universidade feevalefs.unm.edu/tese-rodolfo.pdflinha de pesquisa: tecnologia e intervenção...

140
UNIVERSIDADE FEEVALE UMA METODOLOGIA DE GESTÃO SOCIOAMBIENTAL PARA O SOCIOECOSSISTEMA BACIA HIDROGRÁFICA RIO DOS SINOS Programa de Pós-graduação em Qualidade Ambiental Doutorado em Qualidade Ambiental Rodolfo González Ortega Linha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019

Upload: others

Post on 21-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

UNIVERSIDADE FEEVALE

UMA METODOLOGIA DE GESTÃO SOCIOAMBIENTAL PARA O

SOCIOECOSSISTEMA BACIA HIDROGRÁFICA RIO DOS SINOS

Programa de Pós-graduação em Qualidade Ambiental

Doutorado em Qualidade Ambiental

Rodolfo González Ortega

Linha de pesquisa: Tecnologia e Intervenção Ambiental

Orientador: Dr. João Alcione Sganderla Figueiredo

Novo Hamburgo

2019

Page 2: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

Universidade Feevale

Programa de Pós-Graduação em Qualidade Ambiental

Doutorado em Qualidade Ambiental

RODOLFO GONZÁLEZ ORTEGA

UMA METODOLOGIA DE GESTÃO SOCIOAMBIENTAL PARA O

SOCIOECOSSISTEMA BACIA HIDROGRÁFICA RIO DOS SINOS

Tese apresentada ao Programa de

Pós-graduação em Qualidade

Ambiental como requisito para a

obtenção do título de Doutor em

Qualidade Ambiental.

Orientador: Dr. João Alcione Sganderla Figueiredo

Novo Hamburgo

2019

Page 3: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade
Page 4: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

Universidade Feevale

Programa de Pós-Graduação em Qualidade Ambiental

Doutorado em Qualidade Ambiental

Rodolfo González Ortega

UMA METODOLOGIA DE GESTÃO SOCIOAMBIENTAL PARA O

SOCIOECOSSISTEMA BACIA HIDROGRÁFICA RIO DOS SINOS

Componentes da Banca Examinadora:

Prof. Dr. João Alcione Sganderla Figueiredo

(Orientador) Universidade FEEVALE

Prof. Dr. Dusan Schreiber

Universidade FEEVALE

Prof. Dr. Claus Haetinger

Universidade do Vale do Taquarí - UNIVATES

Prof. Dr. Maikel Leyva Vázquez

Universidad de Guayaquil

Page 5: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

Dedicatória

A minha família pela sua dedicação, seu sacrifício e pela incomensurável saudade nestes

quatro longos anos.

Page 6: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

Agradecimentos

Ao povo Brasileiro que com seus impostos, por meio do financiamento da CAPES e

do programa PEC-PG, me permitiram ter esta experiência.

À CAPES pelo financiamento da bolsa de estudos para o desenvolvimento desta

pesquisa.

A meu amigo e irmão, o Dr Maikel Leyva, pela sua ajuda incondicional e seus sábios

conselhos.

A minha estimada Olguita, pela sua confiança em mim.

À FEEVALE e seu staff de professores e pessoal de serviço que fizeram mais leve a

estadia.

A todos os que direta ou indiretamente contribuíram com a pesquisa.

Page 7: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

"…cuando se ve que la intervención humana en la naturaleza

acelera, cambia o detiene la obra de ésta, y que toda la Historia

es solamente la narración del trabajo de ajuste, y los combates,

entre la Naturaleza extrahumana y la Naturaleza humana…”

José Martí

Page 8: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

RESUMO

A bacia do Rio dos Sinos, teve um crescimento contínuo de assentamentos humanos e,

sobretudo no último século, a pressão antrópica modificou a paisagem, passando de Mata

Atlântica para terras agropecuárias, indústrias, cidades e uma grande rede de rodovias. Isto

erodiu o ecossistema da bacia com poluição das águas superficiais e subterrâneas, com a perda

de biodiversidade e uma diminuição na variabilidade genética das populações, o que também

trouxe um efeito negativo sobre a sociedade. Assim, aumentaram os riscos, elevaram-se os

danos e prolongaram-se os impactos no tecido social, econômico e no ecossistema. Nesta

pesquisa foram estudadas abordagens implementadas no planeta para gestão integrada de bacias

hidrográficas e seus componentes sociais e ambientais, o que permitiu identificar cinco

metodologias socioambientais de gestão de bacias hidrográficas, as características que elas têm

em comum e seus pontos fortes e fracos. Por meio da análise de fatores políticos, econômicos,

sociais, tecnológicos, ecológicos e legais (PESTEL) identificaram-se variáveis que influenciam

a gestão ambiental, sendo que cada uma delas tem subfatores. Criou-se então um modelo que

permitiu medir e avaliar incertezas e indeterminações tendo em conta as interdependências entre

eles. Ademais, criou-se um procedimento que, com a análise estática dos números neutrosóficos

das interdependências entre os seus subfatores, a modelagem das incertezas e das

indeterminações, permitiu demonstrar a sua aplicabilidade. Para modelar as interdependências

dos subfatores e para a classificação de cenários através do método de decisão multicritério,

foram utilizados Mapas Cognitivos Difusos e Mapas Cognitivos Neutrosóficos, assim como o

processo analítico hierárquico neutrosófico (NAHP) combinado com a técnica para avaliar o

desempenho de alternativas por meio de similaridade com a solução ideal (TOPSIS). Neste

trabalho foram agrupados em um suporte teórico um conjunto de teorias, métodos,

abordagens e ferramentas que resultaram na concepção de um modelo teórico de gestão

e no desenvolvimento de uma metodologia de gestão socioambiental da bacia hidrográfica, os

quais constituem uma contribuição teórico-prática e um instrumento metodológico de

gestão a ser utilizado pelo comitê de bacia no planejamento das suas ações. Esta metodologia

é baseada numa abordagem holística e integrada que reúne tecnologias e ferramentas de

gestão, dividida em quatro etapas interativas e sequenciais, que permitem atingir os

objetivos técnicos e organizacionais da gestão integrada da bacia pelo comitê.

Palavras-chave: bacia, gestão socioambiental, metodologia, tomada de decisões

Page 9: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

ABSTRACT

The Sinos River basin had a continuous growth of human settlements and, especially in

the last century, anthropic pressure changed the landscape, changing it from Atlantic Forest to

agricultural lands, industries, cities and a large network of highways. This eroded the basin's

ecosystem with surface and groundwater pollution, loss of biodiversity and a decrease in the

genetic variability of populations, which also had a negative effect on society. Thus, increased

the risks, maximized the damages and went on impacts on the economic and social network and

the ecosystem. In this research, approaches implemented in the planet for integrated watersheds

management and their social and environmental components were studied, allowing the

identification of five socio-environmental basin management methodologies, the characteristics

they have in common and their strengths and weaknesses. Through the PESTEL analysis, the

variables that influence environmental management were identified, each of them with their

own subfactors. A model that allows the measurement and evaluation of the uncertainties and

indeterminations was created, taking into account the interdependencies between them. In

addition, a procedure was created where, with the static analysis of the interdependencies

neutrosophic numbers among their subfactors and the uncertainties and indeterminations

modeling, allowed to demonstrate its applicability. In order to model the subfactor

interdependencies and the scenarios classification, using the multicriteria decision method,

Diffuse Cognitive Maps and Neutrosophic Cognitive Maps were used, as well as the

neutrosophic hierarchical analytical process (NAHP) combined with the technique to evaluate

the performance of alternatives through similarity with the ideal solution (TOPSIS). In this

work, a set of theories, methods, approaches and tools were grouped into a theoretical support.

That resulted in the conception of a theoretical management model and in the development of

a socioenvironmental management methodology of the hydrographic basin, which constitute a

theoretical-practical contribution and a methodological management tool to be used by the basin

committee in their actions planning. This methodology is based on a holistic and integrated

approach that brings together management technologies and tools, divided into four sequential

and interactive stages, that allows the technical and organizational objectives of the basin

integrated management to be achieved by the committee.

Keywords: river basin, social environmental management, decision-making

Page 10: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

LISTA DE FIGURAS

Introdução

Figura 1 Bacia do rio dos Sinos .............................................................................................. 14

Capítulo 1. The Social-Ecological Management of Watershed Ecosystem: a Literature

Review

Figure 1 Papers published by years (source Scopus) ............................................................... 22

Figure 2. Search process. .......................................................................................................... 23

Figure 3.Research papers by publication years. ....................................................................... 26

Figure 4. Cluster´s network generated by SciMat .................................................................... 27

Figure 5 SES Dimensions (made by the authors) .................................................................... 29

Caítulo 2. Gestión integrada en la cuenca del Río dos Sinos. Avances y desafíos

Figura 1. Sistema Nacional de Recursos Hídricos. .................................................................. 51

Figura 2. Cuenca del Río dos Sinos…………………………………………………………..53

Capítulo 3. PESTEL analysis based on neutrosophic cognitive maps and neutrosophic

numbers for the Sinos river basin management

Fig. 1. Fuzzy Neutrosophic Cognitive Maps of PESTEL factors. .......................................... 70

Fig. 2 Fuzzy Neutrosophic Cognitive Maps example. ............................................................ 71

Fig. 3. The proposed framework for PESTEL analysis [25]. ................................................... 72

Fig. 4 Aggregated total centrality values by factors ................................................................. 77

Fig. 5 Average of total centrality values by factors ................................................................. 77

Capítulo 4. Sinos River basin social-environmental prospective assessment of water

quality management using fuzzy cognitive maps and neutrosophic AHP-TOPSIS

Figure. 1: Sinos Rivers Basin ................................................................................................... 85

Figure. 2: FCM model .............................................................................................................. 93

Figure. 3 Scenarios’ results…………………………………………………………………...96

Capítulo 5. Methodology for the socio-environmental management of the social

ecosystem Río dos Sinos.

Figure 1 Sinos River Watershed (Blume et al., 2010) ........................................................... 106

Figure 2 Structure of the research .......................................................................................... 108

Figure 3 Social - Environmental Management Model ........................................................... 112

Figure 4 Management Process Map ....................................................................................... 113

Figure 6 Methodology Flow Chart ......................................................................................... 117

Considerações Finais

Gráfico 1 Gestão Socioambiental ........................................................................................... 129

Gráfico 2 Características da GIRH ......................................................................................... 130

Gráfico 3 Guia para pesquisadores e gestores ambientais .................................................... 131

Page 11: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

LISTA DE TABELAS

Capítulo 1. The Social-Ecological Management of Watershed Ecosystem: a Literature

Review

Table 1. Searched terms, in English, Portuguese and Spanish, into Scopus ........................... 24

Table 2. Inclusion and exclusion criteria. ................................................................................ 24

Table 3. Keywords actualized with exclusion criteria ............................................................. 24

Table 4. Distribution according to the type of research. ......................................................... 26

Table 5. Showing the relationship of publications by Journals. .............................................. 27

Table 6. Nodes generated by SciMAT. ................................................................................... 28

Table 7. Papers by geographic distribution. ............................................................................ 28

Table 8. Criteria of SES Management, (Adapted from Shah (Shah and Gibson, 2013)). ....... 32

Table 9. Comparison of methodologies (partially taken of Mdee (Mdee, 2017) and improved

by the authors). ......................................................................................................................... 34

Capítulo 3. PESTEL analysis based on neutrosophic cognitive maps and neutrosophic

numbers for the Sinos river basin management

Table 1. Neutrosophic Adjacency Matrix................................................................................ 75

Table 2. Nodes classification ................................................................................................... 75

Table 3. Total degree ............................................................................................................... 75

Table 4. De-neutrosophication, total degree values ................................................................ 76

Table 5. Total degree using the median of the extreme values ............................................... 76

Table 6. Top 6 nodes ............................................................................................................... 76

Capítulo 4. Sinos River basin social-environmental prospective assessment of water

quality management using fuzzy cognitive maps and neutrosophic AHP-TOPSIS

Table 1. Priority scale of AHP criteria for pairwise comparison using triangular neutrosophic

numbers ................................................................................................................................... 88

Table 2. CFM Relevant indicators (Nodes) and their meanings ............................................. 93

Table 3. Static Analysis ........................................................................................................... 94

Table 4. Scenarios identification and stimulated ..................................................................... 95

Table 5. Weights results .......................................................................................................... 97

Table 6. TOPSIS results .......................................................................................................... 98

Capítulo 5. Methodology for the socio-environmental management of the social

ecosystem Río dos Sinos.

Table 1. Problems identified in the management of the COMITESINOS. ........................... 108

Considerações Finais

Tabela 1 Vantagens e Desvantagens na gestão do COMITESINOS ..................................... 130

Page 12: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

LISTA DE SIGLAS E ABREVIATURAS

4D Discover, Dream, Design, and Destiny

AHP Processo Analítico Hierárquico

AQI Air Quality Index

CAPES Coordenação de aperfeiçoamento de pessoal de nível superior – brasil

CER Corporate environmental responsibility

COMITESINOS Comitê gestor da bacia do rio dos sinos

CSER Corporate social-environmental responsibility

CSR Corporate social responsibility

DFWM-RBC Decision framework for wetland management in a river basin context

ENVISION Modelo de gestão hídrica usado na região dos grandes lagos nos Estados

Unidos de América

FAO Organização Mundial pela Agricultura e Alimentação

FCM Fuzzy cognitive maps

FEEVALE Universidade FEEVALE ( federação de estabelecimentos de ensino superior)

GDP Gross domestic product

GIRH Gestão integrada dos recursos hídricos

GWP Global Water Partnership (associação mundial pela água)

IQA Índice de qualidade da água

IWRM Integrated water resources management

MSGM Multi-stakeholder governance model

NAHP Processo analítico hierárquico neutrosófico

NCM Mapa cognitivo neutrosófico

NL Neutrosophic logic

NS Neutrosophic set

OD Oxigenio disolvido

ONU Organização das nações unidas

PEST Political, economical, social, and technological aspects

PESTEL Método de análise de fatores políticos, econômicos, sociais, tecnológicos,

ecológicos e legais

PNRH Plan nacional de recursos hídricos

R & D + I Research & development + innovation

RIS Arquivo do research information systems

SciMAT Science mapping analysis software tool

SCOPUS Base de dados científicos

SERH Sistema estadual de recursos hídricos

SES Sistema socioambiental

SRB Sinos river basin

SRW Sinos river watershed

TOPSIS Método de análise desempenho de alternativas por meio de similaridade com a

solução ideal

UNISINOS Universidade do Vale do Rio dos Sinos

WFD 2000 European water framework directive

WoS Web of science

WTP Wastewater treatment plant

Page 13: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

SUMÁRIO

INTRODUÇÃO ....................................................................................................................... 13

CAPÍTULO 1: .......................................................................................................................... 20

The Social-Ecological Management of Watershed Ecosystem: a Literature Review .......... 21

CAPÍTULO 2: .......................................................................................................................... 22

Gestión integrada en la cuenca del Río dos Sinos. Avances y desafíos ............................... 47

CAPITULO 3 ........................................................................................................................... 64

PESTEL analysis based on neutrosophic cognitive maps and neutrosophic numbers for the

Sinos river basin management .............................................................................................. 65

CAPÍTULO 4: .......................................................................................................................... 82

Sinos River basin social-environmental prospective assessment of water quality

management using fuzzy cognitive maps and neutrosophic AHP-TOPSIS ........................ 83

CAPÍTULO 5: ........................................................................................................................ 105

Methodology for the socio-environmental management of the social ecosystem Río dos

Sinos. .................................................................................................................................. 105

CONSIDERAÇÕES FINAIS ................................................................................................. 129

REFERÊNCIAS ..................................................................................................................... 132

Page 14: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

13

INTRODUÇÃO

A gestão das bacias hidrográficas tornou-se um desafio para os homens desde os inícios

da civilização. A necessidade de aproveitar os recursos destes ecossistemas, assim como mitigar

os impactos de fenômenos cíclicos, como enchentes e estiagem que afetavam as sociedades

primigênias, levaram à prática de ações modificadoras das bacias (HECHT, 1988; HADAS,

2012; LU et al., 2017; LUO et al., 2017).

Essas modificações graduais dos ecossistemas das bacias hidrográficas, no decorrer de

longos períodos históricos, fizeram nascer uma relação entre os componentes das dimensões

ambientais, sociais e econômicas das sociedades humanas, que cresciam e se desenvolviam

nestes ecossistemas, dando lugar ao surgimento do conceito socioecossistema. Este conceito

define-se como um sistema complexo com vínculos e interações dos sistemas ecológicos com

os sistemas sociais, compostos pelos serviços e recursos ecossistêmicos, os usuários destes

recursos e serviços, as infraestruturas construídas, os gestores destas infraestruturas, as

instituições sociais e as regras destas instituições. Qualquer mudança ou modificação em um

dos componentes deste sistema pode trazer mudanças inesperadas em outros componentes,

inclusive os biofísicos da dimensão ambiental, o que torna o socioecossistema em um sistema

bio-geo-físico com grande capacidade adaptativa e de resiliência (PARKES et al., 2010;

CUMMING, 2011; SCHLÜTER; HERRFAHRDT-PÄHLE, 2011; BECKER, 2012;

RATHWELL; PETERSON, 2012; CABELLO et al., 2015; OBIEDAT; SAMARASINGHE,

2016; VIRAPONGSE et al., 2016).

No Brasil, a Gestão Integrada dos Recursos Hídricos (GIRH) teve o seu início na década

de 80 do século passado, implementando a política nacional da água no final dos anos 90 com

a promulgação da lei 9.433/97. A legislação em questão estabelece a bacia como unidade

territorial para a implantação da GIRH, a água como bem público e de valor econômico e

determina, de forma geral, a gestão como descentralizada e o papel participativo da sociedade

no processo. No ano seguinte foi criado o Conselho Nacional de Recursos Hídricos como órgão

consultivo e deliberativo. Posteriormente, no ano 2000, foi constituída a Agência Nacional de

Águas (ANA), com o objetivo de implementar a política nacional de recursos hídricos (SILVA;

HERREROS; BORGES, 2017). Observa-se que o Brasil implementou um conjunto de normas

jurídicas que permitiram organizar e efetivar, a nível federal e estadual, a GIRH. Estes comitês

são integrados por representantes de instituições federais, estaduais e municipais e têm como

competência: implementar os planos de bacia, dirimir os conflitos e estabelecer mecanismos de

cobrança, entre outras funções (SILVA; HERREROS; BORGES, 2017).

Page 15: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

14

No Brasil foi desenvolvida, em consonância com as práticas internacionais, uma

estrutura legal e organizativa por meio da lei N° 9433/97 que institucionalizou a gestão dos

recursos hídricos e estabeleceu o comitê de bacia como órgão gestor.

No caso específico da bacia hidrográfica do Rio dos Sinos (Figura 1), seu comitê de

gerenciamento foi constituído pelo Decreto nº 32.774/1988, posterior ao Decreto nº

30.132/1981 que instituiu o sistema estadual dos recursos hídricos e seus objetivos.

Posteriormente, o estado de Rio Grande do Sul institui a lei nº 10.350/1994 que define os

objetivos e atribuições dos diferentes órgãos na gestão das bacias hidrográficas dentro da

jurisdição do estado, antecipando-se, assim, à lei federal n° 9433/1997.

Figura 1 Bacia do rio dos Sinos

A história da gestão do Rio dos Sinos inicia-se com o assentamento de população de

origem europeia e seu posterior desenvolvimento socioeconômico. Durante um período de

aproximadamente 200 anos aconteceram inúmeras mudanças, tanto na componente ambiental,

pelas pressões antrópicas, como nos componentes sociais e econômicos com o crescimento e

desenvolvimento das populações. A maioria das mudanças aconteceram sem seguir um

planejamento ambiental ou urbano que tivesse uma visão integral dos impactos no ambiente ou

nas mudanças sociais (SPILKI; TUNDISI, 2010; FLORES GUZMÁN, 2016; PLANO SINOS,

2016). Isso gerou impactos negativos na flora, na fauna, alteração nos ciclos dos nutrientes, das

Fonte: http://olharcampobom.blogspot.com.br/2015/08/hidrografia-de-campo-bom.html

Page 16: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

15

chuvas e no microclima da região (BORDIN DA LUZ, 2014; RIBEIRO, 2016; SCHNEIDER

HENRIQUE, 2016; LUCHETA, 2017). Além disso, trouxe consequências sanitárias para a

poluição das águas superficiais e subterrâneas, como consequência de um limitado sistema de

tratamento do esgoto doméstico e efluentes industriais (NASCIMENTO; NAIME, 2009;

STAGGEMEIER, 2009; OLIVEIRA; HENKES, 2013; THIESEN BAUM, 2013; REIS DE

OLIVEIRA, 2015; KONZEN; FIGUEIREDO; QUEVEDO, 2015). O crescimento das cidades

sem um planejamento derivou em áreas de risco ante enchentes e deslizamento de terras. Se

bem que esta bacia foi uma das primeiras a ter um comitê de bacia no Brasil, (GUTIÉRREZ,

2006), os problemas socioambientais continuam a acumular-se e agravam-se seus impactos

neste socioecossistema.

Estes elementos justificam a presente investigação e suscitam o problema científico:

Quais são as variáveis da gestão socioambiental do socioecossistema bacia Rio dos Sinos que

influenciam nas dimensões ambiental, social e econômica, e determinam o desempenho dos

processos da gestão?

Refletir sobre as ações desenvolvidas durante o período de funcionamento do comitê de

bacia do Rio dos Sinos; identificar os problemas que dificultam a gestão integrada do

socioecossistema; identificar as variáveis de gestão socioambiental que influenciam as

dimensões social, econômica e ambiental do ecossistema social; integrar conceitos, abordagens,

modelos e teorias em uma proposta teórico-metodológica para melhorar a gestão

socioambiental da bacia do Rio dos Sinos formam o núcleo das atividades desenvolvidas para

a criação e formulação desta tese, cujos objetivos são:

1. Objetivos

1.1. Objetivo geral

Compreender as interações entre as dimensões ambiental, social e econômica e como

determinam o desempenho dos processos de gestão socioambiental.

1.2. Objetivos específicos:

− Estudar as características e a evolução da gestão nas bacias hidrográficas ao nível

internacional e nacional.

− Descrever a gestão na bacia do Rio Sinos, avanços e desafios.

Page 17: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

16

− Identificar as variáveis da gestão socioambiental do socioecossistema bacia

hidrográfica que influenciam as dimensões ambiental, social, econômica, política e legal e que

determinam o desempenho dos processos de gestão.

− Desenvolver ferramentas de auxílio na tomada de decisões pelas estruturas de gestão.

− Desenvolver uma metodologia para a gestão socioambiental no socioecossistema bacia

Rio Dos Sinos.

Partindo dos objetivos específicos apresentados acima, expõe-se as seguintes perguntas

de pesquisa:

1- Qual é o aporte teórico-metodológico da evolução histórica da gestão

socioambiental de diferentes bacias hidrográficas, a nível internacional e nacional,

na gestão socioambiental do socioecosistema Bacia do Rio Sinos?

2- Que variáveis do entorno influenciam na gestão socioambiental do socioecosistema

Bacia do Rio do Sinos?

3- Quais são os avanços e desafios que apresenta a gestão socioambiental do

socioecosistema Bacia do Rio do Sinos?

4- Que ferramentas de análise muil-ticriteria podem auxiliar na tomada de decisões na

gestão socioambiental da bacia.

5- Que características deve ter uma metodologia de gestão socioambiental para que

contribua para mitigar ou remediar os danos dos impactos antrópicos causados ao

socioecosistema Bacia do Rio do Sinos?

Para alcançar os objetivos propostos na presente tese e dar resposta as perguntas ora

mencionadas, estruturou-se este trabalho em cinco capítulos em que cada um busca responder

as respectivas perguntas de pesquisa e objetivo:

O primeiro capítulo faz uma revisão da literatura consultando bases de dados

internacionais, percorrendo os conceitos de gestão socioambiental de bacia, o que permitiu

identificar o conceito de Sistema Socioambiental (SES) e cinco das metodologias mais usadas

na gestão integrada de bacias hidrográficas no mundo. Também buscou-se abordar o conceito

de Serviços Ecossistêmicos e a participação de stakeholders na gestão. Estas metodologias são

a Gestão Integrada dos Recursos Hídricos e o Nexo água – Energia – Alimentos, as duas

promovidas pela Associação Mundial pela Água (GWP) e pela Organização Mundial pela

Agricultura e Alimentação (FAO), ambas as organizações membros da Organização das Nações

Unidas (ONU) e com uma abrangência de alcance global; o Marco Diretivo da Água,

Page 18: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

17

promovido pela União Europeia para ser empregado nos países membros; O modelo

ENVISION usado nos Estados Unidos na gestão de bacias hidrográficas na região dos grandes

lagos e o Marco de decisão para a gestão de regiões alagadas na bacia do rio Guayas, no

Equador. Estas metodologias realizam diferentes aproximações em relação às soluções de

problemas sociais e ambientais, apresentando caraterísticas que as distinguem, mas também

semelhanças, pois tratam de dar soluções a problemas análogos. Esta análise bibliográfica

permitiu trazer aproximações e fazer analogias com a gestão socioambiental da bacia do Rio

dos Sinos.

O segundo capítulo trata dos avanços e desafios da Gestão Integrada dos Recursos

Hídricos na bacia do Rio dos Sinos. A gestão integrada dos recursos hídricos foi o modelo

adotado pelo Brasil desde meados dos anos 70 do século passado e, portanto, utilizado na gestão

da bacia do Rio dos Sinos pelo seu comitê de bacia. Este modelo propõe a gestão coordenada

de recursos hídricos, do solo e de outros recursos naturais sob uma abordagem social,

econômica e ambiental.

No terceiro capítulo realizou-se a análise PESTEL da gestão da bacia do Rio dos Sinos,

que trata da identificação das variáveis externas que têm influência na eficiência da gestão e

dos problemas encontrados na avaliação e medição, levando em consideração as suas

interdependências e incertezas. Para solucionar estas dificuldades foi realizada a modelagem

dos subfatores usando um Mapa Cognitivo Neutrosófico (NCM). Um exercício com os atores

permitiu identificar trinta e três subfatores externos, que a critério deles, tinham relevância no

desempenho da gestão, considerando-os da seguinte forma: da variável política identificaram-

se cinco subfatores; das variáveis econômicas e socioeconômicas apontaram-se sete; da variável

social nomearam-se três; da variável sociocultural diferenciaram-se outras três; da variável

tecnológica também foi possível indicar três; da variável ecológica classificaram-se seis e essa

mesma quantidade de subfatores foi indicada na variável legal. Modelaram-se as

interdependências destes subfatores e as suas incertezas com números neutrosóficos para

determinar o conhecimento causal e as complexidades destas relações.

No quarto capítulo, buscou-se fazer uma avaliação socioambiental prospectiva da gestão

da qualidade da água na bacia do rio Sinos, utilizando mapas cognitivos difusos e AHP-TOPSIS

neutrosóficos; apresenta uma ferramenta baseada em um método de decisão multicritério que

utiliza elementos neutrosóficos em modelos AHP-TOPSIS e ligados a Mapas Cognitivos

Fuzzy, que podem contribuir para uma melhor gestão ambiental a ser realizada pelo Comitê

Page 19: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

18

gestor do Rio dos Sinos. Nas visitas às reuniões do COMITESINOS em que se apresentavam

estudos técnicos, e nas entrevistas a gestores participantes na elaboração destes estudos,

detectou-se que na maioria das ocasiões eram proporcionadas aos membros do COMITESINOS

soluções com pouca ou nenhuma análise de alternativas. Não se levada em consideração as

restrições de diferentes naturezas que poderiam surgir, incertezas ou as interligações complexas

entre os diferentes fatores envolvidos. Para solucionar tal questão, propôs-se fornecer um

método que contribua na análise prospectiva de alternativas. Tomou-se como exemplo prático,

num exercício realizado com um grupo de atores, o modelo das relações dos fatores envolvidos

na determinação do Índice de Qualidade da Água (IQA), em que se usam mapas cognitivos

difusos, por meio do Processo Analítico Hierárquico Neutrosófico (NAHP), para auxiliar os

gestores na classificação das diferentes alternativas, através da comparação de diferentes

cenários, pela Técnica para a Ordem de Preferência por Similitude com Solução Ideal

(TOPSIS), o que vai permitir uma fácil tomada de decisões e supre sólidos argumentos para

justificá-las.

O quinto capítulo trata a Metodologia para a gestão socioambiental do socioecosistema

Rio dos Sinos. Realiza-se, assim, uma análise a partir da observação não participante dos

processos de gestão, de entrevistas aos membros do COMITESINOS e do estudo dos

documentos normativos e gerenciais da organização, identificando os principais problemas de

gestão que apresenta o COMITESINOS e enquadrando-os em quatro grupos: Problemas

organizacionais e de gestão; econômicos; de planejamento e controle de ações; estruturais e

funcionais da organização, os quais limitam o desempenho da gestão do COMITESINOS.

Para propor uma solução buscou-se analisar o modelo GIRH, se indagou no conceito de

gestão e suas múltiplas interpretações aderindo a uma delas. Analisaram-se os conceitos de

gestão social e gestão socioambiental. Todas estas ações permitiram descrever o modelo de

gestão socioambiental da bacia do Rio dos Sinos por meio de um mapeamento de processos, as

suas entradas e suas saídas, suas bordas funcionais e espaciais, assim como as abordagens,

tecnologias e teorias integradas em uma metodologia. Esta metodologia é descrita por meio de

um diagrama de fluxo que permite mostrar cada uma das etapas, os processos para sua

concreção e apresenta características como: sistémica, adaptativa, flexível, proativa,

democrática, participativa, colaborativa e cooperativa. Esta é sustentada pelo método sistêmico

e integra um conjunto de teorias, métodos, abordagens, ferramentas e conceitos como: as teorias

gerais da direção e das restrições, a abordagem de processos, o método da indagação

apreciativa, o modelo de governança multistakeholders, os conceitos de responsabilidade social

Page 20: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

19

corporativa e ecoeficiência, assim como um amplo uso dos mapas cognitivos difusos para uma

melhor compreensão da complexidade inerente à gestão socioambiental de um socioecosistema.

Esta metodologia precisa se incorporar à prática, pois é um construto teórico nestas áreas do

conhecimento.

A presente tese enquadra-se na linha de pesquisa: Tecnologia e Intervenção Ambiental,

do programa de doutorado em qualidade ambiental da Universidade Feevale.

Page 21: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

20

CAPÍTULO 1:

The Social-Ecological Management of Watershed Ecosystem: a Literature Review

ARTIGO 1 SUBMETIDO

Este manuscrito foi submetido à avaliação pelo Journal of Environmental Management,

(Anexo 2).

Page 22: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

21

CAPÍTULO 1:

The Social-Ecological Management of Watershed Ecosystem: a Literature Review

Rodolfo González Ortega 1

Claus Haetinger 3

Dusan Schreiber4

João Alcione Sganderla Figueiredo2

1 Feevale University, Ph.D. Student, Scholarship Program for Students - Postgraduate

Agreement PEC-PG, of CAPES / CNPq - Brazil 1; [email protected], Tel:

+55 51981682700. Moreover, Full Professor in Holguín University, Cuba.

2 Feevale University, Full Professor, [email protected], Tel: +55 5199731024

3 Vale do Taquari University – Univates, Full Professor, [email protected], Tel: +55

5137147000

4 Feevale University, Full Professor, [email protected], Tel: +55 513586 8800

Abstract: This article treaties with the concept of socio-environmental management of the

watershed and the increasing importance of its treatment in recent years. The approaches to

socio-environmental management of the watershed concept and the methodologies

implemented to put it into practice around the world were studied. They were also processed

by the SciMat bibliometric software, which allowed the identification of common

characteristics among them, which were later subjected to a method of qualitative content

analysis. Of these 49 papers, 28 were case studies and 20 theoretical approaches. This

classification allowed distinguishing between five methodologies of socio-environmental

management of basins, according to the characteristics they have in common, and allowed

identifying strengths and weaknesses when comparing five common attributes. As well as

determining that the Water Framework Directive is the most comprehensive, although it has

weaknesses that can be improved.

Keywords: Social-ecological; social-environmental management; watershed; river basin;

stakeholders; social networks

Page 23: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

22

1. Introduction

The term socio-ecological also referred to as socio-environmental or socio-ecological, is

related to the indissoluble connection between the social system and the biological ecosystem,

these interconnections forming a complex and open system, with numerous connections to

subsystems such as political, economic, biological among others (MUSTERS; DE GRAAF;

TER KEURS, 1998). Both terms, social and environmental, were separated to study by

biologists and social scientists researchers among others scientists, but “the delineation between

social and natural systems is artificial and arbitrary”(BERKES; COLDING; FOLKE, 2003).

Within the global socio-environmental term, were searched in the database Scopus, articles on

the concept of the socio-environmental system of the river basin, where it was observed that its

publication was slowly but steadily increasing over the years. (Figure 1)

Figure 1 Papers published by years (source Scopus)

Socio-environmental management is a dynamic and adaptable model for managing

environmental and social responsibility issues that an organization can implement

(TACHIZAWA; ANDRADE, 2011). It is also the interconnection of the environmental

variable with the organizational management process variables, such as economic,

technological, competitive, cultural, demographic, sociocultural and political-ideological

variables (BERTÉ, 2012). The socio-environmental management provides multidisciplinary

concepts and approaches about human and ecological relationship systems that are unable to be

a dissociated part of complex and multi-scale systems (VIRAPONGSE et al., 2016).

The watershed (also known as river basin or catchment) needs a complex and multi-scale

analysis method capable of solving environmental problems as well as social system

development challenges (CABELLO et al., 2015b).

In general, there is a consensus among researchers on the holistic nature of the socio-

environmental management of the basin given the infinite and complex interconnections

1 1 1 1 2 1 1 2 1 3 5 410

712

15

24

36

2125

38

1983 1994 2001 2003 2005 2007 2009 2011 2013 2015 2017

Page 24: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

23

between its multiple subsystems (CUMMING, 2011; SANTELMANN et al., 2012; CABELLO

et al., 2015a; WOHLFART et al., 2016). Therefore, during the approach of the solution to the

different problems, management tools must be adopted with a marked holistic and

multidisciplinary character and identifying some of these tools and how different approaches

are applied as part of this research.

2. Materials and Methods

Scopus database provides more coverage for environmental research (BURNHAM, 2006;

FALAGAS et al., 2007), that´s why, it was used to find the information needed to the literature

review on the Social-ecological system (SES) of watersheds, selected because of the coverage

it offers within the environmental, social and natural sciences. This database provides 20%

more coverage than Web of Science (WoS) for citation analysis, and it is more consistent than

Google Scholar (BURNHAM, 2006; FALAGAS et al., 2007; SALISBURY, 2009; AGHAEI

CHADEGANI et al., 2013). The research was focused only on electronic journal papers, written

in English, Portuguese and Spanish, since 2011, were publications have grown, to June 2017,

the final date of the research, excluding other publications like books, book chapters,

conferences or grey literature.

In this section it was analyzed the pertinent literature about Social-ecological management

of watersheds, providing differences between the previously published papers and laying out

the author´s contribution to this theme. This procedure had been created to develop this study.

Figure 2. Search process.

Step 1

Records identified through database

searching (Table 1)

(n=171)

Step 2

Records screened after included & excluded

criteria (Table 2)

(n= 118)

Step 3

Including Management Keyword

(n = 69)

Step 4

Full-text articles assessed for eligibility

(n = 49)

Studies included in qualitative synthesis

(n = 49)

Records excluded

(n= 49)

Records excluded

(n= 20 )

Page 25: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

24

The objective of the first search was to select many papers like the theoretical reference.

Keywords used for

search

TITLE-ABS-KEY ( socioambiental OR socioenvironmental OR

socio-environmental OR socio-ambiental OR socio-ecological OR

socioecological OR social-ecological ) AND river* AND basin* OR

watershed )

Table 1. Searched terms, in English, Portuguese and Spanish, into Scopus

The second step was the reading and evaluation of the papers based on a set of inclusion

and exclusion criteria (Table 2), and actualized keyword search (Table 2. Inclusion and exclusion

criteria. ).

Inclusion criteria Exclusion criteria

Literature published from Jan/2011 to

Jun/2017.

Index in Scopus database.

Content relevant to the search.

Peer-reviewed paper.

Literature published before 2011 and

after Jun 2017

Not available in the Scopus database.

Irrelevant content.

Reviews, proceeding papers,

conferences, book chapters, and editorial

material.

Table 2. Inclusion and exclusion criteria.

Keywords used for

search

TITLE-ABS-KEY ( ( socioambiental OR socioenvironmental OR

socio-environmental OR socio-ambiental OR socio-ecological OR

socioecological OR social-ecological ) AND management AND ( river*

AND basin* OR watershed ) ) AND ( LIMIT-TO ( PUBYEAR , 2017 )

OR LIMIT-TO ( PUBYEAR , 2016 ) OR LIMIT-TO ( PUBYEAR , 2015

) OR LIMIT-TO ( PUBYEAR , 2014 ) OR LIMIT-TO ( PUBYEAR , 2013

) OR LIMIT-TO ( PUBYEAR , 2012 ) OR LIMIT-TO ( PUBYEAR , 2011

) ) AND ( LIMIT-TO ( DOCTYPE , "ar" ) )

Table 3 Keywords actualized with exclusion criteria

This search resulted in 118 papers. The third phase was the addition of the term

“management” in the keywords search of step two. That inclusion had as objective the

Page 26: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

25

identification of methods, models or procedures of social-environmental management in the

watershed. The search result was 69 papers, analyzed by year of publication.

Moreover, Science Mapping Analysis Software Tool (SciMAT), a bibliometric procedure,

was used to process all of the 69 papers. The science mapping has procedures to data analysis,

to do: data recovery, preprocessing, network mining, normalization, mapping, analysis,

visualization and results from interpretation, focusing on the scientific field and allowing to

delineate areas of research (COBO et al., 2013). The SciMAT can read RIS format files so after

the creation of the project was added the RIS file previously exported by the SCOPUS database.

On the knowledge menu was checked and normalized parameters like authors, documents,

journals, references, and words. In the same menu were selected the periods for analysis.

Subsequently, the authors and words were grouped by similarity (COBO; HERRERA, 2013).

In the next step, the analysis was done. For this analysis, the period parameter was modified

including all the years sought. Words were the chosen unit for analysis with author´s word,

source´s word and added keywords marked too. After this chosen, data reduction was the next

option, setting the unit named “frequency reduction value” at three, like the minimum threshold.

The next step was to select co-occurrences like kind of matrix. From this time, it was necessary

a network filtering using two as a minimum edge value reduction.

Once finished, there was required the normalization measures and selection of the

clustering algorithm. For the normalization, it was chosen the equivalence index like similarity

measures and simple center algorithm to make the cluster. Clustering was set as fifteen the

maximum network size value and three the minimum one. Afterward, the document mapper

option was selected and was activated the core mapper and secondary mapper options. Later,

the performance and the quality bibliometric measure were selected. Then, the h-index and the

sum citation options clicking on the checkbox were selected. The penultimate step before doing

the complete analysis, the measures for longitudinal maps were selected together with the

Jaccard´s index for evolution map and inclusion index for overlapping map. When all these

steps were completed, click finish and generate the analysis. In the end, about twenty works

were excluded, leaving 49 papers selected for exhaustive reading.

For the literature review process, it was used the qualitative content analysis method. This

method intrinsically combines data observation and production or data analysis and

interpretation following the scientific method, so it is systematic, objective, replicable, and valid

(ANDREÚ, 2002).

Page 27: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

26

3. Results

The initial evaluation of the sample was planned to identify similarities, points in common,

shared characteristics, topics addressed and other relevant issues. The graphic shows the

publications behavior by years of the collections stored in the Scopus database (Figure 2). They

were cataloged as a case study, theoretical approach and others, being the other a comparative

analysis of nine big river basins, exploring the resilience in complex SES (CUMMING, 2011).

In general, there is a slight growth trend of related papers in this research.

Figure 3.Research papers by publication years.

After reviewing each paper, Table 4 was constructed, showing the distribution according

to the type of research.

Type of research Quantity of papers

Case study 28

Theoretical approach 20

Others 1

Table 4. Distribution according to the type of research.Erro! Fonte de referência não encontrada. shows

the number of papers by journals, order by the impact factor of these journals. The “Ecology

and Society” journal had the most representative with eight papers. Although, the Journal of

Applied Ecology, which as the highest value of the impact factor, have only published two

papers.

7 7

14

9

11

16

5

2011 2012 2013 2014 2015 2016 jun/17

Page 28: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

27

Table 5. Showing the relationship of publications by Journals.

This research focused on the conceptual aspects of the area of scientific research utilizing

a bibliometric network, using the co-word parameter to detect the most critical issues, with

higher quality and significant impact within the selected sample.

Figure 4. Cluster´s network generated by SciMat).

Figure 4. Cluster´s network generated by SciMat

Journals Publications

Impact

factor

15/16

Ecology and Society 8 4,55

Environmental Science and Policy 4 4,51

Environmental Management 3 1,83

International Journal of River Basin

Management 3 3,88

Ecological Indicators 2 5,37

Ecosystem Services 2 2,48

Water (Switzerland) 2 2,14

Water Alternatives 2 2,57

Journal of Applied Ecology 2 6,02

Science of the Total Environment 2 4,42

Others journals with only one. 39 -----

Page 29: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

28

Table 6 shows that the terms of greater weight and significance were watersheds, river

basins, and SES.

Node´s name Number of documents

by node

Watersheds 27

River basins 24

Social-ecological system 23

Water resources 15

Rivers 10

Ecosystem 9

Ecosystem services 9

Stakeholders 7

Catchments 6

Decision support system 4

Table 6. Nodes generated by SciMAT.

These papers have a wide geographical distribution, but North America and Asia have

significant numbers, this is exposed in Table 7.

Geographic region No. Papers

North America 14

South America 8

Europa 8

Africa 2

Asia 10

Australia 1

Table 7 Papers by geographic distribution.

The above described allowed to identify several issues related to the socio-environmental

management of a water basin, such as: the definition of the social environmental system and its

characterization; its resilience and adaptive capacity; the ecosystem services offered by the

basin; the importance of stakeholders and social networks in the managing processes of the

SES. Different methodologies and tools were also identified to help in the decision-making

Page 30: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

29

processes in the SES management. The identification was made using the definition and

procedures for qualitative content analysis method proposed by Mayring (MAYRING, 2014).

4. Discussion

4.1. Social Environmental Systems (SES)

A water basin is a complex ecosystem divided into different subsystems for better study

and understanding. Various authors, (GOHAR; WARD, 2010; CUMMING, 2011; MWENGE

KAHINDA; MEISSNER; ENGELBRECHT, 2016; SAPOUNTZAKI; DASKALAKIS, 2016),

call this set of subsystems as the SES for including different names such as complex ecosystem,

hydrological system, agro-ecosystem or social-system among others, which reaffirms the

holistic nature of the concept and the intrinsic interrelation indissoluble between society and

ecosystem. The SES has distinct components such as ecological, hydrological, social,

economic, socio-cultural and political, all in constant interaction with their feedback and

gradual evolution (CUMMING, 2011; MOLLE; MAMANPOUSH, 2012; GAIN et al., 2013;

GARRICK et al., 2013; SANCHEZ et al., 2014; CABELLO et al., 2015b; DIFRANCESCO;

TULLOS, 2015; MWENGE KAHINDA; MEISSNER; ENGELBRECHT, 2016;

VILLAMAYOR-TOMAS et al., 2016). These components should be merged into three

dimensions, separated for study in social, economic and environmental dimensions with each

of their integration factors (Figure 5).

Figure 5 SES Dimensions (made by the authors)

Thereby, an SES can also be represented in four subsystems, the system of resources, the

system of governance, the system of actors and resources units (GARRICK et al., 2013).

An SES has borders that can be classified into two types, one determined by the orography

and the demography of the basin, which have a natural or physical origin. The other is a diffuse

and artificial boundary created by human activities such as economic, social or political

activities (SAPOUNTZAKI; DASKALAKIS, 2016).

Page 31: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

30

Several authors refer to the inherent resiliency characteristic of SES. The resilience is the

aptitude of a system to soak up the commotions and reorganize while changing, to still retain

substantially the same functions, structure, identity, and feedbacks (SAPOUNTZAKI;

DASKALAKIS, 2016). This characteristic should not be taken into account separately for each

of the dimensions as environmental, economic or social, but should be analyzed with a holistic

approach, with particular emphasis on the links between each of the dimensions and on the

different scales expressed (POLHILL et al., 2016). This characteristic should not be taken into

account separately for each of the dimensions, environmental, economic and social, but should

be evaluated with a holistic approach, with particular emphasis on its links in the different scales

that are manifested. Besides, the SES can cushion and reorganize once suffered natural or

anthropic impacts (CUMMING, 2011; POLHILL et al., 2016). Another of the SES's

capabilities is that of adaptation, which is based on the ability to identify change modifiers or

transformation drivers at different scales of time and space. The components of the social

dimension have their ability to adopt measures that allow adaptation to these changes and

contribute in decreasing the effect of the impacts and thus the resilience of the SES (WELSH

et al., 2013; DOWNARD; ENDTER-WADA; KETTENRING, 2014; GIVENTAL;

MEREDITH, 2016). Also, like the ability to adapt to settle disputes by the stakeholders in a

collective, participatory and collaborative manner. These conflicts derive from the

contradictions in the use of the ecosystem services of the SES (WELSH et al., 2013).

4.2. SES Ecosystem Services

Some of the authors define ecosystem services (ES) as the benefits obtained from a given

ecosystem by the human population (BERBÉS-BLÁZQUEZ, 2011; WOLLHEIM et al., 2013;

MWENGE KAHINDA; MEISSNER; ENGELBRECHT, 2016; JUJNOVSKY et al., 2017).

The ES is subdivided into provisioning services such as wood, minerals, fish, water, fuels, and

natural fibers, among others. There are also services to regulate natural processes such as

climate regulation, natural water purification, and disease regulation among others. Moreover,

cultural services are intangible services that humans can appreciate from their natural

environment such as recreational and scenic use, spiritual realization, educational. Finally,

support services, which are ecological functions that support all other services such as the

nutrient cycle, pollination, the water cycle and others (BERBÉS-BLÁZQUEZ, 2011;

NORMAN et al., 2013). The health of the SES, according to some of the authors, is determined

by the health of the ES, mainly the provisioning service, although all are closely related. To

Page 32: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

31

determine the health of the SES, they propose methods to monitor various parameters that allow

evaluating the changes that occur in ES as well as the impact of these changes on economic and

social factors that affect well-being (EZEJI; SMOUT; BOSHER, 2013; JORDA-CAPDEVILA;

RODRÍGUEZ-LABAJOS; BARDINA, 2016). Besides, they highlight the need for stakeholder

participation in the identification of ES of the SES of the basin in a way that allows shaping

management models by analyzing multiple scenarios and determining their preferences

(JORDA-CAPDEVILA; RODRÍGUEZ-LABAJOS; BARDINA, 2016). Other authors

consulted refer to the problems that persist due to the rapid growth of economic activities

without an analysis of the impacts on ES that affect the balance of the SES and its capacity for

resilience and adaptation. These impacts are not only examined from the environmental point

of view, but also socially and economically with the growth of phenomena such as poverty,

food insecurity, health and education problems, and some countries the violation of

fundamental human rights (QUEIROZ et al., 2013; WOLLHEIM et al., 2013).

4.3. Stakeholders and social networks

Approaches for participation and collaboration of stakeholders are perceived as

fundamental in the management of the SES. The social system and stakeholder networks are

crucial for the identification of socio-environmental issues, identification of risks and the

monitoring of possible impacts on ecosystem services by anthropic activities or natural

phenomena. The participation of stakeholders with and without formal power contributes to

balance power inequalities and increase collaborative governance and co-management of the

SES. The inclusion of new decision-making approaches that involve civil society groups,

private companies, and public and governmental institutions help with better performance. The

benefits of collaboration and cooperation from stakeholder networks contribute to accessing

solutions, knowledge, technologies, social and human capital, and financial funds for the SES

management, unreachable in another context (CAREY; FRENCH; O’BRIEN, 2012;

ONAINDIA et al., 2013; GAIN; GIUPPONI, 2015; HILL et al., 2015; PLUMMER et al., 2016;

JUJNOVSKY et al., 2017).

A set of criteria was identified and grouped, summarizing the attributes that a socio-

environmental management system of a water basin should have.

Page 33: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

32

Criteria attributes

Governance

- Democratic, cooperative,

collaborative and transparent

decision-making method

- Holistic Planning

- Adaptive monitoring

Economic - Economics, financial and social

environmental viability projects

Social

- Social and cultural issues

- Stakeholders Networks

participations

- Social-ecological approach

- Sustainability development

Environmental - Resiliency and dative

- Holistic phenomenal compression

Table 8 Criteria of SES Management, (Adapted from Shah (SHAH; GIBSON, 2013)).

4.4. The Social-ecological management

The Social-ecological management of an organization deals with the insertion of the socio-

environmental variable throughout the process of planning, organizing, directing and

controlling; using the functions that compose this process, as well as the interrelationships that

occur in the ecosystem, aiming to reach its objectives and goals in the most sustainable way

possible. It must be understood that there are interrelationships between economic, social and

environmental impacts (NASCIMENTO; LEMOS; MELLO, 2008).

Furthermore, the social-ecological management interconnects the environmental variable

with the organizational management process variables, giving as an example the economic,

technological, competitive, cultural, demographic, sociocultural and political-ideological

variables (BERTÉ, 2012). Also, the socio-ecological management must go through strategic,

tactical and operational planning becoming part of the activities development, alternative

scenarios discussions and, consequently, the generation of policies, goals and action plans. The

organization is concerned not only with their economic performance but also with their ethical

Page 34: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

33

values. Other authors (TACHIZAWA; ANDRADE, 2011), mention that Social-ecological

management is a dynamic and adaptable model of environmental and social responsibility

management that an organization can implement. Therefore, Social-ecological management is

a participatory and democratic process, free of coercion actions, where every member has equal

rights of expression and access to information. These actions are coordinated between the public

power and the society in favor of social, political, economic and cultural well-being in a territory

(TENÓRIO, 1998, 2005; RAMOS; MATOS, 2009; OLIVEIRA; CANÇADO; PEREIRA,

2010; MONJE-REYES, 2011). Other authors also determine different variables to define

social-ecological management, such as participatory, collaborative, communicative process and

joint learning, developed through coordinated actions and inter-institutional relationship spaces,

with an inclusive approach to environmental variables (SIQUEIRA, 2009).

The bibliometric analysis was able to identify relevant methodologies used to the

management of the SES and methods of helping in decision-making or theoretical approach.

Among the methodologies identified, the following stands out: The integrated water resources

management (IWRM) (ROPERO; AGUILERA; RUMÍ, 2015; NEWIG; SCHULZ; JAGER,

2016); the European Water Framework Directive (WFD 2000)(MOSS, 2012; CABELLO

VILLAREJO; MADRID LOPEZ, 2014; NEWIG; SCHULZ; JAGER, 2016); FAO Water –

Energy – Foods Nexus (MDEE, 2017);Envision (SANTELMANN et al., 2011; BLESH;

WOLF, 2014); Decision framework for wetland management in a river basin context (DFWM-

RBC) (ARIAS-HIDALGO et al., 2013). Table 9

IWRM

FAO

Water –

Energy –

Foods

Nexus

WFD

2000 Envision

DFWM-

RBC

Integration level

Other policies

and objectives

are integrated

into water

policy.

Integration of

water and

energy policies

and objectives

- Food

Security

Integrates

solution

policies and

institutions at

multiple

levels

Integration of

hydrological,

ecological and

socioeconomic

factors

Integration of

hydrological,

ecological and

socioeconomic

factors

Governance

It integrates

policies for

basin-level

solutions under

the principle of

Integrates

solution

policies and

institutions at

multiple levels

High level of

integration,

EU

multinational

and EU

policies

Integrates

solution policies

and institutions

at multiple

levels

Integrates

solution policies

at the local level

Page 35: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

34

"Good

Governance."

Scale Water Basin

scale

Multiple

scales

Multiple

scales

Water Basin

scale

Water Basin

scale

Participation of

the Stakeholders

Stakeholders

involved in

decisions in the

basin

Multiple

participation

levels.

Extensive use

of

collaborative

tools

encouraging

public-private

partnerships

Multiple

participation

levels,

stakeholders

with broad

decision-

making

capabilities

Multiple Levels

of Participation

Participation at

the basin scale

Use of

resources

Efficient use of

local resources,

recoverable

costs, equitable

access to

stakeholders

Decision-

making based

on economic

factors and

cost recovery

Efficient use

of local,

national and

multinational

cooperation

resources

Efficient use of

local resources,

multifactorial

decision making

Efficient use of

local resources,

recoverable

costs, equitable

access to

stakeholders

Sustainable

development

Medium, on-

demand

monitoring, and

management of

stakeholders

Low,

Securitization

of resources

and

dependence on

the market

value

High,

ambitious

goals and

well-defined

goals for

sustainability

High, ambitious

objectives and

well-defined

goals

Medium, on-

demand

monitoring, and

management of

stakeholders

Table 9 Comparison of methodologies (partially taken of Mdee (MDEE, 2017) and improved by the authors).

Table 9 shows the different methodologies identified in this study. It is not defined, which

is the better one to manage one watershed although it is possible to find similarities and

accentuated differences at different levels: integration level, governance, scale, stakeholders,

use of resources, sustainable development impact.

IWRM methodology has different objectives for water use, such as Agriculture and

irrigation, transportation, energy, fishing and aquaculture, tourism and recreation, and at last

but not less important, potable water distribution to people and animals (ROCKSTRÖM et al.,

2014; STEWART; BENNETT, 2016; BISCHOFF-MATTSON; LYNCH, 2017; SILVA;

HERREROS; BORGES, 2017). For being more far-reaching, it needs adequate policies and

Page 36: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

35

precise synergy between each necessary action to reach the goals. Integration between

governmental and non-governmental institutions is fundamental to participation, collaboration,

and cooperation of all actors (VILLAMAYOR-TOMAS et al., 2016; JUJNOVSKY et al.,

2017).

Regarding IWRM, the difference of FAO methodology (Water – Energy – Food) is that it

has a minor complex integration level, focusing only in three objectives, population water

supply, agriculture irrigation, and hydroelectric energy production. This methodology is mainly

implemented in water scarcity environments, decreasing conflicts by putting in execution

public-private ventures with government intervention at different levels and small stakeholder's

participation. The integration processes occur in an economic framework (CABELLO

VILLAREJO; MADRID LOPEZ, 2014; FLAMMINI et al., 2014; YANG; GOODRICH, 2014;

CABELLO et al., 2015a; MDEE, 2017).

European Water Framework Directive (WFD 2000) is an implantation policy for the bloc

common rules that allows governmental organizations integration between the several

European Union members that share watersheds and activities implementation to reach

common goals. That facilitates integration not only for national governments but also for

municipalities of membership countries, enabling institutional interrelationships between them

(GARRICK et al., 2013; LEBEL et al., 2013; CABELLO VILLAREJO; MADRID LOPEZ,

2014; NEWIG; SCHULZ; JAGER, 2016).

The Envision has an integrated multi-agent-based modeling component that can represent

the impact of decision-making. The agents are defined as entities with authority, such as federal

land managers, agricultural producers, or homeowner. It is useful for decision-making and the

study of resilience in SES, because of its capability of incorporating output from social,

economic, hydrologic, and ecological models as feedback that results from specific scenarios

(SANTELMANN et al., 2012). This model could be used to calibrate responses of the social

ecosystem in situations of water scarcity since integration and feedback of hydrological,

ecological and socio-economic factors are included itself.

The decision framework for wetland management in a river basin context (DFWM-RBC)

is a methodology for analysis, handle and make-decision in swamplands or floodplains

environments. This methodology integrates a rainfall simulation, hydrodynamic models, water

allocation model, and other tools. The criteria of the experts and the opinion of the stakeholders

to take the necessary decisions are also taken into account (ARIAS-HIDALGO et al., 2013).

The participation of the interested parties is recognized as necessary in the decision-making

process in the five methodologies identified in this research, showing that to find a balance in

Page 37: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

36

the socio-ecosystem, the active participation of all the interested parties is of vital importance.

All the impacts of the anthropogenic activity on the ecosystem and its effects are challenging

to predict, so only by working with common objectives can these impacts be mitigated

(ONAINDIA et al., 2013; SANCHEZ et al., 2014; VERKERK et al., 2017). The multiple

problems that hinder the proper management of water in a socio-ecosystem make it necessary

to improve the water management system based on the participation of stakeholders, the public

and private sectors working together (TUNDISI, 2008; TUNDISI; TUNDISI, 2016).

As it was possible to appreciate, these five methodologies present many points in common

and significant differences in their main characteristics. The level of integration is one of the

most different features, with WFD2000 standing out as the most comprehensive when

integrating the multiple levels from the multinational government strata to the inter-municipal

levels and also at inter-institutional levels, which favors better governance processes and high

stakeholder participation in making decisions. However, its weakness lies in setting very

ambitious and comprehensive objectives, which makes it difficult to adequately monitor the

goals achieved by each of the participating governments, agencies, institutions, and

stakeholders. The strengths and weaknesses identified contribute to the development of future

methodologies that incorporate the best practices of these methodologies and improve the

deficiencies identified.

4.5. Study cases

Some case studies were selected for each of the methodologies analyzed. The first one

presents the development and implementation of a decision support system framework for the

management of wetland areas in the Guayas river basin in Ecuador (ARIAS-HIDALGO et al.,

2013). The second case study was the execution of the water-energy-food nexus methodology

in the Wami- Ruvu River Basin in Tanzania (MDEE, 2017). The third case study was the

implementation of the Envision methodology in the Willamette River Basin (Oregon, USA)

(SANTELMANN et al., 2012). The fourth case study was the putting into practice of water

integrated resource management methodology in the Magdalena River Watershed in Mexico

(JUJNOVSKY et al., 2017). The fifth case study was the application of the European Water

Framework Directive methodology in two rivers watersheds, in the Hase sub-basin and Wupper

sub-basin, located in the north-western part of Germany (NEWIG; SCHULZ; JAGER, 2016).

Page 38: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

37

5. Conclusions

In the search conducted in the Scopus database it was evident that there is a wide geographic

distribution in the subject of research in question, but a low frequency in most of the countries,

except the United States and China. These two countries have a significant number of

publications in the period consulted. This research allowed the identification of five

methodologies of socio-environmental management of watersheds, some of them having a

broad implementation in many countries. In some countries to be part of intergovernmental

agreements and in others because these methodologies are supported by international

organizations that are part of the United Nations. The analysis of concepts such as Level of

integration, Governance, Scale, Participation of stakeholders, Use of resources and Sustainable

Development, allowed identifying the advantages and disadvantages of each of the

methodologies.

Author Contributions: Rodolfo González Ortega searched for the papers, analysis the SciMat

software results and wrote the paper with all authors support. João Alcione Sganderla

Figueiredo designs and coordinates the study. Claus Haetinger and Dusan Schreiber assists in

data analysis and help to the writing process.

Funding: "This study was partially financed by Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) -Finance Code 001."

Conflicts of Interest: No conflict of interest are declared by the authors.

Page 39: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

38

References

AGHAEI CHADEGANI, Arezoo et al. A comparison between two main academic literature

collections: Web of science and scopus databases. Asian Social Science, [s. l.], v. 9, n. 5, p.

18–26, 2013.

ANDREÚ, Jaime. Las técnicas de Análisis de Contenido: una revisión actualizada.

Fundación Centro de Estudios Andaluces, [s. l.], p. 1–34, 2002. Disponível em:

<http://public.centrodeestudiosandaluces.es/pdfs/S200103.pdf>

ARIAS-HIDALGO, M. et al. A decision framework for wetland management in a river basin

context: The “Abras de Mantequilla” case study in the Guayas River Basin, Ecuador.

Environmental Science and Policy, UNESCO-IHE, Institute for Water Education, P.O.Box

3015, 2601 DA Delft, Netherlands, v. 34, p. 103–114, 2013. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84890205327&doi=10.1016%2Fj.envsci.2012.10.009&partnerID=40&md5=217b63787c986

db931de44adb36bff2e>

BERBÉS-BLÁZQUEZ, M. A participatory assessment of ecosystem services and human

wellbeing in rural costa rica using photo-voice. Environmental Management, York

University, 4700 Keele Street, Toronto, ON, Canada, v. 49, n. 4, p. 862–875, 2011.

Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84864533764&doi=10.1007%2Fs00267-012-9822-

9&partnerID=40&md5=9c49b68a0df4fc69264a0cd1eb4fe162>

BERKES, Fikret; COLDING, Johan; FOLKE, Carl. Navigating Social - Ecological Systems -

Building Resilience for Complexity and Change. [s. l.], p. 393, 2003.

BERTÉ, Rodrigo. Gestão Socio Ambiental no Brasil. 2da. ed. Curitiba PR: Xibpex, 2012.

BISCHOFF-MATTSON, Z.; LYNCH, A. H. Integrative Governance of Environmental Water

in Australia’s Murray–Darling Basin: Evolving Challenges and Emerging Pathways.

Environmental Management, Institute at Brown for Environment and Society, Brown

University, Providence, RI, United States, v. 60, n. 1, p. 41–56, 2017. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85017456349&doi=10.1007%2Fs00267-017-0864-

x&partnerID=40&md5=4533ce43153a23f60584a00c35bcc7f1>

BLESH, J.; WOLF, S. A. Transitions to agroecological farming systems in the Mississippi

River Basin: toward an integrated socioecological analysis. Agriculture and Human Values,

School of Natural Resources and Environment, University of Michigan, 440 Church St., Ann

Arbor, MI, United States, v. 31, n. 4, p. 621–635, 2014. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84911968177&doi=10.1007%2Fs10460-014-9517-

3&partnerID=40&md5=3911f3c28263b8d4cf7484cd4a3dce07>

BURNHAM, Judy F. Scopus database: A review. Biomedical Digital Libraries, [s. l.], v. 3,

p. 1–8, 2006.

CABELLO, V. et al. River basins as social-ecological systems: Linking levels of societal and

ecosystem water metabolism in a semiarid watershed. Ecology and Society, Department of

Human Geography, University of Seville, Technical University of Madrid, Spain, v. 20, n. 3,

2015. a. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84943191090&doi=10.5751%2FES-07778-

Page 40: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

39

200320&partnerID=40&md5=e28b2ccbe286a149c553b38a6ff80060>

CABELLO VILLAREJO, V.; MADRID LOPEZ, C. Water use in arid rural systems and the

integration of water and agricultural policies in Europe: The case of Andarax river basin.

Environment, Development and Sustainability, Department of Human Geography,

University of Seville, Seville, Spain, v. 16, n. 4, p. 957–975, 2014. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84903579608&doi=10.1007%2Fs10668-014-9535-

8&partnerID=40&md5=89eb2261cc9b9a098ffd4786ac34e9b5>

CABELLO, Violeta et al. River basins as social-ecological systems: Linking levels of societal

and ecosystem water metabolism in a semiarid watershed. Ecology and Society, [s. l.], v. 20,

n. 3, 2015. b.

CAREY, M.; FRENCH, A.; O’BRIEN, E. Unintended effects of technology on climate

change adaptation: An historical analysis of water conflicts below Andean Glaciers. Journal

of Historical Geography, Robert D. Clark Honors College, University of Oregon, Eugene,

OR 97403, United States, v. 38, n. 2, p. 181–191, 2012.

COBO, M. J. et al. Science Mapping SoftwareTools: Review, Analysis, and Cooperative

Study AmongTools. International Review of Research in Open and Distance Learning, [s.

l.], v. 14, n. 4, p. 90–103, 2013.

COBO, M. J.; HERRERA, F. SciMAT User guide. [s. l.], p. 1–17, 2013. Disponível em:

<http://sci2s.ugr.es/scimat>

CUMMING, G. S. The resilience of big river basins. Water International, Percy FitzPatrick

Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, Cape Town

7701, South Africa, v. 36, n. 1, p. 63–95, 2011. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

78751692510&doi=10.1080%2F02508060.2011.541016&partnerID=40&md5=932b7dd67dc

ebdb7f1353f156e216108>

DIFRANCESCO, K. N.; TULLOS, D. D. Assessment of flood management systems’

flexibility with application to the Sacramento River basin, California, USA. International

Journal of River Basin Management, Department of Biological and Ecological

Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR, United States, v. 13,

n. 3, p. 271–284, 2015. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-

s2.0-

84937521267&doi=10.1080%2F15715124.2014.917316&partnerID=40&md5=175486dc755

d3a57952514956abaa2bd>

DOWNARD, R.; ENDTER-WADA, J.; KETTENRING, K. M. Adaptive wetland

management in an uncertain and changing arid environment. Ecology and Society, Utah State

University, United States, v. 19, n. 2, 2014. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903699177&doi=10.5751%2FES-

06412-190223&partnerID=40&md5=37838095b13c49c1a53b394f0b10f546>

EZEJI, Joachim Ibeziako; SMOUT, Ian; BOSHER, Lee. Coupling utility performance targets

with catchment management. Proceedings of the Institution of Civil Engineers - Municipal

Engineer, Water, Engineering and Development Centre (WEDC), School of Civil and

Building Engineering, Loughborough University, United Kingdom, v. 166, n. 2, p. 130–138,

2013. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84887139679&doi=10.1680%2Fmuen.12.00038&partnerID=40&md5=9f84beaa92ac79ea8e9

Page 41: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

40

db870c7c62580>

FALAGAS, M. E. et al. Comparison of PubMed, Scopus, Web of Science, and Google

Scholar: strengths and weaknesses. The FASEB Journal, [s. l.], v. 22, n. 2, p. 338–342,

2007. Disponível em: <http://www.fasebj.org/cgi/doi/10.1096/fj.07-9492LSF>

FLAMMINI, Alessandro et al. Walking the Nexus Talk: Assessing the Water-Energy-

Food Nexus in the Context of the Sustainable Energy for All Initiative. 1ra. ed. Roma:

FAO Sales and Marketing Group Office, 2014. Disponível em:

<http://www.fao.org/icatalog/inter-e.htm>

GAIN, A. K. et al. Thresholds of hydrologic flow regime of a river and investigation of

climate change impact-the case of the Lower Brahmaputra river Basin. Climatic Change,

Department of Economics, Ca’ Foscari University of Venice, Cannaregio, 873, 30121 Venice,

Italy, v. 120, n. 1–2, p. 463–475, 2013. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84881615283&doi=10.1007%2Fs10584-013-0800-

x&partnerID=40&md5=a2d7d343ad51239e8f1d89dfa473fa11>

GAIN, A. K.; GIUPPONI, C. A dynamic assessment of water scarcity risk in the Lower

Brahmaputra River Basin: An integrated approach. Ecological Indicators, Ca’ Foscari

University of Venice, Venice Centre for Climate Studies (VICCS), Department of Economics,

Cannaregio 873, 30121 Venice, Italy, v. 48, p. 120–131, 2015. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84906848100&doi=10.1016%2Fj.ecolind.2014.07.034&partnerID=40&md5=7d70e5670e8a4

9e38ec81472f3b3ec8b>

GARRICK, D. et al. Managing hydroclimatic risks in federal rivers: A diagnostic assessment.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, School of Geography and the Environment, Oxford Martin School,

University of Oxford, Oxford, United Kingdom, v. 371, n. 2002, 2013. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84885013772&doi=10.1098%2Frsta.2012.0415&partnerID=40&md5=e28da5367749d48cc5

7bdfb0a45d998c>

GIVENTAL, E.; MEREDITH, D. Environmental and political implications of Vietnam’s

water vulnerabilities: A multiscale assessment. Singapore Journal of Tropical Geography,

Department of Anthropology, Geography and Environmental Studies, California State

University East Bay, California, United States, v. 37, n. 1, p. 59–75, 2016. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84957561753&doi=10.1111%2Fsjtg.12135&partnerID=40&md5=3af30161373e4dc6786527

0e7fd1322f>

GOHAR, Abdelaziz A.; WARD, Frank A. Gains from expanded irrigation water trading in

Egypt: An integrated basin approach. Ecological Economics, [s. l.], v. 69, n. 12, p. 2535–

2548, 2010. Disponível em: <http://dx.doi.org/10.1016/j.ecolecon.2010.07.030>

HILL, R. et al. Collaboration mobilises institutions with scale-dependent comparative

advantage in landscape-scale biodiversity conservation. Environmental Science and Policy,

Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia, v. 51, p.

267–277, 2015. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84937962643&doi=10.1016%2Fj.envsci.2015.04.014&partnerID=40&md5=a36661ea124f91

87f1668895fe97daf2>

Page 42: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

41

JORDA-CAPDEVILA, D.; RODRÍGUEZ-LABAJOS, B.; BARDINA, M. An integrative

modelling approach for linking environmental flow management, ecosystem service provision

and inter-stakeholder conflict. Environmental Modelling and Software, Institute for

Environmental Science and Technology (ICTA), Autonomous University of Barcelona

(UAB), Spain, v. 79, p. 22–34, 2016. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84957023583&doi=10.1016%2Fj.envsoft.2016.01.007&partnerID=40&md5=f564294ff6278c

fae1a8deef7feb7e65>

JUJNOVSKY, J. et al. Water assessment in a peri-urban watershed in Mexico City: A focus

on an ecosystem services approach. Ecosystem Services, Departamento de Ecología y

Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México

(UNAM), Ciudad Universitaria, Coyoacán, México D.F., Mexico, v. 24, p. 91–100, 2017.

Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85013959129&doi=10.1016%2Fj.ecoser.2017.02.005&partnerID=40&md5=8b09cab03ad0df

0280c54d0ff94945a9>

LEBEL, L. et al. Institutional fit and river basin governance: A new approach using multiple

composite measures. Ecology and Society, Chiang Mai University, Thailand, v. 18, n. 1,

2013. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84876775801&doi=10.5751%2FES-05097-

180101&partnerID=40&md5=428ccc92ef3902843f9115f4caa4d1c1>

MAYRING, Philipp. Qualitative Content Analysis: Theoretical Foundation, Basic Procedures

and Software Solution. Forum Qualitative Sozialforschung / Forum: Qualitative Social

Research, [s. l.], v. 1, n. 1, p. 1–143, 2014. Disponível em: <http://nbn-

resolving.de/urn:nbn:de:0168-ssoar-395173>

MDEE, A. Disaggregating orders of water scarcity - The politics of nexus in the Wami-Ruvu

River Basin, Tanzania. Water Alternatives, Politics and International Studies (POLIS),

University of Leeds, United Kingdom, v. 10, n. 1, p. 100–115, 2017. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85012877920&partnerID=40&md5=9b21176c222a5a4c85d69aaafb3f1268>

MOLLE, F.; MAMANPOUSH, A. Scale, governance and the management of river basins: A

case study from Central Iran. Geoforum, Institut de Recherche pour le Développement, 911,

Avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France, v. 43, n. 2, p. 285–294,

2012. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84856971734&doi=10.1016%2Fj.geoforum.2011.08.004&partnerID=40&md5=db983790397

f38fdaebdf0fee656822c>

MONJE-REYES, Pablo. Economía solidaria, cooperativismo y descentralización: la gestión

social puesta en práctica. Cadernos EBAPE.BR, [s. l.], v. 9, n. 3, p. 704–723, 2011.

MOSS, T. Spatial fit, from panacea to practice: Implementing the EU water framework

directive. Ecology and Society, Leibniz Institute for Regional Development and Structural

Planning (IRS), Germany, v. 17, n. 3, 2012. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84867126749&partnerID=40&md5=af4f6fe4e3217275f67f2ef26a465356>

MUSTERS, C. J. M.; DE GRAAF, H. J.; TER KEURS, W. J. Defining socio-environmental

systems for sustainable development. Ecological Economics, [s. l.], v. 26, n. 3, p. 243–258,

1998.

Page 43: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

42

MWENGE KAHINDA, J.; MEISSNER, R.; ENGELBRECHT, F. A. Implementing

Integrated Catchment Management in the upper Limpopo River basin: A situational

assessment. Physics and Chemistry of the Earth, Natural Resources and the Environment,

Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, South Africa, v. 93, p.

104–118, 2016.

NASCIMENTO, Luis Felipe; LEMOS, Ângela Denise da Cunha; MELLO, Maria Celina

Abreu. Gestão Socioambiental Estratégica. 1ra. ed. Porto Alegre: Artemed, 2008.

Disponível em:

<https://www.amazon.com.br/dp/8577801047/ref=asc_df_85778010474541916/?tag=buscape

-14-local-20&creative=380333&creativeASIN=8577801047&linkCode=asn>

NEWIG, J.; SCHULZ, D.; JAGER, N. W. Disentangling Puzzles of Spatial Scales and

Participation in Environmental Governance—The Case of Governance Re-scaling Through

the European Water Framework Directive. Environmental Management, Research Group

on Governance, Participation and Sustainability, Leuphana University of Lüneburg,

Scharnhorststrasse 1, Lüneburg, Germany, v. 58, n. 6, p. 998–1014, 2016. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84988603361&doi=10.1007%2Fs00267-016-0753-

8&partnerID=40&md5=60915ce0d5896b87e5417066ff65a95d>

NORMAN, L. M. et al. Framing scenarios of binational water policy with a tool to visualize,

quantify and valuate changes in ecosystem services. Water (Switzerland), U.S. Geological

Survey, Western Geographic Science Center, Tucson, AZ 85719, United States, v. 5, n. 3, p.

852–874, 2013. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84885339486&doi=10.3390%2Fw5030852&partnerID=40&md5=f8c2695e0230ee7ac0cfd8e

b3a8cf533>

OLIVEIRA, Vânia Aparecida Rezende De; CANÇADO, Airton Cardoso; PEREIRA, José

Roberto. Gestão social e esfera pública: aproximações teórico-conceituais. Cadernos

EBAPE.BR, [s. l.], v. 8, n. 4, p. 613–626, 2010.

ONAINDIA, M. et al. Participatory process to prioritize actions for a sustainable management

in a biosphere reserve. Environmental Science and Policy, Department of Plant Biology and

Ecology, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain,

v. 33, p. 283–294, 2013. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-

s2.0-

84881260378&doi=10.1016%2Fj.envsci.2013.05.012&partnerID=40&md5=c83a96481da558

6b1faa64a3793147de>

PLUMMER, R. et al. Improving river health: insights into initiating collaboration in a

transboundary river basin. International Journal of River Basin Management,

Environmental Sustainability Research Centre, Brock University, 500 Glenridge Ave, St.

Catharines, ON, Canada, v. 14, n. 1, p. 119–132, 2016.

POLHILL, J. Gary et al. Modelling systemic change in coupled socio-environmental systems.

Environmental Modelling & Software, [s. l.], v. 75, p. 318–332, 2016. Disponível em:

<http://linkinghub.elsevier.com/retrieve/pii/S136481521530075X>. Acesso em: 4 jun. 2017.

QUEIROZ, L. et al. Shrimp aquaculture in the federal state of Ceará, 1970-2012: Trends after

mangrove forest privatization in Brazil. Ocean and Coastal Management, Institut de Ciència

i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Edifici

Cn Campus UAB, Barcelona 08193, Spain, v. 73, p. 54–62, 2013. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

Page 44: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

43

84873171514&doi=10.1016%2Fj.ocecoaman.2012.11.009&partnerID=40&md5=b2f9a4eedd

21056385398400cb2714db>

RAMOS, Roberto Rodrigues; MATOS, Ingrid Mazza. Gestão Social e Políticas Públicas de

Desenvolvimento: Ações, Articulações e Agenda. Agenda, [s. l.], n. 2008, p. 456, 2009.

ROCKSTRÖM, J. et al. The unfolding water drama in the Anthropocene: Towards a

resilience-based perspective on water for global sustainability. Ecohydrology, Stockholm

Resilience Centre, Stockholm University, Sweden, v. 7, n. 5, p. 1249–1261, 2014. Disponível

em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84911138167&doi=10.1002%2Feco.1562&partnerID=40&md5=511639cfe103c1094c1f7418

bc415484>

ROPERO, R. F.; AGUILERA, P. A.; RUMÍ, R. Analysis of the socioecological structure and

dynamics of the territory using a hybrid Bayesian network classifier. Ecological Modelling,

Informatics and Environment Laboratory, Department of Biology and Geology, University of

Almería, Carretera de Sacramento s/n, C.P. 04120, La Cañada de San Urbano, Almería,

Spain, v. 311, p. 73–87, 2015. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84930661520&doi=10.1016%2Fj.ecolmodel.2015.05.008&partnerID=40&md5=555de7494e

97dbc7ede9c4fb1fb87400>

SALISBURY, Lutishoor. Web of Science and Scopus: a comparative review of content and

searching capabilities. The Charleston Advisor, [s. l.], n. July, p. 5–18, 2009. Disponível

em: <http://www.bio.unipd.it/seminari/SCOPUSversusWoS.pdf>

SANCHEZ, Georgina M. et al. Development of a socio-ecological environmental justice

model for watershed-based management. Journal of Hydrology, Department of Biosystems

and Agricultural Engineering, Michigan State University, East Lansing, MI, United States, v.

518, n. PA, p. 162–177, 2014. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84907250663&doi=10.1016%2Fj.jhydrol.2013.08.014&partnerID=40&md5=91de0f1298a86

8f463e03e947279c206>

SANTELMANN, M. et al. Willamette water 2100: River basins as complex social-ecological

systems. WIT Transactions on Ecology and the Environment, [s. l.], v. 155, p. 575–586,

2011.

SANTELMANN, M. et al. Willamette water 2100: river basins as complex social-ecological

systems. In: 7TH INTERNATIONAL CONFERENCE ON URBAN REGENERATION

AND SUSTAINABILITY, SC 2012 2012, Oregon State University, OR, United States.

Anais... Oregon State University, OR, United States: WITPress, 2012. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84865721428&doi=10.2495%2FSC120481&partnerID=40&md5=d94debbf3e57facbc8f337e

d7a0a21b0>

SAPOUNTZAKI, Kalliopi; DASKALAKIS, Ioannis. Transboundary resilience: the case of

social-hydrological systems facing water scarcity or drought. Journal of Risk Research,

Department of Geography, Harokopio University, Athens, Greece, v. 19, n. 7, p. 829–846,

2016. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84936972017&doi=10.1080%2F13669877.2015.1057202&partnerID=40&md5=96951c8b8e

68cb3539d42d98c3fd1ca6>

SHAH, S. H.; GIBSON, R. B. Large dam development in India: Sustainability criteria for the

Page 45: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

44

assessment of critical river basin infrastructure. International Journal of River Basin

Management, Department of Environment and Resource Studies, University of Waterloo,

200 University Ave. W, Waterloo, ON N2 L 3G1, Canada, v. 11, n. 1, p. 33–53, 2013.

Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84879366897&doi=10.1080%2F15715124.2012.754445&partnerID=40&md5=e02c00946e8

ecbe980216cc1a95f0704>

SILVA, Mayane Bento; HERREROS, Mário Miguel Amin Garcia; BORGES, Fabricio

Quadros. Gestão integrada dos recursos hídricos como política de gerenciamento das águas no

Brasil. Revista de Administração da UFSM, [s. l.], v. 10, n. 1, p. 101, 2017. Disponível em:

<http://www.redalyc.org/pdf/2734/273449349007.pdf>

SIQUEIRA, Josafá Carlos De. Ética Socioambiental. Rio de Janeiro.

STEWART, Judy; BENNETT, Mark. Integrated watershed management in the Bow River

basin, Alberta: experiences, challenges, and lessons learned. International Journal of Water

Resources Development, Cochrane, Canada, v. 33, n. 3, p. 1–15, 2016. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84991032330&doi=10.1080%2F07900627.2016.1238345&partnerID=40&md5=b73ddaf1d2

16e364a93d380373900d81>

TACHIZAWA, Takeshy; ANDRADE, Rui Otávio Bernardes. Gestão Socioambiental. 1ra.

ed. Rio de Janeiro: Elsevier, 2011. Disponível em: <https://www.amazon.com.br/Gestão-

Socioambiental-Takeshy-

Tachizawa/dp/853525174X/ref=sr_1_1?s=books&ie=UTF8&qid=1475003109&sr=1-

1&keywords=Gestão+socioambiental>

TENÓRIO, Fernando Guilherme. Gestão social : uma perspectiva conceitual *. Revista de

Administração Publica, [s. l.], v. 32, n. 5, p. 7–23, 1998. Disponível em:

<http://bibliotecadigital.fgv.br/ojs/index.php/rap/article/viewFile/7754/6346>

TENÓRIO, Fernando Guilherme. (Re) Visitando o Conceito de Gestão Social.

Desenvolvimento em questão, [s. l.], p. 101–124, 2005. Disponível em:

<http://www.revistas.unijui.edu.br/index.php/desenvolvimentoemquestao/article/download/10

8/65>

TUNDISI, José Galizia. Recursos hídricos no futuro: problemas e soluções. Estudos

Avançados, [s. l.], v. 22, n. 63, p. 7–16, 2008.

TUNDISI, José Galizia; TUNDISI, Takako Matsumura. Integrating ecohydrology, water

management, and watershed economy: Case studies from Brazil. Ecohydrology and

Hydrobiology, [s. l.], v. 16, n. 2, p. 83–91, 2016.

VERKERK, Pieter et al. A Participatory Approach for Adapting River Basins to Climate

Change. Water, [s. l.], v. 9, n. 12, p. 958, 2017. Disponível em: <http://www.mdpi.com/2073-

4441/9/12/958>

VILLAMAYOR-TOMAS, S. et al. Hydropower vs. fisheries conservation: A test of

institutional design principles for common-pool resource management in the lower Mekong

basin social-ecological system. Ecology and Society, Division of Resource Economics,

Humboldt University, Germany, v. 21, n. 1, 2016. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962736983&doi=10.5751%2FES-

08105-210103&partnerID=40&md5=b39d74012bb8e9a9e4f814bdfb788408>

VIRAPONGSE, Arika et al. A social-ecological systems approach for environmental

Page 46: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

45

management. Journal of Environmental Management, [s. l.], v. 178, p. 83–91, 2016.

Disponível em: <http://dx.doi.org/10.1016/j.jenvman.2016.02.028>

WELSH, L. W. et al. Developing adaptive capacity to droughts: The rationality of locality.

Ecology and Society, Department of Environment and Society, Utah State University, United

States, v. 18, n. 2, 2013. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-

s2.0-84877329825&doi=10.5751%2FES-05484-

180207&partnerID=40&md5=b759a65e95844692ccd52b70eb0d5d97>

WOHLFART, C. et al. Social–ecological challenges in the Yellow River basin (China): a

review. Environmental Earth Sciences, Company for Remote Sensing and Environmental

Research (SLU), Kohlsteiner Str. 5, Munich, Germany, v. 75, n. 13, 2016. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84979082747&doi=10.1007%2Fs12665-016-5864-

2&partnerID=40&md5=6a9d7f53e125d21b8a0a615453b8f326>

WOLLHEIM, W. M. et al. Causes and Consequences of Ecosystem Service Regionalization

in a Coastal Suburban Watershed. Estuaries and Coasts, Department of Natural Resources

and Environment, University of New Hampshire, Durham, NH, United States, v. 38, n. 1, p.

19–34, 2013. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84878454479&doi=10.1007%2Fs12237-013-9646-

8&partnerID=40&md5=95d138d113b84aab3c4d47c11983ef8f>

YANG, Y. Jeffrey; GOODRICH, James A. Toward quantitative analysis of water-energy-

urban-climate nexus for urban adaptation planning. Current Opinion in Chemical

Engineering, [s. l.], 2014.

Page 47: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

46

CAPÍTULO 2:

Gestión integrada en la cuenca del Río dos Sinos. Avances y desafíos

ARTIGO 2 SUBMETIDO

Este manuscrito foi submetido à avaliação pela Revista Tecnologia e Sociedade, (Anexo 2).

Page 48: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

47

CAPÍTULO 2:

Gestión integrada en la cuenca del Río dos Sinos. Avances y desafíos

Rodolfo González Ortegaac [0000-0001-7363-3253], Telf: , email: [email protected]

Maikel Leyva Vázquezb [0000-0001-7911-5879], Telf: +593967780247, email: [email protected]

Olga Alicia Gallardo Milanésc Telf: +5544998447088, email: [email protected]

João Alcione Sganderla Figueiredoa Telf: +555199731024, email: [email protected]

aFeevale University, Campus II, ERS 239, # 2755 - Vila Nova, Novo Hamburgo – RS, 93525-075, Brazil

bUniversidad de Guayaquil, 1er Callejon 5 NO, Guayaquil 090613, Ecuador

cUniversity of Holguín, Ave XXX Aniversario, Piedra Blanca, Holguín, 80100, Cuba

Resumen

Este artículo aborda los avances y desafíos de la gestión de recursos hídricos en la

cuenca del Río dos Sinos. El manejo integrado de cuencas hidrográficas, sin duda alguna juega

un rol importante, porque promueve la gestión coordinada del agua, suelo, y otros recursos

naturales bajo un enfoque social, económico y ambiental. La cuenca del Rio dos Sinos durante

los últimos doscientos años ha visto en sus tres cuartas partes de existencia un proceso

predatorio de sus recursos naturales, que ha provocado la contaminación del agua. El objetivo

del estudio fue develar los aportes e insuficiencias del COMITESINOS en la gestión integrada

de la cuenca del Río dos Sinos, para ello se realizó una investigación cualitativa, en la que se

realizaron entrevistas y visitas sistemáticas al órgano de gestión. El trabajo realizado evidenció

debilidades en la gestión a pesar de la preocupación ambiental de diferentes grupos sociales.

Palabras Claves: Gestión Integrada. Cuenca Hidrográfica. Comité de Cuenca.

Abstract

This article addresses the progress and challenges of water resources management in the

Rio dos Sinos basin. The integrated management of watersheds undoubtedly plays an important

role, because it promotes the coordinated management of water, soil, and other natural resources

under a social, economic and environmental approach. The basin of the Rio dos Sinos during

the last two hundred years has seen in its three quarters of existence a predatory process of its

natural resources, which has caused water pollution. The objective of the study was to reveal

the contributions and insufficiencies of the COMITESINOS in the integrated management of

the Rio dos Sinos basin, for which a qualitative research, in which interviews and systematic

Page 49: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

48

visits were made to the management body. The work done evidenced weaknesses in the

management despite the environmental concern of different social groups.

Key words: Integrated Management. Hydrographic Basin. Basin Committee.

INTRODUCCIÓN

Existen varias referencias a la gestión de los recursos hídricos, como los cambios en los

cursos hidrológicos a través de la construcción de canales para la navegación o el riego, entre

otras obras hidráulicas, en varias civilizaciones antiguas desarrolladas cerca de grandes ríos,

como ejemplo China y Egipto (HECHT, 1988; WALLACE; BUCKNAM; HANKS, 1994;

WANG, 2012; LU et al., 2017). En otras regiones áridas de Medio Oriente, India y China, en

diferentes períodos históricos, hay registros de hombres que regulan corrientes, arroyos y

manantiales para satisfacer sus necesidades (CHAUDHURI, 1991; HADAS, 2012; LUO et al.,

2017).

Los griegos y los pueblos romanos fueron las primeras civilizaciones que, además de

proporcionar agua para la agricultura, por razones de salud, crearon sistemas para el tratamiento

de aguas residuales y acueductos domésticos para proporcionar agua de calidad para sus

ciudades (DE FEO; MAYS; ANGELAKIS, 2011). La gestión de cuencas ha incorporado los

diferentes conceptos a lo largo del tiempo y, debido a los múltiples eventos mundiales, las

Naciones Unidas han fomentado la incorporación de los procesos de gestión de cuencas en los

diferentes países miembros. En 1996 se creó la Global Water Partnership (GWP), teniendo

como telón de fondo las conferencias de 1972 sobre el medio ambiente de Estocolmo, Buenos

Aires 1977, así como la Declaración de Dublín de 1992 de las Naciones Unidas.

El origen del GWP tuvo entre sus objetivos la creación de una red internacional para

garantizar la seguridad y la gestión sostenible de los recursos hídricos mediante la estimulación

de la Gestión Integrada de los Recursos Hídricos (GIRH) (GLOBAL WATER

PARTNERSHIP, 2009) e inicia un extenso trabajo a nivel internacional para que los gobiernos

adopten este enfoque. Adoptada en la Conferencia de Río en 2009, la Agenda 21 extiende el

concepto de GIRH al agregar la aplicación de enfoques integrados para el desarrollo, la gestión

y el uso de los recursos hídricos. Los objetivos de las iniciativas de la Agenda 21 y GWP se han

implementado en diferentes países, en los que se consideran las características de las cuencas y

los mecanismos político-legales adoptados por diferentes gobiernos, con diversos grados de

efectividad, pero con dificultades, según lo expresado por autores como Perevochtchhikova;

Arellano-Monterrosa, (2008); Stewart; Bennett, (2016); Wohlfart et al., (2016).

Page 50: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

49

El manejo integrado de recursos hídricos es relevante en el ámbito de la gestión, debido

a que promueve la acción coordinada en el uso de los recursos naturales desde una perspectiva

económica y socioambiental, que permitirá enfrentar los desafíos y oportunidades del contexto.

Es por ello que este estudio se propuso como objetivo develar los aportes e insuficiencias del

COMITESINOS en la gestión integrada de la cuenca del Río dos Sinos.

La gestión de los recursos hídricos requiere de un enfoque equilibrado, que implica tanto

medidas de infraestructuras como institucionales. Los planes de seguridad hídrica precisan de

la participación de diversos actores. La gestión de recursos hídricos, posee retos como lograr

materializar acciones coordinadas a corto, mediano y largo plazo, que garanticen el uso

sostenible de los recursos ambientales de la cuenca y disminuya los índices de contaminación.

ESTRATEGIA METODOLÓGICA EMPLEADA

Se realizó una investigación cualitativa que develó los avances y desafíos de la gestión

del COMITESINOS en el manejo de la cuenca del Río dos Sinos, para ello se utilizó el método

de análisis de contenido cualitativo. Este método combina intrínsecamente la observación y

producción de datos o el análisis e interpretación de datos siguiendo el método científico, por

lo que es sistemático, objetivo, reproducible y válido (ANDREÚ, 2002). Además de los

artículos científicos publicados en las bases de datos referenciadas, se consultaron documentos

normativos del COMITESINOS, leyes y otras normas jurídicas.

El trabajo de campo permitió colectar informaciones relativas al objeto, indagar en lo

cotidiano, interactuar con el objeto de pesquisa en su contexto y posibilitó poner atención a lo

que está sucediendo. Es así que se entrevistó al presidente del COMITESINOS y a cuatro de

sus integrantes, para conocer los criterios en relación a la gestión que realizan, así como las

principales acciones que acometen. Además, se realizaron visitas sistemáticas a las reuniones

de este órgano de gestión, con el propósito de analizar como participan los diversos actores en

la gestión de la cuenca.

LA GESTIÓN INTEGRADA DE RECURSOS HÍDRICOS EN BRASIL

La gestión de los recursos hídricos es un área estratégica para la sustentabilidad, porque

contribuye a la planificación de las acciones que han de ser acometidas en el ecosistema. El

manejo socioambiental, económico, cultural y físico, ha de ser efectuado desde una perspectiva

múltiple y diversa, lo que posibilita una visión integrada de la cuenca y permite incorporar los

principios del desarrollo sustentable. El manejo integrado de recursos hídricos es ideal para

caracterizar, diagnosticar, evaluar y planificar el uso de los recursos, para ello es necesario el

Page 51: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

50

conocimiento de los factores socioculturales, además que se involucre la comunidad en el

proceso.

La cuenca hidrográfica puede ser considerada como un espacio sistémico, pues el

territorio definido envuelve actividades humanas, que pueden ser urbanas, industriales,

agrícolas, entre otras. Puede decirse que en ella están presentes los procesos que hacen parte de

un sistema. En ella ocurren formas de ocupación del territorio y de utilización de las aguas que

allí convergen (PORTO & LAINA PORTO, 2008). La gestión sustentable de cuencas

hidrográficas requiere de una perspectiva sistémica y de complejidad lo que mejora las

capacidades colectivas en el manejo de los recursos hídricos.

La gestión integrada de recursos hídricos tiende cada vez más a un enfoque sistémico y

ambiental, en el cual se considera a la cuenca como el entorno en el que se relaciona ese espacio

físico, con los grupos sociales que viven y lo transforman. La gestión de la cuenca ha

evolucionado pasando por diversas etapas de desarrollo. En la primera, formaba parte de la

silvicultura y la hidrología, y no se contemplaba la participación de la población. En la segunda

etapa se relacionó con la gestión de los recursos naturales. En la etapa actual dirige su atención

a los beneficiarios, hoy se trata de una gestión participativa e integrada, con el compromiso de

la población local.

La gestión de recursos hídricos maneja las intervenciones que se hacen sobre el

ecosistema, los causes, el agua, para alcanzar logros predeterminados en escenarios negociados

(DOUROJEANNI, 2007). Muchos países del mundo poseen Sistemas Nacionales de Gestión

de Recursos Hídricos, y de ellos han surgido una serie de posiciones y principios con respecto

a la gestión integral a nivel de cuencas hidrográficas, que han estado condicionados a las

características geográficas y sociopolíticas propias de los diferentes territorios.

La gestión integrada, predictiva con alternativas y optimización de múltiples usos, ha de

ser implantada a nivel de cuencas hidrográficas con la finalidad de descentralizar el manejo y

dar oportunidades de participación de usuarios, el sector público y privado. Se precisa también

educar a la comunidad y prepara a los gestores con nuevas perspectivas, para un necesario

desarrollo de la gestión de los recursos hídricos en el siglo XXI (TUNDISI, 2008).

En Brasil, la gestión integrada de recursos hídricos (GIRH) comenzó en la década de

1980, implementando la política nacional del agua a fines de la década de 1990 con la

promulgación de la Ley 9.433 / 97, que establece a la cuenca como una unidad territorial para

la implementación de la gestión integrada de los recursos hídricos, el agua como un bien público

y de valor económico y determina, de manera general, la gestión como descentralizada y el

papel participativo de la sociedad en el proceso. Al año siguiente, se creó el Consejo Nacional

Page 52: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

51

de Recursos Hídricos como órgano asesor y deliberativo. Posteriormente, en el año 2000, se

creó la Agencia Nacional del Agua (ANA) con el objetivo de implementar la política nacional

sobre recursos hídricos (SILVA; HERREROS; BORGES, 2017).

Se observa que Brasil implementó un conjunto de normas legales que permitieron la

organización e implementación de la GIRH a nivel federal y estadual, siguiendo los

lineamientos de las organizaciones internacionales, lo que permitió que fuera uno de los

primeros países en tener una estructura integral de GIRH, que se consolida con la organización

de los Comités de Cuenca. Estos están compuestos por representantes de instituciones federales,

estatales y municipales y tienen las siguientes responsabilidades: implementar planes de

cuencas, resolver conflictos y establecer mecanismos de recolección, entre otras funciones

(SILVA; HERREROS; BORGES, 2017).

Para mejorar la disponibilidad de agua en términos cuantitativos y cualitativos, con el

sentido de implementar los instrumentos y directrices de acción, el Plan Nacional de Recursos

Hídricos (PNRH) instituyó el Sistema Nacional de Gestión de Recursos Hídricos (Figura 1).

Ese sistema, previsto en la Constitución Federal de 1988, fue reglamentado por la Ley de aguas,

y es innovador en relación con el sistema ambiental en el sentido que utiliza mecanismos

económicos para la gestión del agua. Por medio de la introducción en el país del concepto el

que contamina paga y el usuario paga. El agua pasa a tener valor económico y su utilización

está sujeta al cobro (BRAGA.; et al, 2008).

Figura 1. Sistema Nacional de Recursos Hídricos.

Fuente: Elaborado a partir de la AGÊNCIA NACIONAL DE ÁGUAS (2012).

En términos prácticos la gestión de cuencas hidrográficas depende de instrumentos que

puedan ser aplicados para atender las expectativas de la comunidad y los limites impuesto por

la naturaleza. En Brasil en la Ley no. 9.433/97 se establecen los siguientes instrumentos: planes

de recursos hídricos; marco legal para los usos de los cuerpos de agua; compensación a los

Page 53: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

52

municipios; el sistema de información sobre recursos hídricos. La definición de estas

herramientas aunque tienen una perspectiva utilitarista, pueden ser utilizadas con fines de

preservación ambiental o para garantizar la sostenibilidad a largo o mediano plazo (PORTO &

LAINA PORTO, 2008).

En Brasil, se creó toda una estructura legal y organizativa, en línea con las prácticas

internacionales. La Ley No. 9433/97 institucionalizó la gestión de los recursos hídricos y

estableció el comité de cuenca como un órgano de gestión, pero todavía hay dificultades en la

GIRH ya que, a pesar de ser una de las naciones con las reservas de agua dulce más importantes

del planeta, presenta una distribución irregular de la misma. Este país tiene regiones con poco

acceso al agua debido a la ausencia de sistemas de distribución y otros con abundante

disponibilidad pero limitados por la calidad debido a la falta de sistemas adecuados de

tratamiento y problemas de contaminación de las aguas superficiales y subterráneas, como lo

demuestran varios autores que exponen las necesidades de la GIRH en el país entre ellos Costa

et al., (2017); Jacobi; Barbi (2007) y Tundisi, (2016).

En la planificación ambiental de la cuenca fluvial en Brasil, coexisten dos instrumentos

de gestión, el plan de cuenca fluvial y la zonificación económico-ambiental. El plan de cuencas

hidrográficas es un instrumento de la Política Nacional de Recursos Hídricos definida en la Ley

No. 9433/1997, y la zonificación económico-ambiental fue establecida por el Decreto Federal

4,297 / 2002. Estos dos instrumentos se superponen en su función de gestión ambiental y

realizan acciones en paralelo o superpuesto, causando dificultades para alcanzar los objetivos

de la gestión de cuencas, lo que expone la ineficiencia del poder público y las incertidumbres

legales (GUIMARÃES DE CARVALHO, 2014).

GESTIÓN DE LA CUENCA DEL RÍO DOS SINOS

En el Estado de Rio Grande del Sur en el artículo 171 de la Constitución Estadual de

1989 se instituye el Sistema Estadual de Recursos Hídricos (SERH). El que incorpora modernos

principios para la gestión de las aguas. Entre ellos se destacan: la adopción de cuenca

hidrográfica como unidad de gestión, y la tarifa por el uso de las aguas y la reversión de los

fondos en beneficio de la propia cuenca.

Los comités de gestión de cuencas son instituidos oficialmente por el Gobierno del

Estado, tienen poder deliberativo para establecer las prioridades de uso y las intervenciones

necesarias en la gestión de las aguas de la cuenca hidrográfica, para resolver conflictos en

primera instancia. Los comités son órganos democráticos de discusión y debate que reúnen a

Page 54: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

53

los grupos que tienen interés directo en el manejo y conservación de las aguas, convirtiéndose

en la práctica en una especie de parlamento de las aguas.

La cuenca hidrográfica del Río dos Sinos (Figura 2) se localiza al nordeste del estado

de Río Grande del Sur, tiene un área total de 3679,2 km2, englobando total o parcialmente 32

municipios, acoge municipios como Tres Coroas, Portao, Igrejinha, Estancia Velha, Parobé,

Taquara, Campo Bom, Sapiranga, Esteio, Sapucaia do Sul, Canoas, São Leopoldo e Novo

Hamburgo que juntos suman 90% de la población total, estimada en 1.325.830 habitantes. Los

principales afluentes del Rio dos Sinos son el Rio Paranhana, o Rio Rolante y Rio da Ilha. Este

último tiene su naciente en la ciudad de Caraá y desemboca en el delta del Jacuí.

Figura 2. Cuenca del Río dos Sinos

Fuente: Aportado por FRANÇA de LIMA, 2013

La cuenca hidrográfica del Rio dos Sinos, nombre que recibe por los primeros

moradores europeos dada el carácter sinuoso de su curso, inicia apenas dos siglos con los

asentamientos de colonos alemanes en 1824 con la fundación de la localidad de São Leopoldo.

Los principales impactos que recibió el ecosistema de esta cuenca fue la extracción de recursos

naturales como madera, carne de caza y pesca, así como la insipiente agricultura. Los primeros

intentos de modificar el curso del rio, adaptando su cauce para la navegación se dan entorno a

la segunda mitad del siglo XIX, las cuales fueron abandonadas por ser inviables

económicamente, posteriormente dejaron de ser una prioridad con la introducción del

ferrocarril, el cual incrementó el impacto por las obras realizadas para interconectar las

pequeñas ciudades a lo largo del río con la capital Porto Alegre.

Los principales usos del agua en la cuenca están destinados al abastecimiento público,

uso industrial e irrigación. Las áreas más conservadas están situadas aguas arriba de la cuenca.

Page 55: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

54

El problema encontrado es la descarga en los afluentes de los residuos industriales y

principalmente domésticos sin tratamiento, en los cursos medio y bajo de la cuenca.

Durante la primera mitad del siglo XX las obras de construcción de carreteras como la

actual BR-116 tuvieron un efecto de fragmentación del frágil ecosistema. También es en este

periodo y en los años 50 y 60 que el control de las crecidas y su impacto social obtienen el

interés de los diversos grupos políticos que se disputan los votos electorales, pero sin un efecto

real en obras de control hídrico. En este periodo aparecen registradas en la prensa regional las

primeras preocupaciones de grupos sociales sobre el ecosistema y el impacto de las proyectadas

obras hidráulicas, civiles e industriales sobre el ecosistema de la cuenca del Rio dos Sinos,

siendo el señor Roessler su mayor exponente (FLORES GUZMÁN, 2016).

El estado de Río Grande do Sul fue pionero en la gestión de los recursos hídricos, pues

dos años antes del 8 de enero de 1997, en que fue dictada la Ley 9.433/97, que define la Política

Nacional de los Recursos Hídricos, elabora la política del estado para la gestión de los recursos

hídricos, la Ley nº 10.350/94 de la Política Estadual de los Recursos Hídricos (BRASIL, 1995).

Está ley es un paso importante en la gestión integrada pues deja constituido el Consejo Estadual

de Recursos Hídricos, el departamento de Recursos Hídricos subordinado a la Secretaría de

Planificación Territorial y Obras, la creación de Comité de Cuencas Hídricas, como resultado

de la experiencia previa del COMITESINOS. Por último y no menos importante la creación de

Planes de Cuenca Hidrográfica, así como otras disposiciones como el otorgamiento y la

cobranza por el uso del agua.

Según Laura (2004) en los años 70 en Brasil gana fuerza el concepto de gestión de

cuencas hidrográficas como unidad integradora de la gestión ambiental, siendo este concepto

importado desde corrientes europeas especialmente de Francia. En los años 80 esta idea

conceptual gana fuerza al punto que a finales de esa década se crea con el apoyo y la anuencia

de grupos ecologistas, medios de comunicación y políticos el “Comitê de Preservação,

Gerenciamento e Pesquisa da Bacia do Rio dos Sinos”, en fecha de 17 diciembre de 1987. Pero

en fecha tan temprana como marzo del siguiente año es creado el “Comitê de Gerenciamento

da Bacia Hidrográfica do Rio do Sinos” (COMITESINOS) por el decreto estadual Nº 32.774,

DE 17 DE MARÇO DE 1988, lo cual era totalmente inédito en el ámbito de Brasil y dejaba sin

efecto al comité creado el año anterior (DE LIMA TRINIDADE, 2016; GUTIÉRREZ, 2006;

BLOCK, A.; et al, 2009).

En la cuenca del Río dos Sinos, su comité de gestión estaba constituido por el Decreto

No. 32.774 / 1988, que tiene precedente en el Decreto No. 30.132 / 1981, que establece el

sistema estatal de recursos hídricos y sus objetivos. Posteriormente, el estado de Rio Grande do

Page 56: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

55

Sul instituyó la Ley No. 10.350 / 1994, que definió los objetivos y atribuciones de los diferentes

organismos en la gestión de las cuencas hidrográficas dentro de la jurisdicción del estado, en

previsión de la Ley Federal No. 9433/1997. Esta ley en el capítulo II-Finalidades y

Competencias, en su Artículo 5°, atribuye seis finalidades, tales como: promover estudios,

proyectos e investigaciones, la integración políticas nacionales y estaduales; proponer normas

para el uso, la conservación y la recuperación de la cuenca; integrar órganos, entidades usuarias

de los recursos de la cuenca que realicen actividades administrativas.

En el artículo 6° se declaran como competencias: elaborar programas de acción,

acompañar estudios, proyectos, obras, acciones; proponer medidas de prevención o mitigación

o compensación; gestionar recursos financieros. Lo que evidencia que desde su nacimiento el

COMITESINOS tiene un carácter propositivo, consultivo y deliberativo y no de gestión

ambiental, lo cual es una discapacidad funcional a la hora de ejecutar planes, proyectos y

acciones.

Al analizar los avances del COMITESINOS es importante reconocer que es uno de los

primeros órganos para la gestión de cuencas hidrográficas en el país como expresó una miembro

de este comité en entrevista, la que expresó que la gestión de cuencas en el Rio dos Sinos es

precursora en Brasil pues fue la primera unidad territorial en establecer un comité a nivel

nacional en 1988, por iniciativa de sus propios habitantes. Apuntó además que estamos

hablando por lo tanto de una entidad relativamente consolidada e institucionalizada que ya tiene

una fuerte influencia política en la región. Sin embargo, los resultados de su gestión han sido

bastante limitados, si tomamos en consideración que la cuenca local se mantiene como una de

las más contaminadas del país.

El COMITESINOS es un fórum legal en el cual la comunidad de la región delibera sobre

los conflictos y demandas relacionados con la cantidad y calidad del agua. En plenaria los

representantes escogidos por cada categoría y entidades usuarios del agua definen el plan de

recursos hídricos. Se realiza un ejercicio complejo de participación para llegar al plan de la

cuenca, el debate se realiza en cuatro etapas: encuadramiento, definición de las normas de uso

en época de sequía y definición de acciones. Por lo que la participación de diversos actores es

otro elemento positivo que debe ser destacado.

En entrevista efectuada con el presidente del COMITESINOS, se conoció que en sus

inicios este funcionó por grupos de intereses, la presencia de un profesor de meteorología,

incentivó la creación de puntos de monitoreo con redes meteorológicas, luego no se continuó

sistematizando este trabajo y en los últimos años se ha dirigido básicamente a la gestión del

agua, con énfasis en la calidad por la presión que ejerce la industrialización y la contaminación.

Page 57: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

56

En la región de la cuenca del río dos Sinos se han efectuado acciones de educación

ambiental lo que muestra el interés de los pobladores por proteger el ecosistema. Se han

realizado actividades de enseñanza aprendizaje fuera del espacio escolar, involucrando

estudiantes de diversas escuelas. Entre las actividades se han plantado árboles y se ha seguido

su crecimiento, se crían peces para luego soltarlos en el río, además se recoge basura en las

márgenes y nacientes. También se estudian las especies de la flora y la fauna. Se ha producido

material didáctico por movimientos ambientalista, el COMITESINOS y órganos públicos como

la Compañía municipal de Saneamiento de Novo Hamburgo y el Servicio Municipal de Agua

e Esgoto de São Leopoldo (RÜCKERT, 2017).

Según refieren miembros del COMITESINOS, este ha promovido varias acciones de

gestión mediante la implementación de proyectos para preservar áreas húmedas con la

plantación de árboles en más de 500 hectáreas de la cuenca. Además, se han efectuado

actividades de educación ambiental con escuelas y comunidades con la participación de

universidades como UNISINOS, FEEVALE y otros actores importantes en la gestión de la

cuenca, pero estas son aún insuficientes. En la gestión integrada de recursos hídricos la

participación de los actores es relevante, se coincide con Bozzano (2017) al expresar que los

procesos sociales en cualquier territorio son protagonizados por actores públicos, empresarios

y ciudadanos, personas que encarnan y significan los espacios con acciones transformadoras.

Aunque la gestión del COMITESINOS ha mostrado avances durante los treinta años de

existencia, han sido diversos los desafíos ambientales y organizacionales que ha tenido que

enfrentar. Desde una acuciante y creciente contaminación de las aguas superficiales y

subterráneas de la cuenca, causa de genotoxicidad en diversos organismos (CRISTINA

SCALON STREB, 2009; MARQUES DA COSTA, 2011; GOLDONI, 2013), pérdida de

biodiversidad por diversas causas, tales como: la muerte de especies y la ruptura de cadenas

tróficas, la fragmentación y a pérdida de variabilidad genética, la explotación y extractivismo

de recursos naturales (MEINCKE, 2013; OLIVEIRA; HENKES, 2013; THIESEN BAUM,

2013; SANTOS DE SOUZA et al., 2016; SCHNEIDER HENRIQUE, 2016).

Para lograr una gestión sustentable de la cuenca hidrográfica se precisa contar con

indicadores que permitan evaluar sistemáticamente el manejo de la misma; estos pueden ser

cualitativos y cuantitativos, ajustados a las particularidades de la localidad en la que se ubica la

cuenca. Además, ha de considerarse elementos ambientales, económicos, culturales y sociales

para mejorar la toma de decisiones. El COMITESINOS no posee un sistema de indicadores que

permita evaluar su gestión.

Page 58: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

57

Los indicadores de sustentabilidad tienen el propósito de transformar datos en

informaciones, que pueden contribuir al diagnóstico que aporte la información necesaria para

la gestión. Si la información se maneja adecuadamente por los actores que intervienen en la

cuenca y se analiza colectivamente, es posible tomar decisiones por consenso, las que han de

ser compartidas con la población. El sistema de indicadores también tiene la función de

informar a la sociedad de forma objetiva.

Toda planificación destinada a definir políticas y decidir alternativas, requiere del

conocimiento sobre los componentes que forman el espacio. Por lo que es esencial obtener

datos que representen la realidad, los que han de estar bien formulados para poder ser

interpretados. Esos datos constituyen base del conocimiento y cuando son interpretados se

convierten en información relevante para la gestión (SANTOS, 2004 aput MAYNARD, CRUZ,

GOMES, 2017).

El plan de cuenca en el Río dos Sinos se centra en estudios hidrológicos y variables

como caudal mínimo para determinación de la cantidad de agua otorgada para sus diferentes

usos. Disponibilidad de agua superficial y subterránea en determinados periodos de tiempo o

estaciones del año. Demandas y consumos del agua para la producción agropecuaria, la

industria y el consumo humano. El análisis de la carga contaminante de los efluentes pecuarios,

industriales y domésticos vistos desde la perspectiva de la posterior necesidad de tratamiento

del agua de consumo humano y no con una visión holística del problema socioambiental que

causa. Así como la clasificación de los cuerpos de agua según parámetros de calidad. Este plan

carece de un análisis integral de la situación ecológica, social y solo presenta la arista

hidrológica quedando muy pobre el alcance de las acciones propuestas (PLANO DA BACIA

DOS SINOS, 2017).

La variabilidad climática impacta negativamente en la actividad socioeconómica de la

cuenca, la cual se manifiesta, por ejemplo, en inundaciones o periodos de sequía superiores a

la media histórica. La gestión integrada de recursos hídricos (GIRH) es una herramienta que

puede ser utilizada para enfrentar sus impactos, lo que se justifica porque: La GIRH reconoce

el ciclo hidrológico y a sus usuarios de forma holística, se reconoce el papel de los actores y la

necesidad de un plan para la ejecución de las acciones; es una herramienta para el desarrollo de

órganos encargados de coordinar la gestión y aglutinar a los usuarios del recurso en una gestión

equitativa y eficiente.

En la entrevista con el presidente del COMITESINOS se conoció que no tienen

planificadas acciones para contrarrestar los riesgos climáticos, pero apuntó que los períodos de

sequía afectan la cuenca y este aspecto se aborda en el comité a través de los representantes

Page 59: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

58

agrícolas y se tiene el acuerdo que cuando los niveles del agua del río están bajos se suspende

la captación para la actividad productiva hasta que el nivel del agua alcanza los estándares

establecidos, agregó además que las lecturas hidrológicas permite tomar medidas rápidas pues

se realizan en la mañana y si los niveles son bajos en la tarde se suspende la captación.

La gestión del COMITESINOS ha evidenciado insuficiencias en modelo de gestión de

cuenca implementado. Las insuficiencias fundamentales encontradas son: poca participación

de actores de la sociedad civil, poca representatividad de la sociedad en la estructura del comité,

dificultades en la gestión financiera y de proyectos, excesiva burocracia, limitada o inexistente

capacidad administrativa o de gestión al no poseer un órgano o secretaría que lo ejerza, estando

limitado a ser un ente del Estado de carácter consultivo, propositivo e deliberativo y no de

gestión.

Las insuficiencias mencionadas han sido abordadas también por autores como,

FLORES; MISOCZKY, (2008), KEMERICH; RITTER; DULAC, (2014); DE LIMA

TRINIDADE, (2016); en estudios de otros comités de cuenca.

CONSIDERACIONES FINALES

La gestión integral de los recursos hídricos constituye una significativa herramienta para

el manejo socioambiental de estos importantes socioecosistemas. Las acciones de gestión

conducidas por el COMITESINOS han logrado algunos avances como la plantación de árboles

para la preservación de áreas húmedas. Un plan de cuenca con estudios hidrológicos y análisis

de variables como caudal mínimo para determinación de la cantidad de agua otorgada para sus

diferentes usos. También se analiza la disponibilidad de agua superficial y subterránea en

determinados periodos de tiempo o estaciones del año, así como las demandas y consumos del

agua para la producción agropecuaria, la industria y el consumo humano, entre otras.

Sin embargo, todavía no se logra planificar y materializar de forma consciente y

articulada acciones dirigidas a eliminar la contaminación y al uso sustentable de los recursos

naturales. Pues la gestión que se efectúa en la cuenca del Río dos Sinos, tiene limitaciones

porque la ley apenas le otorga poder deliberativo, propositivo, consultivo y en modo alguno

cuenta con capacidad administrativa o propiamente de gestión. No contar con un órgano

ejecutivo limita el alcance de las políticas y el efecto de las acciones.

Entre los principales desafíos del COMITESINOS está la poca participación de actores

de la sociedad civil. La participación es esencial en la gestión integrada de recursos hídricos,

porque promueve el cambio social, estableciendo prioridades, generando un ambiente de

Page 60: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

59

tolerancia a la diversidad de enfoques y conceptos; esta se hace necesaria no solo en la toma de

decisiones, además en la realización de acciones que contribuyan a la protección

socioambiental. A través de la interacción de los actores de la sociedad civil se crean

oportunidades para lograr soluciones colectivas.

EL COMITESINOS precisa lograr planes y acciones organizadas como un sistema,

incorporar herramientas de mediación de conflictos integrada a la gestión, incrementar la

participación de los actores que hacen parte de la vida socioeconómica de la cuenca. Además,

existe un déficit de sistemas de indicadores para evaluar el desempeño de este órgano de

administración. Asimismo, poca cooperación y colaboración entre las instituciones públicas y

privadas para alcanzar las metas y objetivos.

REFERENCIAS

AGÊNCIA NACIONAL DE ÁGUAS. A evolução da gestão de recursos hídricos no Brasil.

Brasília: ANA, 2002.

ANDREÚ, Jaime. Las técnicas de Análisis de Contenido: una revisión actualizada. Fundación

Centro de Estudios Andaluces, Universidad de Granada, v.10, n.2, p. 1–34, 2002.

BLOCK, Alexander.; et al. Comitê de Bacia: Uma Configuração Social Emergente na Gestão

Sustentável das Águas. 2009. Disponible en: https://core.ac.uk/display/28829409 Acceso: 3 de

nov 2017.

BOZZANO, Horacio. Territorios posibles. Procesos, lugares y actores. Buenos Aires:

Lumire, 2017.

BRAGA, Benedito; FLECHA, Rodrigo; PENA, Dilma; KELMAN, Jerson. Pacto federativo e

gestão das águas. Estudos Avançados, v.22 n.63, 2008.

BRASIL. LEI No 10.350, DE 30 DE DEZEMBRO DE 1994. (publicada no DOE n.o 1, de 1o

de janeiro de 1995)Brasil, 1995.

CHAUDHURI, K. N. Ancient Irrigation and water management in the Indian Ocean region.

Endeavour, v.15, n.2, p. 66–71, 1991.

COSTA, Mariana. et al. Integrated water resources management : Are river basin committees

in Brazil enabling e ff ective stakeholder interaction ?. Environmental Science and Policy, v.

76, p. 1–11, 2017.

Page 61: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

60

CRISTINA SCALON STREB, Madalena. Avaliação dos efeitos genotóxicos da água do rio

dos sinos sobre peixes e vegetais. LIVROS GRATIS: FEEVALE, 2009.

DE FEO, Geovani; MAYS, Larry; ANGELAKIS, Andreas. Water and wastewater management

technologies in the ancient Greek and Roman civilizations. Treatise on Water Science, p. 3–

22, 2011.

DE LIMA TRINIDADE, Larissa. Gestão integrada de recursos hídricos: Papel,

potencialidades e limitações dos comitês de bacias hidrográficas. 2016. Tese (Doutorado

em Ciências Humanas) -Universidade Federal de Santa Catarina, Santa Catarina, 2016.

DUROJEANNI, Axel. Gestión de cuencas hidrográficas y aprovechamiento sostenible de los

recursos hídricos, 2005. Disponible en:

www.cepal.org/ilpes/noticias/paginas/1/35691/Axel_Dourojeanni_GESTION_CUENCAS_Y

_GIRH.pdf Acceso: 8 noviembre 2013.

FLORES GUZMÁN, Ramiro Alberto. A Manchester brasileira não tem esgoto: análise

histórica da gestão das águas na bacia hidrográfica do rio dos sinos. 2016 (Doutorado em

Qualidade Ambiental) - FEEVALE, Novo Hamburgo, 2016.

FLORES, Rafael; MISOCZKY, Maria Ceci. Participação no gerenciamento de bacia

hidrográfica: o caso do Comitê Lago Guaíba. Revista de Administração Pública, v. 42, n. 1,

p. 109–131, 2008.

GLOBAL WATER PARNERTSHIP. Manual para la gestión integrada de recursos hídrico

en cuencas. Francia: Empresa Gráfica Mosca, 2009.

GOLDONI, Angélica. Avaliação da genotoxicidade das águas do arroio feitoria, no

município de Dois Irmãos – RS, através de biomonitoramento com peixes e crustáceos.

LIVROS GRATIS: FEEVALE, 2013.

GUIMARÃES DE CARVALHO, Rodrigo. As Bacias Hidrográficas Enquanto Unidades de

Planejamento e Zoneamento Ambiental no Brasil. Caderno Prudentino de Geografia, v.

Especial, n.36, p. 26–43, 2014.

GUTIÉRREZ, Ricardo. Comitê Gravataí: Gestão participativa da água no Rio Grande do Sul.

Lua Nova, v. 69, p. 79-121, 2006.

HADAS, Gideon. Ancient agricultural irrigation systems in the oasis of ein gedi, dead sea,

Israel. Journal of arid environments. Journal of Environments, v. 86, p. 75–81, 2012.

Page 62: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

61

HECHT, E.D. Ethiopia Threatens to Block the Nile. Azania: Archaeological Research in

Africa, v. 23, n. 1, p. 1–10, 1988.

JACOBI, Pedro Roberto; BARBI, Fabiana. Democracia e participação na gestão dos recursos

hídricos no Brasil. Revista Katál, v. 10, n. 2, p. 237–244, 2007.

KEMERICH, Pedro Daniel; RITTER, Lucia; DULAC, Vinicius. Gerenciamento de comitês de

bacia: desafios e potencialidades. Revistas Monografias Ambientais REMOA, v. 13, n.5, p.

3737–3743, 2014.

LAURA, Aquiles. Um Método de Modelagem de um Sistema de Indicadores de

Sustentabilidade para Gestão dos Recursos Hídricos-Misgerh: O Caso da bacia dos Sinos.

2004. Tese (Doutorado em Engenharia de Recursos Hídricos e Saneamento Ambiental) –

Universidade Federal de Rio Grande do Sul, Porto Alegre, 2004.

LU, Peng; et al. On the use of historical archive of aerial photographs for the discovery and

interpretation of ancient hidden linear cultural relics in the alluvial plain of eastern Henan,

China. Journal of Cultural Heritage, v. 23, p. 20–27, 2017.

LUO, Lei; et al. Uncovering the ancient canal-based tuntian agricultural landscape at China’s

northwestern frontiers. Journal of Cultural Heritage, v. 23, p. 79–88, 2017.

MARQUES DA COSTA, Gustavo. Análise da genotoxicidade do ar em dois ambientes -

rural e urbano - na bacia do rio dos sinos com o uso de tradescantia. LIVROS GRATIS:

FEEVALE, 2011.

MAYNARD, Isabella; CRUZ, Marcus; GOMES, Laura. Aplicação de um índice de

sustentabilidade na bacia hidrográfica do Rio Japaratuba em Sergipe. Ambiente & Sociedade,

v. XX, n.2, p.207-226, 2017.

MEINCKE, Larissa. Diagnóstico ambiental de poluentes orgânicos persistentes em ar

atmosférico na bacia hidrográfica do Rio dos Sinos – RS. LIVROS GRATIS: FEEVALE,

2013.

OLIVEIRA, Loreço; HENKES, Jairo. Poluição hídrica: poluição industrial no Rio dos Sinos-

RS. Revista de Gestão Social e Ambiental, v. 2, n. 1, p. 186–221, 2013.

PEREVOCHTCHHIKOVA, Maria; ARELLANO-MONTERROSA, José Luis. Gestión de

cuencas hidrográficas: experiencias y desafíos en México y Rusia. Revista Latino-americana

de Recursos Naturales, v.4, n.3, p.313-325, 2008.

Page 63: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

62

PLANO SINOS. Plano da Bacia Hidrográfica do Rio dos Sinos. Disponible en

http://www.prosinos.rs.gov.br/planos-e-acoes/plano-de-bacia Acceso: 3 nov 2017

PORTO, Monica; LAINA PORTO, Rubem. G estão de bacias hidrográficas. Estudos

Avançados, v.22, n.63, p.43-60, 2008.

PROFILL ENGENHARIA E AMBIENTE LTDA. Plano de Gerenciamento da Bacia

Hidrográfica do Rio dos Sinos. Síntese da Situação Atual dos Recursos Hídricos. Porto

Alegre, 2011.

RÜCKERT, Fabiano. Uma breve história da educação ambiental na bacia hidrográfica do Rio

dos Sinos, RS, Brasil. Revista do Lhiste, v.4, n.6, p.113-134, 2017.

SANTOS DE SOUZA, Mateus; et al. Avaliação da qualidade da água do Rio dos Sinos (Brasil)

por meio do teste de micronúcleos. Acta Toxicol, v. 24, n.3, p. 193–199, 2016.

SCHNEIDER HENRIQUE, Paulo. Diagnóstico florístico de plantas vasculares ocorrentes

em áreas úmidas na bacia do Rio dos Sinos, RS. LIVROS GRATIS: FEEVALE, 2016.

SILVA, Mayane; HERREROS, Mario Miguel; BORGES, Fabricio. Gestão integrada dos

recursos hídricos como política de gerenciamento das águas no Brasil. Revista de

Administração da UFSM, v. 10, n. 1, p. 101-115, 2017.

STEWART, Judy; BENNETT, Mark. Integrated watershed management in the Bow River

basin, Alberta: experiences, challenges, and lessons learned. International Journal of Water

Resources Development, v. 33, n. 3, p. 1–15, 2016.

THIESEN BAUM, Daniela Fabiana. Esgotamento sanitário na bacia hidrográfica do Rio

dos Sinos: uma análise fundamentada na teoria da sociedade de risco. LIVROS GRATIS:

FEEVALE, 2013.

TUNDISI, José. Recursos hídricos no futuro: problemas e soluções. Estudos Avançados, v.22,

n.63, p.7-16, 2008.

TUNDISI, José; TUNDISI, Takako. M. Integrating ecohydrology, water management, and

watershed economy: Case studies from Brazil. Ecohydrology and Hydrobiology, v. 16, n. 2,

p. 83–91, 2016.

Page 64: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

63

WALLACE, Robert; BUCKNAM, Robert; HANKS, Thomas. Ancient engineering geology

projects in China; A canal system in Ganzu province and trenches along the Great Wall in

Ningxia Hui Autonomous Region. Engineering Geology, v. 36, n. 3–4, p. 183–195, 1994.

WANG, Yuan. Management of the Grand Canal and it’s bid as a world cultural heritage site.

Frontiers of Architectural Research, v. 1, n. 1, p. 34–39, 2012.

WOHLFART, Christian; et al. Social–ecological challenges in the Yellow River basin (China):

a review. Environmental Earth Sciences, v. 75, n. 13, 2016.

Page 65: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

64

CAPÍTULO 3

PESTEL analysis based on neutrosophic cognitive maps and neutrosophic numbers for

the Sinos river basin management

ARTIGO 3 SUBMETIDO

Este manuscrito foi submetido à avaliação pela revista International Journal of

Mathematics and Mathematical Sciences, (Anexo 3).

Page 66: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

65

CAPITULO 3

PESTEL analysis based on neutrosophic cognitive maps and neutrosophic numbers for

the Sinos river basin management

Rodolfo González Ortega1 [0000-0001-7363-3253], Maikel Leyva Vázquez2 [0000-0001-7911-5879],

Florentin Smarandache3, João Alcione Sganderla Figueiredo4

1 Feevale University, University of Holguín, Campus II, ERS 239, # 2755 - Vila Nova, Novo

Hamburgo – RS, 93525-075, Brazil. [email protected], Ph.D. Student,

Scholarship Program for Students - Postgraduate Agreement -

PEC-PG, of CAPES / CNPq – Brazil

2Universidad de Guayaquil, Building Number, and Street, Guayaquil, Post Code, Ecuador.

[email protected]

3Mathematics & Science Department, University of New Mexico. 705 Gurley Ave., Gallup, NM 87301, USA. e-mail:

[email protected]

4 Feevale University, Campus II, ERS 239, No 2755 - Vila Nova, Novo Hamburgo – RS, 93525-

075, Brazil: [email protected]

Abstract

The Sinos River watershed is one of the most polluted water basins in Brazil with great efforts

for its recovery through integral management. PESTEL is an analysis for the study of the

external variables with influence in the efficiency of the organization or project. This paper

presents a model to address problems encountered in the measurement and evaluation process

of PESTEL analysis taking into account interdependencies among sub-factors and modeling

uncertainty and indeterminacy in Sinos river basin. NCM was used for modeling the integrated

structure of PESTEL sub-factors. A quantitative analysis was developed based on static analysis

and neutrosophic numbers. To demonstrate the applicability of the proposal in the Sinos river

external factor analysis a case study is developed-interdependencies among sub-factors and

modeling uncertainty and indeterminacy. Sub-factor were ranked and reduced with Ecological,

Technological and Social are the top three factors.

Keywords: Sinos River Basin; PESTEL; Neutrosophy; Neutrosophic Cognitive Maps; Static

Analysis

Page 67: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

66

Introduction

PEST is an analysis for the study of the external variables with influence in the

efficiency of the organization or project. These variables involved in the business environment

are grouped in Political, Economical, Social, and Technological aspects [1].

The conceptual structure and nature of PEST require an integrated approach for

considering importance and interrelation. The standard technical framework of the PEST

approach mainly provides a general idea about macro conditions and the situation of an

organization, so it is inadequate. Therefore, PEST analysis lacks a quantitative approach to the

measurement of the interrelation between its factors [2]. When the environment and legal

factors are included, it is named PESTEL (Political, Economic, Socio-cultural, Technological,

Environment, and Legal) analysis [2]. Political variables refer to the regulatory aspects that

directly affect the enterprise. Here enter the taxes rules or business incentives in certain sectors,

regulations on employment, the promotion of foreign trade, government stability, the system of

government, international treaties or the existence of internal conflicts or with other current or

future countries — also the way in which the different local, regional and national

administrations are organized [3]. Economic variables relate to macroeconomic data, Gross

domestic product (GDP) evolution, interest rates, inflation, unemployment rate, income level,

exchange rates, access to resources, level of development, economic cycles. Current and future

economic scenarios and economic policies should also be investigated.

Social variables take into account are demographic evolution, social mobility and

changes in lifestyle — also the educational level and other cultural patterns, religion, beliefs,

gender roles, tastes, fashions and consumption habits of society. In short, the social trends that

may affect the enterprise business [3]. Technological variables are somewhat more complicated

to analyze due to the high speed of the changes in this area [3]. It is necessary to know the

public investment in research and the promotion of technological development, the technology

diffusion, the degree of obsolescence, the level of coverage, the digital divice, the funds

destined to R & D + I, as well as the trends in the use of new technologies. Ecological variables

are the main factors to be analyzed aware of the conservation of the environment, environmental

legislation, climate change, and temperature variations, natural risks, recycling levels, energy

regulation and possible regulatory changes in this area [4]. Legal variables refer to legislation

that is directly associated with the organization functions, information on licenses, labor

legislation, intellectual property, health laws, and regulated sectors [5].

Page 68: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

67

PESTEL analysis has deficiencies for a quantitative approach to the measurement of

interrelation among factors are generally ignored [6]. Fuzzy cognitive maps (FCM) is a tool for

modeling and analyzing interrelations [7]. Connections in FCMs are just numeric ones: the

relationship of two events should be linear [8].

The Neutrosophy can operate with indeterminate and inconsistent information, while

fuzzy sets and intuitionistic fuzzy sets do not describe them appropriately [4]. Neutrosophic

cognitive maps (NCM) is an extension of FCM where was included the concept indeterminacy

[9, 10]. The concept of fuzzy cognitive maps fails to deal with the indeterminate relation [11].

In this paper, a PESTEL analysis based on neutrosophic cognitive maps is presented

proposal methodological support and make possible of dealing with interdependence, feedback,

and indeterminacy. Additionally, the new approach makes conceivable to category and to

reduce factors.

This paper continues as follows: Section 2 reviews some essential concepts about the

PESTEL analysis framework, NCM, and fuzzy numbers. In Section 3, a framework for the

PESTEL show a static analysis based on NCM. Section 4, displays a case study of the proposed

model applied to social-environmental management of a river basin. The paper finishes with

conclusions and additional work recommendations.

Case Study

The Sinos River Basin is one of the most contaminated water basins in Brazil [31]

which leads to great efforts for its recovery through integral management. Due to the complex

nature of the interrelations between the different factors involved in environmental quality

management becomes intricate and therefore requires the use of tools that facilitate decision

making [32]. Through a participatory exercise with stakeholder members of the

COMITESINOS, external variables were identified and a diffuse cognitive map was

constructed representing the relationships among the variables. This process of identifying

PESTEL variables was carried out with the members of the committee, for which work sessions

were held in the coordination meetings. To elaborate the NCM, the Mental Modeler tool of the

website http://www.mentalmodeler.org/ was used.

Initially, factors and sub-factors were identified for Sinos river basin management as

follows:

Page 69: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

68

I. Relevant Political-Legal Aspects

In the political dimension, the following variables were identified:

1. Influence of the federal government in the watersheds management (N1)

2. Importance of the state government in the management of the basin (N2)

3. Control of the municipal government in the watershed management (N3)

4. Impact of bureaucracy on management (N4)

5. Corruption impact (N5)

II. Relevant economic and socio-economic aspects

In the socioeconomic dimension, the following variables were identified:

1. Poverty (N6)

2. Per capita income(N7)

3. Quality of solid waste collecting services (N8)

4. Quality liquid waste service (N9)

5. Water supply service( N10)

6. The quality of public health (N11)

7. Quality of sewage and sewage services (N12)

III. Relevant social aspects

In the social dimension, the variables identified were:

1. Public education (N13)

2. Population access to food (N14)

3. Access to the housing (N15)

IV. Relevant sociocultural aspects

In the sociocultural dimension, the variables identified were:

1. Perception of the environmental relevance in the local culture (N16)

2. Knowledge of environmental risk (N17)

Page 70: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

69

3. Understanding of environmental awareness( N18)

V. Relevant technological aspects

The variables identified in the technical dimension were:

1. Innovation(N19)

2. Cleaner production(N20)

3. Eco-efficiency (N21)

For the ecological dimension was possible to identify the following variables:

1. Water quality index (WQI)(N22)

2. Air Quality index (AQI) (N23)

3. Landscape change and urban planning(N24)

4. Variations in the biodiversity index of ecosystems value (N25)

5. Climate Change (N31)

6. Soil Quality index (N32)

Legal dimension include the following factors

1. Environmental Laws (N26)

2. Education regulation (27)

3. Health regulations (28

4. Environmental law (29)

5. Employment Laws (N30)

6. Consumer Law (33)

Interdependencies are identified and modeled using an NCM (Figure 1), with whose weighs

represented in Table 1.

Page 71: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

70

Fig. 1. Fuzzy Neutrosophic Cognitive Maps of PESTEL factors.

Materials and Methods

1. Preliminaries

This article offers a first brief review by PESTEL analysis and the factors´

interdependency. The following is a review of the basic concepts of NCM.

2.1 PESTEL Analysis

The PESTEL method is a prerequisite analysis with a network function to identify the

characteristics of the environment in which an organization or project operates, provides data

and information so that the organization can make predictions about new situations and

circumstances and act accordingly. [12, 13]. The variables analyzed in PESTEL are identified

and evaluated independently. [2] not taking into account interdependency. In [14] this approach

based on fuzzy decision maps is presented taking into account the ambiguity, the uncertainty in

their interrelationships.

This study presents a model to address the problems encountered in the PEST

measurement and evaluation process, taking into account the interdependencies between the

subfactors. NCM modeled the integrated structure of the PESTEL subfactor, and the

Page 72: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

71

quantitative analysis is developed from a static analysis that allows to classify and reduce the

factors in line with the proposals presented in [15].

2.2 Neutrosophic Cognitive Maps.

The Neutrosophic Logic (NL) like a generalization of the fuzzy logic was introduced

in 1995 [16]. According to this theory a logical proposition P is characterized by three

components:

NL (P) =(T,I,F) (1)

Where the neutrosophic component T is the degree of truth, F the degree of falsehood,

and I is the degree of indeterminacy [17]. Neutrosophic set (NS) was introduced by F.

Smarandache who introduced the degree of indeterminacy (i) as independent component [18].

A neutrosophic matrix content where the elements are a = (aij) have been replaced

by elements in ⟨R ∪ I⟩. A neutrosophical graphic has at least one edge is a neutrosophical edge

[19]. If the indetermination is found in the cognitive map, it is called the neutrosophical

cognitive map (NCM) [20]. NCM is based on neutrosophic logic to represent uncertainty and

indeterminacy in cognitive maps [21]. An NCM is a directed graph in which at least one edge

is an indeterminate border and is indicated by dashed lines [22] (Figure 2).

Fig. 2 Fuzzy Neutrosophic Cognitive Maps example.

In [9] a static analysis of an NCM is presented.

Page 73: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

72

2.3 Neutrosophic numbers

The result of the static analysis is in the form of neutrosophic numbers (a+bI, where I =

indeterminacy) A de-neutrosophication process as proposed by Salmeron and Smarandache

could be applied giving final ranking value [23].

A neutrosophic number is a number as follows [24] :

𝑁 = 𝑑 + 𝐼

(2)

Where d is the determinacy part, and i is the indeterminate part. For example s: a=5 +I

si 𝑖 ∈ [5, 5.4] is equivalent to 𝑎 ∈ [5, 5.4].

Let 𝑁1 = 𝑎1 + 𝑏1𝐼 and 𝑁2 = 𝑎2 + 𝑏2𝐼 be two neutrosophic numbers then the following

operational relation of neutrosophic numbers are defined as follows [18]:

𝑁1 + 𝑁2 = 𝑎1 + 𝑎1 + (𝑏1 + 𝑏2)𝐼 ;

𝑁1 − 𝑁2 = 𝑎1 − 𝑎1 + (𝑏1 − 𝑏2)𝐼

2. Proposed Framework

The aim was to develop and further detail a framework based on PESTEL and NCM

[25]. The model was made in five steps (graphically, figure 3).

Fig. 3. The proposed framework for PESTEL analysis [25]

.

3.1 Factors and sub-factors identification in the PESTEL method

Identifying PESTEL

factors and sub-factors

Modelling interdependen

cies

Calculate centrality measures

Factors classification

Factors ranking

Page 74: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

73

In this step, the significant PESTEL factors and sub-factors was recognized. Identify

factors and subfactors to form a hierarchical structure of the PESTEL model. Sub-factors are

categorized according to the literature [2].

3.2 Modeling interdependencies

In this step causal interdependencies between PESTEL sub-factors are modeled,

consists in the construction of NCM subfactors following the point views of an expert or expert

teams.

When a selection of experts (k) participates, the adjacency matrix of the collective MCD

is calculated as follows:

E = μ(E1, E2, … , Ek) (3)

the operator is usually the arithmetic mean [26].

3.3 Calculate centrality measures

Centrality measures are calculated[27] with absolute values of the NCM adjacency

matrix [28]:

1. Outdegree od(v_i) is the summation of the row of absolute values of a

variable in the neutrosophic adjacency matrix, and It shows the cumulative strengths of

connections (cij) exiting the variable.

𝑜𝑑(𝑣𝑖) = ∑ 𝑐𝑖𝑗𝑁𝑖=1 (4)

2. Indegree 𝑖𝑑(𝑣𝑖) is the summation of the column of absolute values of a

variable, and it shows the cumulative strength of variables come in the variable.

𝑖𝑑(𝑣𝑖) = ∑ 𝑐𝑗𝑖𝑁𝑖=1 (5)

3. The centrality degree (total degree 𝑡𝑑(𝑣𝑖)), of a variable is the sum of its

indegree and outdegree

𝑡𝑑(𝑣𝑖) = 𝑜𝑑(𝑣𝑖) + 𝑖𝑑(𝑣𝑖)(6)

Page 75: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

74

3.4 Factors classification and ranking

The factors were categorized according to the next rules:

a) The variables are a Transmitter (T) when having a positive or indeterminacy

outdegree, 𝑜𝑑(𝑣𝑖) and zero indegree, 𝑖𝑑(𝑣𝑖).

b) The variables give a Receiver (R) when having a positive indegree or

indeterminacy, 𝑖𝑑(𝑣𝑖)., and zero outdegree, 𝑜𝑑(𝑣𝑖).

c) Variables receive the Ordinary (O) name when they have a non-zero degree, and

these Ordinary variables can be considered more or less as receiving variables or

transmitting variables, depending on the relation of their indegrees and outdegrees.

The de-neutrosophication process provides a range of numbers for centrality using as a

ground the maximum & minimum values of I . A neutrosophic value is switched in an interval

with these two values. ∈ [0,1].

The contribution of a variable in an NCM can be known by calculating its degree of

centrality, which shows how the variable is connected to other variables and what is the

accumulated force of these connections. The median of the extreme values as proposed by

Merigo [29] is used to give a centrality value :

𝜆([𝑎1, 𝑎2]) =𝑎1+ 𝑎2

2 (7)

Then

𝐴 > 𝐵 ⇔𝑎1+ 𝑎2

2>

𝑏1+ 𝑏2

2 (8)

Finally, a ranking of variables could be given.

3.5 Factor prioritization

The numerical value obtained in the previous step is used for sub-factor prioritization and/or

reduction [30]. Threshold values may be set to 1.5 % of the total sum of total degree measures

for subfactor reduction. Additionally, sub-factor could be grouped by parent factor and to

extend the analysis to political, economic, social and technological general factor.

Results and Discussion

Page 76: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

75

4. Case of study result.

Table 1. Neutrosophic Adjacency Matrix

Nodes are initially classified (Table 2)

N1 T N10 R N19 O N28 T

N2 O N11 R N20 O N29 T

N3 O N12 O N21 O N30 T

N4 T N13 O N22 O N31 O

N5 T N14 R N23 O N32 O

N6 O N15 R N24 O N33 R

N7 O N16 R N25 R

N8 O N17 R N26 R

N9 O N18 R N27 T Table 2. Nodes classification

Total degree (Eq. 5) was calculated. Results are shown in Table 3.

N1 0,28 N9 0.72+i N17 i N25 0.64 N33 0.36

N2 0.56+i N10 0.5 N18 2i N26 0.42

N3 1.78+2i N11 0.64 N19 0.75 N27 0.47

N4 I N12 0.5 N20 0.36+3i N28 0.36

N5

2i

N13

1.17+3i

N21 0.47 +

3i

N29 1.25

N6 1.83+2i N14 i N22 2.37+2i N30 1+i

N7 1.36 N15 0.67+i N23 0.78+2i N31 1.31+2i

N8 1.03 N16 0.28 N24 2i N32 1.06+4i Table 3. Total degree

0 0.28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.39 0.33 0.25 0.28 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 i i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 i -0.67 0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -0.58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.36

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.31 0 0 0 0 0 0 0 0 0 0.33 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.39 0 0 0 0 0 0 0 0 0 i 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28 i i 0 0 0 0 0 0 0 0.42 0 0 0 i 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i i 0 0 0 0 0 0 0 0 i 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i i 0 0 0 0 0 0 0 0 i 0

0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.36 0 0 0 0 0 -0.53 0.42 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28 0 0 0 0 0 0 0 0 -0.5 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42 0.36 0.47 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -0.58 0.42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.31 0 0 0 0 0 0 0 0 i 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 77: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

76

“The next step is the de-neutrosophication process as proposes by Salmeron and

Smarandache. I ∈[0,1] is replaced by both maximum and minimum values” [33]. In Table 4

are presented as interval values.

N1

0,28

N9 [0.72,

1.72]

N17

[0,1]

N25 0.64 N33 0.36

N2 [0.56,

1.56]

N10

0.5

N18

[0,2]

N26 0.42

N3 [1.78,

2.78]

N11

0.64

N19

0.75

N27 0.47

N4

[0,1]

N12

0.5

N20 [0.36,

3,36]

N28 0.36

N5

[0, 2]

N13 [1.17,

4.17]

N21 [0.47,

3.47]

N29 1.25

N6

[1.83,3.83]

N14

[0,1]

N22 [2.37,

4.37]

N30 [1, 2]

N7

1.36

N15 [0.67,

1.67]

N23 [0.78,

2.78]

N31 [1.31,

3.31]

N8

1.03

N16

0.28

N24

[0, 2]

N32 [1.06,

5.06]

Table 4. De-neutrosophication, total degree values

Finally, we work with the median of the extreme values (Table 5) [29].

N1 0.28 N9 1.22 N17 0.5 N25 0.64 N33 0.36

N2 1.06 N10 0.5 N18 1 N26 0.42

N3 2.28 N11 0.64 N19 0.75 N27 0.47

N4 0.5 N12 0.5 N20 1.86 N28 0.36

N5 1 N13 2.67 N21 1.97 N29 1.25

N6 2.83 N14 0.5 N22 3.37 N30 1.5

N7 1.36 N15 1.17 N23 1.75 N31 2.31

N8 1.03 N16 0.28 N24 1 N32 3.06 Table 5. Total degree using the median of the extreme values

Top 6 nodes according to centrality are represented in table 6.

N22 3,37

N32 3,06

N6 2,83

N13 2,67

N31 2,31

N3 2,28

Table 6. Top 6 nodes

Page 78: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

77

Water quality index, Soil Quality index and Poverty are the top three factors. Centrality

measures of subfactor were grouped according to its parent factors (Figure 4).

Fig. 4 Aggregated total centrality values by factors

When the average is used as aggregation´s operator, the result is represented in Figure

5. Ecological, Technological and Social are the top three factors.

Fig. 5 Average of total centrality values by factors

Factors with a little incidence of less than 1.5 % (0.606) are reduced for further analysis.

In this case, we found nodes like N1,N4, N10, N14, N16, N17, N26, N27, N28 and N33.

After the application, in this case, study the model was found practical to use. The NCM

gives high flexibility and takes into account interdependencies PESTEL analysis.

Political13%

Economic 20%

Social11%

Sociocultural aspects

4%

Technological

11%

Ecological 30%

Legal11%

Political; 1,02

Economic ; 1,15

Social; 1,45

Sociocultural aspects ; 0,59

Tecnological; 1,53

Ecological ; 2,02

Legal; 0,73

Page 79: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

78

Conclusions

This study presents a model to address problems encountered in the measurement and

evaluation process of PESTEL analysis taking into account interdependencies among sub-

factors and modeling uncertainty and indeterminacy in Sinos river basin. NCM modeled the

integrated structure of PESTEL sub-factors, and quantitative analysis was developed based on

static analysis and neutrosophic numbers.

To demonstrate the applicability of the proposal in the Sinos river external factor

analysis a case study is developed. Sub-factor were ranked and reduced with Ecological,

Technological, Social are the top three factors.

NCM modeled the integrated structure of PESTEL of factors and sub-factors. Our

approach has many applications in complex decision problem that include interdependencies

among criteria, and such as complex strategic decision support in river basin management.

Further works will concentrate on extending the model for dealing scenario analysis in

conjunction with a multicriteria environment. Another area of future work is the development

of a software tool.

Conflicts of Interest

No conflict of interest are declared by the authors.

Funding Statement

This study was partially supported by “Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES)” -Finance Code 001.

Data Availability Statement

The data used to support the findings of this study are included within the article.

Page 80: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

79

References

1. Salah, S. and A. Rahim, Integrated Company-Wide Management System (ICWMS), in An Integrated Company-Wide Management System. 2019, Springer. p. 127-163.

2. Yüksel, I., Developing a multi-criteria decision making model for PESTEL analysis. International Journal of Business and Management, 2012. 7(24): p. 52.

3. Andrews, R., et al., External constraints on local service standards: The case of comprehensive performance assessment in English local government. Public administration, 2005. 83(3): p. 639-656.

4. Rastogi, N. and M. Trivedi, PESTLE technique–a tool to identify external risks in construction projects. International Research Journal of Engineering and Technology (IRJET), 2016. 3(1): p. 384-388.

5. Sridhar, R., et al., A Political, Economic, Social, Technological, Legal and Environmental (PESTLE) approach for assessment of coastal zone management practice in India. International Review of Public Administration, 2016. 21(3): p. 216-232.

6. Vázquez, M.L., Toma de decisiones empleando números SVN Neutrosophic computing and machine learning, 2018. 1(1).

7. Leyva-Vázquez, M., et al. The Extended Hierarchical Linguistic Model in Fuzzy Cognitive Maps. in International Conference on Technologies and Innovation. 2016. Springer.

8. Bhutani, K., et al., Assessing IT Projects Success with Extended Fuzzy Cognitive Maps & Neutrosophic Cognitive Maps in comparison to Fuzzy Cognitive Maps. Neutrosophic Sets & Systems, 2016. 12.

9. Pérez-Teruel, K. and M. Leyva-Vázquez, Neutrosophic logic for mental model elicitation and analysis. Neutrosophic Sets and Systems, 2012: p. 30.

10. Kandasamy, W.V. and F. Smarandache, Fuzzy cognitive maps and neutrosophic cognitive maps. 2003: Infinite Study.

11. Kumar, M., K. Bhutani, and S. Aggarwal. Hybrid model for medical diagnosis using Neutrosophic Cognitive Maps with Genetic Algorithms. in Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on. 2015. IEEE.

12. Frynas, J.G. and K. Mellahi, Global strategic management. 2015: Oxford University Press, USA.

13. Thompson, J.L. and F. Martin, Strategic management: awareness & change. 2010: Cengage Learning EMEA.

14. VÁZQUEZ, M.L., et al., A framework for PEST analysis based on fuzzy decision maps. Espacios, 2018. 39(13).

15. Alava, R.P. and J.M. Mu, PEST Analysis Based on Neutrosophic Cognitive Maps: A Case Study for Food Industry. Neutrosophic Sets and Systems, 2018: p. 84.

Page 81: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

80

16. Smarandache, F., A Unifying Field in Logics: Neutrosophic Logic, in Philosophy. 1999, American Research Press. p. 1-141.

17. Alava, R.P., et al., PEST Analysis Based on Neutrosophic Cognitive Maps: A Case Study for Food Industry. Neutrosophic Sets & Systems, 2018. 21.

18. Smarandache, F., Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis. 1998.

19. Kandasamy, W.B.V. and F. Smarandache, Fuzzy cognitive maps and neutrosophic cognitive maps. 2003: American Research Press.

20. Kandasamy, W.V. and F. Smarandache, Analysis of social aspects of migrant labourers living with HIV/AIDS using Fuzzy Theory and Neutrosophic Cognitive Maps. 2004: American Research Press.

21. Smarandache, F., A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability and statistics. 2005: American Research Press.

22. Salmeron, J.L. and F. Smarandache, Processing Uncertainty and Indeterminacy in Information Systems projects success mapping, in Computational Modeling in Applied Problems: collected papers on econometrics, operations research, game theory and simulation. 2006, Hexis. p. 94.

23. Salmeron, J.L. and F. Smarandache, Redesigning Decision Matrix Method with an indeterminacy-based inference process. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2008. 13(M 08): p. 4-11.

24. Smarandache, F., Introduction to neutrosophic statistics. 2014: Infinite Study.

25. Choez, W.O., et al., A framework for PEST analysis based on neutrosophic cognitive map: case study in a vertical farming initiative. Neutrosophic Sets and Systems, vol. 17/2017: A Quarterly International Journal in Information Science and Engineering, 2015. 2(4): p. 57.

26. Takács, M., A. Szakál, and I. Baganj. The rule of the aggregation operators in fuzzy cognitive maps. in Intelligent Engineering Systems (INES), 2017 IEEE 21st International Conference on. 2017. IEEE.

27. Lara, R.B., S.G. Espinosa, and M.Y.L. Vázquez, Análisis estático en mapas cognitivos difusos basado en una medida de centralidad compuesta. Ciencias de la Información, 2014. 45(3): p. 31-36.

28. Stach, W., L. Kurgan, and W. Pedrycz, Expert-based and computational methods for developing fuzzy cognitive maps, in Fuzzy Cognitive Maps. 2010, Springer. p. 23-41.

29. Merigó, J., New extensions to the OWA operators and its application in decision making, in Department of Business Administration, University of Barcelona. 2008.

30. Altay, A. and G. Kayakutlu, Fuzzy cognitive mapping in factor elimination: A case study for innovative power and risks. Procedia Computer Science, 2011. 3: p. 1111-1119.

Page 82: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

81

31. Figueiredo, J., et al., The Rio dos Sinos watershed: an economic and social space and its interface with environmental status. Brazilian Journal of Biology, 2010. 70(4): p. 1131-1136.

32. Ortega, R.G., et al., Sinos river basin social-environmental prospective assessment of water quality management using fuzzy cognitive maps and neutrosophic AHP-TOPSIS. Neutrosophic Sets and Systems, 2018. 23: p. 160-171.

33. Salmerona, J.L. and F. Smarandacheb, Redesigning Decision Matrix Method with an indeterminacy-based inference process. Multispace and Multistructure. Neutrosophic Transdisciplinarity (100 Collected Papers of Sciences), 2010. 4: p. 151.

Page 83: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

82

CAPÍTULO 4:

Sinos river basin social-environmental prospective assessment of water quality

management using fuzzy cognitive maps and neutrosophic AHP-TOPSIS

ARTIGO 4 PUBLICADO

Este artigo foi publicado na revista Neutrosophic Set and System, (Anexo 4).

Page 84: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

83

CAPÍTULO 4:

Sinos river basin social-environmental prospective assessment of water quality

management using fuzzy cognitive maps and neutrosophic AHP-TOPSIS

Rodolfo González Ortega1 [0000-0001-7363-3253]

Maikel Leyva Vázquez2 [0000-0001-7911-5879]

João Alcione Sganderla Figueiredo3

Alfonso Guijarro-Rodríguez4

1 Feevale University, University of Holguín, Campus II, ERS 239, # 2755 - Vila Nova, Novo Hamburgo – RS, 93525-075, Brazil.

[email protected], Ph.D. Student, Scholarship Program for Students - Postgraduate Agreement -

PEC-PG, of CAPES / CNPq – Brazil 2Universidad de Guayaquil, Building Number, and Street, Guayaquil, Post Code, Ecuador. [email protected] 3 Feevale University, Campus II, ERS 239, No 2755 - Vila Nova, Novo Hamburgo – RS, 93525-075, Brazil: [email protected] 4 Universidad de Guayaquil, Building Number, and Street, Guayaquil, Post Code, Ecuador. [email protected]

Abstract. The Sinos river basin is one of ten more polluted river basins in Brazil, leading to

considerable efforts to mitigate the impacts and achieve their recovery, is possible through

adequate integral management. Aiming at the need for water quality management through the

analysis of the interrelationships among the different factors, which can be difficult given the

multiple connections between the variables involved. In this article, the authors presented a tool

of multi-criteria decision method using Neutrosophic elements in AHP-TOPSIS models and

linked to Fuzzy Cognitive Maps, which can contribute to better environmental management to be

carried out by the Basin Management Committee of the Sino River. This method, it is possible

for modeling the complex system and variables involved in the determination of water quality,

according to the Water Quality Index and using Neutrosophic Analytical Hierarchical Process

with Technique for Order of Preference by Similarity to Ideal Solution for ranking scenarios. The

methodology exposed in this research shows an improved method to be used by the Sinos River

basin Committee when planning decisions. The applicability of the framework has been

demonstrated during the case study presented.

Keywords: FCM, Neutrosophic AHP, TOPSIS, Sino River Basin, Scenario Analysis

Page 85: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

84

Introduction

The complexity of socio-environmental management in a water basin, strongly impacted

by anthropic actions, is manifested in a considerable number of environmental problems that

affect the health and well-being of the populations of the region. Additionally, altered the

biological diversity the abiotic components of the ecosystem are eroded [1].

The present work focuses on the managing of water quality through the analysis of the

interrelations between the different factors. Considering the variables that compose the Water

Quality Index (WQI) on the Sinos River basin (SRB) [2] and how they are influenced by actions

such as increase of industrial and domestic wastewater treatment, improve legal systems and

law enforcement, conservation or recovery of the gallery forest, wetlands and swamplands

areas. Moreover, the degree of the impacts to the biota, the people health, and the regional

economy is determined.

The proposal consists using the Fuzzy Cognitive Maps (FCM) [3] as a tool to

understand the complex nature of environmental management, making easier the analysis of

existent interrelations, the discussion, and understanding of the problems complexity by the

stakeholders, contributing to making the basin management process more democratic.

Additionally, the combination with the Neutrosophic Analytical Hierarchical Process (NAHP)

[4-6] and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [7]

multi-criteria method allows making prospective management when analyzing and ranking of

different scenarios.

Most noteworthy, this is the first study, to our knowledge, that integrates FCM with

Neutrosophic NAHP-TOPSIS for water management. All these facts allow the analysis of

different alternatives, ranking them and selecting the best one, optimizing the decision-making

processes into the social-environmental management by the SRB Committee.

The paper continues as follows: Section 2 is about the SRB and his environmental issue

and some important concepts about fuzzy cognitive maps, AHP and TOPSIS. Methodological

aspects are detailed in section 3. A case study is discussed and presented in section 4. This

article ends with inferences and some recommendation for future work.

Page 86: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

85

2. Preliminary

In this section the SRB and its environmental problems are presented then FCM

fundamentals are discussed. Additionally necessary concepts about neutrosophic AHP and

TOPSIS are presented.

2.1 The SRB social-environmental water problems

The SRB is one of the most polluted water basins in Brazil [8] which leads to

tremendous efforts for its recovery through adequate integral management. The SRB

Committee is responsible for the environmental management but, due to the complex nature of

the interrelations between the different factors involved in environmental quality management

becomes intricate and therefore requires the use of tools that facilitate decision making.

The SRB (Fig. 1), positioned in the eastern portion of the Rio Grande do Sul State. It

has an area of approximately 3.696 km², equivalent to 1.3% of the total area of the Rio Grande

do Sul State and 4.4% of the Guaíba Hydrographic Region [9], providing fresh water to nearly

1.3 million people in 32 municipalities [10].

Figure. 1: Sinos Rivers Basin

The SRB is frequently cited as a highly degraded watershed due to the process of

substantial economic development disjoined from environmental conservation concerns [11].

The deficiency of urban planning proper zoning has strong consequent in urbanization observed

for the municipalities within the water basins [11].

The growth of towns and villages without following the guidelines of urban and

territorial planning threaten the basin ecosystem biota. Another factor threatening is the

occupation of flooding areas by people, the riparian forest deforestation. Additionally, the

Page 87: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

86

domestic sewage with inadequate treatment threw into the water body, contributes to the surface

and ground waters degradation. An example of this are Pampa and Luis Rau streams [12, 13].

However, the city grew along the river also brought about an increase of industrial facilities,

which pour, since the beginning until today, their rubbish into the streams of the river basin. So

the primary sources of pollution of the SRB are two: the industrial wastewater and the domestic

sewage [12].

The insufficient capacity of domestic wastewater and industrial effluents treatment has

a negative influence on the ecosystem life, increasing the concentrations of organics pollutants

in the water, showing lower levels of OD, killing thousands of fish and other types of water life

[12, 13] . It is also responsible for waterborne diseases such as hepatitis, enteritis, and diarrhea

[14], [15].

The industrial waste pumped into the streams of the basin is the source of illness due to

many substances like chrome, nickel, iron, mercury, lead, and cyanide. These materials were

found with values beyond the limits accepted by Brazilian legislation [16, 17]. Furthermore,

organic compounds were found, such as Diethyl phthalate; Fluorene; Dibenzofuran;

Nitrobenzene; 4-Bromodiphenyl ether; Hexachlorobenzene; Phenanthrene; Carbazole; Di-n-

butyl phthalate e Benzyl butyl phthalate[18].

Another pollution source of the SRB is the diffused pollution linked with the increasing

vehicular traffics, industrial air pollution and soil pollution by agricultural runoff [19]. The

current situation shows the deficiencies and the inability of the watershed committee to reach

the goals and have a proactive action into the social-environmental management. The SRB

Committee need for new analysis tools that support decision making in this situation.

2.2 Fuzzy Cognitive Maps Fundamental

Cognitive maps were first introduced by Axelrod [20], where arcs indicate either

positive or negative causal relations between nodes. fuzzy cognitive map (FCM)[3] extends

cognitive maps with fuzzy values in arcs in the [-1,1] interval. Recently FCMs have gained

considerable research interest and are mainly to analyze causal systems especially in system

control and decision making [21-23]. When neutrosophic is included in arcs weights a

neutrosophic cognitive is obtained [24].

In FCM there are three types of causal relations between nodes in the matrix: negative,

positive and none. The matrix representation of FCM allows the making of causal

inferences. In FCM the dynamic analysis begins with the design of the initial vector state,

which represents the initial value of each node. The value of a concept is calculated in each

Page 88: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

87

simulation step using the following calculation rule:

𝐴𝑖(𝑡+1)

= 𝑓(𝐴𝑖𝑡 + 𝛴𝑗=1, 𝑗≠𝑖

𝑛 𝐴𝑖𝑡 × 𝑊𝑗𝑖) (1)

Where 𝐴𝑖(𝑡+1)

is the state of the node i at the instant t+1 , 𝑊𝑗𝑖 is the weight of the

influence of j node over the i node, and f(x) is the activation function. The hyperbolic tangent

activation function is defined as follows [25]:

𝑆𝑖(𝐶𝑖𝑡) = tanh( λ𝐶𝑖𝑡) (2)

The calculation halts if an equilibrium state is reached. The final vector reflects the state

of the FCM nodes after the system intervention [26, 27].

The interest in the use of FCM is crescent, in the most recent years, as a participatory

method for understanding social-ecological systems [28]. FCM has been used in a different set

of contexts reaching from invasive species management [29] to agricultural policy design and

communication [30]. The FCM is due mainly to its transparent graphical models of complex

systems useful for decision making, the ability to illuminate the core presumptions of

environmental stakeholders and to structure environmental problems for scenario development.

2.3 Neutrosophic AHP

Smarandache [31] suggested the concept of a neutrosophic set, which uses the truth-

membership function, indeterminacy-membership function, and falsity-membership function.

Neutrosophic set theory should be utilized to rationalize uncertainty associated with ambiguity

in a manner analogous to a human in the decision-making process [32]. A single value

neutrosophic number a =〈(𝑎1, 𝑎2, 𝑎3); αa, 𝜃a , βa〉express a quantity approximately

equal to 𝑎 [33].

In this paper with the calculation of the weights through the analytical hierarchal process

(AHP) using triangular neutrosophic numbers [34].

Page 89: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

88

In AHP the relative priorities are assigned to different criteria using a scale for

comparison by pairs (Table 1).

Saaty Scale Explication Neutrosophic Triangular Scale

1 Equally influential 1=〈(1, 1, 1); 0.50, 0.50, 0.50〉

3 Slightly influential 3==〈(2, 3, 4); 0.30, 0.75, 0.70〉

5 Strongly influential 5=〈(4, 5, 6); 0.80, 0.15, 0.20〉

7 Very strongly

influential 7=〈(6, 7, 8); 0.90, 0.10, 0.10〉

9 Influential 9=〈(9, 9, 9); 1.00, 0.00, 0.00〉

Table 1. Priority scale of AHP criteria for pairwise comparison using triangular neutrosophic numbers [4]

Let be a =〈(𝑎1, 𝑎2, 𝑎3); αa, 𝜃a , βa〉the neutrosophic comparison matrix it

converted to its crisp form by using score degree of a [4]:

𝑆(a)=18⁄ [𝑎1 + 𝑎2 + 𝑎3] × (2 + αa − 𝜃a − βa) (3)

and the accuracy degree of a [4]:

𝐴(a)=18⁄ [𝑎1 + 𝑎2 + 𝑎3] × (2 + αa − 𝜃a + βa) (4)

NAHP has the same advantages of classical AHP for example user with a richer

structure framework than the classical AHP, fuzzy AHP, and intuitionistic fuzzy AHP. Describe

the preference judgment values of the decision maker efficiently handling vagueness and

uncertainty over fuzzy AHP and intuitionistic fuzzy AHP because it considers three different

grades “membership degree, indeterminacy degree and non-membership degree [33, 35].

Page 90: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

89

2.4 TOPSIS

Decision-making at environmental projects requires consideration of trade-offs between

sociopolitical, environmental and economic impacts, making multi-criteria decision analysis

(MCDA) a valuable methodology in this situations. TOPSIS is MCDA method to do rank

alternative from a finite set of one’s [36]. The chosen alternative should have the farthest

distance from the negative ideal solution and the shortest distance from the positive ideal

solution [37]. Some extensions for TOPSIS have been developed based on neutrosophic[38].

The algorithm for TOPSIS is as follows

Step 1: Determine the normalized decision matrix (R). The raw decision matrix (D) is

normalized for criteria comparability:

𝑟𝑖𝑗 =𝑥𝑖𝑗

√𝛴𝑖=1𝑚 𝑥𝑖𝑗

2 (5)

Step 2: Compute the weighted normalized decision matrix (V ) with weights obtained

from Neutrosophic-AHP. The weighted normalized value of can be computed by

𝑣𝑖𝑗 = 𝑟𝑖𝑗 ⋅ 𝑤𝑗 (6)

where 𝑤𝑗 is the weight of the j𝑡ℎ criterion and 𝛴𝑗=1𝑚 𝑤𝑗 = 1.

Step 3: State the positive-ideal (𝐴+) and negative-ideal (𝐴−) alternatives. The values

of the criteria in the positive-ideal and the negative-ideal alternative correspond to be the best

level and the worst level respectively [39]:

𝐴+ = {(max𝑖=1𝑛 |𝑗 ∈ 𝐼+|), (min𝑖=1

𝑛 |𝑗 ∈ 𝐼−|)} = [𝑣1+, 𝑣2

+, . . . , 𝑣𝑛+] ,

and

𝐴− = {(min𝑖=1𝑛 |𝑗 ∈ 𝐼+|), (max𝑖=1

𝑛 |𝑗 ∈ 𝐼−|)} = [𝑣1−, 𝑣2

−, . . . , 𝑣𝑛−] ,

where 𝐼+ and 𝐼− are the criteria sets of benefit and cost type, respectively.

Step 4: Compute the distance measures with the Euclidean distance. The separation to

the positive-ideal alternative is:

𝑑𝑖+ = √𝛴𝑗=1

𝑚 (𝑣𝑖𝑗 − 𝑣𝑗+), 𝑖 = 1, . . . , 𝑛 (7)

Page 91: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

90

Additionally, the distance to the negative-ideal alternative is denoted as:

𝑑𝑖− = √𝛴𝑗=1

𝑚 (𝑣𝑖𝑗 − 𝑣𝑗−), 𝑖 = 1, . . . , 𝑛 (8)

Step 5: Compute the relative closeness to the ideal alternative and rank the preference

order. The relative closeness of the ith to the ideal alternative concerning the ideal alternative

is as follows:

𝐶𝑖+ =

𝑑𝑖−

𝑑𝑖++𝑑𝑖

− (9)

A set of alternatives that can be preference ranked according to the descending order

of 𝐶𝑖+ ; then larger means a better alternative.

3. Proposed Method

We propose an approach to support decision making in water management, made of

some steps that range from indicator selection to scenario comparison and ranking support

decision making.

1. Select relevant indicators

Relevant indicators are selected, and the FCM representing causality is modeled. The

data source or expert(s) could be used in this step. Several methodologies could be used in

order to reach a consensus within a group of participant experts [40].

2. Static Analysis

The concept in which the model can be categorized into one of three ways based on

analysis: as driving components, receiving components or ordinary components [41].

The following measures are calculated with the absolute values of the FCM adjacency

matrix:

Outdegree 𝑜𝑑(𝑣𝑖) is sum the of absolute values in the row of a variable in the

adjacency matrix. It shows the cumulative strengths of connections (𝑎𝑖𝑗 ) departing the variable.

Indegree 𝑖𝑑(𝑣𝑖) is the sum of the absolute values in the colum of a variable. It shows

the cumulative strength of variables incoming the variable.

The centrality measure of a variable is the summation of its indegree and outdegree

𝑡𝑑(𝑣𝑖) = 𝑜𝑑(𝑣𝑖) + 𝑖𝑑(𝑣𝑖) (10)

Later variables could be classified according to the following rules and be selected in

scenario development [42]:

Page 92: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

91

a) Transmitter variables have a positive or indeterminacy outdegree, and zero

indegrees.

b) Receiver variables have a positive indegree or indeterminacy and zero outdegree.

c) Ordinary variables can be more or less a receiver or transmitter variables, based on

the relation of their outdegrees and indegrees measures.

3- Identify future scenarios

Scenarios are identified, and initial stimuli vector for each one are defined. A Stimulus

vector is designed for each scenario representing the initial value of each node. The simulation

of the scenarios with the FCM is run with the outcome in the form of concepts being ’activated’

at different levels after reaching equilibrium [38].

4- Rank and evaluate the different scenarios.

The Neutrosophic AHP-TOPSIS method is a combination of the NAHP method with

the TOPSIS method. In this case, the weights are calculated in the NAHP. At the first stage,

NAHP is used to weight the relative importance of NODES when compared to each

other. According to this, the positive-ideal scenario (PIS) and the negative-ideal one (NIS) are

defined. Moreover, alternatives are ranked according to the TOPSIS algorithm [43].

4. Results

Understanding the complexity of water pollution sources and their mitigation using the

fuzzy cognitive maps modeling to supporting decision making.

In Step 1 relevant indicators are selected (Table 2).

Concept Description

WQI The WQI was created to assess the quality of raw water in the public supply

treatment systems. This indicator has limitations because not analyze

essential parameters such as toxic substances, pathogenic viruses and

protozoa, and others substances.

OD This indicator shows the level of free oxygen present in the water body. It is

crucial for all life in the water.

Coliforms T The quantity of Thermotolerant Coliform bacteria is an indicator of domestic

sewage pollution in the water body.

pH pH is a measurement of water acidity or alkalinity, determined by hydrogen

ions in the water

Page 93: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

92

Water Temp This indicator is determined by solar radiation, or physical-chemical processes

and the variability of the indicator could modify many water parameters such

as surface tension or viscosity, which can affect the growth, reproduction or

life of aquatic organisms?

Nitrogen Total This indicator reflects the total quantity of nitrogen existing in the water from

different sources.

Phosphorus Total This indicator reflects the total amount of phosphorus present in the water

from various sources. High phosphorus levels in water are the leading causes

of eutrophication.

Turbidity Turbidity indicates the degree of attenuation caused by the particles in

suspension undergoing a ray of light passing through the water

Total Solids The total residue is the remaining material after evaporation, calcination or

drying of the water sample for a determine time and temperature.

DBO5 The BDO5 is the total of oxygen necessary to oxidize the organic substance

present in the water through aerobic microbial decomposition for five days.

Domestic

Wastewater

This concept is wastewater from residential towns and services, such as

houses, restaurants, hotels; and which come up from toilets, bathrooms, and

kitchens.

Industrial Liquid

Water

This wastewater can be the result of any process, industrial activity or

commercial activity, of the transformation of any natural resource or of

operations with animals, such as feedlots, chicken coops or dairies.

Diffuse Pollution Is the nonpoint source pollution, this term refers to the difficulty of adequately

determining the origin of the pollutant.

Health Impact It is the combination of methods, procedures, and tools through which can

determine the relationship of certain phenomena and their effects on the health

of people or animals, as well as the spatial or temporal distribution of these

effects.

Economic Impact It is the combination of methods, procedures, and tools with which can

determine the relationship of certain phenomena and their effects on the

economy of a region, as well as the distribution over time of these effects.

Biota impact It is the combination of methods, procedures, and tools with which can

determine the relationship of certain phenomena and their effects on the life

of an ecosystem, as well as the spatial or temporal distribution of these effects.

Wastewater It is a process of elimination of pollutants from industrial and domestic

Page 94: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

93

Treatment Plant wastewater. The physical, chemical and biological processes are included that

make it easier to eliminate these pollutants and produce a safer discharge for

the environment.

Law enforcement This indicator reflects as the system using which the members of society act

in an organized way to enforce the law, dissuading, rehabilitating or punishing

people who violate the rules and regulations that govern that society.

wetlands

conservation

The objective of this indicator is to measure the degree of protection and

preservation of areas such as swamps, marshes, and wetlands.

Riparian forest

conservation

This indicator measures the conservation of riparian forests, given their

importance for forming a complex ecosystem and the occurrence of

interrelationships between species of terrestrial and aquatic organisms, as well

as the relationships between the biotic and abiotic components.

Table 2. CFM Relevant indicators (Nodes) and their meanings

In Step 1 an FCM based on expert is developed. Figure 2 shows an FCM model with

obtained with 20 nodes and 63 edges.

Figure. 2: FCM model

FCM Model of the WQI relationships. Blue lines show positive relationships and red

lines point to negative relationships and the fatness of the line represents the strength of the

relationship.

In step 2 a static analysis is performed on centered on studying the features of the

weighted directed graph that represent the model, using graph theory metrics.

Page 95: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

94

Concept Indegree Outdegree Centrality

WQI 2.91 2.86 5.77

OD 2.44 2.03 4.47

Coliforms T 0.81 1.36 2.17

pH 1.26 1.89 3.15

Water Temp 0.78 0.59 1.37

Nitrogen Total 1.39 1 2.39

Phosphorus Total 1.9 1.06 2.15

Turbidity 2.25 1.5 3.75

Total Solids 1.38 1.16 2.64

DBO5 2.69 1.86 4.55

Domestic

Wastewater 0.34 4.53 4.87

Industrial Liquid

Water 0.26 3.04 3.3

Diffuse Pollution 0.43 3.19 3.62

Health Impact 2.81 0 2.81

Economic Impact 3.39 0 3.39

Biota impact 4.7 0 4.7

Wastewater

Treatment Plant 0 0.58 0.58

Law enforcement 0 0.03 0.03

Wetlands

conservation 0 0.45 0.45

Riparian forest

conservation 0 1.8 1.8

Table 3. Static Analysis

Page 96: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

95

The most central nodes are WQI, Domestic Wastewater, and Biota impact. Receiver

variables are Health Impact, Economic Impact, and Biota impact. Transmitter variables are

Law enforcement, Wetlands conservation, Riparian forest conservation. Scenarios are

identified and simulated (Table 4).

In step 3 scenarios are identified, and initial stimuli vector for each one are defined.

Scenario Description Initial Stimulation

S1

The actual capacity of

wastewater treatment in the

basin of Sinos River

WTP 5%

S2

increase the quantity and

capacity of the wastewater

treatment system

WTP 35%

S3 Increasing of natural or

artificial Wetlands areas Wetlands 35%

S4 Increase the law

enforcement Law Enforcement 35%

S5 Increasing Wetlands areas

and Law enforcement Wetland 25% Law 30%

S6

Increasing of wastewater

treatment plant, Wetlands

areas, and Law enforcement

WTP 45% Law 25%

Wetland 30%d

Table 4. Scenarios identification and stimulated

Scenario planners calculate the FCM model for different input vectors that represent

probable or desirable combinations of concept states.[44] In this case, the hyperbolic tangent

activation function is used [25].

The scenarios are further investigated the next step (Step 4) for ranking. Ending

scenarios are exemplified graphically in Figure 3.

Page 97: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

96

Figure. 3 Scenarios’ results

Scenarios ranked with NAHP-TOPSIS. Pairwise comparison matrix was obtained

using triangular neutrosophic numbers. Nodes are weighted according to the AHP method as

follows, see table 5.

Indicators Weights

WQI 0,15

OD 0,10

Coliforms T 0,08

Ph 0,08

Water Temp 0,07

Nt 0,06

Pt 0,06

Page 98: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

97

Turbidity 0,06

Total Solids 0,06

Domestic

Wastewater 0,05

Industrial

Wastewater 0,05

Diffuse

Pollution 0,04

Health Imp 0,02

Economic

Imp 0,02

DBO5 0,05

Biota Imp 0,01

Wastewater

treatment

plant

0,02

Law

enforcement 0,02

Wetlands

Conservation 0,01

Riparian

Forest 0,01

Table 5. Weights results

WQI and OD are the most important nodes. They jointly comprise the 25% of the

total weights. Additionally the least important are Biota Imp, Wetlands Conservation and

Riparian Forest comprising only 3% of the total weights.

Then the weighted normalized decision matrix (V) is computed. The authors adopt that

Page 99: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

98

all the nodes are classified as benefit (higher scores are better). After TOPSIS procedure

outcomes are displayed, and the scenarios are ranked (Table 6).

Scenario Distance to Ideal Distance to Anti-

Ideal

Relative Degree

Closeness Rank

S1 0.96 0,93 0,49 5

S2 1.04 1,01 0,49 5

S3 0.72 1,11 0,61 2

S4 1.05 1,13 0,52 4

S5 0.75 1,11 0,60 3

S6 0.67 1,29 0,66 1

Table 6. TOPSIS results

S6 rank as the best scenario and S1 is the less desirable scenario. Increasing of

wastewater treatment plant, Wetlands areas, and Law enforcement id the best scenario

according to the method. The final ranking of scenarios is as follows: 𝑆6 ≻ 𝑆3 ≻ 𝑆5 ≻ 𝑆4 ≻

𝑆1 ≈S2. This result coincide with experts opinions consulted.

In this study, we presented a methodology based in FCM to obtain a better

comprehension about the complex relation of variables involved in water quality. The

representation of relationships variables by FCM allows the SRB Committee do participation

exercises and all of the stakeholders gain in knowledge about the challenges of social-

environmental management and the water management specifically. Additionally scenarios are

ranked taking into account importance of the factor involved with the NAHP and the TOPSIS

methods.

Page 100: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

99

Conclusion

In this paper, the authors present a Neutrosophic AHP TOPSIS multi-criteria decision

method tool that can contribute for a better choice of environmental management in the

watershed by the Basin Management Committee. With this technique, it is possible to use FCM

to model the complex system of variables involved in the determination of water quality,

according to the WQI and TOPSIS for ranking scenarios. The methodology exposed in this

research shows an improved method to be used by the SRB Committee when planning

decisions. The applicability of the framework has been demonstrated during the case study

presented above.

The originality of the approach shown in this document is to use the built scenarios,

their evaluation and their classification for water quality management. Future work should

focus on extending the auxiliary proposal into a neutrosophic decision map to work out the

decision-making dependency of multiple criteria and feedback problems. The development of

a full neutrosophic proposal is another area of future research.

References

1. Santelmann, M., J. McDonnell, J. Bolte, S. Chan, A. Morzillo, and D. Hulse, Willamette

water 2100: river basins as complex social-ecological systems. WIT Transactions on

Ecology and the Environment, 2012. 155: p. 575-586.

2. Konzen, G., J. Figueiredo, and D. Quevedo, History of water quality parameters–a

study on the Sinos River/Brazil. Brazilian Journal of Biology, 2015. 75(2): p. 1-10.

3. Kosko, B., Fuzzy cognitive maps. International journal of man-machine studies, 1986.

24(1): p. 65-75.

4. Abdel-Basset, M., M. Mohamed, and F. Smarandache, An Extension of Neutrosophic

AHP–SWOT Analysis for Strategic Planning and Decision-Making. Symmetry, 2018.

10(4): p. 116.

5. Abdel-Basset, M., G. Manogaran, M. Mohamed, and N. Chilamkurti, Three-way

decisions based on neutrosophic sets and AHP-QFD framework for supplier selection

problem. Future Generation Computer Systems, 2018. 89: p. 19-30.

6. Abdel-Basset, M., G. Manogaran, and M. Mohamed, Internet of Things (IoT) and its

impact on supply chain: A framework for building smart, secure and efficient systems.

Future Generation Computer Systems, 2018. 86: p. 614-628.

Page 101: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

100

7. Li, C. Water resources renewability assessment based on TOPSIS. in Artificial

Intelligence and Computational Intelligence, 2009. AICI'09. International Conference

on. 2009. IEEE.

8. Figueiredo, J., E. Drumm, M. Rodrigues, and F. Spilki, The Rio dos Sinos watershed:

an economic and social space and its interface with environmental status. Brazilian

Journal of Biology, 2010. 70(4): p. 1131-1136.

9. Plano Sinos. Plano de Gerenciamento da Bacia Hidrográfica do Rio dos Sinos. Síntese

da Situação Atual dos Recursos Hídricos. 2016 [cited 2018 August 20]; Available from:

http://www.prosinos.rs.gov.br/downloads/PBHSINOS-R10-

Volume%20%C3%9Anico.pdf.

10. Blume, K.K., J.C. Macedo, A. Meneguzzi, L.B.d. Silva, D.M.d. Quevedo, and M.A.S.

Rodrigues, Water quality assessment of the Sinos River, southern Brazil. Brazilian

Journal of Biology, 2010. 70(4): p. 1185-1193.

11. Spilki, F. and J. Tundisi, Priority targets for environmental research in the Sinos River

basin. Brazilian Journal of Biology, 2010. 70(4): p. 1245-1247.

12. Guzmán, R.A.F., A Manchester Brasileira não tem esgoto: Análise histórica da gestão

das águas na bacia hidrográfica do Rio dos Sinos. 2016, UNIVERSIDADE FEEVALE

13. Nascimento, C.d. and R. Naime, Panorama do uso, distribuição e contaminação das

águas superficiais no Arroio Pampa na bacia do Rio dos Sinos. Estudos Tecnológicos,

2009. 5(1): p. 101-120.

14. Staggemeier, R., Vírus Entéricos Humanos em Sedimento e Água Superficial de Áreas

Urbanas da Região do Vale do Rio dos Sinos. 2016, Universidade Feevale

15. Rodrigues, M.T., Efeitos do clima sobre a dispersão de vírus entéricos e a incidência

de viroses de veiculação hídrica na região do Vale do Rio dos Sinos, Brasil,. 2012,

Feevale University

16. de Oliveira, L.A. and J.A. Henkes, Poluição hídrica: poluição industrial no Rio dos

Sinos-RS. Revista Gestão & Sustentabilidade Ambiental, 2013. 2(1): p. 186-221.

17. Oliveira, C.R.d., Avaliação da qualidade da água do rio dos sinos. 2015, FEEVALE

18. Ribeiro, A.G., A Qualidade Ambiental Do Rio Dos Sinos: Poluentes Orgânicos, Metais

Tóxicos, Parâmetros Físico-Químicos E Toxicidade No Sedimento E Águas

Superfíciais. 2016, Feevale

19. Dorneles, M.B., Monitoramento da genotoxicidade do ar atmosférico com o uso de

Tradescantia e avaliação da estrutura comunitária de epífitos vasculares em áreas com

Page 102: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

101

diferentes graus de antropização na Bacia do Rio dos Sinos, Rio Grande do Sul,. 2012,

Feevale

20. Axelrod, R., Structure of decision: The cognitive maps of political elites. 2015:

Princeton university press.

21. Pérez, Y.F., C.C. Corona, and J.L. Verdegay, Modelling the interrelation among

software quality criteria using Computational Intelligence techniques. International

Journal of Computational Intelligence Systems, 2018. 11: p. 1170-1178.

22. LEYVA, M., J. HECHAVARRIA, N. BATISTA, J.A. ALARCON, and O. GOMEZ, A

framework for PEST analysis based on fuzzy decision maps. Revista ESPACIOS, 2018.

39(16).

23. Kyriakarakos, G., A.I. Dounis, K.G. Arvanitis, and G. Papadakis, Design of a Fuzzy

Cognitive Maps variable-load energy management system for autonomous PV-reverse

osmosis desalination systems: A simulation survey. Applied Energy, 2017. 187: p. 575-

584.

24. Pramanik, S. and S. Chackrabarti, A study on problems of construction workers in West

Bengal based on neutrosophic cognitive maps. International Journal of Innovative

Research in Science, Engineering and Technology, 2013. 2(11): p. 6387-6394.

25. Bueno, S. and J.L. Salmeron, Benchmarking main activation functions in fuzzy cognitive

maps. Expert Syst. Appl., 2009. 36(3): p. 5221-5229.

26. Arroyave, M.R.M., M.L. Vazquez, and A.F. Estrada, Modelado y análisis de

indicadores ciencia y tecnología mediante mapas cognitivos difusos. Ciencias de la

Información, 2016. 47(1): p. 17-24.

27. Leyva-Vázquez, M., K. Pérez-Teruel, and R.I. John. A model for enterprise architecture

scenario analysis based on fuzzy cognitive maps and OWA operators. in Electronics,

Communications and Computers (CONIELECOMP), 2014 International Conference

on. 2014. IEEE.

28. Gray, S.A., S. Gray, J.L. De Kok, A.E. Helfgott, B. O'Dwyer, R. Jordan, and A. Nyaki,

Using fuzzy cognitive mapping as a participatory approach to analyze change,

preferred states, and perceived resilience of social-ecological systems. Ecology and

Society, 2015. 20(2).

29. Baker, C.M., M.H. Holden, M. Plein, M.A. McCarthy, and H.P. Possingham, Informing

network management using fuzzy cognitive maps. Biological Conservation, 2018. 224:

p. 122-128.

Page 103: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

102

30. Christen, B., C. Kjeldsen, T. Dalgaard, and J. Martin-Ortega, Can fuzzy cognitive

mapping help in agricultural policy design and communication? Land Use Policy, 2015.

45: p. 64-75.

31. Smarandache, F., Neutrosophic set-a generalization of the intuitionistic fuzzy set.

Journal of Defense Resources Management, 2010. 1(1): p. 107.

32. Henríquez Antepara, E.J., A. Arzube, O. Omar, C. Arroyave, J. Arturo, E.A. Alvarado

Unamuno, and M. Leyva Vazquez, Competencies evaluation based on single valued

neutrosophic numbers and decision analysis schema. Neutrosophic Sets & Systems,

2017.

33. Abdel-Basset, M., M. Mohamed, Y. Zhou, and I. Hezam, Multi-criteria group decision

making based on neutrosophic analytic hierarchy process. Journal of Intelligent &

Fuzzy Systems, 2017. 33(6): p. 4055-4066.

34. Abdel-Basset, M., M. Mohamed, A.-N. Hussien, and A.K. Sangaiah, A novel group

decision-making model based on triangular neutrosophic numbers. Soft Computing,

2017: p. 1-15.

35. Pramanik, S., P. Biswas, and B.C. Giri, Hybrid vector similarity measures and their

applications to multi-attribute decision making under neutrosophic environment.

Neural computing and Applications, 2017. 28(5): p. 1163-1176.

36. Hwang, C.-L. and K. Yoon, Methods for multiple attribute decision making. in Multiple

attribute decision making (pp. 58-191), (1981), Springer

37. Biswas, P., S. Pramanik, and B.C. Giri, TOPSIS method for multi-attribute group

decision-making under single-valued neutrosophic environment. Neural computing and

Applications, 2016. 27(3): p. 727-737.

38. Biswas, P., S. Pramanik, and B.C. Giri, Neutrosophic TOPSIS with Group Decision

Making, C. Kahraman and İ. Otay, Editors. in Fuzzy Multi-criteria Decision-Making

Using Neutrosophic Sets (pp. 543-585), (2019), Springer International Publishing:

Cham.10.1007/978-3-030-00045-5_21.

39. Ritha, W. and W.L. Merline, Risk Factors of Meningitis in Adults-An Analysis Using

Fuzzy Cognitive Map with TOPSIS. International Journal of Scientific and Innovative

Mathematical Research, 2014. 2(4): p. 418-425.

40. Pérez-Teruel, K., M. Leyva-Vázquez, and V. Estrada-Sentí, Mental models consensus

process using fuzzy cognitive maps and computing with words. Ingeniería y

Universidad, 2015. 19(1): p. 173-188.

Page 104: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

103

41. Gray, S., R. Jordan, A. Crall, G. Newman, C. Hmelo-Silver, J. Huang, W. Novak, D.

Mellor, T. Frensley, and M. Prysby, Combining participatory modelling and citizen

science to support volunteer conservation action. Biological conservation, 2017. 208:

p. 76-86.

42. Pérez-Teruel, K. and M. Leyva-Vázquez, Neutrosophic Logic for Mental Model

Elicitation and Analysis. Neutrosophic Sets and Systems, 2014. 2(unknown): p. 31-33.

43. Salmeron, J.L., R. Vidal, and A. Mena, Ranking fuzzy cognitive map based scenarios

with TOPSIS. Expert Systems with Applications, 2012. 39(3): p. 2443-2450.

44. Jetter, A. and W. Schweinfort, Building scenarios with Fuzzy Cognitive Maps: An

exploratory study of solar energy. Futures, 2011. 43(1): p. 52-66.

Page 105: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

104

CAPÍTULO 5:

Methodology for the socio-environmental management of the social ecosystem Río dos

Sinos.

ARTIGO 5 SUBMETIDO

Este manuscrito foi submetido à avaliação pelo Journal of Environmental Management

(Anexo 5).

Page 106: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

105

CAPÍTULO 5:

Methodology for the socio-environmental management of the social ecosystem Río dos

Sinos.

Rodolfo González Ortegaac [0000-0001-7363-3253], Telf: , email:[email protected]

Maikel Leyva Vázquezb [0000-0001-7911-5879], Telf: +593967780247, email:[email protected]

Olga Alicia Gallardo Milanésc Telf: +5544998447088, email: [email protected]

João Alcione Sganderla Figueiredoa Telf: +555199731024, email: [email protected]

aFeevale University, Campus II, ERS 239, # 2755 - Vila Nova, Novo Hamburgo – RS, 93525-075, Brazil

bUniversidad de Guayaquil, 1er Callejon 5 NO, Guayaquil 090613, Ecuador

cUniversity of Holguín, Ave XXX Aniversario, Piedra Blanca, Holguín, 80100, Cuba

Abstract

The objective of this research was the social-environmental management of the social-

ecosystem of the watershed and was taken as a case study the social-environmental system of

the Sinos River basin. To reach the objective, was necessary to group into a theoretical support

a set of theories, methods, approaches, and tools that resulted in the conceptualization of the

model and the elaboration of the methodology, which constitute a theoretical-practical

contribution and a methodological instrument to carry out social-environmental management

into the hydrographic basin. When incorporated, the social-environmental management

methodology of the social-ecosystem basin, put in practice by the basin committees, can

contribute to the understanding and solution of socio-environmental problems and their

complex interrelationships. This methodology is based on a holistic and integrative approach

and joins up technologies and methodological tools of management, which consists of four

interactive and sequential stages directed to reach the technical and organizational objectives

of the socio-environmental management.

Keywords: Social-ecological; management; watershed; social-ecosystem; methodology;

environmental management

Page 107: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

106

Introduction

The case study of this research was made on Sinos river watershed (SRW) (). The

geographical location is in the east of Rio Grande do Sul state. The SRW have a 3696 km² area,

which represents about 1,3% of all state area and 4,4% area of the Guaiba lake hydrographic

region (PLANO SINOS, 2016). This river supplies water for 1,3 millions of people in 32

municipalities (BLUME et al., 2010)

The Sinos River basin is made by many affluent streams and for their study it is separated

into three regions, in correspondence with terrain relief. The above river section has 25 km of

large, with a rapid water flux, several rapids, waterfalls and an altitude variable between 600 m

and 60 m. The middle section is five times larger than the superior one and has no significant

terrain relief variations. The bottom part is two times larger than the superior one and has a

flatbed with a low stream flux (FIGUEIREDO et al., 2010).

The superior section of the Sinos river has a low population density, which is high in the

middle part and very high in bottom one, having more population density in this section than

the estate mean, increasing anthropic pressure over the watershed ecosystem.

"The Sinos river basin is often referred to as a highly degraded watershed. A series of

impacts on the water soil and air quality has been recurrently reported over the years in this

environment. This situation of environmental degradation has its origin in the process of large

economic development, decoupled from environmental conservation concerns. Adequate

zoning and urban planning did not precede the consequent intense urbanization observed for

municipalities within the river basin." (SPILKI; TUNDISI, 2010).

The growth of towns and villages without following the guidelines of territorial

planning, the occupation of flood areas, deforestation of riparian forest and insufficient

treatment of domestic sewage in the water body of SRW, contribute to the degradation of

surface and underground waters and threaten the biota of the basin ecosystem. However, the

Figure 1 Sinos River Watershed (Blume et al., 2010)

Page 108: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

107

growth of cities on the river's edge has also brought about industrial facilities increase, which

poured, and do until today their dumping into the water bodies of the region. Therefore, the

primary sources of SRW pollution are two: the industrial wastewater and domestic sewage

(Flores Guzmán, 2016). Also, the growth of urban centers and the economy of municipalities

in the SRW region influences air pollution with increased vehicular traffic and industrial smoke,

causing chronic lung diseases and genetic changes at the cellular level (Barbosa Dorneles, 2012;

Daniel Alves, 2014; Meincke, 2013). Deforestation, due to the urbanization growth, has brought

a wide variety of ecosystem impacts, ranging from changes in climate to the fragmentation and

reduction of species richness and the diminution of biological diversity (Lucheta, 2017).

Inadequate disposal of industrial dumping, particularly in the leather and footwear sector, has a

detrimental impact on water quality and the diverse species of aquatic organisms, as evidenced

by the surveys of Blume et al. (2010); Cristina Scalon Streb, (2009); Goldoni, (2013). The

insufficient treatment capacity of domestic sewage in cities, the connection of pipes to rainwater

systems and the progressive accumulation of organic matter causes harmful impacts on biota

(Flores Guzmán, 2016; Nascimento; Naime, 2009). It is also responsible for waterborne

diseases such as hepatitis, enteritis, and others confirmed by Bordin da Luz (2014) e

Staggemeier (2009). Diffuse pollution from agricultural, industrial, and vehicular sources cause

adverse impacts on the environmental quality of SRW. Substances such as chromium, iron,

nickel, mercury, and cyanides are found in different concentrations, with values above the

limits, depending on the seasonality (Oliveira and Henkes, 2013; Reis de Oliveira, 2015).

Despite the many social and environmental problems reported, the Sinos River Basin

has been historically pioneer in implementing strategies for managing water resources.

Identified multiple ecological issues and their impacts on society and the basin ecosystem,

members of civil society organizations promoted the creation of the Rio dos Sinos Management

Committee (COMITESINOS), this constituted being left on March 17, 1988, using the state

decree 32.774 /1988. (BRASIL, 1988). The committee is composed of three representative

bodies, which are grouped into three different groups, such as Water Users Group, Population

Representing Group, and Public Power Group.

Despite being in operation for the past 30 years, the results of the committee in the

management of socio-environmental problems in the basin are few perceived by the committee

members themselves. The identify the issues in the social-environmental management of the

Rio dos Sinos basin; research is carried out with the structure shown in Figure 2.

Page 109: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

108

The qualitative research tools shown results threw in Table 1

Identified problems Description of the problem

Organizational and management problems

- Little participation by members

- Have a little integration with the civil

society and stakeholders.

- Little legal knowledge of members.

- Limited capacity for decision

- Technical decision prevail to arrangements

negotiated between the stakeholders

Financial economic problems

- Excessive bureaucracy in financial

management

- Inadequate budget execution

Planning and control problems

- Weakness the watershed management plan

implementation

- Insufficient control of the planned activities.

Structural & functional problems

- The agreements concluded are not binding

for municipal governments and other

actors, so lack of practical value

- Insufficient use of management tools

- Structures Not very flexible and adaptable

to changes

Table 1 Problems identified in the management of the COMITESINOS

Based on the deficiencies and problems identified in the management of the basin

committee, the objective is to model the socio-environmental management and design a

Unstructured Interview

Non-participant observation

Document Analysis

Figure 2 Structure of the research

Page 110: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

109

methodology as a tool that facilitates the integration of the managing of social and

environmental problems that are interrelated.

Material and methods

The elaboration of a management model requires a study to identify and analyze the

structural, functional and environmental components, determining which are essential for its

operation and how to contribute with its improvement through the variables defined and

characterized and establishing the realities existing and that make up the system. The model

must be able to represent the object of study, but also help define how it will be changed in the

future. Arriving to visualize what allows to synthesize the management methodology, which

originates from the previous theoretical analysis, providing to this tool the boundaries,

requirements, principles, limitations, and premises, related to the object studied in particular,

which contributes to paying attention to the needs of the management of the purpose in a unique

way (HOMER, 1996; LIDIA et al., 2006; SILVA, 2012).

For carry out the modeling, the following procedure was followed:

The first step was to analyze the academic reference on management in general and

socio-environmental management in particular. The second step was a description of the Social

- Environmental Management Model, identifying the input and output variables, the spatial and

functional borders, the components and the general processes of the system. The third step was

to elaborate the process map, identifying the central, strategic, support, and second-order

processes. The fourth step is the integration of theories, models, and approaches necessary for

the conception of the socio-environmental management model of the hydrographic basin. The

fifth and last step was to describe the methodology and its components.

Results and Discussions

Introduction to Water management

There are several archaeological references to the management of water resources, such

as changes in hydrological courses through the construction of channels for navigation or

irrigation, among other hydraulic works, in several ancient civilizations developed near rivers,

such as China and Egypt (HECHT, 1988; WALLACE; BUCKNAM; HANKS, 1994; WANG,

2012; LU et al., 2017). In other arid regions of the Middle East, India and China, in different

historical periods, there are records of men regulating streams and springs to supply their needs

Page 111: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

110

(CHAUDHURI, 1998; HADAS, 2012; LUO et al., 2017). The Greeks and Romans were among

the earliest civilizations which, in addition to providing water for agriculture, for health reasons,

have set up domestic sewage treatment systems and aqueducts to provide quality water for their

cities (DE FEO; MAYS; ANGELAKIS, 2011).

Basin management has incorporated different concepts over time and, due to multiple

global events, the United Nations had been encouraging the incorporation of basin management

processes in the various member countries. In 1996 was created the Global Water Partnership

(GWP), which has its background on the environmental Stockholm conferences of 1972,

Buenos Aires in 1977, as well as the United Nations Declaration sign in Dublin in 1992. The

GWP's origin includes the creation of an international network to guarantee secure and

sustainable management of water resources through the stimulation of Integrated Water

Resources Management (GIRH) (Global Water Partnership, 2009).

Management concepts approach

The researchers Pérez Campdesuñer (2006) and, Rigol Madrazo and Pérez

Campdesuñer (2010) analyzed 62 concepts derived from the words: management,

administration, and direction. They performed the identification of the variables involved,

eliminated the prepositions, conjunctions, and synonyms and from a statistical analysis of

conglomerates concluded that: "... management is a dynamic, interactive, efficient and effective

process. This consist in the planning, organizing, leading and taking control actions of the

organization, developed through a steering mechanism where groups of people have the

resources and authority to create, achieve and improve the constitutive purposes of the

organization, based on laws knowledge and social principles, human nature and technology, as

well as information in general.”(Rigol Madrazo; Pérez Campdesuñer, 2010, our translation).

Batista (2013) criticizes this concept and says that it lacks functional mechanisms and does not

take into account the context of organization development, suggesting the incorporation of his

arguments into this concept.

The authors assumed the management concept defined by Pérez Camdesuñer (2006),

improved by Rigol Madrazo and Pérez Campdesuñer (2010) and then Batista (2013). This

concept refers that the management is a sociotechnical process, with a dynamic character, and

consists in planning, organizing, leading and controlling the organization actions, with efficient

and effective use of human, financial, technological, informative and time resources, This

Page 112: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

111

allows the concretization of objectives, based on context, through the construction of

mechanisms and the auxiliary functions of the process.

Social management. Socio-environmental concept.

Social management is a participatory and democratic process, free of coercion, where

everyone has equal expression freedom and information access; is a coordinated action between

the public power and society in favor of social, political, economic and cultural well-being in a

territory (TENÓRIO, 1998, 2005; RAMOS; MATOS, 2009; OLIVEIRA; CANÇADO;

PEREIRA, 2010; MONJE-REYES, 2011). The authors determine different variables to define

social management, such as participatory, collaborative and communicative process, joint

learning, developed through coordinated actions, through inter-institutional relationship spaces,

with an inclusive approach to environmental variables (SIQUEIRA, 2009). However, socio-

environmental management is a dynamic and adaptable model, inserted throughout the

management process, aiming to reach the goals and objectives most sustainably

(NASCIMENTO; LEMOS; MELLO, 2008; TACHIZAWA; ANDRADE, 2011; BERTÉ,

2012). The analysis of the concept explained above shows that socio-environmental

management incorporates concepts, theories, and approaches integrated into the form of a

system.

Description of the basin socio-environmental management system model

Based on the general and specific information obtained, as well as the principles and

postulates of the general theory of management, the basin socio-environmental management

model was synthesized, describing and characterizing the main components, namely: demands

- objectives - results, edge system environment, system components, system processes, system

inputs, system outputs, assumptions, principles and requirements (Figure 3). This model

represents the necessary elements of the management process and its functional relationships,

allowing the understanding of its logic and thus improving the indicators of processes and

results of the basin social-environmental management system.

Page 113: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

112

Limitations and preconditions of the socio-environmental management system of the

socio-ecosystem basin.

Outstanding to the complexity of the system, it is not possible to model or conjecture all

the interactions that take place in the object behavior in reality, nor to consider all the external

influences of the environment on the socio-environmental management system of the watershed

socio-ecosystem, nor on its stakeholders.

For this research, we do not consider the indirect relationships that may occur and

disrupt the operation of the system due to its socio-technical character, nor do we find multiple

stakeholders actions that deliberately impede the functioning of the system.

To defining limits of the socio-environmental management system of the socio-

ecosystem basin.

The socio-environmental management system of the hydrographic basin socio-

ecosystem has two limits, one clearly defined and the other diffuse; the first border consists of

a physical - geographical boundary defined by the orography and hydrography of the river

basin. The second border is diffuse because it is not limited to the places where actions, plans,

and goals are concretized, but to all the institutions of society directly or indirectly, based on

stakeholders’ actions or attitudes. Although these actions, plans, and goals are developed,

adopted, approved and agreed in a democratic way and driven by the positive core of the

management system.

Figure 3 Social - Environmental Management Model

Page 114: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

113

Modeling the management process map.

The model (Figure 4) is composed of management processes i) inputs (social and

environmental demands, technological resources, resources, necessary pre-conditions); ii)

outputs (outcomes, socio-environmental services, plans, public policies, adoption of cleaner

technologies, CSER approaches, environmental education and unexpected outputs)

Also, management processes were identified (Figure 4), so it was necessary to study the

process approach, which is a tool that allows the optimization of the management process for

all types of organizations. This approach defines that any activity or set of activities

interconnected with each other, using resources and control mechanisms to transform input

elements into results, can be considered processes (ISO9001, 2015).

A process consists of inputs and outputs, which can be tangible or not, unintentional and

intentional. The process approach and constraint theory can be applied to the set, not only to

determine the critical factors that hamper management success but also to know the causal

factors and the relationships between them (RAHMAN, 2002).

Theories, approaches and integrated methods for the conception of the socio-

environmental management system of the basin.

Figure 4 Management Process Map

Support Process

Main Process

Inpu

ts

2th order process

Ou

tpu

ts

Strategic Process

Stakeholders Management

Resources management

Administratives CommunicationalInformational management

Diagnosing the positive core

Determine the necessary

technological demands

Diagnose cognitive demands

Elaboration of the Basin Strategic Plan

Implementation of the Basin Strategic

Plan

implementation of the Basin Strategic

Plan

Evaluation and Adjustment

Monitoring, measurement and analysis

Continuous improvement

Communication between

stakeholders

Stakeholders Training

Organizational innovation

Socio-environmental

Project Management

Strategic Tactic Operational

Page 115: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

114

For understand socio-environmental management, it was tried to explain it as a

sociotechnical system, so it was necessary to study the general theory of systems, which is

constituted by a set of ideas and assumptions presented initially as "The whole is more than the

sum of their parts." The objectives of the general systems theory describe characteristics,

behaviors, and functions as well as to develop standards that apply to them, by defining laws,

covering the system as a whole and all its parts together (BERTALANFFY, 1968, 1976;

ARNOLD; OSORIO, 1998; UHLMANN, 2002), allowing us to classify socio-environmental

management as a system and to identify its subsystems.

Also, it was necessary to study the general theory of management, since socio-

environmental management has a dynamic nature. With processes such as planning,

organization, direction, and control of the actions of the organization, achieving efficient and

effective administration, through the creation of structural and functional mechanisms, of

resources based on the context, such as human, financial, technological, informative and time

resources (STONER; FREEMAN; GUILBERT, 1996; HITT; BLACK; PORTER, 2006;

PÉREZ CAMPDESUÑER, 2006; KOONTZ; WEIRHRICH, 2007; RIGOL MADRAZO;

PÉREZ CAMPDESUÑER, 2010; BATISTA, 2013). It was also necessary to identify the

limitations and barriers of socio-environmental management, which led to the incorporation of

elements of the theory of constraints. Which can be summarized as: "The whole system presents

at least one constraint and the existence of constraints represents opportunities for

improvement." (RAHMAN, 1998), is a set of procedures that make use of cause-effect logic,

with a systemic approach, that allows identifying the causes that prevent the organization from

reaching its goals. While the theory is mostly applied to the business sector, it can be used to

the management of any organization. It is divided into five steps: identifying constraints; decide

how to exploit them; subordinate actions to system constraints; break or raise the restrictions

and recognize new limitations, going back to the first step if the limits were broken

(GOLDRATT, 1990; RAHMAN, 2002; RIBEIRO, 2007; FILHO; PERGHER; SILVA, 2009).

Since socio-environmental management has a peculiar characteristic of being an open

and distributed management system, it was necessary to incorporate the precepts of the

appreciative inquiry, which is in practice a flexible and adaptive research method based on

forces, being constructivist and participative, however , is a highly dynamic process that

encourages the use of innovative techniques (COOPERRIDER, 1985; WHITNEY;

COOPERRIDER, 2003; WHITNEY; TROSTEN-BLOOM, 2010; NYAUPANE; POUDEL,

2012) Appreciative inquiry incorporates tools like the 4D model. This model is in opposition

to the Deming cycle, once that the latter makes extensive use of the general problem-solving

Page 116: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

115

method, which looks for the problems and their causes. Whereas, in the 4D model one obtains

better performances when they focus on the individual forces as well as in the successes

achieved as a team by the stakeholders, instead of focusing only on the problems. These

problems are usually multifactorial and multicausal and generate a climate of tension between

the members of the organization when searching for the culprits for the failures (SOUZA;

MCNAMEE; SANTOS, 2004; TRAJKOVSKI et al., 2013; SALAMA; MACLEAN, 2017).

Stakeholders are those who have interests, expectations or needs in processes and results that

they define and require. Karassin e Bar-Haim (2016) classify them as consumers, suppliers,

employees, associates, financial institutions, local communities, and interest groups, and it will

be those who need performance measurement to be able to determine if the process requires

some correction or improvement based on its outcome.

Nevertheless, in the socio-environmental management of the socio-ecological

watershed basin, it is not sufficient to incorporate the appreciative inquiry tools, since it

involves multiple governmental and non-governmental actors with asymmetric forces, it is also

necessary to integrate complementary tools such as the multi-stakeholder governance model

(MSGM). This model incorporates processes of cooperation, communication, and participation

in the coordination and joint management of stakeholders, governmental and non-governmental

institutions in the search for solutions and implementation of those that best fit, allowing a

balance between the forces and interests of participants and thus reducing the conflicts of

interest. Given a mutual interdependence, this becomes an essential characteristic to create the

processes of collaboration and cooperation, allowing to reach mutually beneficial solutions

(DEWULF, 1985; HEMMATI, 2002; KOEN SIPS, 2013; VERMEESCH et al., 2013). To

accomplish this, the MSGM becomes an adequate tool to balance the hegemonic power

relations of large corporations and governments, which, without it, would act in favor of their

interests and detriment of those of other stakeholders, what would limit them to achieve the

common objectives and the welfare state of society. These common objectives aim to achieve

the sustainable development of society, which requires the reduction of the damages of the

negative impacts to the social-ecosystem by socioeconomic activities, making these damages

either reversible or mitigate.

For reach these objectives, the stakeholders were classified as suppliers of products or

services must incorporate this practice into their institution's concept of corporate social –

environmental responsibility (CSER), which is born in the union of the concepts of the

corporate social responsibility (CSR) and the corporate environmental responsibility (CER).

The CSER is an instrument unified in corporate management, formed by alliances between

Page 117: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

116

companies and communities, sharing or developing products, technologies or services. With

the implementation of non-profit strategies or activities and non-economic objectives, aimed at

achieving well-being, including obligations and responsibilities to the environment, trying to

mitigate, remedy or protect it from the negative impacts of activities on the formation of

products or services (VOLPON; MACEDO-SOARES, 2007; RABELO; SILVA, 2011;

HOLTBRÜGGE; DÖGL, 2012; COLES; FENCLOVA; DINAN, 2013; CHEN; YU; HU,

2016).

However, the incorporation of the CSER concept may not be attractive to specific

stakeholders, who cannot see the benefits of incorporating such practices to their economic

activity. It is, therefore, necessary to include, into the CSER, the philosophical precepts of eco-

efficiency, which encourages companies to strike a balance between efficient production and

environmental responsibility, allowing production or service institutions to become more

competitive, innovative and more responsible for the environment (WBCSD, 1996; ROHRICH;

CUNHA, 2004; BERTÉ, 2012; GODECKE; MAURICIO, 2015; LEANDRO et al., 2015;

MEHMETI; TODOROVIC; SCARDIGNO, 2016). Therefore, Eco-efficiency stands out for

reducing the consumption of raw materials and energy, also minimizing the emission of

pollutants in the atmosphere, water, and soil. The production of long-life articles and the

increased recycling of these products make companies more sustainable and less vulnerable to

environmental risks (ARAMBURÚ, 2009; STANCHEV; RIBAROVA, 2016; TODOROVIC;

MEHMETI; SCARDIGNO, 2016; CAIADO et al., 2017).

By incorporating Eco-efficiency into business management, it will enable products and

services with a minimal environmental footprint and highly competitive, satisfying personal

needs, adding quality of life to basin inhabitants and reducing the cumulative effects of

environmental impacts, contributing to sustainable development.

Description of the methodology

The methodology is based on the 4D model of the appreciative inquiry approach (figure

5), adapted to the characteristics of socio-environmental management. The 4D model

(Discover, Dream, Design, and Destiny) focuses on the discovery of those forces that

distinguish the organization and its members, which facilitates concentrate on goals and reduces

conflicts. (COOPERRIDER, 1985). The identification of its positive nucleus that is that set of

multidimensional variables that conditions the structure and functioning of the organization,

associated with the image shared by all its members is fundamental to the process of change

towards positive management.

Page 118: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

117

Once the positive nucleus had been identified, the following steps of the methodology,

summarized in, will be given: (figure 6)

Figure 6 Methodology Flow Chart

Figure 5 Social - Environmental Management by 4D Model

Page 119: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

118

a) Discover. At this stage, the basin committee should:

i. To identify those characteristics that form its positive core, achieved in the years

of maturity as an organization;

ii. To focus on moments of excellence, leadership, relationships with the

environment, negotiation processes and values, that is, everything that made

them achieve maximum performance;

iii. To classify all environmental services of the basin (7);

iv. To determine the constraints of the management system through the current

reality tree.

b) Dream. At this stage the objectives are:

i. To identify the expected and potential results of the system;

ii. To determine the technological capabilities needed to achieve those results by

stakeholders, by adhering to the principles of CSER and Eco-efficiency;

iii. To establish the cognitive needs and capacities of stakeholders to understand the

achievement of goals;

iv. To identify the organizational and functional changes that need to be adopted to

achieve the goals.

Figure 7 Fuzzy Cognitive Maps for ecosystemic services

Page 120: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

119

c) Design. At this stage the committee contrasts the dream with reality, it is time:

i. To establish what should be of the organization with the implementation of new

organizational and functional structures in line with the multi-stakeholder

governance model;

ii. To analyze the constraints through the tree of future reality;

iii. To analyze multiple scenarios and choose the most appropriate ones through

tools that help decision making, DCM;

iv. To create strategies, plans, and actions;

v. To identify performance indicators that allow the management of the basin

committee to be measured.

d) Destiny. In this final phase all the resources are integrated to reach the dream results of

the organization:

i. It is implemented the committee of the basin defined with its new organizational

and functional structures;

ii. To assume the responsibilities of stakeholders;

iii. The strategies and plans are implemented;

iv. To analyze the results achieved and validate the effectiveness of the actions;

v. Do the necessary readjustments are made and a new cycle starts.

Conclusions

The evolution of socio-environmental management and conceptual models are essential

reference points in the holistic understanding, but they do not provide all the methodological

support, because they were not designed to be applied in the context of socio-environmental

management of the socio-ecosystem basin. The proposed theoretical model incorporates the

fundamental aspects of administration, such as demands, objectives, results, inputs, outputs,

constraints and a positive and dynamic core of management.

The complexities of socio-environmental management of the watershed socio-

ecosystem and the shortcomings of the theoretical methods used so far were insufficient to

explain the whole dimension of the problem. Therefore, it was necessary to create a

methodology to integrate into a conceptual framework, general systems theory, the general

theory of direction, constraint theory, process approach, appreciative inquiry method, multi-

Page 121: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

120

stakeholder governance model, corporate social responsibility and eco-efficiency, as well as

integrating other tools.

The management methodology presented has four sequential and iterative phases, which

allow integrating several technologies and methodological or managerial tools, directed to reach

the technical-organizational objectives of the socio-environmental management process of the

basin.

The theoretical model and methodology have not yet been put into practice, so after its

future implementation, its effectiveness should be evaluated and its results published in later

articles.

Funding: "This study was partially supported by Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior - Brasil (CAPES) -Finance Code 001."

Page 122: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

121

References

ARAMBURÚ, Juliane Viégas. A Gestão Socioambiental no Contexto do Desenvolvimento

(In)Sustentável: Uma leitura das instâncias micro, meso e macro organizacional na

Aracruz Celulose. 2009. UFRGS, [s. l.], 2009. Disponível em:

<http://livros01.livrosgratis.com.br/cp116087.pdf>. Acesso em: 10 jan. 2018.

ARNOLD, Marcelo; OSORIO, Francisco. Introducción a los Conceptos Básicos de la Teoría

General de Sistemas. Departamento de Antropología, [s. l.], p. 40–49, 1998. Disponível em:

<http://www.cintademoebio.uchile.cl/index.php/CDM/article/viewFile/26455/27748>

BARBOSA DORNELES, Maralise. MONITORAMENTO DA GENOTOXICIDADE DO

AR ATMOSFÉRICO COM O USO DE TRADESCANTIA L. (COMMELINACEAE) E

AVALIAÇÃO DA RIQUEZA E ESTRUTURA COMUNITÁRIA DE EPÍFITOS

VASCULARES EM ÁREAS COM DIFERENTES GRAUS DE ANTROPIZAÇÃO NA

BACIA DO RIO DOS SINOS, RIO GRANDE DO SUL. 2012. FEEVALE, [s. l.], 2012.

BATISTA, M. Tecnología de gestión para la ciencia y la innovación en las filiales

universitarias municipales. 2013. Univerisidad de Holguín, Holguín, 2013.

BERTALANFFY, Ludwig Von. General System Theory. Georg. Braziller New York, [s. l.],

v. 1, p. 289, 1968. Disponível em: <http://books.google.es/books?id=N6k2mILtPYIC>

BERTALANFFY, Ludwig Von. Teoría general de los sistemas. Teoría General de

Sistemas: fundamentos, desarrollo y aplicaciones, [s. l.], p. 1–37, 1976.

BERTÉ, Rodrigo. Gestão Socio Ambiental no Brasil. 2da. ed. Curitiba PR: Xibpex, 2012.

BLUME, K. K. et al. Water quality assessment of the Sinos River, Southern Brazil. Brazilian

Journal of Biology, [s. l.], v. 70, n. 4, p. 1185–1193, 2010. Disponível em:

<http://dx.doi.org/10.1590/S1519-69842010000600008>

BORDIN DA LUZ, Roger. VÍRUS ENTÉRICOS E DE PENEÍDEOS EM AMOSTRAS

DE CAMARÕES E ÁGUA COLETADAS EM ÁREAS COSTEIRAS DO LITORAL

NORTE DO RIO GRANDE DO SUL. 2014. Feevale, [s. l.], 2014.

BRASIL. DECRETO No 32.774, DE 17 DE MARÇO DE 1988.Assembleia Legislativa do

Estado do Rio Grande do Sul, Brasil, 1988. p. 3. Disponível em:

<http://www.al.rs.gov.br/Legis/M010/M0100099.ASP?Hid_Tipo=TEXTO&Hid_TodasNorm

as=12666&hTexto=&Hid_IDNorma=12666>

CAIADO, Rodrigo Goyannes Gusmão et al. Towards sustainable development through the

perspective of eco-efficiency - A systematic literature review. Journal of Cleaner

Production, [s. l.], v. 165, p. 890–904, 2017.

Page 123: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

122

CHAUDHURI, K. N. Ancient Irrigation and water management in the Indian Ocean region.

Land Drainage and Irrigation, [s. l.], p. 1–12, 1998.

CHEN, Chun Shuo; YU, Chih Ching; HU, Jer San. Constructing performance measurement

indicators to suggested corporate environmental responsibility framework. Technological

Forecasting and Social Change, [s. l.], n. September 2016, p. 1–11, 2016. Disponível em:

<http://dx.doi.org/10.1016/j.techfore.2017.05.033>

COLES, Tim; FENCLOVA, Emily; DINAN, Claire. Tourism and corporate social

responsibility: A critical review and research agenda. Tourism Management Perspectives,

[s. l.], v. 6, p. 122–141, 2013. Disponível em: <http://dx.doi.org/10.1016/j.tmp.2013.02.001>

COOPERRIDER, David. Indagación Apreciativa en acción : de los orígenes a su práctica

actual. [s.l: s.n.].

CRISTINA SCALON STREB, Madalena. AVALIAÇÃO DOS EFEITOS

GENOTÓXICOS DA ÁGUA DO RIO DOS SINOS SOBRE PEIXES E VEGETAIS.

2009. FEEVALE, [s. l.], 2009.

DANIEL ALVES, DARLAN. AVALIAÇÃO DO MATERIAL PARTICULADO

GROSSO E FINO E QUANTIFICAÇÃO DE METAIS EM ÁREAS URBANAS E

SEMIURBANAS DA BACIA HIDROGRÁFICA DO RIO DOS SINOS. 2014. FEVALE,

[s. l.], 2014.

DE FEO, G.; MAYS, L. W.; ANGELAKIS, A. N. Water and wastewater management

technologies in the ancient Greek and Roman civilizations. Treatise on Water Science, [s.

l.], p. 3–22, 2011. Disponível em:

<http://www.sciencedirect.com/science/article/pii/B9780444531995000713>

DEWULF, Art. An introduction to multi-actor processes Wicked problems and multi-actor

domains (adapted from Gray, 1985). Artdewulf.Blogspot.Com, [s. l.], p. 1–15, 1985.

FIGUEIREDO, J. a S. et al. The rio dos Sinos watershed: an economic and social space and

its interface with environmental status. Brazilian journal of biology = Revista brasleira de

biologia, [s. l.], v. 70, n. 4, p. 1131–1136, 2010.

FILHO, Tito Armando Rossi; PERGHER, Issac; SILVA, Luciano Auad Da. Proposição

Teórica de aplicação do processo de pensamento da teoria das restrições (TOC) na busca pelo

desenvolvimento sustentável em indústrias, através da identificação de potenciais reduçõe do

impacto ambiental. Enegep, [s. l.], v. XXIX, p. 12, 2009.

FLORES GUZMÁN, RAMIRO ALBERTO. A MANCHESTER BRASILEIRA NÃO

TEM ESGOTO: ANÁLISE HISTÓRICA DA GESTÃO DAS ÁGUAS NA BACIA

HIDROGRÁFICA DO RIO DOS SINOS. 2016. Feevale, [s. l.], 2016.

Page 124: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

123

GLOBAL WATER PARNERTSHIP. Manual para la gestión integrada de recursos

hídrico en cuencas. [s.l: s.n.].

GODECKE, Marcos Vinicius; MAURICIO, Giovanni Nachtigall. Guia para Planos

Ambientais Municipais. 1ra. ed. Pelotas/RS.

GOLDONI, ANGÉLICA. AVALIAÇÃO DA GENOTOXICIDADE DAS ÁGUAS DO

ARROIO FEITORIA, NO MUNICÍPIO DE DOIS IRMÃOS – RS, ATRAVÉS DE

BIOMONITORAMENTO COM PEIXES E CRUSTÁCEOS. 2013. FEEVALE, [s. l.],

2013.

GOLDRATT, Eliyahu Moshe. Theory of Constraints. 1ra. ed. New York: North River P,

1990.

HADAS, G. Ancient agricultural irrigation systems in the oasis of Ein Gedi, Dead Sea, Israel.

Journal of Arid Environments, [s. l.], v. 86, p. 75–81, 2012. Disponível em:

<http://dx.doi.org/10.1016/j.jaridenv.2011.08.015>

HECHT, Elisabeth-Dorothea. Ethiopia Threatens to Block the Nile. Azania: Archaeological

Research in Africa, [s. l.], v. 23, n. 1, p. 1–10, 1988. Disponível em:

<http://www.tandfonline.com/doi/abs/10.1080/00672708809511385%5Cnhttp://www.tandfon

line.com/doi/pdf/10.1080/00672708809511385>

HEMMATI, Minu. Multi-stakeholder Processes for Governance and Sustainability.

London: Routledge, 2002. Disponível em:

<https://www.taylorfrancis.com/books/9781849772037>

HITT, Michael et al. (Texas A&M University); BLACK, J. Stewart (University of Michigan);

PORTER, Lyman W. (University of California). Administración. 9na. ed. Mexico: Pearson

Educational, 2006.

HOLTBRÜGGE, Dirk; DÖGL, Corinna. How international is corporate environmental

responsibility? A literature review. Journal of International Management, [s. l.], v. 18, n. 2,

p. 180–195, 2012. Disponível em: <http://dx.doi.org/10.1016/j.intman.2012.02.001>

HOMER, Jack B. Why we iterate: scientific modeling in theory and practice. System

Dynamics Review, [s. l.], v. 12, n. 1, p. 1–19, 1996. Disponível em:

<http://doi.wiley.com/10.1002/%28SICI%291099-

1727%28199621%2912%3A1%3C1%3A%3AAID-SDR93%3E3.0.CO%3B2-P>

ISO9001. Process Approach. International Organization for Standardization.BIBC II,

Chemin de Blandonnet 8 , CP 401, 1214 Vernier, Geneva , Switzerland, [s. l.], 2015.

Disponível em: <BIBC II, Chemin de Blandonnet 8 , CP 401, 1214 Vernier, Geneva ,

Switzerland>

Page 125: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

124

KARASSIN, Orr; BAR-HAIM, Aviad. Multilevel corporate environmental responsibility.

Journal of Environmental Management, [s. l.], v. 183, p. 110–120, 2016. Disponível em:

<http://dx.doi.org/10.1016/j.jenvman.2016.08.051>

KOEN SIPS, Marc Craps and Art Dewulf. Local participation in complex technological

projects as bridging between different communities in Belgium. Knowledge Management

for Development Journal, [s. l.], v. 9, n. 3, p. 95–115, 2013. Disponível em:

<http://journal.km4dev.org/%5CnLocal>

KOONTZ, Harold (University of California); WEIRHRICH, Heinz (University of San

Francisco). Elementos de administración. Un enfoque internacional. 7ma. ed. [s.l: s.n.].

LEANDRO, Luiz Alberto et al. O Futuro da Gestão Socioambiental: Uma Análise Critica

Sobre a Crise Ambiental Brasileira. Revista de Gestão Ambiental e Sustentabilidade -

GeAS, [s. l.], v. 4, n. 2, p. 144–162, 2015. Disponível em:

<http://www.revistageas.org.br/ojs/index.php/geas/article/view/322>

LIDIA, Olga et al. La Modelación Teórica como método de la investigación científica.

Varona, [s. l.], 2006. Disponível em: <http://www.redalyc.org/pdf/3606/360635561003.pdf>.

Acesso em: 7 set. 2018.

LU, Peng et al. On the use of historical archive of aerial photographs for the discovery and

interpretation of ancient hidden linear cultural relics in the alluvial plain of eastern Henan,

China. Journal of Cultural Heritage, [s. l.], v. 23, p. 20–27, 2017. Disponível em:

<http://dx.doi.org/10.1016/j.culher.2015.09.010>

LUCHETA, Fabiane. LIQUENS COMO INDICADORES AMBIENTAIS NA BACIA

HIDROGRÁFICA DO RIO DOS SINOS: ESTRUTURA COMUNITÁRIA E ANÁLISE

FUNCIONAL. 2017. Feevale, [s. l.], 2017.

LUO, Lei et al. Uncovering the ancient canal-based tuntian agricultural landscape at China’s

northwestern frontiers. Journal of Cultural Heritage, [s. l.], v. 23, p. 79–88, 2017.

Disponível em: <http://dx.doi.org/10.1016/j.culher.2016.04.013>

MEHMETI, Andi; TODOROVIC, Mladen; SCARDIGNO, Alessandra. Assessing the eco-

efficiency improvements of Sinistra Ofanto irrigation scheme. Journal of Cleaner

Production, [s. l.], v. 138, p. 208–216, 2016. Disponível em:

<http://dx.doi.org/10.1016/j.jclepro.2016.03.085>

MEINCKE, LARISSA. DIAGNÓSTICO AMBIENTAL DE POLUENTES ORGÂNICOS

PERSISTENTES EM AR ATMOSFÉRICO NA BACIA HIDROGRÁFICA DO RIO

DOS SINOS – RS. 2013. FEEVALE, [s. l.], 2013.

MONJE-REYES, Pablo. Economía solidaria, cooperativismo y descentralización: la gestión

Page 126: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

125

social puesta en práctica. Cadernos EBAPE.BR, [s. l.], v. 9, n. 3, p. 704–723, 2011.

NASCIMENTO, Carlos; NAIME, Roberto. Aspectos históricos do gerenciamento do Arroio

Pampa na bacia hidrográfica do Rio dos Sinos. Estudos Tecnológicos em Engenharia, [s. l.],

v. 5, n. 1, p. 101–120, 2009. Disponível em:

<http://revistas.unisinos.br/index.php/estudos_tecnologicos/article/view/4968>

NASCIMENTO, Luis Felipe; LEMOS, Ângela Denise da Cunha; MELLO, Maria Celina

Abreu. Gestão Socioambiental Estratégica. 1ra. ed. Porto Alegre: Artemed, 2008.

Disponível em:

<https://www.amazon.com.br/dp/8577801047/ref=asc_df_85778010474541916/?tag=buscape

-14-local-20&creative=380333&creativeASIN=8577801047&linkCode=asn>

NYAUPANE, Gyan P.; POUDEL, Surya. Application of appreciative inquiry in tourism

research in rural communities. Tourism Management, [s. l.], v. 33, n. 4, 2012.

OLIVEIRA, Lourenço Algemiro De; HENKES, Jairo Afonso. Poluição hídrica: poluição

industrial no Rio dos Sinos-RS. Revista de Gestão Social e Ambiental, [s. l.], v. 2, n. 1, p.

186–221, 2013.

OLIVEIRA, Vânia Aparecida Rezende De; CANÇADO, Airton Cardoso; PEREIRA, José

Roberto. Gestão social e esfera pública: aproximações teórico-conceituais. Cadernos

EBAPE.BR, [s. l.], v. 8, n. 4, p. 613–626, 2010.

PÉREZ CAMPDESUÑER, Reyner. Modelo y procedimiento para la gestión de la calidad del

destino turístico holguinero. Tesis de Doctorado. [s. l.], p. 52, 2006. Disponível em:

<http://catedragc.mes.edu.cu/download/Tesis de Doctorado/Ingeniera Industrial -

Nacionales/ReynerPérezCampdesuñerRESUMEN.pdf>

PLANO SINOS. Plano de Gerenciamento da Bacia Hidrográfica do Rio dos Sinos.

Síntese da Situação Atual dos Recursos Hídricos. 2016. Disponível em:

<http://www.prosinos.rs.gov.br/downloads/PBHSINOS-R10-Volume Único.pdf>. Acesso

em: 10 nov. 2017.

RABELO, Nathália de Santana; SILVA, Carlos Eduardo. Modelos de Indicadores de

Responsabilidade Socioambiental Corporativa. Revista Brasileira de Administração

Científica, [s. l.], v. 2, n. 1, p. 5–30, 2011.

RAHMAN, Shams‐ur. Theory of constraints. International Journal of Operations &

Production Management, [s. l.], v. 18, n. 4, p. 336–355, 1998. Disponível em:

<http://www.emeraldinsight.com/doi/10.1108/01443579810199720>. Acesso em: 28 set.

2016.

RAHMAN, Shams‐ur. The theory of constraints’ thinking process approach to developing

Page 127: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

126

strategies in supply chains. International Journal of Physical Distribution & Logistics

Management, [s. l.], v. 32, n. 10, p. 809–828, 2002. Disponível em:

<http://dx.doi.org/10.1108/09600030210455429>. Acesso em: 28 set. 2016.

RAMOS, Roberto Rodrigues; MATOS, Ingrid Mazza. Gestão Social e Políticas Públicas de

Desenvolvimento: Ações, Articulações e Agenda. Agenda, [s. l.], n. 2008, p. 456, 2009.

REIS DE OLIVEIRA, CAMILA. AVALIAÇÃO DA QUALIDADE DA ÁGUA DO RIO

DOS SINOS. 2015. FEEVALE, [s. l.], 2015.

RIBEIRO, HPM. A meta de Goldratt - o alicerce da nova contabilidade de ganhos. [s. l.], p.

58, 2007.

RIGOL MADRAZO, Lourdes María; PÉREZ CAMPDESUÑER, Reyner. La gestión de la

demanda turística como concepto. TuryDes, [s. l.], v. 4, n. 9, p. 11, 2010. Disponível em:

<http://www.eumed.net/rev/turydes/09/index.htm>

ROHRICH, Sandra Simm; CUNHA, João Carlos Da. A proposição de uma taxonomia para

análise da gestão ambiental no Brasil. Revista de Administração Contemporânea, [s. l.], v.

8, n. 4, p. 81–97, 2004.

SALAMA, Ashraf M.; MACLEAN, Laura. Integrating Appreciative Inquiry ( AI ) into

architectural pedagogy : An assessment experiment of three retro fi tted buildings in the city

of Glasgow. Frontiers of Architectural Research, [s. l.], v. 6, n. 2, p. 169–182, 2017.

Disponível em: <http://dx.doi.org/10.1016/j.foar.2017.02.001>

SILVA, So. Pensamento Sistêmico E Gestão Por Processos: Uma Revisão Sistemática.

Revista Gestão & Conhecimento, [s. l.], v. Nov/2012, n. 2000, p. 367–383, 2012.

Disponível em:

<http://www.pucpcaldas.br/graduacao/administracao/revista/artigos/esp1_8cbs/artigos_8cbs_

2012.html%5Cnhttps://www.pucpcaldas.br/graduacao/administracao/revista/artigos/esp1_8cb

s/22.pdf>

SIQUEIRA, Josafá Carlos De. Ética Socioambiental. Rio de Janeiro.

SOUZA, Laura Vilela e; MCNAMEE, Sheila; SANTOS, Manoel Antônio Dos. Avaliação

como construção social: Investigação apreciativa. Psicologia & Sociedade, [s. l.], v. 22, n. 3,

p. 598–607, 2004.

SPILKI, F. R.; TUNDISI, J. G. Priority targets for environmental research in the Sinos River

basin. Brazilian journal of biology, [s. l.], v. 70, n. 4, p. 1245–1247, 2010.

STAGGEMEIER, Rodrigo. VÍRUS ENTÉRICOS HUMANOS EM SEDIMENTO E

ÁGUA SUPERFICIAL DE ÁREAS URBANAS DA REGIÃO DO VALE DO RIO DOS

SINOS, RS. 2009. FEEVALE, [s. l.], 2009.

Page 128: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

127

STANCHEV, Peyo; RIBAROVA, Irina. Complexity, assumptions and solutions for eco-

efficiency assessment of urban water systems. Journal of Cleaner Production, [s. l.], v. 138,

p. 229–236, 2016. Disponível em: <http://dx.doi.org/10.1016/j.jclepro.2016.03.113>

STONER, James; FREEMAN, Eduard; GUILBERT, Daniel. Administración. 6ta. ed. [s.l:

s.n.].

TACHIZAWA, Takeshy; ANDRADE, Rui Otávio Bernardes. Gestão Socioambiental. 1ra.

ed. Rio de Janeiro: Elsevier, 2011. Disponível em: <https://www.amazon.com.br/Gestão-

Socioambiental-Takeshy-

Tachizawa/dp/853525174X/ref=sr_1_1?s=books&ie=UTF8&qid=1475003109&sr=1-

1&keywords=Gestão+socioambiental>

TENÓRIO, Fernando Guilherme. Gestão social : uma perspectiva conceitual *. Revista de

Administração Publica, [s. l.], v. 32, n. 5, p. 7–23, 1998. Disponível em:

<http://bibliotecadigital.fgv.br/ojs/index.php/rap/article/viewFile/7754/6346>

TENÓRIO, Fernando Guilherme. (Re) Visitando o Conceito de Gestão Social.

Desenvolvimento em questão, [s. l.], p. 101–124, 2005. Disponível em:

<http://www.revistas.unijui.edu.br/index.php/desenvolvimentoemquestao/article/download/10

8/65>

TODOROVIC, Mladen; MEHMETI, Andi; SCARDIGNO, Alessandra. Eco-efficiency of

agricultural water systems: Methodological approach and assessment at meso-level scale.

Journal of Environmental Management, [s. l.], v. 165, p. 62–71, 2016. Disponível em:

<http://dx.doi.org/10.1016/j.jenvman.2015.09.011>

TRAJKOVSKI, Suza et al. Using appreciative inquiry to transform health care.

Contemporary Nurse, [s. l.], v. 45, n. 1, p. 95–100, 2013.

UHLMANN, Gunter Wilhelm. Teoria Geral de Sistemas - Do Atomismo ao Sistemismo

(Uma abordagem sintética das principais vertentes contemporâneas desta Proto-Teoria).

Alunodaestacio.Hd1.Com.Br, [s. l.], p. 67, 2002.

VERMEESCH, Inge et al. A relational perspective on leadership in multi-actor governance

networks for sustainable materials management . Towards a framework based on Complexity

Leadership. 1st International Conference on Public Policy, [s. l.], 2013. Disponível em:

<http://archives.ippapublicpolicy.org/IMG/pdf/panel_43_s1_vermeesch.pdf>

VOLPON, Claudia Torres; MACEDO-SOARES, T. Diana L. V. A. De. Alinhamento

estratégico da responsabilidade socioambiental corporativa em empresas que atuam em redes

de relacionamento: resultados de pesquisa na Petrobras. RAP - Revista de Administração

Pública, [s. l.], v. 41, n. 3, p. 391–418, 2007. Disponível em:

Page 129: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

128

<http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-

76122007000300002&lng=pt&nrm=iso&tlng=pt>

WALLACE, Robert E.; BUCKNAM, Robert C.; HANKS, Thomas C. Ancient engineering

geology projects in China; A canal system in Ganzu province and trenches along the Great

Wall in Ningxia Hui Autonomous Region. Engineering Geology, [s. l.], v. 36, n. 3–4, p.

183–195, 1994.

WANG, Yuan. Management of the Grand Canal and it’s bid as a world cultural heritage site.

Frontiers of Architectural Research, [s. l.], v. 1, n. 1, p. 34–39, 2012. Disponível em:

<http://dx.doi.org/10.1016/j.foar.2012.02.004>

WBCSD, World Business Council for Sustainable Development. Eco-efficient Leadership

for inmproved economic and environmenta performance. 1996. Disponível em:

<https://issuu.com/dewitasoeharjono/docs/eco_efficient_leadership_1996>. Acesso em: 16

dez. 2017.

WHITNEY, Diana; COOPERRIDER, David. El Poder de la Indagación Apreciativa. [s.l:

s.n.].

WHITNEY, Diana; TROSTEN-BLOOM, Amanda. The power of appreciative inquiry. A

practical guide to positive changue. 2da. ed. San francisco: Berrett-Koehler Publishers Inc.,

2010. Disponível em:

<https://books.google.com.br/books?id=72H_t6bDOS0C&lpg=PP1&hl=es&pg=PR4#v=onep

age&q&f=false>

Page 130: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

129

CONSIDERAÇÕES FINAIS

Esta tese teve como objetivo principal compreender as interações entre as dimensões

ambiental, social e econômica e como determinam o desempenho dos processos de gestão

socioambiental no socioecosistema bacia Rio dos Sinos. O estudo foi realizado a partir da

revisão de literatura científica e de uma análise dos processos de gestão do Comitê de Bacia

Hidrográfica do Rio dos Sinos.

Foi possível identificar 171 artigos, os quais foram meticulosamente processados,

analisados e classificados pelo método de análise de conteúdo qualitativo. Após a exclusão

daqueles que não cumpriam com os critérios de inclusão propostos sobraram um total de 49

artigos, dos quais 28 eram apresentações de casos de estudos, 20 eram aproximações teóricas e

um deles mostrava uma comparação da gestão de três rios, um na américa, outro da África e

um terceiro da Ásia. As revisões de literatura permitiram identificar cinco tipos de metodologias

de gestão de bacias hidrográficas, entre as quais inclui-se a Gestão Integrada dos Recursos

Hídricos que é o paradigma de gestão empregado no Brasil e, portanto, pelo Comitê de Bacia

do Rio dos Sinos. Neste capítulo analisa-se as dimensões dos sistemas socioambientais, as

características e os problemas de gestão que apresentam (Gráfico 1)

Gráfico 1 Gestão Socioambiental

Os resultados das revisões de pesquisas nacionais e locais sobre o tema em questão

revelaram as caraterísticas que apresenta um sistema de gestão integrada de recursos hídricos

(Gráfico 2), assim como um número restrito de estudos mostraram acertadamente e

coincidentemente as limitações legais, organizativas e de gestão que se apresentam aos Comitês

de Bacia na hora de executar as suas atribuições.

Page 131: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

130

Gráfico 2 Características da GIRH

Realizou-se ainda uma pesquisa que revelou os avanços e as deficiências na gestão

socioambiental na bacia do Rio dos Sinos, que teve uma etapa de trabalho de campo para coletar

informações e levantar dados e que utilizou a entrevista não estruturada e a observação não

participante. Estas técnicas permitiram perceber as forças e fraquezas do interno do

COMITESINOS e dos seus processos de gestão. (Tabela 1)

Vantagens Desvantagens

• Definir a Bacia Hidrográfica como unidade

de gestão

• Ter um sistema legal

• Possuir um comitê de bacia (o

COMITESINOS)

• Implantação de projetos e trabalho com

unidades de ensino (Escolas e

Universidades)

• Não possui indicadores de gestão

• Plano de bacia centrado em estudos e

variáveis hidrológicas (não é holístico nem

integrador)

• Não se inclui no plano de bacia análises,

perigos, vulnerabilidades e riscos.

• Pouca participação da população na gestão

• Insuficiente representatividade dos

diferentes grupos da população no Comitê

de Bacia

• Dificuldades na gestão financeira e de

projetos

• Excessiva burocracia

• Limitado o COMITESINOS por lei a ser

uma entidade estatal de natureza consultiva,

deliberativa e não de gestão.

Tabela 1 Vantagens e Desvantagens na gestão do COMITESINOS

Para compreender melhor as inter-relações e interdependências das variáveis das

dimensões estudadas foi necessário realizar exercícios com os membros do comitê, com o

auxílio de mapas cognitivos difusos e mapas cognitivos neutrosóficos, com a finalidade de

facilitar a identificação das inter-relações entre os diversos fatores e ajudar na solução prática

Page 132: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

131

dos problemas, na tomada de decisões e nas análises de cenários em estudos prospectivos, o

que permitiu dotá-los com modelos matemáticos e dar melhor sustento às decisões do comitê

de bacia.

As diversas atividades de pesquisa do objeto de estudo possibilitaram a

conceptualização e desenho de um modelo teórico de gestão socioambiental sustentado na

integração de teorias, abordagens e métodos integrados. Proporcionou, ainda, desenhar o mapa

de processos de gestão em que se identificam as entradas e saídas do sistema, os processos

estratégicos, de suporte e principais. Além disso, permitiu definir que o sistema de gestão deve

ser um sistema aberto e distribuído que para ser efetivo é necessário incorporar na prática os

preceitos da indagação apreciativa, pois as limitações legais com que nasceram os comitês de

bacia – que declaram que são órgãos deliberativos, propositivos e consultivos, com um marcado

caráter mediador entre os diferentes atores – limitam o seu desempenho em um modelo de

gestão de tipo empresarial, em que os papéis dos atores estão claramente definidos, e que é

totalmente diferente em um sistema aberto e distribuído em que os papéis dos atores se

sobrepõem ou intercambiam.

O estudo também oferece uma metodologia baseada no modelo 4D que permite centrar-

se nas forças do trabalho em rede dos stakeholders, incorporar o modelo de governança multi-

stakeholder e aderir a concepções e princípios como: Ecoeficiência, responsabilidade

socioambiental empresarial, em um modelo de melhora contínua, cíclica, iterativa e sequencial.

Esta metodologia, de acordo com suas caraterísticas, poderá ser no futuro referência

para pesquisadores e gestores. (Gráfico 3)

Gráfico 3 Guia para pesquisadores e gestores ambientais

Recomenda-se para futuras pesquisas a implementação prática, em parte ou na sua

totalidade, deste trabalho a fim de validar a proposta e mudar o atual modelo de gestão do

comitê de bacia. Dessa forma, poderão ser confrontados os resultados de 30 anos de existência

do modelo vigente na atualidade, que parece muito bom no papel, mas não na prática conforme

resultados obtidos pelo novo modelo.

Page 133: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

132

REFERÊNCIAS

BECKER, Egon. Social-Ecological Systems as Epistemic Objects. Human-Nature

Interactions in the Anthropocene: Potential of Social-Ecological Systems Analysis, [s. l.],

n. May, p. 37–59, 2012. Disponível em:

<http://www.isoe.de/ftp/publikationen/eb_socecsystem2010.pdf%5Cnhttp://www.routledge.c

om/books/details/9780415510004/#contents>

BORDIN DA LUZ, Roger. VÍRUS ENTÉRICOS E DE PENEÍDEOS EM AMOSTRAS

DE CAMARÕES E ÁGUA COLETADAS EM ÁREAS COSTEIRAS DO LITORAL

NORTE DO RIO GRANDE DO SUL. 2014. Feevale, [s. l.], 2014.

CABELLO, Violeta et al. River basins as social-ecological systems: Linking levels of societal

and ecosystem water metabolism in a semiarid watershed. Ecology and Society, [s. l.], v. 20,

n. 3, 2015.

CUMMING, G. S. The resilience of big river basins. Water International, Percy FitzPatrick

Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, Cape Town

7701, South Africa, v. 36, n. 1, p. 63–95, 2011. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

78751692510&doi=10.1080%2F02508060.2011.541016&partnerID=40&md5=932b7dd67dc

ebdb7f1353f156e216108>

FLORES GUZMÁN, RAMIRO ALBERTO. A MANCHESTER BRASILEIRA NÃO

TEM ESGOTO: ANÁLISE HISTÓRICA DA GESTÃO DAS ÁGUAS NA BACIA

HIDROGRÁFICA DO RIO DOS SINOS. 2016. Feevale, [s. l.], 2016.

GUTIÉRREZ, Ricardo A. COMITÊ GRAVATAÍ: GESTÃO PARTICIPATIVA DA ÁGUA

NO RIO GRANDE DO SUL. [s. l.], v. 69, p. 317–326, 2006.

HADAS, G. Ancient agricultural irrigation systems in the oasis of Ein Gedi, Dead Sea, Israel.

Journal of Arid Environments, [s. l.], v. 86, p. 75–81, 2012. Disponível em:

<http://dx.doi.org/10.1016/j.jaridenv.2011.08.015>

HECHT, Elisabeth-Dorothea. Ethiopia Threatens to Block the Nile. Azania: Archaeological

Research in Africa, [s. l.], v. 23, n. 1, p. 1–10, 1988. Disponível em:

<http://www.tandfonline.com/doi/abs/10.1080/00672708809511385%5Cnhttp://www.tandfon

line.com/doi/pdf/10.1080/00672708809511385>

KONZEN, GB; FIGUEIREDO, JAS; QUEVEDO, DM. History of water quality parameters –

a study on the Sinos River/Brazil. Brazilian Journal of Biology, [s. l.], v. 75, n. 2 suppl, p.

1–10, 2015. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-

69842015000300003&lng=en&nrm=iso&tlng=en>

LU, Peng et al. On the use of historical archive of aerial photographs for the discovery and

interpretation of ancient hidden linear cultural relics in the alluvial plain of eastern Henan,

China. Journal of Cultural Heritage, [s. l.], v. 23, p. 20–27, 2017. Disponível em:

<http://dx.doi.org/10.1016/j.culher.2015.09.010>

LUCHETA, Fabiane. LIQUENS COMO INDICADORES AMBIENTAIS NA BACIA

HIDROGRÁFICA DO RIO DOS SINOS: ESTRUTURA COMUNITÁRIA E ANÁLISE

FUNCIONAL. 2017. Feevale, [s. l.], 2017.

LUO, Lei et al. Uncovering the ancient canal-based tuntian agricultural landscape at China’s

Page 134: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

133

northwestern frontiers. Journal of Cultural Heritage, [s. l.], v. 23, p. 79–88, 2017.

Disponível em: <http://dx.doi.org/10.1016/j.culher.2016.04.013>

NASCIMENTO, Carlos; NAIME, Roberto. Panorama do uso, distribuição e contaminação

das águas superficiais no Arroio Pampa na bacia do Rio dos Sinos. Estudos Tecnológicos em

Engenharia, [s. l.], v. 5, n. 1, p. 101–120, 2009. Disponível em:

<http://revistas.unisinos.br/index.php/estudos_tecnologicos/article/view/4968>

OBIEDAT, Mamoon; SAMARASINGHE, Sandhya. A novel semi-quantitative Fuzzy

Cognitive Map model for complex systems for addressing challenging participatory real life

problems. Applied Soft Computing Journal, [s. l.], 2016.

OLIVEIRA, Lourenço Algemiro De; HENKES, Jairo Afonso. Poluição hídrica: poluição

industrial no Rio dos Sinos-RS. Revista de Gestão Social e Ambiental, [s. l.], v. 2, n. 1, p.

186–221, 2013.

PARKES, Margot W. et al. Towards integrated governance for water, health and social-

ecological systems: The watershed governance prism. Global Environmental Change, [s. l.],

v. 20, n. 4, p. 693–704, 2010.

PLANO SINOS. Plano de Gerenciamento da Bacia Hidrográfica do Rio dos Sinos.

Síntese da Situação Atual dos Recursos Hídricos. 2016. Disponível em:

<http://www.prosinos.rs.gov.br/downloads/PBHSINOS-R10-Volume Único.pdf>. Acesso

em: 10 nov. 2017.

RATHWELL, K. J.; PETERSON, G. D. Connecting social networks with ecosystem services

for watershed governance: A social-ecological network perspective highlights the critical role

of bridging organizations. Ecology and Society, University of Waterloo, Waterloo, Canada,

v. 17, n. 2, 2012. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84864458720&doi=10.5751%2FES-04810-

170224&partnerID=40&md5=5a8c08039c3d0c47b9da74218f32960d>

REIS DE OLIVEIRA, CAMILA. AVALIAÇÃO DA QUALIDADE DA ÁGUA DO RIO

DOS SINOS. 2015. FEEVALE, [s. l.], 2015.

RIBEIRO, Alexandre Gomes. A QUALIDADE AMBIENTAL DO RIO DOS SINOS:

POLUENTES ORGÂNICOS, METAIS TÓXICOS, PARÂMETROS FÍSICO-

QUÍMICOS E TOXICIDADE NO SEDIMENTO E ÁGUAS SUPERFÍCIAIS. 2016.

Feevale, [s. l.], 2016.

SCHLÜTER, M.; HERRFAHRDT-PÄHLE, E. Exploring resilience and transformability of a

river basin in the face of socioeconomic and ecological crisis: An example from the

Amudarya river basin, Central Asia. Ecology and Society, Leibniz-Institute of Freshwater

Ecology and Inland Fisheries, Berlin, Germany, v. 16, n. 1, 2011. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

79954474292&partnerID=40&md5=b0b6543c5092c9631dbaf612697af0a9>

SCHNEIDER HENRIQUE, PAULO. DIAGNÓSTICO FLORÍSTICO DE PLANTAS

VASCULARES OCORRENTES EM ÁREAS ÚMIDAS NA BACIA DO RIO DOS

SINOS, RS. 2016. FEEVALE, [s. l.], 2016.

SILVA, Mayane Bento; HERREROS, Mário Miguel Amin Garcia; BORGES, Fabricio

Quadros. Gestão integrada dos recursos hídricos como política de gerenciamento das águas no

Brasil. Revista de Administração da UFSM, [s. l.], v. 10, n. 1, p. 101, 2017. Disponível em:

<http://www.redalyc.org/pdf/2734/273449349007.pdf>

Page 135: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

134

SPILKI, F. R.; TUNDISI, J. G. Priority targets for environmental research in the Sinos River

basin. Brazilian journal of biology, [s. l.], v. 70, n. 4, p. 1245–1247, 2010.

STAGGEMEIER, Rodrigo. VÍRUS ENTÉRICOS HUMANOS EM SEDIMENTO E

ÁGUA SUPERFICIAL DE ÁREAS URBANAS DA REGIÃO DO VALE DO RIO DOS

SINOS, RS. 2009. FEEVALE, [s. l.], 2009.

THIESEN BAUM, DANIELA FABIANA. ESGOTAMENTO SANITÁRIO NA BACIA

HIDROGRÁFICA DO RIO DOS SINOS: UMA ANÁLISE FUNDAMENTADA NA

TEORIA DA SOCIEDADE DE RISCO. 2013. FEEVALE, [s. l.], 2013.

VIRAPONGSE, Arika et al. A social-ecological systems approach for environmental

management. Journal of Environmental Management, [s. l.], v. 178, p. 83–91, 2016.

Disponível em: <http://dx.doi.org/10.1016/j.jenvman.2016.02.028>

Page 136: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

135

ANEXOS

Comprovante de submissão do artigo:

Capítulo 1. The Social-Ecological Management of Watershed Ecosystem: a Literature Review

Page 137: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

136

Comprovante de submissão do artigo:

Capítulo 2. Gestión integrada en la cuenca del Río dos Sinos. Avances y desafios

From: Christian Luiz da Silva <[email protected]>

Date: sáb, 16 de mar de 2019 às 07:59

Subject: [rts] Agradecimento pela Submissão

To: Olga Alicia Gallardo Milanés <[email protected]>

Olga Alicia Gallardo Milanés,

Agradecemos a submissão do seu manuscrito "Gestión integrada en la cuenca

del Río dos Sinos. Avances y desafíos" para Revista Tecnologia e

Sociedade. Através da interface de administração do sistema, utilizado

para a submissão, será possível acompanhar o progresso do documento

dentro do processo editorial, bastanto logar no sistema localizado em:

URL do Manuscrito:

https://periodicos.utfpr.edu.br/rts/author/submission/9849

Login: olga-gallardo19

Em caso de dúvidas, envie suas questões para este email. Agradecemos mais

uma vez considerar nossa revista como meio de transmitir ao público seu

trabalho.

Christian Luiz da Silva

Revista Tecnologia e Sociedade

Page 138: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

137

Comprovante de submissão do artigo:

Capítulo 3. PESTEL analysis based on neutrosophic cognitive maps and neutrosophic

numbers for the Sinos river basin management

Page 139: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

138

Comprovante de publicação do artigo:

Capítulo 4. Sinos River basin social-environmental prospective assessment of water quality

management using fuzzy cognitive maps and neutrosophic AHP-TOPSIS

Page 140: UNIVERSIDADE FEEVALEfs.unm.edu/Tese-Rodolfo.pdfLinha de pesquisa: Tecnologia e Intervenção Ambiental Orientador: Dr. João Alcione Sganderla Figueiredo Novo Hamburgo 2019 Universidade

139

Comprovante de submissão do artigo:

Capítulo 5. Methodology for the socio-environmental management of the social ecosystem

Río dos Sinos.