8. hidrologia dos solos - fen/uerjluciene/hidraulica_aplicada/hidrologiadossolos.pdf · july 03...

32
July 03 LPdS 1 8. Hidrologia dos Solos 8.1. Definição < FIGURA REPRESENTANDO SEÇÃO TRANSVERSAL DA BACIA HIDROGRÁFICA > < FIGURA REPRESENTANDO PERFIL DAS REGIÕES DO SOLO NA BACIA HIDROGRÁFICA > Os processos físicos relacionados ao fluxo de água no solo têm um papel central na fase terrestre do ciclo hidrológico. Parte da água que penetra nos solos fica armazenada no solo, sendo esta disponível para a evapotranspiração. O restante pode escoar lateralmente ou penetrar até a região saturada do solo, reabastecendo aqüíferos subterrâneos. Adicionalmente, das propriedades físicas e características hidráulicas dos solos depende diretamente a quantificação da parte da precipitação que acaba por escoar superficialmente.

Upload: ledat

Post on 25-Sep-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 1

8. Hidrologia dos Solos

8.1. Definição

< FIGURA REPRESENTANDO SEÇÃO TRANSVERSAL DA BACIA HIDROGRÁFICA >

< FIGURA REPRESENTANDO PERFIL DAS REGIÕES DO SOLO NA BACIA HIDROGRÁFICA >

Os processos físicos relacionados ao fluxo de água no solo têm um papel central na fase terrestre do ciclo hidrológico. Parte da água que penetra nos solos fica armazenada no solo, sendo esta disponível para a evapotranspiração. O restante pode escoar lateralmente ou penetrar até a região saturada do solo, reabastecendo aqüíferos subterrâneos. Adicionalmente, das propriedades físicas e características hidráulicas dos solos depende diretamente a quantificação da parte da precipitação que acaba por escoar superficialmente.

Page 2: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 2

8. Hidrologia dos Solos(continuação)

O fluxo de água no solo também tem papel importante na qualidade das águas superficiais, sub-superficiais e subterrâneas, já que a água serve como veículo para contaminantes.

8.2. Grandezas característicasPropriedades físicas e hídricas dos solosInfiltraçãoRecarga para o lençol subterrâneo

8.3. Aplicações principais

Projetos de drenagem rural, Projetos de irrigação, Setor AgrícolaPlanejamento urbano/controle de enchentesEstudos ambientais: estudos de mudanças climáticas, aspectos ligados a qualidade das águas, erosãoPlanejamento e Gerenciamento de recursos hídricos

Page 3: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 3

8. Hidrologia dos Solos (continuação)

8.4. Aquíferos

São formações geológicas (ou um grupo de formações) que contém água e permitem que a mesma se movimente em condições naturais e em quantidades significativas.

<figura com a representação dos aquíferosartesianos e freáticos>

Os aquíferos podem ser classificados em confinados e não confinados (livres). O aquífero confinado encontra-se sob pressão maior do que a pressão atmosférica. Está limitado superior e inferiormente por camadas impermeáveis. Os aquíferos confinados são denominados de aquíferos artesianos. São, em geral aquíferos de grande produção.

Page 4: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 4

8. Hidrologia dos Solos (continuação)

Os aquíferos não confinados, denominados freáticos, estão sujeitos à pressão atmosférica. São limitados superiormente pela superfície freática (linha piezométrica). Os aquíferosfreáticos são os mais explorados devido à facilidade de acesso, já que são geralmente menos profundos.

8.4.1. Produção dos aquíferos

Retiradas de água do aquífero, em maior quantidade do que aquela com que o mesmo é recarregado, podem ter conseqüências que comprometem a operação do manancial. Algumas delas são o rebaixamento do nível, comprometimento da qualidade da água e o encarecimento do bombeamento.

Page 5: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 5

8. Hidrologia dos Solos (continuação)

A vazão segura expressa a quantidade de água que pode ser retirada sem que o manancial fique comprometido.

A limitação pode ser devido à recarga, à transmissibilidade ou possível contaminação.

A vazão segura pode ser dada em termos das taxas de precipitação, evapotranspiração, afluências superficiais e descargas subterrâneas. Dessa forma:

onde:

QsubEsupQPsegura vazão −−−=

Page 6: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 6

8. Hidrologia dos Solos (continuação)

P é a precipitação média anualQsup é o deflúvio superficial médio da baciaQsub é a descarga subterrânea média anual efetiva do aquíferoE é a taxa média de evaporação anual

8.4.2. Aproveitamento de Aquíferos

8.4.2.1. Construção de poços

escavação diretaperfurados com brocacravados por percussão

Page 7: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 7

8. Hidrologia dos Solos (continuação)

8.4.2.2. Cuidados na instalação de poços

revestimento dos poçosproteção sanitária

8.4.2.3. Cuidados na localização e utilização de poços

contaminaçãointrusão salinaparalisação do poço

Page 8: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 8

8. Hidrologia dos Solos (continuação)

8.4.3. Propriedades Físicas dos Aquíferos

8.4.3.1. Experimento e “Lei de Darcy”

< FIGURA ILUSTRATIVA >

Baseia-se na similaridade entre o escoamento através do solo saturado e o escoamento laminar em tubos, no qual diz-se que a água enquanto escoando de um ponto de maior carga hidráulica para um de menor, perde energia devido aos efeitos de atrito em sua trajetória proporcionalmente à velocidade da água. Seus experimentos em areias saturadas indicaram que a vazão através do solo era diretamente proporcional à perda de carga e à área da seção de escoamento, e inversamente proporcional à trajetória percorrida pela água. A lei de Darcy é expressa por:

Page 9: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 9

8. Hidrologia dos Solos (continuação)

onde:

Q – é a vazão (m3/s)v – velocidade (m/s)t – tempo (s)∆H – variação da carga hidráulica ou perda de carga ao longo da trajetória de comprimento L (em m) e área de seção transversal A (em m2) (m)q – é o chamado fluxo de Darcy (m/s)K – é a condutividade hidráulica (m/s)

LHA

tvQ ∆∝=

LHKq

LH

Atv

AQq

∆=

∆∝==

Page 10: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 10

8. Hidrologia dos Solos (continuação)

8.4.3.2. Carga hidráulica< figura ilustrativa dos componentes da carga

hidráulica (elevação e pressão)>

8.4.3.3. Condutividade hidráulicaA condutividade hidráulica (K) é uma

constante de proporcionalidade e está relacionada com a habilidade do material (solo + fluido) em transmitir o fluido. K pode ser determinado para diferentes tipos de material em laboratório ou em experimentos de campo. K pode variar até 11 ordens de magnitude.

Page 11: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 11

8. Hidrologia dos Solos (continuação)

8.4.3.4. Transmissividade

< figura representativa do escoamento através de uma seção perpendicular à direção do escoamento >A transmissividade (T) expressa a capacidade de uma material poroso transmitir água em termos de unidades de área por unidades de tempo. Ou seja:

onde:K é a condutividade hidráulicab é a espessura do aquífero

KbT =

Page 12: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 12

8. Hidrologia dos Solos (continuação)

8.4.4. Interação aquífero-poço: rebaixamento do nível

A resposta do aquífero ao bombeamento através de um poço pode ser representada pela “lei de Darcy”.

< figura apresentando o escoamento radial para um poço num aquífero confinado>

)rH)(br2(K)

rH)(br2(KQ

2

22

1

11 ∆

∆π=∆∆π=

rrH

QbK2 ∆=∆π

Page 13: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 13

8. Hidrologia dos Solos (continuação)

Re-escrevendo a sentença em termos infinitesimais e integrando os dois lados:

No caso de aquífero freático, assumindo que a declividade radial é igual ao gradiente hidráulico (chamada hipóteses de Dupuit):

De maneira análoga ao caso do aquíferoartesiano:

)rrln(

)HH(bK2Q

1

2

12 −π=

)rh)(hr2(K)

rh)(hr2(KQ

2

22

1

11 ∆

∆π=∆∆π=

)rrln(

)hh(KQ

1

2

21

22 −π=

Page 14: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 14

8. Hidrologia dos Solos (continuação)

8.5. Propriedades físicas dos solos nãosaturados

<coluna ilustrativa das fases líquida, sólida e de gás do solo>

Textura dos solos < pirâmide de classificação dos solos >

Page 15: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 15

8. Hidrologia dos Solos (continuação)

Densidade das partículas

ρs - densidade das partículas (g cm-3)ps - peso dos sólidos ou peso do solo secoVs - volume sólido (das partículas)

Geralmente, assume-se o valor da densidadedas partículas igual a 2,65 g cm-3.

Densidade aparente

ρa - densidade aparente (g cm-3)VT - volume total

s

ss V

p=ρ

T

sa V

p=ρ

Page 16: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 16

8. Hidrologia dos Solos (continuação)

Porosidade

φ - porosidade total (volume)Vv – volume de vaziose – índice de vazios

Índice de vazios

e – é o índice de vazios

ee

VV

s

a

T

v

+=

−=

=

1

1

φ

ρρφ

φ

φφ−

=

=

1e

VVes

v

Page 17: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 17

8. Hidrologia dos Solos (continuação)

8.6. Propriedades hídricas dos solos nãosaturados

Conteúdo de umidade

Va - volume de água

Grau de saturação

Eventualmente expressa-se o grau de saturação em termos percentuais. Quando S=1 ou 100%, diz-se que o solo está saturado e θ= θsat. Freqüentemente adota-se o valor de θsat como estimativa para a porosidade total dos solo.

T

a

VV=θ

v

a

VVS =

Page 18: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 18

8. Hidrologia dos Solos (continuação)

Retenção da água nos solosA força necessária para mover uma quantidade infinitesimal de água de uma posição de referência para outra é conhecido como potencial total. Desprezando-se os efeitos do ar retido na matriz porosa de solo e os efeitos dos solutos eventualmente misturados à água contida nos solos, os principais componentes do potencial total são o potencial matricial originado pelas forças capilares, e, o potencial gravitacional, associado à força da gravidade. Existe uma relação entre o conteúdo de umidade e o potencial. Próximo à saturação, os solos assumem potenciais mínimos, e secos, potenciais máximos. A relação entre o conteúdo de umidade e o potencial é característico dos solos, e é denominada, curva de retenção.

Page 19: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 19

8. Hidrologia dos Solos (continuação)

A curva de retenção pode ser determinada através da avaliação simultânea do conteúdo de umidade e o potencial correspondente. Alternativamente, podem ser usadas equações empíricas dadas em função das características físicas e hídricas dos solos. Duas representações amplamente aplicadas são os modelos de Brookse Corey, de 1964, e van Genuchten, de 1980.

<QUADRO COM FUNÇÕES CARACTERÍSTICAS DAS CURVAS DE

RETENÇÃO>

<REPRESENTAÇÃO GRÁFICA TÍPICA DA CURVA DE RETENÇÃO>

Page 20: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 20

8. Hidrologia dos Solos (continuação)

Condutividade hidráulicaA condutividade hidráulica dos solos consiste na habilidade dos mesmos em transmitir água, tanto em condições de não saturação, como em condições saturadas, denominada então condutividade hidráulica à saturação.De maneira análoga à curva de retenção, pode-se estabelecer uma relação entre a condutividade hidráulica e o conteúdo de umidade do solo. Conseqüentemente, pode-se também estabelecer relação da condutividade hidráulica com o potencial. As funções de Brookse Corey, de 1964, van Genuchten, de 1980 e Mualem, de1975 representam essas relações, chamadas de curvas de condutividade hidráulica, e são amplamente aplicadas.

Page 21: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 21

8. Hidrologia dos Solos (continuação)

<QUADRO COM FUNÇÕES CARACTERÍSTICAS DAS CURVAS DE CONDUTIVIDADE HIDRÁULICA>

<REPRESENTAÇÃO GRÁFICA TÍPICA DA CURVA DE CONDUTIVIDADE HIDRÁULICA>

Funções de PedotransferênciaAs funções de pedotransferência consistem em equações de regressão que relacionam características físicas e hídricas dos solos com as características de textura dos solos. As metodologias mais amplamente aplicadas são a de Saxton, de 1986, e a de Rawls e Brakensiek, de 1989.

<QUADRO COM AS FUNÇÕES DE SAXTON E AS DE RAWLS E BRAKENSIEK>

Page 22: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 22

8. Hidrologia dos Solos (continuação)

8.7. Avaliação das propriedades físicas e hídricas dos solos

Densidade aparente/porosidade: amostragem laboratórioUmidade/grau de saturação: amostragem, laboratório, sonda de neutrons e sensoriamento remotoPotencial: amostragem, laboratório e tensiômetrosCondutividade hidráulica: amostragem, laboratório e permeâmetros

8.8. Infiltração da água no soloA infiltração consiste no processo de penetração da água proveniente da precipitação nas camadas do solo mais próximas à superfície do terreno.

Page 23: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 23

8. Hidrologia dos Solos (continuação)

Após penetrar no solo através do processo de infiltração, a água pode escoar lateralmente, formando o chamado escoamento subsuperficialou percolar através das camadas mais profundas do solo até atingir eventualmente a região saturada do solo.

< PERFIL DO AVANÇO DA FRENTE ÚMIDA>

O volume infiltrado depende fortemente da precipitação e das características físicas e hídricas dos solos. A capacidade de infiltraçãodos solos consiste na taxa de infiltração que poderia ocorrer se houvesse disponibilidade de água na superfície do solo.

<REPRESENTAÇÃO GRÁFICA DA VARIAÇÃO DA CAPACIDADE DE INFILTRAÇÃO NO TEMPO>

Page 24: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 24

8. Hidrologia dos Solos (continuação)

Rubin (1966) dividiu o processo de infiltração em três fases:

(a) Infiltração controlada pela condutividade hidráulica à saturaçãoQuando a intensidade de chuva for menor que a condutividade hidráulica de saturação, KSAT, toda a água precipitada será infiltrada no solo. A taxa de infiltração é igual à intensidade de chuva (LINHA A) Nesta fase não há formação de escoamento superficial, mas a umidade da camada próxima à superfície do terreno é alterada.

(b) Infiltração controlada pela intensidade de chuvaQuando a intensidade de chuva é menor que a capacidade de infiltração e maior que KSAT, a taxa de infiltração será igual à intensidade de chuva (LINHA B)

Page 25: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 25

8. Hidrologia dos Solos (continuação)

(c) Infiltração controlada pela capacidade de infiltraçãoNo instante em que a superfície do solo se satura, a capacidade de infiltração se iguala à intensidade de chuva. A partir daí, a capacidade de infiltração torna-se menor que a intensidade de chuva, formando acumulação de água na superfície do terreno. A taxa de infiltração será igual à capacidade de infiltração e começa a ocorrer escoamento superficial (LINHA C).

<FIGURA REPRESENTANDO O PROCESSO DE INFILTRAÇÃO DA ÁGUA NOS SOLOS SEGUNDO

RUBIN (1966)>

8.8.1. Principais fatores que inluenciam a infiltração

intensidade da precipitaçãocaracterísticas físicas e hídricas do solovegetaçãograu de saturação da superfície do solograu de compactação da superfície do terreno

Page 26: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 26

8. Hidrologia dos Solos (continuação)

8.8.2. Determinação da capacidade de infiltraçãoSão usados em geral duas técnicas para avaliação da capacidade de infiltração:

(a) infiltrômetros, que consistem de dois anéis concêntricos. Durante o ensaio, os dois anéis são cravados no terreno, a água é aplicada na superfície de ambos anéis. Procura-se manter uma lâmina d’água constante de 5 a 10 mm. Monitorando-se a taxa de aplicação de água e dividindo-se pela área da seção transversal do anel, obtém-se a capacidade de infiltração. (b) aspersores, consiste na simulação de precipitação sobre determinada região. Por balanço hídrico, deduz-se os valores de capacidade de infiltração. Eventualmente são instalados pluviômetros ou pluviógrafos e técnicas para avaliação do escoamento superficial.

Page 27: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 27

8. Hidrologia dos Solos (continuação)

8.8.3. Aplicação da “lei de Darcy” no cálculo da taxa de infiltração

A lei de Darcy, estabelecida originariamente em meio saturado, pode ser generalizada para condições não saturadas. Nesse caso, o gradiente hidráulico, levando-se em conta unicamente o componente vertical para baixo (convencionalmente assume sinal negativo), é considerado como a soma dos potenciais matricial e gravitacional. Resultando em:

A combinação das aplicações da “lei de Darcy” generalizada para meios não saturados com a lei de conservação de massa (equação da continuidade) resulta na equação de Richards.

∂∂ψψ−= 1

z)(Kq

Page 28: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 28

8. Hidrologia dos Solos (continuação)

A equação diferencial de Richards pode ser apresentada em função do potencial, da umidade, ou de forma combinada. A equação de Richards não apresenta solução analítica e pode ser resolvida para representar o escoamento da água na região não saturada do solo pelo método das diferenças finitas.

8.8.4. Equações para cálculo da capacidade de infiltração

Equação de KostyakovA fórmula de Kostyakov, de 1932, explicita o volume infiltrado como sendo:

a e b são parâmetros sem significado físico explícito. A fase (b) de Rubin não é representada.

)1b0( ,atF b <<=

Page 29: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 29

8. Hidrologia dos Solos (continuação)

Equação de HortonA formulação de Horton, de 1940, tem sido bastante aplicada para representar a capacidade de infiltração, onde f e F são respectivamente a capacidade de infiltração e a capacidade de infiltração acumulada (volume).

f0 - capacidade de infiltração inicialfc - capacidade de infiltração mínima. Muitas vezes aproximada pelo valor de KSATk - parâmetro que depende do tipo de solo e das condições iniciais de umidadet - é o tempo

Não representa a fase (b) de Rubin.

( )ktc0c

ktc0c

e1k

fftfF

e)ff(ff

−−+=

−+=

Page 30: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 30

8. Hidrologia dos Solos (continuação)

Equação de HoltanA fórmula de Holtan, de 1961, explícita a capacidade de infiltração como:

Φ - parâmetro associado à porosidade. Definido como a porosidade disponível do solo com vegetaçãob - parâmetro sem significado físico explícito, tabelado, que representa a correção dos valores da porosidade para solo nú devido à vegetação

Através da equação de Holtan pode-se prever as três fases previstas por Rubin para representação da infiltração.

SAT387,1 Kb62,0f +Φ=

Page 31: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 31

8. Hidrologia dos Solos (continuação)

Equação de PhilipA fórmula de Philip, de 1957, explícita o volume infiltrado por:

a e b são parâmetros sem significação física explícita que dependem do tipo de solo e das condições iniciais de umidade

A fase (b) de Rubin não é prevista.

Equação de Green e AmptA formulação de Green e Ampt, de 1911, baseia-se na representação do avanço da frente úmida no solo como o funcionamento de um pistom.

btatF 5,0 +=

Page 32: 8. Hidrologia dos Solos - FEN/UERJluciene/hidraulica_aplicada/hidrologiadossolos.pdf · July 03 LPdS 2 8. Hidrologia dos Solos (continuação) O fluxo de água no solo também tem

July 03 LPdS 32

8. Hidrologia dos Solos (continuação)

A capacidade de infiltração é dada por:

L é a profundidade da frente úmidaψ é o potencial matricial associado à frente úmida

<FIGURA ESQUEMÁTICA REPRESENTANDO A FORMULAÇÃO DE GREEN E AMPT>

ψ+=

LLKf SAT