telescope performance and image simulations of the balloon

16
Introduction The Technique Image reconstruction and SNR Conclusions Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment Ana Virginia Penacchioni In collaboration with Jo˜ ao Braga, Manuel Castro and Flavio D’Amico Instituto Nacional de Pesquisas Espaciais (INPE) ao Jos´ e dos Campos, Brazil VIII Workshop da PG-AST/DAS, 8 Abril 2015 Penacchioni, A.V. The Proto-MIRAX mission

Upload: others

Post on 18-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Introduction The Technique Image reconstruction and SNR Conclusions

Telescope performance and image simulations ofthe balloon-borne coded-mask protoMIRAX

experiment

Ana Virginia PenacchioniIn collaboration with Joao Braga, Manuel Castro and Flavio

D’Amico

Instituto Nacional de Pesquisas Espaciais (INPE)Sao Jose dos Campos, Brazil

VIII Workshop da PG-AST/DAS, 8 Abril 2015

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

1 Introduction

2 The Technique

3 Image reconstruction and SNR

4 Conclusions

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

The ProtoMIRAX Experiment

What is it?Balloon-borne experimentHard X-ray imager telescopeX-ray coded-mask

Goal: study the spectral and temporal variability of brightX-ray binaries. Prototype for the MIRAX mission.

Why?: The development and testing, with subsequent flightverification/validation will pave the way for equivalentmodeling of MIRAX, a space mission.

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

The ProtoMIRAX Experiment

CdZnTe detectorsEnergy range: 30-200 keVEffective area: ∼ 84 cm2

Coded mask technique

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

The coded-mask

Extended 4×4 pattern of a 13×13 ModifiedUniformly Redundant Array (MURA).

∼ 1◦45′ angular resolution20◦ × 20◦ fully-coded FoV

Gottesman and Fenimore 1989

Material: leadMask elements: 20mm×20mm inarea and 1mm thick.

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

The sources

We modeled the emissions from the Crab Nebula and threesources in the Galactic center region:1E 1740.7-2942, GRS 1758-258 and GX 1+4.

Diffuse background −→ Noise source.Altitude: ∼ 42 km −→ Atmospheric depth x ≈ 2.7 g/cm2.Photons interact with the atmosphere, generating secondaryparticles. Flux is attenuated:

F = F0e−µ

ρx sec(z)

µρ = absorption coefficient of the air [cm2/g] (depends on E ),cos z= sin φ sin δ + cos φ cos δ cos H= zenith angle,H=hour angle, φ=geographic latitude, δ=declination of the source.

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

Incident Spectra [ph cm−2 s−1 keV−1 ]

Crab Nebulaa: F0 = 14.44E−2.169

1E 1740.7-2942b: F0 = 10−4 E100keV

−1.35

GRS 1758-258c : F0 = 4.6× 10−5 E100keV

−1.8

GX 1+4d : F0 = 5.1× 10−4 E30keV

−1.9

The number of particles arriving at the detector isgiven by:

N =

∫ T

0

∫ Emax

Emin

∫S

A0E−γe−

µρ (E)xsec(z)dE dt dS .

aSizun et al. 2004, bGrebenev et al. 1995, cSunyaev et al. 1991, dDeters et al. 1991

http://integral.esac.esa.int/BULGE/

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

GEANT4: Mass model

The GEANT4 (GEometry ANd Tracking) package was developed byCERN. It allows to perform simulations of the instrumental behaviour

when a particle field interacts with the detector material.Allison et al. 2006; Agostinelli et al. 2003

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

Simulation of the Crab + background

We simulated all the particles that reach the detector plane in 4h to gettheir distribution in energy and detector number (shadowgram). Eachpixel corresponds to one CZT detector (1 cm2).

Detector number1 2 3 4 5 6 7 8 910111213

Detector number 12345678910111213

Cou

nts

0200400600800

100012001400

Crab

Detector number1 2 3 4 5 6 7 8 910111213

Detector number 12345678910111213

Cou

nts

0

1000

2000

3000

4000

5000

6000

Crab + Background

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

Simulation of the GC region + noise

For the GC region, the simulation time was 8 hours.

Detector number1 2 3 4 5 6 7 8 910111213Detector number 12345678910111213

Cou

nts

0

200

400

600

800

1000

1200

1E + GRS + GX

Detector number

1 2 3 4 5 6 7 8 910111213Detector number 12345678910111213C

ount

s0

2000

4000

6000

8000

10000

1E + GRS + GX + Background

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

Image reconstruction

The recorded data can be represented as a matrix

D = S ∗ A + B

where S is the reconstructed source distribution, A is a decodingfunction that mimics the mask pattern, and B is the backgroundcontribution.The reconstructed source is given by: S = D ∗ G , where G is adecoding function. Then,S = D ∗ G = S ∗ A ∗ G + B ∗ G = S + B ∗ G Fenimore & Canon 1978

The statistical signal to noise ratio (SNR) is given by

SNR = NS√NS+NT

Gottesman & Fenimore 1989

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

Image reconstruction

Angular coordinates (

-10.05-6.70

-3.350

3.356.70

10.05

Angular coordinates ( -10.05-6.70

-3.350

3.356.70

10.05

m

0

20

40

60

80

100

120

0

20

40

60

80

100

Crab

)°Angular coordinates (

-8.37 -5.02 -1.67 0 1.67 5.02 8.37

Angular coordinates ( -8.37-5.02

-1.6701.675.02

8.37

m

0

5

10

15

20

25

0

5

10

15

20

25

1E 1740.7-2942

GRS 1758-258

GX 1+4

Simulated image of the Crab (left) and Galactic Centre (right) regions asseen by protoMIRAX for 4h and 8h, respectively. The SNRs for the Crabis 109, while for 1E 1740.72942, GRS 1758258 and GX 1+4 are,respectively, 26, 10 and 9. GX 1+4 counts are distributed in two sky bins.

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

Published Results

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

Conclusions

In this work we presented results of simulated images ofregions with bright X-ray sources with the protoMIRAXexperiment at balloon altitudes.

We reconstructed images of 2 regions of the sky: Crab Nebulaand 3 sources in the GC: 1E 1740.7-2942, GRS 1758-258 andGX 1+4.

Measured SNR of 109, 26, 9 and 10 for Crab, 1E, GX andGRS, respectively. 60% of the purely statistical values. Due tonon-uniformity of the background across the detector plane,collimator response and gaps between the detectors.

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

Conclusions

It is possible to make observations of crowded fields andprovide flux and spectral information without sourceconfusion.

protoMIRAX plays an important role in testing new detectortechnology and imaging systems in a near-space environment.It is a pathfinder for the MIRAX mission.

Penacchioni, A.V. The Proto-MIRAX mission

Introduction The Technique Image reconstruction and SNR Conclusions

THANK YOU!

Penacchioni, A.V. The Proto-MIRAX mission