perfil inflamatÓrio das parasitoses intestinais …

42
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CURSO DE GRADUAÇÃO EM FARMÁCIA Júlia Kandisse Vieira de Almeida PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS CAUSADAS POR HELMINTOS: UMA REVISÃO Natal-RN 2019

Upload: others

Post on 16-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

CURSO DE GRADUAÇÃO EM FARMÁCIA

Júlia Kandisse Vieira de Almeida

PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS CAUSADAS POR

HELMINTOS: UMA REVISÃO

Natal-RN

2019

Page 2: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

Júlia Kandisse Vieira de Almeida

PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS CAUSADAS POR

HELMINTOS: UMA REVISÃO

Artigo apresentado à Coordenação do Curso de Farmácia da

Universidade Federal do Rio Grande do Norte, para inscrição do

Trabalho de Conclusão do Curso (TCC), como requisito parcial

para conclusão da graduação em Farmácia.

ORIENTADORA: Profª Drª Aldilane Gonçalves da Fonseca

Natal - RN

2019

Page 3: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

Júlia Kandisse Vieira de Almeida

PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS CAUSADAS POR

HELMINTOS: UMA REVISÃO

Artigo apresentado à Coordenação do Curso de Farmácia da

Universidade Federal do Rio Grande do Norte, para inscrição do

Trabalho de Conclusão do Curso (TCC), como requisito parcial

para conclusão da graduação em Farmácia.

ORIENTADORA: Profª Drª Aldilane Gonçalves da Fonseca

Banca de Avaliação:

Presidente: Profa Aldilane Gonçalves da Fonseca, Dra. – Orientadora, UFRN

Membro: Profa. Ana Claúdia Galvão Freire Gouveia, Dra., UFRN

Membro: Profa. Marcela Abbot Galvão Ururahy, Dra., UFRN

Natal, 05 de novembro de 2019

Page 4: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

AGRADECIMENTOS

A Deus, pela confiança, pela paciência e sabedoria concedida durante esta travessia, pelo

seu amor grandioso e misericordioso para conosco. A Ele, toda minha gratidão.

À minha mãe, Regina, pela perseverança e esforços para que esta conquista fosse alcançada,

por acreditar e aceitar minhas decisões, pelo seu amor incondicional.

Ao meu pai, Carlos Antônio, pelo amor, pelo carinho, pelo aconchego e por todo o apoio de

sempre.

Ao meu namorado, Pedro, por me ajudar em todas as horas de desespero, pelo amor e

ternura de sempre.

À minha orientadora, Profª Drª Aldilane, por me acolher, acreditar e confiar, além de toda

atenção e paciência concedida.

Aos demais professores que contribuíram para minha formação.

Aos meus amigos que durante os últimos anos partilharam muitos momentos de aflição, mas

também de grandes alegrias. Por estarem estimulando o meu crescimento pessoal e

profissional.

A todos o meu muito obrigada!

Page 5: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

Perfil inflamatório das parasitoses intestinais causadas por helmintos: uma revisão

Inflammatory profile of intestinal parasites caused by helminths: a review

Júlia Kandisse Vieira de Almeida1; Aldilane Gonçalves da Fonseca1

1 Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade

Federal do Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, s/n, CEP 59012-

570. Natal, RN, Brasil.

Autor de Correspondência:

Aldilane Gonçalves da Fonseca

Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal/RN

CEP: 59012-570

Tel: +55 84 3342-9835

E-mail: [email protected]

Page 6: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

RESUMO

Os helmintos infectam bilhões de pessoas em todo o mundo, quando transmitidos para o

hospedeiro causam uma agressão, através de ações espoliadora, tóxica, mecânica ou localização

ectópica, desencadeando uma resposta imune e inflamação. Diante disto, esta revisão aborda os

mecanismos imunológicos e imunorregulatórios relacionados a estes parasitos, com objetivo de

compreender melhor as patogenias envolvidos nas helmintíases. Para todos os helmintos

intestinais foi encontrado perfil inflamatório semelhante: a resposta inata, seguida da ativação

da via alternativa do sistema complemento, que estimula o C3b (opsonização) e C5a (ativa

mastócitos, basófilos e inflamação). Assim como a resposta adaptativa (Th2), onde partes do

parasito, os Padrões moleculares associados à patógenos (PAMP), são reconhecidas pelas

células apresentadoras de antígenos (APC) e via Complexo Principal de Histocompatibilidade

de classe II (MHC II), é apresentado para o TCD4, também chamado de Th0, a Interleucina-4

(IL-4) produzida por mastócitos e eosinófilos, transforma Th0 em Th2, assim o Th2 passa a

produzir várias substâncias como IL-13, IL-4, IL-5. Todos os mecanismos discutidos nesta

revisão colaboraram para uma melhor compreensão da patogenia das helmintíases, bem como

para nortear novas pesquisas.

Palavras-chaves: Helmintos. Inflamação. Imunorregulação.

Page 7: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

ABSTRACT

Helminths infect billions of people worldwide, when transmitted to the host cause aggression

through spoiling, toxic, mechanical or ectopic localization, hence an immune response and

inflammation. Thus, this review addresses the immunological and immunoregulator

mechanisms of these parasites in order to better understand how the pathogens are applied by

helminths. For all intestinal helminths, a similar inflammatory profile was found: the innate

response, followed by activation of the alternative complement pathway, which stimulates C3b

(opsonization) and C5a (activates mast cells, basophils and inflammation), as well as the

adaptive response (Th2), where parts of the parasite, the associated molecular patterns

Pathogens (PAMP), are recognized by antigen presenting cells (APC) and via Class II Main

Histocompatibility Complex (MHC II) pathway, it is presented for TCD4, also called Th0, turns

Th0 into Th2, so Th2 now produces various substances like IL-13, IL-4, IL-5. All the

mechanisms discussed in this review contributed to a better understanding of the pathogenesis

developed, as well as to guide new research.

Keywords: Helminths. Inflammation. Immunoregulation.

Page 8: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

8

1 INTRODUÇÃO

As infecções parasitárias são eventos comuns em nosso meio e ocorrem em todas as

faixas etárias e níveis socioeconômicos [1]. Apresentam alta prevalência nas comunidades

socioeconomicamente desfavorecidas, principalmente em países tropicais e subtropicais [2],

com variações de acordo com o ambiente e espécie de parasito envolvido [3]. Parasitoses,

principalmente as causadas por helmintos, desencadeiam centenas de milhares de mortes

evitáveis a cada ano e estão entre as doenças infecciosas mais recorrentes do mundo. Trata-se

de um problema de saúde pública com cerca de 3,5 bilhões de pessoas infectadas em todo o

planeta [2], onde o Ascaris lumbricoides, os ancilostomídeos e o Trichuris trichiura infectam

cerca de 1.450 milhões, 1.300 e 1.050 milhões de pessoas, respectivamente, enquanto a

esquistossomose intestinal afeta mais de 200 milhões de pessoas, segundo estimativa realizada

pela OMS [4].

No Brasil, em 2014, dados do Departamento de Informática do Sistema Único de Saúde

(DATASUS) mostraram que as doenças infeciosas e parasitárias representaram a sexta causa

de morbidade no país, totalizando 776.358 internações, o que corresponde a 7,28% da

morbidade hospitalar no período [5].

Os helmintos compreendem um grupo diverso de organismos metazoários que infectam

bilhões de pessoas e animais domésticos em todo o mundo. Em grande parte, as helmintíases

são causadas por membros do filo Nematoda (cilíndricos) e Platyhelminthes (achatados).

Espécies pertencentes a ambos os filos ocupam numerosos nichos dentro de seus hospedeiros

mamíferos, variando desde o lúmen intestinal até locais intravasculares e mesmo

intracelulares [6].

A infecção no hospedeiro gera um processo inflamatório, com recrutamento de

fagócitos, leucócitos do sangue periférico e proteínas plasmáticas no local da infecção. O fluxo

sanguíneo e a permeabilidade vascular aumentam, principalmente no endotélio para permitir a

transmigração de leucócitos e a entrada de proteínas plasmáticas, sistema complemento, fatores

de coagulação e anticorpos [7]. Durante a infecção, os mecanismos imunológicos também são

ativados como a resposta imune adaptativa ou especifica, que ocorre contra microrganismos ou

antígenos previamente reconhecidos pela resposta inata, havendo predomínio da resposta

adaptativa para parasitoses intestinais. A resposta imune inata ou inespecífica, a qual é a

primeira linha de defesa do hospedeiro, apresenta métodos de proteção preexistentes, incluindo

as barreiras naturais (pele e mucosa), secreções, neutrófilos, macrófagos, mastócitos e células

Page 9: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

9

natural killer (NK). Os macrófagos participam tanto como células apresentadoras de antígeno

quanto como células efetoras, via liberação de citocinas ditas pró-inflamatórias (p.ex.: fator de

transformação do crescimento beta [TGF-β] e Interleucinas IL-1, IL-10, IL-12 e IL-23),

quimiocinas, espécies reativas de oxigênio, produção de prostanóides e metaloproteinases da

matriz extracelular [8].

Parasitos, particularmente helmintos, podem modular a resposta imune e propiciar um

ambiente anti-inflamatório que favoreça sua sobrevivência dentro do organismo do hospedeiro,

ou seja, suprimem respostas imunes pró-inflamatórias para manter seu ciclo vital. Nestas

infecções, embora o complemento e outros fatores da resposta imune inata possam atuar na

defesa, predomina a resposta imune adaptativa ou específica com a produção de anticorpos e

citocinas. As células T CD4+ e TCD8+ do tipo 2 são produtoras de citocinas como IL-4, IL-5

e IL-13 que, entre outras funções, induzem a produção de IgE pelas células B e ativação de

eosinófilos, mastócitos e basófilos, respectivamente; componentes fundamentais na defesa

contra os parasitas, citocinas reguladoras como IL-10 e TGF-β também estão presentes na

resposta. Anticorpos da classe da imunoglobulina IgE ligam-se aos basófilos circulantes ou

mastócitos teciduais, induzindo a liberação de histamina e outros mediadores da reação de

hipersensibilidade imediata, que leva à destruição de helmintos. Eles também inibem

Interferon-gama (IFN-γ), IL-1 e IL-17 e suprimem a resposta imune inflamatória de células Th1

e Th17 [7, 8, 9, 10].

Helmintos secretam produtos excretórios-secretórios (ES) (Figura 1), como a ES-62,

que são glicosilados e induzem citocinas Th2 e expansão de células T regulatórias. Ademais, a

quantidade de células T regulatórias (CD4+CD25+FOXP3+) que produzem IL-10 e TGF-β

aumenta após a infecção por helmintos, contribuindo para sua permanência dentro do

organismo hospedeiro. A homeostase gerada por essas respostas imunes previne uma reação

exagerada contra os parasitas que também prejudicariam o hospedeiro, garantindo a

sobrevivência dos helmintos [7].

O principal objetivo desta revisão é discutir sobre o perfil inflamatório nas principais

helmintíases intestinais e os mecanismos que são desencadeados. Isso irá contribuir na

perspectiva da elucidação de mecanismos de patogenia e pesquisas de novas alternativas

terapêuticas.

Page 10: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

10

Figura 1: Efeito dos produtos excretor / secretório de helmintos (ES) nas células

imunológicas do hospedeiro.

Fonte: (Smallwood et al., 2017).

2 METODOLOGIA

2.1. Critério de eleição

A seleção dos estudos a serem incluídos neste estudo baseou-se no seguinte: (1) o estudo

deve ser sobre inflamação decorrente de parasitoses intestinais; (2) o estudo deve ser publicado

em língua inglesa ou portuguesa; (3) os estudos devem apresentar o perfil inflamatório nas

parasitoses intestinais; (4) os estudos devem ser publicados entre 1999 e 2019; (5) os estudos

não devem tratar de pesquisas com tratamentos. Os critérios de exclusão para o propósito desta

revisão foram estudos não relacionados à inflamação decorrente de parasitoses intestinais.

2.2. Estrategia de busca

A busca foi eletrônica, visando estudos que discorreram sobre inflamação decorrente de

parasitoses intestinais. Isso produziu 1087 referências, mas apenas 61 foram incluídas na

revisão usando os critérios de inclusão/exclusão. Os artigos foram extraídos por busca

Page 11: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

11

eletrônica do PubMed, NCBI, LILACS e outros periódicos relevantes. Várias palavras-chave

utilizadas na estratégia de busca incluíram o seguinte: inflamação, parasitoses intestinais, perfil

inflamatório, helmintos intestinais, ascaridíase, ancilostomose, tricuríase, enterobíase,

estronloidíase, esquistossomose e teníase. Várias combinações de palavras-chave foram feitas

usando “AND” e “OR” como operadores booleanos.

Uma abordagem prática para a inflamação em parasitoses intestinais decorrente desta

revisão e da experiência dos autores é apresentada aqui.

3 RESULTADOS

Esta revisão encontrou 1087 artigos relacionados ao tema pesquisado, dos quais 53

foram selecionados de acordo com os critérios estabelecidos para nossa análise e comparação.

Ao final desta sessão, o Quadro 1 resume estes achados.

3.1 Ascaridíase e inflamação

A revisão encontrou 43 artigos relacionados ao tema pesquisado, onde 7 foram

escolhidos de acordo com os critérios de eleição. Weatherhead e colaborares (2018)

encontraram IL-4, IL-5, IL-13 aumentadas e IL-10 ligeiramente elevada, resultando em um

aumento das citocinas do tipo 2. Em contraste, para a resposta Th1, não foi notado TNF-α ou

IFN-γ, significando uma redução ou ausência [11]. Já Zavala e colaradores (2018), notaram IL-

10 regulando TNF-α e IL‐ 6 na inflamação [12]. Gazzinelli-Guimaraes e colaboradores (2019)

demonstraram aumento significativo dos níveis de IL-4, IL-13, IL-13Rα2, IL-1β e TNF-α, em

contraproposta, níveis de IL-5 e IL-6 mostraram um padrão bastante diferente da IL-4, IL-13,

IL-33, além dos aumentos acentuados nas quimiocinas CCL-11 (eotaxina ou proteína

quimiotática eosinófila), CCL-2 (proteína quimioatraente 1 de monócitos ou MCP-1) e CXCL-

10 (Proteína 10 induzida por interferon gama ou IP-10), também encontrou-se um pequeno

acúmulo, mas mensurável, de células Th2 efetoras de CD4 +, eosinófilos ativados e macrófagos

alternativamente ativados (M2) [13]. Em um estudo anterior Gazzinelli-Guimaraes (2013)

havia observado somente o aumento de IL-5, IL-6 e TNF-α [14]. Nogueira e colaboradores

(2016), além de observaram o aumento de IL-4, IL-5, IL-6, IL-10 e TNF-α como já visto em

outros estudos, também notaram o aumento de IL-17A e a intensa inflamação pulmonar

associada a uma resposta imune Th2/Th17 sistêmica polarizada durante as múltiplas exposições

Page 12: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

12

ao Ascaris lumbricoides, já que este verme também pode desenvolver sua patogenia no sistema

pulmonar [15].

Ainda, Aceved e colaborados (2013), compararam e demonstraram a forte indução de

IgE por estes parasitas em relação a alérgenos [16], o que também foi comprovado por Pitrez e

seus colaboradores (2015) em relação aos eosinófilos, assim como a produção de IL-10 e a

redução de IL-5 nos individuos já sensibilizados [17].

3.2 Ancilostomose e inflamação

Encontrou-se 88 artigos, onde 10 foram designados para esta revisão, levando-se em

consideração os critérios estabelecidos. Além da resposta imune inata, interleucinas como IL-

33, IL-25, células apresentadoras de antígenos (células dendríticas) e células linfóides inatas

(ILC2), levaram a um aumento na liberação das citocinas tipo 2 IL-4, IL-5 e IL-13, sinalizadas

através da via IL-4Rα/Stat6 [18, 19]. Damle (2016) destaca a produção de IgE, assim como

por consequência o aumento da produção de muco, hiperplasia das células caliciformes,

eosinofilia e estimulação do nervo entérico, para facilitar a expulsão do verme intestinal [20].

Navarro e colegas (2016) identificaram uma proteína secretada por ancilóstomos,

proteína anti-inflamatória-2 (AIP-2), que suprimiu a inflamação, assim como reduziu a

expressão de marcadores co-estimulatórios em células dendríticas humanas (DCs) e suprimiu

células T [21].

Ferreira e colaboradores (2017) analisaram a proteína anti-inflamatória recombinante

(AIP-1), secretada em abundância por ancilóstomos na mucosa intestinal e notaram que com a

presença da proteína a infiltração local de células inflamatórias reduziu, apresentando perda

mínima de células caliciformes e a arquitetura mucosa sendo preservada. Ainda, o tratamento

com AIP-1 promoveu a produção de interleucinas no cólon IL‐ 10, TGF‐ β e linfopoietina do

estroma do timo (TSLP), resultando na supressão do fator de necrose tumoral (TNF)‐ α, IL‐

13 e IL‐ 17 A, caracterizando um acúmulo de células T reguladoras no cólon [22].

Jang (2015) também afirma a supressão das citocinas Th2 por RELMα, ainda acrescenta

que a expressão das resinas trata-se de uma resposta inata a múltiplos helmintos, onde promove

o recrutamento de monócitos e um ambiente de citocina pró-inflamatória tipo 1, levando a uma

diminuição do clearance de helmintos e a uma inflamação exacerbada associada à infecção [23].

Pesce e colaboradores (2009) e Fitzsimmons e colaboradores (2014) sugerem que a

imunidade de Th2 é aumentada durante a infecção pelo helminto [24, 25], assim como a IL-17

inicialmente contribuiu para a inflamação, enquanto a sinalização subsequente do receptor de

Page 13: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

13

IL-4 (IL-4R) reduziu elevações nos níveis de mRNA da IL-17, embora outros estudos

demonstrem que IL-17 medeia o curso da inflamação. IL-10 aumentou sua expressão e

estimulou o desenvolvimento de macrófagos M2, os quais contribuíram para a rápida resolução

do dano tecidual [26].

Chenery e companheiros (2019) abordam um marcador de ativação alternativo, o Ym1

derivado dos macrófagos alveolares (Mφs), que pode conduzir o recrutamento de neutrófilos

inatos dependente do receptor IL-1R durante a infecção pelo nematoide, também discute o

aumento da eosinofilia e das proteínas inflamassomas como a NLRP3, que apresentam uma

importante função pró-inflamatória [27].

3.3 Tricuríase e inflamação

Na revisão localizou-se 65 artigos, dos quais 7 foram eleitos de acordo com os critérios

determinados para nossa análise e comparação.

Assim como Yang (2017), Duque-Correa (2019) observou a resposta Th1 inicialmente,

seguida por fator de crescimento transformador (TGF –β), IL-35 e IL-10, macrófagos e células

T em resposta a antígenos parasitários excretores-secretórios (ES) [28, 29]. Jang (2015)

reafirma esta resposta acrecentando o equilíbrio entre citocinas Th2 e citocinas pró-

inflamatórias do tipo 1, como IFNγ e TNFα, considerando a contra-regulação entre elas. Por

exemplo, a inibição de IFNγ promove a expulsão de Trichuris muris, permitindo o

desenvolvimento de uma resposta imune protetora Th2 [23].

Urban e colaboradores (2000), em estudos com ratos infectados com Trichuris muris,

bloqueando as interações do ligante B7, inibiu a imunidade protetora, suprimiu a produção de

IL-4 e aumentou a produção de IFN-γ, mas inesperadamente não inibiu a produção da citocina

Th2, IL-13. O bloqueio de IFN-γ e B7 restaurou a imunidade protetora, que dependia de IL-13,

mas não restaurou IL-4 ou respostas de IgE associadas. Embora a IL-13 fosse necessária para

a expulsão de vermes em camundongos nos quais o IFN-γ e o B7 estavam bloqueados, a IL-4

poderia mediar a expulsão na ausência de IL-13 e IFN-γ [30].

Nair e colegas (2008), usando um modelo natural de inflamação intestinal induzida por

infecção crônica com helminto gastrointestinal Trichuris muris, identificou funções duplas para

RELMβ no aumento das respostas das células CD4+ Th1 e na promoção de inflamação

intestinal induzida por infecção, associada à produção robusta de IFN-γ [31]. Foi confirmado

por Chen (2016), que o RELMβ promove ativação de macrófagos e células T, levando ao

Page 14: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

14

aumento da inflamação intestinal e à diminuição da resposta imune Th2 [32]. Por outro lado, a

função de RELMβ durante a infecção por helmintos pode ser dependente do parasito [33].

3.4 Enterobíose e inflamação

Para este termo encontrou-se 38 artigos, dos quais 3 foram selecionados de acordo com

os critérios estabelecidos para nossa análise e comparação. No estudo de Panidis e

colaboradores (2011) pode-se observar acentuado número de leucócitos e neutrófilos [34]. Th2

como resposta imune predominante e a elevação de IL-4 e IL-13, notando que IL-13 apresenta

um papel mais dominante que IL-4, ainda, a ausência das citocinas do tipo 1 IFN-γ e IL-12 e a

diminuição dos níveis de IgA-S secretor (SigA) no intestino [35, 36].

3.5 Estrogiloidíase e inflamação

Noventa artigos relacionados ao tema pesquisado foram encontrados, 6 foram

selecionados de acordo com os critérios especificados. Bleay (2007) explica a resposta imune

dos vertebrados a este helminto, mostrando que a resposta é tipicamente uma resposta T-helper

tipo 2 (Th2), ao invés de uma resposta inflamatória do tipo Th1 que é gerada em resposta a

microparasitas. Uma resposta imune do tipo Th2 é caracterizada pela produção das citocinas

IL-4, IL-5, IL-13, IgA e IgE [37], acompanhada de mastócitos intestinais, eosinófilos, células

caliciformes, proliferação de enterócitos e contratilidade intestinal, e ainda secreção de IL-9 por

citocinas Th2, segundo Sipahi (2017). Outras vias acessórias são ativadas, incluindo o aumento

da expressão de células T reguladoras e IL-10 e/ou a transformação dos níveis do fator de

crescimento beta, levando a uma resposta predominantemente anti-inflamatória [38]. Ainda, foi

comprovado por Anuradha (2015) o papel das células T CD4 + na expressão das citocinas Th1,

Th2 e Th17 na infecção humana por S. stercoralis, que demonstrou uma diminuição nas células

funcionais Th1 e Th17 e um aumento nas células funcionais Th2, em comparação com

indivíduos não infectados. A regulação das células Th1, Th2 e Th17 foi predominantemente

dependente da IL-10, enquanto que a regulação das células Th2, mas não Th1 ou Th17, também

foi dependente do TGFβ. Descobriu-se níveis circulantes significativamente menores de

citocinas pró-inflamatórias (interferon gama, fator de necrose tumoral alfa e IL-1) e níveis

significativamente mais altos de citocinas anti-inflamatórias (IL-4, IL-5, IL -9, IL-10, IL-13,

IL-27, IL-37 e TGF-β) [39]. Rajamanickam (2016) também acrescenta marcadores

Page 15: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

15

inflamatórios (metaloproteinase da matriz 1 [MMP-1] e heme oxigenase 1 [HO-1]), e citocinas

pró-inflamatórias (IL-6, IL-8, proteína quimioatraente 1 de monócitos [MCP-1] e IL-1β [40]).

Pace (2018) afirma o aumento da produção de Th2 e interleucinas, destacando IL-4

como responsável por ativar o fator de transcrição STAT6 e sua importância clínica [39]. Em

estudo, Reitz (2018), usa camundongos deficientes em receptor de IL-9 infectados

com Strongyloides ratti e comprova que os animais deficientes em receptor de IL-9 exibiram

uma carga parasita intestinal aumentada e uma infecção prolongada. O aumento da carga

parasitária foi correlacionado com uma degranulação precoce reciprocamente reduzida de

mastócitos da mucosa, redução da expressão intestinal de IL-13 causada por deficiência do

receptor de IL-9 em células hematopoiéticas [41].

3.6 Esquistossomose e inflamação

Segundo critérios, esta pesquisa encontrou 598 artigos, dos quais 13 foram utilizados

para os resultados. Estudos comprovam que a infecção produz respostas Th2 maiores, seguidas

por uma resposta Th1 precoce que pode estar associada a uma resposta Th17. A fase aguda da

infecção é caracterizada pela produção de citocinas regulatórias como interleucina (IL)-10, que

é capaz de inibir citocinas pró-inflamatórias como interferon (IFN)-γ, fator de necrose tumoral

(TNF)-α e óxido nítrico (NO) [36, 42, 43]. Estudos anteriores, realizados por MacDonald e

companhia (2002), abordaram a imunorregulação por IL-13 e IL-12, assim como Weinstock

(2014), estudou a supressão da produção de esplenócitos e células do sistema nervoso central

(SNC) de IL12p40, IFNγ e TNFα enquanto aumenta TGFβ, IL10 e IL4 [6, 44].

Rutitzky e colegas (2006) relata células T CD4 pró-inflamatórias produzindo IL-17,

estimuladas pela citocina heterodimérica IL-23, já Smith (2007) fala sobre o mecanismo

dependente de macrófagos, que diverge da modulação das respostas Th2 ou indução por CD4 +,

CD25 +, IL-10 e TGF-β, células imunoreguladoras, os macrófagos detectados neste mecanismo

foram F4/80 + CD11b + CD11c -. Osada (2010) observou uma diminuição da atividade

inflamatória por meio da redução de IFN-γ, TNF-α e IL-17 e do aumento de IL-4 e IL-10 [45,

43, 46].

A infecção por Schistosoma mansoni levou ao aumento da expressão de Resistin-like

alpha (RELMα) no tecido infectado, incluindo celulas inumes inatas, macrófagos e eosinófilos,

que atuaram para suprimir a imunidade Th2, como observado por Chen e Jang (2016, 2015).

Além disso, a formação de granuloma pulmonar induzido pelos ovos do parasito S.

Page 16: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

16

mansoni depende da IL-4 e IL-13, que está associado a aumentos acentuados na expressão de

RELMα [32, 23, 24].

O estudo de Pesce (2006), mostra o receptor da IL-21 (IL-21R) significativamente

homologado com o receptor IL-4R, e as células CD4+ e Th2. Mostra-se que a resposta

granulomatosa e a fibrose hepática foram reduzidas em camundongos deficientes desde a

citocina, assim como os que também fazem uso/tratamento com ela, a redução acentuada na

expressão e função das citocinas Th2, como evidenciado pelas respostas atenuadas de IL-4, IL-

13, enzimas clivadoras de quitina (AMCase), quitinase 3-like 3 (Ym1) e FIZZ1 (também

conhecidas como RELMα) nos tecidos, também contribuiram para este resultado clínico. IL-21

apesenta-se como um importate amplificador de ativação alternativa de macrófagos [47], ainda,

Hebert (2004), corrobora com a ideia da importância de macrófagos alternativos para proteção

contra lesão de órgãos através da regulação negativa da inflamação induzida por macrófagos /

neutrófilos ativados por IL-4 / IL-13 durante T H2 respostas. Em estudos in vivo, a IL-10 não é

capaz de compensar a ausência de macrófagos alternativos ativados por IL-4 / IL-13, levando

os camundongos a óbito. Coletivamente, em estudos humanos, os níveis de IFN-γ, NO e TNF-

α mostraram-se altamente elevados, enquanto pacientes com esquistossomose humana

assintomática obtiveram produção elevada de IgE e IL-5 [48].

3.7 Teníase e inflamação

Obteve-se 165 artigos de acordo com a temática, onde 7 foram desiganados para esta

revisão.

No estudo de Nash (2017), foi encontrado fator de necrose tumoral alfa (TNF-α) [49].

Resposta das células T auxiliares Th1 e Th2; IL-2 e interferon-γ sendo produzidas por Th1;

altos níveis de citocinas Th2, como IL-4 (induzindo a produção de IgE) , IL-5 (quimiocina para

recrutamento de eosinófilos) e as metaloproteinases (MMP) em quantidades aumentadas foram

encontradas na resposta inflamatória do hospedeiro para este parasito, segundo Mahanty (2017)

[50]. Além disto, Johnston (2010) observou a ativação de macrófagos: interleucina-1β (IL-1β),

IL-6 e fator de necrose tumoral alfa que são induzidos por lipopolissacarídeo (LPS) TNF-α, e

TNF-α e IL-6 induzidos por poli (I: C) [51].

Adalid-Peralta (2012), analisou a frequência das células T reguladoras (Tregs) e sua

relação com o nível de resposta proliferativa, o nível de linfócitos ativados e as citocinas

expressas em pacientes. Tregs periféricos significativamente aumentados (CD4, CD25, FoxP3,

CTLA4 e IL10 ) e uma diminuição significativa nas células T ativadas (CD38 e CD69 ) foram

Page 17: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

17

observadas [52], Arce-Sillas (2016), também estudou os mecanismos de ação das células T

reguladoras no controle da resposta imune. Curiosamente, as células T reguladoras

expressaram níveis mais altos de antígeno linfocitário T citotóxico 4 (CTLA‐ 4), morte

programada 1 (PD‐ 1) e receptor de fator de necrose tumoral induzido por glicocorticóide

(GITR), sugerindo um mecanismo de contato célula a célula com células dendríticas. Além

disso, níveis mais altos de IL‐ 10 e de células T reguladoras tipo 1 (Tr1) foram encontrados no

sangue periférico de pacientes, sugerindo que o mecanismo de ação das células T reguladoras

envolve a liberação de citocinas imunomoduladoras. As células T reguladoras supressivas

correlacionaram-se negativamente com linfócitos ativados tardiamente (CD4 +CD38 + ) [53].

Arce-Sillas e Adalid-Peralta (2018, 2012), reafirmam o trabalho anterior em relação a

maiores porcentagens de Tr1, CD4+, CD25+, FOXP3+, e acrecenta CD127–e, CD4+,

CD45RO+, CTLA4+, FOXP3HI, IL-10 e o papel crítico das células Tregs no equilibrio da

inflamação [54, 52].

Page 18: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

18

Quadro 1: Perfil Inflamatório nas parasitoses intestinais.

Parasitose Intestinal Perfil Inflamatório Referências

Ascaridíase Citocinas aumentadas: IL-4, IL-5, IL-13, IL-10, IL-6, IL-33,

eosinófilos, macrófagos e TNF-α redução de IFN-γ. Predomínio de

Th2 e Th17 para a resposta pulmonar.

[11]; [12]; [13]; [14]; [15]; [16]; [17]

Ancilostomíase Aumento de IL-4, IL-5, IL-13, IL-33, IL-10, IL-17, IgE, eosinófilos,

células caliciformes e células dendríticas.

[18]; [19]; [20]; [21]; [22]; [23];

[24]; [25]; [26]; [27]

Tricuríase Aumento de IL-4, TGF -β, IL-35 e IL-10, IL-13, IgE, macrófagos e

redução de IFN-γ. Resposta Th1 incialmente, com predomínio de Th2.

[23]; [28]; [29]; [30]; [31]; [32]; [33]

Enterobiose Aumento de leucócitos e neutrófilos, IL-4, IL-13 e ausência das

citocinas do tipo 1 IFN-γ e IL-12. Predomínio da resposta Th2.

[34]; [35]; [36]

Estrogiloidíase Aumento das citocinas IL-4, IL-5, IL-9, IL-10, IL-13, TGFβ, IgA e

IgE, acompanhada de mastócitos intestinais, eosinófilos, células

caliciformes, proliferação de enterócitos e contratilidade intestinal.

Predomínio da resposta Th2, redução de Th1 e Th17.

[37]; [38]; [39]; [40]; [41]; [32]

Esquistossomose Aumento das citocinas IL-4, IL-5, IL-13, IL-12, IL-10, IL-17,

macrófagos, eosinófilos e redução de IFN-γ, TNF-α e óxido nítrico

(NO). Predomínio de Th2.

[32]; [23]; [24]; [6]; [44]; [36]; [42];

[43]; [45]; [46]; [47]; [48]

Teníase Aumento de TNF-α, IFN-γ, IL-2, IL-4, IL-5, IL-1β, IL-6, IL-10, IgE,

eosinófilos e as metaloproteinases. Resposta Th1 e Th2, com

predomínio de Th2.

[50]; [51]; [52]; [53]; [54]

Fonte: Elaborado pelo autor.

Page 19: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

19

4 DISCUSSÃO

Nesta revisão foi realizado um apanhado das citocinas e células pró-inflamatórias e anti-

inflamatórias produzidos durante a infecção por helmintos intestinais. Alguns parasitos,

dependendo do tipo e localização, apresentaram células inovadoras ou diferentes em todos os

perfis, o que comprova a diversidade de moléculas que eles produzem e os vários mecanismos

ainda desconhecidos [55]. O fato é que todos os perfis mostraram moléculas em comum,

provando que o mecanismo imunológico para os helmintos é bem semelhante (Figura 2):

ocorreu elevação das citocinas Th2 (IL-4, IL-5, IL-13 e, mais recentemente, IL-21 e IL-25 (IL-

17E)), que podem realmente ser produzidas por uma população Th25. Bloqueio nas citocinas

Th1 (IL-12, IL-17, IFN-γ), eosinofilia, basofilia, mastocitose, elevações na IgE e IgG1,

hiperplasia de células da mucosa, aumento da expressão de células caliciformes e a consequente

inclusão da polarização das células T auxiliares às células Th2 como os macrófagos

alternativamente ativados (AAMΦs) [56].

Figura 2: Resposta imune do hospedeiro a ação de helmintos. Polarização da resposta Th2

e síntese de interleucinas.

Fonte: Elaborado pelo autor.

Recentemente descobriu-se que a IL-17 também faz parte da resposta aos helmintos,

vista para vários perfis, mas principalmente em ancilostomídeos e Ascaris lumbricoides, e

sendo uma citocina bem comum na asma [57]. A IL-17A é uma citocina pró-inflamatória e é o

principal membro de uma família com mais cinco membros adicionais, incluindo IL-17B, IL-

Page 20: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

20

17C, IL-17D, IL-17E e IL-17F. Células T produtoras de IL-17 são uma população Th distinta

das células Th1 e Th2. Tanto a IL-17A quanto a F poderiam induzir células epiteliais das vias

aéreas para produzir mediadores pró-inflamatórios, como quimiocinas (CXCL1 e CXCL8), que

podem atrair células inflamatórias (neutrófilos) e citocinas (IL-6), que promovem a ativação

das células Th17. A IL-25 (IL-17E), uma citocina recém-identificada, também aparece no perfil

e é necessária uma elucidação. Ela é produzida principalmente por células Th2, MCs e células

epiteliais. A IL-25 induz a expressão de IL-4, IL-5, IL-9 e IL-13, resultando em inflamação

mediada por eosinófilos e aumento da produção de IgE. A diferenciação aumentada de Th2

mediada por IL-25 requer sinais induzidos por um complexo receptor heterodimérico composto

por IL-17RB e IL-17RA [57, 61].

Outro ponto a ser salientado, é o mecanismo de imunoregulação/imunomodulação, que

é onde ocorre elevação de muitas citocinas como a IL-10 e TGF-β, por exemplo, como visto

nos resultados para vários parasitos. A IL-10 e TGF-β, chamadas células Th3, produzidas por

T CD4+, podem se tornar células T polarizadas e são citocinas imunossupressoras [58].

Os helmintos induzem o sistema imunológico do hospedeiro a produzir citocinas IL-4 e

IL-5, que ativam macrófagos de maneiras distintas dos macrófagos expostos às citocinas

Th1. Esses macrófagos chamados alternativamente ativados exibem um receptor de manose e

de IL-4Ra em suas membranas externas e produzem algumas moléculas únicas como arginase-

1, RELMα, Ym11 e algumas quitinases, mostrando que RELMα e Ym11 caminham junto com

a resposta Th2 e atuam para reduzir a carga parasitária. Embora produzam pouco IL-12, os

macrófagos alternativamente ativados podem tornar a IL-10, TGF-β e outros fatores

imunomoduladores notáveis por limitar a inflamação do tipo Th1 [59].

Os Helmintos são mestres na manipulação das respostas imunes do hospedeiro, usando

uma variedade de mecanismos sofisticados. Um dos principais mecanismos que permitem aos

helmintos estabelecer infecções crônicas é o direcionamento de receptores de reconhecimento

de padrões (PRRs), incluindo receptores Toll-like, receptores de lectina do tipo C e o

inflamassoma, visto, por exemplo, no Ascaris lumbricoides. Dado o papel crítico desses

receptores e suas vias intracelulares na regulação das respostas inflamatórias inatas e também

direcionando a imunidade adaptativa às respostas Th1 e Th2, o reconhecimento das vias

desencadeadas e/ou moduladas pelos helmintos e seus produtos fornecerá informações

detalhadas sobre como os helmintos são capazes de estabelecer um ambiente

imunorregulatório. Contudo, os helmintos também visam mecanismos independentes de PRRs

Page 21: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

21

e provavelmente outros mecanismos e vias ainda desconhecidos que sustentam a bateria de

moléculas diferentes que os helmintos produzem [55].

O ciclo celular, revestimento com cutícula espessa, produção de mediadores, produção

de Tregs, variação antigênica e o fato de se alojarem em lugares inacessíveis, aumentam a

susceptibilidade de permanência desses seres [60].

Então, devido ao mecanismo de imunomodulação, acredita-se que produtos secretados

pelos parasitos modulam diretamente as funções imunológicas do hospedeiro e a resposta imune

inata gerada pela infecção poderia amenizar as reações imunopatológicas que conduzem

doenças autoimunes e inflamatórias, como: esclerose múltipla, artrite reumatóide, asma,

diabetes tipo 1, doenças inflamatórias do intestino (doença de Crohn e colite ulcerosa) e outras

doenças. A hipótese ainda levanta a possibilidade de que, pessoas infectadas com helmintos

poderiam ser menos susceptíveis a estas doenças, assim surgindo a possibilidade de uma fonte

inexplorada de medicamentos imunomoduladores ou moléculas que podem servir de modelo

para novos medicamentos [59, 11, 13,14].

5 CONCLUSÃO

Esta revisão abordou uma série de vias moleculares de respostas inflamatórias desenvolvidas a

partir do contato com estes parasitos. O que colabora para melhor entendimento da patogenia

desenvolvida pelos helmintos, bem como, a forma que nosso organismo encontra para

responder às agressões causadas por eles. Além disso, os diversos mecanismos imunológicos e

imurregulatórios envolvidos com os helmintos nos sugerem abordagens alternativas no

desenvolvimento de novos medicamentos, com ênfase em doenças crônicas e inflamatórias,

como por exemplo artrite reumatóide, esclerose múltipla, asma, entre outras.

AGRADECIMENTOS

Agradecemos a Universidade Federal do Rio Grande do Norte e as professoras Ana Claúdia

Galvão Freire Gouveia e Marcela Abbot Galvão Ururahy pelas colaborações.

CONFLITOS DE INTERESSE

Os autores declaram não ter conflitos de interesse.

Page 22: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

22

REFERÊNCIAS

[1] Silva, Danielle Fernandes da, Reinaldo José da Silva, Márcia Guimarães da Silva, Alesso

Cervantes Sartorelli, Bonifácio Katsunori Takegawa, Maria Aparecida Marchesan Rodrigues.

2008. “Infecções Parasitárias Do Apêndice Cecal e Suas Relações Com Apendicite Aguda.”

Arquivos de Gastroenterologia 45 (2): 166–168. https://doi.org/10.1590/s0004-

28032008000200015.

[2] Hussain, Azhar, Eman Z Younis, Adela H Elamami, Mehrdad Jelodar, Tulika Mishra, and

Gopikumar Shivaramaiah. 2019. “Prevalence of Intestinal Parasitic Infestation Among

Expatriate Workers.” Cureus 11 (6). https://doi.org/10.7759/cureus.4894.

[3] Honório Silva Santos, Patrícia, Rita de Cássia Santos Barros, Kátia Virgínia Galvão Gomes,

Adriana Alves Nery, and Cezar Augusto Casotti. n.d. “Prevalence of Intestinal Parasitosis and

Associated Factors among the Elderly.” Accessed September 30, 2019.

https://doi.org/10.1590/1981-22562017020.160137

[4] Ihejirika, Onyenonachi Charity, Obioma Chebechi Nwaorgu, Chikere Ifeanyi Ebirim, and

Callistus Mmudumere Nwokeji. 2019. “Effects of Intestinal Parasitic Infections on Nutritional

Status of Primary Children in Imo State Nigeria.” Pan African Medical Journal 33: 1–9.

https://doi.org/10.11604/pamj.2019.33.34.17099.

[5] Brasil. Departamento de Informática do Sistema Único de Saúde [Internet]. Informações da

Saúde. Demográficas e socioeconômicas; 2016 [acesso em 29 ago. 2019]. Disponível em:

http://www2.datasus.gov.br/DATASUS/index.php?area=0206.

[6] Macdonald, Andrew S, Maria Ilma Araujo, and Edward J Pearce. 2002. “Immunology of

Parasitic Helminth Infections.” Society 70 (2): 427–33. https://doi.org/10.1128/IAI.70.2.427.

[7] Cruz-Tapias, Paola, John Castiblanco, Nidia E. Correa, and Gladis Montoya-Ortíz. 2013.

Autoimmunity - from Bench to Bedside. Autoimmunity: From Bench to Bedside.

https://www.ncbi.nlm.nih.gov/books/NBK459447/pdf/Bookshelf_NBK459447.pdf

[8] Oliveira, Sandra Maximiano de, Ana Paula Monteiro Gomides, Lícia Maria Henrique da Mota,

Caliandra Maria Bezerra Luna Lima, and Francisco Airton Castro Rocha. 2017. “Intestinal

Parasites Infection: Protective Effect in Rheumatoid Arthritis?” Revista Brasileira de

Reumatologia (English Edition) 57 (5): 461–65. https://doi.org/10.1016/j.rbre.2016.06.004.

[9] Machado, Paulo R.L., Lucas Carvalho, Maria Ilma A.S. Araújo, and Edgar M. Carvalho. 2004.

“Immune Response Mechanisms to Infections.” Anais Brasileiros de Dermatologia 79 (6):

647–64.

[10] Weinstock, David E. Elliott; Joel V. 2013. “Helminth–Host Immunological Interactions:

Prevention and Control of Immune-Mediated Diseases.” National Institute of Hearth, no. Box

233: 83–96. https://doi.org/10.1111/j.1749-6632.2011.06292.x.Helminth.

[11] Weatherhead, Jill E, Paul Porter, Amy Coffey, Dana Haydel, Leroy Versteeg, and Bin Zhan.

2018. “Crossm Ascaris Larval Infection and Lung Invasion Directly Induce Severe Allergic

Airway Disease in Mice.” American Society for Mocrobiology, 1–12.

https://doi.org/https://doi.org/10.1128/IAI.00533-1.

Page 23: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

23

[12] Zavala, G. A., O. P. García, M. Camacho, D. Ronquillo, M. Campos-Ponce, C. Doak, K.

Polman, and J. L. Rosado. 2018. “Intestinal Parasites: Associations with Intestinal and Systemic

Inflammation.” Parasite Immunology 40 (4): 1–6. https://doi.org/10.1111/pim.12518.

[13] Gazzinelli-Guimaraes, Pedro H., Rafael de Queiroz Prado, Alessandra Ricciardi, Sandra

Bonne-Année, Joshua Sciurba, Erik P. Karmele, Ricardo T. Fujiwara, and Thomas B. Nutman.

2019. “Allergen Presensitization Drives an Eosinophil-Dependent Arrest in Lung-Specific

Helminth Development.” Journal of Clinical Investigation 129 (9): 3686–3701.

https://doi.org/10.1172/jci127963.

[14] Gazzinelli-Guimarães, Pedro Henrique, Ana Clara Gazzinelli-Guimarães, Flaviane Nunes

Silva, Vitor Luís Tenório Mati, Lucas de Carvalho Dhom-Lemos, Fernando Sérgio Barbosa,

Lívia Silva Araújo Passos, et al. 2013. “Parasitological and Immunological Aspects of Early

Ascaris Spp. Infection in Mice.” International Journal for Parasitology 43 (9): 697–706.

https://doi.org/10.1016/j.ijpara.2013.02.009.

[15] Nogueira, Denise Silva, Pedro Henrique Gazzinelli-Guimarães, Fernando Sérgio Barbosa,

Nathália Maria Resende, Caroline Cavalcanti Silva, Luciana Maria de Oliveira, Chiara Cássia

Oliveira Amorim, et al. 2016. “Multiple Exposures to Ascaris Suum Induce Tissue Injury and

Mixed Th2/Th17 Immune Response in Mice.” PLoS Neglected Tropical Diseases 10 (1): 1–19.

https://doi.org/10.1371/journal.pntd.0004382.

[16] Acevedo, Nathalie, Jens Mohr, Josefina Zakzuk, Martin Samonig, Peter Briza, Anja Erler, Anna

Pomés, Christian G. Huber, Fatima Ferreira, and Luis Caraballo. 2013. “Proteomic and

Immunochemical Characterization of Glutathione Transferase as a New Allergen of the

Nematode Ascaris Lumbricoides.” Edited by Valquiria Bueno. PLoS ONE 8 (11): e78353.

https://doi.org/10.1371/journal.pone.0078353.

[17] Pitrez, P. M., L. P. Gualdi, G. L. Barbosa, S. Sudbrack, D. Ponzi, R. G. Cao, A. C.A. Silva, et

al. 2015. “Effect of Different Helminth Extracts on the Development of Asthma in Mice: The

Influence of Early-Life Exposure and the Role of IL-10 Response.” Experimental Parasitology

156 (September): 95–103. https://doi.org/10.1016/j.exppara.2015.06.004.

[18] Weatherhead, Jill E, Paul Porter, Amy Coffey, Dana Haydel, Leroy Versteeg, and Bin Zhan.

2018. “Crossm Ascaris Larval Infection and Lung Invasion Directly Induce Severe Allergic

Airway Disease in Mice.” American Society for Mocrobiology, 1–12.

https://doi.org/https://doi.org/10.1128/IAI.00533-18.

[19] Urban, Joseph F., Nancy Noben-Trauth, Debra D. Donaldson, Kathleen B. Madden, Suzanne

C. Morris, Mary Collins, and Fred D. Finkelman. 1998. “IL-13, IL-4Rα, and Stat6 Are Required

for the Expulsion of the Gastrointestinal Nematode Parasite Nippostrongylus Brasiliensis.”

Immunity 8 (2): 255–64. https://doi.org/10.1016/S1074-7613(00)80477-X.

[20] Damle, S. R., R. K. Martin, J. V. Cross, and D. H. Conrad. 2017. “Macrophage Migration

Inhibitory Factor Deficiency Enhances Immune Response to Nippostrongylus Brasiliensis.”

Mucosal Immunology 10 (1): 205–14. https://doi.org/10.1038/mi.2016.29.

[21] Navarro, Severine, Darren A. Pickering, Ivana B. Ferreira, Linda Jones, Stephanie Ryan, Sally

Troy, Andrew Leech, et al. 2016. “Hookworm Recombinant Protein Promotes Regulatory T

Page 24: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

24

Cell Responses That Suppress Experimental Asthma.” Science Translational Medicine 8 (362).

https://doi.org/10.1126/scitranslmed.aaf8807.

[22] Ferreira, Ivana B., Darren A. Pickering, Sally Troy, John Croese, Alex Loukas, and Severine

Navarro. 2017. “Suppression of Inflammation and Tissue Damage by a Hookworm

Recombinant Protein in Experimental Colitis.” Clinical and Translational Immunology 6 (10):

1–9. https://doi.org/10.1038/cti.2017.42.

[23] Jang, Jessica C., Gang Chen, Spencer H. Wang, Mark A. Barnes, Josiah I. Chung, Mali

Camberis, Graham Le Gros, et al. 2015. “Macrophage-Derived Human Resistin Is Induced in

Multiple Helminth Infections and Promotes Inflammatory Monocytes and Increased Parasite

Burden.” PLoS Pathogens 11 (1): 1–14. https://doi.org/10.1371/journal.ppat.1004579.

[24] Pesce, John T., Thirumalai R. Ramalingam, Mark S. Wilson, Margaret M. Mentink-Kane,

Robert W. Thompson, Allen W. Cheever, Joseph F. Urban, and Thomas A. Wynn. 2009.

“Retnla (Relmα/Fizz1) Suppresses Helminth-Induced Th2- Type Immunity.” PLoS Pathogens

5 (4): 1–15. https://doi.org/10.1371/journal.ppat.1000393.

[25] Fitzsimmons, Colin Matthew, Franco Harald Falcone, and David William Dunne. 2014.

“Helminth Allergens, Parasite-Specific IgE, and Its Protective Role in Human Immunity.”

Frontiers in Immunology 5 (FEB): 1–12. https://doi.org/10.3389/fimmu.2014.00061.

[26] Chen, Fei, Zhugong Liu, Wenhui Wu, Cristina Rozo, Scott Bowdridge, Ariel Millman, Nico

Van Rooijen, Joseph F. Urban, Thomas A. Wynn, and William C. Gause. 2012. “An Essential

Role for T H 2-Type Responses in Limiting Acute Tissue Damage during Experimental

Helminth Infection.” Nature Medicine 18 (2): 260–66. https://doi.org/10.1038/nm.2628.

[27] Chenery, R Alhallaf, Z Agha, J Ajendra, JE Parkinson, MM Cooper, BHK AL, and PR

Giacomin Chan, RM Eichenberger, LA Dent, AAB Robertson, A Kupz, D Brough, A Loukas,

TE Sutherland, JE Allen. 2019. “Inflammasome-Independent Role for NLRP3 in Controlling

Innate Anti-Helminth Immunity and Tissue Repair in the Lung.” The Preprint Server for

Biology, 1–32. https://doi.org/https://doi.org/10.1101/606392.

[28] Yang, Chin An, Chao Liang, Chia Li Lin, Chiung Tzu Hsiao, Ching Tien Peng, Hung Chih Lin,

and Jan Gowth Chang. 2017. “Impact of Enterobius Vermicularis Infection and Mebendazole

Treatment on Intestinal Microbiota and Host Immune Response.” PLoS Neglected Tropical

Diseases 11 (9). https://doi.org/10.1371/journal.pntd.0005963.

[29] Duque-Correa, María A., Natasha A. Karp, Catherine McCarthy, Simon Forman, David

Goulding, Geetha Sankaranarayanan, Timothy P. Jenkins, et al. 2019. “Exclusive Dependence

of IL-10Rα Signalling on Intestinal Microbiota Homeostasis and Control of Whipworm

Infection.” PLoS Pathogens 15 (1). https://doi.org/10.1371/journal.ppat.1007265.

[30] Urban, Joseph, Hui Fang, Qian Liu, Melinda J. Ekkens, Shen-Jue Chen, Diep Nguyen, Velia

Mitro, et al. 2000. “IL-13-Mediated Worm Expulsion Is B7 Independent and IFN-γ Sensitive.”

The Journal of Immunology 164 (8): 4250–56. https://doi.org/10.4049/jimmunol.164.8.4250.

[31] Nair, Meera G., Katherine J. Guild, Yurong Du, Colby Zaph, George D. Yancopoulos, David

M. Valenzuela, Andrew Murphy, Sean Stevens, Margaret Karow, and David Artis. 2008.

“Goblet Cell-Derived Resistin-Like Molecule β Augments CD4 + T Cell Production of IFN-γ

Page 25: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

25

and Infection-Induced Intestinal Inflammation.” The Journal of Immunology 181 (7): 4709–15.

https://doi.org/10.4049/jimmunol.181.7.4709.

[32] Chen, Gang, Spencer H. Wang, Jessica C. Jang, Justin I. Odegaard, and Meera G. Nair. 2016.

“Comparison of RELMα and RELMβ Single- and Double-Gene-Deficient Mice Reveals That

RELMα Expression Dictates Inflammation and Worm Expulsion in Hookworm Infection.”

Infection and Immunity 84 (4): 1100–1111. https://doi.org/10.1128/IAI.01479-15.

[34] Stavros Panidis, Daniel Paramythiotis, Dimitris Panagiotou, Georgios Batsis, Spyridon

Salonikidis, Vassiliki Kaloutsi & Antonios Michalopoulos. 2011. “Acute Appendicitis

Secondary to Enterobius Vermicularis Infection in a Middle-Aged Man: A Case Report.”

Journal of Medical Case Reports 5.

https://jmedicalcasereports.biomedcentral.com/articles/10.1186/1752-1947-5-559.

[35] Michels, Chesney, Prem Goyal, Natalie Nieuwenhuizen, and Frank Brombacher. 2006.

“Infection with Syphacia Obvelata (Pinworm) Induces Protective Th2 Immune Responses and

Influences Ovalbumin-Induced Allergic Reactions.” Infection and Immunity 74 (10): 5926–32.

https://doi.org/10.1128/IAI.00207-06.

[36] Yang, Chin An, Chao Liang, Chia Li Lin, Chiung Tzu Hsiao, Ching Tien Peng, Hung Chih Lin,

and Jan Gowth Chang. 2017. “Impact of Enterobius Vermicularis Infection and Mebendazole

Treatment on Intestinal Microbiota and Host Immune Response.” PLoS Neglected Tropical

Diseases 11 (9).

[37] Bleay, Colin, Clare P. Wilkes, Steve Paterson, and Mark E. Viney. 2007. “Density-Dependent

Immune Responses against the Gastrointestinal Nematode Strongyloides Ratti.” International

Journal for Parasitology 37 (13): 1501–9. https://doi.org/10.1016/j.ijpara.2007.04.023.

[38] Sipahi, Aytan Miranda, and Daniel Machado Baptista. 2017. “Helminths as an Alternative

Therapy for Intestinal Diseases.” World Journal of Gastroenterology. Baishideng Publishing

Group Co., Limited. https://doi.org/10.3748/wjg.v23.i33.6009.

[39] Anuradha, Rajamanickam, Saravanan Munisankar, Chandrakumar Dolla, Paul Kumaran,

Thomas B. Nutman, and Subash Babu. 2015. “Parasite Antigen-Specific Regulation of Th1,

Th2, and Th17 Responses in Strongyloides Stercoralis Infection.” The Journal of Immunology

195 (5): 2241–50. https://doi.org/10.4049/jimmunol.1500745.

[40] Pace, Fernanda, Bruno M. Carvalho, Tamires M. Zanotto, Andrey Santos, Dioze Guadagnini,

Kelly L.C. Silva, Maria Carolina S. Mendes, et al. 2018. “Helminth Infection in Mice Improves

Insulin Sensitivity via Modulation of Gut Microbiota and Fatty Acid Metabolism.”

Pharmacological Research 132 (December 2017): 33–46.

https://doi.org/10.1016/j.phrs.2018.04.008.

[41] Reitz, Martina, Wiebke Hartmann, Nikolas Rüdiger, Zane Orinska, Marie Luise Brunn, and

Minka Breloer. 2018. “Interleukin-9 Promotes Early Mast Cell-Mediated Expulsion of

Strongyloides Ratti but Is Dispensable for Generation of Protective Memory.” Scientific

Reports 8 (1): 2–12. https://doi.org/10.1038/s41598-018-26907-2.

[42] Driss, V., M. El Nady, M. Delbeke, C. Rousseaux, C. Dubuquoy, A. Sarazin, S. Gatault, et al.

2016. “The Schistosome Glutathione S-Transferase P28GST, a Unique Helminth Protein,

Page 26: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

26

Prevents Intestinal Inflammation in Experimental Colitis through a Th2-Type Response with

Mucosal Eosinophils.” Mucosal Immunology 9 (2): 322–35.

https://doi.org/10.1038/mi.2015.62.

[43] Smith, Philip, Niamh E. Mangan, Caitriona M. Walsh, Rosie E. Fallon, Andrew N. J.

McKenzie, Nico van Rooijen, and Padraic G. Fallon. 2007. “Infection with a Helminth Parasite

Prevents Experimental Colitis via a Macrophage-Mediated Mechanism.” The Journal of

Immunology 178 (7): 4557–66. https://doi.org/10.4049/jimmunol.178.7.4557.

[44] Weinstock, Joel V., and David E. Elliott. 2014. “Helminth Infections Decrease Host

Susceptibility to Immune-Mediated Diseases.” The Journal of Immunology 193 (7): 3239–47.

https://doi.org/10.4049/jimmunol.1400927.

[45] Rutitzky, Laura I., and Miguel J. Stadecker. 2006. “CD4 T Cells Producing Pro-Inflammatory

Interleukin-17 Mediate High Pathology in Schistosomiasis.” Memorias Do Instituto Oswaldo

Cruz 101 (SUPPL. 1): 327–30. https://doi.org/10.1590/S0074-02762006000900052.

[46] Osada, Yoshio, Shoichi Shimizu, Takashi Kumagai, Sohsuke Yamada, and Tamotsu

Kanazawa. 2010. “Corrigendum to ‘Schistosoma Mansoni Infection Reduces Severity of

Collagen-Induced Arthritis via down-Regulation of pro-Inflammatory Mediators’ [Int. J.

Parasitol. 39 (2009) 457-464].” International Journal for Parasitology 40 (7): 877.

https://doi.org/10.1016/j.ijpara.2010.02.001.

[47] Pesce, John, Mallika Kaviratne, Thirumalai R Ramalingam, Robert W Thompson, Joseph F

Urban Jr, Allen W Cheever, Deborah A Young, Mary Collins, Michael J Grusby, and Thomas

A Wynn. 2006. “The IL-21 Receptor.Pdf.” The Journal of Clinical Investigation 116 (7): 2044–

55. https://doi.org/10.1172/JCI27727.2044.

[48] Herbert, De’Broski R., Christoph Hölscher, Markus Mohrs, Berenice Arendse, Anita

Schwegmann, Magda Radwanska, Mosiuoa Leeto, et al. 2004. “Alternative Macrophage

Activation Is Essential for Survival during Schistosomiasis and Downmodulates T Helper 1

Responses and Immunopathology.” Immunity 20 (5): 623–35. https://doi.org/10.1016/S1074-

7613(04)00107-4.

[49] Nash, Theodore E., Jean Anne M. Ware, Christina M. Coyle, and Siddhartha Mahanty. 2019.

“Etanercept to Control Inflammation in the Treatment of Complicated Neurocysticercosis.”

American Journal of Tropical Medicine and Hygiene 100 (3): 609–16.

https://doi.org/10.4269/ajtmh.18-0795.

[50] Mahanty, Siddhartha, Miguel A. Orrego, Carla Cangalaya, M. Paz Adrianzen, Gianfranco

Arroyo, Juan Calcina, Armando E. Gonzalez, Héctor H. García, Cristina Guerra-Giraldez, and

Theodore E. Nash. 2017. “TNF-α Blockade Suppresses Pericystic Inflammation Following

Anthelmintic Treatment in Porcine Neurocysticercosis.” PLoS Neglected Tropical Diseases 11

(11): 1–19. https://doi.org/10.1371/journal.pntd.0006059.

[51] Johnston, M. J.G., A. Wang, M. E.D. Catarino, L. Ball, V. C. Phan, J. A. MacDonald, and D.

M. McKay. 2010. “Extracts of the Rat Tapeworm, Hymenolepis Diminuta, Suppress

Macrophage Activation in Vitro and Alleviate Chemically Induced Colitis in Mice.” Infection

and Immunity 78 (3): 1364–75. https://doi.org/10.1128/IAI.01349-08.

Page 27: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

27

[52] Adalid-Peralta, Laura, Agnes Fleury, Teresa M. García-Ibarra, Marisela Hernández, Michael

Parkhouse, José Carlos Crispín, Jefferson Voltaire-Proaño, Graciela Cárdenas, Gladis Fragoso,

and Edda Sciutto. 2012. “Human Neurocysticercosis: In Vivo Expansion of Peripheral

Regulatory T Cells and Their Recruitment in the Central Nervous System.” Journal of

Parasitology 98 (1): 142–48. https://doi.org/10.1645/ge-2839.1.

[53] Arce-Sillas, A., D. D. Álvarez-Luquín, G. Cárdenas, D. Casanova-Hernández, G. Fragoso, M.

Hernández, J. V. Proaño Narváez, et al. 2016. “Interleukin 10 and Dendritic Cells Are the Main

Suppression Mediators of Regulatory T Cells in Human Neurocysticercosis.” Clinical and

Experimental Immunology 183 (2): 271–79. https://doi.org/10.1111/cei.12709.

[54] Arce-Sillas, Asiel, Graciela Cárdenas, Diana Álvarez-Luquín, Marisela Hernandez, Adriana

Del Rey, Hugo Besedovsky, Sandra Gómez-Fuentes, et al. 2018. “Treatment-Resistant Human

Extraparenchymal Neurocysticercosis: An Immune-Inflammatory Approach to Cysticidal

Treatment Outcome.” NeuroImmunoModulation 25 (2): 103–9.

https://doi.org/10.1159/000491394.

[55] Zakeri, Amin, Eline P. Hansen, Sidsel D. Andersen, Andrew R. Williams, and Peter Nejsum.

2018. “Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles.”

Frontiers in Immunology. Frontiers Media S.A. https://doi.org/10.3389/fimmu.2018.02349.

[56] Duque-Correa, María A., Natasha A. Karp, Catherine McCarthy, Simon Forman, David

Goulding, Geetha Sankaranarayanan, Timothy P. Jenkins, et al. 2019. “Exclusive Dependence

of IL-10Rα Signalling on Intestinal Microbiota Homeostasis and Control of Whipworm

Infection.” PLoS Pathogens 15 (1). https://doi.org/10.1371/journal.ppat.1007265.

[57] Hakemi, MazdakGanjalikhani, Nahid Eskandari, Reza Yazdani, Rahim Farahani, and Roya

Sherkat. 2014. “Cytokines (Interleukin-9, IL-17, IL-22, IL-25 and IL-33) and Asthma.”

Advanced Biomedical Research 3 (1): 127. https://doi.org/10.4103/2277-9175.133249.

[58] Tato, Cristina M, Arian Laurence, John J O, and Shea Cmt. 2006. “Helper T Cell Diff

Erentiation Enters a New Era: Le Roi Est Mort; Vive Le Roi!” 203 (4): 809–12.

https://doi.org/10.1084/jem.20060522.

[59] Johnston, M. J.G., A. Wang, M. E.D. Catarino, L. Ball, V. C. Phan, J. A. MacDonald, and D.

M. McKay. 2010. “Extracts of the Rat Tapeworm, Hymenolepis Diminuta, Suppress

Macrophage Activation in Vitro and Alleviate Chemically Induced Colitis in Mice.” Infection

and Immunity 78 (3): 1364–75. https://doi.org/10.1128/IAI.01349-08.

[60] Pós-Graduação, Programa De, E M Saneamento, Valéria Martins Godinho, and Belo Horizonte.

2003. “UNIVERSIDADE FEDERAL DE MINAS GERAIS ESTUDO SOBRE A

OCORRÊNCIA DE OVOS DE HELMINTOS E VIABILIDADE DE ASCARIS SP EM

LODOS ANAERÓBIOS IN NATURA E SUBMETIDOS À HIGIENIZAÇÃO POR

CALEAÇÃO E POR TRATAMENTO TÉRMICO.”

[61] Smallwood, Taylor B., Paul R. Giacomin, Alex Loukas, Jason P. Mulvenna, Richard J. Clark,

and John J. Miles. 2017. “Helminth Immunomodulation in Autoimmune Disease.” Frontiers in

Immunology. Frontiers Research Foundation. https://doi.org/10.3389/fimmu.2017.00453.

Page 28: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

28

APÊNDICE – VERSÃO EM INGLÊS

1 INTRODUCTION

Parasitic infections are common events in our country and occur in all age groups and socioeconomic

levels [1]. It has a high prevalence in disadvantaged socioeconomic communities, especially in tropical and

subtropical countries [2], with alterations according to the environment and the parasite species used [3]. Parasitic

diseases, mainly caused by helminths, trigger hundreds of preventable deaths each year and are among the most

recurrent infectious diseases in the world. This is a public health problem with about 3.5 billion people infected

worldwide [2], where Ascaris lumbricoides, cilostomidae and tricuris trichiura infect about 1.450 million, 1.300

and 1.050 million people respectively, while schistosomiasis. intestinal disease affects more than 200 million

people, according to an estimate by who [4].

In Brazil, in 2014, data from the Department of Informatics of the Unified Health System (DATASUS)

show that infectious and parasitic diseases represent a sixth cause of morbidity in the country, totaling 776,358

hospitalizations, which corresponds to 7.28% of morbidity. hospital in the period [5].

Helminths comprise a diverse group of metazoan organisms that infect billions of people and domestic

animals worldwide. Largely as helminthiasis are caused by members of the phylum Nematoda (cylindrical) and

Platyhelminthes (flattened). Species belonging to both phyla occupy numerous niches within their mammalian

hosts, ranging from the small intestine to intravascular and even intracellular sites [6].

Host infection with the parasite generates an inflammatory process, with recruitment of phagocytes,

peripheral blood leukocytes, and plasma proteins at the site of infection. Blood flow and vascular permeability

increase, mainly in the endothelium to allow leukocyte transmigration and the entry of plasma proteins,

complement system, coagulation factors and antibodies [7]. During infection, the immune mechanisms are also

activated as the adaptive or specific immune response, which occurs against microorganisms or antigens

previously recognized by the innate response, with the predominant adaptive response to intestinal parasites. The

innate or nonspecific immune response, which is the host's first line of defense, has pre-existing protection

methods, including natural barriers (skin and mucosa), secretions, neutrophils, macrophages, mast cells and natural

killer cells (NK). Macrophages participate as both antigen presenting cells and effector cells via release of so-

called proinflammatory cytokines (eg, beta transforming growth factor [TGF-β] and Interleukins IL-1, IL-10, IL -

12 and IL-23), chemokines, reactive oxygen species, prostanoid production and extracellular matrix

metalloproteinases [8].

Parasites, particularly helminths, can modulate the immune response and provide an anti-inflammatory

environment that favors their survival within the host organism, that is, suppressing proinflammatory immune

responses to maintain their life cycle. In these infections, although complement and other innate immune response

factors may act in defense, the adaptive or specific immune response predominates with the production of

antibodies and cytokines. Type 2 CD4 + and TCD8 + T cells are cytokine producers such as IL-4, IL-5 and IL-13

which, among other functions, induce B cell production IgE and activation of eosinophils, mast cells and basophils,

respectively. Key components in defense against parasites, regulatory cytokines such as IL-10 and TGF-β are also

present in the response. IgE immunoglobulin class antibodies bind to circulating basophils or tissue mast cells,

inducing the release of histamine and other mediators of the immediate hypersensitivity reaction, which leads to

Page 29: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

29

helminth destruction. They also inhibit interferon-gamma (IFN-γ), IL-1 and IL-17 and suppress the inflammatory

immune response of Th1 and Th17 cells [7, 8, 9, 10].

Helminths secrete excretory-secretory (ES) products (Figure 1), such as ES-62, which are glycosylated

and induce Th2 cytokines and regulatory T cell expansion. In addition, the amount of regulatory T cells (CD4 +

CD25 + FOXP3 +) that produce IL-10 and TGF-β increases after helminth infection, contributing to their

permanence within the host organism. Homeostasis generated by these immune responses prevents an exaggerated

reaction against parasites that would also harm the host, ensuring helminth survival [7].

The main objective of this review is to discuss the inflammatory profile in the main intestinal parasites

and the mechanisms that are triggered. This will contribute to the perspective of elucidating pathogenesis

mechanisms and research into new therapeutic alternatives.

Figure 1: Effect of helminth excretory / secretory (ES) products on host immune cells.

Source: (Smallwood et al., 2017).

2 METHODOLOGY

2.1. Election criteria

The selection of studies to be included in this study was based on the following: (1) the study should be

on inflammation due to intestinal parasites; (2) the study must be published in English and Portuguese; (3) studies

should present the inflammatory profile in intestinal parasites; (4) Studies should be published between 1999 and

2019; (5) Studies should not address research with treatments. Exclusion criteria for the purpose of this review

were studies unrelated to inflammation due to intestinal parasites.

Page 30: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

30

2.2. Search strategy

The search was electronic, aiming at studies that discussed inflammation due to intestinal parasites. This

produced 1087 references, but only 6 were included in the review using the inclusion / exclusion criteria. Articles

were extracted by electronic search from PubMed, NCBI, LILACS and other relevant journals. Several keywords

used in the search strategy included the following: inflammation, intestinal parasites, inflammatory profile,

intestinal helminths, ascariasis, hookworm, thricuriasis, enterobiasis, stroloidiasis, schistosomiasis and teniasis.

Various keyword combinations were made using “AND” and “OR” as Boolean operators. A practical approach to

inflammation in intestinal parasites arising from this review and the authors' experience is presented here.

3 RESULTS

This review found 1087 articles related to the researched theme, of which 53 were selected according to

the criteria established for our analysis and comparison. At the end of this session, Table 1 summarizes these

findings.

3.1 Ascariasis and inflammation

The review found 43 articles related to the researched theme, where 7 were rejected according to the

election criteria. Weatherhead and co-workers (2018) found increased IL-4, IL-5, IL-13 and slightly elevated IL-

10, resulting in an increase in Type 2 cytokines in contrast to the Th1 response, TNF-α was not noted. or IFN-γ,

meaning a reduction or absence [11]. Zavala et al. (2018) noted IL-10 regulating TNF-α and IL-6 in inflammation

[12]. Gazzinelli-Guimaraes et al. (2019) demonstrated significant increases in IL-4, IL-13, IL-13Rα2, IL-1β and

TNF-α levels, in contrast, levels of IL-5 and IL-6 showed a fairly high pattern. IL-4, IL-13, IL-33, in addition to

marked increases in CCL-11 (eotaxin or eosinophil chemotactic protein), CCL-2 (monocyte chemoattractant

protein 1 or MCP-1) and CXCL-10 ( Interferon gamma-induced protein 10 or IP-10), a small but measurable

accumulation of CD4 + effector Th2 cells, activated eosinophils and alternatively activated macrophages (M2) has

also been found [13]. In a previous study Gazzinelli-Guimaraes (2013) had observed only the increase of IL-5, IL-

6 and TNF-α [14]. Nogueira et al. (2016), in addition to noting the increase in IL-4, IL-5, IL-6, IL-10 and TNF-α

as seen in other studies, also noted the increase in IL-17A and the intense pulmonary inflammation associated with

a polarized systemic Th2 / Th17 immune response during multiple exposures to Ascaris lumbricoides, as this worm

may also develop its pathogenesis in the pulmonary system [15].

Also, Aceved et al. (2013) compared and demonstrated the strong induction of IgE by these parasites in

relation to allergens [16], which was also confirmed by Pitrez and his collaborators (2015) in relation to

eosinophils, as well as production. of IL-10 and the reduction of IL-5 in already sensitized individuals [17].

3.2 Hookworm and inflammation

We found 88 articles, of which 10 were assigned to this review, taking into account the established

criteria. In addition to the innate immune response, interleukins such as IL-33, IL-25, antigen presenting cells

(dendritic cells), and innate lymphoid cells (ILC2) have led to increased release of IL-4, IL-5, and type 2 cytokines.

IL-13, signaled via the IL-4Rα / Stat6 pathway [18, 19]. Damle (2016) highlights IgE production as well as

Page 31: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

31

increased mucus production, goblet cell hyperplasia, eosinophilia, and enteric nerve stimulation to facilitate

expulsion of the intestinal worm [20].

Navarro and colleagues (2016) identified a hookworm-secreted protein, anti-inflammatory protein-2

(AIP-2), which suppressed inflammation as well as reduced expression of costimulatory markers in human

dendritic cells (DCs) and suppressed cells. T [21].

Ferreira and colleagues (2017) analyzed the recombinant anti-inflammatory protein (AIP-1), secreted in

abundance by hookworms in the intestinal mucosa and noted that with the presence of the protein local infiltration

of inflammatory cells decreased, showing minimal loss of goblet cells and the mucosal architecture being

preserved. Furthermore, treatment with AIP - 1 promoted the production of interleukins in the IL-10 colon, TGF-

β and thymus stromal lymphopoietin (TSLP), resulting in the suppression of tumor necrosis factor (TNF) -α, IL-

13 and IL-17 A, featuring an accumulation of regulatory T cells in the colon [22].

Jang (2015) also states that Th2 cytokine suppression by RELMα, further adds that resin expression is

an innate response to multiple helminths where it promotes monocyte recruitment and a pro-inflammatory cytokine

type 1 environment decreased helminth clearance and exacerbated inflammation associated with infection [23].

Pesce, Fitzsimmons and colleagues (2009, 2014) suggest that Th2 immunity is increased during helminth

infection [24, 25], just as IL-17 initially contributed to inflammation, while subsequent IL-1 receptor signaling. 4

(IL-4R) reduced elevations in IL-17 mRNA levels, although other studies show that IL-17 mediates the course of

inflammation. IL-10 increased its expression and stimulated the development of M2 macrophages, which

contributed to the rapid resolution of tissue damage [26].

Chenery and colleagues (2019) address an alternative activation marker, alveolar macrophage-derived

Ym1 (Mφs), which may lead to IL-1R receptor-dependent innate neutrophil recruitment during nematode

infection, also discuss increased eosinophilia and inflammasome proteins such as NLRP3, which have an important

pro-inflammatory function [27].

3.3 Trichuriasis and inflammation

In the review, 65 articles were found, of which 7 were elected according to the criteria determined for

our analysis and comparison.

Like Yang (2017), Duque-Correa (2019) initially observed the Th1 response, followed by transforming

growth factor TGF-β, IL-35 and IL-10, macrophages and T cells in response to excretory-secretory parasitic

antigens (ES) [28, 29]. Jang (2015) reaffirms this response by enhancing the balance between Th2 cytokines and

type 1 proinflammatory cytokines such as IFNγ and TNFα, considering the counter-regulation between them. For

example, IFNγ inhibition promotes the expulsion of Trichuris muris, allowing the development of a protective Th2

immune response [23].

Urban et al. (2000), in studies with Trichuris muris-infected mice, blocking B7 ligand interactions,

inhibited protective immunity, suppressed IL-4 production and increased IFN-γ production, but unexpectedly did

not inhibit production. of Th2 cytokine, IL-13. Blocking IFN-γ and B7 restored protective immunity, which

Page 32: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

32

depended on IL-13, but did not restore IL-4 or associated IgE responses. Although IL-13 was required for the

expulsion of worms in mice in which IFN-γ and B7 were blocked, IL-4 could mediate expulsion in the absence of

IL-13 and IFN-γ [30].

Nair and colleagues (2008), using a natural model of intestinal inflammation induced by chronic infection

with Trichuris muris gastrointestinal helminth, identified dual functions for RELMβ in enhancing CD4 + Th1 cell

responses and promoting production-associated intestinal inflammation. Robust IFN-γ [31]. It was confirmed by

Chen (2016) that RELMβ promotes macrophage and T-cell activation, leading to increased intestinal inflammation

and decreased Th2 immune response [32]. On the other hand, RELMβ function during helminth infection may be

parasite dependent [33].

3.4 Enterobiosis and inflammation

For this term, 38 articles were found, of which 3 were selected according to the criteria established for

our analysis and comparison.

In the study by Panidis et al. (2011), a marked number of leukocytes and neutrophils can be observed

[34]. Th2 as the predominant immune response and the elevation of IL-4 and IL-13, noting that IL-13 plays a more

dominant role than IL-4, the absence of IFN-γ and IL-12 type 1 cytokines and decrease in secretory IgA-S (SigA)

levels in the intestine [35, 36].

3.5 Estrogiloidiasis and inflammation

90 articles related to the researched topic were found, 6 were selected according to the specified criteria.

Bleay (2007) explains the vertebrate immune response to this helminth, showing that the response is typically a T-

helper type 2 (Th2) response rather than a Th1-type inflammatory response that is generated in response to

microparasites. A Th2-type immune response is characterized by the production of IL-4, IL-5, IL-13, IgA and IgE

[37], accompanied by intestinal mast cells, eosinophils, goblet cells, enterocyte proliferation and intestinal

contractility, as well as IL-9 secretion by Th2 cytokines, according to Sipahi (2017). Other accessory pathways

are activated, including increased expression of regulatory T-cells and IL-10 and / or transformation of growth

factor beta levels, leading to a predominantly anti-inflammatory response [38]. Furthermore, Anuradha (2015)

confirmed the role of CD4 + T cells in the expression of Th1, Th2 and Th17 cytokines in human infection with S.

stercoralis, which demonstrated a decrease in Th1 and Th17 functional cells and an increase in Th2 functional

cells. compared to uninfected individuals. Th1, Th2 and Th17 cell regulation were predominantly IL-10 dependent,

while Th2 cell regulation, but not Th1 or Th17, was also TGFβ dependent. Significantly lower circulating levels

of pro-inflammatory cytokines (interferon gamma, tumor necrosis factor alpha and IL-1) and significantly higher

levels of anti-inflammatory cytokines (IL-4, IL-5, IL-9, IL) were found. -10, IL-13, IL-27, IL-37 and TGF-β) [39].

Rajamanickam (2016) also adds inflammatory markers (matrix metalloproteinase 1 [MMP-1] and heme oxygenase

1 [HO-1]), and proinflammatory cytokines (IL-6, IL-8, monocyte chemoattractant protein 1 [MCP -1] and IL-1β

[40].

Pace (2018) states the increased production of Th2 and interleukins, highlighting IL-4 as responsible for

activating the transcription factor STAT6 and its clinical importance [39]. In a study, Reitz (2018), uses

Page 33: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

33

Strongyloides ratti-infected IL-9 receptor deficient mice and proves that IL-9 receptor deficient animals exhibited

increased intestinal parasite burden and prolonged infection. Increased parasitic load was correlated with

reciprocally reduced early degranulation of mucosal mast cells, reduced intestinal IL-13 expression caused by IL-

9 receptor deficiency in hematopoietic cells [41].

3.6 Schistosomiasis and inflammation

According to criteria, this search found 598 articles, of which 13 were used for the results. Studies show

that infection produces higher Th2 responses, followed by an early Th1 response that may be associated with a

Th17 response. The acute phase of infection is characterized by the production of regulatory cytokines such as

interleukin (IL) -10, which is capable of inhibiting proinflammatory cytokines such as interferon (IFN) -γ, tumor

necrosis factor (TNF) -α and nitric oxide (NO) [36, 42, 43]. Previous studies by MacDonald et al. (2002) have

addressed IL-13 and IL-12 immunoregulation, and Weinstock (2014) has studied suppression of IL12p40

splenocytes and central nervous system (CNS) production, IFNγ and TNFα while increasing TGFβ, IL10 and IL4

[6, 44].

Rutitzky and colleagues (2006) report pro-inflammatory CD4 T-cells producing IL-17 stimulated by IL-

23 heterodimeric cytokine. Smith (2007) talks about the macrophage-dependent mechanism that diverges from

modulation of Th2 responses or CD4 induction. +, CD25 +, IL-10 and TGF-β, immunoregulatory cells, the

macrophages detected in this mechanism were F4 / 80 + CD11b + CD11c -. Osada (2010) observed a decrease in

inflammatory activity by reducing IFN-γ, TNF-α and IL-17 and increasing IL-4 and IL-10 [45, 43, 46].

Schistosoma mansoni infection led to increased expression of Resistin-like alpha (RELMα) in infected

tissue, including innate innate cells, macrophages and eosinophils, which acted to suppress Th2 immunity, as noted

by Chen and Jang (2016, 2015) and the formation of pulmonary granuloma induced by S. parasite eggs mansoni

depends on IL-4 and IL-13, which is associated with marked increases in expression RELMα [32, 23, 24].

In the study by Pesce (2006), it shows the IL-21 receptor (IL-21R) significantly homologated with the

IL-4R receptor, and CD4 + and Th2 cells. It is shown that the answer granulomatosa and liver fibrosis have been

reduced in deficient mice since cytokine, as well as those who also use / treat it, the marked reduction in expression

and function of Th2 cytokines, as evidenced by attenuated IL-4 responses, IL-13, chitin-cleaving enzymes

(AMCase), 3-like chitinase 3 (Ym1) and FIZZ1 (also RELMα) in tissues also contributed to this clinical outcome.

IL- 21 appears as an importate alternative macrophage activation amplifier [47], Hebert (2004) also corroborates

the idea of the importance of alternative macrophages for protection against organ damage by down-regulating

inflammation induced by IL-4 / IL-13 activated macrophages / neutrophils during T H2 responses. In studies in

IL-10 is not able to compensate for the absence of alternative macrophages activated by IL-4 / IL-13, leading the

mice to death. Collectively, in human studies, the levels of IFN-γ, NO and TNF-α were highly elevated, while

patients with Asymptomatic human schistosomiasis obtained high IgE and IL-5 production [48].

3.7 Teniasis and inflammation

We obtained 165 articles according to the theme, where 7 were displaced for this review.

Page 34: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

34

The study by Nash (2017) found tumor necrosis factor alpha (TNF-α) [49]. Helper T cell response Th1

and Th2; IL-2 and interferon-γ being produced by Th1; high levels of Th2 cytokines, such as IL-4 (inducing IgE

production), IL-5 (chemokine eosinophil recruitment) and metalloproteinases (MMP) in increased amounts were

found in the host inflammatory response to this parasite, according to 18 Mahanty (2017) [50]. In addition,

Johnston (2010) observed macrophage activation: interleukin-1β (IL-1β), IL-6 and tumor necrosis factor alpha

which are induced by lipopolysaccharide (LPS) TNF-α, and poly (I: C) induced TNF-α and IL-6 [51].

Adalid-Peralta (2012) analyzed the frequency of regulatory T cells (Tregs) and their relation to

proliferative response level, activated lymphocyte level and cytokines expressed in patients. Significantly

increased peripheral tregs (CD4, CD25, FoxP3, CTLA4 and IL10) and a significant decrease in activated T cells

(CD38 and CD69) were observed [52], Arce-Sillas (2016), also studied the mechanisms of action of regulatory T

cells in controlling the immune response. Interestingly, the regulatory T cells expressed higher levels of cytotoxic

T lymphocyte antigen 4 (CTLA-4), death 1 (PD-1) and glucocorticoid-induced tumor necrosis factor receptor

(GITR), suggesting a cell-to-cell contact mechanism with dendritic cells. Beyond In addition, higher levels of IL-

10 and type 1 regulatory T cells (Tr1) were found. peripheral blood of patients, suggesting that the mechanism of

action of T cells regulatory processes involves the release of immunomodulatory cytokines. Regulatory T cells

suppressive correlates negatively with late-activated lymphocytes (CD4 + CD38 +) [53].

Arce-Sillas and Adalid-Peralta (2018, 2012), reaffirm previous work in relation to higher percentages of

Tr1, CD4 +, CD25 +, FOXP3 +, and adds CD127 – e, CD4 +, CD45RO +, CTLA4 +, FOXP3HI, IL-10 and the

critical role of Tregs cells in the balance of inflammation [54, 52].

4 DISCUSSION

In this review a survey of cytokines and proinflammatory and antiinflammatory cells for intestinal

helminths was performed. Some parasites, depending on the type and location, presented innovative or different

cells in all profiles, which proves the diversity of molecules they produce and the various mechanisms still

unknown [55]. The fact is that all profiles showed molecules in common, proving that the immune mechanism for

helminths is quite similar (Figure 2): elevation of Th2 cytokines (IL-4, IL-5, IL-13 and, more recently, IL -21 and

IL-25 (IL-17E)), which can actually be produced by a Th25 population. Th1 cytokine blockade (IL-12, IL-17,

IFN-γ), eosinophilia, basophilia, mastocytosis, IgE and IgG1 elevations, mucosal cell hyperplasia, increased goblet

cell expression and the consequent inclusion of cell polarization T helper T cells such as alternatively activated

macrophages (AAMΦs) [56].

Page 35: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

35

Figure 2: Host immune response to helminth action. Th2 response polarization and interleukin synthesis.

Source: Prepared by the author.

It has recently been found that IL-17 is also part of the helminth response, various profiles, but mainly hookworms

and Ascaris lumbricoides, and being a very common cytokine in asthma [57]. IL-17A is a proinflammatory

cytokine and is the main member of a family with five additional members, including IL-17B, IL-17C, IL-17D,

IL-17E and IL-17F. IL-17 producing T cells are a Th population distinct from Th1 and Th2 cells. Both IL-17A

and F could induce epithelial cells airways to produce pro-inflammatory mediators such as chemokines (CXCL1

and CXCL8), which can attract inflammatory cells (neutrophils) and cytokines (IL-6), which promote activation

of Th17 cells. IL-25 (IL-17E), a newly identified cytokine, also appears on the profile and clarification is required.

It is mainly produced by Th2 cells, MCs and epithelial cells. IL-25 induces the expression of IL-4, IL-5, IL-9 and

IL-13, resulting in eosinophil-mediated inflammation and increased IgE production. THE IL-25-mediated

enhanced Th2 differentiation requires complex-induced signals heterodimeric receptor composed of IL-17RB and

IL-17RA [57, 61]. Another point to note is the immunoregulation / immunomodulation mechanism, which is where

elevation of many cytokines such as IL-10 and TGF-β occurs, for example as seen in the results for various

parasites. IL-10 and TGF-β, called Th3 cells, produced by CD4 + T, can become polarized T cells and are cytokines

immunosuppressive drugs [58].

Helminths induce host immune system to produce IL-4 cytokines and IL-5, which activate macrophages

in different ways than cytokine-exposed macrophages Th1. These so-called alternatively activated macrophages

exhibit a mannose receptor and IL-4Ra in their outer membranes and produce some unique molecules like

arginase-1, RELMα, Ym11 and some chitinases, showing that RELMα and Ym11 walk together with the Th2

response and act to reduce the parasitic load. Although they produce little IL-12, alternatively activated

macrophages can render IL-10, TGF-β and other factors immunomodulators notable for limiting Th1-type

inflammation [59].

Helminths are masters at manipulating host immune responses using a variety of sophisticated

mechanisms. One of the main mechanisms enabling helminths establish chronic infections is the targeting of

recognition receptors (PRRs) including Toll-like receptors, C-type lectin receptors and inflammasome, seen, for

Page 36: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

36

example, in Ascaris lumbricoides. Given the critical role of these receptors and their intracellular pathways in

regulating innate inflammatory responses and also directing adaptive immunity to Th1 and Th2 responses,

recognition of the pathways triggered and / or modulated by the helminths and their products will provide how

helminths are able to establish an environment immunoregulatory. However, helminths also target independent

mechanisms of PRRs and probably other yet unknown mechanisms and pathways that support the battery of

different molecules that helminths produce [55].

Cell cycle, thick cuticle coating, mediator production, Tregs, antigenic variation and staying in

inaccessible places susceptibility of permanence of these beings [60].

So, due to the immunomodulation mechanism, it is believed that secreted products by parasites directly

modulate host immune functions and host response innate immune system generated by the infection could

alleviate the immunopathological reactions that lead autoimmune and inflammatory diseases such as multiple

sclerosis, rheumatoid arthritis, asthma, type 1 diabetes, inflammatory bowel disease (Crohn's disease and ulcerative

colitis) and other diseases. The hypothesis further raises the possibility that people infected with 23 helminths

could be less susceptible to these diseases, thus giving rise to the possibility of an untapped source of

immunomodulatory drugs or molecules that may serve of model for new drugs [59, 11, 13,14].

5 CONCLUSION

Helminths infect billions of people worldwide, developing infections with complex inflammatory responses. This

review addressed a number of molecular pathways of inflammatory responses developed from contact with these

parasites. This approach discussed here contributes to a better understanding of the pathogenesis developed by

helminths, as well as the way our bodies find to respond to the aggressions caused by them. In addition, the various

immunological and immunoregulatory mechanisms involved with helminths suggest alternative approaches to the

development of new drugs, with emphasis on chronic and inflammatory diseases, such as rheumatoid arthritis,

multiple sclerosis, asthma, among others.

ACKNOWLEDGMENT

Credit to the Federal University of Rio Grande do Norte and professors Ana Claudia Galvao Freire Gouveia and

Marcela Abbot Galvao Ururahy for their contributions.

INTEREST CONFLICTS

The authors declare no conflicts of interest.

Page 37: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

37

ANEXO A – NORMAS DA REVISTA JOURNAL OF PARASITOLOGY RESEARCH

HINDAWI

Author Guidelines

Language Editing

Hindawi has partnered with Editage to provide an English-language editing service to authors prior to submission.

Authors that wish to use this service will receive a 10% discount on all editing services provided by Editage. To

find out more information or get a quote.

Submission

Manuscripts should be submitted by one of the authors of the manuscript through the online Manuscript Tracking

System. Only electronic PDF (.pdf) or Word (.doc, .docx, .rtf) files can be submitted through the MTS, and there

is no page limit. Submissions by anyone other than one of the authors will not be accepted. The submitting author

takes responsibility for the manuscript during submission and peer review. If for some technical reason submission

through the MTS is not possible, the author can contact [email protected] for support.

Terms of Submission

Manuscripts must be submitted on the understanding that they have not been published elsewhere and are only

being considered by this journal. The submitting author is responsible for ensuring that the article’s publication

has been approved by all the other coauthors. It is also the submitting author’s responsibility to ensure that the

article has all necessary institutional approvals. Only an acknowledgment from the editorial office officially

establishes the date of receipt. Further correspondence and proofs will be sent to the author(s) before publication,

unless otherwise indicated. It is a condition of submission that the authors permit editing of the manuscript for

readability. All inquiries concerning the publication of accepted manuscripts should be addressed

to [email protected]. All submissions are bound by the Hindawi terms of service.

Peer Review

All submitted articles are subject to assessment and peer review to ensure editorial appropriateness and technical

correctness. In order for an article to be accepted for publication, the assigned Editor will first consider if the

manuscript meets minimum editorial standards and fits within the scope of the journal. If an article is within scope,

then the Editor will ideally solicit at least two external peer reviewers (whose identities will remain anonymous to

the authors) to assess the article before confirming a decision to accept. Decisions to reject are at the discretion of

the Editor.

Our Research Integrity team will occasionally seek advice outside standard peer review, for example, on

submissions with serious ethical, security, biosecurity, or societal implications. We may consult experts and the

academic editor before deciding on appropriate actions, including but not limited to: recruiting reviewers with

specific expertise, assessment by additional editors, and declining to further consider a submission.

Concurrent Submissions

In order to ensure sufficient diversity within the authorship of the journal, authors will be limited to having three

manuscripts under review at any point in time. If an author already has three manuscripts under review in the

journal, they will need to wait until the review process of at least one of these manuscripts is complete before

Page 38: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

38

submitting another manuscript for consideration. This policy does not apply to Editorials or other non-peer

reviewed manuscript types.

Article Processing Charges

The journal is Open Access. Article Processing Charges (APCs) allow the publisher to make articles immediately

available online to anyone to read and reuse upon publication. For more details, please visit the Article Processing

Charges information page.

Preprints

Hindawi supports the deposition of manuscripts in preprint servers, and does not consider this to compromise the

novelty of the results. Articles based on content previously made public only on a preprint server, institutional

repository, or in a thesis will be considered. The preprint should be cited.

Article Types

The journal will consider the following article types:

Research Articles

Research articles should present the results of an original research study. These manuscripts should describe how

the research project was conducted and provide a thorough analysis of the results of the project. Systematic reviews

may be submitted as research articles.

Clinical Studies

A clinical study presents the methodology and results of a study that was performed within a clinical setting. These

studies include both clinical trials and retrospective analyses of a body of existing cases. In all cases, clinical

studies should include a description of the patient group that was involved, along with a thorough explanation of

the methodology used in the study and the results that were obtained.

When publishing clinical trials, Hindawi aims to comply with the recommendations of the International Committee

of Medical Journal Editors (ICMJE) on trial registration. Therefore, authors are requested to register the clinical

trial presented in the manuscript in a public trial registry and include the trial registration number at the end of the

abstract. Trials initiated after July 1, 2005, must be registered prospectively before patient recruitment has begun.

For trials initiated before July 1, 2005, the trial must be registered before submission.

Reviews

A review article provides an overview of the published literature in a particular subject area.

Formatting

An optional research article manuscript template can be downloaded here. We recommend that all manuscripts

include line numbers and follow the structure below:

Title and Authorship Information

The following information should be included:

Manuscript title

Full author names

Full institutional mailing addresses

Email addresses

Page 39: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

39

Affiliations. Hindawi Limited remains neutral with regard to jurisdictional claims in institutional affiliations.

Responsibility for affiliations ultimately rests with the author, although Hindawi may request changes be made to

countries listed in affiliations to ensure consistency across published output (for indexing and discovery reasons).

Abstract

The manuscript should contain an abstract. The abstract should be self-contained, citation-free, and should not

exceed 300 words.

Introduction

This section should be succinct, with no subheadings.

Materials and Methods

The methods section should provide enough detail for others to be able to replicate the study. If you have more

than one method, use subsections with relevant headings, e.g. different models, in vitro and in vivo studies,

statistics, materials and reagents, etc.

Hindawi journals have no space restriction on methods. Detailed descriptions of the methods (including protocols

or project descriptions) and algorithms may also be uploaded as supplementary information or a previous

publication that gives more details may be cited. If the method from a previous article is used then this article must

be cited and discussed. If wording is reused from a published article then this must be noted, e.g. This study uses

the method of Smith et al. and the methods description partly reproduces their wording [1].

If a method or tool is introduced in the study, including software, questionnaires, and scales, the license this is

available under and any requirement for permission for use should be stated. If an existing method or tool is used

in the research, the authors are responsible for checking the license and obtaining any necessary permission. If

permission was required, a statement confirming permission was granted should be included in the Materials and

Methods section.

Publishing Protocols. We encourage authors describing any methodology, in particular laboratory-based

experiments in the life sciences but also computational and bioinformatics protocols, to upload details of their

methods to protocols.io. This is an Open Access website that allows researchers to record their methods in a

structured way, obtain a DOI to allow easy citation of the protocol, collaborate with selected colleagues, share

their protocol privately for journal peer review, and choose to make it publicly available. Once published, the

protocol can be updated and cited in other articles.

You can make your protocol public before publication of your article if you choose, which will not harm the peer-

review process of your article and may allow you to get comments about your methods to adapt or improve them

before you submit your article (see also the protocols.io FAQ page).

Protocols in the Clinical Sciences. We encourage authors of clinical trials and other clinical studies to upload the

detailed plan of their study that was approved by the ethics committee as supplementary materials. If there is a

published version of the protocol, this should also be cited in the methods section.

Results and Discussion

This section may be divided into subsections or may be combined.

Main Text (Review only)

This section may be divided into subsections or may be combined.

Conclusions

This should clearly explain the main conclusions of the article, highlighting its importance and relevance.

Page 40: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

40

Data Availability (excluding Review articles)

This statement should describe how readers can access the data supporting the conclusions of the study and clearly

outline the reasons why unavailable data cannot be released. For guidance on composing a Data Availability

statement, including template examples, please see here.

Conflicts of Interest

Authors must declare all relevant interests that could be perceived as conflicting. Authors should explain why each

interest may represent a conflict. If no conflicts exist, the authors should state this. Submitting authors are

responsible for coauthors declaring their interests.

Funding Statement

Authors must state how the research and publication of their article was funded, by naming financially supporting

body(s) (written out in full) followed by associated grant number(s) in square brackets (if applicable), for example:

“This work was supported by the Engineering and Physical Sciences Research Council [grant numbers xxxx,

yyyy]; the National Science Foundation [grant number zzzz]; and a Leverhulme Trust Research Project Grant”.

If the research did not receive specific funding, but was performed as part of the employment of the authors, please

name this employer. If the funder was involved in the manuscript writing, editing, approval, or decision to publish,

please declare this.

Acknowledgments

All acknowledgments (if any) should be included at the very end of the manuscript before the references. Anyone

who made a contribution to the research or manuscript, but who is not a listed author, should be acknowledged

(with their permission).

References

Authors may submit their references in any style. If accepted, these will be reformatted in Chicago style by

Hindawi. Authors are responsible for ensuring that the information in each reference is complete and accurate. All

references should be numbered consecutively in the order of their first citation. Citations of references in the text

should be identified using numbers in square brackets e.g., “as discussed by Smith [9]”; “as discussed elsewhere

[9, 10]”. All references should be cited within the text and uncited references will be removed.

Dates Formatting

Hindawi recommends writing dates out fully to avoid confusion with different all-numeral date styles. For

example, 11/10/2018 could be 10 November 2018 or 11 October 2018 depending on the reader, therefore, the date

should be written out in full. For example, the date September 1, 2018 can be used rather than 01/09/2018 or

09/01/2018.

Units of Measurement

Units of measurement should be presented simply and concisely using the International System of Units (SI).

Preparation of Figures

Upon submission of an article, authors should include all figures and tables in the PDF file of the manuscript.

Figures and tables should not be submitted in separate files. If the article is accepted, authors will be asked to

provide the source files of the figures. Each figure should be supplied in a separate electronic file. All figures

should be cited in the manuscript in a consecutive order. Figures should be supplied in either vector art formats

(Illustrator, EPS, WMF, FreeHand, CorelDraw, PowerPoint, Excel, etc.) or bitmap formats (Photoshop, TIFF,

GIF, JPEG, etc.). Bitmap images should be of 300 dpi resolution at least unless the resolution is intentionally set

Page 41: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

41

to a lower level for scientific reasons. If a bitmap image has labels, the image and labels should be embedded in

separate layers.

Maps. Hindawi Limited remains neutral with regard to jurisdictional claims in published maps. For reasons of

consistency, authors are requested to use accepted standard maps as the basis for map figure drawing, for example

using the latest standard base-map of Map Press. Responsibility for maps rests with the author and it is their

responsibility to also provide any copyright or licence information when using maps that are not owned or created

by the author (e.g. Google Maps, etc.)

Preparation of Tables

Tables should be cited consecutively in the text. Every table must have a descriptive title and if numerical

measurements are given, the units should be included in the column heading. Vertical rules should not be used.

Supplementary Materials

Supplementary materials are the additional parts to a manuscript, such as audio files, video clips, or datasets that

might be of interest to readers. Authors can submit one file of supplementary material along with their manuscript

through the Manuscript Tracking System. If there is more than one file, they can be uploaded as a .ZIP file.

A section titled “Supplementary Material” should be included before the references list with a concise description

for each supplementary material file. Supplementary materials are not modified by our production team. Authors

are responsible for providing the final supplementary materials files that will be published along with the article.

Proofs

Corrected proofs must be returned to the publisher within two to three days of receipt. The publisher will do

everything possible to ensure prompt publication.

Copyright and Permissions

Authors retain the copyright of their manuscripts, and all Open Access articles are distributed under the terms of

the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided that the original work is properly cited.

The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not

specifically identified, does not imply that these names are not protected by the relevant laws and regulations. The

submitting author is responsible for securing any permissions needed for the reuse of copyrighted materials

included in the manuscript.

While the advice and information in this journal are believed to be true and accurate on the date of its going to

press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or

omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material

contained herein.

Reporting Guidelines

Authors are strongly encouraged to use appropriate reporting guidelines when preparing and submitting

manuscripts, to maximise transparency and reproducibility. Our editors and reviewers are also encouraged to use

them in the review process. Completed checklists should be provided in the supplementary files on submission.

We particularly encourage the use of:

CONSORT for randomized controlled trials

Page 42: PERFIL INFLAMATÓRIO DAS PARASITOSES INTESTINAIS …

42

TREND for non-randomized trials

PRISMA for systematic review and meta-analyses

CARE for case reports

STROBE for observational studies

STREGA for genetic association studies

SRQR for qualitative studies

STARD for diagnostic accuracy studies

ARRIVE for animal experiments

Conflicts of Interest

Conflicts of interest (COIs, also known as ‘competing interests’) occur when issues outside research could be

reasonably perceived to affect the neutrality or objectivity of the work or its assessment. For more information,

see our publication ethics policy. Authors must declare all potential interests – whether or not they actually had an

influence – in a ‘Conflicts of Interest’ section, which should explain why the interest may be a conflict. If there

are none, the authors should state “The author(s) declare(s) that there is no conflict of interest regarding the

publication of this article.” Submitting authors are responsible for coauthors declaring their interests. Declared

conflicts of interest will be considered by the editor and reviewers and included in the published article.

Authors must declare current or recent funding (including for Article Processing Charges) and other payments,

goods or services that might influence the work. All funding, whether a conflict or not, must be declared in the

“Funding Statement”. The involvement of anyone other than the authors who 1) has an interest in the outcome of

the work; 2) is affiliated to an organization with such an interest; or 3) was employed or paid by a funder, in the

commissioning, conception, planning, design, conduct, or analysis of the work, the preparation or editing of the

manuscript, or the decision to publish must be declared.

International Commission on Zoological Nomenclature

When publishing manuscripts which describe a new zoological taxon name, Hindawi aims to comply with the

requirements of the International Commission on Zoological Nomenclature (ICZN). Therefore, for all manuscripts

that include the naming of a new zoological taxon, authors are requested to contact Zoobank, the online registration

system for the International Commission on Zoological Nomenclature, to obtain a Life Science Identifier (LSID).

Moreover, authors are requested to insert the following text in the “Materials and Methods” section, in a subsection

to be called “Nomenclatural Acts”:

The new names contained in this article are available under the International Code of Zoological Nomenclature.

This work and the nomenclatural acts it contains have been registered in ZooBank. Zoobank Life Science Identifier

(LSID) for this publication is: urn:lsid:zoobank.org:pub: XXXXXXX. The LSID registration and any associated

information can be viewed in a web browser by adding the LSID to the prefix “http://zoobank.org/.”

Ethical Guidelines

In any studies on human or animal subjects, the following ethical guidelines must be observed. For any experiments

on humans, all work must be conducted in accordance with the Declaration of Helsinki (1964). Manuscripts

describing experimental work which carries a risk of harm to human subjects must include a statement that the

experiment was conducted with the human subjects’ understanding and consent, as well as a statement that the

responsible Ethical Committee has approved the experiments. In the case of any animal experiments, the authors

must provide a full description of any anesthetic or surgical procedure used, as well as evidence that all possible

steps were taken to avoid animal suffering at each stage of the experiment.