alteraÇÕes do complexo dentina-polpa em cÁrie...

41
UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA Jessica Montenegro Fonseca ALTERAÇÕES DO COMPLEXO DENTINA-POLPA EM CÁRIE CONVENCIONAL E CÁRIE RELACIONADA À RADIAÇÃO: UM ESTUDO COMPARATIVO. DENTIN-PULP COMPLEX REACTIONS IN CONVENTIONAL AND RADIATION- RELATED CARIES: A COMPARATIVE STUDY. Piracicaba 2017

Upload: others

Post on 02-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • UNIVERSIDADE ESTADUAL DE CAMPINAS

    FACULDADE DE ODONTOLOGIA DE PIRACICABA

    Jessica Montenegro Fonseca

    ALTERAÇÕES DO COMPLEXO DENTINA-POLPA EM CÁRIE CONVENCIONAL

    E CÁRIE RELACIONADA À RADIAÇÃO: UM ESTUDO COMPARATIVO.

    DENTIN-PULP COMPLEX REACTIONS IN CONVENTIONAL AND RADIATION-

    RELATED CARIES: A COMPARATIVE STUDY.

    Piracicaba

    2017

  • Jessica Montenegro Fonseca

    ALTERAÇÕES DO COMPLEXO DENTINA- POLPA EM CÁRIE CONVENCIONAL

    E CÁRIE RELACIONADA À RADIAÇÃO: UM ESTUDO COMPARATIVO.

    DENTIN-PULP COMPLEX REACTIONS IN CONVENTIONAL AND RADIATION-

    RELATED CARIES: A COMPARATIVE STUDY.

    Dissertação apresentada à Faculdade de

    Odontologia de Piracicaba da Universidade

    Estadual de Campinas como parte dos

    requisitos exigidos para a obtenção do título de

    Mestra em Estomatopatologia, na Área de

    Estomatologia.

    Dissertation presented to the Piracicaba Dental

    School of the University of Campinas in

    partial fulfilment of the requirements for the

    degree of Master in Pathology, in Stomatology

    area.

    Orientador: Prof. Dr. Mario Fernando De Goes

    Coorientador: Prof. Dr. Alan Roger Dos Santos Silva

    ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA JESSICA MONTENEGRO FONSECA E ORIENTADA PELO PROFº. DRº MARIO FERNANDO DE GOES.

    Piracicaba

    2017

  • Agência(s) de fomento e nº(s) de processo(s): CAPES, 758/2012

    ORCID: http://orcid.org/0000-0002-1217-7298

    Ficha catalográfica

    Universidade Estadual de Campinas

    Biblioteca da Faculdade de Odontologia de Piracicaba

    Marilene Girello - CRB 8/6159

    Fonseca, Jessica Montenegro, 1991-

    F733a Alterações do complexo dentina-polpa em cárie convencional e cárie

    relacionada à radiação : um estudo comparativo / Jessica Montenegro

    Fonseca. – Piracicaba, SP : [s.n.], 2017.

    Orientador: Mario Fernando de Goes.

    Coorientador: Alan Roger dos Santos Silva.

    Dissertação (mestrado) – Universidade Estadual de Campinas, Faculdade

    de Odontologia de Piracicaba.

    1. Câncer. 2. Radioterapia. 3. Cárie dentária. 4. Dentes. 5. Polpa dentária.

    I. Goes, Mario Fernando de,1954-. II. Santos-Silva, Alan Roger,1981-. III.

    Universidade Estadual de Campinas. Faculdade de Odontologia de Piracicaba.

    IV. Título.

    Informações para Biblioteca Digital

    Título em outro idioma: Dentin-pulp complex reactions in conventional and radiation-

    related caries : a comparative study

    Palavras-chave em inglês:

    Cancer

    Radiotherapy

    Dental caries

    Teeth

    Dental pulp

    Área de concentração: Estomatologia

    Titulação: Mestra em Estomatopatologia

    Banca examinadora:

    Alan Roger dos Santos Silva [Coorientador]

    José Flávio Affonso de Almeida

    Karina Morais Faria

    Data de defesa: 17-07-2017

    Programa de Pós-Graduação: Estomatopatologia

  • UNIVERSIDADE ESTADUAL DE CAMPINAS

    FACULDADE DE ODONTOLOGIA DE

    PIRACICABA

    A Comissão Julgadora dos trabalhos de Defesa de Dissertação de Mestrado, em sessão

    pública realizada em 17 de Julho de 2017, considerou a candidata JESSICA MONTENEGRO

    FONSECA aprovada.

    PROF. DR. ALAN ROGER DOS SANTOS SILVA

    PROFª. DRª. KARINA MORAIS FARIA

    PROF. DR. JOSÉ FLÁVIO AFFONSO DE ALMEIDA

    A Ata da defesa com as respectivas assinaturas dos membros encontra-se no processo de vida

    acadêmica do aluno.

  • DEDICATÓRIA

    Dedico este trabalho aos meus pais Jane Montenegro Fonsêca e Ruy Leal Fonsêca,

    que por amor e altruísmo abdicaram dos próprios caminhos, para acompanhar-me nos meus;

    À minhas irmãs, Taís Montenegro Fonsêca e Elaine Montenegro Fonsêca por igual

    apoio.

  • AGRADECIMENTOS

    À Deus por sua presença em mim, todos os dias, na forma de fé, dando- me saúde e

    força para superar as dificuldades;

    À Universidade Estadual de Campinas, na pessoa do Magnífico Reitor, Prof. Dr.

    Marcelo Knobel;

    À Faculdade de Odontologia de Piracicaba, na pessoa do seu Diretor Prof. Dr.

    Guilherme Elias Pessanha Henriques, e seu Diretor Associado, Prof. Dr. Francisco Haiter

    Neto;

    Ao Professor Doutor Márcio Ajudarte Lopes, coordenador do Programa de Pós

    Graduação em Estomatopatologia, pela atenção com cada um dos alunos do programa e por

    todas as oportunidades cedidas;

    Ao Professor Doutor Alan Roger dos Santos Silva, pela orientação acadêmica e

    profissional e por todo o cuidado e atenção do início ao fim do meu mestrado, sempre

    incentivando a criar novos conhecimentos e sendo exemplo de ética e profissionalismo;

    Aos Professores Doutores, Oslei Paes de Almeida, Pablo Agustin Vargas, Jacks Jorge

    Júnior, Edgard Graner e Ricardo Della Coletta, da Área de Patologia da Faculdade de

    Odontologia de Piracicaba, pelo apoio, dedicação e oportunidades de aprendizado;

    Aos profissionais do OROCENTRO, em especial ao Rogério de Andrade Elias,

    Elisabete, Maria Aparecida Campion, Daniele Cristina Castelli Morelli, pelo apoio, bom

    convívio e aprendizado profissional;

    Aos profissionais do Laboratório de Patologia Oral, da Faculdade de Odontologia de

    Piracicaba, em especial ao Adriano Luís e Fabiana Casarotti, por todo suporte, atenção e

    também pelo aprendizado;

    À Thaís Bianca Brandão, chefe do serviço de Odontologia Oncológica do Instituto do

    Câncer do Estado de São Paulo (ICESP) por ter cedido o material biológico que viabilizou a

    execução desta Dissertação e por todo o suporte que tem oferecido ao Programa de Pós

    Graduação em Estomatopatologia da FOP - UNICAMP;

    À Fundação Brasileira de Coordenação de Aperfeiçoamento de Pessoal de Nível

    Superior (CAPES) pelo apoio financeiro, através da concessão da bolsa de mestrado no

    período de Agosto de 2015 à Julho de 2017;

    À professora Doutora Águida Cristina Gomes Henriques Leitão, minha orientadora de

    iniciação científica, pelo apoio e incentivo contínuo desde a minha graduação até hoje;

  • Aos colegas Wagner Gomes, Mariana Paglioni e Karina Morais pela colaboração na

    minha pesquisa e nos experimentos;

    À minha turma de mestrado, Gleyson Amaral, Natália Palmier, Rodrigo Soares, Lígia

    Miyahara e Camila Weissheimer pela amizade, união, cumplicidade e por todo o apoio

    profissional e pessoal;

    Aos meus companheiros de moradia Daniel Chan, Lara Caponi, Lucas Del Vigna,

    Thaís Tavares, Jordana Carvalho, Rebeca Barros e Bruno Mariz pela irmandade e carinho

    durante toda a minha estadia em Piracicaba, facilitando a minha jornada longe de casa;

    Por fim a todos os meus colegas e amigos da Faculdade de Odontologia, pelo bom

    convívio, troca de experiências e apoio durante o período do meu mestrado.

  • EPÍGRAFE

    “Sempre que houver alternativas, tenha cuidado. Não opte pelo conveniente, pelo

    confortável, pelo respeitável, pelo socialmente aceitável, pelo honroso.

    Opte pelo que faz o seu coração vibrar. Opte pelo que gostaria de fazer, apesar de todas as

    consequências.”

    (Osho)

  • RESUMO

    Os carcinomas espinocelulares de cabeça e pescoço são diagnosticados

    predominantemente em estadios clínicos avançados da doença e, consequentemente, tratados

    por meio de protocolos multimodalidade, incluindo quimiorradioterapia (QRDT). Apesar dos

    avanços tecnológicos, protocolos contemporâneos de radioterapia (RDT) atingem, além do

    tumor primário, tecidos sadios adjacentes ao tumor, gerando toxicidades agudas e crônicas em

    pele, mucosas, glândulas salivares, ossos e dentes, entre outros. A cárie relacionada à

    radioterapia (CRR) é uma toxidade crônica que afeta aproximadamente 25% dos pacientes

    submetidos à RDT na região de cabeça e pescoço, podendo gerar destruição generalizada dos

    dentes, perda de eficiência mastigatória, infecção crônica e risco aumentado para o

    desenvolvimento da osteorradionecrose. A inclusão dos dentes no campo de radiação dos

    tumores de cabeça e pescoço (CCPs) sugere que a CRR resulta da destruição radiogênica do

    esmalte, da junção amelodentinária e do complexo dentina-polpa. Desta forma, é imperioso

    compreender se sua patogênese é consequência direta ou indireta da RDT. O objetivo deste

    estudo foi comparar padrões microscópicos de resposta do complexo dentina-polpa à

    progressão da cárie convencional e da CRR a fim de testar a hipótese de que a RDT é capaz

    de modificar diretamente as respostas micromorfológicas do complexo dentina-polpa à

    progressão da CRR. Foram utilizados 22 dentes extraídos de pacientes com CCPs, divididos

    entre grupo controle (cárie convencional) e grupo estudo (CRR). Os espécimes dos dois

    grupos foram pareados por grupo anatômico dental, padrões clínicos de progressão da cárie

    [“Post-Radiation Dental Index” (PRDI)] e profundidade de invasão microscópica das lesões de cárie.

    As amostras foram desmineralizadas e analisadas por meio da microscopia de luz óptica e da

    histomorfometria a fim de investigar a hierarquia tecidual da polpa e padrões microscópicos

    da resposta do complexo dentina-polpa à progressão da cárie. Todos os eventos avaliados

    neste estudo foram semelhantes entre os grupos, incluindo PRDI (CRR=3.8 vs. controle=3.2),

    profundidade de invasão microscópica (CRR=1,056.89 μm vs. controle=1,158.58 μm; p=

    0.79), evidência de fibrose pulpar (p=0.9), calcificação pulpar (p=0.34), necrose pulpar

    (p=1.0), inflamação pulpar (p= 0.28) e deposição de dentina reacional (p=0.28). Em

    conclusão, o presente estudo identificou preservação da hierarquia tecidual da polpa em

    ambos os grupos, rejeitando a hipótese de que a RDT é capaz de modificar diretamente as

    respostas micromorfológicas do complexo dentina-polpa à progressão da CRR.

    Palavras-chave: Câncer; Radioterapia, Cárie Relacionada à Radiação, Dentes, Polpa

  • ABSTRACT

    Head and neck squamous cell carcinomas are mainly diagnosed in late stages, which

    consequently increases the necessity for multimodality treatment protocols, such as

    chemoradiotherapy (CRT). Although the technological improvement in radiotherapy (RT)

    treatment protocols, radiation still damage not only the tumour site but also adjacent healthy

    tissues leading to the development of acute and chronic toxicities on the skin and mucosal

    tissues, salivary glands, bones, teeth, among others. Radiation-related caries (RRC) is a

    chronic toxicity that affects about 25% of the patients who have undergone head and neck RT

    (HNRT), and it can lead to generalized tooth breakdown, loss of masticatory efficiency,

    recurrent infections and increased risk for the development of osteoradionecrosis. The

    inclusion of the teeth inside the radiation field of head and neck tumours (HNC) suggests that

    RRC results of a radiogenic destruction of enamel, dentin-enamel junction (DEJ) and dentin-

    pulp complex. Therefore, it`s of great importance to further understand if it’s the direct or

    indirect influence of RT on the pathogenesis of RRC. The aim of the present study was to

    compare microscopic patterns of the dentin-pulp complex response to the progression of

    conventional caries lesions and RRC, testing the null hypothesis that the RT is able to directly

    modify the micromorphological response of the dentin-pulp complex facing RRC

    progression. Twenty-two teeth extracted from HNC patients were divided into control

    (conventional caries) and study (RRC) groups. The samples from both groups were paired

    matched by anatomic dental group, clinical patterns of caries progression [“Post-Radiation

    Dental Index” (PRDI)] and depth of microscopic invasion of caries lesions. Samples were

    demineralized and analysed by means of light microscopy and histomorphometry in order to

    investigate the pulp tissue hierarchy and microscopic patterns of the dentin-pulp complex

    response to caries. The results found in the present study were similar between the groups,

    including PRDI (Control= 3.2 vs RRC= 3.8), depth of microscopic invasion (Control=

    1,158.58 μm vs RRC= 1,056.89 μm; p=0.79), pulp fibrosis evidence (p=0.9), pulp

    calcification (p=0.34), pulp necrosis (p=1.0), pulp inflammation (p=0.28) and tertiary dentin

    deposition (p=0.28). In conclusion, the present study observed preservation of pulp tissue

    hierarchy in both groups rejecting the null hypothesis that the RT is able to directly modify

    the micromorphological response of the dentin-pulp complex facing RRC progression.

    Key Words: Cancer; Radiotherapy, Radiation-Related Caries, Teeth, Pulp.

  • SUMÁRIO

    1 INTRODUÇÃO 12

    2 ARTIGO: Dentin-Pulp Complex Reactions In Conventional And

    Radiation-Related Caries: A Comparative Study

    17

    3 CONCLUSÃO 35

    REFERÊNCIAS 36

    ANEXOS

    Anexo 1: Parecer Consubstanciado do CEP 40

    Anexo 2: Certificado de submissão ao periódico: Clinical Oral

    Investigations

    41

  • 12

    1 INTRODUÇÃO

    A incidência do câncer aumentou de modo exponencial nos últimos anos em todo o

    mundo, e passou a apresentar um grande desafio no cenário de políticas em saúde pública.

    Estima-se que, até 2030, 27 milhões de casos novos serão diagnosticados no mundo. No

    Brasil, para 2017, foram estimados 596 mil novos casos de câncer (INCA, 2016). Neste

    contexto, o câncer de cabeça e pescoço (CCP) representa 6% de todas as neoplasias malignas,

    afetando frequentemente os tecidos moles e duros da boca, lábios, faringe, laringe, glândulas

    salivares menores e maiores, cavidade nasal e seios paranasais (Sloan et al., 2017). Entre

    todos os casos de câncer de cabeça e pescoço, 90% correspondem a carcinomas

    espinocelulares (CECs) de boca orofaringe (Rodrigues et al., 2014; Sloan et al., 2017).

    Indivíduos do gênero masculino, idosos, tabagistas e etilistas de longa data e grande

    intensidade representam o principal perfil clínico para o câncer de boca e orofaringe (Pelucchi

    et al., 2008; Neville et al., 2016). Recentemente, outro grupo composto por pacientes mais

    jovens (menos de 40 anos de idade) e sem fatores de risco comumente associados ao câncer

    de boca foi identificado (Ribeiro et al., 2009). A infecção pelo papiloma vírus humano (HPV),

    principalmente o genótipo 16 e 18, também é atualmente considerada fator de risco para o

    CEC de orofaringe e, ao que tudo indica, está associada ao comportamento sexual (sexo oral)

    (Sloan et al., 2017) .

    Em adição à problemática da alta frequência dos CECs bucais e de orofaringe, é

    importante esclarecer que a maior parte destes tumores é diagnosticada tardiamente, em

    estadiamentos clínicos avançados da doença, o que torna seu tratamento desafiador e

    associado a baixas taxas de sobrevida em cinco anos. Os protocolos de tratamento

    contemporâneos do CEC de boca e orofaringe costumam envolver a cirurgia, a quimioterapia

    (QT) e a radioterapia (RDT) associadas ou, mais frequentemente, combinadas (Huang e

    O´sullivan, 2013; Marta et al., 2015).

    A radiação ionizante atua diretamente sobre as células tumorais durante o ciclo celular,

    produzindo espécies reativas de oxigênio que interagem, por sua vez, com o DNA, o RNA e

    as enzimas celulares de forma a desorganizar seus nucleotídeos e danificar seu material

    genético de modo que não consegue ser reparado pelos mecanismos regulatórios de células

    malignas, gerando apoptose, morte celular e diminuição da capacidade proliferativa do tumor

    (Huber e Terezhalmy, 2003).

  • 13

    A dose de RDT é expressa pela quantidade de energia absorvida pelo tecido irradiado.

    A unidade que padroniza a dose absorvida pelo tecido é conhecida como Gray (Gy = 1J/Kg)

    (Huber; Terezhalmy, 2003; Rolim; Costa; Ramalho, 2011). Com o objetivo de minimizar

    toxicidades ao paciente, a RDT em cabeça e pescoço costuma ser administrada ao longo de 5

    a 7 semanas com frações diárias de 2 Gy, 5 vezes por semana com intervalos de dois dias (aos

    finais de semana) a fim de que os tecidos sadios adjacentes ao tumor possam se recuperar

    (Vissink et al., 2003; Kielbassa et al., 2006).

    A QT também cumpre papel importante no tratamento dos CECs bucais e de

    orofaringe e tem sido associada à RDT (quimiorradioterapia - QRDT) de forma a elevar as

    chances de sucesso terapêutico, podendo ser aplicada antes (indução), simultaneamente

    (neoadjuvante) ou após o tratamento radioterápico (adjuvante). Desta forma, a QRDT atua

    reduzindo o tamanho do tumor primário, potencializando a atividade citotóxica do tratamento

    e reduzindo o risco de metástases (Bucheler et al., 2012). No entanto, esta modalidade pode

    intensificar as toxicidades bucais que comumente geram dor intensa, necessidade de

    interrupção dos protocolos de tratamento oncológico, redução nas taxas de sucesso do

    tratamento e aumento dos custos globais de tratamento do câncer (Seiwert et al., 2007).

    O tratamento radioterápico associado ou não à QT para os CCPs promove reações aos

    tecidos sadios adjacentes ao campo irradiado, incluindo os dentes. De acordo com Cooper et

    al. (1995), a região de cabeça e pescoço é complexa do ponto de vista anatômico, onde

    estruturas muito distintas do ponto de vista biológico reagem de uma maneira muito variável à

    radiação. Neste cenário, as principais toxicidades da RDT incluem mucosite, disgeusia,

    disfagia, hipossalivação, infecções oportunistas, osteorradionecrose, CRR e trismo, entre

    outros (Vissink et al., 2003; Lobo; Martins, 2009). Estas toxicidades podem se manifestar

    logo no início (agudas) ou após meses da conclusão da RDT (crônicas), sendo que as últimas

    podem apresentar duração permanente aos pacientes que sobreviverem (Vissink et al., 2003).

    Nesta problemática, a CRR é uma toxicidade crônica que surge após aproximadamente

    12 meses da conclusão do tratamento radioterápico e afeta cerca de 25% dos pacientes

    tratados por RDT em cabeça e pescoço. Interessantemente, os padrões clínicos de início,

    desenvolvimento e progressão da CRR são distintos aos da cárie convencional (Hong et al.,

    2010). O início da CRR geralmente afeta as áreas cervical e incisal dos dentes anteriores

    (Kielbassa et al., 2006), gerando primariamente perda do brilho e translucidez do esmalte da

    coroa dental seguida por alteração da coloração da coroa que passa a assumir tom

    esbranquiçado que, se não tratado, progride para marrom escuro em associação a trincas e

    fraturas nas superfícies livres de esmalte. Posteriormente, o esmalte sofre o fenômeno de

  • 14

    “delaminação” caracterizado pelo desprendimento de grandes áreas de esmalte que acaba

    expondo a dentina (tecido mais frágil) ao ambiente bucal dos pacientes irradiados, marcado

    por alto potencial cariogênico e que permitirá rápida deterioração das coroas dentárias que

    acabam amputadas da raiz, expondo o canal radicular ao meio bucal, tornando-se fácil acesso

    para entrada de microrganismos nos tecidos periapicais. (Frank et al., 1965; Schweyen et al.,

    2012). Caso não seja instituído um protocolo de prevenção ou tratamento à CRR, pode

    ocorrer destruição generalizada dos dentes de pacientes oncológicos, representando um

    grande risco para o desenvolvimento de focos de infecção crônica e, consequentemente, de

    osteorradionecrose (Vissink et al., 2003; Silva et al., 2009). Geralmente, a deterioração dos

    tecidos dentais relacionada à CRR não está associada a queixa de dor espontânea, ou

    estimulada, por parte dos pacientes (Schweyen et al., 2012).

    O conjunto de sinais e eventos clínicos “atípicos” descritos acima, no contexto da

    CRR, acaba por estimular clínicos e pesquisadores a atribuir o início e a progressão da CRR a

    danos radiogênicos diretos sobre a microestrutura dentária. Esta eventual destruição

    radiogênica seria responsável pela perda gradual da vitalidade pulpar e consequente retração

    dos processos odontoblásticos, gerando fragilidade na junção amelodentinária (JAD)

    (Dahllöf et al., 1994; Grötz et al., 2001). Outros autores sugeriram que alterações radiogênicas

    diretas alterariam o fluxo vascular da polpa e reduziriam a condução nervosa dos nociceptores

    pulpares, permitindo que a CRR progredisse de modo mais rápido na ausência dos

    mecanismos protetores de dor nos pacientes oncológicos irradiados (Knowles et al., 1986;

    Schweyen et al., 2012). Ainda no campo da vascularização pulpar, estudos clínicos

    demonstraram que os níveis de oxigenação da polpa diminuem durante a radioterapia para

    tumores de cabeça e pescoço. Contudo, o mesmo grupo de autores, em outro estudo mais

    recente, demonstrou níveis normais de oxigenação da polpa após 4 a 6 anos da conclusão do

    tratamento radioterápico, sugerindo que a radioterapia provavelmente não tem influência a

    longo prazo na vitalidade da polpa (Kataoka et al., 2011; Kataoka et al., 2016).

    Os estudos supramencionados validam evidências sobre o fato de que a patogênese da

    CRR permanece controversa e incerta, especialmente no que se refere à capacidade da RDT

    em gerar efeitos diretos na estrutura dentária. Uma série de pesquisadores e especialistas

    acreditam que a CRR não deve ser atribuída aos efeitos diretos da RDT sobre os dentes; ao

    contrário, seria resultado de um “agrupamento de sintomas bucais” representados por efeitos

    indiretos da radiação que se desenvolvem em pacientes com CCPs submetidos à RDT, como

    as alterações quantitativas (hipossalivação) e qualitativas (microbiota bucal) da saliva que são

  • 15

    notoriamente atribuídas ao aumento do risco de cárie (Kielbassa et al., 2006; Sciubba et al.,

    2006). Tais alterações na quantidade e na composição salivar alteram a microbiota oral,

    estimulando o desenvolvimento de microrganismos acidófilos com patogenicidade aumentada

    como Streptococcus mutans, Lactobacillus e espécies de Cândida (Al-Nawas et al., 2006;

    Kielbassa et al., 2006).

    O “agrupamento de sintomas orais” é ainda composto por alterações na dieta do

    paciente com CPP submetido à RDT. O déficit nutricional típico deste perfil de pacientes

    oncológicos é compensado por meio da ingestão de alimentos mais calóricos, de consistência

    pastosa ou líquida, ricos em carboidratos, em porções pequenas e frequentes, o que favorece a

    adesão à superfície dental de um ambiente sem saliva e aumenta a predisposição à cárie

    rampante (Deng et al., 2015). Além disso, esta população enfrenta um desafio no controle da

    placa dental devido a um curto intervalo de tempo entre as refeições e também à dor

    relacionada à mucosite (induzida pela QRDT) que afeta diretamente o estímulo à higiene oral

    e a capacidade de remoção mecânica do biofilme dental (Vissink et al., 2003; Kielbassa et al.,

    2006; McGuire et al., 2014; Brennan et al., 2010).

    Adicionalmente a esta teoria multifatorial acerca da patogênese da CRR, a hipótese do

    dano radiogênico direto para os tecidos dentários permanece latente na literatura científica.

    Estudos anteriores utilizando modelos experimentais animais ou técnicas de RDT já em

    desuso defendem a ideia de alterações pulpares em dentes submetidos a altas doses de

    radiação (Meyer et al., 1962; Hutton et al., 1974; Vier –Pelisser et al., 2007). Do mesmo

    modo, pesquisas in vitro, sustentam a existência de alterações na estrutura mineralizada de

    dentes irradiados (Pioch et al., 1992; Springer et al., 2005; De Barros da Cunha et al., 2017).

    Springer et al., (2005), concluiu em um estudo que a radiação é capaz de causar dano direto

    ao colágeno presente na polpa dental, não ocorrendo em tecido mineralizado devido a

    concentração relativamente baixa desta proteína na dentina e esmalte.

    Contrariamente a estes resultados, estudos recentes de nossa equipe de pesquisadores -

    baseados em dentes irradiados in vivo- indicam que os efeitos diretos da radiação não são

    capazes de causar alterações micromorfológicas nos tecidos dentários. Em outras palavras, é

    pouco provável que a radiação ionizante dos protocolos oncológicos de RDT em cabeça e

    pescoço represente um fator de risco independente para o início e a progressão da CRR (Silva

    et al., 2009; Faria et al., 2014; Gomes-Silva et al., 2017).

  • 16

    A despeito dos resultados mencionados, tornou-se imperioso aprimorar o

    conhecimento do impacto da RDT sobre o complexo dentina-polpa e sua habilidade de

    responder à progressão da CRR, tendo em vista os resultados de pesquisas sugerindo que os

    efeitos diretos da radiação limitariam a resposta do complexo dentina-polpa e justificariam a

    rápida progressão clínica da CRR (Springer et al., 2005; El-Faramawy et al., 2013; McGuire

    et al., 2014).

    Portanto, o presente estudo se propôs a comparar os padrões microscópicos de

    resposta do complexo dentina-polpa à progressão da cárie convencional e da CRR, com a

    finalidade de testar a hipótese de que a RDT é capaz de modificar diretamente as respostas

    micromorfológicas do complexo dentina-polpa à progressão da CRR.

  • 17

    2 ARTIGO

    Este trabalho foi realizado no formato alternativo, conforme Informação

    CCPG/001/2015, da Comissão Central de Pós-Graduação (CCPG) da Universidade Estadual

    de Campinas.

    Dentin-pulp complex reactions in conventional and radiation-related caries: A

    comparative study.

    Jéssica Montenegro Fonsêcaa

    Wagner Gomes Silvaa,b

    Natalia Rangel Palmiera

    Pablo Agustin Vargasa

    Mario Fernando De Goesc

    Marcio Ajudarte Lopesa

    João Victor Salvajolid

    Ana Carolina Prado Ribeiroa,b

    Thais Bianca Brandãoa,b

    Alan Roger Santos-Silvaa,b

    a Oral Diagnosis Department, Semiology and Oral Pathology Areas, Piracicaba Dental School,

    University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.

    b Dental Oncology Service, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade

    de Medicina da Universidade de São Paulo, São Paulo, Brazil.

    c Department of Dental Materials, Piracicaba Dental School, Av. Limeira, 901, Piracicaba, SP

    13414-903, Brazil.

    d Radiotherapy Service, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de

    Medicina da Universidade de São Paulo, São Paulo, Brazil.

    Corresponding Author

    Alan Roger Santos-Silva DDS, MSc, PhD

    Department of Oral Diagnosis, Semiology Area

    Piracicaba Dental School, University of Campinas (UNICAMP)

    Av. Limeira, 901, Bairro Areão, Piracicaba-SP, Brasil. CEP 13414-903

    [email protected] Telephone: +55 19 21065320

    mailto:[email protected]

  • 18

    ACKNOWLEDGMENTS

    The authors would like to gratefully acknowledge the financial support of the São

    Paulo Research Foundation (FAPESP) processes numbers 2013/18402-8 and 2012/06138-1 as

    well as The Coordination for the Improvement of Higher Education Personnel

    (CAPES/PROEX process number 758/2012). The authors also thank Fabiana Facco

    Cassarotti and Adriano Luis Martins who provided technical support and contributed to the

    experimental development of the study.

  • 19

    ABSTRACT

    Introduction: radiation-related caries (RRC) is one of the most significant oral toxicities of

    head and neck radiotherapy (HNRT); however, the potential of radiation to directly cause

    harmful dentin and pulpal effects and impair response to caries progression is controversial.

    Therefore, the aim of this study was to characterize the reactions of the dentin-pulp complex

    in teeth affected by RRC. Methods: twenty-two carious teeth extracted from 22 head and neck

    cancer patients were divided into control (conventional caries; n=11) and irradiated (RRC;

    n=11) groups and matched by dental homology, clinical patterns of caries progression

    following the Post-Radiation Dental Index (PRDI) and microscopic depth of carious invasion

    (1,158.58µm control vs. 1,056.89µm irradiated; p=0.79). Optical light microscopy and

    histomorphometry descriptively investigated histopathological characteristics based on

    morphological hierarchy and cell populations of dental pulp, including blood vessels, neural

    elements, extracellular matrix components, presence of inflammation, patterns of carious

    invasion and reactionary dentin presence. Results: pulp histopathological changes and dentin

    reaction patterns were similar between groups and varied according to the PRDI scores and

    carious lesions depth. Conclusions: dentin and pulp reactions to RRC are highly preserved.

    Clinical relevance: direct effects of radiation therapy may not be directly injurious to the pulp

    to the extent of impairing the response to caries progression.

    Key Words: Cancer; Caries; Radiotherapy, Radiation-Related Caries, Teeth, Pulp.

  • 20

    INTRODUCTION

    Head and neck cancer (HNC) represent 6% of all human malignancies and

    approximately 650,000 new cases are diagnosed annually worldwide. Treatment protocols

    often involve the combination of surgery, chemotherapy, and head and neck radiotherapy

    (HNRT). Although considered highly effective in the locoregional control of cancer, HNRT

    results in a myriad of acute and chronic toxicities to non-targeted tissues, including oral

    mucositis, hyposalivation, oral opportunistic infections, trismus, radiation-related caries

    (RRC) and osteoradionecrosis, among others [1, 2].

    RRC, also known as “radiation caries”, is a chronic side effect of HNRT that affects

    up to 25% of patients who underwent HNRT. Its hallmark is a high potential for generalized

    dentition destruction and clinical patterns of progression that differ from conventional caries,

    being characterized by widespread cervical demineralization, incisal edges and cusp tips

    lesions and diffuse brownish to black discoloration of the smooth surface of enamel. RRC

    rapidly progresses causing enamel cracks, delamination and amputation of teeth crowns,

    leading to teeth destruction. In addition, it can increase the risk for the development of

    osteoradionecrosis and negatively impact the overall oral function as well as the quality of life

    of cancer survivors [3, 4].

    One of the most controversial topics in the scenario of HNRT side effects is the ability

    of ionizing radiation to cause direct radiogenic destruction to the teeth. Although many

    studies have suggested direct radiogenic damage to the dentin and pulp that would lead to

    RRC [5, 6, 7], others have linked the increased risk of caries in post-HNRT patients with the

    indirect effects of radiation therapy. These would include hyposalivation, oral microbiota

    alterations, impaired self-cleaning properties, poor oral health status prior to and after

    treatment, increased dietary intake of carbohydrates, and insufficient fluoride exposure, which

    form a cluster of oral symptoms that predisposes patients to rampant caries regardless of the

    direct effect of radiation on teeth [8, 9, 10].

    Hence, considering that HNRT is routinely used in more than 90% of all HNC patients

    [2], it is paramount to precisely understand its impact on the reactions of dentin and pulp to

    caries progression. To date, no study has been conducted to investigate biological evidence

    that radiation therapy could be directly injurious to the dentin-pulp complex and impair

    response to caries progression. Therefore, this study aimed to evaluate if in vivo irradiated

  • 21

    human teeth affected by RRC have microscopically discernible effect on dentin and pulp

    responses when compared to conventional caries teeth samples.

    PATIENTS AND METHODS

    Patients and specimen collection

    This study was approved by the local Ethics Committee (protocol number 023/2015)

    and was conducted in accordance with the Declaration of Helsinki. Carious teeth (n=22) from

    HNC patients were collected independently of the particulars of the study. Dental extractions

    were performed due to advanced caries or periodontal disease in both teeth groups (control

    and irradiated). Immediately after the extractions, teeth were identified, placed in plastic

    containers with 10% buffered formalin solution and fixed for at least 72 h at 4 °C [3].

    Eleven teeth affected by RRC were extracted from 11 patients with head and neck

    squamous cell carcinomas (SCC) who were subjected to clinical radiation protocols with

    tridimensional conformal HNRT in 6-mV linear accelerators on the Synergy Platform (Elekta

    AB, Stockholm, Sweden) with cumulative doses that ranged from 60 to 70 Gy (2 Gy/day, five

    days per week). The tridimensional HNRT plan of the patients was retrieved from the CMS

    system XiO version 4.60 (Elekta CMS software, St. Louis, MS, USA) to study the radiation

    field and the total dose directed to the teeth [11]. Eleven carious non-irradiated teeth

    specimens were extracted from 11 head and neck SCC patients before radiation treatment

    during mouth conditioning protocols.

    For clinical characterization of the patients, the electronic medical record system was

    consulted and the following data were collected: age, gender, tumor topography, alcohol

    consumption and smoking habit, tumor histological type, clinical cancer stage (according the

    American Joint Committee on Cancer), total radiation dose prescribed to tumor treatment

    (Gy), anatomic origin of extracted teeth, and time between the end of HNRT and teeth

    extraction.

    Macroscopic analysis

    All twenty-two carious teeth samples were divided into two groups: control

    (conventional caries; n=11) and irradiated (RRC; n=11), cataloged and subjected to

    photographic documentation. Teeth samples from both groups were classified and matched by

  • 22

    dental homology (anatomic group), clinical patterns of caries progression established by the

    Post-Radiation Dental Index (PRDI) [12] and microscopic depth of carious invasion (refer to

    microscopy analysis).

    Demineralization and histological preparation

    All specimens were cleaned up with manual periodontal curettes to remove residual

    soft tissues and decalcified in Ana Morse’s solution (equal volumes of 20% sodium citrate

    and 50% formic acid) at 4 °C for three weeks, with changes every two days. The

    decalcification was monitored and confirmed by weekly periapical radiographs. Specimens

    were sectioned along the longitudinal teeth axis through the center of the deepest carious

    lesions with the aid of a histologic disposable razor. The samples were embedded in Paraplast

    Plus® (Leica Biosystems Richmond, Inc., Richmond, IL, USA) to produce 5-µm-thick

    sections on a microtome (Leica, Nussloch, Germany) in silanized slides for hematoxylin and

    eosin (H&E) morphological evaluation.

    Optical light microscopy analysis

    An optical light microscope (OLM) (DM4000 B Leica, Wetzlar, Germany) was used

    for the micromorphological study of the cell populations of dental pulp, including blood

    vessels, neural elements, extracellular matrix components, inflammation, depth of carious

    invasion and reactionary dentin presence. Three demineralized histological sections of each

    specimen were analyzed and illustrative microscopic images were captured.

    Two previously calibrated oral pathologists analyzed the slides. A descriptive analysis

    was performed for the morphologic criteria [13,14] regarding microscopic dentin and pulp

    reactions to caries progression, which were evaluated in a semi-quantitative way and

    compared between groups: presence and preservation of hierarchy of the dental pulp;

    presence and preservation of blood vessels; pulp extracellular matrix components (fibrosis,

    calcification, necrosis or inflammation) and the presence of reactionary dentin. Examiners

    were instructed to come to a consensus in discordant cases. Results were analyzed by using

    descriptive statistics, absolute values, and percentages.

    Mean microscopic depth of caries invasion was quantitatively determined by

    measuring the distance from the surface of the demineralized dentin to the deepest point of

  • 23

    caries-affected dentin in three demineralized histological sections of each specimen, in both

    groups, which was obtained in microns (µm) by using the software LAS version 4.2.0 (Leica

    Microsystems, Switzerland).

    Statistical analysis

    Morphological outcomes were descriptively analyzed and the results generated were

    analyzed by using descriptive statistics (Fisher's exact test), absolute values, and percentages.

    Mean values of microscopic depth of caries invasion for each specimen were compared

    between both groups using the Student’s t-test for independent samples. The software IBM

    SPSS Statistics for Windows version 22.0 (Armonk, NY, USA) was used with the

    significance level set at α=0.05.

    RESULTS

    Demographic features and clinicopathological data obtained from the 22 patients are

    described in Table 1. The control and irradiated groups consisted of 6 molars (54.54%), 3

    pre-molars (27.27%), 1 incisor (9.09%) and 1 canine (9.09%) each. The mean time for teeth

    extraction following HNRT was 33 months, ranging from 4 to 62 months. The mean dose

    received by each tooth sample was 53.47 Gy, ranging from 38.79 to 69.33 Gy (Table 1).

    Mean PRDI scores were 3.2 for the control group and 3.8 for the irradiated group, with

    values ranging from 2 to 5 in both groups. The dentin demineralization patterns were similar

    between the groups and marked by triangular demineralization with the base at the tooth

    surfaces and the apex pointing towards the pulp. Demineralization depth due to caries

    progression was controlled during specimens’ selection, leading to a mean depth of 1,158.58

    μm (ranging from 471,57 to 2,498.48 μm) in the control group and 1,056.89 μm (ranging

    from 750,75 to 1,407.54 μm) in the irradiated group (p=0.79).

    All pulp specimens presented well-preserved polarized odontoblastic layers arranged

    in palisade, subodontoblastic cell-poor layers of Weil and central zones with prominent

    normal blood vessels, fibroblasts, and neural bundles. The microscopic analysis revealed the

    presence and the preservation of the pulp cellular layers hierarchy in 8 (72.7%) cases for the

    control group and 8 (72.7%) cases of the irradiated group (p=0.28) (Figures 1A and 1B). In

    the other cases of both groups, the presence and the preservation of the pulp cellular layers

  • 24

    hierarchy was changed because of calcification, diffuse chronic inflammation and necrosis

    associated to bacterial invasion. Blood vessels presence and vascular architectural

    preservation was observed in all (100%) samples of both groups.

    All samples from both groups (100%) presented well-preserved subodontoblastic

    layers, which were closely related to well-preserve odontoblasts layers. Odontoblasts from all

    samples were characterized by tall columnar cells arranged in palisade and located at the

    periphery of the dental pulp. Cell processes arising from the odontoblasts' cell body could be

    observed penetrating into the dentin and in close contact between fibroblasts of all studied

    samples (Figures 2A and 3A).

    Superficial caries-infected dentin composed of disorganized dentin and bacterial

    colonies, as well as an inner demineralized layer with affected, but not disrupted, dentin was

    consistently observed in all studied specimens of both groups (Figures 2B and 3B). Pulp

    extracellular matrix components were similarly detected in both groups and characterized by

    focal areas of fibrosis: 8 (72.7%) control cases vs. 7 (63.6%) irradiated cases (p=0.9);

    calcification: 5 (45,5%) cases in each studied group (p = 0.34); necrosis: 4 (36.4%) control

    cases vs. 3 (27.3%) irradiated cases (p=1.00); and chronic inflammation: 7 (63.6%) control

    cases vs. 6 (55,5%) irradiated cases (p=0.28) (Figures 2C and 3C). Reactionary dentin

    formation was detected underlying caries demineralization fronts. The presence of reactionary

    dentin was observed in 6 (55,5%) cases of the control group and 5 (45,5%) cases of the

    irradiated group (p=0.28) (Figures 2D and 3D).

    No significant difference was encountered between irradiated and non-irradiated

    groups in any of the analyzed parameters. No evidence of abnormal cellular components or

    architecture could be detected.

    DISCUSSION

    The potential of HNRT to cause direct harmful dentin and pulpal effects that could

    impair the response of the dentin-pulp complex to caries progression is controversial. In this

    context, Kataoka et al. [15] showed that the levels of pulp oxygenation are decreased during

    radiotherapy for malignant intraoral and oropharyngeal tumors. More recently, the same

    group of authors [16] demonstrated normal pulp oxygenation levels after 4 to 6 years of the

    conclusion of HNRT, suggesting that radiation therapy may not have a long-term influence on

  • 25

    pulp vitality. Influenced by their results, we decided to perform a study to investigate

    microscopic evidence that radiation therapy could be directly injurious to the pulp and impair

    response to caries progression by using teeth extracted after a mean time of 33 months

    following the conclusion of HNRT (ranging from 4 to 62 months).

    The clinicopathological profile of patients enrolled in this study is in accordance with

    the traditional features of oral and oropharyngeal SCC patients observed worldwide [17, 18],

    which is marked by elderly male individuals, smokers and drinkers with poor oral health

    status who were diagnosed at late stages of tumor progression [19, 20, 21].

    The clinical aggressiveness and the potential for generalized dental destruction have

    been well documented in RRC patients and predominately linked to post-radiation

    hyposalivation [9, 22, 23]. However, observations based on in vitro studies proposed that the

    direct effects of HNRT on tooth-mineralized structure might also be a significant causal factor

    for RRC [5, 7, 12, 24].

    Although the potential benefits in terms of reducing treatment-associated toxicities,

    the intensity-modulated radiotherapy (IMRT) technology is not available in many centers of

    the world, where tridimensional conformal radiotherapy (3DRT) is still routinely used [25,

    26, 27]. In this context, 3DRT was the technology used in all of the patients investigated in

    the present study and its use is still widely accepted because no overall survival benefits have

    been observed in HNC patients treated with IMRT [28]. Most importantly, high doses of

    radiation were directed to the irradiated group samples of the current study (mean dose of

    53.47Gy) and the influence of the radiation technique should not be considered an issue in

    terms of radiogenic effects, especially because a collaborative study recently demonstrated

    that IMRT and 3DRT deliver similar doses of radiation to the teeth of HNC patients [29].

    One of the limitations of the current study was the small number of teeth specimens

    analyzed; wherein larger sample sizes would probably lead to more robust results. However, it

    is important to clarify that this limitation was a consequence of the strict methodological

    design used, which was based on a paired-matched sampling approach by teeth anatomic

    origin, clinical stage of RRC progression and microscopic depths of caries invasion. In

    addition, this study relied on human in vivo irradiated teeth (which are seldom collected

    because of the risk of osteoradionecrosis) rather than in samples irradiated in vitro.

    Comparisons between studies that evaluated in vivo and in vitro effects of radiotherapy on

    dental pulp should be carefully established because in vitro simulated radiotherapy does not

  • 26

    represent real clinical conditions concerning the cariogenic microenvironment or the

    dosimetric standards for HNRT [11].

    From a microscopic point of view, patterns of dentin demineralization presented

    normal architecture [13,14] and varied according to the PRDI in both groups. The

    microscopic analysis found homogeneous results between the groups, showing no statistical

    difference to the criteria of presence and preservation of hierarchy of the dental pulp; presence

    and preservation of blood vessels; pulp extracellular matrix components (fibrosis,

    calcification, necrosis or inflammation) and the presence of reactionary dentin. Apparently,

    this was the first study to compare RRC and conventional caries specimens by using matched-

    paired teeth groups.

    Previous studies based on animal experimental models or with an obsolete technique

    of radiotherapy, also investigated pulpal reactions related to radiation, but not to caries

    progression, and concluded that only teeth subjected to high doses of radiation (more than 50

    Gy) showed alterations in the dental pulp tissue, including fibrotic and inflammatory

    degenerations [30, 31]. Conversely, a recent study failed to detect morphological changes or

    altered patterns of immunohistochemical expression of proteins related to vascularization

    (CD34 and smooth muscle actin), innervation (S-100, NCAM/CD56, and neurofilament), and

    extracellular matrix (vimentin) in dental pulp after in vivo HNRT, showing broad preservation

    of the microvascular and neural pulp components following high doses of radiation [32].

    In conclusion, the present study rejected the hypothesis that HNRT is able to impair

    the micromorphological pulp reactions to RRC progression. Therefore, direct effects of

    radiation may not be regarded as an independent factor to explain the rapid onset and

    aggressive clinical patterns of RRC progression.

  • 27

    COMPLIANCE WITH ETHICAL STANDARDS

    Conflict of Interest

    The authors declare that they have no conflict of interest.

    Funding

    - Research Foundation (FAPESP) processes numbers 2013/18402-8 and

    2012/06138-

    - Coordination for the Improvement of Higher Education Personnel

    (CAPES/PROEX) process number 758/2012.

    Ethical approval

    All procedures performed in studies involving human participants were in accordance

    with the ethical standards of the institutional and/or national research committee and with the

    1964 Helsinki declaration and its later amendments or comparable ethical standards.

    Informed consent

    Informed consent was obtained from all individual participants included in the study.

  • 28

    REFERENCES

    1. Merlano MC, Monteverde M, Colantonio I, Denaro N, Lo Nigro C, Natoli G,

    Giurlanda F, Numico G, Russi E (2012) Impact of age on acute toxicity induced

    by bio- or chemo-radiotherapy in patients with head and neck cancer. Oral Oncol

    48:1051-Doi:10.1016/j.oraloncology.2012.05.001

    2. Buglione M, Cavagnini R, Di Rosario F, Sottocornola L, Maddalo M, Vassalli L.

    et al (2016) Oral toxicity management in head and neck cancer patients treated

    with chemotherapy and radiation: Dental pathologies and osteoradionecrosis (Part

    1) literature review and consensus statement. Crit Rev Oncol Hematol 97:131-42.

    doi: 0.1016/j.critrevonc.2015.08.010.

    3. Silva ARS, Alves FA, Antunes A, Goes MF, Lopes MA (2009) Patterns of

    Demineralization and Dentin Reactions in Radiation-Related Caries. Caries

    Research 43:43-9. doi: 10.1159/000192799

    4. Hong CH, Napeñas JJ, Hodgson BD, Stokman MA, Mathers-Stauffer V, Elting

    LS, Spijkervet FK, Brennan MT (2010) Dental Disease Section, Oral Care Study

    Group, Multi-national Association of Supportive Care in Cancer

    (MASCC)/International Society of Oral Oncology (ISOO) A systematic review of

    dental disease in patients undergoing cancer therapy. Support Care Cancer

    18:1007-21. doi: 10.1007/s00520-010-0873-2

    5. Pioch T, Golfels D, Staehle HJ (1992) An experimental study of the stability of

    irradiated teeth in the region of the dentino enamel junction. Endod Dent

    Traumatol 8:241-244. doi: 10.1007/s00520-010-0873-2

    6. Kielbassa AM, Beetz I, Schendera A, Hellwig E (1997) Irradiation effects on

    microhardness of fluoridated and non-fluoridated bovine dentin. Eur J Oral Sci

    105:444-7.

    7. Springer IN, Niehoff P, Warnke PH, Bocek G, Kovács G, Suhr M, Wiltfang J,

    Açil Y (2005) Radiation caries – radiogenic destruction of dental collagen. Oral

    Oncol 41:723–728. doi: 10.1016/j.oraloncology.2005.03.011

    8. Brennan MT, Elting LS, Spijkervet FK (2010) Systematic reviews of oral

    complications from cancer therapies, Oral Care Study Group, MASCC/ISOO:

    methodology and quality of the literature. Support Care Cancer 18:979-84. doi:

    10.1007/s00520-010-0856-3

  • 29

    9. Kielbassa AM, Hinkelbein W, Hellwig E, Meyer-Lückel H (2006) Radiation-

    related damage to dentition. Lancet Oncol 7:326-35. doi: 10.1016/S1470-

    2045(06)70658-1

    10. Santos-Silva AR, Feio Pdo S, Vargas PA, Correa ME, Lopes MA (2015) cGVHD-

    Related Caries and Its Shared Features with Other 'Dry-Mouth'-Related Caries.

    Braz Dent J 26:435-40. doi: 10.1590/0103-6440201300200

    11. Morais-Faria K, Menegussi G, Marta G, Fernandes PM, Dias RB, Ribeiro AC,

    Lopes MA, Cernea CR, Brandão TB, Santos-Silva AR (2015) Dosimetric

    distribution to the teeth of patients with head and neck cancer who underwent

    radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol 120:416-9. doi:

    10.1016/j.oooo.2015.05.009

    12. Walker MP, Williams KB, Wichman B (2008) Post-radiation dental index:

    development and reliability. Support Care Cancer 16:525-30. doi:

    10.1007/s00520-007-0393-x

    13. Bjørndal L (2008) The caries process and its effect on the pulp: the science is

    changing and so is our understanding. Pediatr Dent 30:192-6.

    14. Bjørndal L, Mjör IA (2001) Pulp-dentin biology in restorative dentistry. Part 4:

    Dental caries-characteristics of lesions and pulpal reactions. Quintessence Int

    32:717-36.

    15. Kataoka SH, Setzer FC, Gondim-Junior E, Pessoa OF, Gavini G, Caldeira CL

    (2011) Pulp Vitality in patients with intraoral and oropharyngeal malignant tumors

    undergoing radiation therapy assessed by pulse oximetry. J Endod 37:1197-200.

    doi: 10.1016/j.joen.2011.05.038

    16. Kataoka SH, Setzer FC, Gondim-Junior E, Fregnani ER, Moraes CJ, Pessoa

    OF,Gavini G, Caldeira CL (2016) Late Effects of Head and Neck Radiotherapy on

    Pulp Vitality Assessed by Pulse Oximetry. J Endod 42:886-9. doi:

    10.1016/j.joen.2016.02.016

    17. Kowalski LP, Carvalho AL, Priante AVM, Magrin J (2005) Predictive factors for

    distant metastasis from oral and oropharyngeal squamous cell carcinoma. Oral

    Oncol 41:534–41. doi: 10.1016/j.oraloncology.2005.01.012

    18. Rodrigues PC, Miguel MC, Bagordakis E, et al (2014) Clinicopathological

    prognostic factors of oral tongue squamous cell carcinoma: a retrospective study of

    202 cases. Int J Oral Maxillofac Surg 43:795-801. doi: 10.1016/j.ijom.2014.01.014

    19. Pelucchi C, Gallus S, Garavello W, Bosetti C, La Vecchia C (2008) Alcohol and

  • 30

    tobacco use, and cancer risk for upper aerodigestive tract and liver Eur J Cancer

    Prev 17:340-4. doi: 10.1097/CEJ.0b013e3282f75e91

    20. Bonan PRF, Lopes MA, Pires FR, Almeida OPD (2006) Dental management of

    low socioeconomic level patients before radiotherapy of the head and neck with

    special emphasis on the prevention of osteoradionecrosis. Braz Dent J 17:336–342.

    21. Jham BC, Reis PM, Miranda EL, et al (2008) Oral health status of 207 head and

    neck cancer patients before, during and after radiotherapy. Clin Oral Investig

    12:19–24. doi: 10.1007/s00784-007-0149-5

    22. Lăcătuşu S, Frâncu L, Frâncu D (1996) Clinical and therapeutical aspects of

    rampant caries in cervico-facial irradiated patients. Rev Med Chir Soc Med Nat

    Iasi 100:198-202.

    23. Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP (2003) Oral sequelae

    of head and neck radiotherapy. Crit Rev Oral Biol Med. 2003;14:199-212.

    24. Kalnins V (1954) The indirect effect of x-ray irradiation on the dental pulp of the

    dog. J Dent Res 33:389-99. doi: 10.1177/00220345540330031201

    25. Jonhston M, Clifford S, Bromley R, Back M, Oliver L, Eade T (2011) Volumetric

    modulated arc therapy in head and neck radiotherapy: a planning comparison using

    simultaneous integrated boost for nasopharynx and oropharynx carcinoma. Clin

    Oncol 23:503–11. doi: 10.1016/j.clon.2011.02.002

    26. Miles EA, Clark CH, Urbano MT, Bidmead M, Dearnaley DP, Harrington KJ,

    A'Hern R, Nutting CM (2005) The impact of introducing intensity modulated

    radiotherapy into routine clinical practice. Radiother Oncol 77:241-6. doi:

    10.1016/j.radonc.2005.10.011

    27. Marta GN, Silva V, de Andrade Carvalho H, de Arruda FF, Hanna SA, Gadia R,

    da Silva JL, Correa SF, Vita Abreu CE, Riera R (2014) Intensity-modulated

    radiation therapy for head and neck cancer: systematic review and meta-analysis.

    Radiother Oncol 110:9-15. doi: 10.1016/j.radonc.2013.11.010

    28. Karmiol M, Walsh RF (1975) Dental caries after radiotherapy of the oral regions. J

    Am Dent Assoc 91:838-45.

    29. Fregnani ER, Parahyba CJ, Morais-Faria K, Fonseca FP, Ramos PA, de Moraes

    FY, da Conceição Vasconcelos KG, Menegussi G, Santos-Silva AR, Brandão TB

    (2016) IMRT delivers lower radiation doses to dental structures than 3DRT in

    head and neck cancer patients. Radiat Oncol 11:116. doi: 10.1186/s13014-016-

    0694-7

  • 31

    30. Meyer I, Shklar G, Turner J (1962). A comparison of the effects of 200 kV

    radiation and cobalt-60 radiation on the jaws and dental structure of the white rat:

    a preliminar report. Oral Surg Oral Med Oral Pathol 15:1098–108.

    31. Vier-Pelisser FV, Figueiredo MAZ, Cherubini K, Braga-Filho A, Figueiredo JA

    (2007) The effect of head-fractioned teletherapy on pulp tissue. Int Endod J 40:

    859–65. doi:10.1111/j.1365-2591.2007.01294.x

    32. Faria KM, Brandão TB, Ribeiro AC, Vasconcellos AF, de Carvalho IT, de Arruda

    FF, Castro Junior G, Gross VC, Almeida OP, Lopes MA, Santos-Silva AR (2014)

    Micromorphology of the dental pulp is highly preserved in cancer patients who

    underwent head and neck radiotherapy. J Endod 40:1553-9. doi:

    10.1016/j.joen.2014.07.006

  • 32

    TABLES

    Table 1. Clinicopathological profile of studied patients

    Irra

    dia

    ted

    Gro

    up

    Patient Age Gender Tobacco Alcohol Site T N M CH RDT Dose Dental Dose

    1 58 M Yes Yes Tongue 3 0 0 Yes 3D 70 Gy 67.83 Gy

    2 65 M Yes Yes Oropharynx 4 3 0 Yes 3D 70 Gy 38.79 Gy

    3 52 F Yes Yes Tongue 4 2 0 No 3D 70 Gy 59.35 Gy

    4 54 M Yes Yes Tongue 2 3 0 Yes 3D 70 Gy 46.71 Gy

    5 56 F No No Nasopharynx 4 1 0 Yes 3D 70 Gy 63.83 Gy

    6 65 F Yes Yes Tongue 3 0 0 No 3D 60 Gy 40.04 Gy

    7 65 F Yes Yes Tongue 4 0 0 No 3D 70 Gy 69.33 Gy

    8 66 M Yes Yes Tongue 4 2 0 Yes 3D 70 Gy 46.71 Gy

    9 62 M Yes Yes Oropharynx 2 2 0 Yes 3D 70 Gy 53.11 Gy

    10 47 M Yes Yes Oropharynx 1 2 0 Yes 3D 70 Gy 51.81 Gy

    11 54 M Yes Yes Oropharynx 4 1 0 Yes 3D 70 Gy 51.81 Gy

    Con

    trol

    Gro

    up

    1 52 M Yes Yes Nasopharynx 3 3 0 - - - -

    2 68 M Yes No Larynx 4 3 0 - - - -

    3 76 M Yes Yes Submandibular gland 3 2 0 - - - -

    4 55 M Yes Yes Hypopharynx 1 2 0 - - - -

    5 60 M Yes Yes Larynx 4 3 0 - - - -

    6 53 M Yes Yes Oral Cavity 4 2 0 - - - -

    7 55 M Yes Yes Tongue 2 0 0 - - - -

    8 61 M Yes Yes Soft Palate 4 0 0 - - - -

    9 51 F Yes Yes Tongue 4 1 0 - - - -

    10 48 M Yes Yes Oral Cavity 1 2 0 - - - -

    11 61 M Yes Yes Soft Palate 1 2 0 - - - -

    M: Male; F: Female; CH: Chemotherapy; RDT: Radiotherapy; 3D: Tridimensional conformal radiotherapy; Dental Dose: mean radiation dose

    delivered to each tooth.

  • 33

    FIGURES

    Figure 1. Microscopic overview of irradiated teeth crowns showing preservation of the dental

    pulp layers hierarchy (Hematoxylin and Eosin-stained sections, 2X magnification). A.

    Irradiated molar sample. B. Irradiated premolar sample.

    Figure 2. Control group samples exhibiting preservation of the dental pulp layers hierarchy

    (Hematoxylin and Eosin-stained sections). A. Dentin (D), predentin (PD), odontoblasts (O)

    and pulp central region (C). B. Patterns of bacterial invasion of the dentin. C. Chronic

  • 34

    inflammation affecting irradiated pulp tissue. D. Preservation of the dental pulp

    micromorphology and dentin-pulp complex reactions to caries. Dentin (D), reactionary dentin

    (RD), predentin (PD), odontoblastic layer (O), cell-poor zone (CP), cell-rich zone (CR) and

    central region (C) with preserved fibroblasts, and vascular bundles.

    Figure 3. Irradiated group samples exhibiting preservation of the dental pulp layers hierarchy

    (Hematoxylin and Eosin-stained sections). A. Presence of preserved neural vascular bundles,

    dystrophic calcification, and hyperemia in irradiated pulp tissue. Dentin (D), predentin (PD),

    odontoblasts (O) and pulp central region (C). B. Superficial caries-infected dentin composed

    of bacterial colonies and disorganized dentin. Inner demineralized layer with affected dentin

    showing normal patterns of bacterial invasion of the irradiated dentin. C. Chronic

    inflammation affecting irradiated pulp tissue. D. Preservation of the dental pulp layers

    hierarchy and dentin-pulp complex reactions to caries. Reactionary dentin (RD), cell-poor

    zone (CP), cell-rich zone (CR), central region (C), odontoblasts (O), predentin (PD), and

    dentin (D). Note the presence of preserved fibroblasts and neural vascular bundles.

  • 35

    3 CONCLUSÃO

    Não foram identificadas diferenças microscópicas significativas entre os padrões de

    resposta do complexo dentina-polpa entre dentes afetados por cárie convencional e

    CRR.

    Este estudo rejeitou a hipótese de que a RDT é capaz de modificar diretamente as

    respostas micromorfológicas do complexo dentina-polpa à progressão da CRR.

  • 36

    REFERÊNCIAS1

    Al-Nawas B, Grotz KA. Prospective study of the long term change of the oral flora after

    radiation therapy. Support Care Cancer. 2006; 14 (3): 291-6.

    Brennan MT, Elting LS, Spijkervet FK. Systematic reviews of oral complications from cancer

    therapies, Oral Care Study Group, MASCC/ISOO: methodology and quality of the literature.

    Support Care Cancer. 2010 Aug;18(8):979-84.

    Bucheler BM, Ehnes A, Kavsadze M, Langenberg S, Wilhelm-Buchstab T, Zipfel M, et al.

    Quality of life after treatment of head and neck tumors: Longitudinal comparison after

    operation and adjuvant radio(chemo)therapy. HNO. 2012; 60 (12): 1053–9.

    Cooper JS, Fu K, Marks J, Silverman S. Late effects of radiation therapy in the head and neck

    region. Int J Radiat Oncol Biol Phys. 1995; 31(5):1141-64.

    Dahllöf G, Rozell B, Forsberg CM, Borgström B. Histologic changes in dental morphology

    induced by high dose chemotherapy and total body irradiation. Oral Surg Oral Med Oral

    Pathol. 1994 Jan;77(1):56-60.

    De Barros da Cunha SR, Fonseca FP, Ramos PAMM, Haddad CMK, Fregnani ER, Aranha

    ACC. Effects of different radiation doses on the microhardness, superficial morphology, and

    mineral components of human enamel. Arch Oral Biol. 2017 Apr 10;80:130-135.

    Deng J, Jackson L, Epstein JB, Migliorati CA, Murphy BA. Dental demineralization and

    caries in patients with head and neck cancer. Oral Oncol. 2015 Sep;51(9):824-31.

    El-Faramawy N, Ameen R, El-Haddad K, El-Zainy M. Effects of gamma radiation on hard

    dental tissues of albino rats: investigation by light microscopy. Radiat Environ Biophys. 2013

    Aug;52(3):375-87.

    Frank RM, Herdly J, Philippe E. Acquired Dental Defects and Salivary Gland Lesions After

    Irradiation For Carcinoma. J Am Dent Assoc. 1965 Apr;70:868-83.

    1 De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International

    Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em

    conformidade com o PubMed.

  • 37

    Faria KM, Brandão TB, Ribeiro AC, Vasconcellos AF, de Carvalho IT, de Arruda FF, Castro

    Junior G, Gross VC, Almeida OP, Lopes MA, Santos-Silva AR. Micromorphology of the

    dental pulp is highly preserved in cancer patients who underwent head and neck radiotherapy.

    J Endod. 2014 Oct;40(10):1553-9.

    Gomes-Silva W, Prado-Ribeiro AC, Brandão TB, Morais-Faria K, de Castro Junior G, Mak

    MP, Lopes MA, Rocha MM, Salo T, Tjäderhane L, de Goes MF, Santos-Silva AR.

    Postradiation Matrix Metalloproteinase-20 Expression and Its Impact on Dental

    Micromorphology and Radiation-Related Caries. Caries Res. 2017 Mar 31;51(3):216-224.

    Grötz KA, Riesenbeck D, Brahm R, Seegenschmiedt MH, al-Nawas B, Dörr W, Kutzner J,

    Willich N, Thelen M, Wagner W. [Chronic radiation effects on dental hard tissue (radiation

    caries). Classification and therapeutic strategies]. Strahlenther Onkol. 2001 Feb;177(2):96-

    104.

    Hong CH, Napeñas JJ, Hodgson BD, Stokman MA, Mathers-Stauffer V, Elting LS, Spijkervet

    FK, Brennan MT. Dental Disease Section, Oral Care Study Group, Multi-national Association

    of Supportive Care in Cancer (MASCC)/International Society of Oral Oncology (ISOO). A

    systematic review of dental disease in patients undergoing cancer therapy. Support Care

    Cancer. 2010;(18):1007-21.

    Huang S-H, O´sullivan B. Oral cancer: Current role of radiotherapy and chemotherapy. Med

    Oral Patol Oral Cir Bucal Mar Mar Med Oral S L CIF B Med Oral Patol Oral Cir Bucal Mar.

    2013;1181818(12):233–40.

    Huber MA, Terezhalmy GT. The head and neck radiation oncology patient.Quintessence Int.

    2003; 34 (9): 693–717.

    Hutton MF, Patterson SS, Mitchell DF, et al. The effect of cobalt-60 radiation on the dental

    pulps of monkeys. Oral Surg Oral Med Oral Pathol 1974;42:2581–90.

    Instituto Nacional de Cancer José Alencar Gomes da Silva. Estimativa 2016 - Incidência de

    Câncer no Brasil [Internet]. Ministério da Saúde Inst. Nac. Cancer José Alencar Gomes da

    Silva. Rio de Janeiro; 2016; 124.

    Recuperadode:http://www.inca.gov.br/estimativa/2016/estimativa-2016-v11.pdf

  • 38

    Kataoka SH, Setzer FC, Gondim-Junior E, Pessoa OF, Gavini G, Caldeira CL. Pulp vitality in

    patients with intraoral and oropharyngeal malignant tumors undergoing radiation therapy

    assessed by pulse oximetry. J Endod. 2011 Sep;37(9):1197-200

    Kataoka SH, Setzer FC, Gondim-Junior E, Fregnani ER, Moraes CJ, Pessoa OF, Gavini G,

    Caldeira CL. Late Effects of Head and Neck Radiotherapy on Pulp Vitality Assessed by Pulse

    Oximetry. J Endod. 2016 Jun;42(6):886-9.

    Kielbassa AM, Hinkelbein W, Hellwig E, Meyer-Lückel H. Radiation-related damage to

    dentition. Lancet Oncol. 2006 Apr;7(4):326-35.

    Knowles JC, Chalian VA, Shidnia H. Pulp innervation after radiation therapy. J Prosthet

    Dent. 1986 Dec;56(6):708-11.

    Lobo ALG, Martins G B. Consequências da radioterapia na região de cabeça e pescoço: uma

    revisão de literatura. Revista Portuguesa de Estomatologia. 2009; 50( 4): 251-255.

    Marta GN, William WN, Feher O, Carvalho AL, Kowalski LP. Induction chemotherapy for

    oral cavity cancer patients: Current status and future perspectives. Oral Oncol. Elsevier Ltd;

    2015;51(12):1069–75.

    McGuire JD, Mousa AA, Zhang BJ, Todoki LS, Huffman NT, Chandrababu KB, et al.

    Extracts of irradiated human tooth crowns contain MMP-20 protein and activity. J Dent.

    2014; 42 (5): 626-35.

    Meyer I, Shklar G, Turner J. A comparison of the effects of 200 kV radiation and cobalt-60

    radiation on the jaws and dental structure of the white rat. A preliminary report. Oral Surg

    Oral Med Oral Pathol. 1962;15: 1098-108.

    Neville WD, Damm DD, Allen CM, Bouquot JE. Patologia Oral e Maxilo Facial, Quarta

    Edição, 2016.

    Pelucchi C, Gallus S, Garavello W, Bosetti C, La Vecchia C. Alcohol and tobacco use, and

    cancer risk for upper aerodigestive tract and liver. Eur J Cancer Prev. 2008;17(4):340-4.

    Pioch T, Golfels D, Staehle HJ. An experimental study of the stability of irradiated teeth in

    the region of the dentino enamel junction. Endod Dent Traumatol. 1992;8:241-244.

  • 39

    Ribeiro AC, Silva AR, Simonato LE, Salzedas LM, Sundefeld ML, Soubhia AM. Clinical and

    histopathological analysis of oral squamous cell carcinoma in young people: a descriptive

    study in Brazilians. Br J Oral Maxillofac Surg. 2009;47(2):95-8.

    Rodrigues PC, Miguel MC, Bagordakis E, et al. Clinicopathological prognostic factors of oral

    tongue squamous cell carcinoma: a retrospective study of 202 cases. Int J Oral Maxillofac

    Surg. 2014; 43(7): 795-801.

    Rolim Ana Emília Holanda, Costa Lino João da, Ramalho Luciana Maria Pedreira.

    Repercussões da radioterapia na região orofacial e seu tratamento. Radiol Bras [Internet].

    2011 Dec [cited 2017 Mar 01] ; 44( 6 ): 388-395.

    Seiwert TY, Salama JK, Vokes EE. The chemoradiation paradigm in head and neck cancer.

    Nat Clin Pract Oncol. 2007; 4 (3): 156-71.

    Sciubba JJ, Goldenberg D. Oral complications of radiotherapy. Lancet Oncol. 2006; 7 (2):

    175-83.

    Silva ARS, Alves FA, Antunes A, Goes MF, Lopes MA. Patterns of Demineralization and

    Dentin Reactions in Radiation-Related Caries. Caries Research 2009;43:43-9.

    Sloan P, Gale N, Hunter K, Lingen MW, Nylander K, Reibel J, et al. Malignant surface

    epithelial tumours. In: El-Naggar AK, Chan JK, Grandis Jennifer R, Takata T, Slootweg PJ,

    organizers. WHO Classif Head Neck Tumours. Fourth. 2017;109–11.

    Schweyen, R., Hey, J., Fränzel, W. et al. Strahlenther Onkol. 2012; 188 - 21.

    Springer IN, Niehoff P, Warnke PH, Bocek G, Kovács G, Suhr M, Wiltfang J, Açil Y:

    Radiation caries – radiogenic destruction of dental collagen. Oral Oncol 2005; 41:723–728.

    Vier-Pelisser FV, Figueiredo MAZ, Cherubini K, Braga-Filho A, Figueiredo JA. The effect of

    head-fractioned teletherapy on pulp tissue. Int Endod J. 2007;40: 859–65.

    Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP. Oral sequelae of head and neck

    radiotherapy. Crit Rev Oral Biol Med. 2003;14(3):199-212.

  • 40

    ANEXOS

    Anexo 1 – Parecer Consubstanciado do CEP

  • 41

    Anexo 2 - Certificado de submissão ao periódico