elasticidade jusciane da costa e silva mossoró, março de 2010 universidade federal rural do...

Post on 17-Apr-2015

110 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Elasticidade

Jusciane da Costa e Silva

Mossoró, Março de 2010

Universidade Federal Ruraldo Semiarido - UFERSA

Sumário Elasticidade

Tensão e Deformação de Dilatação

Tensão e Deformação de Compressão

Tensão e Deformação Volumétrico

Tensão e Deformação de Cisalhamento

Elasticidade e Praticidade

O que é Elasticidade ?

ELASTICIDADE

Consideremos um bloco de massa m preso a uma mola.

kxF

xF

Essa força é de natureza Restauradora.

ELASTICIDADE

Relação entre as forças e as deformações para vários casos.

Introduziremos uma grandeza chamada TENSÃO (T) – Força por unidade de área e a DEFORMAÇÃO (x) descreve a deformação resultante do objeto.

A tensão caracteriza intensidade das forças que produzem:

Dilatação,

Compressão

Torção.

A

FT

ELASTICIDADE

Tensão e deformação são suficientemente pequenas.

A constante de proporcionalidade entre tensão e deformação denomina-se LEI DE HOOKE.

S.I: Newton/metro (N/m)

)( kdeelásticidademódulodeformação

Tensão

x

T

ELASTICIDADE

Dilatação

DILATAÇÃO

Porque fios de energia dos postes não são muito esticados?

Consideremos um objeto cuja seção reta possui área A e comprimento L0, submetido a forças iguais e contrárias F nas extremidades.

Dizemos que o objeto esta submetido a uma tensão de Dilatação.

DILATAÇÃO LINEAR

Tensão de dilatação

A unidade de tensão no SI é o Pascal (Pa).

O comprimento da barra agora é

A dilatação ocorre em todas as partes da barra, nas mesmas proporções.

A

FT

LLL 0

DILATAÇÃO LINEAR

A deformação de Dilatação é a fração da variação do comprimento definida como a razão entre a dilatação e o comprimento original

Adimensional.

Para uma tensão de dilatação suficientemente pequena, a tensão e a deformação são proporcionais. O módulo de elasticidade correspondente denomina-se MÓDULO DE YOUNG (Y)

Y tem unidade de tensão.

00

0 L

L

L

LLdilataçãodeDeformação

LA

FL

LL

AF

dilataçãodeformação

dilataçãoTensãoY

0

0/

/

DILATAÇÃO LINEAR

Alguns valores típicos de Young são mostrado abaixo.

Um material com Y elevado é relativamente não deformável: é necessário exercer uma tensão elevada para obter uma dada deformação. Mais fácil deformar a borracha (5x108 Pa) do que o aço (20x1010 Pa).

DILATAÇÃO LINEAR

Quando as forças na extremidade é de empurrar, em vez de puxar, a mola é submetida a uma COMPRESSÃO

A Tensão e deformação do sistema serão TENSÃO E DEFORMAÇÃO DE COMPRESSÃO.

COMPRESSÃO

A deformação de compressão de um objeto submetido a uma compressão é definida do mesmo modo que a deformação de dilatação, porém L terá sentido contrário.

COMPRESSÃO

A lei de Hooke e o módulo de Young são válidas tanto para compressão quanto para dilatação desde que a tensão de compressão não seja muito elevada.

A água exerce uma pressão aproximadamente uniforme sobre a superfície que comprime.

DILATAÇÃO VOLUMÉTRICA

A tensão é uma pressão uniforme em todas as direções, e a deformação resultante é uma variação no volume.

DILATAÇÃO VOLUMÉTRICA

Consideremos um objeto imerso num fluido em repouso, o fluido exercerá uma força sobre todas as partes do objeto. A força ortogonal F por unidade de área que o fluido exerce sobre a superfície do objeto é denominado PRESSÃO do fluido.

DILATAÇÃO VOLUMÉTRICA

A

FP

A pressão do fluido aumenta com a profundidade.

A pressão desempenha o papel da tensão em uma deformação volumétrica.

DILATAÇÃO VOLUMÉTRICA

V

Vavolumétricdeformação

O módulo de elasticidade correspondente (razão entre tensão e a deformação) denomina-se MÓDULO DE COMPRESSÃO (B)

0/

VV

P

avolumétricdeformação

avolumétrictensãoB

O sinal negativo significa que a pressão sempre produz uma diminuição do volume.

Para pequenas variações de pressão em um sólido ou em um líquido, consideremos B constante. A tabela abaixo mostra alguns valores do módulo de compressão para alguns materiais.

DILATAÇÃO VOLUMÉTRICA

O inverso do módulo de compressão denomina-se COMPRESSIBILIDADE

DILATAÇÃO VOLUMÉTRICA

0

1

PV

V

BK

Valores de compressibilidade

Materiais com módulos de compressão pequenos ou compressibilidades elevadas podem ser comprimidos facilmente.

Uma terceira situação envolvendo uma relação de TENSÃO – DEFORMAÇÃO denomina-se CISALHAMENTO.

CISALHAMENTO

Consideremos um corpo que está sendo deformado por uma tensão de cisalhamento. Forças iguais, mas direções contrárias atuam tangencialmente as superfícies das extremidades opostas do objeto.

CISALHAMENTO

Tensão de Cisalhamento

Uma face do objeto está sob tensão de cisalhamento e é deslocada por uma distância x em relação a face oposta. Logo a deformação de cisalhamento será

CISALHAMENTO

A

FT ||

h

xcisalhodeformação de

Numa situação real x é muito menor que h.

Quando as forças são suficientemente pequenas (validade da lei de Hooke) à deformação de cisalhamento é proporcional à tensão de cisalhamento. O módulo de elasticidade correspondente denomina-se módulo de cisalhamento (S)

CISALHAMENTO

Ax

Fh

hx

AF

tocisalhamendeformação

tocisalhamentensãoS

/

/

Somente em sólidos se aplica a tensão de cisalhamento, pois depois volta a sua forma original.

Alguns valores do módulo de cisalhamento

CISALHAMENTO

A lei de Hooke que relaciona tensão e a deformação em deformações elásticas, possui um limite de validade.

Mas quais são os limites efetivos para aplicação da lei de Hooke? Sabemos que se puxarmos, comprimirmos ou torcermos qualquer objeto com força suficiente, ele pode se encurvar ou quebrar.

ELASTICIDADE E PLASTICIDADE

Examinando novamente a tensão e deformação de dilatação, se fizermos um gráfico da tensão em função da deformação, se a lei de Hooke é obedecida, o gráfico consiste em uma linha reta.

Gráfico tensão x deformação para o cobre e o ferro doce.

ELASTICIDADE E PLASTICIDADE

O primeiro trecho é uma linha reta, indicando que a lei de Hooke é válida com a tensão diretamente proporcional à deformação, Limite de Proporcionalidade.

De a até b a tensão e deformação não são proporcionais, e a lei de Hooke não é obedecida. Caso a tensão seja removida gradualmente, o material retorna ao seu comprimento inicial. A deformação é reversível, e as forças são conservativas; a energia fornecida ao material para produzir a deformação é recuperada quando removermos a tensão. Na região Ob dizemos que o material possui um comportamento elástico. O ponto b, ponto final dessa região, chama-se Ponto de Ruptura, a tensão neste ponto atingiu o chamado Limite Elástico.

ELASTICIDADE E PLASTICIDADE

Quando aumentamos a tensão acima do ponto b, a deformação contínua a crescer. Porém agora quando removermos a carga em algum ponto posterior a b, digamos num ponto c, o material não mais retorna ao seu comprimento original.

O comprimento correspondente a uma tensão nula é agora maior que o comprimento original, o material sofreu uma deformação irreversível e adquiriu uma deformação permanente.

ELASTICIDADE E PLASTICIDADE

Um aumento da tensão acima do ponto c produz um grande aumento da deformação para um aumento da deformação para um aumento relativamente pequeno da tensão, até atingir o ponto d, no qual ocorre a FRATURA do material. O comportamento do material no intervalo entre b e d chama-se Escoamento Plástico ou Deformação Plástica. Uma deformação plástica é irreversível, quando a tensão é removida, o material não volta a seu estado inicial.

ELASTICIDADE E PLASTICIDADE

ELASTICIDADE E PLASTICIDADE

Quando uma grande deformação plástica ocorre entre o limite de elasticidade e o ponto de fratura, dizemos que esse material é DUCTIL. Ex: Fio de ferro, deforma mas não quebra.

No entanto quando a fratura ocorre imediatamente após ultrapassar o limite de elasticidade, o material é QUEBRADIÇO. Ex: Fio de aço do piano que rompe ao ultrapassar o limite elástico.

A tensão necessária para produzir a fratura real de um material denomina-se Tensão de Fratura ou limite de rigidez.

Dois materiais, como dois tipo de aço, podem possuir constantes elásticas muito semelhantes, porém tensões de fratura muito diferentes. A tabela abaixo nos mostra alguns valores típicos da tensão de fratura para diversos materiais submetidos a tensões.

ELASTICIDADE E PLASTICIDADE

Observemos o gráfico da tensão versus deformação para a borracha vulcanizada que foi esticada até 7x seu comprimento original.

ELASTICIDADE E PLASTICIDADE

A tensão não é proporcional a deformação, mas o comportamento é elástico porque quando a tensão é removida o material retorna ao seu comprimento original. Contudo, quando aumentamos a tensão, o material segue uma curva diferente da curva que é seguida quando se diminui a tensão. Esse caso denomina-se HISTERESE ELÁSTICA.

top related