notas de aulas de mecânica dos solos i (parte 3) · prospecção e amostragem de solos (2.o parte)...

38
1 Notas de aulas de Mecânica dos Solos I (parte 3) Hélio Marcos Fernandes Viana Tema: Prospecção e amostragem de solos (2. o parte) Conteúdo da parte 3 3 Processos (ou métodos) de prospecção do subsolo (continuação)

Upload: votuong

Post on 11-Nov-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

1

Notas de aulas de Mecânica dos Solos I (parte 3)

Hélio Marcos Fernandes Viana

Tema:

Prospecção e amostragem de solos (2.o parte)

Conteúdo da parte 3

3 Processos (ou métodos) de prospecção do subsolo (continuação)

Page 2: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

2

3 Processos (ou métodos) de prospecção do subsolo (continuação) 3.3.4 Ensaio pressiométrico O ensaio pressiométrico, que explora o subsolo, é realizado com uso de uma sonda cilíndrica, que se dilata (ou expande) devido a aplicação de água sobre pressão, tal sonda é denominada pressiômetro. Existem 3 (três) tipos de pressiômetros, que são usados no ensaio pressiométrico; Os 3 (três) tipos de pressiômetros são classificados de acordo com o modo que são instalados no solo; Assim sendo, tem-se: a) O pressiômetro de perfuração, o qual é instalado em um furo previamente aberto; b) O pressiômetro autoperfurante, o qual escava o solo durante a sua penetração; e c) O pressiômetro cravado, o qual é cravado no solo de forma similar ao ensaio do cone. Neste tópico será considerado o ensaio realizado com o pressiômetro de perfuração, que é bastante difundido na literatura. i) Princípio básico de funcionamento, e principais procedimentos do ensaio pressiométrico O princípio básico de funcionamento, e os principais procedimentos do ensaio pressiométrico são apresentados como se segue. a) Uma sonda de forma cilíndrica, denominado pressiômetro, é introduzida em um furo de sondagem previamente aberto; b) Posteriormente, aplica-se água sob pressão no pressiômetro, o que causa aumento do volume do pressiômetro e produz uma pressão no solo nas paredes do furo. A atuação da pressão radial do pressiômetro no solo causa o aumento da cavidade cilíndrica do furo em torno do pressiômetro; c) Durante o ensaio, a pressão é aplicada no pressiômetro em estádios (ou estágios); d) A cada estádio de pressão aplicada no pressiômetro são feitas leituras em um

volumímetro de água para 15, 30 e 60 segundos; e) A partir das leituras do volume de água injetada no pressiômetro à cada estádio de pressão, é possível traçar a curva: Pressão aplicada ao solo versus Volume de água injetada no pressiômetro; OBS. As leituras feitas no volumímetro de água para plotar (ou traçar) a curva anterior correspondem às leituras de 60 segundos para cada estádio (ou estágio) de pressão. f) A partir da curava Pressão aplicada ao solo versus Volume de água injetada no pressiômetro é possível obter o módulo de elasticidade do solo que é útil para os projetos de engenharia.

Page 3: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

3

OBS. Durante o ensaio, as pressões radiais geradas pelo pressiômetro causam deformações no solo ao redor do pressiômetro, até a ruptura do solo. ii) Principais equipamentos empregados no ensaio pressiométrico (considerando-se o ensaio com pressiômetro de perfuração) Os principais equipamentos empregados no ensaio pressiométrico são: a) Equipamento para abrir o furo de sondagem (Ex: Trado manual); b) Aparelho medidor de pressão e volume; c) Sonda pressiométrica ou pressiômetro de Menard; d) Tubulações coaxiais ou tubulações que transportam água sobre pressão do aparelho medidor (de pressão e volume) para o pressiômetro; e e) Cilindro com gás comprimido. A Figura 3.13 ilustra o equipamento usado no ensaio pressiométrico. Observa-se que o aparelho medidor de pressão e volume é constituído de manômetros e do volumímetro.

Figura 3.13 - Equipamento usado no ensaio pressiométrico

Page 4: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

4

iii) Características da curva Pressão aplicada no solo versus Volume de água injetada no pressiômetro A curva Pressão aplicada no solo versus Volume de água injetada no pressiômetro representa o resultado do ensaio pressiométrico. A curva Pressão aplicada no solo versus Volume de água injetada no pressiômetro pode ser dividida em 4(quatro) fases, as quais são: a) 1.o (primeira) fase, que é a fase que corresponde à reposição das tensões atuantes no solo, as quais atuavam no solo antes do furo de sondagem; b) 2.o (segunda) fase, ou fase pseudo-elástica; c) 3.o (terceira) fase, ou fase plástica; e d) 4.o (quarta) fase, ou fase do equilíbrio limite. A Figura 3.14 ilustra uma curva Pressão aplicada no solo versus Volume de água injetada no pressiômetro; Onde, são destacadas as 4 (quatro) fases da curva.

Figura 3.14 - Curva Pressão aplicada no solo versus Volume de água injetada no pressiômetro; e as 4 (quatro) fases da curva

iv) Determinação do módulo de elasticidade do solo através do ensaio pressiométrico O módulo de elasticidade do solo é obtido na fase pseudo-elástica da curva Pressão aplicada ao solo versus Volume de água injetada no pressiômetro.

Page 5: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

5

O módulo de elasticidade é calculado com base na seguinte equação: (3.8) em que: E = módulo de elasticidade do solo (kPa); k = constante que depende das dimensões do pressiômetro (cm3); dp = incremento de pressão (kPa); e dv = incremento de volume (cm3).

Como dp P e dv V, então: (3.9) em que: E = módulo de elasticidade do solo (kPa); k = constante que depende das dimensões do pressiômetro (cm3);

V = VF - V0 = variação de volume lida no gráfico (cm3); VF = volume final, lido no final da fase pseudo-elástica (cm3); V0 = volume inicial, lido no início da fase pseudo-elástica (cm3);

P = PF - P0 = variação de pressão lida no gráfico (kPa); PF = pressão final, lida no final da fase pseudo-elástica (kPa); e P0 = pressão inicial, lida no início da fase pseudo-elástica (kPa). OBS. Com o auxílio de uma régua, o trecho pseudo-elástico da curva pode ser facilmente determinado traçando-se uma reta sobre a curva no trecho pseudo-elástico. v) Parâmetros do solo que podem ser obtidos através do ensaio pressiométrico A Tabela 3.3 mostra os parâmetros dos solos, os quais podem ser obtidos a partir do ensaio pressiométrico. Tabela 3.3 - Parâmetros dos solos, os quais podem ser obtidos a partir do

ensaio pressiométrico

OBS. O símbolo Ψ é a letra grega “psi”.

E

G

f '

SU

Y

Símbolo

Módulo de elasticidade do solo

Módulo de cisalhamento do solo

Ângulo de atrito efetivo do solo

Resistência ao cisalhamento não drenada

Ângulo de dilatância

Parâmetros do solo abtidos a partir do

ensaio pressiométrico

dv

dp.kE

V

P.kE

Page 6: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

6

3.4 Métodos de prospecção diretos i) Os principais métodos de prospecção diretos Os principais métodos prospecção diretos são: a) Sondagem de simples reconhecimento, também conhecida como sondagem à percussão ou sondagem SPT (Standard Penetration Test); b) Poços; c) Trincheiras; d) Sondagens a trado; e) Sondagens rotativas; e f) Sondagens mistas (sondagem SPT + sondagem rotativa). ii) Características dos métodos ou processos de prospecção diretos Os métodos de prospecção (ou sondagem) diretos apresentam as seguintes características: a) Nos métodos de prospecção diretos são realizadas perfurações no subsolo; b) Nos métodos de prospecção diretos é possível uma observação direta das camadas de solo, da seguinte forma: -> Através de furos de grandes diâmetros; ou -> Através de amostras colhidas de furos de pequenas dimensões. c) Os métodos diretos permitem obter amostras indeformadas, para se obter informações seguras sobre: -> O teor de umidade do solo; -> A resistência ao cisalhamento do solo; e sobre -> A compressibilidade dos solos. OBS. Amostras são ditas como indeformadas quando conservam a estrutura, a textura e a umidade do solo do local onde são colhidas; Ou seja, são amostras que sofrem alterações mínimas devido a ação do homem. d) Os métodos diretos de prospecção permitem: -> Delimitar as camadas do subsolo; e -> Determinar o nível do lençol freático (ou nível de água). 3.4.1 Sondagem SPT (Standard Penetration Test), também conhecida como sondagem à percussão, ou sondagem de simples reconhecimento i) Introdução O SPT é, de longe, o ensaio de prospecção do subsolo mais executado na maioria dos países do mundo, e também no Brasil. O SPT é usado principalmente em prospecção do subsolo para fins de construção de fundações rasas (sapatas, blocos, etc.) e profundas (estacas e tubulões) de edifícios, pontes, etc.

Page 7: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

7

Dentre as vantagens que apresenta a sondagem SPT, pode-se citar: a) O baixo custo da sondagem; b) A simplicidade de execução da sondagem; c) A possibilidade de colher amostras do subsolo; d) A possibilidade de determinar a posição do lençol freático; e e) A obtenção de informações da consistência (ou firmeza) dos solos, e da

compacidade (ou compactação) dos solos. A sondagem SPT constitui-se em uma medida da resistência dinâmica do solo. A sondagem SPT é executada por meio da perfuração do terreno, e é acompanhada da retirada de amostras do subsolo. A sondagem SPT permite traçar o perfil estratigráfico do solo. OBS. O perfil estratigráfico é a representação gráfica do perfil do subsolo com suas camadas e da cota do nível de água. De acordo com Bowles (1997), tem-se que: O ensaio SPT, que foi desenvolvido por volta de 1927, é o mais popular e econômico meio de obter informações tanto dos subsolos no continente como dos subsolos submersos em água. Entre 85 a 90 por cento dos projetos de fundação, na América do Sul e na América do Norte, são feitos utilizando o ensaio SPT.

Assim sendo, Bowles (1997) destacou os seguintes pontos relacionados ao ensaio SPT: Tempo de aprovação (cerca de 70 anos de utilização), ampla difusão no meio técnico (ou popularidade), baixo custo e o multiuso (utilizado para avaliar subsolos continentais ou submersos). ii) Equipamento usado no ensaio SPT O equipamento empregado no ensaio, ou sondagem SPT consiste principalmente dos seguintes elementos: a) Tripé; b) Roldana; c) Martelo de cravação de 65 kgf (ou kg); d) Corda; e) Hastes para avanço da sondagem;

f) Amostrador com f (diâmetro) externo de 51 mm; g) Trépano de lavagem do furo; h) Tanque de água para lavagem do furo; i) Apito para determinação do nível de água; e j) Bomba d’água para lavagem do furo. A Figura 3.15 ilustra o equipamento de sondagem SPT no instante da sondagem no furo.

Page 8: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

8

Figura 3.15 - Equipamento de sondagem SPT no instante da sondagem iii) Principais procedimentos do ensaio SPT Os principais procedimentos do ensaio SPT são os que se seguem: a) Abertura de um furo a trado até 1,0 m de profundidade; b) Colocação do amostrador na ponta da haste de avanço e iniciar a cravação dinâmica do amostrador, com uso do martelo de 65 kgf (ou kg) caindo de uma altura de 75 cm; c) Então, cravar os primeiros 15 cm do amostrador no solo contando o número de golpes; d) Na sequência, cravar os 30 cm restantes do amostrador no solo contado o número de golpes; e) Retirar o amostrador do solo e coletar a amostra de solo do seu interior; Então guardar a amostra em saco plástico para enviá-la ao laboratório; f) Para o 2.o (segundo) metro de sondagem, utiliza-se o trado ou o trépano de lavagem do furo para realizar uma escavação até 2 m de profundidade; g) Após escavar até 2 m de profundidade, realiza-se a colocação do amostrador na haste, e iniciar a cravação dinâmica do amostrador no solo com uso do martelo de 65 kgf caindo a 75 cm de altura; h) Então, cravar os primeiros 15 cm do amostrador no solo contando o número de golpes; i) Na sequência, cravar os 30 cm restantes do amostrador contando o número de golpes para sua cravação;

Page 9: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

9

j) Retirar o amostrador e coletar a amostra de solo do seu interior; Então, guardar a amostra em saco plástico para enviá-la ao laboratório; l) Continuar a sondagem para o 3.o (terceiro), 4.o (quarto), 5.o (quinto),..., até o n-ésimo metro de sondagem seguindo procedimentos semelhantes aos descritos do item f ao item j, mostrados anteriormente; m) Finalizar a sondagem ao se encontrar a camada impenetrável, a qual pode ser rocha ou um solo muito duro; e n) Com o uso de um apito especial, determina-se o nível de água do lençol freático, com leituras após 24 horas da retirada do tubo de revestimento do furo, ou seja, 24 horas após o fim da sondagem. OBS(s). A escavação do furo de sondagem pode ser feita pelo trado, ou pela lavagem com uso do trépano. A escavação do furo de sondagem a trado só pode ser feita até o nível de água (NA). A lavagem do furo com água com uso do trépano pode influenciar na leitura do nível de água; por isso recomenda-se a determinação do nível de água após 24 horas após o término da sondagem. O uso de marcador de giz, na haste de avanço, permite determinar o número de golpes para penetração do amostrador no solo a cada 15 cm. No Brasil, o ensaio SPT é padronizado pela NBR 6484. iv) Amostragem durante a sondagem SPT Como descrito anteriormente, a cada metro de profundidade de sondagem são colhidas amostras deformadas do solo, com uso do amostrador. OBS. Amostras deformadas são amostras que sofrem alguma alteração na sua textura e/ou estrutura e/ou umidade devido a ação do homem. As amostras coletadas no subsolo são transportadas para o laboratório para realização dos ensaios de caracterização dos solos. OBS (s). a) Os ensaios de caracterização dos solos são: - Peso específico natural; - Peso específico dos sólidos; - Análise granulométrica; - Limite de liquidez (LL); - Limite de Plasticidade (LP); e - Etc. b) Para prospecção para fins de fundações, pode-se dispensar os ensaios LL, LP. A Figura 3.16 ilustra um amostrador, padrão NBR 6484, utilizado no ensaio SPT, o qual se abre longitudinalmente para retirada da amostra.

Page 10: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

10

Figura 3.16 - Amostrador, padrão NBR 6484, utilizado no ensaio SPT Destaca-se, no amostrador padrão, da Figura 3.16, que a parte central do amostrador é destinada a receber a amostra de solo. E que a ferramenta de pé é biselada (ou chanfrada) para facilitar o corte da amostra de solo durante o ensaio. OBS. Chanfrada = cortada em ângulo. A Figura 3.17 ilustra uma sondagem SPT no instante da sua execução, percebe-se que o martelo de cravação de 65 Kgf está sendo levantado por dois técnicos. Contudo, sabe-se que apenas um técnico já possui força suficiente para fazê-lo (levantar o martelo com a corda).

Figura 3.17 - Sondagem SPT no instante da sua execução v) Índice de resistência à penetração, ou N do SPT O índice de resistência à penetração (N) corresponde ao número de golpes, do martelo de 65 kgf caindo de 75 cm de altura, necessários para cravação dos últimos 30 cm do amostrador padrão no solo.

Page 11: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

11

Durante a sondagem, para cada metro sondado, anota-se o número de golpes para penetrar cada 15 cm do amostrador no solo. Assim sendo, ao penetrar 45 cm do amostrador no solo, o número de golpes necessários para penetrar os últimos 30 cm do amostrador será o N (índice de resistência à penetração, ou N do SPT). OBS. Se para uma penetração dos 15 cm iniciais do amostrador padrão, se obter: Uma penetração menor ou igual que 15 cm, e o número de golpes do martelo for maior ou igual a 30 golpes, pode-se parar a penetração e prosseguir para o próximo metro de sondagem; Sedo que o N do SPT na profundidade sondada é dado pela seguinte fórmula: A Tabela 3.4 ilustra um exemplo de como é feita a determinação do N (índice de resistência à penetração) para cada metro de sondagem do subsolo. Tabela 3.4 - Exemplo de determinação do N (índice de resistência à

penetração) para cada metro de sondagem no subsolo

vi) Momento de interromper a sondagem SPT A sondagem SPT deverá ser interrompida nas seguintes situações: a) Quando, em 3 (três) metros de sondagem sucessivos, for obtido para os 15 cm iniciais de penetração do amostrador padrão:

N (SPT) 30 /15 ; ou seja

N (SPT) 30 golpes / 15 cm (de penetração do amostrador).

Penetração inicial

1,00 a 1,45 2 / 15 3 / 15 1/ 15 4

2,00 a 2,45 3 / 15 3 / 15 3 / 15 6

3,00 a 3,45 5 / 15 5 / 15 7 / 15 12

4,00 a 4,45 7 / 15 8 / 15 9 / 15 17

5,00 a 5,45 20 / 15 25 / 15 25 / 15 50

6,00 a 6,45 41 / 15 --- --- 41 / 15

7,00 a 7,45 41 / 10 --- --- 41 / 15

8,00 a 8,45 45 / 7 --- --- 45 / 15

N.o de golpes / penetração do amostrador (cm)

Penetração final

Profundidade de

sondagem (m)N (SPT)

15

golpesdeNúmero)SPT(N

Page 12: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

12

b) Quando, em 4 (quatro) metros sucessivos, for obtido para os 30 cm iniciais de penetração do amostrador padrão:

N(SPT) 50 / 30 ou seja

N (SPT) 50 golpes / 30 cm (de penetração do amostrador). c) Quando, em 5 metros sucessivos, for obtido para os 45 cm de penetração do amostrador padrão:

N(SPT) 50 / 45 ou seja

N (SPT) 50 golpes / 45 cm (de penetração do amostrador). d) Quando, a lavagem do furo, por circulação de água com trépano, durante 30 minutos apresentar, para cada 10 minutos de lavagem do furo, um avanço do trépano inferior a 5 cm. OBS(s). a) Se o furo de sondagem for impenetrável em uma profundidade menor que 8 m (D < 8 m); Então, deve-se deslocar o aparelho 2 m e fazer um novo furo; b) Se o novo furo também for impenetrável, a uma profundidade menor que 8 m (D < 8 m); Então, será feito um terceiro e último furo a 2 m, e a 90o do alinhamento dos dois primeiros furos; c) D = profundidade de sondagem; d) A sondagem SPT chega a alcançar profundidades superiores a 30 m, tem-se registro de sondagem SPT de até 55 m de profundidade. Sedo que de acordo ao DER-SP, além de 15 m de sondagem o preço do metro sondado aumenta. Em setembro de 2015, pelo DER-SP, para sondagem além de 30 m o preço era R$ 181,06/m; Além do mais, é necessário pagar o frete de deslocamento do equipamento de sondagem, e também a taxa de instalação da sonda SPT; f) Para fazer orçamentos de sondagem SPT, pode-se consultar a tabela de preços unitários no site do DER-SP; e g) Geralmente, os materiais utilizados para fabricar os equipamentos de sondagem é o latão ou o aço inox (ou aço resistente ao ferrugem ou oxidação). vii) Perfil longitudinal do subsolo obtido da sondagem SPT O perfil de sondagem SPT deverá conter no mínimo as seguintes informações: a) Cotas superficiais dos furos de sondagem; b) Cota do nível de água em cada furo; c) Estratos ou camadas que compõem o subsolo; d) Consistência ou compacidade de cada camada de solo; e) Limites das camadas de solo; f) N(SPT) de cada metro sondado; e g) Tipo de solo de cada camada de solo (areia, silte, argila, etc.). A Figura 3.18 ilustra um exemplo de um perfil longitudinal do subsolo obtido a partir de sondagem tipo SPT.

Page 13: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

13

Figura 3.18 - Exemplo de um perfil longitudinal do subsolo obtido a partir de

uma sondagem tipo SPT 3.4.1.1 Importantes relações com o índice de resistência a penetração N, ou N (SPT) i) Determinação da compacidade (ou compactação) das areias e siltes arenosos a partir do N do SPT A Tabela 3.5 mostra a relação existente entre o N do SPT e o grau de compacidade das areias e siltes arenosos. Tabela 3.5 - Relação existente entre o N do SPT e o grau de compacidade das

areias e siltes arenosos

N ≤ 4 Fofa

5 ≤ N ≤ 8 Pouco compacta

e 9 ≤ N ≤ 18 Medianamente compacta

19 ≤ N ≤ 40 Compacta

N > 40 Muito compacta

Índice de resistência à

penetração (N)CompacidadeSolo

Areia

silte arenoso

Page 14: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

14

ii) Determinação do grau de consistência (ou firmeza) das argilas e siltes argilosos a partir do N do SPT A Tabela 3.6 mostra a relação existente entre o N do SPT e o grau de consistência das argilas e siltes argilosos. Tabela 3.6 - Relação existente entre o N do SPT e o grau consistência das

argilas e siltes argilosos

iii) Relação entre o N do SPT e as pressões admissíveis (ou tensões admissíveis) do solo De acordo com a NBR 6122 (2010), a tensão admissível de uma fundação superficial ou da base de um tubulão é uma tensão aplicada por uma fundação superficial ou pela base de um tubulão no terreno, com duas características básicas, as quais são: a) É uma tensão que atende ao estado-limite de serviço da edificação. Neste caso a tensão (ou pressão) admissível é uma tensão que, quando aplicada ao solo, provoca apenas recalques, vibrações, ou inclinações, que não comprometem o bom funcionamento da edificação. b) É uma tensão que atende ao estado-limite último da edificação. Neste caso a tensão (ou pressão) admissível é uma tensão que, quando aplicada ao solo, não provoca a ruptura do solo por cisalhamento (ou não provoca o escoamento do solo). OBS(s). a) Com base em Bueno et al. (1985) o termo tensão admissível tem o mesmo significado de pressão admissível; b) Estado-limite de serviço está associado à ocorrência na edificação de deformações, fissuras ou inclinações, as quais compromete o bom funcionamento da edificação; c) Estado-limite último está associado à ocorrência de ruptura do solo por cisalhamento e ao colapso (ou desabamento) total ou parcial da edificação; d) Como exemplo de fundação superficial, também chamada de fundação rasa, ou direta, tem-se: blocos, sapatas, sapatas associadas, radier, etc.; e e) Uma fundação é superficial, quando respeita a seguinte relação:

N ≤ 2 Muito mole

3 ≤ N ≤ 5 Mole

e 6 ≤ N ≤ 10 Média

11 ≤ N ≤ 19 Rija

N > 19 Dura

Índice de resistência à

penetração (N)ConsistênciaSolo

Argila

silte argiloso

Page 15: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

15

em que: D = profundidade de assentamento da fundação em relação ao terreno adjacente

(ou próximo); e B = menor dimensão as fundação, ou seja, largura da fundação, ou menor lado da

fundação. A Tabela 3.7 mostra a relação existente entre o N do SPT e a pressão admissível do solo de fundação com base na NBR 6122 (1996) e na NBR 6484 (2001). Tabela 3.7 - Relação existente entre o N do SPT e a pressão admissível do solo

de fundação com base na NBR 6122 (1996) e na NBR 6484 (2001)

OBS(s). a) O uso da Tabela 3.7 se restringe à fundação para pilares com carga inferior a 1000 kN (ou 100 toneladas) por pilar; b) No caso de solos argilosos ou siltosos, é permitido usar as pressões admissíveis da Tabela 3.7, somente, para fundações com área da base até no máximo 10 m2. A Tabela 3.8 mostra a relação existente entre o N do SPT e a pressão (ou tensão) admissível do solo de fundação, para solos arenosos, de acordo com Milititsky e Schnaid (1995). Observa-se que B, na Tabela 3.8, é a menor dimensão de uma sapata retangular.

MPa kgf/cm2

N > 40 Areias muito compactas 0,5 5

19 ≤ N ≤ 40 Areias compactas 0,4 4

9 ≤ N ≤ 18 Areias medianamente compactas 0,2 2

N > 40 Siltes duros (muito compactos) 0,3 3

19 ≤ N ≤ 40 Siltes compactos 0,2 2

9 ≤ N ≤ 18 Siltes médios (medianamente compactos) 0,1 1

N > 19 Argilas duras 0,3 3

11 ≤ N ≤ 19 Argilas rijas 0,2 2

6 ≤ N ≤10 Argilas médias 0,1 1

N (SPT)Pressão admissível do solo

Tipo de solo

BD .2

Page 16: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

16

Tabela 3.8 - Relação existente entre o N do SPT e a pressão admissível do solo de fundação para solos arenosos (Fonte: Modificada de Milititsky e Schnaid, 1995)

A Tabela 3.9 mostra a relação existente entre o N do SPT e a pressão (ou tensão) admissível do solo de fundação, para solos argilosos (ou coesivos), de acordo com Milititsky e Schnaid (1995). Observa-se que B, na Tabela 3.9, é a menor dimensão de uma sapata retangular. Tabela 3.9 - Relação existente entre o N do SPT e a pressão admissível do solo

de fundação, para solos argilosos (ou coesivos) (Fonte: Modificada de Milititsky e Schnaid, 1995)

De acordo com Caputo (2007), é possível obter valores de pressão admissível razoavelmente satisfatórios para argilas com base na seguinte relação:

(3.10)

ADM = tensão admissível da argila (kgf/cm2); N = índice de resistência a penetração ou N(SPT) do solo; B = largura ou menor dimensão da fundação (m); e L = comprimento ou maior dimensão da fundação (m).

B = 0,75 m B = 1,50 m B = 3,0 m

Muito compacta N > 50 > 6 > 5 > 4,5

Compacta 30 < N ≤ 50 3 - 6 2,5 - 5 2 - 4,5

Median. compacta 10 < N ≤ 30 1 - 3 0,5 - 2,5 0,5 - 2

Pouco compacta 5 ≤ N ≤ 10 0,5 - 1 < 0,5 < 0,5

Fofa N < 5

Provável pressão admssível (kgf/cm2)N (SPT)

a estudar

Compacidade

B = 0,75 m B = 1,50 m B = 3,0 m

Dura N > 30 5 4,5 4

Muito rija 15 < N ≤ 30 2,5 - 5 2 - 4,5 1,5 - 4

Rija 8 < N ≤ 15 1,25 - 2,5 1 - 2 0,75 - 1,5

Média 4 < N ≤ 8 0,75 - 1,25 0,5 - 1 0,25 - 0,75

Mole 2 ≤ N ≤ 4 0,25 - 0,75 < 0,5 ---

Muito mole N < 2 a estudar

Provável pressão admssível (kgf/cm2)N (SPT)Consistência

Page 17: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

17

A tensão admissível para todo tipo de solo, inclusive para silte, pode ser obtida pela relação apresentada por Joppert Jr. (2008), a qual é mais um exemplo da obtenção da tensão admissível do solo com base no N(SPT), segundo ele, tem-se que: (3.11) em que:

ADM = pressão ou tensão admissível do solo (kgf/cm2); e Nmédio = média aritmética dos N(SPT) na região localizada entre a cota de apoio e o término do bulbo de tensões da sapata. Geralmente, 2.B ≤ Lt ≤ 3.B em que: Lt = profundidade do bulbo de tensões onde é calculado o Nmédio (m); e B = menor dimensão da sapata (m). OBS(s). i) Considerando-se a eq.(3.11), não se aconselha usar tensões maiores que 4 kgf/cm2 nos projetos, sem uma análise mais profundas deste valor no que se refere a recalques e ruptura; ii) Com uma formulação mais conservadora, porém similar a eq. (3.11), Bueno et al. (1985) confirma a eq. (3.11) de Joppert Jr. (2008), mostrada anteriormente. Contudo, segundo Bueno et al. (1985) a eq. (3.11) só pode ser utilizada para solos com N(SPT) ≥ 6; iii) Para solos moles ou médios, dependendo o carregamento da obra, pode ser necessário a utilização de estacas; e iv) Quando se utiliza a equação de Joppert Jr. (2008) é necessário calcular a profundidade do bulbo de tensões da sapata; Assim sendo, pode-se fazer um pré-dimensionamento da sapata com base nas tensões admissíveis da Tabela 3.7 para encontrar o B (ou menor dimensão da sapata), e assim encontrar a profundidade do bulbo de tensões, e finalmente calcular a tensão admissível pelo método de Joppert Jr. (2008). iv) Relação entre o N do SPT e o recalque elástico de fundações em solos arenosos De acordo com o método de Burland et al. (1977) apud Schnaid (2005), sendo:

máx = recalque elástico máximo da fundação (mm); q = pressão aplicada ao solo pelo elemento de fundação (kN/m2); e B = largura (ou menor lado) da fundação (m).

OBS. O símbolo é a letra grega “ro” Então, o recalque máximo para solos arenosos pode ser calculado como se segue: a) O recalque para areias fofas (com N ≤ 8) será: (3.12) )B.32,0.(q 3,0

máx

𝜎𝐴𝐷𝑀 =𝑁𝑚é𝑑𝑖𝑜5

Page 18: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

18

b) O recalque para areias medianamente compactas (com 9 ≤ N ≤ 18) será: (3.13) c) O recalque para areias compactas (com 19 ≤ N ≤ 40) será: (3.14) OBS(s). a) Nas relações anteriores o valor de B (largura da fundação) varia até no máximo 12 m; e b) Recalques elásticos são recalques que ocorrem logo após a aplicação da carga sobre o solo. v) Recalque elástico imediato máximo para sapatas sobre solos homogêneos De acordo com Bueno et al. (1985), o recalque elástico imediato máximo de sapatas sobre solos homogêneos podem ser calculados pela seguinte expressão:

= [( )

] (3.15)

em que:

máx = recalque elástico imediato máximo sobre solos homogêneos (cm); Cd = fator forma, que é o fator que leva em conta a geometria da área carregada;

= tensão aplicada pela fundação na superfície do solo (carregamento do pilar dividido pela área da base da fundação) (kgf/cm2); B = largura ou menor dimensão da fundação (cm);

= coeficiente de Poisson da camada de solo; e E = módulo de elasticidade do solo (Kgf/cm2). De acordo com Velloso e Lopes (2004, página 132), as sapatas dos edifícios, em geral, têm rigidez elevava. Já as sapatas designadas como sapatas flexíveis são usadas para torres, chaminés ou equipamentos industriais, e são geralmente designadas de radiers. As sapatas flexíveis geralmente têm altura pequena, em relação as suas dimensões horizontais (comprimento e largura). De acordo com Bueno et al. (1985), uma sapata é considerada rígida, quando obedece as duas relações a seguir (equações 3.16 e 3.17):

(3.16) e (3.17)

)B.07,0.(q 3,0

máx

)B.035,0.(q 3,0

máx

h≥𝐵 𝐵𝑜

4+ 0,05 (𝑚)

h≥𝐿 𝐿𝑜

4+ 0,05 (𝑚)

Page 19: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

19

em que: h = altura da sapata, como ilustra a Figura 3.19 (m); B = largura ou menor dimensão da sapata, como ilustra a Figura 3.20 (m); L = comprimento ou maior dimensão da sapata, como ilustra a Figura 3.20 (m); Bo = dimensão do pilar na direção de B (ou da largura da sapata), como ilustra a Figura 3.20 (m); e Lo = dimensão do pilar na direção de L (ou do comprimento da sapata), como ilustra a Figura 3.20 (m). A Figura 3.19 mostra como se determina a altura da sapata, tanto para sapatas de altura constante como para sapatas de altura variável. As sapatas de altura variável são mais econômicas, em termos de concreto, mas são mais trabalhosas quanto à execução.

Figura 3.19 - Determinação da altura da sapata (h) A Figura 3.20 mostra os elementos básicos para o dimensionamento das sapatas retangulares ou quadradas, e de altura constante ou variável.

Page 20: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

20

Figura 3.20 - Elementos básicos para o dimensionamento das sapatas

retangulares ou quadradas, e de altura constante ou variável A Tabela 3.10 mostra os valores do fator forma da sapata, para sapatas rígidas, considerando-se sapatas de diversas geometrias, e a Figura 3.21 mostra a fórmula para cálculo do fator forma, para sapatas rígidas, baseado em uma regressão não linear de alta precisão.

Page 21: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

21

Tabela 3.10 - Valores do fator forma, para sapatas rígidas, considerando-se sapatas de diversas geometrias (Bueno et al.,1985)

Figura 3.21 - Fórmula para cálculo do fator forma, para sapatas rígidas, baseado em uma regressão não linear de alta precisão

OBS. A equação apresentada na Figura 3.21 é válida para 1 ≤ L/B ≤ 10.

Circular 0,88

Quadrada 0,99

Retangular e L/B = 1,5 1,06

Retangular e L/B = 2 1,20

Retangular e L/B = 3 1,41

Retangular e L/B = 5 1,70

Retangular e L/B = 10 2,10

Retangular e L/B = 100 3,40

Tipo de Sapata Fator Forma (Cd)

OBS(s). B = largura ou menor dimensão da sapata; e L = comprimento

ou maior dimensão da sapata.

Cd = -0,0117.(L/B)2 + 0,2534.(L/B) + 0,7353R² = 0,9983

0,50

1,00

1,50

2,00

2,50

1 2 3 4 5 6 7 8 9 10 11

Fa

tor

form

a (

Cd)

L/B (comprimento/largura)

Page 22: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

22

vi) Recalque absoluto máximo admissível para fundações isoladas Os recalques nas edificações podem causar diversos danos tais como: fissuras ou trincas nas paredes e/ou pisos, mau funcionamento dos caixilhos de portas e janelas, refluxo nos esgotos, rupturas de painéis de vidro, infiltrações e até danos estruturais. De acordo com Institution of Structural Engineers (1989 apud Veloso e

Lopes 2004), tem-se que o recalque absoluto máximo admissível (adm) para fundações sobre areias será:

5 (3.18) Com base em Skempton e MacDonald (1956 apud Velloso e Lopes 2004), fazendo-se uma extensão a favor da segurança da areia para o silte, pode-se admitir

que o recalque absoluto máximo admissível (adm) para sapatas isoladas sobre siltes será:

0 (3.19) De acordo com Velloso e Lopes (2004), o recalque absoluto máximo

admissível (adm) para sapatas isoladas sobre argilas será:

5 (3.20) OBS(s): a) Existe outro tipo de recalque admissível, designado por recalque diferencial admissível, mas este tema deverá ser abordado na disciplina Fundações; e b) De acordo com Velloso e Lopes (2004), tem-se que aberturas de fissuras em paredes de edificações residenciais, comerciais ou públicas e industriais, menores que 5 mm têm, apenas, efeito estético na estrutura. vii) Relação entre o N do SPT e o módulo de elasticidade do solo De acordo com Mitchell e Gardner (1975) apud Bueno et al. (1985) o valor do módulo de elasticidade do solo pode ser obtido pelas relações a seguir. a) O módulo de elasticidade para areias pode ser obtido pela seguinte equação: (3.21) em que: E = módulo de elasticidade (kgf/cm2); e N = índice de resistência à penetração do solo. b) O módulo de elasticidade para argilas pode ser obtido pela seguinte equação: (3.22)

)15N.(88,4E

)5N.(93,2E

Page 23: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

23

em que: E = módulo de elasticidade (kgf/cm2); e N = índice de resistência à penetração do solo. OBS. Para maior precisão na determinação do módulo de elasticidade, recomenda-se retirada de amostras e determinação do módulo de elasticidade em laboratório. Para siltes, pode-se utilizar a relação proposta por YOSHIDA e YOSHINAKA (1972), a qual é:

= , (3.23) em que: E = módulo de elasticidade (kgf/cm2); e N = índice de resistência à penetração do solo. viii) Resistência ao cisalhamento não drenada em argilas em função do N(SPT) De acordo com Décourt (1989 apud Hachich 1996) a resistência não drenada de uma argila saturada (SU) é dada pela seguinte equação: (3.24) em que: SU = resistência ao cisalhamento não drenada da argila saturada (kN/m2); e N = índice de resistência à penetração do solo. OBS(s): a) Quando, em um projeto, se considera uma argila saturada, o engenheiro está fazendo uma consideração a favor da segurança, uma vez que a argila não saturada pela água é mais resistente; e b) Nos projetos com solos, geralmente, a resistência medida no campo (ou “in situ”) é minorada por um fator de segurança. De acordo com NBR 6122 (2010) os métodos que relacionam o N do SPT com as tensões resistentes de projeto devem considerar uma minoração com fator de segurança igual a 3. ix) Relação do ângulo de atrito das areias com o N do SPT A Tabela 3.11 que relaciona o ângulo de atrito das areias com o N do SPT foi elaborada considerando os dados apresentados de Bowles (1977 apud Bueno et al. 1985) e de Rocha (1990).

SU = 1 ,5 𝑁

Page 24: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

24

Tabela 3.11 - Variação do ângulo de atrito das areias com o N do SPT (Bowles 1977 apud Bueno et al. 1985; Rocha, 1990)

x) Curva que relaciona o ângulo de atrito efetivo (f’) dos solos arenosos com o N do ensaio SPT

A Figura 3.22 apresenta a curva que relaciona o ângulo de atrito efetivo (f’) dos solos arenosos com o N do ensaio SPT.

Figura 3.22 - Curva que relaciona o ângulo de atrito efetivo (f’) dos solos arenosos com o N do ensaio SPT; Modificada de Peck, Hanson e Thorburn (1953 apud Schnaid 2005)

xi) Variação do ângulo de atrito efetivo e coesão efetiva das areias com o N do SPT A Tabela 3.12 que relaciona o ângulo de atrito efetivo das areias e a coesão efetiva com o N do SPT foi elaborada considerando os dados apresentados por Joppert (2008).

N f (graus)

de 0 a 3 25

4 27

de 5 a 10 28

de 11 a 30 30

de 31 a 50 36

Maior que 50 40

Page 25: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

25

Tabela 3.12 - Variação do ângulo de atrito efetivo e da coesão efetiva das areias com o N do SPT (Joppert, 2008)

xii) Variação da coesão das argilas com o N do SPT A Tabela 3.13 que relaciona a coesão das argilas com o N do SPT foi elaborada considerando os dados apresentados por Rocha (1990). Tabela 3.13 - Variação da coesão das argilas com o N do SPT (Rocha, 1990)

Solo N f' (graus) c' (t/m2)

0 a 4 25 --

5 a 8 30 --

9 a 18 32 --

19 a 41 35 --

N 41 38 --

0 a 4 25 --

5 a 8 30 --

9 a 18 32 --

19 a 41 35 --

N 41 38 --

0 a 4 25 0,00

5 a 8 28 0,50

9 a 18 30 0,75

19 a 41 32 1,00

0 a 4 25 0,00

5 a 8 28 0,50

9 a 18 30 0,75

19 a 41 32 1,00

Areia fina muito

argilosa

Areia pouco

siltosa

Areia pouco

argilosa

Areia média

muito argilosa

N c (t/m2)

Menor que 2 0,5

de 3 a 4 1,00

de 5 a 8 2,00

de 9 a 15 4,00

de 16 a 30 8,00

Maior que 30 10,00

Page 26: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

26

xiii) Relação peso específico das areias com o N do SPT A Tabela 3.14 que relaciona o peso específico das areias com o N do SPT foi elaborada considerando os dados apresentados por Joppert (2008). Tabela 3.14 - Variação do peso específico das areias com o N do SPT (Joppert,

2008)

xiv) Descrição do coeficiente de Poisson do solo com base no tipo de solo A Tabela 3.15 mostra os valores do coeficiente de Poisson do solo para diversos tipos de solos (Joppert, 2008). Tabela 3.15 - Valores do coeficiente de Poisson do solo para diversos tipos de

solos (Joppert, 2008)

Solo N g (t/m3) gSAT (t/m

3)

0 a 4 1,70 1,80

5 a 8 1,80 1,90

9 a 18 1,90 2,00

19 a 41 2,00 2,10

N 41 2,00 2,10

0 a 4 1,70 1,80

5 a 8 1,80 1,90

9 a 18 1,90 2,00

19 a 41 2,00 2,10

N 41 2,00 2,10

0 a 4 1,70 1,80

5 a 8 1,80 1,90

9 a 18 1,90 2,00

19 a 41 2,00 2,10

0 a 4 1,70 1,80

5 a 8 1,80 1,90

9 a 18 1,90 2,00

19 a 41 2,00 2,10

Areia fina muito

argilosa

Areia pouco

siltosa

Areia pouco

argilosa

Areia média

muito argilosa

Argila saturada 0,50

Argila não saturada 0,30

Areia 0,35

Silte 0,30

Tipo de solo Coeficiente de Poisson ()

Page 27: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

27

3.4.1.2 Considerações finais acerca da sondagem SPT (Standard Penetration Test) i) Parâmetros geotécnicos que podem ser obtidos através do ensaio SPT A Tabela 3.16 mostra alguns parâmetros geotécnicos que podem ser obtidos com o N do SPT. Tabela 3.16 - Alguns parâmetros geotécnicos que podem ser obtidos com o N

do SPT

ii) Maiores detalhes acerca do SPT Para maiores detalhes acerca do ensaio SPT, recomenda-se consultar: a) NBR 6484; intitulada: “Solo - Execução de sondagens de simples reconhecimento com SPT - Método de ensaio”; b) NBR 7250; intitulada: “Identificação e descrição de amostras de solos obtidas em sondagens de simples reconhecimento”; c) NBR 8036; intitulada: “Programação de sondagens de simples reconhecimento dos solos para fundações de edifícios”; d) Bueno et al. (1985) “Capacidade de carga de fundações rasas”; e e) Schnaid (2005) “Ensaios de campo e suas aplicações à engenharia”. iii) Considerações finais quanto a sondagem SPT De acordo com o item 4.3 da NBR 6122, tem-se que para qualquer edificação deve ser feita uma investigação geotécnica, constituída, no mínimo, por sondagens a percussão (ou SPT). Assim sendo, até mesmo para construção de pequenas edificações como casas a norma requer sondagem.

Dr

f

f'

c

c'

mV

Qrup

adm

E

SU

g

gSAT

Ângulo de atrito do solo

Ângulo de atrito efetivo do solo

Coesão do solo

Coesão efetiva do solo

Peso específico natural do solo

Peso específico saturado do solo

Resistência ao cisalhamento não drenada

Símbolo

Módulo de elasticidade não-drenado do soloEU

Módulo de elasticidade do solo ou módulo de Young do solo

Coeficiente de variação volumétrica

Capacidade de carga de estacas

Pressão admissível do solo, ou tensão admissível do solo

Parâmetro geotécnico obtido através do ensaio SPT

Dencidade relativa do solo

Page 28: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

28

3.4.2 Poços de exploração geotécnica i) Principais características dos poços de exploração geotécnica As principais características dos poços de exploração geotécnica são as que se seguem: a) Os poços de exploração são abertos manualmente; b) A abertura de poços é uma técnica de prospecção de elevado custo; c) Os poços permitem a observação in loco (ou no local) das diferentes camadas do subsolo. OBS. In loco = in situ = no local ou no campo d) Os poços são geralmente empregados em obras vultosas (ou grandes); e) Os poços permitem a retirada de amostras indeformadas em forma de blocos; OBS. Amostras indeformadas são amostras, onde se admite conservar a textura, a estrutura e a umidade do local de origem. Ou seja, são amostras que sofrem alterações mínimas devido à ação do homem. f) O diâmetro mínimo de um poço é da ordem de 60 cm; g) A profundidade atingida com um poço é limitada pela presença do nível de água ou pela possibilidade de desmoronamentos; e h) Quando há risco de desmoronamentos é necessário revestir o poço com cortinas. ii) Equipamento utilizado para abertura de poços Os principais equipamentos empregados na abertura de poços são: - Picareta; - Cavador; e - Pá. iii) Considerações finais acerca da sondagem por poços de prospecção Em terrenos recobertos por aterros, recomenda-se a prospecção por poços até a base do aterro; daí por diante, recomenda-se a sondagem tipo SPT, ou CPTU, ou DMT, ou etc. A prospecção por poços é recomendada até o nível de água; daí por diante, recomenda-se sondagem tipo SPT, ou CPTU, ou DMT, ou etc. OBS(s): SPT é o ensaio Standart Penetration Test; CPUT é o ensaio Piezocone Penetration Test; e DMT é o ensaio Dilatometer Test. Maiores detalhes da abertura de poços, recomenda-se consular a NBR 9604; intitulada: “Abertura de poço e trincheira de inspeção, em solo em furos de sondagem”.

Page 29: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

29

3.4.3 Trincheiras de exploração geotécnica As principais características das trincheiras de exploração geotécnica são as que se seguem: a) As trincheiras são escavações rasas no sentido longitudinal; b) As trincheiras são valas pouco profundas feitas com auxílio de escavadeiras; e c) As trincheiras permitem o exame contínuo do subsolo segundo uma direção. OBS. Maiores detalhes da abertura de trincheiras, recomenda-se consular a NBR 9604; intitulada: “Abertura de poço e trincheira de inspeção, em solo em furos de sondagem”. 3.4.4 Sondagem a trado i) Principais características da sondagem a trado As principais características da sondagem a trado são as que se seguem. a) A exploração à trado é de simples execução, rápida e econômica; b) As principais informações colhidas de uma prospecção (ou exploração) a trado são: -> A espessura das camadas do subsolo; -> O tipo de solo (areia, silte, argila, etc.) das camadas do subsolo; e -> A posição do nível de água, ou do lençol freático. c) A exploração a trado geralmente é manual, mas já existem trados motorizados no

mercado; d) As amostras colhidas na prospecção (ou exploração) a trado, geralmente são

deformadas e colhidas acima do nível de água (N.A.); OBS. Amostras deformadas são amostras que sofrem alguma alteração na sua textura e/ou estrutura e/ou umidade devido à ação do homem. e) A sondagem a trado é bastante usada em reconhecimento preliminar, principalmente para jazidas de solos; e f) A profundidade atingida em uma soldagem a trado é da ordem de 10 m. ii) Principais procedimentos da sondagem a trado Os principais procedimentos da sondagem a trado são os que se seguem: a) Inicialmente, o trado é girado e pressionado para baixo para realizar a escavação no solo; O trado é girado através de uma manivela “T” superior; b) Ao longo de cada metro de perfuração com o trado são retiradas amostras deformadas, ou indeformadas com a cravação de um amostrador; e c) Para permitir o avanço do trado, à cada metro, no subsolo são fixadas hastes para aumentar o comprimento da barra Kelly entre a manivela “T” e o trado.

Page 30: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

30

OBS. Maiores detalhes da sondagem a trado, recomenda-se consultar a NBR 9603; intitulada: ”Sondagem a trado”. A Figura 3.23 ilustra um trado manual com suas três partes constituintes que são: manivela “T”, barra Kelly e trado.

Figura 3.23 - Trado manual com suas três partes constituintes (manivela “T”,

barra Kelly e trado) 3.4.5 Sondagem rotativa i) Principais características da sondagem rotativa As principais características da sondagem rotativa são as seguintes: a) A sondagem rotativa é empregada na perfuração para investigação de rochas e/ou solos de alta resistência; b) 1 (um) metro perfurado na sondagem rotativa chega a custar de 1 a 10 vezes o valor de 1 (um) metro perfurado na sondagem SPT; e c) A sondagem rotativa indica a qualidade das rochas que compõem um maciço rochoso. OBS. Maciço rochoso é um bloco rochoso de grandes dimensões. ii) Equipamento usado na sondagem rotativa O equipamento usado na sondagem rotativa é constituído das seguintes partes: a) Torre ou tripé; b) Hastes (tubos ocos de 1,5 a 6 m); c) Barrilete ou amostrador (peça destinada a receber o testemunho ou amostra de rocha e/ou solo de alta resistência); d) Coroa de corte de diamantes;

Page 31: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

31

e) Motor de perfuração; e f) Bomba d’agua. OBS. O amostrador ou barrilete geralmente possui os seguintes diâmetros: 41, 54 e 76 mm, mas pode chegar a 176 mm. iii) Principais procedimentos para realização da sondagem rotativa Os principais procedimentos da sondagem rotativa são os que se seguem: a) A rocha é perfurada através do movimento de rotação e através do movimento de avanço e recuo do barrilete (ou amostrador) com coroa de diamante; b) Durante a sondagem, água é injetada na perfuração através da haste oca, e dos furos no barrilete (ou amostrador); Então, a água volta à superfície pelo espaço entre a haste e a parede do furo; OBS. A água injetada no furo serve para: Refrigerar e lubrificar a coroa de diamante; e Transportar os detritos do furo para a superfície. c) Durante a perfuração, a coroa de diamante desgasta e perfura a rocha, o que permite a descida do amostrador e a coleta do testemunho (ou amostra) da rocha; d) Durante a sondagem, são retirados testemunhos (ou amostras) da racha e/ou solo de alta resistência, com o uso do barrilete (ou amostrador); e) Após a retirada da amostra, a mesma é devidamente guardada, para análise em laboratório; e f) Finalmente, a sondagem rotativa deverá prosseguir até a profundidade estabelecida pelo engenheiro ou geólogo. OBS. Dependendo do comprimento do barrilete (ou amostrador), a sondagem rotativa é feita a cada 1,5 m, ou a cada 3 m. A Figura 3.24 ilustra o equipamento utilizado na sondagem rotativa, e a Tabela 3.17 indica os nomes dos elementos, que compõem o equipamento de sondagem rotativa mostrados na Figura 3.24.

Page 32: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

32

Tabela 3.17 - Nome dos elementos que compõem o equipamento de sondagem rotativa mostrados na Figura 3.24

Número Equipamento Número Equipamento

1 Parafuso e manilha 17 Fuso de avanço

2 Roldana dupla 18 Mangueira de pressão

3 Cabo de aço 19 Mangueira de sucção

4 Tripé ou torre 20 Conjugado motor-bomba

5 Corda 21 Plataforma de arrasto

6 Guincho 22 Plataforma de fixação

7 Cabeçote de circulação de água 23 Peça em "T"

8 Haste de conexão 24 Luva

9 Cabeçote de perfuração 25 Revestimento

10 Cabrestante 26 Sapata de revestimento

11 Controles 27 Coroa de revestimento

12 Cilindros hidráulicos 28 Luva da haste de perfuração

13 Transmissão 29 Haste de perfuração

14 Motor de perfuração 30 Barrilete ou amostrador

15 Base deslizável 31 Calibrador

16 Mandril 32 Corroa de diamante

Page 33: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

33

Figura 3.24 - Equipamento utilizado na sondagem rotativa iv) Informações obtidas a partir dos testemunhos (ou amostras) da sondagem rotativa Os testemunhos ou amostras da sondagem rotativa podem fornecer as seguintes informações: -> A estratigrafia ou sequência de camadas de rochas do subsolo; -> O RQD (Rock Quality Designation) da rocha ou das camadas rochosas; -> A direção espacial das falhas geológicas, ou seja, direção e mergulho das falhas geológicas;

Page 34: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

34

-> O tipo de rocha (granito, diabásio, mármore, ardósia, gnaisse, etc.) de cada camada rochosa; -> O estado de alteração da rocha (que diz se a rocha é uma rocha: sã, pouco

alterada, medianamente alterada, ou etc.); -> Os parâmetros mecânicos das camadas rochosas do maciço rochoso; e -> Etc. v) Tipos de sondagem rotativa Tabela 3.18 indica os tipos de sondagem rotativa e o diâmetro do testemunho (ou amostra) associado a ela.

Tabela 3.18 - Tipo de sondagem rotativa e diâmetro (f) do testemunho (ou amostra) associado à sondagem

OBS(s). a) De acordo com a tabela de composição de preços unitários do site do DER-SP, em setembro de 2015, têm-se os seguintes preços unitários do metro de sondagem: R$ 295,22/m para sondagem AX, e R$ 404,55/m para sondagem NX; Além do mais, é necessário pagar o frete de deslocamento do equipamento de sondagem, e também a taxa de instalação da sonda rotativa; e b) Para fazer orçamentos de sondagem rotativa, pode-se consultar a tabela de preços unitários no site do DER-SP. vi) Qualidade do maciço rochoso No desenho do perfil das camadas de rocha, o qual é fornecido ao engenheiro ou ao geólogo, será indicado para cada camada de rocha do subsolo o valor do RQD (Rock Quality Designation), o qual indica a qualidade do maciço rochoso. A Tabela 3.19 indica a qualidade do maciço rochoso com base no RQD (Rock Quality Designation) fornecido pela sondagem rotativa.

Tipo de sondagem

rotatva f do testemunho (mm)

EX 20

AX 29

BX 41

NX 54

Page 35: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

35

Tabela 3.19 - O RQD e a qualidade do maciço rochoso

OBS(s): a) Caso haja necessidade de sondagem rotativa, além de avaliar o maciço rochoso com base no RQD; Recomenda-se que o maciço rochoso seja classificado quanto a sua qualidade por um dos seguintes métodos: -> Método de Barton et al. (1974); ou -> Método de Bieniawsky (1976). b) Os métodos de Barton et al. (1974) e Bieniawsky (1976) dizem, por exemplo, se o maciço rochoso quanto à qualidade é: muito bom, bom, regular, mau, etc.; e c) Quanto pior a qualidade de um maciço rochoso maior a possibilidade de desmoronamento de rochas quando são escavados túneis. 3.4.6 Sondagem mista i) Introdução A sondagem mista é um processo de sondagem, que engloba a sondagem a percussão (SPT) e a sondagem rotativa. A sondagem mista ocorre quando a sondagem a percussão for incapaz de perfurar solos de alta resistência e/ou rochas. ii) Informações que devem está contidas no desenho de um perfil de sondagem mista No desenho de um perfil de sondagem mista devem está contidas as seguintes informações para o engenheiro: a) O N do SPT para cada metro de solo sondado; b) A profundidade do nível de água; c) A espessura das camadas de solo; d) A classificação do solo, quanto: ao tipo, cor, compacidade, ou consistência; e) O RQD das camadas rochosas; f) A classificação das rochas quanto ao tipo; g) A classificação das rochas quanto ao grau de faturamento; h) A espessura das camadas rochosas; e i) Etc.

RQD

(%)

0 - 25 Muito fraco

25 - 50 Fraco

50 - 75 Regular

75 - 90 Bom

90 - 100 Excelente

Qualidade do Maciço Rochoso

Page 36: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

36

OBS. Caso haja necessidade de sondagem mista, além de avaliar o maciço rochoso com base no RQD; Recomenda-se que o maciço rochoso seja classificado quanto a sua qualidade por um dos seguintes métodos: a) Método de Barton et al. (1974); ou b) Método de Bieniawsky (1976). “As sondagens mais caras são aquelas que não foram feitas”; Uma importante frase das notas de aula de Marques (1996). Referências Bibliográficas Associação Brasileira de Geologia de Engenharia. Padronização das simbologias

usadas em perfis de sondagem e seções geológicas. 1976. Associação Brasileira de Normas Técnicas. NBR 6122. Projeto e execução de

fundações. 1996. Associação Brasileira de Normas Técnicas. NBR 6122. Projeto e execução de

fundações. 2010. Associação Brasileira de Normas Técnicas. NBR 6467. Amostras de solo -

preparação para ensaios de caracterização. 1986. Associação Brasileira de Normas Técnicas. NBR 6484. Solo - Execução de

sondagens de simples reconhecimento com SPT - Método de ensaio. 2001. Associação Brasileira de Normas Técnicas. NBR 7250. Identificação e descrição de

amostras de solos obtidas em sondagens de simples reconhecimento. 1982. Associação Brasileira de Normas Técnicas. NBR 8036. Programação de sondagens

de simples reconhecimento dos solos para fundações de edifícios. 1976. Associação Brasileira de Normas Técnicas. NBR 9603. Sondagem a trado. 1986. Associação Brasileira de Normas Técnicas. NBR 9604. Abertura de poço e trincheira

de inspeção, em solo em furos de sondagem. 1987. Associação Brasileira de Normas Técnicas. NBR 9820. Coleta de amostras

indeformadas de solo em furos de sondagem. BARTON, N.; LIEN, R.; LUNDE, J. Engineering classification of rock masses for

desingn of tunnel support - rock mechanics. Wien, vol. 6, N.o 4, 1974. p 189-236.

BIENAWSKI, Z. T. Rock mass engineering. Proceedings of exploration for rock

engineering - Johnnesburg, nov.,1976. p 97-106.

Page 37: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

37

BOWLES, J. E. Foundation Analysis and Design. Fifth Edition. Singapore: McGraw-Hill. 1997. 1175p and CD.

BUENO, B. S.; VILAR, O. M. Mecânica dos solos. Apostila 69. Viçosa - MG:

Universidade Federal de Viçosa, 1980. 131p. BUENO, B. S.; LIMA, D. C.; RÖHM S. A. Capacidade de carga de fundações rasas.

Apostila 204. Viçosa-MG: Universidade Federal de Viçosa, 1985. 74p. CAPUTO, H. P. Mecânica dos solos e suas aplicações (fundamentos). Vol. 1. 6.

ed., Rio de Janeiro - RJ: Livros Técnicos e Científicos Editora S. A., 2007. 234p. (Bibliografia Principal)

CRAIG, R. F. Mecânica dos solos. 7. ed., Rio de Janeiro - RJ: LTC - Livros

Técnicos e Científicos Editora S. A., 2007. 365p. DÉCOURT, L. (1989) The standard penetration test - state of the art report. Proc.

XII ICSMFE, Vol. IV, pp. 2405 - 2416. Rio de Janeiro. HACHICH, W.; FALCONI, F. F.; SAES, J. L.; FROTA, R. G. Q.; CARVALHO, C. S.

NIYAMA, S. Fundações teoria e prática. São Paulo - SP: Pini, 1996. 751p. INSTITUTION OF STRUCTURAL ENGINEERS (I.S.E) Soil-structure interaction:

the real behaviour structures. London, 1989. JOPPERT Jr, I. Fundações e contenções de edifícios. São Paulo – SP: Pini, 2008.

221p. LEINZ, V.; LEONARDOS, O. H. Glossário geológico. 3. ed., São Paulo-SP:

Companhia Editora Nacional, 1982. 236p (mais adenda) MACIEL FILHO, C. L. Introdução à geologia de engenharia. 3. ed., Santa Maria -

RS: UFSM (Universidade Federal de Santa Maria). 2007. 307p. MARQUES, E. A. G. Notas de aula de Geologia na Engenharia Avançada - CIV

631. UFV (Universidade Federal de Viçosa). 1996. MILITITSKY, J.; SCHNAID, F. Uso do SPT em fundações – Possibilidades e

limitações, Avaliação Crítica. In: XXVII Jornadas Sudamericanas de Ingeniería Estructural. Vol. 6., Tucuman, Argentina, 1995 ,125-138p.

MITCHELL, J. K.; GARDNER, W. S. In situ measurement of volume changes

charecteristics. 6th. pSC, ASCE, 1975. v.2, p. 279-345. MUNEM, M. A.; FOULIS, D. J. Cálculo. Vol. 1, Rio de Janeiro - RJ: Guanabara S.A.,

1982. 605p (mais apêndice) ROCHA, A. M. Concreto armado. Vol. 2. 20 Ed. São Paulo –SP: Nobel S.A. 1990.

402p.

Page 38: Notas de aulas de Mecânica dos Solos I (parte 3) · Prospecção e amostragem de solos (2.o parte) Conteúdo da parte 3 ... Neste tópico será considerado o ensaio realizado com

38

SCHNAID, F. Ensaios de campo e suas aplicações à Engenharia de Fundações. São Paulo-SP: Oficina de Textos, 2005. 189p.

SCHEMERTMANN, J. H. Static cone to computate settlement over sand. New

York. The jornal of soil mechanics and foundation division. ASCE, SM3, 1970. VELOSO, D. A.; LOPES, F. R. Fundações. Vol. 1, São Paulo - SP: Oficina de

textos, 2004. 226p. VIANA, P. M. F. Notas de aula - Mecânica dos solos I. Engenharia Civil. UEG

(Universidade Estadual de Goiás). 2008. YOSHIDA, I.; YOSHINAKA, R. A method to estimate modulus horizontal subgrade

reaction for a pile. Soils and Foundations. Japanese Society of Soil Mechanics and Foundation Engineering, v. 12, n. 3, p. 1-17, 1972.

www.der.sp.gov.br/_informativos/tabela_precos.asp