

    Usando a definição temos:

    a) 9 3= , pois 23 9= e 3 0≥

    b) 3 64 4= , pois 34 64= e 4 0≥

    c) 4 16 2= , pois 42 16= e 2 0≥

    d) 1 7 7= , pois 17 7= e 7 0≥

    e) 4 2

    9 3= , pois

    22 4

    3 9

    =

    e 2

    03

    Exemplo 2

    O volume de um cubo de aresta x é dado por x3.

    x

    x

    x

  • ............................................................. Centro Federal de Educação Tecnológica de Minas Gerais. Campus VIII - Varginha

    Curso Pro-Técnico - Disciplina: Matemática - Professores Antônio José B. Bottion e Paulo Henrique C. Pereira 60

    Calcular a medida da aresta de