química analítica - trabalhos práticos

29
DEPARTAMENTO DE QUÍMICA E BIOQUÍMICA Guia dos Trabalhos Práticos Química Analítica L-BQ, L-CTA, L:AST, L:BQ, L:CC, L:CTA, L:F, L:G, L:M SECÇÃO DE QUÍMICA ANALÍTICA J. A. Rodrigues e P. Almeida ANO LECTIVO 2012/2013

Upload: dinarte-neves

Post on 07-Aug-2015

90 views

Category:

Documents


1 download

DESCRIPTION

Gui de trabalhos praticos da licenciatura de Bioquímica

TRANSCRIPT

Page 1: Química Analítica - Trabalhos práticos

DEPARTAMENTO DE QUÍMICA

E

BIOQUÍMICA

Guia dos Trabalhos Práticos

Química Analítica L-BQ, L-CTA, L:AST, L:BQ, L:CC, L:CTA, L:F, L:G, L:M

SECÇÃO DE QUÍMICA ANALÍTICA

J. A. Rodrigues e P. Almeida

ANO LECTIVO 2012/2013

Page 2: Química Analítica - Trabalhos práticos

2

Índice

Calendário das aulas práticas 3

Precisões mínimas de medições directas 4

Método da curva de calibração 5

Introdução aos trabalhos práticos propostos 6

1. Métodos iodométrico e iodimétrico 6

2. Potenciometria e titulações potenciométricas 7

2.1 Potenciometria 7

2.2 Medição potenciométrica do pH 10

2.3 O eléctrodo selectivo a anião nitrato 12

2.4 O eléctrodo selectivo a anião fluoreto 13

2.5 Titulação potenciométrica 14

3 A espectrofotometria UV-Vis 16

3.1 Método de determinação espectrofotométrica do catião ferro (II) 18

T1 Determinação iodimétrica da Vitamina C num suplemento vitamínico 19

T2 Titulação potenciométrica de uma mistura aquosa de HCl e CH3COOH 21

T3 Determinação potenciométrica de aniões (nitrato ou fluoreto) em águas de consumo23

a Determinação da concentração do anião nitrato numa água de consumo 23

b Determinação da concentração em anião fluoreto numa água de consumo 25

T4 Determinação espectrofotométrica do teor de ferro total numa água 27

Page 3: Química Analítica - Trabalhos práticos

3

CALENDÁRIO DAS AULAS PRÁTICAS

Turma prática P2 P3 P4 P5 P6 P7 P8

Docente P. Almeida J. Rodrigues P. Almeida J. Rodrigues P. Almeida J. Rodrigues P. Almeida

Horário 15h-17h (2ª feira) 11h-13h (3ª feira) 14h-16h (3ª feira) 16h-18h (3ª feira)

Aula 1

Aula 2

Aula 3

Aula 4

Aula 5

Aula 6

013 011 013 011 013 011 013

013 011 013 011 013 011 013

013 011 013 011 013 011 013

011 013 011 013 011 013 011

011 013 011 013 011 013 011

011 013 011 013 011 013 011

ROTAÇÃO DOS GRUPOS (G) PELOS TRABALHOS (T) E PELAS LABORATÓRIOS

DURANTE AS AULAS PRÁTICAS (A)

TURMAS PRÁTICAS ÍMPARES TURMAS PRÁTICAS PARES

(P3, P5 e P7) (P2, P4 e P6, P8)

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

G1 T1 T2 R

E

L

A

T

Ó

R

I

O

S

T3 T4 R

E

L

A

T

Ó

R

I

O

S

G1 T3 T4 R

E

L

A

T

Ó

R

I

O

S

T1 T2 R

E

L

A

T

Ó

R

I

O

S

G2 T1 T2 T3 T4 G2 T3 T4 T1 T2

G3 T1 T2 T3 T4 G3 T3 T4 T1 T2

G4 T1 T2 T3 T4 G4 T3 T4 T1 T2

G5 T2 T1 T4 T3 G5 T4 T3 T2 T1

G6 T2 T1 T4 T3 G6 T4 T3 T2 T1

G7 T2 T1 T4 T3 G7 T4 T3 T2 T1

G8 T2 T1 T4 T3 G8 T4 T3 T2 T1

LISTA DE TRABALHOS PRÁTICOS:

T1 - Determinação iodimétrica da Vitamina C num suplemento vitamínico

T2 - Titulação potenciométrica de uma mistura aquosa de HCl e CH3COOH

T3 - Determinação potenciométrica de um anião (nitrato ou fluoreto) numa água

A - Determinação do anião nitrato numa água

B - Determinação do anião fluoreto numa água

T4 - Determinação espectrofotométrica de ferro total numa água

Page 4: Química Analítica - Trabalhos práticos

4

Precisões mínimas de medições directas

Medição de massa (pesagem) com balança analítica (2 leituras): 0,0002 g

Medição de volume com bureta (2 leituras): 0,04 cm3

Medição de volume com:

Balões volumétricos Pipetas volumétricas

Capacidade, cm3

tipo

Tolerância, cm3

B A

Capacidade, cm3

tipo

Tolerância, cm3

B A

25,00 0,06 ou 0,03 2,000 0,012 ou 0,006

50,00 0,1 ou 0,05 5,00 0,02 ou 0,01

100,00 0,15 ou 0,08 10,00 0,04 ou 0,02

200,00 0,2 ou 0,1 15,00 0,06 ou 0,03

250,0 0,2 ou 0,1 20,00 0,06 ou 0,03

500,0 0,3 ou 0,15 25,00 0,06 ou 0,03

1000,0 0,6 ou 0,3 50,00 0,1 ou 0,05

2000,0 1,0 ou 0,5 100,00 0,16 ou 0,08

Page 5: Química Analítica - Trabalhos práticos

5

O método da curva de calibração

O método da curva de calibração é o método de quantificação mais habitualmente

utilizado em análise química instrumental. Nesse método, a resposta instrumental à

presença de um dado analito tem de ser calibrada utilizando padrões (nos quais a

concentração de analito presente é rigorosamente conhecida). A partir dessa curva de

calibração, a resposta instrumental a uma amostra pode ser interpretada e permite obter

a concentração de uma certa espécie química. A relação entre as duas grandezas tem

que ter uma fundamentação teórica; isto é, algo que permita compreender teoricamente

a relação que se estabelece entre as duas grandezas e as eventuais limitações ao uso

dessa relação. Na espectrofotometria, essa relação baseia-se na lei de Bouguer-Lambert-

Beer. Na potenciometria essa relação baseia-se numa relação do tipo Nernstiniana. Estas

leis não são sempre aplicáveis e existem certas situações que provocam o aparecimento

de desvios.

Sempre que possível, o trabalho analítico é baseado em relações de calibração lineares.

Para ajustar os pontos experimentais a uma recta recorre-se ao método dos mínimos

quadrados. Neste método é assumido que os erros experimentais dos valores

representados no eixo dos yy são muito maiores que os erros experimentais associados

aos valores representados nos eixos dos xx. Também é assumido que as incertezas nos

valores de yy são idênticas entre si e não dependem, portanto, do valor medido. As

máquinas de calcular ou os programas de computador, como o Excel, permitem realizar

facilmente estes cálculos.

Page 6: Química Analítica - Trabalhos práticos

6

Introdução aos trabalhos práticos propostos

1. Métodos iodométrico e iodimétrico

As iodometrias são volumetrias indirectas em que ocorre a oxidação prévia de anião

iodeto, I- (presente em excesso), a anião triiodeto, I3

-.

3I-(aq) I3

-(aq) + 2e- Eo

(I3-(aq)/I-(aq))

= + 0,536 V (20)

O anião triiodeto é posteriormente titulado com solução de Na2S2O3 de concentração

rigorosamente conhecida (solução padrão):

I3-(aq) + 2 S2O3

2-(aq) 3I-(aq) + S4O6

2- (aq) (21)

Uma das razões da grande utilização do par óxido-redutor I3-/I

- em volumetrias deve-se

à existência de um indicador específico, o cozimento de amido, que origina um

complexo azul com o anião triiodeto.

No trabalho T1, a determinação do ácido ascórbico (agente redutor relativamente suave)

é feita por iodimetria, uma volumetria de oxidação-redução em que o anião triiodeto é

usado na titulação de redutores fracos (como o ácido ascórbico). A metodologia seguida

neste trabalho corresponde a uma titulação por retorno. O anião triiodeto é gerado por

reacção de anião iodato com anião iodeto:

IO3-(aq) + 8I

-(aq) + 6H

+(aq) 3I3

-(aq) + 3 H2O (l) (22)

O iodato de potássio foi previamente seco a 110 oC, durante pelo menos uma hora, e

está colocado num exsicador, à temperatura ambiente (trata-se de uma substância

primária, pelo que deve ser pesada e manuseada com as devidas precauções).

De seguida, todo a quantidade de ácido ascórbico reage com parte da quantidade de

anião triiodeto:

AA + I3-(aq) ADA + 3I

-(aq) + 2H

+(aq) (23)

(AA - ácido ascórbico, C6H8O6; ADA – ácido desidroascórbico, C6H6O6)

Finalmente, o excesso de anião triiodeto é titulado com anião tiossulfato, com formação

de anião iodeto e de anião tetrationato:

I3-(aq) + 2S2O3

2-(aq) 3I

-(aq) + S4O6

2-(aq) (24)

Page 7: Química Analítica - Trabalhos práticos

7

Sabendo a quantidade gerada de triiodeto e a quantidade titulada de triiodeto, podemos,

por subtracção, determinar a quantidade de triiodeto que reagiu com o ácido ascórbico.

A realização deste método requer algumas precauções:

o meio deve ser ácido, para garantir a estequiometria da reacção de titulação

(entre I3- e S2O3

2-) e para impedir que o I3

- possa dismutar;

devido ao contacto com a luz, com o oxigénio atmosférico e com impurezas

existentes, as soluções ácidas de I- sofrem lenta oxidação do I

- a I3

-; por tal

motivo, a titulação deve ser realizada rapidamente;

o amido forma com o I3- um composto azul e esta transformação só é reversível

para pequenas quantidades de I3-; por isso, o cozimento de amido só deve ser

adicionado perto do final da titulação (quando a cor acastanhada, devida ao I3- já

é muito ténue).

2. Potenciometria e titulações potenciométricas

2.1 Potenciometria

O potencial de um eléctrodo imerso numa solução depende da actividade das espécies

químicas responsáveis pelo aparecimento desse potencial. Essa dependência é

exprimível, em muitos casos, pela seguinte relação:

E = K + S. log a (25)

em que E é o potencial de eléctrodo, a é a actividade de cada uma dessas espécies, K

representa o valor de E para a=1 e S é um parâmetro experimental que terá um valor

0,0591/n (V/década) a 25ºC, no caso de um sistema óxido-redutor com n electrões

envolvidos. No caso de um eléctrodo selectivo a uma dada espécie química de carga z,

terá um valor 0,0591/z (V/década) a 25 ºC. Assim, E variará linearmente com log a

sempre que a expressão seja aplicável.

Não é, porém, possível medir valores absolutos de E, mas somente valores relativos,

numa escala convencional, através da diferença de potencial (força electromotriz em

circuito aberto, E) de um elemento de pilha, em que o eléctrodo de potencial E se situa

num dos semielementos estando no outro semielemento um eléctrodo de potencial

conhecido, chamado eléctrodo de referência. A escala convencional adoptada atribui o

Page 8: Química Analítica - Trabalhos práticos

8

valor 0 (zero) de potencial ao sistema óxido-redutor H+(aq)/H2(g) nas condições

normais.

Para fechar o circuito interno do elemento de pilha, se for necessário, utiliza-se a

chamada ponte salina (solução razoavelmente concentrada de um electrólito forte,

quimicamente inerte; sempre que possível, prefere-se KCl). Em consequência, a d.d.p.

medida reflecte, não só, a diferença de potencial entre os dois eléctrodos, mas também

os potenciais de junção, entre a ponte salina e os semielementos.

Como em análise química se está interessado em concentrações, e não em actividades, é

imperioso estabelecer a relação entre E e o logaritmo da concentração. A concentração

e a actividade de uma espécie química estão relacionadas pela seguinte expressão:

a = . c (26)

em que (que representa o coeficiente ou factor de actividade) depende da força iónica,

I, do meio

= f (I) (27)

sendo

0

limI

= 1 (28)

o que significa que, para cada valor de a, há uma infinidade de valores de c (e vice-

versa), pois é possível haver uma infinidade de valores de I.

Por isso, é importante manter constante a força iónica do meio nas diversas medições,

para manter constante a relação entre a e c, e consequentemente conseguir relacionar E

com log c.

A medição da força electromotriz (f.e.m.) ou diferença de potencial (d.d.p.) duma célula

electroquímica, constituída por um eléctrodo indicador e um eléctrodo de referência, é

efectuada recorrendo a um potenciómetro adequado, com características especiais que

impede que durante a medição ocorra passagem de corrente no circuito externo. Estes

equipamentos são designados por potenciómetros de alta impedância de entrada.

Um eléctrodo indicador, para ser utilizado em potenciometria, deve ter uma resposta

rápida e estável. Comercialmente encontram-se disponíveis vários tipos de eléctrodos,

com respostas selectivas para diversas espécies químicas, denominados eléctrodos

selectivos. Todos estes eléctrodos possuem, como elemento sensível, uma membrana ou

uma camada sólida insolúvel - membrana de vidro, membrana líquida ou membrana

Page 9: Química Analítica - Trabalhos práticos

9

sólida cristalina - , uma solução interna de composição fixa e um eléctrodo de referência

interno.

São vários os parâmetros experimentais que limitam a zona de aplicabilidade analítica

de um eléctrodo selectivo:

selectividade;

temperatura;

idade e uso do eléctrodo;

nível de concentração da espécie;

contaminações;

As características de um eléctrodo selectivo podem ser avaliadas através da elaboração

de uma curva de calibração, usando soluções com concentração conhecida da espécie

química à qual o eléctrodo é sensível.

Figura 3 – Curva típica para a resposta de um eléctrodo selectivo (o valor do declive, S,

irá depender da carga da espécie ao qual o eléctrodo é selectivo).

A relação que se estabelece deve apresentar um comportamento linear entre a d.d.p. e o

logaritmo da concentração da espécie, desde que a força iónica se mantenha constante

nas diferentes medições; o comportamento deve ser do tipo nernstiano. O declive que se

Page 10: Química Analítica - Trabalhos práticos

10

obtém corresponde à sensibilidade do eléctrodo e é um indicador do desempenho do

eléctrodo ao longo do seu tempo de vida.

Os eléctrodos selectivos permitem medir a concentração de uma espécie na presença de

outras espécies. No entanto, não são imunes à influência de certas espécies químicas,

particularmente se a razão das concentrações dessas espécies for muito desfavorável

para a espécie para a qual o eléctrodo é sensível. Este facto pode restringir a zona de

aplicabilidade analítica do eléctrodo e torná-lo menos sensível.

Em geral, a resposta característica dos eléctrodos selectivos é alterada com o uso, o que

tem as seguintes consequências:

diminuição da sensibilidade;

tempo de resposta mais longo;

menor estabilidade;

menor gama linear.

A medição de valores de E tem inúmeras aplicações analíticas, quer na chamada

potenciometria directa (obtenção de c a partir do valor de E) quer, por exemplo, em

titulações potenciométricas (detecção do ponto final, acompanhando as variações de c

através dos correspondentes valores de E).

2.2 O eléctrodo selectivo a anião nitrato

O eléctrodo selectivo a anião nitrato é um eléctrodo selectivo de membrana líquida. Os

eléctrodos selectivos de membrana líquida (outros exemplos são os de Ca2+

, K+, ClO4

-,

BF4-) contêm um composto orgânico que se liga selectivamente ao ião a que o eléctrodo

é sensível por um mecanismo de permuta iónica. Enquanto que, nos modelos mais

antigos, o permutador orgânico está sob a forma líquida e separado da solução por um

sólido inerte poroso, nos modelos mais recentes, o permutador está imobilizado numa

membrana flexível em PVC. O eléctrodo selectivo a nitrato está esquematizado a seguir:

O composto orgânico permutador contém grupos funcionais ácidos, básicos ou

quelantes que asseguram o transporte do ião através da membrana; assim o potencial

que se estabelece através da membrana está relacionado com a diferença das actividades

do ião na solução interna e na solução a analisar.

Page 11: Química Analítica - Trabalhos práticos

11

Para que se possa relacionar a diferença de potencial com a concentração das soluções é

absolutamente necessário que a força iónica das soluções padrão e das amostras sejam

idênticas, para tal adiciona-se a solução ISA (ionic strengh adjuster) em quantidades

constantes. A solução ISA para este eléctrodo selectivo é uma solução constituída por:

Al2(SO4)3 0,9 M; 0,5g de Ag2SO4; 0,3% de H2NSO3H, com pH cerca de 4 ajustado com

solução de ácido sulfúrico. A função desta solução é a de ajustar a força iónica da

solução a testar, tornar o pH ácido para eliminar a interferência dos aniões CO32-

e

HCO3-, remover a interferência de Cl

-, Br

-, I

-, PO4

3-, SO3

2- e CN

-, por precipitação destes

aniões com Ag+ e eliminar a interferência do anião nitrito (NO2

-) que é selectivamente

reduzido pelo ácido sulfâmico (H2NSO3H).

Figura 4– Representação esquemática de um

eléctrodo selectivo a anião nitrato.

2.3 O eléctrodo selectivo a anião fluoreto

No eléctrodo de fluoreto, a membrana activa é constituída por um cristal de fluoreto de

lantânio (LaF3), dopado com uma pequena quantidade de európio (II) para baixar a

resistência eléctrica do cristal e facilitar o transporte de carga, através do cristal. O

cristal de LaF3 é, em geral, soldado num tubo rígido de plástico e encontra-se em

contacto com a solução interna e externa, conforme se observa na figura 5.

Ag/AgCl

solução interna de nitrato

membrana polimérica

selectiva

Page 12: Química Analítica - Trabalhos práticos

12

Figura 5– Representação esquemática de um eléctrodo selectivo a anião fluoreto.

A solução interna é, habitualmente, constituída por uma solução de NaF e NaCl 0,1M.

A actividade do ião fluoreto controla o potencial da superfície interna do cristal de LaF3

e a actividade do ião cloreto fixa o potencial do eléctrodo interno de referência de

Ag/AgCl. A célula electroquímica que incorpora o eléctrodo de membrana de LaF3

pode ser representada por:

Ag AgCl, Cl- (0,1M), F

- (0,1M) cristal de LaF3 Solução em ensaio Eléctrodo de

referência

Esta célula obedece a uma relação do tipo da equação de Nernst, da forma

E = const1 + 0,0591 log [F-]int (25ºC)

[F-]ext

como a [F-]int é constante a expressão simplifica-se para

E = const2 + 0,0591 log 1 (25ºC)

[F-]ext

O gráfico de calibração em função da concentração do ião fluoreto na solução exterior

(desde que a força iónica não varie) mostra que o eléctrodo selectivo de fluoreto tem um

comportamento nernstiano para concentrações até cerca de 10-5

M (0,1 ppm de F-) que

representa a gama mais baixa de resposta do eléctrodo selectivo a anião fluoreto.

A presença de catiões polivalentes como o Fe3+

, Al3+

(estes iões podem ser

complexados pelo anião fluoreto) também representam uma possível fonte de

interferências à resposta do eléctrodo selectivo a anião fluoreto. Para minimizar as

interferências é também importante controlar o pH da solução para que não ocorra a

Page 13: Química Analítica - Trabalhos práticos

13

protonação do anião fluoreto a valores de pH baixos ou a interferência do anião

hidróxido para valores de pH elevados (o pH deverá ser mantido num intervalo entre 5 e

5,5).

A solução TISAB para este eléctrodo selectivo é constituída por: NaCl 1,0 M;

CH3COOH 0,25 M, NaCH3COO 0,75 M e Na3C6H5O7 0,001 M.

2.2 Medição potenciométrica do pH

Não existe uma única definição de pH, mas sim três: a termodinâmica, a

estequiométrica e a operacional

Termodinâmico pH = colog a H+

Estequiométrico pH = colog H+(aq)

Operacional medido potenciometricamente, por comparação

com soluções padrão.

A medição potenciométrica de pH realiza-se com um "eléctrodo de vidro" e um

eléctrodo de referência. Um "eléctrodo de vidro" é constituído, essencialmente, por um

eléctrodo de Ag/AgCl, mergulhado numa solução diluída de HCl, contida numa ampola

de vidro (de que uma parte da parede é uma membrana muito fina de vidro especial).

Os eléctrodos de vidro comerciais contêm habitualmente o eléctrodo indicador

(eléctrodo de vidro) e o de referência num só corpo, sendo por isso muito práticos. A

este conjunto chama-se, vulgarmente, “eléctrodo combinado de pH”. A constituição de

um eléctrodo combinado de pH, com o eléctrodo de referência de calomelanos saturado,

pode ser representado através do seguinte diagrama:

Ag AgCl(s),HCl(c M) H+(aq) (x M) KCl(sat), Hg2Cl2(s) Hg Pt

Usam-se três traços verticais ( ) para se representar a membrana de vidro, dois traços verticais

( ) para representar uma ponte salina, e um traço vertical ( ) para representar contactos com

condutores metálicos

A diferença de potencial entre o eléctrodo de vidro e o eléctrodo de referência depende,

com aproximação suficiente, da concentração de H+(aq), segundo uma função

logarítmica,

E = K + S log H+(aq) (29)

Page 14: Química Analítica - Trabalhos práticos

14

em que K e S são parâmetros experimentais. K, dependente da composição do vidro e

da temperatura, dos potenciais de junção líquida, do potencial do eléctrodo de

referência, entre outros. O valor de S pode ser avaliado através da expressão

S = 2,303.R.T/(z.F) (30)

todavia, o seu valor é característico do eléctrodo e pode variar ao longo do tempo de

vida do eléctrodo.

A diferença de potencial entre os eléctrodos é medida, com um medidor de pH. Para

convertermos a leitura da diferença de potencial em valores do pH da solução é

necessário efectuar uma calibração (para determinar os valores de K e S). Os sistemas

de medição de pH correntemente utilizados permitem efectuar a calibração

internamente, seguindo as instruções do aparelho e recorrendo a soluções tampão de pH

conhecido. De forma geral são utilizadas duas soluções tampão, sendo uma dessas

soluções o tampão de pH 7,0. Há uma grande variedade de medidores de pH baseados

nos princípios atrás citados, variando o processo de realizar a leitura de caso para caso.

A primeira atitude a tomar, quando se vai utilizar um dado instrumento, é estudar as

respectivas instruções.

2.4 Titulação potenciométrica

A medição de pH é muito utilizada para detectar o ponto final de uma volumetria de

ácido-base, pois dispensa o uso de indicadores visuais e permite a detecção instrumental

do ponto final das titulações.

Neste trabalho, far-se-á o traçado experimental da curva de titulação de uma mistura de

ácidos, isto é, obter-se-á a representação gráfica de:

pH = f (v) (v - volume de solução de base, HO-, em cm3)

medindo, após cada adição de volume de base, o volume de titulante adicionado e do

pH resultante do titulado. Representando o pH do titulado em função do volume de

titulante obtém-se uma curva de titulação.

A fim de se determinar graficamente o volume correspondente ao ponto final, far-se-á,

igualmente, o traçado numérico da primeira derivada da curva de titulação:

d pH / d v = f (vm)

Page 15: Química Analítica - Trabalhos práticos

15

Para este fim, calcula-se, para cada adição de base, a razão entre a variação de pH

correspondente e o respectivo volume médio de titulante correspondente ao intervalo,

marcando os valores desta razão em ordenadas e os respectivos volumes médios da base

em abcissas. A curva apresenta um máximo correspondente no eixo dos volumes ao

volume do ponto final.

Obter-se-ão, assim, dois pontos de equivalência, o primeiro correspondente à titulação

do HCl e entre o primeiro e o segundo correspondente à titulação do CH3COOH.

A adição de solução de NaHO ao titulado provoca uma variação do pH, por aumento de

volume (efeito de diluição), independentemente da reacção. Pode-se corrigir este efeito

por um de dois processos:

1º - Correcção dos valores atendendo ao aumento de volume, supondo os

volumes aditivos;

2º - Uso de uma solução razoavelmente concentrada, na bureta, de modo a

que os volumes adicionados sejam suficientemente pequenos para que o

efeito de diluição possa ser desprezado.

No trabalho T2, adoptar-se-á o segundo processo, usando uma solução de NaHO cerca

de 5-10 vezes mais concentrada do que os ácidos presentes na mistura.

É necessário determinar a molaridade da solução de NaHO na ocasião e nas mesmas

condições experimentais (porquê?), o que exige a titulação da solução de NaHO com

uma solução padrão de HCl.

Page 16: Química Analítica - Trabalhos práticos

16

3 A espectrofotometria de UV-Vis

Em geral, quando um feixe luminoso atravessa um meio transparente homogéneo,

verifica-se que parte da radiação é absorvida. Se forem Io e I as intensidades dos feixes

incidente e emergente, respectivamente, a grandeza

T = I / Io ( 1) (31)

chamada transmitância é uma medida da capacidade do meio para propagar a radiação.

Figura 6– Representação esquemática do processo de absorção da radiação por uma

solução contendo um analito com a concentração C.

Para radiação monocromática, há uma relação simples entre esta razão e determinadas

propriedades da solução onde o feixe se propaga. Se na solução existir um soluto que

absorve radiação para esse comprimento de onda, verifica-se a lei de Bouguer-

Lambert-Beer, que relaciona a transmitância com a concentração do soluto:

-log T = log Io / I = . b . c (32)

Io – intensidade do feixe incidente.

I – intensidade do feixe emergente.

T – transmitância da solução.

b – espessura da solução que o feixe luminoso atravessa (dimensão interna da

célula), expressa em cm.

c – concentração molar do soluto, M.

– absortividade molar, M-1

.cm-1

; constante característica do sistema soluto-

solvente e função do comprimento de onda da radiação incidente e da temperatura.

A denominada absorvância, A, de uma solução é uma medida da capacidade da

solução para absorver radiação electromagnética para um dado comprimento de onda e

Dimensão interna

da célula

Amostra com

concentração C Io I

Detector

Page 17: Química Analítica - Trabalhos práticos

17

é representada por log(Io/I). Introduzindo esta grandeza na expressão da lei de Bouguer-

Lambert-Beer, resulta a bem conhecida expressão:

A = .b.c (33)

Se b = 1 cm e c = 1 M, vem = A; quer dizer, a absortividade molar, , é uma constante

correspondente à absorvância que se observaria num trajecto de 1 cm através de uma

solução contendo um soluto que absorve a radiação, com concentração 1 M.

A lei de Bouguer-Lambert-Beer encontra vasta aplicação em análise quantitativa pois

relaciona, por meio de uma constante característica do sistema soluto/solvente, uma

propriedade física mensurável, a absorvância, com a concentração da espécie química

absorvente. A medição da absorvância permite, em condições apropriadas, determinar a

concentração da espécie química absorvente.

Se a lei de Bouguer-Lambert-Beer for aplicável, o gráfico A = f (c) é linear. Contudo, a

lei de Bouguer-Lambert-Beer não é sempre aplicável. Se a concentração da espécie

química absorvente for elevada, se o feixe luminoso não for monocromático, se o soluto

existir em mais de uma forma absorvente, etc., podem ocorrer desvios à lei de Bouguer-

Lambert-Beer. Por isso, é necessário verificar, em cada caso particular, a aplicabilidade

da lei, fazendo-se comparações ou medições com diversos padrões, de concentrações

conhecidas, e traçando o gráfico da absorvância em função da concentração. Se a lei é

aplicável, os gráficos são rectas que passam pela origem, de acordo com a expressão

anterior.

É evidente que, por este método, só se podem fazer determinações directas se os solutos

forem absorventes. Solutos não absorventes podem ser doseados, indirectamente, desde

que se consiga transformá-los, quantitativamente, em espécies químicas absorventes,

por adição de reagentes apropriados. O desenvolvimento de cor, se esta não existe, é,

portanto, uma operação preliminar essencial na espectrofotometria na zona do visível.

O método de quantificação utilizado no trabalho T4 é o método de calibração. Assim,

analisam-se as soluções padrão da espécie química a determinar e a solução amostra.

Devido ao facto de o próprio solvente ou substâncias adicionadas para preparar as

soluções poderem absorver radiação, é necessário efectuar, previamente, o ensaio do

branco. O branco deve ser preparado com todos os reagentes, com excepção da amostra

e do padrão, utilizados na preparação das soluções a analisar. O ensaio do branco servirá

para ajustar a leitura da absorvância no espectrofotómetro ao valor zero para o branco

(correspondente a transmitância 100%).

Page 18: Química Analítica - Trabalhos práticos

18

3.1 Método de determinação espectrofotométrica do catião ferro (II)

O ferro é um elemento bastante comum na crosta terrestre e encontra-se presente na

composição de vários minerais como a hematite, a magnetite e a pirite.

A solubilidade do catião ferro (II) na água depende bastante da concentração de

carbonato na água. Nas águas naturais, em condições de ausência de oxigénio

dissolvido, o ferro encontra-se essencialmente na forma reduzida, Fe (II). Por exposição

ao ar ou após oxidação com um agente oxidante, o catião ferro (II) é oxidado a Fe(III), e

pode hidrolisar-se, formando o óxido de ferro hidratado, bastante insolúvel e com

coloração vermelha.

Níveis elevados de ferro na água não são admissíveis e tornam-na inadequada para uso

humano. Os níveis aceites de ferro na água são:

- inferior a 5 mg/dm3 para águas utilizadas em irrigação de culturas, segundo a FAO;

- 50 g/dm3 - valor máximo recomendável (VMR) e 200 g/dm

3 - valor máximo

admissível (VMA) na água de consumo humano, segundo a legislação Portuguesa.

O método espectrofotométrico que se irá seguir no trabalho T4 é, geralmente, utilizado

para a determinação de ferro em águas naturais ou tratadas. O método baseia-se na

reacção de complexação entre o catião Fe(II) e a 1,10-fenantrolina, da qual resulta um

complexo com coloração vermelho-alaranjada. A reacção decorre em condições de

meio ácido, com pH cerca de 3. A reacção química pode ser representada da forma

seguinte:

Fe (II) + 3 Fen. Fe(Fen.)32+

Para a determinação do ferro total, o Fe(III) existente em solução tem de ser

previamente reduzido a Fe(II), utilizando uma solução de ácido ascórbico. As medições

espectrofotométricas serão realizadas ao comprimento de onda de 510 nm.

Page 19: Química Analítica - Trabalhos práticos

19

T1 - DETERMINAÇÃO IODIMÉTRICA DA VITAMINA C NUM SUPLEMENTO

VITAMÍNICO

1. OBJECTIVOS

O objectivo principal deste trabalho é demonstrar o uso de uma reacção de oxidação-

redução em análise quantitativa, tendo em vista, neste caso, a determinação da Vitamina

C num suplemento vitamínico.

Pretende-se ainda que os alunos assimilem conhecimentos sobre:

a) o papel e a especificidade dos indicadores nas titulações redox;

b) os aspectos específicos da utilização do amido como indicador na iodimetria;

c) o tratamento da amostra e possíveis interferências;

d) a preparação e o uso da solução padrão.

2. MODO DE PROCEDER

a) Prepare uma solução padrão de iodato de potássio (KIO3), dissolvendo uma massa

rigorosa próxima de 0,3500 g do composto sólido, num balão volumétrico de 250,0 cm3.

b) Prepare uma bureta com solução padrão de tiossulfato de sódio (Na2S2O3), de

concentração rigorosa e próxima de 0,1000 mol/L, que é fornecida (ver valor da

concentração no laboratório).

c) Pese, rigorosamente, uma massa próxima de 0,3000 g do suplemento vitamínico

previamente seco e guardado no exsicador) e dissolva-a num gobelé de 200 cm3, com

60 cm3 de ácido sulfúrico 0,5 M (tome atenção à coloração da solução, uma vez que no

fim da titulação deverá obter uma solução com uma coloração semelhante, embora um

pouco mais ténue).

d) Pese cerca de 0,5 g de iodeto de potássio (KI) sólido para um matrás de 250 cm3 e

dissolva-o com 50 cm3 de ácido sulfúrico 0,5 M. Adicione ao matrás 50,00 cm

3 da

solução padrão de iodato de potássio preparada em a) e verifique que a solução fica com

uma cor acastanhada. Junte, imediatamente, a solução do suplemento vitamínico

preparada em c).

e) Logo de seguida, adicione a solução padrão de anião tiossulfato, através de uma

bureta, até a solução ficar com uma cor acastanhada ténue. Nesse momento, junte 2

cm3 de cozimento de amido (a solução adquire uma coloração azul intensa) e continue a

Page 20: Química Analítica - Trabalhos práticos

20

adição da solução padrão de anião tiossulfato até se atingir o ponto final da titulação

(desaparecimento da coloração azul).

f) Repita as operações b),c), d) e e) até obter dois valores para a percentagem de ácido

ascórbico no comprimido que não difiram entre si mais de 1%.

g) Terminados os ensaios, esvazie a bureta para o frasco de restos e, imediatamente a

seguir, lave a bureta com água. Deixe a bureta tapada e com a torneira aberta.

3. CÁLCULO DO RESULTADO

h) A partir da massa de comprimido, da concentração e do volume utilizado da solução

de iodato de potássio e do volume gasto e a concentração da solução padrão de anião

tiossulfato, calcule a percentagem de ácido ascórbico existente no comprimido e o

respectivo erro médio quadrático.

4. BIBLIOGRAFIA

C. E. Moore, J. Chem. Educ., 1948, 25, 671.

Page 21: Química Analítica - Trabalhos práticos

21

T2 - TITULAÇÃO POTENCIOMÉTRICA DE UMA MISTURA AQUOSA DE HCl E

CH3COOH

1. OBJECTIVOS

O objectivo principal deste trabalho é a determinação de dois ácidos de forças distintas,

existentes numa solução, através de uma titulação potenciométrica com uma solução de

NaHO. Pretende-se também que os alunos assimilem conhecimentos sobre:

a) o funcionamento do medidor de pH;

b) o uso do eléctrodo combinado de pH, interferências e limitações;

c) as condições necessárias e os cuidados a ter durante as medições potenciométricas.

2. MODO DE PROCEDER

2.1. Calibração do medidor de pH

Siga as instruções colocadas junto ao medidor de pH. ATENÇÃO: O eléctrodo é caro e

frágil; a mais pequena pancada pode parti-lo ou fendilhá-lo, inutilizando-o.

2.2. Titulação da solução mistura de ácidos

a) Para um goblé alto de 150 cm3, previamente lavado e passado com água

desionizada, meça 20,00 cm3 da solução mistura de HCl e CH3COOH a analisar.

b) Adicione água desionizada até o volume atingir cerca de 80 cm3, junte uma barra

magnética e coloque o goblé sobre um agitador magnético. Com muito cuidado,

introduza na solução o eléctrodo combinado de pH, de modo a ficar mergulhado na

solução, mas devidamente afastado da barra magnética.

c) Regule a velocidade de rotação da barra magnética de forma a garantir uma boa

homogeneização da solução.

d) Ligue o medidor de pH e registe o valor inicial do pH da solução.

e) Encha a bureta com solução de NaHO 1 M e adicione, com cuidado, pequenas

porções desta solução (cerca de 0,30 cm3) à solução do goblé. Registe, após cada

adição, o volume acumulado de solução de NaHO e o correspondente valor de pH

observado. Quando, após uma adição, o valor de pH variar mais do que o verificado na

adição anterior (o que indica que está perto de uma zona de variação brusca do pH),

reduza o volume adicionado de solução de NaHO para 0,10 cm3.

Page 22: Química Analítica - Trabalhos práticos

22

f) Faça o registo e trate os valores experimentais em tabelas como as que se

esquematizam abaixo:

Na curva de titulação, dever-se-á observar, inicialmente, uma progressão lenta do pH

(quase não varia), depois uma subida ligeira mas brusca, de seguida uma nova

progressão lenta, depois uma subida brusca de grande amplitude e, finalmente, uma

nova progressão lenta; Quando tiver a curva de titulação completa pode terminar a

titulação, sem exagerar no excesso de NaHO na solução titulada.

g) Terminada a titulação, retire e lave cuidadosamente o eléctrodo.

2.3. Titulação da solução de NaHO 1 M

i) Titule a solução de NaHO, utilizando 20,00 cm3 de solução padrão de HCl de

concentração próxima de 0,2000 M (ver valor da concentração no laboratório) e a

fenolftaleína como indicador. Faça dois ensaios.

j) Terminados os ensaios, esvazie a bureta para o frasco de restos de NaHO.

3. CÁLCULO DO RESULTADO

Recorrendo ao computador, trace os gráficos de pH = f (v) e pH / v = f (vmédio) que

lhe permitirão estimar os volumes de NaHO correspondentes aos pontos finais da

titulação.

A partir destes dados e da concentração da solução de NaHO, calcule as concentrações

de HCl e de CH3COOH na mistura aquosa e os respectivos erros médios quadráticos,

admitindo que o erro nos volumes equivalentes é idêntico ao erro da bureta.

4. BIBLIOGRAFIA

Daniel C. Harris, “Quantitative Chemical Analysis”, 6ª ed., W. H. Freeman and

Company, Nova Iorque, 2003.

Volume

(mL)

Volume médio

(mL)

pH pH/ v

V2-V1 (V2+V1)/2 pH2-pH1 (pH2-pH1)/ (V2-V1)

V3-V2 (V3+V2)/2 pH3-pH2 (pH3-pH2)/ (V3-V2)

Vn-Vn-1 (Vn+Vn-1)/2 pHn-pHn-1 (pHn-pHn-1)/ (Vn-Vn-1)

Volume de NaHO 1 M

gasto (mL)

Leituras no aparelho

pH

(1) 0,00 pH1

(2) pH2

……

(n) x,xx pHn

Page 23: Química Analítica - Trabalhos práticos

23

T3 - DETERMINAÇÃO POTENCIOMÉTRICA DE UM ANIÃO (NITRATO OU

FLUORETO) NUMA ÁGUA

1. OBJECTIVOS

Pretende-se, com este trabalho, determinar a concentração de um anião em águas de

consumo, utilizando um eléctrodo selectivo desse anião. Pretende-se ainda que os

alunos assimilem conhecimentos sobre:

a) o funcionamento dos eléctrodos selectivos;

b) as limitações operacionais dos eléctrodos selectivos e estratégias usadas para minorar

essas limitações.

[Uns grupos irão executar a determinação do anião nitrato (T3-A) numa água e outros

grupos irão determinar o anião fluoreto (T3-B) numa água].

A- Determinação potenciométrica do anião nitrato numa água

2. MODO DE PROCEDER

2.1 - Preparação de soluções padrão de nitrato

Prepare, em balões volumétricos, 5 soluções padrão de nitrato com concentrações

diferentes (entre 10-5

e 10-2

M) a partir da solução padrão de nitrato fornecida. Para tal,

pipete, para balões volumétricos de 50,00 cm3, 10,00, 5,00 e 1,00 mL de solução padrão

de nitrato fornecida. Adicione, em cada balão volumétrico, 1 cm3 de solução ISA.

Complete o volume dos balões volumétricos com água desionizada e proceda à

homogeneização de cada solução. Prepare as restantes duas soluções padrão, medindo

5,00 e 1,00 mL da solução padrão mais diluída (preparada anteriormente), adicionando

1 cm3 de solução ISA e perfazendo o volume dos balões volumétricos com água

desionizada.

Neste caso, a solução ISA é constituída por: Al2(SO4)3 0,9 M; 0,5g de Ag2SO4; 0,3% de

H2NSO3H, com pH cerca de 4 ajustado com solução de ácido sulfúrico.

Page 24: Química Analítica - Trabalhos práticos

24

2.2 - Preparação da solução amostra

Para um balão volumétrico de 50,00 cm3, meça 40,00 cm

3 da amostra de água a

analisar, e adicione 1,0 cm3 de solução ISA e água desionizada até completar o volume

do balão volumétrico.

2.3 - Leituras da diferença de potencial

a) Faça a leitura da diferença de potencial para as 5 soluções padrão de nitrato,

começando pela mais diluída. Para um goblé de 150 cm3 de forma alta, previamente

lavado e passado por água desionizada e pela solução padrão mais diluída, verta o

restante conteúdo do balão volumétrico; junte uma barra magnética e coloque o

goblé sobre o agitador magnético.

b) Inicie a agitação de forma cuidadosa, para garantir a homogeneização da solução.

c) Lave o eléctrodo selectivo de nitrato e o eléctrodo de referência com água

desionizada e seque-os com papel absorvente; mergulhe-os na solução,

certificando-se que a barra magnética não bate nos eléctrodos. Quando a leitura da

diferença de potencial for estável, registe o valor.

d) Após a leitura, transfira a solução para o respectivo balão volumétrico. Proceda de

igual forma para efectuar as leituras com as restantes soluções padrão.

e) Proceda de forma semelhante com a solução amostra.

2.4- Lavagem do material

No final dos ensaios, esvazie os balões volumétricos e lave-os várias vezes com

água da torneira e, depois, com água desionizada. Seque os eléctrodos e deixe-os

protegidos.

Page 25: Química Analítica - Trabalhos práticos

25

3. CÁLCULO DOS RESULTADOS

a) A partir dos valores de diferença de potencial medidos para as soluções padrão de

anião nitrato, trace o gráfico E = f(-log(Cnitrato)). A partir do gráfico de calibração e

da regressão linear dos pontos experimentais - usada para estabelecer o melhor

ajuste linear a esses pontos – determine a concentração de anião nitrato na solução

amostra analisada. Não se esqueça de atender à diluição efectuada à amostra.

b) Calcule a concentração de nitrato na amostra, expressa em mg de 3NO /dm3, p.p.m.

e mol/dm3.

c) Compare o seu resultado com o Valor Máximo Recomendável para o anião nitrato,

25 mg/dm3 (decreto-Lei nº 236/98 - Anexo VI).

4. BIBLIOGRAFIA

Método 9210A, “Potentiometric Determination of Nitrate in Aqueous Samples with an

Ion-Selective Electrode”, EPA, Novembro 2000.

Decreto-Lei nº 236/98 - Anexo VI

B- Determinação potenciométrica do anião fluoreto numa água

2. MODO DE PROCEDER

2.1 - Preparação de soluções padrão de fluoreto

Prepare, em balões volumétricos, 5 soluções padrão de fluoreto com concentrações

diferentes (entre 10-5

e 10-2

M) a partir da solução padrão de fluoreto fornecida. Para tal,

pipete, para balões volumétricos de 50,00 cm3, 10,00, 5,00 e 1,00 mL de solução padrão

de fluoreto fornecida. Adicione, em cada balão volumétrico, 20 cm3 de solução TISAB.

Complete o volume dos balões volumétricos com água desionizada e proceda à

homogeneização de cada solução. Prepare as restantes duas soluções padrão, medindo

5,00 e 1,00 mL da solução padrão mais diluída (preparada anteriormente), adicionando

20 cm3 de solução TISAB e perfazendo o volume dos balões volumétricos com água

desionizada.

Page 26: Química Analítica - Trabalhos práticos

26

Neste caso, a solução TISAB é constituída por: NaCl 1,0 M; CH3COOH 0,25 M,

NaCH3COO 0,75 M e Na3C6H5O7 0,001 M.

2.2 - Preparação da solução amostra

Para um balão volumétrico de 50,00 cm3 meça 25,00 cm

3 da amostra de água a analisar,

e adicione 20,0 cm3 de solução TISAB e água desionizada até completar o volume do

balão volumétrico.

2.3 - Leituras da diferença de potencial

a) Faça a leitura da diferença de potencial para as soluções padrão, começando pela

mais diluída. Para um goblé de 150 cm3 de forma alta, previamente lavado e passado

por água desionizada e pela solução padrão mais diluída, verta o restante conteúdo

do balão volumétrico; junte uma barra magnética e coloque o goblé sobre o agitador

magnético.

b) Inicie a agitação de forma cuidadosa, para garantir a homogeneização da solução.

c) Lave o eléctrodo selectivo de fluoreto e o eléctrodo de referência com água

desionizada e seque-os com papel absorvente; mergulhe-os na solução, certificando-

se que a barra magnética não bate nos eléctrodos. Quando a leitura da diferença de

potencial for estável, registe o valor.

d) Após a leitura, transfira a solução para o respectivo balão volumétrico. Proceda de

igual forma para efectuar as leituras com as restantes soluções padrão.

e) Proceda de forma semelhante com a solução amostra.

2.4 - Lavagem do material

No final dos ensaios, esvazie os balões volumétricos e lave-os várias vezes com água

da torneira e, depois, com água desionizada. Seque os eléctrodos e deixe-os

protegidos.

Page 27: Química Analítica - Trabalhos práticos

27

3. CÁLCULO DOS RESULTADOS

a) A partir dos valores de diferença de potencial medidos para as soluções padrão de

anião fluoreto, trace o gráfico E = f(-log(Cfluoreto)). A partir do gráfico de calibração

e da regressão linear dos pontos experimentais - usada para estabelecer o melhor

ajuste linear a esses pontos – determine a concentração de anião fluoreto na solução

amostra analisada. Não se esqueça de atender à diluição efectuada à amostra.

b) Calcule a concentração de fluoreto na amostra, expressa em mg de fluoreto/dm3,

p.p.m. e M.

c) Compare o seu resultado com o valor indicado no rótulo da garrafa ou, caso não

exista, com o Valor Máximo Admissível para o anião fluoreto, 1,5 mg/dm3 (decreto-

Lei nº 236/98 - Anexo VI).

4. BIBLIOGRAFIA

T. S. Light, C. C.Cappuccino, J. Chem. Educ., 1975, 52, 247.

Decreto-Lei nº 236/98 - Anexo VI

Método 9214, “Potentiometric Determination of Fluoride in Aqueous Samples with an

Ion-Selective Electrode”, EPA, Dezembro 1996.

Page 28: Química Analítica - Trabalhos práticos

28

T4 – DETERMINAÇÃO ESPECTROFOTOMÉTRICA DE FERRO TOTAL NUMA

ÁGUA (MÉTODO DA CURVA DE CALIBRAÇÃO)

2. MODO DE PROCEDER

2.1 - Preparação das soluções padrão de ferro e da solução amostra

A solução de ácido ascórbico tem de ser preparada fresca porque é pouco estável. Para

preparar essa solução, pese, para um goblé de 100 mL, cerca de 0,2 g de ácido

ascórbico, junte-lhe 20 mL de água e dissolva o sólido com a ajuda de uma vareta de

vidro.

a) Para 5 balões volumétricos de 50,00 mL, muito bem lavados e passados por água

desionizada, adicione cerca de 20 mL de água desionizada (cerca de metade da

capacidade do balão volumétrico)

b) Em cada um dos balões volumétricos, adicione 2 mL de solução de ácido ascórbico

1% e agite.

c) Adicione de seguida aos balões a solução padrão de Fe (II) fornecida na seguinte

sequência: balão (1) – 2 mL; balão (2) –4,00 mL; balão (3) – 6,00 mL; balão (4) – 8,00

mL; balão (5) – 10,00 mL. Agite as soluções resultantes. (Note bem: em alternativa

poderá ter de utilizar o seguinte conjunto de volumes de solução padrão: 1,00, 3,00,

5,00, 7,00 e 9,00 mL. Confira qual o conjunto de pipetas que possui na sua bancada

de trabalho.)

d) Em todos os balões volumétricos, adicione 5 mL de solução tampão acetato 0,1 M,

pH= 4,5 e 2 mL de solução de 1,10-fenantrolina 0,2% (em etanol/água, 1/9). Agite e

perfaça o volume do balão volumétrico com água desionizada. Agite novamente e deixe

em repouso durante cerca de 10 minutos, para permitir o desenvolvimento de cor.

e) Prepare a solução amostra medindo rigorosamente 25,00 mL da amostra fornecida

para um balão volumétrico de 50,00 mL, muito bem lavado e passado por água

desionizada. Adicione as soluções referidas em b) e d).

2.2 - Preparação do branco

Prepare o branco, adicionando para um balão volumétrico de 50,00 mL, as soluções

referidas em b) e d).

Page 29: Química Analítica - Trabalhos práticos

29

2.3 - Leituras de absorvância

a) Com o branco, ajuste a leitura do espectrofotómetro de forma a obter zero de

absorvância, a 510 nm.

b) Registe os valores de absorvância das soluções padrão e da solução amostra, ao

comprimento de onda de 510 nm.

3. CÁLCULO DO RESULTADO

a) A partir dos volumes de solução padrão de Fe(II) que foram utilizados na preparação

das soluções padrão, calcule a concentração ferro, em mg/dm3, para cada solução

padrão preparada.

b) Trace o gráfico A = f(CFe). Se só se observar linearidade na parte inicial do gráfico,

essa será a zona para a qual a lei de Bouguer-Lambert-Beer é aplicável.

c) A partir do gráfico de calibração, obtenha a concentração de ferro total na água,

expressa em mg de ferro por litro de água, em p.p.m. e em mol/dm3; não se esqueça de

atender à diluição efectuada.

4. BIBLIOGRAFIA

Analytical Methods Committee, Analyst, 1978, 103, 391.