inversor boost multinível em corrente e sua aplicação no ...§ão-marcio-do-carmo.pdf · 3.3 –...

242
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Setor de Tecnologia Faculdade de Engenharia Programa de Pós-Graduação em Engenharia Elétrica I I n n v v e e r r s s o o r r B B o o o o s s t t M Mu u l l t t i i n n í í v v e e l l e e m m C C o o r r r r e e n n t t e e e e s s u u a a A A p p l l i i c c a a ç ç ã ã o o n n o o P P r r o o c c e e s s s s a a m m e e n n t t o o d d e e E E n n e e r r g g i i a a e e m m S S i i s s t t e e m m a a s s F F o o t t o o v v o o l l t t a a i i c c o o s s M Mo o n n o o f f á á s s i i c c o o s s C C o o n n e e c c t t a a d d o o s s à à R R e e d d e e E El l é é t t r r i i c c a a Márcio do Carmo Barbosa Rodrigues Juiz de Fora, MG – Brasil Maio de 2004

Upload: duongquynh

Post on 25-Nov-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

Setor de Tecnologia

Faculdade de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

IIInnnvvveeerrrsssooorrr BBBoooooosssttt MMMuuullltttiiinnnííívvveeelll eeemmm CCCooorrrrrreeennnttteee eee sssuuuaaa AAApppllliiicccaaaçççãããooo nnnooo PPPrrroooccceeessssssaaammmeeennntttooo dddeee EEEnnneeerrrgggiiiaaa eeemmm

SSSiiisssttteeemmmaaasss FFFoootttooovvvooollltttaaaiiicccooosss MMMooonnnooofffááásssiiicccooosss CCCooonnneeeccctttaaadddooosss ààà RRReeedddeee EEElllééétttrrriiicccaaa

Márcio do Carmo Barbosa Rodrigues

Juiz de Fora, MG – Brasil

Maio de 2004

Page 2: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

IIInnnvvveeerrrsssooorrr BBBoooooosssttt MMMuuullltttiiinnnííívvveeelll eeemmm CCCooorrrrrreeennnttteee eee sssuuuaaa AAApppllliiicccaaaçççãããooo nnnooo PPPrrroooccceeessssssaaammmeeennntttooo dddeee EEEnnneeerrrgggiiiaaa eeemmm SSSiiisssttteeemmmaaasss FFFoootttooovvvooollltttaaaiiicccooosss MMMooonnnooofffááásssiiicccooosss

CCCooonnneeeccctttaaadddooosss ààà RRReeedddeee EEElllééétttrrriiicccaaa

Márcio do Carmo Barbosa Rodrigues

Dissertação submetida ao corpo docente da Coordenação do Programa de Pós-Graduação

em Engenharia Elétrica da Universidade Federal de Juiz de Fora como parte dos requisitos

necessários para a obtenção do grau de Mestre em Engenharia Elétrica.

Aprovada por:

_______________________________________

Prof. Henrique Antônio Carvalho Braga, Dr. Eng.

(Orientador)

_______________________________________

Prof. Edson Hirokazu Watanabe, D. Eng.

_______________________________________

Prof. Pedro Gomes Barbosa, D. Sc.

Juiz de Fora, MG – Brasil

Maio de 2004

Page 3: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

“Não devemos permitir que alguém saia de nossa presença sem se sentir melhor e mais feliz.”

Madre Teresa de Calcutá

Page 4: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

A meus pais, José do Carmo e Maria Elisa

Page 5: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

AAAgggrrraaadddeeeccciiimmmeeennntttooosss

Ao único e verdadeiro Deus: Criador, Salvador e Santificador, que é bom e misericordioso. Bendito e

louvado seja hoje e sempre!

Aos meus pais, José do Carmo e Maria Elisa, ao meu irmão, Cláudio, e à minha namorada, Glau, pelo

amor incondicional e por partilharem comigo todos os momentos, me apoiando e incentivando nas

dificuldades e se alegrando em cada vitória conquistada.

Aos meus “amigos-irmãos” da Família JUDAC, dos Ministérios Ágape, Kerigma e Kyrie, enfim, todos

da Paróquia de São Pedro pelas orações e momentos de partilha.

Ao professor Henrique por sempre ter confiado em meu potencial, pela orientação, desde o início da

Graduação, na minha formação profissional e pessoal e pela amizade cultivada nesses anos de trabalho.

Ao professor Pedro pela amizade, por estar sempre disponível em compartilhar seus conhecimentos e pela

valiosa contribuição no desenvolvimento e na revisão deste trabalho.

Ao professor Watanabe por ter aceitado compor a banca examinadora deste trabalho, revisando-o e

enfrentando uma viagem Rio-Juiz de Fora-Rio para participar da apresentação pública.

Ao amigo professor Estevão, pelas brilhantes idéias que tornaram possível a concepção da nova topologia de

inversor multinível em corrente proposta neste trabalho.

Ao meu amigo Cley, acadêmico do curso de Engenharia Elétrica da UFJF, pelo suporte técnico na

implementação do protótipo do sistema proposto neste trabalho e nos ensaios realizados em laboratório.

Aos meus amigos, companheiros do Mestrado em Engenharia Elétrica da UFJF e do Laboratório de

Sistemas Eletrônicos (LABSEL/UFJF), dos quais cito, especialmente: Carlos, Débora, Dudu,

André Diniz, Carletti e Gambôa.

A todos professores e alunos da Faculdade de Engenharia da UFJF que não foram citados e que, de

alguma forma, contribuíram para a realização deste trabalho.

Ao povo brasileiro, que com os impostos, nem sempre justos, cobrados de seu suor, custeou toda minha

formação, da Educação Infantil ao Mestrado.

À CAPES, ao CNPQ, à FCT e outras instituições e órgãos de fomento que deram suporte financeiro ao

desenvolvimento deste trabalho.

Page 6: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

SSSuuummmááárrriiiooo

Simbologia........................................................................................ ix Resumo............................................................................................. xiv Abstract............................................................................................. xv Capítulo 1 – Introdução.................................................................... 1 1.1 – Fontes Alternativas de Energia.................................................................................... 4

1.1.1 – Energia Hidrelétrica (Pequenas Centrais Hidrelétricas) ................................. 5

1.1.2 – Biomassa ............................................................................................................... 6

1.1.3 – Energia Eólica....................................................................................................... 7

1.1.4 – Célula a Combustível............................................................................................ 9

1.1.5 – Energia Solar......................................................................................................... 12

1.1.5.1 – Energia Solar Fototérmica........................................................................

14

1.1.5.2 – Energia Solar Fotovoltaica....................................................................... 15

1.1.5.3 – Características dos Painéis Fotovoltaicos............................................... 18

1.2 – Sistemas Fotovoltaicos de Geração de Energia Elétrica.......................................... 20

1.3 – Objetivos e Metodologia............................................................................................... 23

1.4 – Publicações Resultante desta Pesquisa........................................................................ 24 1.5 – Estrutura do Trabalho................................................................................................... 24 Capítulo 2 – Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica................... 26 2.1 – Sistemas PV Conectados à Rede Elétrica................................................................... 27

2.2 – Topologias com Único Estágio Inversor (Não-Isoladas)........................................ 29

2.3 – Topologias com Único Estágio Inversor (Isoladas)................................................. 33

2.4 – Topologias com Múltiplos Estágios de Conversão (Isoladas)................................ 34

2.5 – Topologias com Múltiplos Estágios de Conversão (Não-Isoladas)....................... 37

2.6 – Quadros Resumo........................................................................................................... 38

Page 7: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Sumário vi

2.7 – Conclusões Parciais....................................................................................................... 40

Capítulo 3 – Conversores Multiníveis em Corrente.......................... 42 3.1 – Conceitos Fundamentais............................................................................................... 43

3.1.1 – Associação Paralela de Chaves Semicondutoras.............................................. 43

3.1.2 – Associação Paralela de Conversores Estáticos................................................. 45

3.1.3 – Associação Paralela de Células de Comutação................................................. 47

3.1.3.1 – A Célula Multinível em Corrente............................................................ 49

3.1.4 – Principais Características da Operação MNC................................................... 50

3.2 – Conversores CC-CC MNC........................................................................................... 51

3.3 – Retificadores MNC........................................................................................................ 55

3.4 – Inversores CSI MNC..................................................................................................... 58

3.5 – Conclusões Parciais....................................................................................................... 61

Capítulo 4 – Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica..................... 62 4.1 – O Inversor Boost MNC 2 Células............................................................................... 63

4.2 – Operação com Modulação Multinível em Corrente................................................. 66

4.2.1 – Estratégia Três Níveis.......................................................................................... 67

4.2.2 – Estratégia Cinco Níveis........................................................................................ 68

4.2.3 – Análise Matemática............................................................................................... 70

4.2.3.1 – Limiar de Inversão..................................................................................... 79

4.2.3.2 – Dimensionamento dos Indutores........................................................... 81

4.2.3.2.1 – Indutor de Entrada.................................................................... 82

4.2.3.2.2 – Indutor de Equilíbrio................................................................ 84

4.2.3.3 – Dimensionamento dos Dispositivos Semicondutores......................... 85

4.2.3.3.1 – Chaves Semicondutoras............................................................ 86

4.2.3.3.2 – Diodos......................................................................................... 88

4.2.3.4 – Minimização do Conteúdo Harmônico.................................................. 90

4.2.4 – Simulação do Inversor Boost MNC.................................................................. 95

4.2.4.1 – Modelo dos Painéis Fotovoltaicos.......................................................... 96

Page 8: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Sumário vii

4.2.4.2 – Seleção dos Componentes do Circuito.................................................. 98

4.2.4.3 – Resultados de Simulação.......................................................................... 99

4.2.5 – Considerações Práticas......................................................................................... 102

4.2.5.1 – Sincronismo e simetria do acionamento das chaves............................. 102

4.2.5.2 – Resistência do Indutor de Equilíbrio...................................................... 104

4.2.5.3 – Impedância Característica da Rede Elétrica........................................... 106

4.2.5.4 – Adequação do Conteúdo Harmônico da Corrente Sintetizada.......... 108

4.3 – Operação com PWM Senoidal Multinível em Corrente.......................................... 109

4.3.1 – Estratégia de Chaveamento PWM Senoidal MNC.......................................... 110

4.3.2 – Análise Matemática............................................................................................... 115

4.3.2.1 – Estágios de Operação............................................................................... 116

4.3.2.2 – Análise Harmônica da Corrente de Saída.............................................. 123

4.3.2.3 – Limiar de Inversão..................................................................................... 129

4.3.2.4 – Dimensionamento dos Indutores........................................................... 130

4.3.2.4.1 – Indutor de Entrada.................................................................... 130

4.3.4.4.2 – Indutor de Equilíbrio................................................................ 133

4.3.2.5 – Dimensionamento dos Dispositivos Semicondutores......................... 138

4.3.2.5.1 – Chaves Semicondutoras............................................................ 139

4.3.2.5.2 – Diodos......................................................................................... 140

4.3.2.6 – Filtro de Linha........................................................................................... 141

4.3.3 – Simulação da Operação PWM Senoidal MNC do Inversor Boost MNC 2 Células.................................................................................................................................. 145

4.4 – Quadros Resumo........................................................................................................... 149

4.5 – Conclusões Parciais....................................................................................................... 151

Capítulo 5 – Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC..................................................... 154 5.1 – Descrição do Protótipo Desenvolvido....................................................................... 155

5.1.1 – Circuito de Potência............................................................................................. 156

5.1.1.1 – Seleção do Arranjo Fotovoltaico............................................................. 157

5.1.1.2 – Seleção dos Indutores............................................................................... 158

5.1.1.3 – Seleção das Chaves Semicondutoras e Diodos..................................... 159

5.1.1.4 – Projeto dos Dissipadores de 161

Page 9: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Sumário viii

Calor..........................................................

5.1.1.5 – Projeto do Filtro de Linha........................................................................ 165

5.1.1.6 – Quadro Resumo dos Componentes do Circuito de Potência............. 166

5.1.2 – Circuito de Acionamento das Chaves................................................................ 167

5.2 – Simulação Incluindo Elementos Parasitas.................................................................. 170

5.3 – Resultados Experimentais............................................................................................. 173

5.3.1 – Avaliação da Taxa de Distorção Harmônica da Corrente Injetada na Rede Elétrica................................................................................................................................. 179

5.3.2 – Avaliação do Fator de Potência.......................................................................... 184

5.3.3 – Avaliação do Rendimento da Topologia Proposta.......................................... 185

5.4 – Conclusões Parciais....................................................................................................... 187

Capítulo 6 – Conclusões Finais & Trabalhos Futuros...................... 189 Referências Bibliográficas................................................................ 195 Apêndice A – Listagem dos Arquivos de Simulação no PSpice®.... 203 Apêndice B – Definição das Figuras de Mérito Relacionadas à Qualidade de Energia Elétrica......................................................... 219 Apêndice C – Projeto do Indutor do Filtro de Linha........................ 223

Page 10: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

SSSiiimmmbbbooolllooogggiiiaaa

1. Símbolos adotados em expressões matemáticas Símbolo Significado Unidade

α Ângulo elétrico associado à transição do nível zero ao nível 2/I rad, °

pδ Profundidade de penetração cm

ii∆ Ondulação na corrente do indutor de entrada A

bi∆ Ondulação na corrente do indutor de equilíbrio A

θ∆ t Intervalo de tempo relacionado ao ângulo θ s t∆ Intervalo de tempo s

φ Ângulo elétrico associado ao intervalo de permanência no nível 2/I rad, °

1ϕ Ângulo de fase da componente fundamental rad, ° γ Ângulo elétrico associado à transição do nível 2/I ao nível I rad, ° η Rendimento % θ Ângulo elétrico rad, ° ω Freqüência angular de oscilação da rede elétrica rad/s A Fator de idealidade da junção p-n (modelo de painel PV) ---

eA Área efetiva de um núcleo de ferrite cm2

wA Área da janela de um núcleo de ferrite cm2

máxB Máxima densidade de fluxo magnético em um núcleo de ferrite T

fC Capacitor do filtro de linha F

D Razão cíclica --- ( )td Variação da razão cíclica em função do tempo --- f Freqüência de oscilação da rede elétrica Hz

sf Freqüência de chaveamento Hz FD Fator de deslocamento --- FP Fator de potência --- h Ordem de um determinado harmônico --- I Valor da corrente no patamar superior de uma forma de onda MNC A bi Corrente no indutor de equilíbrio A

1Di Corrente no diodo D1 A

2Di Corrente no diodo D2 A

ii Corrente no indutor de entrada A

invi Corrente na saída do inversor boost MNC 2 células (antes do filtro) A

oi Corrente na saída do conversor CC-CC boost MNC 2 células A

osI Corrente de saturação reversa (modelo de painel PV) A

PVi Corrente gerada em um painel (ou arranjo) fotovoltaico A

Page 11: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Simbologia x

TI Valor de pico da portadora triangular (PWM) A

refI Valor de pico do sinal de modulante (PWM) A

( )sTrefI Valor do sinal modulante em um período de chaveamento A

si Corrente injetada na rede elétrica A

1Si Corrente na chave S1 A

HSi 1 Corrente na chave S1H A

2Si Corrente na chave S2 A

mpI Corrente de potência máxima de um painel fotovoltaico A

scI Corrente de curto-circuito de um painel fotovoltaico A

fZI Valor de pico da corrente consumida pelo filtro de linha na freqüência da rede A

máxJ Máxima densidade de corrente elétrica em um condutor de cobre A/cm2

bL Indutor de equilíbrio H

fL Indutor do filtro de linha H

gl Espessura do entreferro de um indutor mm

iL Indutor de entrada H

sL Indutância característica da rede H

am Índice de modulação de amplitude ---

aM Índice de modulação de amplitude em um período de chaveamento ---

fm Índice de modulação de freqüência --- n Número de células MNC de um conversor ---

espn Número de espiras de um indutor ---

PVsérieN Número de painéis conectados em série necessário para inversão ---

oP Potência de saída do sistema PV W

mP Potência máxima de um painel fotovoltaico W r Resistência das chaves e diodos de uma célula MNC Ω Lbr Resistência série do indutor de equilíbrio Ω Lir Resistência série do indutor de entrada Ω

sR Resistência série (modelo de painel PV) Ω

shR Resistência “shunt” (modelo de painel PV) Ω S Potência aparente VA CuS Área necessária à seção transversal do condutor de cobre de um indutor cm² T Período de oscilação da rede elétrica s CelT Temperatura das células fotovoltaicas K

THD Taxa de distorção harmônica --- ont Intervalo de tempo em que uma chave está em condução s

sT Período de chaveamento s V Valor eficaz da tensão da rede elétrica V

Page 12: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Simbologia xi

1Dv Tensão sobre o diodo D1 V

iV Valor médio da tensão de entrada do sistema PV V

Lbv Tensão sobre o indutor de equilíbrio V

Liv Tensão sobre o indutor de entrada V

Liv~ Componente CA da tensão sobre o indutor de entrada V

LiV Valor médio da tensão sobre o indutor de entrada V

tLiV ∆, Valor médio de Liv~ no intervalo t∆ V

LbV Valor médio da tensão sobre o indutor de equilíbrio V

tLbV ∆, Valor médio da tensão sobre o indutor de equilíbrio no intervalo t∆ V

mpV Tensão de potência máxima de um painel fotovoltaico V

ov Tensão na saída do conversor CC-CC boost MNC 2 células V

ocV Tensão de circuito aberto de um painel fotovoltaico V

PVv Tensão terminal de um painel (ou arranjo) fotovoltaico V

sv Tensão da rede elétrica V

1Sv Tensão sobre a chave S1 V

1~

Sv Componente CA da tensão sobre a chave S1 V

1SV Valor médio da tensão sobre a chave S1 V

2Sv Tensão sobre a chave S2 V

fZ Impedância do filtro de linha na freqüência da rede Ω

2. Acrônimos e abreviaturas

Símbolo Significado AF Alta freqüência

AFC Célula a combustível alcalina a-Si Silício amorfo BF Baixa freqüência CA Corrente alternada

CBA Congresso Brasileiro de Automática CC Corrente contínua

CCM Modo de condução contínuo CdTe Telureto de cádmio CIS Disseleneto de cobre e índio

CLAGTEE Congresso Latino-Americano: Geração e Transmissão de Energia Elétrica COBEP Congresso Brasileiro de Eletrônica de Potência

CSI Inversor de corrente (current-source inverter) c-Si Silício cristalino (monocristalino ou policristalino)

DMFC Célula a combustível a metanol direto EMI Interferência eletromagnética FD Fator de deslocamento FP Fator de potência

Page 13: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Simbologia xii

GTO Gate turn-off thyristor IEEE Institute of Electrical and Electronics Engineers IGBT Insulated gate bipolar transistor LCI Inversor comutado pela linha

MCFC Célula a combustível a carbonato fundido MNC Multinível em corrente

MOSFET Metal-oxide-semiconductor field-effect transistor MPP Ponto de potência máxima de um painel fotovoltaico

MPPT Rastreador do ponto de potência máxima de um painel fotovoltaico m-Si Silício monocristalino

PAFC Célula a combustível de ácido fosfórico PCC Ponto de acoplamento comum PCH Pequena central hidrelétrica PEFC Célula a combustível de eletrólito polimérico p-Si Silício policristalino PV Fotovoltaico

PWM Modulação por largura de pulso rms Valor médio quadrático SBA Sociedade Brasileira de Automática

SOBRAEP Sociedade Brasileira de Eletrônica de Potência SOFC Célula a combustível de óxido sólido THD Taxa de distorção harmônica

TRIAC Bidirectional triode UL Underwriters Laboratories Inc. VSI Inversor de tensão (voltage-source inverter)

3. Símbolos de Unidades de Grandezas Físicas

Símbolo Significado Ω Ohm ° grau trigonométrico

°C grau Celsius A Ampère dB Decibel F Farad H Henry Hz Hertz J Joule K Kelvin m Metro m2 metro quadrado rad radiano

rad/s radiano por segundo rpm rotações por minuto

s segundo

Page 14: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Simbologia xiii

T Tesla V Volt W Watt

Wh Watt-hora Wp Watt-pico

4. Prefixos numéricos

Prefixo Valor p 10-12 n 10-9 µ 10-6 m 10-3 c 10-2 k 103 M 106 G 109 T 1012

Page 15: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

xiv

Resumo da Dissertação apresentada ao Programa de Pós-Graduação em Engenharia

Elétrica da UFJF como parte dos requisitos necessários para a obtenção do grau de Mestre

em Engenharia Elétrica (M. E. E.)

INVERSOR BOOST MULTINÍVEL EM CORRENTE E SUA APLICAÇÃO NO

PROCESSAMENTO DE ENERGIA EM SISTEMAS FOTOVOLTAICOS

MONOFÁSICOS CONECTADOS À REDE ELÉTRICA

Márcio do Carmo Barbosa Rodrigues

Maio de 2004

Orientador: Henrique Antônio Carvalho Braga

Área de Concentração: Instrumentação e Controle

Este trabalho apresenta uma nova topologia de inversor multinível em corrente e

sua aplicação no processamento e condicionamento de energia em sistemas fotovoltaicos

(PV) monofásicos conectados à rede de energia elétrica. A estrutura proposta permite que

um sistema fotovoltaico opere com alto fator de potência, injetando na rede elétrica uma

corrente praticamente senoidal e em fase com a tensão no ponto de acoplamento comum

entre o sistema PV e as cargas. Os principais atrativos da utilização da técnica multinível

em corrente (MNC) são a divisão equilibrada de corrente entre chaves semicondutoras,

redução da taxa de variação de corrente nos dispositivos do circuito e conseqüente

diminuição da interferência eletromagnética (EMI) conduzida e irradiada, além da

possibilidade de ajuste ou minimização do conteúdo harmônico de formas de onda de

corrente. A análise desta nova topologia de inversor multinível em corrente é

documentada neste estudo, incluindo resultados de simulação computacional, para dois

diferentes modos de operação: modulação MNC e modulação por largura de pulso (PWM)

senoidal MNC. Adicionalmente, são incluídos detalhes da implementação de um protótipo

de pequena escala de um sistema fotovoltaico monofásico baseado na estrutura proposta,

empregando PWM senoidal MNC, bem como resultados experimentais que confirmam os

conceitos teóricos desenvolvidos.

Page 16: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

xv

Abstract of Thesis presented to the Master Program in Electrical Engineering of UFJF as a

partial fulfillment of the requirements for the degree of Master in Electrical Engineering

(M. E. E.).

BOOST CURRENT MULTILEVEL INVERTER

AND ITS APPLICATION ON ENERGY PROCESSING OF

SINGLE-PHASE GRID-CONNECTED PHOTOVOLTAIC SYSTEMS

Márcio do Carmo Barbosa Rodrigues

May, 2004

Supervisor: Henrique Antônio Carvalho Braga

Program Area: Instrumentation and Control

This work presents a new current multilevel inverter topology and its application

on energy processing and conditioning of single-phase grid-connected photovoltaic (PV)

systems. The structure allows a high power factor operation of a photovoltaic system,

injecting a quasi-sinusoidal current into the grid, with virtually no displacement in relation

to the voltage at the point of common coupling among the PV system and the loads. The

major appeals of using the current multilevel (CML) technique are the equalized current

sharing among semiconductor switches, decrease of the current slope in the circuit devices

and a consequent reduction of conducted and radiated electromagnetic interference

(EMI), in addition to the possibility of adapting or minimizing current waveforms

harmonic content. The analysis of this new current multilevel inverter topology is reported

in this study, including computer simulation results, for two different operation modes:

CML modulation and CML sinusoidal pulse-width modulation (PWM). Moreover,

implementation details of a small-scale prototype based on the proposed structure,

employing CML sinusoidal PWM, are included, as well experimental results that confirm

the developed theoretical concepts.

Page 17: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

CCCaaapppííítttuuulllooo 111

IIInnntttrrroooddduuuçççãããooo

O Sol é a fonte primária de luz e calor da Terra, responsável pela manutenção das

condições necessárias para a existência de vida neste planeta. A energia fornecida pelo Sol

à superfície da Terra a cada minuto é superior à demanda energética mundial durante um

ano inteiro [1], o que permite considerar este astro como uma fonte inesgotável de energia

[2], [3]. Além disso, o Sol é responsável, direta ou indiretamente, pela origem e

manutenção de outras fontes de energia.

A radiação solar induz a circulação atmosférica em larga escala, provocando os

ventos, que podem ser aproveitados através de turbinas eólicas. Os ventos e o calor do Sol

causam a evaporação da água, que retorna ao solo e aos rios através da chuva. A água que

flui através dos rios fornece a energia cinética necessária para mover turbinas hidráulicas,

gerando energia elétrica. Através do processo de fotossíntese, as plantas absorvem e

armazenam a energia solar nas ligações químicas de suas moléculas orgânicas. A matéria

orgânica que compõe estas plantas é conhecida como biomassa e pode ser usada para

produzir energia elétrica, combustíveis ou produtos químicos. Os combustíveis fósseis

(petróleo, carvão mineral, gás natural) foram gerados no interior da crosta terrestre a partir

de resíduos de animais e plantas que, originalmente, necessitavam da radiação solar para

seu desenvolvimento. O elemento químico mais abundante na Terra, o hidrogênio, não se

apresenta naturalmente como um gás, mas pode ser encontrado em muitos compostos

orgânicos e na água, combinado com outros elementos químicos como oxigênio e

Page 18: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 2

carbono. O hidrogênio pode ser utilizado na produção de eletricidade através das

chamadas células a combustível [3] e [4].

Existem outras formas de energia que não possuem um grande vínculo com a

energia solar, como a energia geotérmica, a energia das marés e a energia nuclear.

Dentre os tipos de energia citados, a energia nuclear e a energia proveniente de

combustíveis fósseis são chamadas de não-renováveis. Como os processos envolvidos em

sua conversão são irreversíveis e estes recursos naturais não se restabelecem naturalmente,

nem podem ser repostos pelo homem, fatalmente irão se esgotar. Estes processos de

conversão também geram resíduos prejudiciais ao meio-ambiente [3].

As outras fontes de energia são denominadas fontes renováveis, pois possuem

mecanismos naturais de restabelecimento ou podem ser repostas através da intervenção

humana. Estas fontes de energia são consideradas limpas, pois não geram resíduos

prejudiciais e, quando bem planejadas, não geram conseqüências para o meio-ambiente [3].

Devido à essa característica, as fontes de energia renováveis são também chamadas de

fontes de energia “green”, denominação muito utilizada na língua inglesa [5].

A maior parte da energia elétrica gerada no mundo é proveniente de usinas

termelétricas, que utilizam fontes não-renováveis como carvão mineral, derivados de

petróleo ou gás natural, como ilustra a Fig. 1.1. Representam uma parcela significativa da

capacidade de geração mundial as usinas hidrelétricas e nucleares. Outras fontes de energia,

como eólica e solar, participam em apenas cerca de 1 % da geração mundial instalada [8].

694 GW

358 GW

35 GW

2175 GW

Fig. 1.1 – Origem e capacidade de geração de energia elétrica no mundo em 2000 [8].

Page 19: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 3

Entretanto, são notados esforços no mundo inteiro na busca de alternativas

energéticas para substituir a principal fonte de energia da atualidade: o petróleo. A duração

das reservas mundiais de petróleo, prevista com base no consumo atual, é de cerca de 40

anos, sendo que 65 % das reservas munidas de petróleo se encontram no Oriente Médio,

região com graves conflitos políticos e étnicos [6]. Grandes companhias internacionais do

setor petrolífero estão investindo em desenvolvimento de equipamentos na área de energia

renovável, como por exemplo, a British Petroleum com a BP Solar e a Shell com a

compra, em outubro de 2002, da divisão de energia solar da Siemens, criando a Shell Solar.

Além dos problemas em relação ao esgotamento das reservas de petróleo, existe a grande

preocupação mundial com a preservação do meio-ambiente e com as conseqüências

ambientais associadas ao aumento de poluentes na atmosfera, principalmente dos

chamados gases de efeito estufa – dióxido de carbono (CO2), metano (CH4), óxido

nitroso (N2O), entre outros – resultantes da queima de combustíveis fósseis [5] e [7].

Como resultado, observa-se um alto crescimento na geração de energia elétrica a partir de

fontes renováveis, como eólica e solar fotovoltaica, conforme ilustrado na Fig. 1.2 [5].

25,7

16,8

3 2,1 1,6 1,4 1,2 0,60

5

10

15

20

25

30

Fig. 1.2 – Taxa de crescimento média anual da contribuição de algumas fontes de energia na geração de energia elétrica em todo o mundo entre 1990 e 1998 [5].

Já no Brasil, onde a geração de energia elétrica através de aproveitamentos

hidráulicos é predominante na matriz energética, como ilustrado na Fig. 1.3, a utilização de

novos tipos de energia renovável teve um grande crescimento após a realização da

Conferência das Nações Unidas sobre o Meio-Ambiente e Desenvolvimento, conhecida

como Rio 92. Após este evento foram implantados, até o ano 2000, mais de 250 kW de

Page 20: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 4

sistemas de energia solar fotovoltaica e 2,3 MW de sistemas eólicos, a partir de doações

internacionais e com o apoio de centros de pesquisa, concessionárias de energia e

governos estaduais. A utilização da energia de pequenos aproveitamentos hidroelétricos e

do bagaço de cana, além da biomassa de diversas origens, vem se consolidando e

expandindo a partir da reestruturação do setor elétrico e dos incentivos oferecidos à

utilização dessas fontes e à cogeração de energia elétrica [9]. A preocupação e o interesse

por diferentes formas de aproveitamento de energia para conversão em eletricidade

aumentaram após a crise do sistema elétrico brasileiro e racionamento de energia elétrica

passados no ano de 2001.

Todos esses aspectos relacionados à escassez de fontes de energia, à crise do

sistema elétrico e ao meio-ambiente constituem uma grande motivação ao estudo das

formas de aproveitamento de fontes de energia renováveis alternativas, bem como ao

desenvolvimento de novas tecnologias a serem empregadas nos processos de conversão de

diferentes formas de energia em energia elétrica.

Fig. 1.3 – Origem e capacidade de geração de energia elétrica no Brasil em 2002 [10].

1.1 – Fontes Alternativas de Energia Renovável

Existem diversas fontes de energia renovável consideradas alternativas. Neste

tópico serão abordados aspectos gerais sobre as principais formas de aproveitamento de

algumas fontes de energia renovável e limpa, dando ênfase para a geração de energia

Page 21: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 5

elétrica. Uma atenção maior será dispensada ao aproveitamento solar fotovoltaico, que é o

alvo principal deste trabalho. Serão estudadas as seguintes fontes e formas de

aproveitamento de energia:

q hidrelétrica (pequenas centrais hidrelétricas);

q biomassa;

q eólica;

q célula a combustível;

q solar.

1.1.1 – Energia Hidrelétrica (Pequenas Centrais Hidrelétricas)

A energia hidrelétrica tem grande contribuição na formação da matriz energética

brasileira. Este tipo de energia renovável é responsável por cerca de 85% da energia elétrica

produzida no Brasil [10], sendo esta energia proveniente de usinas de grande porte, com

enormes reservatórios de água, inundando grandes áreas nas proximidades das usinas,

provocando grandes alterações no meio-ambiente e na sociedade local. Estas usinas são

localizadas, geralmente, longe dos grandes centros consumidores, necessitando de longas

linhas de transmissão para levar a energia gerada aos centros de carga. Nos últimos anos,

com a crescente preocupação ecológica e com as mudanças institucionais e regulamentares

no setor elétrico brasileiro, incentivando a entrada de novos agentes na indústria de energia

elétrica, o interesse pela construção de pequenas centrais hidrelétricas (PCHs), de até 30

MW de potência e baixo impacto ambiental, aumentou consideravelmente [7] e [9]. Esses

empreendimentos visam atender demandas próximas aos centro de carga, em áreas

periféricas ao sistema de transmissão e em pontos marcados pela expansão agrícola

nacional, promovendo o desenvolvimento de regiões remotas do país [7]. Estima-se que o

potencial hidráulico remanescente possível de ser explorado por meio das PCHs no Brasil

seja da ordem de 7 GW [9]. Espera-se adicionar cerca 5 GW de potência ao sistema

elétrico brasileiro, em PCHs, nos próximos dez anos [7]. Mesmo com a tendência de um

aproveitamento mais intenso da geração hidrelétrica de pequeno porte, a geração de

energia em grandes usinas permanecerá prevalecendo e tendo seu lugar garantido na matriz

Page 22: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 6

energética do Brasil.

1.1.2 – Biomassa

A biomassa vem sendo utilizada para produção de energia praticamente em toda a

história da humanidade. Até o século XVIII a lenha era a principal fonte de energia no

mundo. A partir dos séculos XIX e XX, com o aumento do uso de combustíveis fósseis, a

participação da biomassa na matriz energética global foi diminuindo até que começou a ser

considerada como uma fonte alternativa de energia. Hoje em dia, a madeira continua

sendo o tipo de biomassa mais utilizado, entretanto existem muitos outros tipos de

biomassa que podem ser utilizados como resíduos agrícolas, subprodutos industriais e lixo

orgânico.

A biomassa pode ser utilizada na geração de energia elétrica, na produção de

combustíveis utilizados em automóveis e na produção de produtos químicos utilizados na

composição de produtos como plástico, tecidos, fibras sintéticas, etc., geralmente

fabricados a partir de derivados de petróleo [3] e [4].

O uso da biomassa tem o potencial de reduzir significativamente a emissão de

gases de efeito estufa. A queima de biomassa gera praticamente a mesma quantidade de

dióxido de carbono que a queima de combustíveis fósseis, entretanto, cada vez que uma

nova planta cresce, dióxido de carbono é removido da atmosfera. Assim a emissão líquida

de dióxido de carbono será zero enquanto novas plantas estiverem sendo plantadas com

finalidade de produção de energia através da biomassa [4].

Gases provenientes de depósitos de lixo podem ser utilizados na geração de

energia elétrica utilizando microturbinas, que são essencialmente turbinas a combustão

muito pequenas (do tamanho de uma geladeira) que operam em altas velocidades de

rotação (de 50 mil a 120 mil rpm). Com este tipo de tecnologia é possível a geração de

energia elétrica com baixos níveis de emissão de poluentes, especialmente NOx (óxidos de

nitrogênio), na atmosfera [8].

No Brasil destaca-se a utilização do bagaço de cana como combustível para a

geração de energia mecânica e elétrica nas usinas de produção de açúcar e álcool no

interior de São Paulo, em alguns casos otimizada através de sistemas de cogeração,

Page 23: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 7

aumentando a eficiência do processo. Destaca-se também a geração de energia elétrica a

partir da casca de arroz, no Rio Grande do Sul, que além de absorver dióxido de carbono

do ar e não produzir substâncias tóxicas, permite que as cinzas da casca de arroz, ricas em

cálcio, sejam utilizadas em hortas e lavouras da região e como aditivo na produção de

cimento, ou ainda como isolante térmico em indústrias siderúrgicas. Outra contribuição

relevante é a utilização do licor negro, subproduto da fabricação de celulose, para a geração

de energia elétrica, com destaque para as usinas termelétricas existentes no Espírito Santo,

Minas Gerais e Bahia [7] e [9].

Segundo o Balanço Energético Nacional de 1999, a participação da biomassa na

produção de energia elétrica é resumida em cerca de 3 %, dividida entre o bagaço de cana

(1,2 %), os resíduos madeireiros da indústria de papel e celulose (0,8 %), resíduos agrícolas

e silvícolas diversos (0,6 %) e a lenha (0,2 %) [7].

1.1.3 – Energia Eólica

A energia eólica é a energia cinética contida nas massas de ar em movimento

(vento) e vem sendo utilizada pela humanidade há milhares de anos. Seu aproveitamento

ocorre através da conversão da energia cinética de translação em energia cinética de

rotação, através de cata-ventos e moinhos para trabalhos mecânicos, como bombeamento

de água ou moagem de grãos, ou com o emprego de turbinas eólicas, também

denominadas aerogeradores, para a geração de energia elétrica. No final do século XIX

foram registradas as primeiras tentativas de produção de eletricidade através de

aerogeradores, entretanto, somente na década de 1970, com a crise do petróleo é que

houve interesse e investimentos para viabilizar o desenvolvimento e aplicação de

equipamentos em escala comercial [7]. Mais de 50 mil empregos foram criados e uma

sólida indústria de componentes e equipamentos foi desenvolvida. Atualmente, a indústria

de turbinas eólicas vem acumulando crescimentos anuais acima de 30 % e movimentando

cerca de US$ 2 bilhões em vendas por ano (1999) [11].

Estima-se que o potencial eólico bruto mundial seja de aproximadamente

498.400 TWh/ano, o que significa mais de 30 vezes o consumo atual de eletricidade no

mundo. Porém, devido a restrições sociais como a existência de áreas densamente

Page 24: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 8

povoadas ou industrializadas e a restrições naturais como regiões muito montanhosas, o

potencial considerado como tecnicamente aproveitável é de cerca de 53.000 TWh/ano.

Ainda assim, o potencial de geração de energia eólica corresponde a quatro vezes o

consumo atual mundial de eletricidade [7].

Para que a geração de energia eólica seja considerada tecnicamente aproveitável, é

necessário que sua densidade seja de, pelo menos, 500 W/m2 a uma altura de 50 m do solo,

o que requer uma velocidade mínima do vento entre 7 e 8 m/s [7]. O limite superior para a

velocidade do vento (furling speed), por questões estruturais das turbinas, é de 30 m/s [5].

No Brasil, os melhores potenciais para a geração de energia eólica estão localizados

na faixa litorânea das regiões Norte e Nordeste, onde a velocidade média do vento, a 50 m

do solo é superior a 8,5 m/s. Outras regiões que se destacam são o Vale do São Francisco,

o Sudoeste do Paraná e o Litoral Sul do Rio Grande do Sul [7] e [11].

Na Fig. 1.4 é mostrado o mapa de ventos do Brasil, com as velocidades médias dos

ventos a 50 m do solo nas regiões brasileiras [11].

Fonte: Centro Brasileiro de Energia Eólica [11].

Fig. 1.4 – Mapa de ventos do Brasil.

A tecnologia de fabricação de turbinas eólicas mais consolidada utiliza eixo de

Page 25: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 9

rotação horizontal, três pás e gerador de indução, muito embora existam tecnologias que

utilizem geradores síncronos ou de corrente contínua [7] e [12]. O rendimento máximo

teórico de uma turbina eólica é da ordem de 60 %, entretanto, levando em consideração as

perdas nos outros componentes do sistema (pás, rotor, transmissão, caixa multiplicadora e

gerador) o rendimento estimado de um sistema eólico simples fica em torno de 20 % [12].

As turbinas eólicas, quanto ao seu porte, podem ser classificadas como pequenas,

médias e grandes. As turbinas pequenas possuem potência nominal inferior a 500 kW; as

médias possuem potência nominal entre 500 kW e 1000 kW; e as grandes, potência

nominal superior a 1000 kW. Na Fig. 1.5 são mostradas fotografias destes três tipos de

turbinas [7].

(a)

(b)

(c)

Fig. 1.5 – Tipos de turbinas eólicas (classificação em relação à potência nominal): (a) Pequena; (b) Média; (c) Grande.

1.1.4 – Célula a Combustível

As células a combustível, do inglês fuel cells, também denominadas pilhas a

combustível, são dispositivos eletroquímicos que possuem a capacidade de converter

hidrogênio e oxigênio em energia elétrica e calor, sem a necessidade de combustão, de

forma eficiente e com baixa emissão de poluentes [13] – [16] . A primeira célula a

combustível foi construída em 1839, por Sir William Grove, porém só despertou grande

interesse mundial por volta de 1960, quando foi escolhida como fonte de energia para as

espaçonaves do projeto espacial dos Estado Unidos [14]. Alguns especialistas chegam a

prever que as células a combustível representarão para este século o que o computador

representou para o século XX [13]. O princípio de funcionamento de uma célula a

Page 26: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 10

combustível é ilustrado na Fig. 1.6.

Fig. 1.6 – Princípio de funcionamento de uma célula a combustível.

Uma célula combustível é composta de um eletrodo negativo (anodo), que repele

elétrons, um eletrodo positivo (catodo), que atrai elétrons e uma membrana eletrolítica

(catalisador) colocada entre estes eletrodos. O combustível hidrogênio (H2) pressurizado é

inserido através do anodo da célula a combustível, sendo forçado em direção ao

catalisador. Quando uma molécula de H2 entra em contato com o catalisador, ela se divide

em dois íons H+ e dois elétrons (e–). Os elétrons fluem através do anodo atraídos pelo

eletrodo positivo do catodo, circulando por um circuito externo à célula combustível,

realizando trabalho. Enquanto isso, no catodo da célula combustível, existem moléculas de

oxigênio (O2) entrando e sendo forçadas em direção ao catalisador, separando-se em dois

átomos de oxigênio. Cada átomo desses possui uma carga fortemente negativa, que atrai

dois íons H+, fazendo com que estes passem através da membrana eletrolítica1, chegando

ao catodo. No catodo, cada átomo de oxigênio se combina com dois íons H+ e dois

elétrons (que passaram através do circuito externo), formando uma molécula de água, que

é rejeitada para o meio-ambiente. Este processo produz uma tensão de cerca de 0,7 V, em

corrente contínua. Para conseguir níveis de tensão maiores, várias células devem ser

combinadas, formando uma pilha de células a combustível [14].

Existem vários tipos de células a combustível, com diferentes características e

aplicações, com suas vantagens e desvantagens. O princípio de funcionamento descrito no

1 O íon transportado pode variar de acordo com o tipo de célula a combustível.

Page 27: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 11

parágrafo anterior é o de uma célula a combustível de eletrólito polimérico (PEFC, do

inglês polymer electrolyte fuel cell), também conhecida como PEMFC (proton exchange membrane

fuel cell), que é uma das mais simples tecnologias existentes. Na Tabela 1.1 é apresentado

um quadro comparativo entre diferentes tipos de células a combustível [13] – [19].

Tabela 1.1 – Tipos de células a combustível.

Tipo

Sigla PEFC PAFC AFC DMFC MCFC SOFC

Nome (inglês)

Polymer Electrolyte Fuel

Cell

Phosphoric Acid Fuel Cell Alkaline Fuel Cell Direct Methanol

Fuel Cell Molten Carbonate

Fuel Cell Solid Oxide

Fuel Cell

Nome (português)

Célula a Combustível de Eletrólito Polimérico

Célula a Combustível de Ácido Fosfórico

Célula a Combustível

Alcalina Metanol Direto

Célula a Combustível a

Carbonato Fundido

Célula a Combustível

de Óxido Sólido

Eletrólito Polímero

condutor de prótons

Ácido Fosfórico 90-100% (H3PO4)

KOH concentrado

Polímero (metanol direto)

Carbonatos fundidos (CO32-)

ZrO2 (zircônia dopado)

Íon transportado H+ H+ OH- H+ CO32- O2-

T (°C) 20 – 120 160 – 220 70 – 80 60 – 130 550 – 660 850 – 1000

Rendimento 40 – 50 % 40 % – 45 % 60 % 40 % 60 % 50 % - 60 %

Potência Nominal 50 – 250 kW Até 200 kW 300 W – 5 kW (∗) 10 kW – 2 MW 100 kW

Vantagens

Alta densidade de potência. Operação flexível.

Mobilidade.

Maior desenvolvimento

tecnológico. Tolerância a CO

(até 1%).

Cinética de redução de

oxigênio favorável.

Não precisa de reformador.

Tolerância a CO/CO2.

Eletrodos à base de Ni. Reforma

interna.

Alta eficiência (cinética

favorável). Reforma interna

Desvantagens

Custo da membrana.

Contaminação do catalisador

com CO.

Vida útil limitada pela corrosão.

Vida útil limitada por

contaminação do eletrólito com CO2.

Cruzamento de combustível através do

eletrólito sem gerar energia.

Corrosão do catodo. Interface

trifásica de difícil controle.

Problemas de materiais. Expansão térmica.

Aplicações Transporte,

geração distribuída.

Cogeração, geração

distribuída.

Transporte, espaço.

Baixa potência, transporte,

geração distribuída.

Cogeração, geração

distribuída ou centralizada.

Cogeração, geração

distribuída ou

centralizada.

(∗) Informação não encontrada na literatura técnica estudada.

O combustível utilizado nas células a combustível é o hidrogênio. Como dito

anteriormente, este elemento, apesar de abundante, é difícil de ser encontrado

naturalmente como gás (H2), mas pode ser obtido em compostos orgânicos, como os

Page 28: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 12

hidrocarbonetos, presentes em recursos naturais renováveis (biomassa) e não-renováveis

(carvão, petróleo e gás natural). O processo de extração do hidrogênio de um combustível

é realizado por um equipamento chamado reformador. As células a combustível que

utilizam reformadores não são totalmente não-poluentes, pois no processo da reforma do

combustível são emitidos gases como CO e CO2. Entretanto, os níveis de emissão de

poluentes são muito menores que os produzidos por fontes de energia baseadas em

combustíveis fósseis. O hidrogênio pode ser obtido ainda a partir da eletrólise da água.

Existem pesquisas em células a combustível regenerativas, nas quais a água é separada em

hidrogênio e oxigênio através de eletrólise, com eletricidade gerada através de energia solar

fotovoltaica. Estes átomos de hidrogênio e oxigênio alimentam a célula combustível, que

gera eletricidade e produz calor e água. A água é então utilizada para produzir mais

hidrogênio e oxigênio, através de eletrólise, reiniciando o processo [14].

O rendimento do processo de geração de energia é muito variável entre os

diferentes tipos de célula a combustível. Devido às altas temperaturas de funcionamento

das células a combustível, torna-se interessante a eficientização do processo de geração de

energia elétrica através de sistemas de cogeração.

1.1.5 – Energia Solar

A radiação solar pode ser aproveitada de diversas maneiras. Pode ser utilizada

diretamente, para aquecimento de fluidos e para a geração indireta de potência mecânica

ou elétrica. Também pode ser aproveitada diretamente para a iluminação e climatização de

ambientes. Pode ainda ser convertida diretamente em energia elétrica através dos efeitos

termoelétrico e fotovoltaico [2], [4] e [20]. Na Fig. 1.7 é mostrado um diagrama que

sintetiza os tipos de aproveitamento da energia solar e suas aplicações [20].

Os índices médios anuais de radiação solar no Brasil são apresentados na Fig. 1.8

[21] e [7]. As maiores médias anuais de irradiação solar são encontradas na região

Nordeste, com destaque para o Vale do São Francisco. Os menores índices são

encontrados no Litoral Sul-Sudeste, na Amazônia Ocidental, no Amapá e no Leste do

Pará. É interessante ressaltar que mesmo as regiões com menores índices de radiação solar

apresentam grande potencial de aproveitamento energético deste tipo de recurso natural

Page 29: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 13

[7].

Fig. 1.7 – Tipos de aproveitamento da energia solar e suas aplicações.

Fonte: Atlas de Irradiação Solar do Brasil [21].

Fig. 1.8 – Radiação solar no Brasil: média anual típica (Wh/m²dia).

Page 30: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 14

1.1.5.1 – Energia Solar Fototérmica

Este tipo de aproveitamento de energia solar é feito principalmente pelos

chamados coletores solares e concentradores solares.

Os coletores solares são utilizados em aplicações predominantemente residenciais,

mas há uma demanda significativa e aplicações em outros setores, como edifícios públicos

e comerciais, hospitais, restaurantes, hotéis, entre outros. A energia solar é captada através

de coletores instalados nos telhados de residências ou edificações. A radiação solar

incidente no coletor é absorvida e utilizada para aquecimento de água, geralmente a

temperaturas inferiores a 100 °C, para uso em higiene pessoal e lavagem de utensílios e

ambientes. Deste modo, substituindo chuveiros e aquecedores elétricos por coletores

solares, torna-se possível diminuir em aproximadamente 25% o consumo de energia

elétrica em uma residência [7]. Para o suprimento de água quente de uma residência típica

(com três ou quatro moradores) são necessários cerca de 4 m2 de coletor solar instalados

em seu telhado [7]. Os coletores solares também estão sendo utilizados em sistemas de

aquecimento de piscinas. Na Fig. 1.9 são mostrados coletores solares utilizados em

residências [4].

Fig. 1.9 – Coletores solares.

O aproveitamento da energia solar aplicado a sistemas que requerem temperaturas

mais elevadas ocorre através de concentradores solares. Estes equipamentos captam a

radiação solar incidente numa área relativamente grande e a concentram numa área muito

menor. Assim consegue-se com que a temperatura da área menor seja elevada de forma

considerável. A superfície refletora (espelho) dos concentradores solares é parabólica ou

Page 31: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 15

esférica, de modo que os raios solares que nela incidam sejam refletidos para uma

superfície bem menor (foco), onde se localiza o material a ser aquecido. Os sistemas

parabólicos de alta concentração chegam a atingir temperaturas elevadas2, podendo ser

utilizados para geração de vapor e, conseqüentemente, de energia elétrica [7]. A

necessidade de focalizar a radiação solar em um determinado ponto exige que um

concentrador solar possua algum dispositivo de orientação, o que acarreta custos adicionais

ao sistema. Podem ser vistos na Fig. 1.10 dois tipos de concentradores solares [4], [7] e

[22].

(a)

(b)

Fig. 1.10 – Concentradores solares: (a) disco-parabólico; (b) cilindro-parabólico.

1.1.5.2 – Energia Solar Fotovoltaica

A energia solar pode ser convertida diretamente em energia elétrica por meio dos

efeitos da radiação solar sobre determinados elementos. Nos semicondutores ocorre o

chamado efeito fotovoltaico, relatado por Edmond Becquerel em 1839, que consiste da

excitação dos elétrons destes materiais na presença de luz solar, produzindo energia elétrica

[2]. Detalhes sobre a física do efeito fotovoltaico e funcionamento das células solares

podem ser vistos em [22] . Apenas em 1956, com o desenvolvimento da microeletrônica

iniciou-se a produção industrial de células fotovoltaicas, com a finalidade de atender a

2O espelho parabólico de Odeillo (França) chega a atingir temperaturas de até 3800 °C [7].

Page 32: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 16

programas espaciais, havendo avanços significativos nos processos de fabricação. Com a

crise mundial de energia de 1973/74, houve o início da produção de células fotovoltaicas

para uso terrestre, auxiliando no fornecimento de energia [2]. Devido aos altos custos, da

ordem de US$ 300/Wp, este tipo de aproveitamento da energia solar mostrava-se viável

apenas em localidades remotas onde, por algum motivo, a rede elétrica não era estendida.

Entretanto, devido à produção em larga escala e aos avanços tecnológicos nos processos

de fabricação das células, nota-se uma constante queda no preço dos painéis fotovoltaicos.

Atualmente, módulos de silício cristalino custam cerca de US$ 1,72/Wp e existem

previsões de que chegarão a custar US$ 1,00/Wp em 2007 [23]. Isto faz esta tecnologia se

tornar economicamente interessante também em aplicações conectadas à rede elétrica

pública [1]. Neste caso, os painéis fotovoltaicos são incorporados ao telhado ou à fachada

de casas ou edifícios e injetam energia elétrica na rede, suprindo parcial ou totalmente as

cargas locais. Existem vários tipos de painéis fotovoltaicos existentes no mercado,

destacando-se os de silício cristalino (c-Si), os de silício amorfo hidrogenado (a-Si), os de

telureto de cádmio (CdTe) e os de disseleneto de cobre e índio (CuInSe2 ou CIS). O silício

cristalino (monocristalino ou policristalino) é a tecnologia mais tradicional e utiliza lâminas

cristalinas relativamente espessas (300 µm – 400 µm) com diâmetro de cerca de 10 cm. As

outras tecnologias mencionadas são baseadas em películas delgadas (filmes finos, com

espessura da ordem de 1 µm) de material ativo semicondutor. Estas células fotovoltaicas

de filme fino são a grande promessa no que se refere à redução dos preços dos painéis

fotovoltaicos, pois utilizam menos material e energia nos seus processos de fabricação [1].

Na Tabela 1.2 é mostrado um resumo das principais características de cada tecnologia

existente na atualidade [1] e [7]. Na Fig. 1.11 são mostrados alguns tipos de painéis

fotovoltaicos [1].

Uma consideração interessante a ser feita é em relação ao posicionamento dos

painéis. No Hemisfério Sul, para se obter uma melhor insolação durante o ano todo,

principalmente durante o inverno, onde a oferta solar é menor, recomenda-se instalar os

painéis com sua face superior direcionada para o norte, com uma inclinação equivalente à

latitude local acrescida de 10° a 15° [1].

Os sistemas fotovoltaicos são comumente chamados de sistemas PV (do inglês

photovoltaic). Esta nomenclatura será adotada neste trabalho como abreviação do verbete

fotovoltaico.

Page 33: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 17

Tabela 1.2 – Tipos de células fotovoltaicas.

Tipo Apresentação Eficiência (%) Vantagens Desvantagens Nome Sigla1 Laboratório Comercial Silício

monocristalino m-Si Lâminas cristalinas 24,7 12 – 14 Robustez e

confiabilidade Alto custo de

produção2

Silício policristalino p-Si Lâminas

cristalinas 19,8 11 – 13 Robustez e confiabilidade

Menor eficiência e diferença no custo final de produção pouco significativa

Silício amorfo hidrogenado a-Si Filmes finos < 15 8 – 9

Menor custo de produção,

versatilidade e boa aparência

estética

Diminuição da eficiência com o

tempo3

Telureto de Cádmio CdTe Filmes finos ~ 16 7 – 9

Baixos custos de produção e boa

aparência estética

Toxicidade e baixa abundância dos

elementos químicos

envolvidos

Disseleneto de Cobre e Índio CIS Filmes finos ~ 18 9 – 10

Potencial de atingir

eficiências relativamente

altas e boa aparência estética

Toxicidade e baixa abundância dos

elementos químicos

envolvidos

1 As células de silício monocristalino e policristalino são comumente referidas apenas como de silício cristalino, tendo a sigla (c-Si). 2 Devido à pureza do material utilizado (silício fundido de alta pureza: 99,99% a 99,9999%) necessita-se de um processo de fabricação rigorosamente controlado, tendo altos gastos energéticos associados. 3 Existe uma diminuição da eficiência do painel com o tempo, que se estabiliza após perda de 15 a 20% da eficiência inicial, o que ocorre após aproximadamente 1 ano de funcionamento. Os fabricantes já incluem esta margem de degradação nas especificações dos painéis.

(a) (b)

Fig. 1.11 – Painéis fotovoltaicos: (a) Silício cristalino; (b) Silício amorfo.

Page 34: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 18

1.1.5.3 – Características dos Painéis Fotovoltaicos

Na folha de dados de um painel PV, fornecida por seu fabricante, são apresentados

os seguintes parâmetros:

q Tensão de circuito aberto, ocV ;

q Corrente de curto-circuito, scI ;

q Potência máxima, mP ;

q Tensão de potência máxima, mpV ;

q Corrente de potência máxima, mpI .

A condição padrão na qual são apresentadas as características dos módulos é

definida para uma insolação de 1000 W/m² (irradiação recebida na superfície terrestre em

um dia claro, ao meio-dia) e uma temperatura nas células de 25 °C. Nestas condições se dá

a potência máxima do painel PV, mP , cuja unidade usual é Wp (Watt-pico) [2]. Na Fig.

1.12 são mostradas as curvas características típicas de um painel fotovoltaico. O ponto

onde o painel é capaz de fornecer sua potência máxima, usualmente denominado MPP (do

inglês maximum power point), é destacado nos dois gráficos.

(a)

(b)

Fig. 1.12 – Curvas características típicas de um painel fotovoltaico: (a) Corrente-tensão; (b) Potência-tensão.

Page 35: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 19

A intensidade luminosa e a temperatura do painel têm grande influência sobre o

comportamento de um painel PV. A corrente gerada aumenta com o aumento da

irradiação solar que atinge o painel. Já o aumento da temperatura faz com que a eficiência

do módulo caia, abaixando assim, os pontos de operação de máxima potência gerada.

Estas variações podem ser observadas na Fig. 1.13.

321 λ>λ>λ

(a)

321 TTT >>

(b)

Fig. 1.13 – Variação das características de um painel PV devido à: (a) Variação na irradiação solar incidente; (b) Variação na temperatura das células.

A curva característica apresentada na Fig. 1.12(a) é representada analiticamente por

(1.1) e pode ser sintetizada através do circuito equivalente exibido na Fig. 1.14 [24]. Este

tipo de modelagem é muito útil no estudo de novas topologias de sistemas de

processamento de energia fotovoltaica.

Fig. 1.14 – Circuito equivalente de um painel PV.

Page 36: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 20

−+

−+

−=1)( sPVPV

CelRiv

AkTq

ossh

sPVPVscPV eI

RRivIi , (1.1)

onde:

PVi e PVv Corrente e tensão no painel scI Corrente gerada (curto-circuito) sR Resistência série shR Resistência “shunt”

osI Corrente de saturação reversa do painel 921,=A Fator de idealidade da junção p-n

2310381 −⋅= ,k J/K Constante de Boltzmann

CelT Temperatura das células, K

1.2 – Sistemas Fotovoltaicos de Geração de Energia Elétrica

O aproveitamento da energia solar fotovoltaica pode ser feito através de sistemas

autônomos (ou isolados, stand-alone), sistemas híbridos (mais de uma fonte de energia) ou

sistemas interligados à rede elétrica. Cada uma dessas possibilidades exige uma

configuração mínima para o processamento e condicionamento da energia gerada, para

que possa ser aproveitada de forma eficiente e com qualidade pelas cargas atendidas.

Os sistemas fotovoltaicos autônomos geralmente necessitam um sistema de

armazenamento de energia, visto a característica intermitente da geração solar, o que é

feito geralmente através de baterias. O uso de baterias é responsável pelo aumento do

custo e diminuição da vida útil do sistema: enquanto um painel fotovoltaico tem a vida útil

garantida pelos fabricantes superior a 20 anos, uma bateria tem a sua em torno de 5 anos.

Sistemas híbridos, que geralmente são independentes da rede elétrica, também

necessitam de armazenamento de energia em baterias. Para que o armazenamento seja

feito de forma eficiente, sem sobrecarregar ou descarregar demasiadamente as baterias, são

utilizados sistemas controladores de carga. Existem alguns sistemas autônomos que não

utilizam nenhum tipo de armazenamento de energia, como é o caso dos sistemas de

Page 37: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 21

irrigação, onde toda energia gerada é utilizada no bombeamento de água, que é consumida

imediatamente ou estocada em reservatórios [2]. Os sistemas autônomos são atualmente os

sistemas fotovoltaicos mais competitivos, no sentido econômico, com as formas

convencionais de geração de energia elétrica pois são uma ótima alternativa para atender

pequenas demandas, em localidades rurais, remotas ou de difícil acesso, onde torna-se

proibitiva a extensão das linhas de transmissão do sistema elétrico [1].

Para a utilização da energia fotovoltaica para atender cargas em corrente alternada

(CA) é necessária a utilização de inversores. A Fig. 1.15 mostra os componentes de um

sistema fotovoltaico autônomo e as possibilidades do aproveitamento da energia gerada,

tanto em CC como em CA. A Fig. 1.16 mostra um sistema de geração de energia elétrica

híbrido solar-eólico-diesel. No Brasil, sistemas autônomos para atender áreas remotas e

comunidades carentes, sem energia elétrica, estão sendo incentivados por programas

governamentais como o PRODEEM (Programa para o Desenvolvimento Energético dos

Estados e Municípios) [3], [7].

Fig. 1.15 – Componentes de um sistema fotovoltaico autônomo.

Os sistemas interligados à rede de energia elétrica dispensam o uso de

baterias, pois atuam como usinas geradoras operando em paralelo com o sistema elétrico.

Podem ser do tipo central fotovoltaica ou integrados a prédios urbanos. No primeiro caso,

a planta fotovoltaica é de grande porte e está geralmente situada em áreas mais afastadas de

centros urbanos, pois as superfícies envolvidas, relativamente grandes, requerem áreas de

baixo custo, para que a instalação seja viável. Os sistemas integrados a prédios urbanos são

Page 38: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 22

incorporados à fachada ou ao telhado do prédio, de modo que, virtualmente, não ocupam

espaço nenhum, sendo geralmente de potências mais modestas que os primeiros [1].

Fig. 1.16 – Componentes de um sistema de geração de energia elétrica híbrido.

Em sistemas fotovoltaicos residenciais interligados à rede elétrica, sempre que for

gerada mais energia que a demandada pelas cargas locais, o excedente de energia é injetado

na rede elétrica. Neste caso o sistema interligado de energia elétrica funciona como uma

grande bateria, armazenando energia nos reservatórios de água de usinas hidrelétrica (não

consumindo esta energia). Nestes sistemas, torna-se necessária a utilização de um medidor

de energia elétrica bidirecional [1]. Em vários países da Europa, as concessionárias são

obrigadas a comprarem a eletricidade de origem fotovoltaica por um preço cerca de quatro

vezes maior que o preço da energia fornecida por elas ao setor residencial [26]. Na Fig.

1.17 são mostrados os componentes de um sistema fotovoltaico interligado à rede. O

sistema de condicionamento de energia pode ser composto por várias configurações,

empregando as mais diversas topologias de conversores estáticos. Este sistema de

condicionamento de energia é o alvo principal deste trabalho e será estudado nos

próximos capítulos.

Fig. 1.17 – Componentes de um sistema de geração de energia fotovoltaica interligado à rede de energia elétrica.

Page 39: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 23

1.3 – Objetivos e Metodologia

O principal objetivo deste trabalho é a proposição da aplicação de uma nova

topologia de inversor multinível em corrente (MNC) no processamento e

condicionamento de energia em sistemas fotovoltaicos conectados à rede de energia

elétrica. Esta nova topologia é composta pela conexão em cascata de um conversor CC-

CC multinível em corrente, do tipo boost, e um inversor CSI, conectados em cascata. Um

diagrama de blocos do sistema proposto é mostrado na Fig. 1.18. Com a topologia

proposta, pode-se injetar na rede elétrica uma corrente praticamente senoidal, com baixo

conteúdo harmônico e em fase com a tensão no ponto de acoplamento comum entre o

sistema PV e as cargas da instalação. Adicionalmente, é proporcionada uma divisão

equilibrada da corrente total do circuito entre as chaves do conversor CC-CC,

característica muito interessante em aplicações de potências mais elevadas.

Fig. 1.18 – Diagrama de blocos da nova topologia proposta.

A metodologia empregada neste trabalho envolve a revisão bibliográfica de

trabalhos publicados em periódicos e congressos nacionais e internacionais especializados,

modelagem matemática de conversores estáticos, emprego de ferramentas computacionais

para simulação da topologia proposta e realização de estudos experimentais visando a

validação dos conceitos teóricos desenvolvidos.

Page 40: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 24

1.4 – Publicações Resultantes desta Pesquisa

q “A Current Five-Level Boost Inverter Applied to a Grid-Connected Photovoltaic System”,

apresentado no VII Congresso Brasileiro de Eletrônica de Potência

(COBEP’2003), em Fortaleza (CE), setembro de 2003;

q “Inversor Boost Multinível em Corrente Aplicado ao Processamento de Energia em Sistemas

Fotovoltaicos”, apresentado no I Seminário de Potência, Automação e Controle (I

SEMPAC), em Juiz de Fora (MG), outubro de 2003;

q “Uma Visão Topológica Sobre Sistemas Fotovoltaicos Monofásicos Conectados à Rede de

Energia Elétrica”, apresentado no V Congresso Latino-Americano: Geração e

Transmissão de Energia Elétrica (V CLAGTEE), em São Pedro (SP), novembro

de 2003;

q “Protótipo de um Sistema Fotovoltaico Baseado no Inversor Boost Multinível em Corrente”, a

ser apresentado no XV Congresso Brasileiro de Automática (CBA’2004), em

Gramado (RS), setembro de 2004.

1.5 – Estrutura do Trabalho

A organização deste trabalho é feita por meio da divisão em capítulos. O Capítulo

2 apresenta uma revisão bibliográfica sobre topologias de sistemas fotovoltaicos

conectados à rede de energia elétrica. São discutidas as principais características desejadas

para um sistema fotovoltaico deste tipo, levando em consideração recomendações

internacionais que visam regulamentar a conexão de sistemas PV à rede de energia elétrica.

Várias topologias são apresentadas e analisadas, trazendo uma visão geral sobre os tipos de

conversores estáticos que vêm sendo empregados neste tipo de aproveitamento de energia

renovável.

No Capítulo 3 são introduzidos os principais conceitos relacionados aos

conversores multiníveis em corrente, visando formar uma base teórica adequada para a

proposição de novas topologias de inversores MNC. São apresentadas as principais

características e aplicações dos conversores MNC, com uma atenção especial direcionada

Page 41: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 1- Introdução 25

aos conversores estáticos que foram tomados como fonte de inspiração para a concepção

da nova topologia de inversor MNC proposta neste trabalho.

A descrição e formalização da nova topologia de inversor MNC aplicada a sistemas

PV proposta neste trabalho é mostrada no Capítulo 4, onde desenvolve-se uma análise

detalhada da estrutura, definindo seus estágios de operação, apresentando suas principais

formas de onda idealizadas e analisando o conteúdo harmônico da corrente sintetizada

pelo inversor. São desenvolvidas expressões matemáticas úteis para o dimensionamento

das chaves semicondutoras, diodos e indutores da topologia, bem como para a definição

do arranjo fotovoltaico a ser utilizado. É apresentada, também, a validação por meio de

simulação computacional dos conceitos teóricos desenvolvidos neste capítulo.

O Capítulo 5 relata a implementação de um protótipo de pequena escala para o

sistema proposto, bem como apresenta os resultados experimentais obtidos a partir de

medições no protótipo, com o objetivo de validar experimentalmente os conceitos

teóricos propostos neste trabalho.

As principais conclusões do trabalho desenvolvido e sugestões para trabalhos

futuros compõem o Capítulo 6.

Finalmente são apresentadas as referências bibliográficas e apêndices, estes

envolvendo as listagens dos arquivos utilizados nas simulações computacionais

apresentadas neste trabalho, definições de figuras de mérito relacionadas à qualidade de

energia elétrica e o projeto físico do indutor do filtro de linha utilizado na implementação

do protótipo do sistema proposto.

Page 42: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

CCCaaapppííítttuuulllooo 222

TTTooopppooolllooogggiiiaaasss dddeee CCCooonnnvvveeerrrsssooorrreeesss

EEEssstttááátttiiicccooosss AAApppllliiicccaaadddaaasss aaa SSSiiisssttteeemmmaaasss PPPVVV

MMMooonnnooofffááásssiiicccooosss CCCooonnneeeccctttaaadddooosss ààà RRReeedddeee

EEElllééétttrrriiicccaaa

A energia solar fotovoltaica vem se mostrando uma alternativa muito interessante

para suplementar a geração do sistema de energia elétrica. Devido à contínua queda no

preço dos painéis, este tipo de aproveitamento da energia solar, antes atrativo apenas em

regiões remotas ou na zona rural, começa a se tornar uma solução economicamente viável

para a utilização em aplicações urbanas como, por exemplo, em pequenas unidades

monofásicas de geração de energia elétrica conectadas à rede, instaladas nos telhados de

residências ou em fachadas de prédios.

Existem sistemas fotovoltaicos conectados à rede com potências de 100 W a vários

megawatts, sendo que a potência da maioria dos sistemas PV residenciais se encontra na

faixa de 1 kW a 5 kW [27]. Nestes sistemas, toda a energia gerada é injetada no ponto de

acoplamento comum (PCC, do inglês point of common coupling) entre a rede e as cargas,

suprindo ou auxiliando no suprimento da demanda local. O excedente de geração, caso

Page 43: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 27

exista, é injetado no sistema interligado de energia elétrica, que funciona como uma grande

bateria, armazenando energia nos reservatórios de água de usinas hidrelétricas. Durante os

períodos onde a geração é insuficiente (por exemplo, à noite ou em períodos de baixa

insolação), as cargas locais são alimentadas totalmente pela rede elétrica da concessionária.

Nestes sistemas PV, torna-se necessária a utilização de um medidor de energia elétrica

bidirecional, para registrar o consumo e geração da residência.

Conforme introduzido no capítulo anterior é necessário utilizar um sistema de

processamento e condicionamento da energia solar convertida através do efeito

fotovoltaico, como interface entre o painel PV e a rede elétrica, a fim de adequar a

freqüência e os níveis de tensão, permitindo que operem em paralelo.

Neste capítulo será apresentada uma revisão bibliográfica sobre as topologias

utilizadas em conversores estáticos aplicados à geração de energia fotovoltaica, com ênfase

em aplicações monofásicas conectadas à rede elétrica. Esta revisão não pretende mostrar

todas as possibilidades de topologias que estão sendo aplicadas atualmente, mas sim, exibir

uma amostra deste universo que é a conversão estática e o processamento de energia.

Serão apresentadas topologias publicadas em revistas e congressos de sociedades nacionais

(SOBRAEP, SBA) e internacionais (IEEE, IEE, EPE). A adaptação da revisão

bibliográfica apresentada neste capítulo foi objeto de publicação de artigo científico no “V

Congresso Latino-Americano: Geração e Transmissão de Energia Elétrica”, em novembro

de 2003 [28].

2.1 – Sistemas PV Conectados à Rede Elétrica

Além do processamento da energia fotovoltaica, os sistemas PV devem apresentar

algumas características relacionadas à segurança, eficiência e qualidade de energia. Existem

algumas normas e recomendações internacionais como a IEEE Std 929-2000 e a UL 1741

que abordam diversos aspectos em relação à conexão de sistemas fotovoltaicos à rede

elétrica [29] e [30].

Os sistemas PV devem possuir proteções que o desconectem da rede elétrica

quando esta estiver, por algum motivo, desligada, evitando assim, o chamado ilhamento

(do inglês islanding), que é a energização de uma parte da rede elétrica que deveria estar

Page 44: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 28

desligada. Devem existir também proteções que tirem o sistema de operação quando a

tensão ou a freqüência da rede estiverem fora de padrões pré-determinados. A

recomendação IEEE Std 929-2000 apresenta sugestões para os limites de operação do

conversor.

Um sistema PV conectado à rede elétrica deve apresentar baixos níveis de

distorção harmônica, a fim de evitar efeitos prejudiciais a outros equipamentos conectados

à mesma rede. As características harmônicas do inversor devem estar em conformidade

com a Seção 10 da recomendação IEEE Std. 519-1992, que depende do nível de curto

circuito no ponto de acoplamento comum [31]. A figura de mérito utilizada para avaliar

essas características harmônicas é a taxa de distorção harmônica, também denominada

distorção harmônica total (THD, do inglês total harmonic distortion), cuja definição é

apresentada no Apêndice B. Para um caso geral, a IEEE Std. 929-2000 recomenda que a

THD seja inferior a 5%, quando o inversor estiver operando na sua potência nominal [29].

O isolamento galvânico entre os painéis fotovoltaicos e a rede elétrica pode ser

feito através de transformadores de baixa ou alta freqüência. Neste último caso, o

transformador é parte constituinte do conversor CC-CC isolado. Existe uma tendência nos

sistemas mais modernos em utilizar transformadores de alta freqüência [32]. Em vários

sistemas fotovoltaicos, a fim de uma diminuição de custos e de complexidade, o

isolamento galvânico dos painéis não é utilizado, o que traz dificuldades em relação ao

aterramento dos mesmos. O isolamento dos painéis, embora não seja uma exigência de

normas como a IEEE Std 929-2000, nem uma obrigatoriedade em países como Alemanha

e Estados Unidos, é um requisito necessário em outros, como, por exemplo, Itália e Reino

Unido. Assim, não existe uma uniformidade quanto aos requisitos de isolação e

aterramento por parte dos organismos de normalização internacionais, tais como IEEE e

IEC, dentre outros [33].

Uma característica opcional, porém interessante, é a existência de um sistema de

busca (ou rastreamento) do ponto de potência máxima (MPPT, do inglês maximum power

point tracking), que pode aumentar em até 11% a energia gerada, representando apenas cerca

de 2% do custo total do sistema de conversão [34], [35].

Existem diversas configurações de sistemas monofásicos de processamento de

energia fotovoltaica, empregando as mais diversas topologias de conversores estáticos,

operando com chaveamento em baixa ou em alta freqüência. Neste capítulo, estas

Page 45: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 29

topologias serão dividas em quatro grupos:

q Topologias com único estágio inversor (não-isoladas);

q Topologias com único estágio inversor (isoladas);

q Topologias com múltiplos estágios de conversão (isoladas);

q Topologias com múltiplos estágios de conversão (não-isoladas).

Os diagramas de blocos, representando cada um destes tipos de topologias numa

visão macroscópica, são mostrados na Fig. 2.1.

Fig. 2.1 - Classificação dos tipos de sistemas fotovoltaicos monofásicos: Topologia com: (a) único estágio inversor, não-isolada; (b) único estágio inversor, isolada;

(c) múltiplos estágios de conversão, isolada; (d) múltiplos estágios de conversão, não-isolada.

2.2 – Topologias com Único Estágio Inversor (Não-Isoladas)

A forma mais simples de condicionar a energia fotovoltaica para injetá-la na rede é

através da utilização de um inversor fazendo diretamente a interface entre painel PV e rede

elétrica. Existem inversores de tensão (VSI, do inglês voltage-source inverter) e inversores de

corrente (CSI, do inglês current-source inverter).

No final da década de 1980, a maioria dos sistemas de processamento de energia

fotovoltaica eram baseados em inversores CSI tiristorizados, comutados pela linha, como

o circuito da Fig. 2.2, cuja potência chegava a atingir muitos kilowatts [33]. Esta topologia é

Page 46: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 30

conhecida como LCI (do inglês, line-commutated inverter). Suas principais vantagens são sua

robustez, simplicidade e alta eficiência. Entretanto, tais sistemas apresentam um baixo

fator de potência, injetando na rede uma corrente com elevada distorção harmônica e alto

fator de deslocamento, o que precisa ser compensado através de filtros especiais.

Fig. 2.2 - Inversor tiristorizado comutado pela linha (LCI).

A fim de melhorar o conteúdo harmônico e o fator de deslocamento da corrente

injetada na rede elétrica foram propostas diversas topologias de inversores CSI e VSI.

Uma topologia interessante, comutada na freqüência da rede, originalmente

aplicada a células a combustível, é a proposta por Martins et al em [36]. Na Fig. 2.3 é

apresentada sua adaptação a sistemas PV. Este inversor de corrente é capaz de injetar na

rede uma corrente quase senoidal, com baixa distorção harmônica. A chave auxiliar pode

ser um TRIAC. Operando em baixa freqüência, esta topologia não apresenta perdas por

chaveamento e não necessita a utilização de filtro de EMI (interferência eletromagnética).

A principal desvantagem é a necessidade de um indutor, L , de valor relativamente alto,

construído com núcleo de ferro-silício.

Fig. 2.3 - Inversor monofásico comutado em baixa freqüência de alto fator de potência.

Page 47: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 31

Os inversores VSI, como o mostrado na Fig. 2.4, associados a técnicas de

modulação em largura de pulso (PWM, do inglês pulse width modulation), utilizando

chaveamento em alta freqüência, são amplamente utilizados. Com um controle baseado

em PWM senoidal, torna-se relativamente simples a síntese de uma corrente com baixa

distorção harmônica com esta topologia. No trabalho proposto por Kuo et al em [37], o

controle do ponto de máxima potência (MPPT) é incorporado ao inversor, otimizando sua

operação. Entretanto, o algoritmo de controle torna-se relativamente mais complexo. A

freqüência de chaveamento utilizada foi 18 kHz. A principal desvantagem da utilização

direta de inversores VSI é a necessidade da associação de vários painéis fotovoltaicos em

série (no caso citado, 14 painéis em série), a fim de manter a tensão no barramento CC

maior que o pico da tensão da rede elétrica, uma vez que a tensão de circuito aberto de um

painel fotovoltaico comercial típica fica em torno de 30 V [32]. Outra desvantagem do

chaveamento em alta freqüência é o fato das perdas por chaveamento passarem a ser

significativas. A fim de diminuir estas perdas por chaveamento podem ser utilizadas

técnicas de comutação suave. Na Fig. 2.5 é mostrada uma topologia de inversor CSI com

comutação suave, proposta por Oishi et al em [38]. Pode-se notar um aumento na

complexidade do hardware utilizado.

Fig. 2.4 – Inversor VSI monofásico full-bridge.

Como os painéis fotovoltaicos geram tensão e corrente CC em seus terminais,

torna-se interessante a aplicação de inversores multiníveis em tensão para conectá-los à

rede, utilizando-os como fontes de tensão independentes. Na Fig. 2.6 são mostradas duas

topologias de inversores PWM multiníveis em tensão utilizadas em sistemas fotovoltaicos

propostas em [39] e em [40], por Agelides et al e Calais & Agelides, respectivamente.

Ambas topologias operam em 5 níveis de tensão.

Page 48: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 32

Fig. 2.5 – Tipo de inversor CSI monofásico com comutação suave.

(a)

(b)

Fig. 2.6 – Inversores PWM multiníveis em tensão: (a) Inversor full-bridge com chave bidirecional adicional; (b) Conexão em cascata de inversores.

Page 49: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 33

2.3 – Topologias com Único Estágio Inversor (Isoladas)

Nenhum dos inversores exibidos na seção anterior apresenta isolamento galvânico

entre os painéis fotovoltaicos e a rede elétrica. A fim de realizar o isolamento entre a rede

e os painéis, algumas topologias utilizam um transformador de baixa freqüência, com

núcleo de ferro-silício, na saída do inversor. Neste caso, a indutância de dispersão do

transformador pode ajudar na filtragem da corrente injetada na rede e pode-se utilizar um

número reduzido de painéis fotovoltaicos conectados em série. Como exemplo, pode-se

citar a topologia utilizada por Souza et al em [41], mostrada na Fig. 2.7.

Fig. 2.7 – Inversor VSI PWM isolado.

A seguir apresenta-se uma topologia muito interessante. Trata-se de um inversor

multinível em tensão, disponível no mercado norte-americano, patenteada por Thomas

[42]. Esta topologia é composta por três inversores VSI monofásicos full-bridge, cujas saídas

são conectadas aos primários de três transformadores, como mostra a Fig. 2.8. Os

enrolamentos secundários destes transformadores são conectados em série e suas relações

de transformação são escolhidas como múltiplas umas das outras. Um inversor deste tipo,

com n transformadores é capaz de gerar n3 níveis de tensão em sua saída, sintetizando

uma tensão quase senoidal, através de chaveamento em baixa freqüência [33].

Page 50: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 34

Fig. 2.8 – Inversor multinível em tensão isolado.

2.4 – Topologias com Múltiplos Estágios de Conversão (Isoladas)

Através do uso de conversores CC-CC isolados com transformadores de alta

freqüência, com núcleo de ferrite, é possível reduzir o peso e o volume dos equipamentos.

As desvantagens existentes no uso de conversores CC-CC isolados estão nas topologias

ligeiramente mais complexas e na existência de perdas devido ao chaveamento em alta

freqüência. Estes sistemas fotovoltaicos, geralmente, são compostos por dois ou mais

estágios de processamento de energia em cascata. O sistema proposto por Demonti &

Martins em [43], utiliza um conversor CC-CC flyback, em cascata com um inversor VSI

PWM, como mostra a Fig. 2.9. Ambos conversores são chaveados em 25 kHz. O

conversor CC-CC é responsável pelo isolamento galvânico dos painéis e pela adequação

do nível da tensão aplicada à entrada do inversor, que deve ser superior ao pico da tensão

da rede elétrica. O inversor VSI, junto com o filtro de saída, é responsável pela síntese de

uma corrente com baixa distorção harmônica e alto fator de potência (quase unitário).

Page 51: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 35

Fig. 2.9 – Sistema PV utilizando o conversor CC-CC flyback em cascata com inversor VSI.

O uso de conversores do tipo flyback é mais adequado a níveis de potência até cerca

de 100 W, como o do caso anterior. Para potências maiores, podem ser utilizados outros

conversores CC-CC como o full-bridge ([44], [45]) ou o push-pull ([46], [47]). Na Fig. 2.10 é

mostrada uma aplicação utilizando o conversor CC-CC full-bridge, proposta por Bose et al

em [44]. Neste sistema, o conversor CC-CC realiza a busca do ponto de máxima potência

dos painéis e sintetiza uma corrente senoidal retificada, operando numa freqüência de

chaveamento entre 10 kHz e 16 kHz. O inversor utilizado é composto por transistores e é

chaveado na freqüência da rede, realizando a inversão de polaridade da corrente sintetizada

no estágio anterior, injetando uma corrente senoidal na rede elétrica.

Na Fig. 2.11 e na Fig. 2.12 são mostrados dois sistemas que utilizam o conversor

CC-CC push-pull. No primeiro, proposto por Merwe & Merwe [46], a função de cada etapa

é muito semelhante às etapas correspondentes do sistema da Fig. 2.10. Já o sistema da

Fig. 2.12, proposto por Demonti et al [47], é composto por três estágios: um conversor

CC-CC push-pull, um conversor CC-CC buck e um inversor CSI. O primeiro estágio é

chaveado em 20 kHz e proporciona a isolação galvânica dos painéis, além de elevar a

tensão a níveis convenientes aos próximos estágios (por volta de 400 V). O segundo

estágio é responsável por sintetizar uma corrente senoidal retificada, sendo também

chaveado em 20 kHz. Já o terceiro estágio é um inversor, chaveado na freqüência da rede e

tem a mesma função do inversor do sistema apresentado na Fig. 2.10.

Page 52: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 36

Fig. 2.10 – Sistema PV utilizando o conversor CC-CC full-bridge em cascata com inversor

CSI.

Fig. 2.11 – Sistema PV utilizando o conversor CC-CC push-pull em cascata com inversor VSI.

Fig. 2.12 – Sistema PV utilizando com três estágios de processamento de energia.

Page 53: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 37

2.5 – Topologias com Múltiplos Estágios de Conversão (Não-Isoladas)

Com a finalidade de reduzir a complexidade e o custo do sistema de

condicionamento de energia, algumas topologias não utilizam isolamento galvânico entre

os painéis e a rede elétrica. O preço pago por esta simplificação é a dificuldade no

aterramento dos painéis e a conseqüente exposição de partes energizadas do equipamento.

No caso de aplicações residenciais, os painéis fotovoltaicos são geralmente incorporados

aos telhados das edificações, em locais de difícil acesso, o que permite uma operação

relativamente segura dos sistemas de conversão não-isolados. Um arranjo simples, porém

eficiente, é composto por um conversor CC-CC boost em cascata com um inversor VSI

([26], [48]), ambos chaveados em alta freqüência, como pode ser visto na Fig. 2.13. O

conversor boost é responsável pelo rastreamento do ponto de máxima potência do painel

PV e pela elevação da tensão. O inversor VSI tem a função de injetar uma corrente

senoidal, com baixa distorção harmônica na rede elétrica. No sistema proposto por Blauth

et al em [26], o inversor VSI pode operar também como filtro ativo, compensando as

características reativas e harmônicas de cargas vizinhas.

Dois sistemas fotovoltaicos interessantes, utilizando o conversor CC-CC buck-boost

em cascata com um inversor VSI, são apresentados em [49] e em [50] e mostrados na

Fig. 2.14. O princípio de operação desses sistemas é semelhante. O primeiro estágio é

chaveado em alta freqüência, operando em modo de condução descontínua, sendo

responsável pela síntese de uma corrente que acompanha o módulo de uma senóide. Já o

segundo estágio, operando em baixa freqüência, realiza a inversão de polaridade da

corrente e sua filtragem, injetando na rede uma corrente praticamente senoidal.

Fig. 2.13 – Sistema PV utilizando o conversor boost em cascata com um inversor VSI.

Page 54: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 38

(a)

(b)

Fig. 2.14 – Sistemas PV utilizando o conversor buck-boost em cascata com um inversor VSI: (a) Buck-boost convencional; (b) Buck-boost duplo.

2.6 – Quadros Resumo

Um sumário das principais características das topologias apresentadas neste

capítulo é feito na Tabela 2.1. Cada topologia é referenciada pelo número da respectiva

figura onde foi apresentada. Os estágios de processamento de energia foram classificados

em duas categorias, de acordo com a freqüência de chaveamento: alta freqüência e baixa

freqüência, com as siglas AF e BF, respectivamente. Considerou-se estágio de baixa

freqüência aquele cujas chaves comutam numa freqüência de, no máximo, duas vezes a

freqüência de oscilação da rede elétrica. O termo “alto FP” utilizado se refere a um fator

Page 55: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 39

de potência perto da unidade e o termo “baixa THD” foi utilizado para um taxa de

distorção harmônica inferior a 5%.

Tabela 2.1 – Principais características das topologias apresentadas.

Topologia Estágios Tipo de

Inversor Isolamento Galvânico

Corrente injetada na rede

AF BF THD FP

Fig. 2.2 – 1 CSI Não alta Baixo

Fig. 2.3 – 1 VSI Não baixa Alto

Fig. 2.4 1 – VSI Não baixa Alto

Fig. 2.5 1 – CSI Não baixa Alto

Fig. 2.6(a) 1 – VSI Não baixa Alto

Fig. 2.6(b) 1 – VSI Não Baixa Alto

Fig. 2.7 1 – VSI BF Baixa Alto

Fig. 2.8 – 1 VSI BF Baixa Alto

Fig. 2.9 2 – VSI AF Baixa Alto

Fig. 2.10 1 1 CSI AF Baixa Alto

Fig. 2.11 2 – VSI AF Baixa Alto

Fig. 2.12 2 1 CSI AF Baixa Alto

Fig. 2.13 2 – VSI Não baixa Alto

Fig. 2.14(a) 1 1 VSI Não Baixa Alto

Fig. 2.14(b) 1 1 VSI Não Baixa Alto

Na Tabela 2.2 é apresentada a quantidade de componentes (chaves

semicondutoras, diodos, indutores e capacitores) utilizados em cada topologia. O número

de indutores e capacitores, apresentado neste quadro resumo, não leva em consideração os

componentes utilizados nos filtros passivos de saída (passa-baixas) dos sistemas de

conversão e o número de diodos não inclui o diodo usualmente conectado em série com

Page 56: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 40

os painéis PV (utilizado para evitar que haja fluxo de energia da rede para os painéis).

Tabela 2.2 – Quantidade de componentes utilizados em cada topologia apresentada.

Topologia Chaves Semicondutoras Diodos Indutores Capacitores

Fig. 2.2 4 – 1 –

Fig. 2.3 5 4 1 2

Fig. 2.4 4 4 – 1

Fig. 2.5 6 2 3 2

Fig. 2.6(a) 6 8 – 2

Fig. 2.6(b) 8 8 – 2

Fig. 2.7 4 4 – 1

Fig. 2.8 12 12 – 1

Fig. 2.9 5 5 – 2

Fig. 2.10 8 9 1 2

Fig. 2.11 6 6 – 1

Fig. 2.12 7 7 2 1

Fig. 2.13 5 5 1 1

Fig. 2.14(a) 5 5 1 2

Fig. 2.14(b) 6 7 1 2

2.7 – Conclusões Parciais

Este capítulo apresentou uma revisão bibliográfica sobre as principais topologias de

sistemas de conversão de energia fotovoltaica em energia elétrica aplicadas a sistemas

monofásicos conectados à rede de energia elétrica. O principal objetivo deste tipo de

Page 57: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 2- Topologias de Conversores Estáticos Aplicadas a Sistemas PV Monofásicos Conectados à Rede Elétrica 41

aproveitamento fotovoltaico é suplementar o consumo de energia elétrica de instalações

residenciais, comerciais ou industriais.

A operação de sistemas fotovoltaicos interligados à rede elétrica exige a

consideração de uma série de aspectos relacionados à segurança, eficiência e qualidade de

energia. Estes sistemas devem possuir capacidade de evitar o ilhamento e injetar na rede

uma corrente com baixa distorção harmônica e em fase com a tensão no ponto de

acoplamento comum. É interessante a utilização de um sistema de rastreamento do ponto

de máxima potência dos painéis, a fim de maximizar a capacidade de geração do sistema. O

isolamento galvânico entre os painéis e a rede elétrica permite o aterramento dos mesmos,

evitando riscos de choques elétricos em suas carcaças. Entretanto, como numa aplicação

residencial, os painéis PV são geralmente instalados em locais de difícil acesso (no telhado,

tipicamente), pode-se dispensar o isolamento galvânico e operar com os painéis sob um

potencial diferente do terra da instalação, sem aumento no risco de acidentes, a fim de

reduzir custos do sistema de conversão.

Existem esforços no mundo todo na regulamentação de sistemas de

processamento de energia fotovoltaica. Este é um campo muito interessante de estudo,

pois atualmente são encontradas muitas divergências entre as recomendações tecidas por

diferentes organismos de regulamentação. Outrossim, no Brasil ainda não existe

praticamente nada relacionado a este tipo de regulamentação.

As topologias relatadas apresentam as mais diversas configurações, com arranjos de

várias estruturas básicas estudadas na Eletrônica de Potência. Foram abordadas as

principais características, vantagens e desvantagens da utilização de cada topologia. Estas

características foram reunidas, no final do capítulo, em forma de tabela, a fim de

proporcionar uma melhor visão do conteúdo apresentado.

Devido à grande quantidade de informação compilada, o estudo realizado facilita a

seleção da topologia mais adequada a uma determinada aplicação, bem como, serve como

ponto de partida para a proposição de novas topologias e soluções para o

condicionamento e processamento de energia fotovoltaica.

Dentro deste contexto, no próximo capítulo será apresentada uma visão geral

sobre conversores multiníveis em corrente, com o objetivo de formar um arcabouço

teórico para a proposição de uma nova topologia de inversor multinível em corrente

aplicada a sistemas fotovoltaicos.

Page 58: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

CCCaaapppííítttuuulllooo 333

CCCooonnnvvveeerrrsssooorrreeesss MMMuuullltttiiinnnííívvveeeiiisss eeemmm

CCCooorrrrrreeennnttteee

Neste capítulo são introduzidos conceitos relacionados aos chamados conversores

multiníveis em corrente (MNC), apresentando suas principais características e aplicações,

bem como algumas topologias de interesse, objetivando a formação de uma base teórica

adequada para a idealização de novas topologias, como a proposta neste trabalho.

Embora a técnica multinível tenha sido inicialmente aplicada e bem difundida de

modo a produzir níveis intermediários de tensão em conversores estáticos, considerar-se-á,

no desenvolvimento do texto, uma operação multinível em corrente, a fim de enfatizar a

aplicação desejada. Muitos dos conceitos apresentados também se aplicam, de uma forma

dual, a conversores multiníveis em tensão. Uma revisão bibliográfica cuidadosa sobre

conversores multiníveis, em tensão e/ou em corrente, é encontrada em [53].

Page 59: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 43

3.1 – Conceitos Fundamentais

Muitas vezes, no processamento de energia, é interessante promover a distribuição

da corrente total do conversor estático entre as chaves semicondutoras que o compõem,

possibilitando a utilização de componentes de menor custo e melhor estabelecidos no

mercado em sua construção ou, ainda, a operação em níveis de corrente maiores do que os

permitidos pelo “estado-da-arte” de um determinado dispositivo semicondutor. A forma

mais intuitiva de realizar esta divisão de corrente entre chaves é através da associação

destes componentes em paralelo. Entretanto, esta não é uma tarefa simples, pois não

consiste apenas em conectar os terminais de potência das chaves em paralelo. É necessário

um projeto cuidadoso, de modo a evitar problemas muito comuns como falta de

sincronismo na entrada em condução (ou no desligamento) das chaves, variações bruscas

de tensão ou corrente nos dispositivos e instabilidade térmica. Como alternativa, pode-se

recorrer à associação paralela de conversores estáticos ou à associação paralela de células

de comutação (conceito que será definido adiante) [51]– [53].

3.1.1 – Associação Paralela de Chaves Semicondutoras

A associação convencional de chaves semicondutoras em paralelo representa a

primeira alternativa para se aumentar a capacidade de condução de corrente em aplicações

de altas potências. Contudo, componentes como transistores bipolares, MOSFETs,

IGBTs, entre outros, possuem comportamento não-linear e seu paralelismo é uma tarefa

que exige atenção especial, não sendo segura a sua realização da mesma forma feita com

componentes passivos lineares, tais como resistores e capacitores.

No caso do paralelismo de chaves semicondutoras a entrada em condução ou

bloqueio destes componentes podem ser afetados por elementos parasitas do circuito

(geralmente associados ao layout da placa de circuito impresso e aos fios e cabos) e por

divergências do comportamento dinâmico destes dispositivos. Atrasos no bloqueio podem

ocorrer principalmente com transistores bipolares e com IGBTs, devido ao tempo de

armazenagem (storage time) e ao efeito da corrente de cauda, respectivamente. A Fig. 3.1

ilustra o que ocorre em uma associação paralela de um par de dispositivos quaisquer,

Page 60: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 44

quando um componente assume toda a corrente durante o início de condução ou

desligamento do par [51] e [52].

(a) (b)

Fig. 3.1 – Chaveamentos com desequilíbrio de corrente em um par paralelo: (a) Entrada em condução; (b) Desligamento.

Para viabilizar a associação de transistores bipolares torna-se necessário o emprego

de resistores de emissor, como mostrado na Fig. 3.2. Caso estes elementos não sejam

utilizados, apenas uma das chaves pode assumir permanentemente a corrente total circuito.

Como a tensão de saturação coletor-emissor ( satCEV , ) de um transistor bipolar possui

coeficiente de temperatura negativo, seu valor diminui com o aumento da corrente de

coletor neste dispositivo. Isto faz a chave semicondutora tornar-se um melhor caminho

para a corrente no circuito. Com o aumento da corrente de coletor, ocorre um aumento

da temperatura do componente. Esta realimentação determinará, por fim, uma

temperatura superior à suportada pelo dispositivo semicondutor, resultando na sua

destruição. Este fenômeno é conhecido como desequilíbrio térmico (thermal runaway) e

pode ocorrer, também, em IGBTs de tecnologia epitaxial (punch-through, ou PT). O

desequilíbrio térmico não ocorre em MOSFETs e em IGBTs de tecnologia homogênea

(non-punch-through, ou NPT), que são dispositivos que apresentam coeficiente de

temperatura positivo [51]. Entretanto, os problemas de layout e de divergência na

Page 61: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 45

comutação das chaves são fatores que devem ser considerados [51] e [52].

Fig. 3.2 – Associação paralela de transistores bipolares usando resistores de emissor.

3.1.2 – Associação Paralela de Conversores Estáticos

De forma semelhante à associação paralela de chaves semicondutoras, pode-se

também realizar a associação paralela de conversores estáticos. Esta técnica consiste em

repartir a corrente total de um conversor entre um número determinado de conversores

menores. Em determinados casos, é possível a obtenção de níveis intermediários de

corrente, sintetizando uma forma de onda composta por degraus, o que caracteriza a

chamada operação multinível em corrente, que será descrita detalhadamente adiante.

Uma associação de dois conversores boost em paralelo é apresentada na Fig. 3.3(a).

Esta configuração foi proposta originalmente como uma forma de superar as limitações

tecnológicas dos componentes e, recentemente, tem sido aplicada na correção de fator de

potência de fontes chaveadas [54] – [56]. Esta técnica é denominada conversão interleaved,

referente à interconexão de múltiplos conversores para os quais a freqüência de

chaveamento é a mesma, mas os pulsos de comando são defasados. A técnica pode ser

estendida a um número qualquer de elementos e aplicada a outros conversores CC-CC,

como o conversor buck, conforme ilustra a Fig. 3.3(b) [51] e [52].

Page 62: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 46

(a)

(b)

II/2

I/2

L1

L2Lf

S1 S2

D1 D2

Fig. 3.3 – Associação de conversores CC-CC em paralelo:

(a) Boost; (b) Buck.

Na Fig. 3.4 é apresentado um exemplo da associação paralela de inversores VSI,

onde a corrente da carga é igualmente partilhada entre as chaves ativas. Esta topologia

pode ser aplicada a inversores trifásicos e ser generalizada para um número (par) maior de

inversores em paralelo. Uma desvantagem é a necessidade do uso de indutores acoplados,

que são, geralmente, de implementação mais complexa. Exemplificando a associação

paralela de inversores CSI, pode-se citar a topologia exibida na Fig. 3.5 [58], proposta com

a finalidade de aumentar a capacidade de potência dos inversores CSI e viabilizar a redução

do ruído e das perdas no acionamento de motores de indução. Esta topologia foi a

pioneira na implementação de multiníveis em corrente [51] e [52].

Fig. 3.4 – Associação de inversores VSI em paralelo.

Page 63: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 47

Fig. 3.5 – Associação de inversores CSI trifásicos em paralelo.

3.1.3 – Associação Paralela de Células de Comutação

Uma forma mais básica de se propor conversores com capacidade de

compartilhamento de tensão ou corrente entre estruturas menores é tratá-los a partir de

células de comutação. A célula de comutação, também conhecida como “chave PWM”, é

uma estrutura de três terminais na qual se encerra toda a não-linearidade existente em um

conversor estático [59]. Seu funcionamento é baseado na operação complementar de duas

chaves eletrônicas conectadas a um ponto comum, podendo ser representada pelas duas

maneiras indicadas na Fig. 3.6. Portanto, quando nS estiver em condução, 'nS estará

bloqueada, e vice-versa. Entre os terminais 1T e 2T haverá sempre uma fonte de tensão

(ou laço capacitivo), enquanto o terminal comum, C , estará sempre conectado a uma

fonte de corrente (ou ramo indutivo).

A célula de comutação pode ser encontrada em uma grande variedade de

conversores estáticos, e pode assumir diferentes configurações. Dependendo da natureza

do conversor, a célula de comutação pode ser composta de chaves controladas (MOSFET,

IGBT, GTO, etc.) e chaves passivas (diodos). Arranjos típicos da célula de comutação para

alguns conversores estáticos típicos são exibidos na Fig. 3.7 [51] e [52]. Nos conversores

CC-CC, os terminais 1T e 2T comumente recebem a denominação A (ativo) e P

(passivo), respectivamente, sendo que entre os terminas P e C existirá uma chave passiva

Page 64: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 48

(diodo). Na Fig. 3.8 é apresentada a identificação da célula de comutação nos seis

conversores CC-CC não-isolados.

(a)

(b)

Fig. 3.6 – A célula de comutação: (a) Representação simplificada; (b) Esquema “real”.

(a) (b) (c)

Fig. 3.7 – Arranjos típicos para a célula de comutação: (a) Conversor CC-CC; (b) Inversor VSI; (c) Inversor CSI

O estudo de conversores estáticos utilizando o conceito da célula de comutação

permite uma abordagem mais simplificada e passível de generalização, tanto sob o aspecto

do número de níveis e divisão da corrente, quanto sob o ponto de vista do tipo do

conversor. Dentro deste contexto, foi proposta por Braga em [51] uma estrutura genérica

de divisão e de produção de níveis intermediários de corrente. Esta estrutura é

denominada “Célula Multinível em Corrente” e pode ser empregada em praticamente

todos os conversores estáticos.

Page 65: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 49

Fig. 3.8 – Identificação da célula de comutação em conversores CC-CC não isolados:

(a) Buck; (b) Boost; (c) Buck-Boost; (d) Ćuk; (e) Sepic; (f) Zeta.

3.1.3.1 – A Célula Multinível em Corrente

A “Célula Multinível em Corrente” [51], ou simplesmente, “Célula MNC”, permite

o paralelismo eficiente de chaves semicondutoras, possibilitando o uso de dispositivos com

níveis nominais de corrente inferiores ao total envolvido na aplicação, podendo viabilizar a

operação em níveis de potência superiores aos permitidos pelo “estado-da-arte” [60]. Além

disso, com a estratégia de chaveamento adequada é possível a síntese de formas de onda de

Page 66: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 50

corrente compostas por degraus, de conteúdo harmônico reduzido. Esta característica será

extremamente explorada neste trabalho. A representação genérica da Célula MNC é

apresentada na Fig. 3.9.

Fig. 3.9 – Célula MNC genérica.

A conexão de duas ou mais Células MNC é feita através de indutores,

denominados indutores de equilíbrio (também denominados indutores de divisão ou de

grampeamento). De forma semelhante à célula de comutação genérica, as chaves indicadas

com mesmo índice possuem funcionamento complementar. Deve existir uma fonte de

tensão (ou laço capacitivo) conectada entre os terminais 1T e 2T , e o terminal C deve

estar ligado a uma fonte de corrente (ou ramo indutivo).

A seguir serão descritas as principais características e vantagens da operação

multinível em corrente e apresentada a aplicação da Célula MNC a diversos conversores

estáticos, objetivando este tipo de operação.

3.1.4 – Principais Características da Operação MNC

Uma forma de onda multinível pode ser definida como aquela que possui, além dos

patamares (ou níveis) máximo e mínimo, um número finito de patamares intermediários. A

Fig. 3.10 traz a ilustração de algumas formas de onda multiníveis. Considera-se um

conversor multinível em corrente aquele que apresenta, em alguma parte do circuito,

corrente elétrica com forma de onda multinível [52].

Page 67: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 51

(a) (b) (c)

Fig. 3.10 – Formas de onda multiníveis: (a) Três níveis; (b) Cinco níveis; (c) “N” níveis.

Como principais atrativos da utilização da técnica multinível em corrente, pode-se

citar [51] e [52]:

q Divisão equânime da corrente entre chaves semicondutoras (característica

associada ao paralelismo das células de comutação);

q Redução da taxa de variação de corrente ( dtdi/ ) sobre chaves semicondutoras;

q Redução da interferência eletromagnética (EMI) conduzida e irradiada;

q Possibilidade de ajuste ou minimização do conteúdo harmônico de formas de onda

de corrente.

3.2 – Conversores CC-CC MNC

Na aplicação da célula MNC em conversores CC-CC, cada arranjo de chaves com

operação complementar é composto por uma chave autocomutada e por um diodo de

livre circulação (ou free-wheeling). Isto é ilustrado na Fig. 3.11, utilizando duas células MNC,

para os seis conversores CC-CC não-isolados, onde os terminais 1T e 2T recebem a

denominação A e P , respectivamente [61].

Page 68: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 52

Fig. 3.11 – Aplicação de duas células MNC em conversores CC-CC não-isolados:

(a) Buck MNC; (b) Boost MNC; (c) Buck-Boost MNC; (d) Cùk MNC; (e) Sepic MNC; (f) Zeta MNC.

Page 69: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 53

De acordo com a estratégia de chaveamento empregada, dois modos de operação

podem ser definidos para estes conversores. Por simplicidade, pode-se tomar um caso

particular, como o do buck com duas células MNC, da Fig. 3.11(a), de modo a exemplificá-

los.

Se as chaves 1S e 2S forem acionadas com pulsos idênticos, o circuito opera em

um modo de chaveamento convencional, com sua corrente de entrada, ii , variando entre

dois patamares, como ilustrado na Fig. 3.12, para um caso idealizado. Com esta estratégia

de chaveamento consegue-se a divisão equilibrada da corrente total do circuito entre as

chaves 1S e 2S .

Fig. 3.12 – Operação convencional do conversor buck com 2 células MNC (formas de onda idealizadas).

Agora, acionando as chaves 1S e 2S com pulsos, de mesma largura e freqüência,

porém com um certa defasagem, a corrente de entrada do conversor passa a apresentar

três patamares diferentes, definindo uma operação multinível em corrente. Isto é mostrado

na Fig. 3.13, também para uma situação ideal. Neste caso, também é possível obter a

Page 70: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 54

divisão equânime da corrente total do circuito entre as chaves 1S e 2S . Todos os aspectos

envolvidos nestes modos de operação são descritos minuciosamente em [51] e [52].

Fig. 3.13 – Operação multinível do conversor buck com 2 células MNC (formas de onda

idealizadas).

Page 71: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 55

3.3 – Retificadores MNC

O conceito da célula MNC pode ser aplicado também a retificadores controlados.

Neste caso, entre os terminais 1T e 2T deverá existir uma fonte de tensão alternada,

enquanto que a saída deve possuir um filtro de corrente capaz de manter o nível e a

qualidade da corrente CC, característica compatível com cargas como motores de corrente

contínua. Na Fig. 3.14 é apresentado um retificador monofásico a duas células MNC [51].

Nesta estrutura a corrente de saída CC, oI , é dividida entre as chaves de forma equilibrada

e a corrente de entrada, drenada da fonte de tensão, pode assumir até cinco níveis,

apresentando conteúdo harmônico reduzido. Um ponto crítico deste retificador é o

acionamento de suas chaves, que envolve uma lógica relativamente complexa.

Fig. 3.14 – Retificador monofásico a duas células MNC.

Um retificador com alto fator de potência, com operação multinível em corrente,

de características semelhantes ao anterior, porém utilizando uma estrutura

consideravelmente mais simples, foi proposto recentemente por Teixeira [52] e [62]. Esta

topologia, apresentada na Fig. 3.15, é composta por um retificador a diodos de onda

completa, em ponte, conectado em cascata com um conversor buck MNC duas células.

Neste retificador, a corrente de saída também é dividida, de forma equilibrada, entre as

chaves 1S e 2S , e uma corrente em até cinco níveis pode ser drenada da rede elétrica,

permitindo uma operação com baixa distorção harmônica e alto fator de potência. Pela

Page 72: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 56

natureza de sua composição, esta topologia foi denominada como “Retificador Buck

MNC”. Devido à extrema relevância desta estrutura na concepção da nova topologia de

inversor MNC proposta neste trabalho, são apresentadas, na Fig. 3.16, suas principais

formas de onda, obtidas através de simulação computacional utilizando o software PSpice.

Nesta simulação foram utilizados os seguintes parâmetros: 601 =L mH, 100=oL mH,

Ω= 5oR e )(sen tvs 6022127 π= . A freqüência de chaveamento utilizada foi 120 Hz e

os pulsos de comando das chaves, com ângulos de atraso °=α 612, e °=φ 826, , foram

ajustados de modo a sintetizar uma forma de onda cinco níveis na entrada do retificador.

A definição formal destes ângulos e uma discussão sobre otimização do conteúdo

harmônico de uma corrente em cinco níveis serão tecidas no Capítulo 4. A listagem desta

simulação encontra-se no Apêndice A.

Pode-se observar, das formas de onda da Fig. 3.16, que a corrente total da carga foi

dividida, de uma forma equilibrada, entre as chaves 1S e 2S , sendo que a primeira assume

a ondulação da corrente de saída. Foi obtida, para a corrente de entrada, uma

=THD 16,478%, com fator de deslocamento praticamente unitário, resultando numa

operação com fator de potência igual a 0,9863.

É possível, ainda, a adaptação de outros conversores CC-CC além do buck na

concepção de retificadores MNC de alto fator de potência. Para isso, é necessário que

estes conversores apresentem entrada do tipo fonte de tensão, como é o caso do buck-boost

e do zeta [63], conforme mostrado na Fig. 3.17.

Fig. 3.15 – Retificador buck MNC duas células monofásico.

Page 73: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 57

Fig. 3.16 – Principais formas de onda do Retificador buck MNC duas células (simulação): (a) Pulsos de comando: S1 e S2 (x1,1); (b) Corrente na chave S1; (c) Corrente na chave S2;

(d) De cima para baixo: correntes nos indutores Lo e L1; (e) Corrente na entrada do retificador (traço mais grosso) e tensão de alimentação (traço mais fino, com escala reduzida em 5 vezes).

(a)

(b)

Fig. 3.17 – Outros retificadores MNC: (a) Buck-boost; (b) Zeta.

Page 74: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 58

3.4 – Inversores CSI MNC

Os inversores CSI possuem como entrada uma fonte de corrente CC com baixa

ondulação, obtida através de uma forte filtragem de corrente, realizada por meio de

indutores. Este tipo de inversor vem sendo empregado predominantemente na geração de

corrente alternada com freqüência variável, para acionamento de motores de indução ou

síncronos em velocidade variável. Em aplicações de alta potência, não é aconselhável

utilizar modulação PWM senoidal de alta freqüência para a redução de conteúdo

harmônico, devido ao aumento das perdas de chaveamento. Os inversores CSI MNC

surgem como alternativa de eliminação ou minimização de harmônicos da corrente CA de

saída, por utilizarem modulação com chaveamento em baixa freqüência.

A aplicação da célula MNC a um inversor CSI leva ao circuito mostrado na Fig.

3.18 [51] e [64]. Esta topologia é capaz de fornecer à carga uma corrente em até cinco

níveis, dividida de forma equilibrada entre suas chaves. Se forem empregados GTOs (gate

turn-off thyristors) como chaves ativas, fica dispensado o uso de diodos, uma vez que os

GTOs são unidirecionais em corrente. Todavia, independente da chave semicondutora

utilizada, serão necessárias oito chaves autocomutadas para a implementação dos cinco

níveis na corrente de saída.

De forma semelhante ao retificador da Fig. 3.14, um outro ponto crítico deste tipo

de topologia é a complexidade da estratégia de acionamento de suas chaves. Na Fig. 3.19

são apresentados os pulsos de comando necessários para sintetizar uma forma de onda de

corrente de saída com cinco níveis.

Fig. 3.18 – Inversor CSI MNC 2 células monofásico.

Page 75: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 59

t

io

IiIi / 2

S1

t

t

S2

t

S3

t

S4

tS2’

S3’

S4’

S1’

t

t

t

onoff

onoff

onoff

onoff

onoff

onoff

onoff

onoff

Fig. 3.19 – Formas de onda idealizadas do Inversor CSI MNC 2 células: Estratégia de chaveamento e forma de onda da corrente de saída.

Uma nova topologia de inversor CSI MNC pode ser desenvolvida, de forma

análoga, tendo como inspiração o retificador buck MNC (Fig. 3.15). Esta topologia,

proposta nesse trabalho, é denominada “Inversor Boost MNC”, sendo composta por um

conversor CC-CC boost, conectado em cascata a um inversor CSI monofásico. Seu circuito,

utilizando duas células MNC na composição do conversor boost, é apresentado na Fig. 3.20.

Esta estrutura é capaz de fornecer à carga uma corrente com até cinco níveis, empregando

chaveamento em baixa freqüência. É proporcionada, também, uma divisão equânime da

corrente entre as chaves componentes do conversor boost ( 1S e 2S ). São utilizadas seis

chaves em sua composição, sendo que praticamente toda a lógica de síntese de uma

operação MNC é concentrada nas chaves 1S e 2S , que devem ser chaves semicondutoras

autocomutadas (MOSFETs ou IGBTs, por exemplo). As chaves HS1 , LS1 , HS2 e LS2 ,

que compõem os dois braços do inversor de corrente, são responsáveis apenas por

inverter o sentido em que a corrente circula pela carga. Caso este inversor de corrente

Page 76: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 60

esteja com sua saída conectada à rede elétrica, tiristores podem ser utilizados para sintetizar

estas chaves, eliminando a necessidade do uso de diodos conectados em série com cada

chave, o que simplifica ainda mais o circuito. Uma análise cuidadosa desta topologia será

realizada no próximo capítulo.

Fig. 3.20 – Inversor boost MNC 2 células.

Através da mesma linha de raciocínio, outras topologias de inversores CSI MNC

podem ser concebidas utilizando conversores CC-CC que apresentem saída do tipo fonte

de tensão, como o buck-boost e o sepic. Estas topologias, utilizando duas células MNC, são

sugeridas na Fig. 3.21 e podem ser objeto de estudo de futuros trabalhos seguindo a linha

de pesquisa de inversores CSI MNC.

(a) (b)

Fig. 3.21 – Outras possibilidades de inversores CSI MNC:

(a) Buck-boost; (b) Sepic.

Page 77: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 3- Conversores Multiníveis em Corrente 61

3.5 – Conclusões Parciais

Este capítulo apresentou uma breve introdução aos conceitos relacionados aos

conversores multiníveis em corrente. Foram apresentadas suas principais características e

aplicações, assim como algumas topologias selecionadas, formando um arcabouço teórico

suficiente para a proposição de novas estruturas com operação multinível em corrente.

A divisão de corrente entre dispositivos semicondutores foi discutida em uma

seqüência lógica, iniciando com o paralelismo de chaves, passando pelo paralelismo de

conversores estáticos e, finalizando, com o paralelismo de células de comutação (conceito

que também foi descrito neste capítulo). Assim, foi definida a célula multinível em

corrente, tendo como objetivo proporcionar a divisão equilibrada da corrente total de um

circuito entre as chaves que o compõem. Mediante o emprego de uma estratégia de

chaveamento adequada, a célula MNC pode ser utilizada para implementar a modulação

multinível em corrente.

Além de proporcionar um paralelismo eficiente entre chaves semicondutoras, a

operação multinível em corrente traz outros benefícios como a diminuição da taxa de

variação de corrente nas chaves ( dtdi/ ), a diminuição da interferência eletromagnética

conduzida e irradiada e a possibilidade de ajuste e/ou redução do conteúdo harmônico de

formas de onda de corrente.

Com a aplicação da célula multinível em corrente em conversores estáticos surgem

novas famílias de conversores CC-CC, retificadores e inversores CSI, cujos circuitos foram

exibidos neste capítulo.

Uma atenção especial foi dedicada ao conversor CC-CC buck MNC, ao retificador

buck MNC e ao inversor CSI MNC, todos com duas células MNC, pois foram utilizadas

como fonte de inspiração e base para a proposição da nova topologia proposta neste

trabalho. Particularmente, foram exibidos resultados de simulação para o retificador buck

MNC devido à sua dualidade com esta nova topologia. O entendimento de seu

funcionamento torna a apresentação da nova topologia extremamente natural.

Esta nova topologia, que recebe o nome de “Inversor Boost Multinível em

Corrente” é analisada detalhadamente no próximo capítulo. Adicionalmente, outras novas

topologias de inversores MNC foram aqui sugeridas, baseadas nos conversores buck-boost e

sepic, podendo ser exploradas em trabalhos futuros, nesta mesma linha de pesquisa.

Page 78: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

CCCaaapppííítttuuulllooo 444

IIInnnvvveeerrrsssooorrr BBBoooooosssttt MMMuuullltttiiinnnííívvveeelll eeemmm

CCCooorrrrrreeennnttteee eee sssuuuaaa AAApppllliiicccaaaçççãããooo aaa

SSSiiisssttteeemmmaaasss PPPVVV CCCooonnneeeccctttaaadddooosss ààà RRReeedddeee

EEElllééétttrrriiicccaaa

Este capítulo apresenta uma nova topologia de inversor multinível em corrente,

designada por “Inversor Boost MNC”, e sua aplicação a sistemas fotovoltaicos conectados à

rede de energia elétrica. Dependendo do número de células MNC e da estratégia de

chaveamento utilizada, pode-se sintetizar uma corrente com diferentes números de níveis

na saída do inversor. Entretanto, no desenvolvimento deste capítulo, será considerada uma

configuração com duas células MNC, capaz de produzir até cinco níveis na corrente de

saída do inversor, utilizando um número reduzido de dispositivos semicondutores.

Serão explorados dois modos de operação desta topologia, empregando

modulação multinível em corrente e modulação por largura de pulso senoidal multinível.

Uma formalização minuciosa dos conceitos relacionados a esta topologia será exposta,

trazendo a descrição dos estágios de operação do conversor e expressões matemáticas

importantes no estudo e no projeto deste tipo de sistema, incluindo uma discussão sobre

Page 79: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 63

as características harmônicas da corrente sintetizada pelo inversor.

A simulação computacional da topologia, que confere consistência aos resultados

teóricos, será apresentada para cada modo de operação. De modo a reproduzir com maior

fidelidade o comportamento da topologia em sistemas fotovoltaicos, estas simulações

empregarão um modelo matemático de painel PV, adequado para utilização em simulação

de circuitos elétricos.

Grande parte dos conceitos exibidos neste capítulo foram apresentados, de uma

forma sintética, no “VII Congresso Brasileiro de Eletrônica de Potência (COBEP’2003)”

[65].

4.1 – O Inversor Boost MNC 2 Células

A idealização de uma nova topologia de inversor multinível em corrente surge com

a combinação das características de um conversor CC-CC boost MNC 2 células e de um

inversor CSI, conforme ilustrado na Fig. 4.1. Um inversor CSI necessita de uma fonte de

corrente constante, “firme”, no seu lado CC, de modo a permitir sua operação

convencional. Com suas chaves (e diodos) conduzindo alternadamente, a tensão senoidal

existente entre os pontos 1T e 2T é vista como retificada em seu lado CC, ou seja, entre

os pontos +C e −C (Fig. 4.1(b)). Na entrada do conversor CC-CC boost MNC também é

necessária uma fonte de corrente “firme”, para garantir sua operação em modo de

condução contínua, (CCM, do inglês continuous conduction mode). Já na sua saída a corrente

pode ser composta por degraus, assumindo até três níveis e a tensão entre os pontos P e

A é, geralmente, constante (Fig. 4.1(a)). Ao realizar a conexão destas duas topologias em

cascata, ligando os pontos P e A aos pontos +C e −C , respectivamente, dá-se origem

ao inversor boost MNC 2 células (Fig. 4.1(c)). Dois elementos das topologias originais são

excluídos: a fonte de tensão “ oV ” e a fonte de corrente “ ccI ”. Isso se deve ao fato de que,

nesta nova topologia, o inversor CSI se comporta, no ponto de vista do conversor boost

MNC, como uma fonte de tensão, cuja forma de onda é uma senóide retificada. Já o

conversor boost MNC se comporta, no ponto de vista do inversor CSI, como uma fonte de

corrente, só que agora composta por degraus, com forma de onda multinível. Assim é

Page 80: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 64

possível, com simplicidade, o ajuste ou a minimização do conteúdo harmônico da corrente

sintetizada na saída do inversor, que pode assumir até cinco níveis.

S2S1Ii

LbVo

D1 D2

C

A

P

2 Células MNCC+

C_

T1 T2

vC+C-

vPA

io

S2S1Ii

Lb

D1 D2

C

vo

io

isT1 T2

P=C+

A=C_

(a)

vs

S1H

S2L

S2H

S1L

vs

S1H

S2L

S2H

S1L

Icc

Fig. 4.1 – Idealização do inversor boost MNC 2 células: (a) Conversor boost MNC 2 células; (b) inversor CSI; (c) inversor boost MNC 2 células.

A aplicação desta nova topologia a um sistema fotovoltaico monofásico conectado

à rede de energia elétrica é exibida na Fig. 4.2. A fonte de corrente, na entrada do

conversor boost MNC, é composta por um arranjo de painéis fotovoltaicos conectado a um

filtro indutivo, o indutor de entrada iL , que alimenta o circuito através do ponto comum

da célula MNC. Adicionalmente, um capacitor, PVC , é inserido entre os painéis PV e o

indutor de entrada, proporcionando um desacoplamento entre os painéis e a rede elétrica.

Assim, é possível uma diminuição na ondulação (ou ripple) de tensão e, conseqüentemente,

na ondulação de corrente nos terminais do arranjo fotovoltaico. O valor da capacitância

deste componente pode ser reduzido com o ônus de um aumento na ondulação de tensão

nos painéis. É interessante salientar que este capacitor não é necessário para o correto

funcionamento da topologia, entretanto, seu uso permite uma operação mais estabilizada

dos painéis PV, facilitando a implementação de um sistema de rastreamento de seus

Page 81: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 65

pontos de máxima potência (sistema MPPT), capaz de otimizar o funcionamento de um

sistema PV [24] e [35]. A utilização deste capacitor possibilita, caso seja necessário,

desconectar os painéis PV do inversor (manutenção, por exemplo), sem a preocupação

com o risco de ocorrência de sobretensões (devido à interrupção abrupta de corrente no

indutor de entrada). Um diodo é inserido entre os painéis PV e o capacitor de entrada para

evitar que este se descarregue sobre o arranjo fotovoltaico, o que resultaria em perda de

energia. Este tipo de configuração é encontrado em várias topologias de sistema PV, como

pôde ser visto no Capítulo 2.

Fig. 4.2 – Sistema PV baseado no inversor boost MNC 2 células.

Praticamente toda a lógica responsável pela realização de uma modulação MNC ou

PWM senoidal MNC concentra-se no comando das chaves do conversor boost MNC, a

saber, 1S e 2S , que devem ser chaves autocomutadas (MOSFETs ou IGBTs, por

exemplo). As chaves da ponte inversora ( HS1 , LS1 , HS2 e LS2 ) são responsáveis apenas

pela inversão da polaridade da corrente de saída do inversor, de modo a ser injetada com a

mesma fase da tensão da rede. Caso estas chaves sejam unidirecionais em corrente

(tiristores, por exemplo), torna-se desnecessário o uso dos diodos conectados em série

com cada chave. As altas correntes nominais admissíveis em tiristores tornam a utilização

deste tipo de dispositivo muito interessante em aplicações de altas potências. Apesar da

possibilidade do uso de tiristores, pode-se optar pelo uso de chaves autocomutadas, a fim

de proporcionar maior flexibilidade e rapidez na desconexão entre o inversor e a rede

elétrica, no caso de falta ou operação do sistema elétrico fora da faixa recomendada

(tensão e freqüência) [29]. Para uma maior generalização do estudo desenvolvido neste

Page 82: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 66

capítulo, considerar-se-á o uso de chaves ideais unidirecionais em corrente (cf. Fig. 4.2) ao

invés de tiristores (como na Fig. 4.1), permitindo que a escolha do tipo de dispositivo

semicondutor empregado no circuito seja feita de acordo com a necessidade do sistema a

ser projetado.

Com as estratégias de chaveamento apresentadas a seguir, a corrente proveniente

dos painéis PV é dividida de forma equilibrada entre as chaves do conversor boost MNC,

permitindo o uso de chaves semicondutoras de corrente nominal reduzida. Mais ainda,

como essas estratégias de chaveamento empregam freqüências de comutação relativamente

baixas, podem ser utilizados componentes mais lentos, como IGBTs de primeira geração.

Essas características permitem, também, o emprego de componentes mais consolidados

no mercado, muitas vezes produzidos em larga escala, cujo custo geralmente é reduzido.

4.2 – Operação com Modulação Multinível em Corrente

O objetivo da operação multinível em corrente é, além de propiciar uma divisão

equilibrada da corrente total entre as chaves do conversor boost MNC, sintetizar uma forma

de onda multinível na corrente injetada na rede, por meio de chaveamento em baixa

freqüência, possibilitando o ajuste de seu conteúdo harmônico. De acordo com a

estratégia de chaveamento adotada pode-se operar com uma corrente de saída em três ou

cinco níveis2. Em ambos os casos, a freqüência de chaveamento das chaves do conversor

boost MNC, sf , é igual à freqüência fundamental da tensão ov , que é a tensão da rede

retificada. Assim,

ffs 2= , (4.1)

onde f é a freqüência de oscilação da tensão da rede elétrica.

2 Não se considera aqui o caso da operação com corrente de saída em dois níveis, onde as chaves do conversor boost MNC ficariam sempre bloqueadas, fazendo desnecessário o uso deste conversor. Neste caso,

Page 83: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 67

Escrevendo em termos de período,

2TTs = , (4.2)

com fT /1= .

Na composição de uma forma de onda são definidos alguns pontos, onde ocorrem

as transições de um nível para outro. Por conveniência, a referência a estes pontos é

muitas vezes feita por meio de ângulos elétricos, ao invés de instantes de tempo. Essa

abordagem é muito utilizada em retificadores controlados (ângulo de disparo) e inversores

comutados pela linha (ângulo de extinção). Deste modo, toda a análise da operação com

modulação multinível em corrente será desenvolvida utilizando uma abordagem angular,

com tω=θ , ao invés da escala de tempo, t . Algumas vezes pode ser necessária a

conversão entre esses dois sistemas, que pode ser realizada através da seguinte

transformação:

sTtπθ

=∆ θ , (4.3)

onde θ∆ t corresponde ao intervalo de tempo, em segundos, relacionado com o ângulo θ ,

dado em radianos. Deste modo, um período de oscilação da tensão da rede equivale a π2

rad. Por exemplo, para Hz 60=f , tem-se ms 33,8≈sT . Assim,

θ⋅⋅≈⋅⋅πθ

=∆ −−θ

33 1065,21033,8t . (4.4)

4.2.1 – Estratégia Três Níveis

Se o mesmo sinal é utilizado no comando das chaves 1S e 2S , a corrente

sintetizada pelo inversor possui forma de onda com três níveis. A Fig. 4.3 mostra os pulsos

de comando aplicados a todas as chaves para este tipo de operação e a forma de onda de

corrente, ideal, sintetizada na saída do inversor. Pode-se observar que a lógica de

acionamento das chaves 1S e 2S é inversa, ou seja, a corrente é injetada na rede quando

a operação seria idêntica a de um inversor comutado pela linha (LCI).

Page 84: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 68

essas chaves estão bloqueadas. Com esta estratégia de chaveamento é alcançada uma

divisão equilibrada da corrente total entre as chaves 1S e 2S e entre os diodos 1D e 2D .

O objetivo da apresentação deste modo de operação é puramente didático, visto

que a síntese de uma forma de onda de corrente com três níveis é possível com um

inversor CSI convencional, tornando desnecessária a utilização do conversor boost MNC

neste caso. Assim a operação em três níveis não é almejada neste trabalho, mas sim a

operação em cinco níveis.

Fig. 4.3 – Estratégia de comando para operação em três níveis.

4.2.2 – Estratégia Cinco Níveis

A síntese de uma forma de onda de corrente com cinco níveis na saída do inversor

é obtida com a estratégia de chaveamento ilustrada na Fig. 4.4. Neste caso, as chaves 1S e

2S são acionadas com pulsos de mesma duração, porém defasados de um ângulo φ .

Novamente pode-se observar a lógica inversa do comando destas chaves. A forma de

Page 85: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 69

onda da corrente de saída apresentada nesta figura é idealizada, caso onde o ramo de

entrada do circuito e o indutor de equilíbrio, bL , são considerados como fontes de

corrente ideais.

Fig. 4.4 – Estratégia de comando para operação em cinco níveis.

De modo a garantir uma operação em cinco níveis e a divisão equilibrada da

corrente entre as chaves do conversor boost MNC, os indutores de entrada e de equilíbrio

devem operar em modo de condução contínua. A ondulação da corrente nestes elementos

deve ser relativamente baixa para não desfigurar a forma de onda multinível,

comprometendo o seu conteúdo harmônico e a divisão equilibrada da corrente total do

circuito entre as chaves 1S e 2S . Para realizar o dimensionamento destes indutores, bem

como das chaves semicondutoras, é necessário o estudo dos estágios de operação da

topologia, desenvolvendo expressões matemáticas que representem o comportamento do

circuito.

Page 86: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 70

4.2.3 – Análise Matemática

Expressões matemáticas que relacionam as grandezas elétricas de um circuito

podem ser obtidas de uma forma simplificada através da consideração de algumas

condições idealizadas. Assim, na análise matemática do inversor boost MNC 2 células, serão

feitas algumas considerações, aproveitando também as características de simetria existentes

no funcionamento da topologia.

Primeiramente, considera-se que o sistema esteja operando em regime permanente

pulsado, modo de condução contínua (CCM), utilizando componentes ideais e uma

ondulação desprezível na corrente dos indutores.

Pode-se considerar que o circuito está sendo alimentado por uma fonte de tensão

constante ideal (com impedância de saída nula), referida como iV no circuito equivalente

da Fig. 4.5. Esta aproximação é perfeitamente aceitável e justificável, visto que o capacitor

de entrada, PVC , deve ser um elemento capaz de armazenar energia suficiente para

realizar o desacoplamento entre a tensão dos painéis PV e a tensão da rede elétrica, tendo

características semelhantes a de uma fonte de tensão real.

A análise pode ser realizada do ponto de vista do conversor CC-CC boost MNC,

devido à simetria de sua operação em relação aos semiciclos da tensão da rede elétrica,

permitindo a definição dos estágios de operação da topologia para apenas um destes

semiciclos, conforme ilustrado na Fig. 4.6. Adicionalmente, a fonte de tensão senoidal (que

representa a rede elétrica) pode ser “refletida” para o lado CC do sistema, passando a ser

representada como uma fonte de tensão senoidal retificada ideal (com impedância de saída

nula), referida como ov no circuito equivalente da Fig. 4.5, onde as chaves que compõem

a ponte inversora foram consideradas autocomutadas e unidirecionais em corrente. Sendo

V o valor eficaz da tensão da rede elétrica e fπ=ω 2 sua freqüência angular, tem-se:

( ) ( )tVtvo ω= sen2 . (4.5)

Finalmente, considera-se que as correntes que fluem através do indutor de entrada,

iL , e do indutor de equilíbrio, bL , são iguais a I e 2/I , respectivamente.

Page 87: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 71

Fig. 4.5 – Circuito equivalente do inversor boost MNC 2 células.

Fig. 4.6 – Divisão dos estágios de operação do inversor boost MNC 2 células.

Do circuito da Fig. 4.5 podem ser extraídas, com a simples aplicação das leis de

Kirchhoff, algumas relações que são muito úteis para a descrição do funcionamento do

sistema, a saber: tensão nos indutores (de entrada e de equilíbrio) e corrente de saída. Com

o conhecimento das tensões nos indutores é possível obter, de forma simples, expressões

matemáticas para a realização do dimensionamento destes componentes, o que será

apresentado mais adiante. Essas relações são válidas para todos os estágios de operação do

sistema e são apresentadas pelas equações (4.6), (4.7) e (4.8), respectivamente.

1SiLi vVv −= (4.6)

21 SSLb vvv −= (4.7)

Page 88: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 72

21 DDo iii += (4.8)

Os estágios de operação, conforme descritos na Fig. 4.6, são analisados a seguir.

ESTÁGIO I

q 1S e 2S em condução;

q Início: 0=θ ; Término: α=θ ;

q Duração: α=θ∆ .

Neste estágio, com as chaves 1S e 2S em estado de condução, a tensão senoidal

retificada, da fonte ov , polariza reversamente os diodos 1D e 2D . Assim a corrente na

saída do conversor boost MNC é nula. O circuito equivalente para o estágio I é apresentado

na Fig. 4.7. A Tabela 4.1 traz os valores das principais tensões e correntes do circuito neste

estágio. Estes valores serão muito importantes para a obtenção das formas de onda

teóricas do sistema.

Fig. 4.7 – Circuito equivalente para o estágio I.

Tabela 4.1 – Valores das principais tensões e correntes do circuito (estágio I).

01 =Sv 21I

Si = 01 =Di

02 =Sv 22I

Si = 02 =Di

iLi Vv = 0=Lbv 0=oi

Page 89: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 73

ESTÁGIO II

q 1S bloqueada e 2S em condução;

q Início: α=θ ; Término: φ+α=θ ;

q Duração: φ=θ∆ .

Quando a chave 1S é bloqueada, o diodo 1D entra em livre circulação (ou free-

wheeling), conduzindo metade da corrente do indutor de entrada. A tensão na chave 1S

passa a ser igual à tensão senoidal retificada da fonte ov . Como a chave 2S continua em

condução, o diodo 2D permanece reversamente polarizado. Assim, a corrente na saída do

conversor boost MNC é igual a I /2. Durante este estágio, a tensão da fonte ov aparece

sobre o indutor de equilíbrio. Deste modo, a tensão sobre este elemento varia de

)(sen2 αV a )(sen2 φ+αV neste intervalo. O circuito equivalente para o estágio II é

mostrado na Fig. 4.8 e os valores das principais tensões e correntes do circuito são

apresentados na Tabela 4.2.

Fig. 4.8 – Circuito equivalente para o estágio II.

Tabela 4.2 – Valores das principais tensões e correntes do circuito (estágio II).

oS vv =1 01 =Si 21I

Di =

02 =Sv 22I

Si = 02 =Di

oiLi vVv −= oLb vv = 2I

oi =

Page 90: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 74

ESTÁGIO III

q 1S e 2S bloqueadas;

q Início: φ+α=θ ; Término: φ−α−π=θ ;

q Duração: )( φ+α−π=θ∆ 22 .

Com o bloqueio da chave 2S , o diodo 2D fica em série com o indutor de

equilíbrio e entra em livre circulação. Neste estágio, o diodo 1D também se encontra

conduzindo em livre circulação, pois 1S continua bloqueada. Assim, a corrente de saída

assume seu valor máximo, ou seja, I . A tensão sobre ambas as chaves é igual à tensão da

fonte ov , que atinge seu valor máximo, igual a V2 , valor de pico da tensão da rede, em

2/π=θ . Neste instante a tensão sobre o indutor de entrada assume seu valor mínimo,

que é igual a VVi 2− . A Fig. 4.9 mostra o circuito equivalente para o estágio III e os

valores de suas principais tensões e correntes são apresentados na Tabela 4.3.

Fig. 4.9 – Circuito equivalente para o estágio III.

Tabela 4.3 – Valores das principais tensões e correntes do circuito (estágio III).

oS vv =1 01 =Si 21I

Di =

oS vv =2 02 =Si 22I

Di =

oiLi vVv −= 0=Lbv Iio =

Page 91: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 75

ESTÁGIO IV

q 1S em condução e 2S bloqueada;

q Início: φ−α−π=θ ; Término: α−π=θ ;

q Duração: φ=θ∆ .

Neste estágio, a chave 1S entra em condução e assume a corrente que fluía através

do diodo 1D (que se encontra reversamente polarizado pela tensão da fonte ov ). Como a

chave 2S continua bloqueada, o diodo 2D permanece conectado em série com o indutor

de equilíbrio, continuando em livre circulação. Deste modo, a corrente na saída do

conversor boost MNC é igual a I /2. A tensão sobre o indutor de equilíbrio tem o

comportamento simétrico ao seu comportamento durante o estágio II, ou seja, varia de

)(sen2 φ+α− V a )(sen2 α− V . O circuito equivalente para o estágio IV é mostrado

na Fig. 4.10 e os valores das principais tensões e correntes do circuito são apresentados na

Tabela 4.4.

Fig. 4.10 – Circuito equivalente para o estágio IV.

Tabela 4.4 – Valores das principais tensões e correntes do circuito (estágio IV).

01 =Sv 21I

Si = 01 =Di

oS vv =2 02 =Si 22I

Di =

iLi Vv = oLb vv −= 2I

oi =

Page 92: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 76

ESTÁGIO V

q 1S e 2S em condução;

q Início: α−π=θ ; Término: π=θ ;

q Duração: α=θ∆ .

Quando 2S é acionada novamente, ela passa a assumir toda a corrente que fluía

através do diodo 2D . Como 1S também está em condução, a corrente de saída passa a ser

nula. Este estágio de operação é idêntico ao estágio I, sendo representado pelo mesmo

circuito equivalente, mostrado na Fig. 4.7. Os valores das principais tensões e correntes são

os mesmos apresentados na Tabela 4.4.

Do ponto de vista do conversor CC-CC boost MNC, acionando as chaves da

ponte inversora da forma exibida na Fig. 4.4, não há diferença entre os semiciclos positivo

e negativo da tensão da rede. Deste modo, estes estágios de operação se repetem, de

forma idêntica, no semiciclo negativo da tensão da rede.

Conhecendo o comportamento do circuito em cada estágio de operação, é possível

esboçar as formas de onda idealizadas de suas das principais tensões e correntes, conforme

mostra a Fig. 4.11.

Mantendo as chaves HS1 e LS2 acionadas durante o semiciclo positivo da tensão

da rede elétrica e as chaves HS2 e LS1 durante o semiciclo negativo, obtém-se uma

corrente em cinco níveis, em fase com a tensão, na saída do inversor. As formas de onda

do sistema, do ponto de vista da ponte inversora, são apresentadas na Fig. 4.12.

Com o conhecimento das formas de onda das principais tensões e corrente do

sistema é possível desenvolver expressões matemáticas importantes para o

dimensionamento dos componentes do inversor boost MNC e definição de sua operação, o

que será exposto nas seções a seguir.

Page 93: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 77

Fig. 4.11 – Formas de onda idealizadas das principais tensões e correntes do inversor boost

MNC 2 células.

Page 94: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 78

Fig. 4.12 – Principais formas de onda (ponto de vista da ponte inversora).

Page 95: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 79

4.2.3.1 – Limiar de Inversão

Define-se como limiar de inversão o menor valor da tensão de entrada, iV ,

necessário para que o sistema opere como um inversor, injetando energia na rede elétrica.

Este parâmetro influi diretamente no dimensionamento de um sistema fotovoltaico, pois

define quantos painéis PV deverão ser conectados em série de modo a garantir a operação

correta do sistema. Considere o circuito da Fig. 4.13(a), onde é mostrada a etapa de

entrada do inversor boost MNC duas células. Para que o sistema seja capaz de operar como

um inversor é necessário haver fluxo de corrente entrando no nó C (ponto comum da

célula MNC), ou seja, a corrente ii deve fluir da fonte iV para o indutor iL .

S1

D1Li

Vi

ii

vS1VLi

rLi

C

Vi

Ii

VS1

rLi

(a) (b) Fig. 4.13 – Etapa de entrada do inversor boost MNC:

(a) Circuito real; (b) Circuito equivalente CC.

O limiar de inversão pode ser determinado pela análise do circuito equivalente CC

da etapa de entrada do inversor boost MNC, exibido na Fig. 4.13(b). Neste caso, a

resistência série dos fios do indutor de entrada, designada por Lir , deve ser levada em

consideração, de modo a evitar a violação da lei das tensões de Kirchhoff. Isto se deve ao

fato de um indutor comportar-se como um curto-circuito em CC, o que implicaria na

conexão de duas fontes de tensão, de valores diferentes, em paralelo. Com efeito, esta

resistência, é responsável pela limitação e, portanto, pela definição do valor da corrente de

entrada do sistema, dados a tensão de entrada e o valor médio da tensão na chave 1S

( 1SV ).

Aplicando a lei das tensões de Kirchhoff no circuito da Fig. 4.13(b), tem-se:

Page 96: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 80

1SiLii VIrV +⋅= , (4.9)

ou

Li

Sii r

VVI 1−= . (4.10)

De (4.10) pode-se observar que a corrente no indutor iL fluirá no sentido

desejado, ou seja, será positiva, quando:

1Si VV > . (4.11)

O valor médio da tensão na chave 1S pode ser facilmente calculado, já que sua

forma de onda é conhecida e de simples representação matemática. Esta forma de onda

foi exibida na Fig. 4.11 e é repetida na Fig. 4.14, sendo expressa, em um período de

chaveamento, por:

( )( )

φ−α−π<θ≤αθ

π<θ≤φ−α−πα<θ≤=θ

.;sen2

;ou0;01 V

vS (4.12)

Fig. 4.14 – Forma de onda da tensão na chave 1S .

Deste modo,

( ) ( ) ( ) ( )[ ]φ−α−π−απ

=θθπ

=θθπ

= ∫∫φ−−π

α

πcoscos

2sen211

0 11V

dVdvVa

SS .

Page 97: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 81

Logo,

( ) ( )[ ]φ+α+απ

= coscos2

1V

VS . (4.13)

De (4.11) e (4.13) conclui-se que, para o sistema se comportar como um inversor,

deve-se ter:

( ) ( )[ ]φ+α+απ

> coscos2V

Vi . (4.14)

Com o conhecimento da tensão de entrada, da resistência série do indutor iL e

dos ângulos α e φ , pode-se calcular o valor da corrente do patamar superior da forma de

onda multinível, I . De (4.10) e (4.13),

( ) ( )[ ]

Li

i

r

VV

Iφ+α+α

π−

=coscos

2

(4.15)

4.2.3.2 – Dimensionamento dos Indutores

Na análise desenvolvida até aqui, sempre foi considerado que os indutores de

entrada e de equilíbrio se comportam como fontes de corrente CC ideais, ou seja, sem

ondulação de corrente. Entretanto, tratando-se de elementos reais, sempre haverá alguma

ondulação de corrente, oriunda dos processos de carga e descarga destes elementos

durante os estágios de operação do circuito. Quanto maior o valor de cada indutor, menor

será a ondulação de corrente e as formas de onda se aproximarão de formas de onda

ideais. Porém, a obtenção de indutores com altos valores de indutância esbarra em

limitações tecnológicas atuais. Fatores como volume, peso e custo podem tornar inviável a

realização de um projeto. Portanto, deve-se admitir uma certa ondulação que não degrade

a operação multinível em corrente e possibilite a utilização de indutores que tornem viável

a implementação do projeto. Assim, o dimensionamento dos indutores de entrada e de

equilíbrio constitui parte importante no projeto do inversor boost MNC.

Page 98: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 82

4.2.3.2.1 – Indutor de Entrada

Sabe-se que a tensão e a corrente no indutor de entrada se relacionam por

dtdiLv i

iLi = . (4.16)

Esta expressão pode ser linearizada, simplificando os cálculos, sem introduzir

grandes erros no dimensionamento deste indutor. Considerando que a corrente no indutor

de entrada varie linearmente, conforme mostra a Fig. 4.15, pode-se escrever

tiLV i

iLi ∆∆

≈ , (4.17)

onde ii∆ é a máxima ondulação de corrente admitida no indutor de entrada. O parâmetro

t∆ é uma função dos ângulos elétricos α e φ e representa o intervalo de tempo em que

ocorre essa ondulação de corrente (dado em segundos). LiV é o valor médio da tensão

sobre o indutor de entrada durante o intervalo de tempo t∆ .

Fig. 4.15 – Tensão e corrente (linearizada) no indutor de entrada.

Page 99: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 83

Rearranjando (4.17) tem-se:

tVLii

Lii ∆

∆= . (4.18)

Da Fig. 4.15 pode-se observar que, no intervalo entre φ−α−π=θ e α+π=θ , a

corrente no indutor de entrada possui uma variação igual a ii∆ . Observa-se, também, que

a tensão sobre iL é constante e igual à tensão de entrada, iV , durante este intervalo.

Assim,

( ) ( )ω

φ+α⋅

∆=

ωφ−α−π−α+π

⋅∆

=2

i

i

i

ii i

Vi

VL .

Portanto,

( )

i

ii if

VL∆π

φ+α=

22

. (4.19)

A ondulação de corrente pode ser expresso em porcentagem da corrente CC no

indutor de entrada, ou seja,

100%

⋅∆

=∆Ii

i ii . (4.20)

A partir de (4.20), pode-se reescrever (4.19) como:

( )

%

250i

ii iIf

VL∆π

φ+α⋅= . (4.21)

Page 100: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 84

4.2.3.2.2 – Indutor de Equilíbrio

A expressão utilizada para dimensionar o indutor de equilíbrio pode ser obtida de

forma análoga à adotada para o indutor de entrada. Adaptando (4.18), tem-se:

tVLbi

Lbb ∆

∆= . (4.22)

Neste caso, a corrente no indutor de equilíbrio tem uma variação de bi∆ entre α

e φ+α , o que pode ser visto na Fig. 4.16. Deste modo o intervalo de tempo t∆ é igual a

ωφ/ . O valor da tensão média em bL neste intervalo é dado por:

( ) ( ) θθφ

=θθφ

= ∫∫φ+α

α

φ+α

αdVdvV LbLb sen211

( ) ( )[ ]φ+α−αφ

= coscos2 V

VLb (4.23)

Fig. 4.16 – Tensão e corrente (linearizada) no indutor de equilíbrio.

Assim, pode-se escrever (4.22) como:

( ) ( )[ ] ( ) ( )[ ]φ+α−α∆π

=ωφ

⋅φ+α−α∆⋅φ

= coscos2

2coscos

2

bb iib f

VVL . (4.24)

Page 101: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 85

Neste caso também se pode expressar a ondulação de corrente em porcentagem da

corrente CC neste indutor. Assim,

1002/%

⋅∆

=∆I

ii bb . (4.25)

A partir de (4.25), pode-se reescrever (4.24) como:

( ) ( )[ ]φ+α−α∆⋅⋅⋅π

= coscos2100

%bib If

VL . (4.26)

4.2.3.3 – Dimensionamento dos Dispositivos Semicondutores

A seleção de chaves semicondutoras e diodos é realizada de modo a conciliar as

características elétricas requeridas pelo sistema às características elétricas suportadas por

estes dispositivos.

A especificação das chaves semicondutoras, dependendo da tecnologia empregada,

é baseada nos valores médio e de pico, ou nos valores eficaz (rms, do inglês root mean

square) e de pico, de corrente que este dispositivo é capaz de conduzir. Leva-se em

consideração, também, a tensão máxima que a chave suporta quando está em estado de

bloqueio. A faixa de freqüência de operação do dispositivo é também outro fator

importante. Quanto à seleção do tipo de chave semicondutora a ser empregada, considera-

se a discussão da seção 4.1.

Já para os diodos, o projeto é feito com base nos valores médio e de pico de

corrente e na máxima tensão reversa suportados pelo dispositivo. Deve-se observar,

também, a faixa de freqüência na qual o componente é capaz de operar.

É interessante salientar que, no caso da operação com modulação MNC, com

chaveamento em baixa freqüência, é possível a utilização de dispositivos “lentos”, como

IGBTs de primeira geração e diodos retificadores, que são componentes de mais baixo

custo.

Page 102: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 86

4.2.3.3.1 – Chaves Semicondutoras

Como pode ser observado na Fig. 4.11, para um caso idealizado, as correntes nas

chaves 1S e 2S possuem formas de onda defasadas no tempo, porém idênticas. Isso

permite que a análise e as expressões desenvolvidas para a chave 1S também possam ser

aplicadas para a chave 2S . Cabe ressaltar que, numa situação real, essas formas de onda

não são idênticas, pois cada chave assume a ondulação de corrente do indutor conectado

ao ponto comum de sua respectiva célula de comutação, o que faz com que seus valores de

pico sejam diferentes. No entanto, pode-se considerar a análise baseada numa situação

ideal válida, pois a divergência entre as formas de onda de corrente das chaves de um

conversor MNC geralmente é discreta, com seus valores médios iguais. O mesmo se aplica

para valores rms. Além disso, é muito comum a especificação de chaves com capacidade

de corrente ligeiramente superior à exigida em um determinado projeto, de modo a

aumentar sua confiabilidade. De acordo com o exposto, as expressões desenvolvidas para

1S , com base em suas formas de onda de tensão e de corrente idealizadas (Fig. 4.17) serão

consideradas válidas também para 2S .

Fig. 4.17 – Formas de onda de tensão e corrente idealizadas para 1S .

Na Fig. 4.17 pode-se observar que a maior tensão que 1S deve ser capaz de

suportar quando está bloqueada é igual a V2 , valor de pico da tensão senoidal da rede

elétrica. O valor médio da corrente em 1S pode ser calculado por:

Page 103: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 87

( ) ( ) IdiI SSπ

φ+α=θθ

π= ∫

π

2

210 11 . (4.27)

Já o valor eficaz da corrente nesta chave é dado por:

( ) ( )[ ]

π

φ+α⋅=θθ

π= ∫

π 2

2

1 2

0 11IdiI SS rms . (4.28)

As chaves da ponte inversora ( HS1 , LS1 , HS2 e LS2 ) são percorridas por

correntes com formas de onda idênticas, com defasagem de π rad para chaves de um

mesmo braço, como pode ser visto na Fig. 4.12. Esta afirmação é válida tanto para um

caso ideal quanto para um caso real. Deste modo, todas as chaves podem ser especificadas

utilizando as expressões desenvolvidas para a chave HS1 , cujas formas de onda de tensão

e corrente idealizadas são mostradas na Fig. 4.18.

Fig. 4.18 – Formas de onda de tensão e corrente idealizadas para HS1 .

As chaves da ponte inversora devem ser capazes de suportar, quando bloqueadas,

ao valor de pico da tensão da rede elétrica, ou seja, V2 . O valor médio da corrente em

HS1 é dado por:

Page 104: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 88

( )

θ+θ+θ

π=θθ

π= ∫∫∫∫

α−πφ−α−π

φ−α−πφ+α

φ+αα

πddIddiI II

HSHS 2220 11 2

121 . (4.29)

Cuja solução resulta em:

( )φ−α−ππ

= 221II HS . (4.30)

O valor eficaz da corrente em HS1 é calculado por:

( ) ( )[ ]

θ+θ+θ

π=θθ

π= ∫∫∫∫

α−π

φ−α−π

φ−α−π

φ+α

φ+α

α

πddIddiI II

HSHS rms 4

2

4

220 11

22

21

21

(4.31)

Cuja solução é dada por:

( ) πφ−α−π

=342

21I

I rmsHS . (4.32)

4.2.3.3.2 – Diodos

Uma metodologia análoga à utilizada para as chaves pode ser adotada para

determinar a corrente média e a tensão reversa em cada diodo do circuito.

As características dos diodos do conversor boost MNC podem ser determinadas a

partir da análise das formas de onda da Fig. 4.19. As considerações apresentadas para 1D

são válidas, também, para 2D .

Do circuito da Fig. 4.5, pela lei das tensões de Kirchhoff, pode-se escrever:

oSD vvv −= 11 (4.33)

O pico da tensão reversa sobre o diodo 1D ocorre em φ−α−π=θ . Neste

ângulo elétrico ocorre a transição do estágio III para o estágio IV. Assim, a tensão sobre

Page 105: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 89

1S é nula (está em condução) e ( )φ+α= sen2Vvo . Com estes valores e, a partir de

(4.33), conclui-se que o diodo 1D deve ser capaz de suportar uma tensão reversa igual a

( )φ+αsen2 V .

Fig. 4.19 – Tensões e corrente idealizadas utilizadas para determinar as expressões de

dimensionamento dos diodos 1D e 2D .

A corrente média em 1D é dada por:

( ) ( ) IddiI IDD

π

φ−α−π=θ

π=θθ

π= ∫∫

φ−α−π

α

π

2

21120 11 . (4.34)

No caso do uso de diodos, conectados em série com HS1 , LS1 , HS2 e LS2 , na

implementação das chaves unidirecionais em corrente na ponte inversora, estes podem ser

Page 106: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 90

dimensionados pela corrente média dada por (4.30). Como estes diodos são conectados

diretamente à rede elétrica, devem ser capazes de suportar o valor de pico da tensão CA,

igual V2 , quando polarizados reversamente.

4.2.3.4 – Minimização do Conteúdo Harmônico

A forma de onda de corrente sintetizada pelo inversor boost MNC pode ser

formada por até cinco diferentes níveis (ou patamares), definidos pelos ângulos α e φ ,

como pode ser visto na Fig. 4.20. Estes patamares são I− , 2/I− , 0, 2/I e I . Os

ângulos α e φ+α=γ são denominados ângulos de transição. De acordo com os

valores atribuídos a estes ângulos, a “aparência” da forma de onda cinco níveis é alterada.

Isto significa que as características harmônicas e o valor eficaz da forma de onda também

variam. Assim, com a escolha dos ângulos de transição convenientes, pode-se ajustar o

conteúdo harmônico para que se enquadre dentro de certas características desejadas. Pode-

se, por exemplo, eliminar uma determinada componente harmônica da corrente ou

minimizar a sua distorção harmônica [51] e [52]. No caso em questão deseja-se minimizar

o conteúdo harmônico da corrente injetada na rede, o que permite maximizar o fator de

potência do sistema fotovoltaico.

Fig. 4.20 – Forma de onda cinco níveis e seus ângulos de transição.

A figura de mérito utilizada para quantizar a distorção harmônica de uma forma de

onda é a taxa de distorção harmônica3 (ou distorção harmônica total, THD, do inglês total

harmonic distortion) [66]. Para a forma de onda da Fig. 4.20 tem-se:

3 Vj. definições apresentadas no Apêndice B.

Page 107: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 91

121

2

)(

)( −=

rms

rms

I

ITHD

S, (4.35)

onde )(rmssI é o valor eficaz da forma de onda de corrente cinco níveis e

)(1 rmsI é o

valor eficaz de sua componente fundamental.

Para a minimização da THD da corrente sintetizada pelo sistema é necessário

expressar (4.35) em função dos ângulos α e φ . A simetria da forma de corrente da

Fig. 4.20 simplifica consideravelmente o cálculo de seu valor eficaz:

( ) ( ) ( ) ( )

θ+θ

π=θθ⋅

π=θθ

π= ∫∫∫∫

ππ

γ

γ

α

π 22)(

22

220

220

2 2421

21 dddidiI II

sss rms,

(4.36)

que resulta em:

( )γ3−α−π⋅π

= 221

)(II

rmss . (4.37)

Com φ+α=γ , (4.37) pode ser reescrita como

( )φ−α−π⋅π

= 34221

)(II

rmss . (4.38)

O valor eficaz da componente fundamental da corrente da Fig. 4.20 pode ser

obtido através da expansão de si em série de Fourier. Embora, para a otimização do

conteúdo harmônico de si , seja necessário desenvolver apenas o primeiro termo de sua

série de Fourier, apresenta-se aqui o desenvolvimento do termo geral da série, que pode

ser muito útil em trabalhos futuros. Deste modo, a série de Fourier da corrente si é dada

por:

Page 108: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 92

( ) ( ) ( )[ ]∑∞

=θ+θ+=θ

1

0 sencos2 h

hhs hbhaai , (4.39)

onde,

( ) ( ) θθθ

π= ∫

πdia sh

20

cos1 , (4.40)

( ,...2,1,0=h )

e

( ) ( ) θθθ

π= ∫

πdib sh sen1 2

0, (4.41)

( ,...3,2,1=h )

O valor eficaz da h -ésima componente harmônica de si é dado por:

( ) 2

22hh

hba

Irms

+= (4.42)

A forma de onda de si possui simetria ímpar, quarto de onda [66]. Assim, (4.40) e

(4.41) podem ser reescritas como (4.43) e (4.44), respectivamente.

0=ha (4.43)

e

( ) ( )

θθθπ= ∫

π

par;0

ímpar;sen4 20h

hdib sh (4.44)

Desenvolvendo (4.44) para h ímpar, tem-se:

( ) ( ) ( ) ( )[ ]γ+απ

=

θθ+θθ

π= ∫∫

π

γ

γ

αhh

hI

dhIdhb Ih coscos

2sensen4 2

2 (4.45)

Como φ+α=γ , tem-se

( ) ( )[ ] φ+α+απ

= hhhIbh coscos2

. (4.46)

( ,...5,3,1=h )

Page 109: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 93

Substituindo (4.43) e (4.46) em (4.42) chega-se a:

( ) ( ) ( )[ ] φ+α+απ

= hhh

II rmsh coscos

2. (4.47)

( ,...5,3,1=h )

O valor eficaz da componente fundamental de si pode ser obtido através de

(4.47), para 1=h . Logo,

( ) ( ) ( )[ ]φ+α+απ

= coscos2

1I

I rms . (4.48)

Com a substituição de (4.38) e (4.48) em (4.35), obtém-se a expressão exata para

cálculo da THD da forma de onda de corrente da Fig. 4.20:

( )( ) ( )[ ]

1coscos4

3422 −

φ+α+α

φ−α−ππ=THD . (4.49)

A partir de (4.49) pode-se determinar os ângulos α e φ ótimos, que levam a uma

THD mínima. A minimização de (4.49) é uma tarefa árdua, se realizada analiticamente. No

entanto, uma solução numérica pode ser obtida de forma simples, utilizando o algoritmo

apresentado na Fig. 4.21, de forma semelhante à abordagem empregada em [52]. Neste

algoritmo, é mais conveniente utilizar os ângulos de transição, substituindo φ+α por γ .

Assim, (4.49) pode ser reescrita como:

( )

( ) ( )[ ]1

coscos432

2 −γ+α

γ−α−ππ=THD . (4.50)

Page 110: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 94

radTHDotim

otim

otim

0001,01000

00

0

=θ∆==γ

=γ=α

?2π

≥α

otim

otim

otim

THDφα

otimotimotim α−γ=φ

?otimTHDTHD <

?2

α−π

≥γ

THDTHDotim

otim

otim

=γ=γα=α

θ∆+γ=γ

θ∆+α=α

( )( ) ( )[ ]

1coscos4

322 −

γ+α

γ−α−ππ=THD

Fig. 4.21 – Algoritmo para determinação dos ângulos α e φ ótimos.

Com o objetivo de determinar os ângulos ótimos com precisão de centésimos de

grau, utilizou-se um passo de cálculo 0001,0=θ∆ rad no processamento do algoritmo da

Fig. 4.21. Os valores ótimos obtidos são apresentados na Tabela 4.5.

Page 111: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 95

Tabela 4.5 – Otimização do conteúdo harmônico de uma forma de onda cinco níveis.

otimα 12,85°

otimφ 28,99°

otimTHD 16,421%

Cabe ressaltar que estes valores se referem a uma forma de onda ideal. Em um

caso real, existe uma certa ondulação de corrente, que aparece em cada patamar devido à

ondulação de corrente nos indutores do circuito. Considerando que o projeto seja

desenvolvido de modo a garantir uma ondulação aceitável na corrente destes elementos,

estes resultados são uma boa aproximação de uma situação real. Ainda em um caso real, a

transição de um nível para outro ocorre de modo menos abrupto, devido às características

da chave semicondutora utilizada e das indutâncias parasitas do circuito. Isto permite obter

uma taxa de distorção harmônica ligeiramente menor que a calculada teoricamente. Em

[52] a THD obtida experimentalmente foi igual a 15,29%, para °=α 6,12 e °=φ 8,26 .

A partir de (4.48), considerando que o fator de deslocamento na operação com

modulação MNC é unitário e com ( )tfsenVvs π= 22 , pode-se determinar a potência

ativa injetada na rede, oP :

( ) ( )[ ]φ+α+απ

= coscos2 IV

Po . (4.51)

4.2.4 – Simulação do Inversor Boost MNC

A validação dos conceitos descritos até aqui pode ser realizada por meio da

simulação computacional da topologia proposta. O circuito da Fig. 4.2 foi modelado e

simulado utilizando o software PSpice. A modelagem dos painéis fotovoltaicos, a seleção

dos componentes do circuito e formas de onda simuladas são apresentada nesta seção.

Page 112: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 96

4.2.4.1 – Modelo dos Painéis Fotovoltaicos

A fim de obter maior fidelidade na simulação computacional da aplicação do

inversor boost MNC a sistemas fotovoltaicos, foi implementado, para o software PSpice®,

um modelo para painéis fotovoltaicos. A modelagem foi realizada tendo como base o

circuito equivalente de um painel PV, apresentado na Fig. 1.14 [24]. Este circuito

equivalente é repetido na Fig. 4.22, facilitando o entendimento do texto.

Fig. 4.22 – Circuito equivalente de um painel fotovoltaico.

O painel fotovoltaico escolhido para ser modelado foi o BP SX-120 [25], fabricado

pela BP Solar, pois é o painel PV disponível no Laboratório de Sistemas Eletrônicos

(LABSEL) da UFJF e utilizado na montagem do protótipo do sistema proposto, que será

apresentado no Capítulo 5. Suas especificações são apresentadas na Tabela 4.6.

Na modelagem do painel fotovoltaico foi considerada uma irradiação incidente de

1000 W/m² e uma temperatura das células de 25 °C, conforme os dados fornecidos em

sua folha de dados. A definição dos parâmetros do circuito equivalente do painel

fotovoltaico foi realizada de forma empírica. No software de simulação computacional de

circuitos elétricos PSpice, o ajuste do valor da tensão de joelho ( jV ) de seu modelo de

diodo genérico (Dbreak) é restrito. Pode-se ter, no máximo, V10=jV . Assim, foram

utilizados dois diodos do tipo “Dbreak” conectados em série para implementação do

diodo shD , de modo a possibilitar o ajuste dos parâmetros deste tipo de modelo de diodo

de acordo com as características requeridas na modelagem do painel PV. Na Fig. 4.23 é

apresentado o modelo desenvolvido para o painel fotovoltaico em questão (circuito

equivalente, incluindo valores dos componentes e parâmetros dos modelos). As curvas

características modeladas são exibidas na Fig. 4.24. Na Tabela 4.6 é realizada a comparação

dos parâmetros obtidos por simulação com as especificações do painel fornecidas pela BP

Solar [25].

Page 113: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 97

Fig. 4.23 – Modelo do painel PV BP SX-120 (circuito equivalente).

(a) (b)

Fig. 4.24 – Curvas características do painel PV BP SX-120 (modelo). (a) corrente-tensão; (b) potência-tensão.

Tabela 4.6 – Comparação entre os parâmetros obtidos com o modelo desenvolvido e os fornecidos na folha de dados do painel PV BP SX-120 (1 kW/m²; 25 °C).

Parâmetro Folha de dados [25] Modelo Erro relativo (%)

ocV 42,1 V 42,343 V 0,5772

scI 3,87 A 3,867 A 0,0775

mP 120 W 118,02 W 1,6499

mpV 33,7 V 34,774 V 3,1869

mpI 3,56 A 3,416 A 4,0449

Page 114: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 98

4.2.4.2 – Seleção dos Componentes do Circuito

Nesta seção serão dimensionados os indutores do inversor boost MNC 2 células e

definido o arranjo fotovoltaico a ser utilizado na simulação, com base nas expressões

matemáticas desenvolvidas na seção 4.2.3. A seleção dos componentes do circuito para a

realização da simulação da topologia é quase um exemplo de projeto. A principal diferença

é que não haverá a preocupação em especificar tensão ou corrente nominal de cada

componente.

O sistema será simulado utilizando os ângulos ótimos apresentados na Tabela 4.5,

ou seja, °=α 85,12 e °=φ 99,28 . Considerando que a tensão da rede elétrica é dada por

( ) ( )ttvs ⋅⋅π⋅= 602sen2127 , pode-se calcular, através de (4.14), a menor tensão de

entrada necessária para que o sistema funcione como um inversor:

( ) ( )[ ] V547,9899,2885,12cos85,12cos2127=°+°+°

π>iV . (4.52)

De (4.52) e, a partir dos dados da Tabela 4.6, define-se o número de painéis que

deve ser conectado em série, PVsérieN , para que o sistema possa operar como inversor,

dado em função da tensão de potência máxima do BP SX-120:

924,27,33

547,98547,98==≥

mpPVsérie V

N . (4.53)

Conclui-se, então, que é necessário utilizar três painéis do tipo BP SX-120,

conectados em série, para alimentar o inversor boost MNC 2 células. Deste modo, a

potência de pico do sistema será dada por múltiplos inteiros de 360 Wp. Para esta

simulação será considerado um arranjo fotovoltaico de trinta painéis (dez conjuntos de três

painéis conectados em série, ligados em paralelo), totalizando 3600 Wp, compatível com a

faixa de potência onde se encontra a maioria dos sistemas PV residenciais [27].

Considerando as dimensões do painel PV em questão (0,969m×1,456m), este arranjo

fotovoltaico ocuparia, em uma situação prática, uma área de 30,4013 m².

Page 115: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 99

Os indutores serão dimensionados com base no ponto de potência máxima dos

painéis PV com o objetivo de otimizar o valor das indutâncias utilizadas no conversor CC-

CC boost MNC 2 células. Com o arranjo fotovoltaico considerado, os painéis PV estão

operando como fontes de corrente e, como existem dez conjuntos de painéis conectados

em paralelo, o valor médio da corrente de entrada do inversor boost será dado por:

A 6,35A56,31010 =×== mpII ; (4.52)

e a tensão de entrada será:

V1,101V7,333 =×=iV . (4.54)

É interessante salientar que o sistema não operará em seu ponto de potência

máxima nesta simulação, pois nenhum tipo de controle (ou ajuste de ângulos) com esta

finalidade está sendo levado em consideração. No entanto, o dimensionamento do arranjo

fotovoltaico e dos indutores baseados na corrente de potência máxima e na tensão de

potência máxima é perfeitamente aceitável.

A partir de (4.21) e (4.26), admitindo uma ondulação de 10 % na corrente dos

indutores, tem-se, utilizando os valores dos ângulos em radianos,

( )

mH72106,3560

506,02243,021,10150 =

⋅⋅⋅π

+⋅⋅=iL (4.55)

e,

( ) ( )[ ] mH62506,02243,0cos2243,0cos106,3560

1272100=+−

⋅⋅⋅π⋅

=bL . (4.56)

4.2.4.3 – Resultados de Simulação

O sistema da Fig. 4.2 foi simulado, na plataforma PSpice®, utilizando o modelo

para o arranjo fotovoltaico e os valores de indutores descritos na seção anterior. As chaves

do circuito foram implementadas utilizando o componente “Sbreak”, do PSpice, que é

Page 116: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 100

uma chave controlada por tensão. A resistência de condução de cada chave foi considerada

igual a 0,1 Ω . Para os diodos foi utilizado o modelo genérico “Dbreak”. O capacitor de

entrada, PVC , foi adotado como sendo igual a 1000 Fµ .

Os resultados obtidos nessa simulação são exibidos na Fig. 4.25.

Fig. 4.25 – Simulação da operação multinível em corrente do inversor boost MNC 2 células: (a) comando das chaves S1 e S2; (b) corrente nos indutores de entrada e de equilíbrio; (c) corrente nas chaves S1 e S2; (d) corrente nos diodos D1 e D2; (e) tensão (escala reduzida em 3 vezes) e corrente no

arranjo PV; (f) corrente na saída do conversor CC-CC boost MNC (3 níveis); (g) comando das chaves da ponte inversora; (h) corrente na chave S1H (mesma corrente que em S2L); (i) corrente na chave S1L (mesma

corrente que em S2L); (j) corrente injetada na rede e tensão da rede (escala reduzida em 5 vezes).

Da Fig. 4.25 pode-se observar a composição da operação multinível em corrente,

com a forma de onda multinível sendo construída complementarmente ao acionamento

das chaves 1S e 2S . Visualmente percebe-se a divisão bem equilibrada da corrente entre

as chaves do conversor boost MNC, confirmada pelos valores médios de corrente

Page 117: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 101

apresentados na Tabela 4.7. A ligeira diferença entre os valores médios das correntes

apresentadas se deve à ondulação de corrente nos indutores. O maior desequilíbrio, da

ordem de 10 %, ocorre entre os diodos, pois 1D assume a ondulação do indutor de

entrada, o que implica em uma redução no valor médio da sua corrente. Este pequeno

desequilíbrio seria compensado com a utilização de um indutor de maior indutância,

admitindo uma ondulação de corrente menor que a empregada no seu dimensionamento.

Porém, este desequilíbrio não é crítico, uma vez que diodos são elementos que suportam

altas correntes nominais. Já para as chaves, obteve-se uma distribuição da corrente bem

equilibrada.

Tabela 4.7 – Valores médios das correntes (simulação)

iI 29,20 A

bI 15,14 A

1SI 4,42 A

2SI 4,38 A

1DI 9,68 A

2DI 10,73 A

Nesta simulação obteve-se 90,112=PVV V e 20,29=PVI A, o que mostra que o

sistema não está operando no ponto de potência máxima, como já era esperado. A

potência de entrada do sistema ficou em 3296,68 W. A corrente injetada na rede

apresentou valor eficaz igual a 22,96 A, 43,16=THD % e ângulo de deslocamento de sua

componente fundamental igual a 2,05° ( 1≈FD ), resultando em uma operação com

9861,0=FP . A potência de ativa, entregue à rede, foi igual a 2914,10 W. A taxa de

distorção harmônica apresentada foi calculada, pelo PSpice, para 100 harmônicos, com

freqüência central em 60 Hz. O espectro harmônico da corrente injetada na rede é

apresentado na Fig. 4.26. Os resultados obtidos podem ser considerados extremamente

interessantes, tratando-se de um sistema com chaveamento em baixa freqüência. Porém, a

THD da corrente injetada na rede é alta, considerando-se um sistema fotovoltaico, que

requer distorção harmônica de corrente inferior a 5% [29]. Uma estratégia de

chaveamento, empregando PWM senoidal multinível em corrente, capaz de reduzir o

Page 118: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 102

conteúdo harmônico da corrente injetada na rede é proposta na seção 4.3. Antes, porém,

serão discutidas, sinteticamente, algumas considerações práticas em relação à operação

com modulação MNC que vêm a reforçar o uso do PWM senoidal MNC.

Fig. 4.26 – Espectro harmônico da corrente injetada na rede.

4.2.5 – Considerações Práticas

Em situações práticas, existem algumas características que podem interferir no

funcionamento ideal de um conversor MNC. Essas características são discutidas

detalhadamente em [51] e [52]. Nesta seção, será apresentado um breve resumo dessas

características de “não-idealidade” e suas formas de compensação. Além disso, apresenta-

se uma discussão relacionada à adequação do sistema proposto aos requisitos de qualidade

de energia para um sistema fotovoltaico.

4.2.5.1 – Sincronismo e simetria do acionamento das chaves

As chaves que compõem a topologia proposta devem ser acionadas de forma

sincronizada com a tensão da rede elétrica. Para que o sistema opere corretamente, as

Page 119: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 103

chaves do conversor CC-CC boost MNC devem ainda ser acionadas com pulsos de mesma

duração, distribuídos de forma simétrica dentro de um período da tensão da rede,

retificada. Considere as formas de onda da Fig. 4.27, onde α∆ t e φ∆ t correspondem aos

intervalos de tempo associados aos ângulos elétricos α e φ . Para garantir uma operação

multinível em corrente, bem como o equilíbrio de corrente nas chaves, as seguintes

condições devem ser satisfeitas [52]:

2TTs = (4.57)

( ) ( ) ααα ∆=∆=∆ ttt 21 (4.58) ( ) ( ) φφφ ∆=∆=∆ ttt 21 (4.59)

Fig. 4.27 - Sincronismo do acionamento das chaves 1S e 2S .

Caso (4.57), (4.58) e (4.59) não sejam satisfeitas, ocorrerá um desequilíbrio

degenerativo de corrente nas chaves, ainda que 1S e 2S sejam acionadas com pulsos de

mesma duração. Isto pode acontecer no caso onde os pulsos de comando forem ajustados

com α∆ t e φ∆ t baseados, por exemplo, para uma freqüência de oscilação da rede elétrica

de 60 Hz, e esta, por algum motivo, estiver oscilando numa freqüência ligeiramente

diferente. Em [52] é mostrado que uma pequena diferença nos tempos ( )1α∆ t e ( )2α∆ t é

Page 120: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 104

capaz de descaracterizar a operação multinível em corrente e desequilibrar a distribuição da

corrente entre as chaves. O mesmo é observado para ( )1φ∆ t e ( )2φ∆ t .

Para solucionar este tipo de problema, foi proposta por Teixeira, em [52], uma

estratégia de chaveamento alternativa, que consiste em trocar, a cada período de

chaveamento, os pulsos de comando das chaves 1S e 2S , como mostrado na Fig. 4.28.

Assim, o equilíbrio de corrente é alcançado a cada dois períodos de chaveamento,

necessitando apenas do sincronismo do circuito com a rede. A desvantagem no emprego

desta estratégia de chaveamento é o aumento da ondulação de corrente nos indutores.

Fig. 4.28 – Estratégia de chaveamento alternativa.

4.2.5.2 – Resistência do Indutor de Equilíbrio

Na prática, um indutor apresenta características que não são levadas em

consideração em uma situação ideal, como a sua resistência elétrica, perdas magnéticas e

saturação de seu núcleo. Em particular, a resistência elétrica do indutor de equilíbrio exerce

grande influência na divisão equilibrada da corrente entre as chaves de um conversor

MNC. Esta resistência elétrica pode ser modelada por um resistor, Lbr , associado em série

com o indutor de equilíbrio, como mostra a Fig. 4.29(a). Esta influência pode ser

entendida a partir do circuito equivalente CC, em regime permanente, mostrado na Fig.

4.29(b), onde r representa a resistência das chaves e diodos da célula MNC [51] e [52].

Page 121: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 105

S1

Lb

D1 D2

Li

Vi

ii ib

rLb

(a)

S2

rLbr

r

Ii

(b)

Ib‘

Ib

r

rr

r

Fig. 4.29 – Modelagem da influência da resistência do indutor de equilíbrio:

(a) Representação pela resistência série; (b) Circuito equivalente CC em regime permanente.

No circuito da Fig. 4.29(b), observa-se que a corrente de entrada, iI , não se divide

igualmente entre os dois ramos ligados ao nó C , pois eles apresentam caminhos com

resistências elétricas diferentes. O ramo superior é formado pela resistência r e o ramo

inferior é formado pela associação série de r e Lbr . O valor da corrente em cada ramo

pode ser obtido pela expressão de divisor de corrente. Assim,

iLb

b Irr

rI ⋅+

=2

, (4.60)

e

iLb

Lbb I

rrrrI ⋅

++

=2

' . (4.61)

Dessas expressões, pode-se concluir que quanto maior o valor de Lbr em relação a

r , maior será o desequilíbrio de corrente.

Algumas técnicas podem ser empregadas para compensar este tipo de desequilíbrio

de corrente nas chaves [51]:

q Controle do desequilíbrio estático por meio de um conveniente ajuste na

largura de pulso das chaves;

q Controle dinâmico da largura de pulso das chaves;

q Compensação resistiva.

Page 122: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 106

As duas primeiras técnicas são soluções complexas: na primeira é necessário o

ajuste adequado das razões cíclicas das chaves; no segundo é utilizado um sistema de

controle em malha fechada para garantir a divisão equilibrada de corrente, indo contra o

princípio de conversores MNC de proporcionar, naturalmente, uma divisão equânime

entre suas chaves. Já o uso de compensação resistiva não é conveniente em um sistema

fotovoltaico, uma vez que diminuiria a eficiência do sistema de conversão de energia.

O uso da modulação PWM senoidal MNC pode ser uma alternativa simples e

eficiente para minimizar este tipo de desequilíbrio, como será visto mais adiante. A

estratégia de chaveamento alternativa apresentada na seção anterior também é capaz de

eliminar o desequilíbrio de corrente causado pela presença da resistência série do indutor

de equilíbrio. A desvantagem no emprego desta estratégia de chaveamento é o aumento na

ondulação de corrente nos indutores, o que exige o uso de elementos com maiores valores

de indutância (quando comparado com o acionamento convencional das chaves).

4.2.5.3 – Impedância Característica da Rede Elétrica

Numa situação prática, a impedância característica da rede elétrica deve ser levada

em consideração. Esta impedância é composta, para um sistema monofásico, pela reatância

de dispersão do transformador de distribuição, referida ao secundário, somada à reatância

equivalente dos cabos alimentadores da rede. Como esta impedância é predominantemente

indutiva, pode ser modelada como uma indutância, sL , conectada em série com uma fonte

de tensão senoidal, como mostrado na Fig. 4.30, onde o inversor boost MNC é

representado por uma fonte de corrente com forma de onda cinco níveis. Agora, em um

caso real, a tensão no ponto de acoplamento comum não é mais senoidal pura. Quando

ocorre a transição de um nível de corrente para outro, a corrente que flui por sL varia

bruscamente. Isso provoca o surgimento de altos picos (spikes) de tensão sobre sL , pois

( )dtdiLv ssLs /= . Como a tensão no PCC é dada por LsCAs vvv −= , aparecem altos

picos de tensão, que podem chegar a alguns quilovolts [52], também no PCC, o que pode

prejudicar o funcionamento do próprio sistema MNC ou outros dispositivos da mesma

instalação. O sistema MNC torna-se, então, uma fonte de distúrbios de tensão e de

interferência eletromagnética conduzida, degradando a qualidade de energia elétrica da

Page 123: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 107

instalação.

Fig. 4.30 – Efeito da impedância característica da rede elétrica.

Para eliminar ou, pelo menos, minimizar este tipo de distúrbio podem ser

utilizados circuitos snubber adequados nas chaves 1S e 2S , de modo a reduzir a taxa de

variação da corrente sintetizada. Uma outra possibilidade é o uso de um filtro linha,

composto por um resistor e um capacitor, entre o sistema MNC e o PCC. Estes tipos de

compensação são ilustrados na Fig. 4.31 [52].

(a)

(b)

Fig. 4.31 – Compensação dos distúrbios de tensão: (a) Snubber; (b) Filtro de linha.

Page 124: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 108

4.2.5.4 – Adequação do Conteúdo Harmônico da Corrente Sintetizada

Como já foi dito anteriormente, a corrente injetada na rede por um sistema PV

monofásico deve apresentar uma taxa de distorção harmônica inferior a 5%, quando o

sistema opera em sua potência nominal. A THD obtida por simulação para o inversor

boost MNC ficou em torno de 16%, ou seja, mais de três vezes a THD sugerida, para um

caso genérico, na IEEE Std. 929-2000 [29]. Apesar de esta ser uma recomendação (e não

uma norma) e de que os limites superiores para a THD podem variar de acordo com o a

contribuição do sistema PV em relação ao nível de curto-circuito da instalação na qual está

conectado [29] e [31], é de bom senso buscar a diminuição da distorção harmônica da

corrente injetada na rede, aumentando os atrativos do sistema proposto.

Para isso, uma primeira alternativa seria utilizar um filtro de linha, que além de

minimizar os efeitos do sistema MNC na tensão no PCC, possibilitasse uma filtragem

eficiente dos harmônicos da corrente injetada na rede. Poderia ser utilizado um filtro RLC,

de segunda ordem, como mostrado na Fig. 4.32. Como pôde ser visto na Fig. 4.26, o

espectro harmônico da corrente sintetizada pelo inversor boost MNC possui todos os

harmônicos ímpares, ou seja, nas freqüências de 180 Hz, 300 Hz, 420 Hz, e assim por

diante. Assim, a freqüência de corte do filtro de linha deve ser suficientemente baixa, de

modo a atenuar esses harmônicos indesejados. Isto resultaria em valores de capacitâncias e

indutâncias da ordem de dezenas de Fµ e dezenas de mH, respectivamente, indesejados

para um filtro de linha, pois podem formar um laço de baixa impedância na freqüência da

rede devido à ressonância entre estes elementos, fazendo com que o sistema PV seja visto

como uma carga pela rede elétrica.

Fig. 4.32 – Filtro de linha de segunda ordem.

Uma segunda alternativa seria a síntese de mais níveis intermediários de corrente

com a utilização de mais células MNC, ajustando o conteúdo harmônico da corrente

sintetizada, por meio do ajuste dos ângulos de transição convenientes, de modo a eliminar

Page 125: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 109

os harmônicos de menor ordem, facilitando o dimensionamento do filtro de linha. Porém,

a utilização de mais células MNC aumenta consideravelmente a complexidade da estrutura.

Uma forma mais simples de eliminar os harmônicos de baixa ordem, próximos a

freqüência da rede é através da modulação da corrente sintetizada através de PWM

senoidal. De fato, com PWM senoidal, os harmônicos múltiplos da freqüência da rede são

eliminados. Isso pode ser conseguido sem o uso de altas freqüências de chaveamento, de

modo a não comprometer a eficiência da estrutura (mantendo as perdas por chaveamento

desprezíveis). A operação do inversor boost MNC empregando PWM senoidal multinível

em corrente será discutida a seguir.

4.3 – Operação com PWM Senoidal Multinível em Corrente

O objetivo do emprego de modulação por largura de pulso senoidal no inversor

boost MNC é reduzir a taxa de distorção harmônica da corrente injetada na rede pelo

sistema PV. Isto é obtido por meio da eliminação dos harmônicos múltiplos da freqüência

da rede. Como é conhecido da literatura técnica [66], com o emprego de PWM senoidal os

harmônicos de mais baixa ordem de uma forma de onda aparecem em bandas laterais, a

partir da freqüência de chaveamento. Deste modo, a filtragem desses harmônicos pode ser

realizada com grande simplicidade. No caso do inversor boost MNC, como a modulação da

corrente é feita no “lado CC” do inversor, a modulação será realizada utilizando uma

senóide retificada, ao invés de uma senóide, como em um PWM senoidal convencional.

Será demonstrado, nas próximas seções, que o resultado obtido é semelhante ao obtido

com uma modulação por largura de pulso senoidal convencional. Assim, a denominação

PWM senoidal será adotada também para este caso. Será empregado um PWM senoidal

com freqüência de chaveamento relativamente baixa, de modo que o sistema possa

continuar a operar com perdas por chaveamento desprezíveis e alta eficiência.

Quantitativamente, pode-se considerar razoável que, numa operação com freqüência de

chaveamento inferior a 10 kHz, as perdas por chaveamento são aceitáveis.

A estratégia de comando das chaves 1S e 2S , capaz de proporcionar uma

Page 126: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 110

operação multinível em corrente no sistema, é definida por analogia à empregada em

inversores VSI multipulso [67], sendo apresentada na próxima seção. Já as chaves da ponte

inversora são acionadas da mesma forma que na operação com modulação MNC. Desta

forma, continua-se com uma estratégia de comando das chaves extremamente simples.

4.3.1 – Estratégia de Chaveamento PWM Senoidal MNC

A modulação PWM senoidal, também referenciada como modulação Seno- ∆ -

PWM ou PWM-senoidal-triangular [66] e [67], é uma estratégia de chaveamento muito

utilizada em inversores, onde os pulsos de acionamento das chaves são produzidos através

da comparação entre uma onda portadora triangular, de freqüência sf , e um sinal senoidal,

de freqüência f , modulando o chaveamento do inversor de modo a se obter tensões ou

correntes CA controladas na sua saída. A implementação de uma modulação PWM

senoidal é ilustrada na Fig. 4.33. Neste caso, os harmônicos aparecem em bandas laterais

nos múltiplos da freqüência de chaveamento (em torno de K,3,2, sss fff ), conforme

Fig. 4.33(c).

ampl

itude

Fig. 4.33 – PWM senoidal:

(a) portadora e sinal modulante; (b) sinal modulado em PWM senoidal; (c) espectro harmônico do sinal modulado em PWM senoidal.

Page 127: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 111

São definidas duas figuras de mérito para a caracterização do PWM senoidal. O

índice de modulação de amplitude, am , é dado por:

T

refa

I

Im

ˆ

ˆ= , (4.62)

onde TI é o valor de pico da portadora triangular (geralmente mantido constante) e refI

é o valor de pico do sinal de referência (modulante) 4.

O índice de modulação de freqüência, fm , é definido por:

ffm s

f = . (4.63)

Basicamente, esses parâmetros caracterizam a forma como os harmônicos são

distribuídos no espectro de freqüência.

É conhecida, da literatura técnica a aplicação de PWM senoidal em inversores VSI,

operando com forma de onda de tensão CA multinível [66]. Com o uso de portadoras

convenientemente defasadas entre si, pode-se cancelar algumas componentes harmônicas

da tensão de saída. Em [67] é mostrado que se forem utilizados n inversores VSI

conectados em série, modulados por ondas triangulares defasadas entre si de n/2π rad,

os harmônicos devidos aos chaveamentos irão aparecer, em raias laterais, a partir de sfn .

Mais ainda, ocorre o cancelamento dos harmônicos cuja freqüência da raia central não é

múltipla inteira de sfn e a tensão de saída apresenta 12 −n níveis.

Esta técnica pode ser estendida, por analogia, a inversores multiníveis em corrente.

Para um inversor com n células MNC, serão utilizadas n portadoras triangulares de

freqüência sf , defasadas de n/2π rad entre si. Cada portadora, ao ser comparada com o

sinal de referência, dá origem aos pulsos de comando das chaves de uma célula MNC.

Assim, será sintetizada, na saída do inversor, uma forma de onda multinível em corrente,

Page 128: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 112

cujos harmônicos aparecem em raias laterais, centrados em sfnh , onde ,...3,2,1=h ,

representa a ordem dos harmônicos. Já o sinal de referência para a modulação e o número

de níveis da forma de onda da corrente de saída dependerá da topologia empregada.

Para o inversor CSI MNC o sinal de referência é uma senóide, de freqüência f , e a

forma de onda de saída pode apresentar até 1+n níveis. Os circuitos e a implementação

do PWM senoidal (sinal modulante e portadoras) para o inversor CSI MNC com 1, 2 e 3

células MNC são ilustrados na Fig. 4.34.

defasagem: π rad

defasagem: 2π/3 rad (a) (b) (c)

Fig. 4.34 – PWM senoidal para o inversor CSI MNC: (a) 1 célula MNC (inversor CSI convencional); (b) 2 células MNC; (c) 3 células MNC.

No caso do inversor boost MNC, a modulação da corrente de saída é realizada no

lado CC do inversor (mais precisamente, no conversor CC-CC boost MNC). Por isso, o

sinal de referência utilizado para a modulação por largura de pulso deve ser uma senóide

retificada, de freqüência f2 . Com o acionamento das chaves da ponte inversora de forma

sincronizada com o sinal de referência (modulante), consegue-se obter uma modulação da

corrente de saída semelhante a de um PWM senoidal convencional (como se o sinal

modulante fosse de freqüência igual a f ). A forma de onda da corrente de saída pode

apresentar até 12 +n níveis. Os circuitos e a implementação do PWM senoidal (sinal

4 É interessante observar que estes sinais são tensões do circuito de controle do conversor.

Page 129: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 113

modulante e portadoras) para o inversor boost MNC com 1, 2 e 3 células MNC são

exibidos na Fig. 4.35.

defasagem: π rad

defasagem: 2π/3 rad (a) (b) (c)

Fig. 4.35 – PWM senoidal para o inversor boost MNC: (a) 1 célula MNC; (b) 2 células MNC; (c) 3 células MNC.

As afirmações expostas nos parágrafos anteriores podem ser verificadas por meio

da observação das formas de onda apresentadas na Fig. 4.36. As formas de onda e

espectros harmônicos apresentados nesta figura foram obtidos por meio de simulações

computacionais no PSpice, considerando condições idealizadas, onde adotou-se

Hz 60=f , kHz 1=sf e 0,1=am , e são exibidos de forma normalizada (em relação ao

valor do patamar superior da forma de onda de corrente, I ). Pode-se observar que a

amplitude de cada harmônico oriundo dos chaveamentos é menor quando se utiliza o

inversor boost MNC para sintetizar a corrente modulada em PWM senoidal. A análise da

forma de onda da corrente de saída para o inversor boost MNC será desenvolvida na seção

4.3.2.2. As listagens dos arquivos utilizados nestas simulações são apresentadas no

Apêndice A.

Page 130: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 114

1 célula MNC 2 células MNC 3 células MNC

(a)

(b)

(c)

(d)

Fig. 4.36 – PWM senoidal MNC:

(a) Formas de onda para o inversor CSI MNC; (b) Espectros harmônicos correspondentes para o inversor CSI MNC; (c) Formas de onda para o inversor boost MNC; (d) Espectros harmônicos

correspondentes para o inversor boost MNC.

Para que o inversor boost MNC possa sintetizar, em sua saída, uma forma de onda

multinível em corrente modulada por largura de pulso senoidal é necessário adotar uma

estratégia de chaveamento conveniente. Da mesma forma que na operação com

modulação MNC, a principal lógica da topologia concentra-se nas chaves 1S e 2S . As

chaves da ponte inversora são responsáveis apenas em condicionar o sentido no qual a

corrente é injetada na rede. Na Fig. 4.37 é apresentada a estratégia de chaveamento

utilizada na implementação do PWM senoidal multinível para o inversor boost MNC 2

células, que é o objetivo deste trabalho. Como dito anteriormente, são utilizadas duas

ondas triangulares (portadoras), defasadas de π rad entre si, e o sinal de referência

(modulante) é uma senóide retificada, pois a modulação é realizada no “lado CC” do

Page 131: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 115

inversor. Assim, é possível a síntese de uma forma de onda de corrente CC com até três

níveis na saída do conversor CC-CC boost MNC 2 células. Após inversão, a corrente

sintetizada pode apresentar até cinco níveis. Na seção 4.3.2.2 será demonstrado que este

tipo de modulação possui características extremamente semelhantes a um PWM utilizando

sinal de referência senoidal. Este tipo de modulação será doravante referenciado como

PWM senoidal MNC.

Fig. 4.37 – Estratégia de chaveamento PWM senoidal para o inversor boost MNC 2 células.

4.3.2 – Análise Matemática

Nesta seção será formalizada a operação PWM senoidal do inversor boost MNC 2

células, definindo os seus estágios de operação e analisando as características da corrente

sintetizada na saída do inversor, justificando este tipo de operação. Como realizado para a

operação com modulação MNC, serão apresentadas algumas expressões matemáticas úteis

Page 132: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 116

no dimensionamento dos componentes do sistema. Serão consideradas as mesmas

condições idealizadas descritas na seção 4.2.3. A convenção das correntes e tensões

adotadas nesta modelagem é mostrada na Fig. 4.38. Observe que a corrente de saída do

inversor é referida como invi . Num caso prático, a corrente injetada na rede, si , não será

igual à corrente na saída do inversor, pois será conectado um filtro passa-baixas entre a

saída do inversor e a rede elétrica, de modo a eliminar os harmônicos oriundos dos

chaveamentos. Este filtro não será considerado no desenvolvimento da análise da

operação do sistema, nem no desenvolvimento das expressões dedicadas ao

dimensionamento dos componentes, o que permite simplificar consideravelmente o

estudo matemático do sistema, sem trazer prejuízo algum aos resultados obtidos. A

inclusão do filtro de linha no sistema sob estudo será abordada, oportunamente, na seção

4.3.2.6.

Fig. 4.38 – Convenção das correntes e tensões utilizadas na análise da operação PWM

senoidal MNC.

4.3.2.1 – Estágios de Operação

Na seção 4.2.3 foram definidos estágios de operação para o inversor boost MNC 2

células, quando operando com modulação MNC, em função de ângulos elétricos, tendo

como base um semiciclo da tensão da rede. Já para a modulação PWM senoidal MNC, a

definição dos estágios de operação não pode ser feita desta forma, pois, além da freqüência

de chaveamento ser muito maior que a freqüência da rede, os instantes em que ocorrem as

mudanças na topologia do circuito também variam em função de am . Os estágios de

operação serão definidos, então, em função do estado de condução das chaves 1S e 2S .

Page 133: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 117

Deste modo, podem ser definidos quatro estágios de operação, discriminados na Tabela

4.8.

Tabela 4.8 – Estágios de operação para a modulação PWM senoidal MNC.

Estágio 1S 2S

I ON ON

II ON OFF

III OFF ON

IV OFF OFF

A razão cíclica (ou duty cycle), D , é definida em um período de chaveamento como:

s

onTtD = , (4.64)

onde ont é o tempo em que cada chave fica em estado de condução durante um período

de chaveamento, conforme ilustrado na Fig. 4.39. Nesta figura considera-se que ffs >> ,

o que permite considerar que a corrente de referência é praticamente constante em um

período de chaveamento [66] e [67]. Assim, para cada período de chaveamento,

( ) saononon TMttt ⋅−=== 121

, (4.65)

onde ( ) trefa IIMsT

ˆ/= e ( )sTrefI é o valor da corrente de controle dentro de um

período de chaveamento sT .

Substituindo (4.65) em (4.64),

aMD −= 1 , (4.66)

que é, também, válida apenas dentro de um período de chaveamento.

Page 134: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 118

Fig. 4.39 – Detalhe do PWM senoidal MNC para um período de chaveamento.

O valor de pico da portadora triangular é sempre constante, porém a corrente de

referência varia de um período de chaveamento para outro. A variação da corrente de

referência da modulação por largura de pulso no tempo é expressa por:

( ) ( )tfIti refref π= 2senˆ . (4.67)

. A partir de (4.66) e (4.67), pode-se expressar a variação da razão cíclica em função

do tempo, ( )td , como:

( ) ( )tfmtd a π−= 2sen1 . (4.68)

A representação gráfica de (4.68) é exibida na Fig. 4.40.

Page 135: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 119

Fig. 4.40 – Variação da razão cíclica das chaves em função do tempo na operação PWM

senoidal MNC ( 1>>fm ).

Sabendo que as portadoras triangulares são defasadas de π rad entre si e, a partir

(4.68), pode-se concluir que o sistema possui duas seqüências de transição entre os estágios

de operação:

q SEQÜÊNCIA I:

Estágio I ð Estágio II ð Estágio I ð Estágio III ð Estágio I

ü A corrente na saída do conversor CC-CC boost MNC varia entre os níveis

“0” e “ I /2”, conforme ilustrado na Fig. 4.41(a);

ü Ocorre quando ( ) 5,0≥td , ou seja, quando ( ) 5,02sen ≤π tfma .

q SEQÜÊNCIA II:

Estágio III ð Estágio IV ð Estágio II ð Estágio IV ð Estágio III

ü A corrente na saída do conversor CC-CC boost MNC varia entre os níveis

“ I /2” e “ I ”, conforme ilustrado na Fig. 4.41(b);

ü Ocorre quando ( ) 5,0<td , ou seja, quando ( ) 5,02sen >π tfma . Como

( ) 12sen0 ≤π≤ tf , pode-se afirmar que esta seqüência ocorre apenas

quando 5,0>am .

Page 136: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 120

Estágio: II IIII I I II

Seqüência I

t

io

I/2

III (a) (b)

Fig. 4.41 – Seqüências de chaveamento: (a) Seqüência I; (b) Seqüência II.

De fato, para 5,00 ≤< am , não é possível que as chaves estejam bloqueadas de

forma concomitante. Neste caso, a corrente sintetizada pelo conversor CC-CC apresentará

dois níveis e, conseqüentemente, a corrente na saída do inversor será de três níveis (ambas

moduladas por PWM senoidal, com freqüência de chaveamento igual a sf2 ).

No caso de 5,0>am , a corrente na saída do conversor CC-CC será de três níveis

e a corrente na saída do inversor será de cinco níveis. Assim, será preferencial a operação

com 5,0>am .

Cabe ressaltar que, dependendo de am , fm e do sincronismo entre a portadora e

o sinal modulante, as seqüências de chaveamento podem iniciar de “pontos” diferentes.

Entretanto, as transições ocorrerão respeitando sempre a mesma ordem. Por exemplo,

suponha que o circuito esteja operando com ( ) 5,02sen >π tfma . A transição entre os

estágios de operação pode ocorrer da seguinte forma: Estágio II ð Estágio IV ð Estágio

III ð Estágio IV ð Estágio II e assim por diante, conforme ilustrado na Fig. 4.41(b).

Observa-se que esta seqüência de transição de estágios de operação obedece à seqüência de

chaveamento II.

Da mesma forma que realizado para a modulação MNC, a Tabela 4.9 traz os

valores das principais tensões e correntes do sistema. A partir do exposto, pode-se traçar

as formas de onda idealizadas do sistema para a modulação PWM senoidal MNC. A Fig.

4.43 mostra as formas de onda, no ponto de vista do conversor CC-CC boost MNC 2

células, para 9,0=am e 15=fm (para facilitar a visualização das mudanças de

seqüências de chaveamento). Na Fig. 4.42 são mostradas as principais formas de onda

vistas pelo lado do inversor de corrente.

Page 137: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 121

Tabela 4.9 – Principais tensões e correntes para a modulação PWM senoidal MNC.

Estágio I II III IV

1Si 2/I 2/I 0 0

2Si 2/I 0 2/I 0

1Sv 0 0 ov ov

2Sv 0 ov 0 ov

1Di 0 0 2/I 2/I

2Di 0 2/I 0 2/I

oi 0 2/I 2/I I

Liv iV iV oi vV − oi vV −

Lbv 0 ov− ov 0

2

2

2

Fig. 4.42 – Formas de onda idealizadas (ponto de vista da ponte inversora).

Page 138: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 122

Fig. 4.43 – Formas de onda idealizadas (ponto de vista do conversor CC-CC).

Page 139: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 123

4.3.2.2 – Análise Harmônica da Corrente de Saída

A análise do conteúdo harmônico de um sinal modulado por largura de pulso

senoidal não é trivial, pois requer o uso de ferramentas matemáticas complexas, como as

funções de Bessel. No entanto, é possível realizar esta análise de forma aproximada,

conforme proposto em [67], sem cometer grandes erros, empregando ferramentas

matemáticas mais simples, como a série de Fourier, muito utilizada no estudo de

Eletrônica de Potência.

Seja o circuito da Fig. 4.38, onde se observa que a corrente na saída do conversor

CC-CC boost MNC, oi , é dada pela soma das correntes que fluem pelos diodos 1D e 2D ,

como expresso pela equação (4.8). Em outras palavras, a corrente oi é composta pela

soma das correntes sintetizadas pelas células MNC do circuito. O mesmo pode ser dito

para a corrente na saída do inversor boost MNC, antes da filtragem, invi . Deste modo, a

análise da corrente invi será realizada superpondo a influência da corrente sintetizada por

cada uma das células MNC da estrutura.

Considere, primeiramente, a análise da contribuição da célula MNC composta por

1S e 1D , que será referenciada por célula 1. Da mesma forma que na seção anterior,

pode-se considerar que a tensão de referência é constante em um período de

chaveamento, pois, por hipótese, 1>>fm (ou seja, ffs >> ). A forma de onda da

corrente em 1D , em um período de chaveamento, é exibida na Fig. 4.44, onde os ângulos

elétricos são definidos de modo que um período de chaveamento seja equivalente a π2

rad, ou seja, π=ω 2ssT .

Iref

iref ,iT1

iD1

I / 2

sTs

IT^

Page 140: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 124

Fig. 4.44 – Forma de onda da corrente em 1D .

Esta forma de onda pode ser representada analiticamente por sua série de Fourier:

( ) ( ) ( )[ ]∑∞

=ω+ω+=

1

01 sencos

2 hhhD thbthaati . (4.69)

Como a forma de onda de 1Di possui simetria par, tem-se:

( ) ( ) θθθπ

= ∫π

dhia Dh cos20 1 , (4.70)

onde ,...2,1,0=h e tsω=θ ,

e

0=hb , (4.71)

onde ( ,...3,2,1=h ).

Por semelhança de triângulos, tem-se que

( ) π⋅−=δ 21 aM , (4.72)

que equivale ao tempo em que a chave 1S está em condução em um período de

chaveamento. Desenvolvendo (4.70),

( ) ( ) θθπ

=θθπ

== ∫∫π−π δ

dhIdhia ah

MIDh 00 21 coscos2 2

( )aDh Mhh

Iiah

ππ

==∴ sen1 , (4.73)

que é válida para ,...3,2,1=h (deve-se ter 0≠h ).

O termo “ 2/0a ” de (4.69) é o valor médio da corrente em 1D , podendo ser

calculado por:

Page 141: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 125

( ) ( )[ ]2

2124

22220

1IMMIaI aa

I

D =π⋅−−π⋅π

=δ−π⋅π

== (4.74)

Substituindo (4.73) e (4.74) em (4.69), chega-se a:

( ) ( ) ( )∑∞

=ω⋅π⋅

π+=

11 cossen

2 hsa

aD thMh

hIIMti (4.75)

Na prática, o sinal de referência utilizado para o PWM senoidal não é constante,

conforme suposto. No caso do inversor boost MNC, este sinal varia de acordo com (4.67).

Como 1>>fm , o índice de modulação de amplitude, designado por aM , em (4.75),

pode ser substituído, sem grandes erros, por ( )tmM aa ω= sen [67]. Assim, a corrente

em 1D será dada por:

( ) ( ) ( )[ ] ( )∑∞

=ω⋅ωπ⋅

π+ω⋅=

11 cossensensen

2 hsa

aD thtmh

hItImti , (4.76)

que é válida apenas para 10 ≤< am .

A corrente na saída do inversor, invi , considerando a estratégia de chaveamento

adotada para as chaves HS1 , LS1 , HS2 e LS2 , pode ser expressa, em função da corrente

na saída do conversor CC-CC, oi , como:

( )( ) ( )

( ) ( )

<ω−≥ω

=0sen;

0sen;tti

ttiti

o

oinv (4.77)

Levando em consideração apenas a contribuição da corrente sintetizada pela célula

1, tem-se:

Page 142: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 126

( )( ) ( )[ ] ( ) ( )

( ) ( )[ ] ( ) ( )

<ωω⋅ωπ⋅π

−ω⋅−

≥ωω⋅ωπ⋅π

+ω⋅

=

∑∞

=

=

1

1cel,

0sen;cossensensen2

0sen;cossensensen2

1

hsa

a

hsa

a

invtthtmh

hItIm

tthtmhhItIm

ti

(4.78)

Observando as primeiras parcelas da expressão anterior, pode-se, pela aplicação da

definição de função modular, juntá-las em uma só, ou seja,

( )tIma ω⋅sen2

. (4.79)

Sabendo que ( ) ( )θ−=θ− sensen , pode-se juntar, também, as segundas parcelas

de (4.78):

( )[ ] ( )∑∞

=ω⋅ωπ⋅

π1cossensen

hsa thtmh

hI . (4.80)

Logo,

( ) ( ) ( )[ ] ( )∑∞

=ω⋅ωπ⋅

π+ω⋅=

1cel, cossensensen

21h

saa

inv thtmhhItImti , (4.81)

que é análoga à expressão da tensão de saída, aproximada, de um inversor VSI,

desenvolvida em [67]. Assim, mostra-se que a utilização de um sinal senoidal retificado

como referência para a modulação por largura de pulso das chaves 1S e 2S e um

conveniente acionamento das chaves da ponte inversora, implementa um PWM senoidal

para o inversor boost MNC.

Como a portadora triangular utilizada na geração dos pulsos de comando das chave

2S é defasada de π rad em relação à portadora associada a 1S , a contribuição da célula 2

(associada a 2S e 2D ) na corrente de saída do inversor, seguindo o mesmo raciocínio

adotado para a célula 1, pode ser expressa por:

Page 143: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 127

( ) ( ) ( )[ ] ( )[ ]∑∞

=π+ω⋅ωπ⋅

π+ω⋅=

1cel, cossensensen

22h

saa

inv thtmhhItImti . (4.82)

Superpondo as contribuições de cada célula MNC, a corrente na saída do inversor

é dada por:

21 cel,cel, invinvinv iii += . (4.83) Com a soma das contribuições das duas células MNC, os harmônicos devidos aos

chaveamentos, de ordem ímpar ( ,...5,3,1=h ), são cancelados e a corrente na saída do

inversor fica:

( ) ( ) ( )[ ] ( )∑ ω⋅ωπ⋅π

+ω⋅=parh

saainv thtmhhItImti cossensen2sen . (4.84)

Da expressão anterior verifica-se que a componente fundamental da corrente de

saída é diretamente proporcional ao índice de modulação de amplitude, am . Portanto, a

faixa de variação 10 ≤< am , onde (4.84) é válida, é chamada de faixa linear [66]. A

solução analítica desta equação envolve Funções de Bessel. Entretanto, a expansão de seus

termos em série de Fourier mostra que os harmônicos devido ao chaveamento aparecem

em bandas laterais, centrados em sω2 , sω4 , sω6 e assim por diante [67]. Assim, pode-se

dizer que ocorre uma multiplicação da freqüência de chaveamento por dois. Este tipo de

desenvolvimento não será abordado neste trabalho. Como ilustração, na Fig. 4.45 são

exibidos a forma de onda e o espectro harmônico da corrente na saída do inversor boost

MNC para um caso particular ( 9,0=am e 50=fm ). O espectro harmônico foi obtido

numericamente, a partir da transformada de Fourier rápida (FFT, fast Fourier transform).

Nesta figura considerou-se Hz 60=f , kHz 3=sf e os valores de amplitude são

normalizados em relação ao nível de corrente do patamar superior da forma de onda cinco

níveis, I . Os harmônicos foram calculados para 200≤h .

Pode-se observar que os harmônicos aparecem em torno de 6 kHz, 12 kHz,

18 kHz, e assim por diante. Essa característica facilita consideravelmente o projeto do

filtro, conectado entre o inversor boost MNC e a rede elétrica. Com um filtro de segunda

ordem, é possível praticamente eliminar os harmônicos devido aos chaveamentos, o que

Page 144: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 128

justifica o emprego deste tipo de modulação no sistema proposto.

(a)

(b)

Fig. 4.45 – Corrente sintetizada pelo inversor boost MNC para ( 9,0=am e 50=fm ):

(a) Forma de onda; (b) Espectro harmônico.

A partir de (4.84) é possível determinar a potência ativa injetada na rede, oP .

Considerando que seja utilizado um filtro com ganho unitário na freqüência da rede e que

provoque um certo deslocamento angular, 1ϕ , na corrente da componente fundamental,

com ( )tfVvs π= 2sen2 , tem-se:

( )1cos2

ϕ=IVm

P ao . (4.85)

Page 145: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 129

4.3.2.3 – Limiar de Inversão

O procedimento para determinar a menor tensão de entrada necessária para que o

sistema opere como inversor é semelhante ao realizado na seção 4.2.3.1, para a operação

com modulação MNC, visto que o circuito sob estudo é o mesmo. A diferença entre as

duas análises é que, agora, a forma de onda de tensão da chave 1S não possui uma

representação matemática tão simples. Seguindo uma linha de raciocínio similar à adotada

na seção anterior (4.3.2.2), ou seja, partindo de um caso simplificado, onde as grandezas

relacionadas são constantes e, posteriormente, inserindo as contribuições de suas

variações, pode-se expressar analiticamente a tensão sobre a chave 1S por:

( ) ( ) ( )( )[ ] ( )∑

=ω⋅ωπ⋅

π

ω+ω−=

11 cossensen

sen222cos

22

22

hsa

aaS thtmh

htV

tVmVm

tv

(4.86)

Na equação (4.11) afirma-se que, para que o sistema opere como inversor, a tensão

de entrada5 deve ser maior que o valor médio da tensão na chave 1S , que, de acordo com

(4.86), é dado por 2/2 Vma . Assim, para que o sistema opere como um inversor deve-

se ter:

2

2 VmV a

i > . (4.87)

De (4.10) e (4.86) pode-se determinar o valor médio da corrente de entrada, I :

Li

ai

r

VmV

I 22

−= . (4.88)

5 Lembrando que estão sendo levadas em consideração as mesmas aproximações adotadas na seção 4.2.3, ou

seja, a tensão de entrada é considerada como uma fonte de tensão CC ideal.

Page 146: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 130

4.3.2.4 – Dimensionamento dos indutores

Na seção 4.2.3.2 foi realizado o dimensionamento dos indutores de entrada e de

equilíbrio para a operação com modulação MNC, por meio da linearização da equação

(4.16). Para a operação com PWM senoidal MNC será adotada a mesma metodologia,

associada a algumas considerações, a partir da observação de características relacionadas ao

funcionamento do circuito, pois, neste caso, as expressões analíticas que representam as

tensões nos indutores não são triviais, possuindo rico espectro harmônico.

4.3.2.4.1 – Indutor de Entrada

A tensão sobre o indutor de entrada é dada por (4.6). Substituindo (4.86) nesta

equação, vem:

( ) ( ) ( )( )[ ] ( )∑

=ω⋅ωπ⋅

π

ω−ω+−=

1cossensen

sen222cos

22

22

hsa

aaiLi thtmh

htV

tVmVm

Vtv

(4.89)

Analisando (4.89) observa-se que o valor médio da tensão sobre o indutor de

entrada é dado por ( ) 2/2 VmV ai − , que, respeitando (4.87), é diferente de zero. Sabe-

se que a aplicação de uma tensão CC, não-nula, em um indutor ideal faz com que a

corrente neste elemento cresça linear e indefinidamente (como uma função rampa). Este

comportamento não é observado na corrente do indutor de entrada, que é uma corrente

CC, com uma pequena ondulação. Mais ainda, considerando que são painéis fotovoltaicos

que alimentam o inversor boost MNC, o valor médio da corrente no indutor de entrada é

limitado, pois as maiores correntes extraídas de um painel PV ocorrem na sua região de

operação com características de fonte de corrente. Para compatibilizar a análise desta seção

com a desenvolvida na seção anterior torna-se necessário, então, incluir no modelo do

indutor de entrada a sua resistência série, como mostrado na Fig. 4.46(a). Assim, evita-se

incoerência no estudo realizado e a violação da lei das tensões de Kirchhoff na etapa de

entrada do inversor boost MNC 2 células.

O circuito da Fig. 4.46(a) pode ser analisado a partir de seus equivalentes CC e CA.

O circuito equivalente da etapa de entrada do inversor boost MNC 2 células é mostrado na

Page 147: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 131

Fig. 4.46(b), onde

2

2VmVV a

iLi −= , (4.90)

é a componente CC da tensão sobre o indutor de entrada. A consideração de Lir é

imprescindível para o estudo do circuito equivalente CC, pois evita incongruências em sua

análise.

Já o circuito equivalente CA é apresentado na Fig. 4.46(c). Neste circuito, a

resistência série do indutor de entrada foi omitida, pois é desprezível diante do valor da

reatância indutiva deste elemento, que apresenta altos valores de indutância (da ordem de

mH). Neste caso, não ocorre violação de nenhuma das leis de circuitos elétricos. As

tensões Liv~ e 1~

Sv representam, respectivamente, as componentes CA das tensões sobre

iL e 1S . A partir de (4.89), tem-se que:

( ) ( )( )[ ] ( )∑

=ω⋅ωπ⋅

π

ω−ω=

1cossensen

sen222cos

22~

hsa

aLi thtmh

htV

tVm

v .

(4.91)

Fig. 4.46 – Etapa de entrada do inversor boost MNC 2 células: (a) Inclusão da resistência série do indutor de entrada; (b) Circuito equivalente CC; (c) Circuito

equivalente CA.

Do circuito da Fig. 4.46(c), pode-se escrever que:

dtidLv i

iLi

~~ = . (4.92)

Esta equação pode ser aproximada, para um determinado intervalo de tempo t∆ ,

Page 148: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 132

onde ocorre uma certa variação ii∆ da corrente CA do indutor de equilíbrio, ou seja,

tiLV i

itLi ∆∆

≈∆, , (4.93)

ou

i

tLii itVL

∆∆

= ∆, , (4.94)

onde tLiV ∆, é o valor médio de Liv~ no intervalo t∆ .

Inspecionando (4.91), nota-se que a tensão CA sobre o indutor de entrada é

composta por uma componente na freqüência da tensão da rede, retificada ( )ω2 , e

infinitas componentes devidas aos chaveamentos. Como iL é um filtro de corrente (do

tipo passa-baixas), é razoável realizar seu dimensionamento para minimizar a ondulação

vinculada à componente harmônica em ω2 , que é a componente de menor freqüência em

seu espectro. Com efeito, ao atenuar esta componente harmônica, os harmônicos

oriundos dos chaveamentos também são atenuados.

A componente harmônica da corrente em iL , na freqüência ω2 , pode ser obtida

através da solução da equação diferencial (4.92). Sua forma de onda é exibida na Fig. 4.47,

junto com a forma de onda da tensão Liv~ na freqüência ω2 . Nesta figura pode-se

observar a corrente no indutor de entrada atinge metade de sua variação máxima, ou seja,

2/ii∆ , em ( )ωπ=∆ 4/t . O valor médio de Liv~ neste intervalo é calculado por:

( ) ( )π

=ω== ∫ ωπ

ωπ

ωπ∆

Vmdtt

VmVV aa

LitLi2

2cos2

21 44 0

4,, . (4.95)

Page 149: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 133

Fig. 4.47 – Variação da tensão e da corrente em iL para a componente de freqüência ω2 .

Então, de (4.94) tem-se

ω∆

=∆

ωπ

⋅π=

i

ai

a

i iVm

i

Vm

L2

2

2

42

. (4.96)

A partir de (4.20) pode-se expressar (4.96) em função da variação porcentual da

corrente no indutor de entrada:

ω∆=

%

250

i

ai iI

mVL . (4.97)

4.3.2.4.2 – Indutor de Equilíbrio

A queda de tensão sobre o indutor de equilíbrio é dada por (4.7). Como as chaves

são comandadas por pulsos gerados a partir de portadoras triangulares, defasadas de π rad

entre si, pode-se expressar a tensão sobre 2S adaptando (4.86), com a substituição de

( )th sωcos por ( )[ ]π+ω th scos . Com as devidas manipulações algébricas, a tensão sobre

bL fica:

Page 150: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 134

( )( )

( )[ ] ( )∑ ω⋅ωπ⋅π

ω=

ímparhsaLb thtmh

htV

tv cossensensen24

. (4.98)

Como pode ser observado da equação anterior, não é possível obter uma

aproximação similar à realizada para iL , pois não há, de forma explícita, um harmônico de

baixa ordem que possa ser tomado como base para o dimensionamento de bL .

Alternativamente, pode-se observar a forma de onda de tensão sobre bL , exibida na Fig.

4.48, buscando entender o processo de variação da corrente no indutor de equilíbrio

(lembrando: a tensão em um indutor é diretamente proporcional à variação de corrente no

mesmo). No intervalo de tempo em que Lbv é nula, não há variação de corrente no

indutor de equilíbrio. Já no intervalo de tempo t∆ , onde 0≠Lbv , ocorre uma certa

variação da corrente no indutor de equilíbrio, bi∆ , conforme ilustrado na Fig. 4.45. Como

Lbv ora é positiva (igual a ov , no estágio III), ora é negativa (igual ov− , no estágio II), a

corrente no indutor de equilíbrio aumenta e diminui (em módulo), respectivamente,

oscilando em torno de seu valor médio, 2/I .

Fig. 4.48 – Forma de onda de tensão sobre bL .

Por hipótese, a freqüência de chaveamento é muito maior que a freqüência da rede

(fundamental), ou seja, 1>>fm . Assim, pode-se considerar que, dentro de um certo

intervalo de tempo t∆ , correspondente ao tempo que uma das chaves ( 1S ou 2S ) está

em condução, a tensão da rede, que aparece sobre bL , pode ser considerada constante,

Page 151: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 135

igual a tLbV ∆, . Pode-se escrever, então:

tiLV b

btLb ∆∆

≈∆, , (4.99)

que permite aproximar o valor do indutor de equilíbrio, de modo a garantir uma certa

variação de corrente bi∆ por:

b

tLbb itVL

∆∆

⋅≈ ∆, . (4.100)

vLb

iLb

I / 2

ib

tLbV ∆,

tLbV ∆,

t

t

t Fig. 4.49 – Processo de variação da corrente em bL (formas de onda linearizadas).

Na Fig. 4.48 é possível observar que o intervalo de tempo t∆ varia de período em

período, em função do valor da tensão rede, referência para o PWM senoidal MNC. Para

um período de chaveamento, ontt =∆ é dado por (4.65). Como o PWM senoidal MNC é

realizado por meio de uma senóide retificada, substitui-se, em (4.65), aM por

( )tma ωsen . Logo,

( )( ) sa Ttmt ω−=∆ sen1 . (4.101)

Page 152: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 136

Uma situação semelhante ocorre com o valor da tensão tLbV ∆, , pois, mesmo

considerando seu valor constante durante um período de chaveamento, ocorre uma

variação de período em período, em função da tensão da rede retificada. Conforme a

Tabela 4.9, tem-se:

( )

( )

ω−

ω=∆

II Estágio;tsen2

III Estágio;tsen2,

V

VV tLb (4.102)

que pode ser utilizada em um instante de tempo qualquer.

Para o projeto do indutor de equilíbrio, define-se uma certa ondulação de corrente

admissível, dada em valor absoluto. Assim, com a parte de (4.102) referente ao estágio III e

com (4.101), pode-se reescrever (4.100) de forma genérica:

( ) ( )( )

b

sab i

TtmVL

ω−⋅ω≈

sen1tsen2. (4.103)

A equação anterior mostra que a ondulação de corrente no indutor de equilíbrio,

bi∆ , é variável, pois o valor de bL é constante e o numerador da expressão é uma função

que varia no tempo. Para dimensionar o indutor de equilíbrio convenientemente, deve-se

limitar a máxima ondulação de corrente neste elemento. Deste modo, é necessário

rearranjar (4.103), a fim de determinar em que instante de tempo, ou em que ângulo

elétrico, ocorre esta máxima ondulação de corrente:

( ) ( )( )θ−⋅θ=∆ sen1sen2

ab

sb m

LTV

i , (4.104)

onde tω=θ .

Considerando um período6 da tensão senoidal da rede, retificada, ou seja,

π<θ≤0 , pode-se eliminar os módulos da expressão anterior:

6 Repare que, agora, os ângulos elétricos estão sendo definidos em função da tensão da rede elétrica.

Page 153: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 137

( ) ( )[ ]θ−⋅θ⋅=∆ sen1sen2

ab

sb m

LTV

i . (4.105)

Para que o valor da máxima ondulação de corrente em bL seja obtido, basta

determinar qual ângulo elétrico maximiza a seguinte função:

( ) ( )[ ]θ−⋅θ sen1sen am . (4.106)

Isto é realizado por meio da determinação das raízes de:

( ) ( )[ ] 0sen1sen =θ−⋅θθ am

dd . (4.107)

Desenvolvendo (4.107),

( ) ( )[ ] 0sen21cos =θ−⋅θ am . (4.108)

Esta equação possui duas raízes, para π<θ≤0 :

2

' π=θ e

am21arcsen'' . (4.109)

Substituindo essas raízes em (4.106), obtém-se am−1 e ( )am4/1 ,

respectivamente. Como 10 ≤< am , a segunda raiz sempre levará a um máximo absoluto

de (4.106). Isto pode ser observado graficamente na Fig. 4.50. Assim, a máxima ondulação

de corrente no indutor de equilíbrio é dada por:

ab

smáxb mL

TVi

412

, ⋅=∆ . (4.110)

Page 154: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 138

Fig. 4.50 – Representação gráfica da variação dos pontos de máximo de (4.105) em função

de am .

Logo, o indutor de equilíbrio é dimensionado por:

máxbsa

b ifmV

L,4

2∆

= . (4.111)

Expressando a ondulação de corrente em porcentagem do valor médio da corrente

no indutor de equilíbrio, de forma similar à equação (4.25), tem-se

%

250

bsab iIfm

VL

∆= . (4.112)

4.3.2.5 – Dimensionamento dos Dispositivos Semicondutores

O dimensionamento das chaves semicondutoras e dos diodos do inversor boost

MNC, operando com modulação PWM senoidal MNC, leva em consideração a discussão

desenvolvida na seção 4.2.3.3. Como agora existem chaveamentos em freqüências mais

elevadas, deve-se ter uma atenção maior com a faixa de freqüência em que o dispositivo

semicondutor é capaz de operar.

Page 155: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 139

4.3.2.5.1 – Chaves Semicondutoras

Como as formas de onda de corrente e tensão para 1S e 2S são similares, apenas

defasadas no tempo, o dimensionamento destas chaves será realizado tendo como base os

parâmetros relacionados à 1S . Seguindo a mesma linha de raciocínio adotada nas seções

anteriores, pode-se expressar a corrente na chave 1S por:

( ) ( ) ( ) ( )[ ] ( )∑∞

=

ω⋅ωπ⋅π

+

ω

−π−⋅

π−=

121 cossensen2cos

412

21

hsa

aaS thtmh

hIth

hImImti

(4.113)

Da equação anterior, tem-se que o valor médio da corrente em 1S é dado por:

ImI aS ⋅

π−=

21

1 . (4.114)

Da análise do funcionamento o circuito sabe-se que os valores de pico da corrente

e da tensão em 1S são iguais a 2/I e V2 , respectivamente. As chaves 1S e 2S são

comutadas na freqüência sf .

As chaves da ponte inversora podem ser dimensionadas a partir dos parâmetros

relacionados à HS1 , pois são submetidas às mesmas tensões e correntes (a única diferença

é que são defasadas no tempo). Da análise do funcionamento da topologia, sabe-se que o

valor de pico da tensão sobre HS1 é igual a V2 . A forma de onda de corrente,

idealizada, em HS1 é exibida na Fig. 4.51. Durante o semiciclo positivo da tensão da rede,

esta corrente é composta pela soma das correntes nos diodos 1D e 2D , o que faz com

que o pico da corrente nesta chave seja igual a I . No semiciclo negativo, esta corrente é

nula. Assim, intuitivamente, o valor médio da corrente em HS1 é igual à metade da soma

dos valores médios das corrente dos diodos 1D e 2D . Uma vez que o valor médio da

corrente nestes diodos é igual, tem-se que:

11 DHS II = . (4.115)

Page 156: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 140

De (4.76), após alguma manipulação algébrica, pode ser obtido o valor da corrente

média neste diodo.

π

=ImI a

HS1 . (4.116)

Fig. 4.51 – Forma de onda de corrente em HS1 (idealizada).

Embora as chaves HS1 , LS1 , HS2 e LS2 sejam comutadas na freqüência da rede

elétrica, f , elas devem ser capazes de operar numa freqüência igual a sf2 , pois esta é a

freqüência de variação da corrente que flui por estas chaves.

Caso seja necessário dimensionar as chaves utilizando valores eficazes, estes podem

ser calculados numericamente, com auxílio de algum software matemático. Para 1S e 2S

isto é feito a partir de (4.113). Já para as chaves da ponte inversora, o valor eficaz é igual à

metade do valor eficaz da corrente de saída, invi , dada pela equação (4.84).

4.3.2.5.2 – Diodos

De forma semelhante à realizada para as chaves semicondutoras, os diodos 1D e

2D podem ser dimensionados tendo como base os parâmetros definidos para 1D . A

corrente neste dispositivo é dada por (4.76). Substituindo ( )tωsen , no primeiro termo do

lado direito desta expressão, por sua série de Fourier, tem-se:

( ) ( ) ( ) ( )[ ] ( )∑∞

=

ω⋅ωπ⋅π

+

ω

−π+

π=

121 cossensen2cos

412

hsa

aaD thtmh

hIth

hImImti ,

(4.117)

Page 157: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 141

donde o valor médio da corrente em 1D é dado por:

π

=ImI a

D1 . (4.118)

A tensão sobre 1D é dada por (4.33). Assim, o pico da tensão reversa sobre este

componente é igual a V2 . Os diodos 1D e 2D devem ser diodos rápidos, que

suportem operar na freqüência sf .

No caso do uso de diodos, conectados em série com HS1 , LS1 , HS2 e LS2 , na

implementação das chaves unidirecionais em corrente na ponte inversora, estes podem ser

dimensionados, no que se refere à corrente e freqüência de operação, levando em

consideração a discussão desenvolvida na seção anterior para HS1 . Como estes diodos são

conectados diretamente à rede elétrica, devem ser capazes de suportar o valor de pico da

tensão CA, igual V2 , quando polarizados reversamente.

4.3.2.6 – Filtro de Linha

Idealmente, com o emprego de PWM senoidal MNC, a corrente sintetizada na

saída do inversor boost MNC possui um espectro harmônico igual ao exibido na Fig.

4.45(b). Com um filtro de segunda ordem, RLC, é possível eliminar (ou atenuar) os

harmônicos oriundos dos chaveamentos, de modo que uma corrente senoidal (e em fase

com a tensão no PCC) seja injetada na rede. Entretanto, na prática, aparecem algumas

componentes harmônicas, de baixa amplitude, entre f e sf2 , devido à presença de uma

certa ondulação na corrente dos indutores, o que faz com que a corrente injetada na rede

não seja uma senóide pura, mas sim, uma corrente com baixa THD. Existem outras

características práticas que devem ser consideradas no projeto de um filtro passa-baixas

que seja adequado para a aplicação desejada. Essas características são abordadas nesta

seção.

O filtro deve ser conectado ao inversor boost MNC conforme mostrado na

Fig. 4.52, com seu ramo capacitivo diretamente ligado à saída do inversor. Como a

Page 158: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 142

corrente invi é “chaveada”, a conexão do indutor fL em série com o inversor resultaria

em sobretensões no circuito.

Fig. 4.52 – Circuito equivalente da etapa de saída do inversor boost MNC.

O filtro deve possuir ganho unitário em baixas freqüências, de modo a não

amplificar a corrente da componente fundamental nem os harmônicos devidos à

ondulação de corrente nos indutores. Deve, também, ser capaz de atenuar adequadamente

os harmônicos oriundos dos chaveamentos (cerca de -20 dB em sf2 já é satisfatório). O

pico de ressonância, próximo à freqüência de corte do filtro, não pode amplificar os

harmônicos de baixa freqüência (devidos à ondulação de corrente nos indutores). Quanto

à fase, esta deve ser próxima de zero na freqüência da rede. Estes requisitos podem ser

obtidos com o auxílio da análise da resposta em freqüência do filtro, por meio de

diagramas de Bode. Para isso, é necessário conhecer a função de transferência

( ) ( )sisi invs / do filtro. Colocando a fonte de tensão que representa a rede elétrica em

repouso e utilizando uma análise no domínio da freqüência, o circuito da Fig. 4.52 fica

como o circuito da Fig. 4.53.

Fig. 4.53 – Determinação da função de transferência do filtro de linha.

Pela análise deste circuito, com algumas manipulações algébricas, chega-se à função

de transferência do filtro de linha:

Page 159: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 143

( )( ) ( ) 1

12 +++

+=

fffsf

ff

inv

sCsRCLLs

CsRsi

si. (4.119)

Esta função de transferência pode ser escrita, na forma canônica [68], como:

( )( )

( )( ) 2

002

200

22

ϖ+ξϖ+

ϖ+ξϖ=

sss

sisi

inv

s , (4.120)

com

( ) fsf CLL +=ϖ

10 (4.121)

e

( )( )sf

fsff

LL

CLLR

+

+=ξ

2. (4.122)

Os valores de ξ e 0ϖ (e, conseqüentemente os de fR , fL e fC ) devem ser

ajustados de modo que o filtro atenda às características supracitadas. Na Fig. 4.54 é

apresentado o diagrama de Bode onde são traçadas as assíntotas da resposta em freqüência

de um filtro de linha adequado às características desejadas (dito “bem dimensionado”).

0 dBf

Módulo

Fase

Freqüência

Freqüência

2 fs

90°

fc

-20 dB

Page 160: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 144

Fig. 4.54 – Diagrama de Bode (assíntotas) típico de um filtro de linha bem dimensionado.

Finalmente, deve-se verificar se a impedância equivalente do filtro, na freqüência da

rede, não é muito pequena, o que faria com que o conjunto inversor+filtro fosse visto

como uma carga pela rede. Isto implicaria em uma operação com péssimo fator de

deslocamento. A impedância do filtro, na freqüência da rede, fZ , pode ser calculada do

circuito da Fig. 4.55, que é originado do circuito da Fig. 4.52, com a fonte de corrente em

repouso e com os elementos designados no domínio da freqüência, para ω= js .

°∠02 V

Fig. 4.55 – Determinação da impedância do filtro de linha na freqüência da rede.

Após algumas manipulações algébricas, chega-se a:

( )

f

ffffsf Cj

CRjCLLZ

ω

+ω++ω−=

12. (4.123)

Assim, o valor de pico da corrente consumida da rede pelo filtro, fZI , é dado por:

f

ZZ

VI f

2=

),

(4.124)

que deve ser muito menor que o valor de pico da componente fundamental da corrente

sintetizada pelo inversor, dado por (4.84), ou seja:

ImZ

Va

f<<

2. (4.125)

Page 161: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 145

Resumindo, as características desejadas para o filtro de linha são:

q Ganho unitário em baixas freqüências (próximas à freqüência da rede);

q Atenuação em, pelo menos, 20 dB das freqüências em torno de sf2 ;

q Pico de ressonância reduzido;

q Fase zero na freqüência da rede;

q ImI aZ f <<)

.

4.3.3 – Simulação da Operação PWM Senoidal MNC do Inversor Boost MNC 2 Células

A validação dos conceitos relacionados à operação PWM senoidal MNC da

topologia proposta pode ser feita por meio de simulação computacional. Deste modo,

foram inseridas no sistema já modelado no PSpice, algumas adaptações. Foi implementada

a modulação por largura de pulso senoidal e foi incluído um filtro de linha, conectado na

saída do inversor. Foi utilizado o modelo do mesmo arranjo fotovoltaico da simulação

apresentada na seção 4.2.4. As chaves do circuito foram implementadas utilizando o

componente “Sbreak”, do PSpice, cujas resistências de condução foram consideradas

iguais a 0,1 Ω . Para os diodos foi utilizado o modelo genérico “Dbreak”. O capacitor de

entrada, PVC , foi adotado como sendo igual a 1000 Fµ . Os indutores de entrada e de

equilíbrio foram dimensionados a partir de (4.97) e (4.112), respectivamente, considerando

uma ondulação de corrente de 10 % do valor médio da corrente em cada elemento. Para

isso, foi adotado A6,3510 =⋅= mpII , de acordo com a discussão da seção 4.2.4.2. Os

valores utilizados foram mH60=iL e mH 3,9=bL . As chaves 1S e 2S foram

comutadas em 3 kHz e o índice de modulação de amplitude utilizado no PWM senoidal foi

igual a 0,9. Foi considerada uma rede elétrica de 60 Hz, com tensão eficaz de 127 V. O

filtro de linha foi definido com os seguintes elementos: Ω= 3,3fR , F15µ=fC e

mH 8,0=fL .

Page 162: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 146

Para esta simulação não será apresentada a seleção dos componentes, como feito

na seção 4.2.4.2, pois um projeto completo do sistema, operando com PWM senoidal é

apresentado no próximo capítulo, que aborda a implementação de um protótipo do

inversor boost MNC 2 células.

Os resultados obtidos nesta simulação, com tensões e correntes convencionados

conforme a Fig. 4.56, são apresentados na Fig. 4.57.

Fig. 4.56 – Convenção das tensões e correntes apresentadas na simulação.

Na Fig. 4.57 é possível perceber, visualmente, a divisão bem equilibrada da corrente

entre as chaves do conversor boost MNC, confirmada pelos valores médios de corrente

apresentados na Tabela 4.10. A ligeira diferença entre os valores médios das correntes

apresentadas se deve à ondulação de corrente nos indutores. A maior diferença, inferior a

3 %, ocorre entre os diodos, pois 1D assume a ondulação do indutor de entrada, o que

implica em uma redução no valor médio da sua corrente (o que também ocorre na

operação com modulação MNC).

Tabela 4.10 – Valores médios das correntes (simulação)

iI 35,10 A

bI 17,59 A

1SI 7,60 A

2SI 7,43 A

1DI 9,94 A

2DI 10,16 A

Page 163: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 147

Fig. 4.57 – Formas de onda para a operação PWM senoidal MNC do inversor boost MNC 2 células (simulação):

(a) comando de S1; (b) comando de S2; (c) corrente em S1; (d) corrente em S2; (e) corrente nos indutores de entrada e de equilíbrio; (f) corrente em D1; (g) corrente em D2; (h) corrente na saída

do conversor CC-CC boost MNC (3 níveis); (i) comando das chaves da ponte inversora; (j) corrente em S1H; (k) corrente em S1L; (l) tensão (escala reduzida em 4 vezes) e corrente no

arranjo PV; (m) corrente sintetizada pelo inversor (5 níveis); (n) corrente injetada na rede e tensão da rede (escala reduzida em 4 vezes).

Page 164: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 148

Com o emprego de chaveamentos em maiores freqüências, foi possível reduzir o

valor da indutância dos indutores de entrada e de equilíbrio. Para o indutor de entrada a

redução7 foi de 16,67 % e, para o indutor de equilíbrio, foi de 84,5 %. A grande diferença

na redução da indutância destes dois elementos do circuito se deve ao fato que estes são

submetidos a tensões com formas de onda totalmente diferentes. As expressões

desenvolvidas para o dimensionamento dos indutores se mostraram válidas, pois a

ondulação de corrente nestes elementos, apresentada na simulação, foi próxima da

esperada.

Nesta simulação obteve-se 42,100=PVV V e 10,35=PVI A, levando o sistema

a uma operação próxima ao seu ponto de potência máxima, por coincidência, uma vez que

não foi adotado nenhum tipo de controle com esta finalidade. A potência de entrada do

sistema ficou em 3524,70 W, com contribuição de cada painel do arranjo fotovoltaico igual

a 117,49 W. A corrente injetada na rede apresentou valor eficaz igual a 22,25 A,

694,4=THD % e ângulo de deslocamento de sua componente fundamental igual a

-5,74° ( 995,0=FD ), resultando em uma operação com 9939,0=FP , com potência

injetada na rede igual a 2811,6 W. A taxa de distorção harmônica apresentada foi calculada,

pelo PSpice, para 100 harmônicos, com freqüência central em 60 Hz.

Os espectros harmônicos da corrente sintetizada na saída do inversor e da corrente

injetada na rede são apresentados na Fig. 4.58. Os resultado obtidos confirmam os

desenvolvimentos teóricos apresentados, bem como mostram que o sistema se enquadra

nos requisitos de qualidade de energia elétrica sugeridos em [29].

7 Em comparação com os valores calculados em 4.2.4.2.

Page 165: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 149

(a)

(b)

Fig. 4.58 – Análise harmônica: (a) Corrente sintetizada na saída do inversor (antes do filtro); (b) corrente injetada na rede.

4.4 – Quadros Resumo

Nesta seção é apresentado um resumo das expressões utilizadas para o

dimensionamento dos componentes de um sistema PV baseado no inversor boost MNC 2

Page 166: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 150

células, desenvolvidas no decorrer deste capítulo. Com isso, é fornecida uma referência

rápida, muito útil no projeto de um sistema deste tipo. Na Tabela 4.11 é apresentado um

resumo das expressões matemáticas, utilizadas para o projeto de um sistema empregando

modulação MNC. Já na Tabela 4.12, são trazidas as informações referentes à operação

com PWM senoidal MNC.

Tabela 4.11 – Dimensionamento dos componentes (modulação MNC).

Especificação Expressão Matemática

Limiar de inversão ( ) ( )[ ]φ+α+απ

> coscos2V

Vi

Indutor de entrada ( )

%

250i

ii iIf

VL∆π

φ+α⋅=

Indutor de equilíbrio ( ) ( )[ ]φ+α−α∆⋅⋅⋅π

= coscos2100

%bib If

VL

Chaves 1S e 2S

Tensão de bloqueio V2

Corrente média

( ) Iπ

φ+α2

2

Chaves HS1 , LS1 , HS2 e

LS2

Tensão de bloqueio V2

Corrente média

( )φ−α−ππ

22I

Diodos 1D e 2D

Tensão de bloqueio ( )φ+αsen2 V

Corrente média

( ) I⋅π

φ−α−π

2

2

Page 167: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 151

Tabela 4.12 - Dimensionamento dos componentes (PWM senoidal MNC).

. Especificação Expressão Matemática

Limiar de inversão 2

2 VmV a

i >

Indutor de entrada ω∆=

%

250

i

ai iI

mVL

Indutor de equilíbrio %

250

bsab iIfm

VL

∆=

Chaves 1S e 2S

Tensão de bloqueio V2

Corrente média Ima ⋅

π−

21

Chaves HS1 , LS1 , HS2 e

LS2

Tensão de bloqueio V2

Corrente média π

Ima

Diodos 1D e 2D

Tensão de bloqueio V2

Corrente média π

Ima

4.5 – Conclusões Parciais

Neste capítulo foi apresentado o inversor boost MNC 2 células, uma nova topologia

de inversor multinível em corrente, proposta neste trabalho, e sua aplicação a sistemas

fotovoltaicos monofásicos conectados à rede elétrica. Dois possíveis modos de operação

desta topologia foram analisados: operação com modulação MNC e operação com PWM

senoidal MNC.

A concepção desta nova topologia, associando as características de um inversor

CSI convencional às de um conversor CC-CC boost MNC, foi abordada de forma didática,

de modo a tornar o desenvolvimento do texto mais agradável e acessível.

A topologia de inversor MNC proposta representa um avanço no estudo de

conversores multiníveis em corrente, pois traz simplificações, tanto no ponto de vista

topológico, quanto no ponto de vista do acionamento das chaves. O inversor boost MNC 2

Page 168: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 152

células é uma topologia que utiliza seis chaves semicondutoras, das quais apenas duas

devem ser, obrigatoriamente, autocomutadas. Justamente estas duas chaves, que compõem

o conversor CC-CC boost MNC 2 células, são as contempladas com a divisão de corrente

proporcionada pela operação MNC. Esta topologia é capaz de sintetizar uma corrente em

até cinco níveis em sua saída. Contrapondo, a topologia de inversor MNC capaz de

sintetizar uma corrente em cinco níveis, que havia sido apresentada em trabalhos

anteriores a este, emprega oito chaves autocomutadas, acionadas por uma estratégia de

chaveamento complexa. Já o inversor boost MNC emprega uma lógica de chaveamento

extremamente simples, seja na operação com modulação MNC ou na operação com PWM

senoidal MNC. Em ambos os casos, as chaves da ponte inversora são comutadas em

sincronismo com a rede elétrica e toda a lógica da operação MNC se concentra nas chaves

do conversor CC-CC boost MNC 2 células.

A análise matemática da estrutura proposta foi desenvolvida de forma rigorosa,

para seus dois modos de operação. Foram definidos os estágios de operação, com a análise

do comportamento das principais tensões e correntes do circuito, permitindo traçar suas

formas de onda idealizadas. A análise do conteúdo harmônico da corrente sintetizada na

saída do inversor foi abordada, permitindo a determinação dos ângulos ótimos para a

operação com modulação MNC e a verificação da distribuição de seu espectro harmônico

para a operação com PWM senoidal MNC. A partir desta análise, foi possível determinar

analiticamente a potência ativa injetada na rede pelo sistema. Foram desenvolvidas,

também, expressões úteis para o dimensionamento dos indutores, dispositivos

semicondutores e do arranjo fotovoltaico do sistema. Uma referência rápida às principais

expressões relacionadas ao dimensionamento dos componentes do sistema foi apresentada

no final do capítulo, com o objetivo de proporcionar um projeto rápido destes elementos.

A validação dos conceitos abordados neste capítulo foi realizada por meio de

simulação computacional, utilizando o software PSpice. Com o objetivo de tornar as

simulações mais fiéis a um sistema fotovoltaico real, foi desenvolvido um modelo,

adequado para simulação no software utilizado, do painel PV disponível em laboratório.

Para a operação com modulação MNC foi apresentado um exemplo de projeto,

apresentando “passo-a-passo” a seleção do arranjo fotovoltaico e dos elementos utilizados

na simulação. Esta seleção dos componentes do circuito foi omitida para a operação com

PWM senoidal MNC, visto que um projeto detalhado para este caso será apresentado no

Page 169: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 4- Inversor Boost Multinível em Corrente e sua Aplicação a Sistemas PV Conectados à Rede Elétrica 153

próximo capítulo, que aborda a implementação de um protótipo do sistema proposto. Os

resultados obtidos nas simulações, para os dois modos de operação do sistema, foram

extremamente satisfatórios, estando em conformidade com os conceitos teóricos

apresentados.

Algumas considerações práticas relacionadas à operação com modulação MNC

foram apresentadas, de forma resumida, reforçando a importância da busca de alternativas

para a modulação MNC. Os problemas de desequilíbrio de corrente nas chaves e de

distorção da tensão da rede, bem como a adequação do conteúdo harmônico da corrente

sintetizada pelo inversor a recomendações internacionais relacionadas à conexão de

sistemas PV à rede elétrica, como a IEEE Std. 929-2000, foram discutidos. Embora uma

THD em torno de 16 % possa ser considerada baixa, visto o emprego de chaveamento

em baixa freqüência, ela implica que o sistema não está em conformidade com esta

recomendação.

Com o emprego da modulação por largura de pulso senoidal MNC, com

chaveamento em freqüências relativamente baixas, foi possível sintetizar uma corrente com

até cinco níveis na saída do inversor que, após filtragem (RLC), pôde apresentar uma

THD inferior a 5 %, sem comprometer a eficiência do sistema com o aumento excessivo

das perdas por chaveamento. Isto faz com que o sistema esteja em conformidade, no que

se refere à qualidade de energia elétrica, com a recomendação citada. Além disso, observa-

se que os problemas práticos apresentados na operação com modulação MNC são

eliminados ou, pelo menos, minimizados, com o emprego de PWM senoidal MNC.

Diante do exposto, no próximo capítulo será apresentada a implementação do

protótipo de pequena escala de um sistema PV monofásico conectado à rede de energia

elétrica, baseado no inversor boost MNC 2 células operando com PWM senoidal MNC,

com o objetivo de validar experimentalmente os conceitos teóricos apresentados, dando

mais consistência aos mesmos.

Page 170: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

CCCaaapppííítttuuulllooo 555

PPPrrroootttóóótttiiipppooo dddeee uuummm SSSiiisssttteeemmmaaa

FFFoootttooovvvooollltttaaaiiicccooo MMMooonnnooofffááásssiiicccooo BBBaaassseeeaaadddooo

nnnooo IIInnnvvveeerrrsssooorrr BBBoooooosssttt MMMNNNCCC

A nova topologia proposta neste trabalho foi analisada minuciosamente no

capítulo anterior, onde os conceitos teóricos desenvolvidos foram verificados por meio de

simulação computacional. Embora uma estrutura qualquer possa ser validada pela análise

de resultados de simulação computacional, a obtenção de resultados experimentais traz

mais consistência aos conceitos teóricos associados à topologia. Assim, o próximo passo

na validação da teoria desenvolvida no Capítulo 4 é a implementação de um protótipo em

laboratório, possibilitando confrontar resultados teóricos e experimentais. Este capítulo

trata da descrição do protótipo desenvolvido, apontando detalhes práticos importantes de

implementação do sistema, bem como apresenta resultados experimentais que confirmam

os conceitos teóricos propostos.

Neste capítulo é apresentada uma descrição do protótipo implementado,

detalhando, na forma de um exemplo de projeto, os passos adotados na implementação de

um sistema fotovoltaico baseado no inversor boost MNC 2 células. Conforme discutido no

capítulo anterior, o protótipo implementado baseia-se na operação com PWM senoidal

Page 171: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 155

MNC da topologia proposta, pois é mais adequada a um sistema PV conectado à rede de

energia elétrica. De modo a adequar a disponibilidade de componentes e painéis

fotovoltaicos em laboratório, foi implementado o protótipo de um sistema PV em escala

reduzida, utilizando o menor arranjo fotovoltaico necessário para a operação do inversor

boost MNC conectado à rede elétrica.

Finalmente, são apresentados e analisados os resultados experimentais obtidos por

meio de medições no protótipo implementado.

Os principais resultados descritos neste capítulo foram incluídos em um artigo

técnico, selecionado para apresentação no XV Congresso Brasileiro de Automática (CBA

2004) pelo corpo de revisores da Sociedade Brasileira de Automática (SBA) [77].

5.1 – Descrição do Protótipo Desenvolvido

Foi desenvolvido em laboratório um sistema PV monofásico, conectado à rede de

energia elétrica, baseado no inversor boost MNC. A rede de energia elétrica local possui

V 127=V (valor eficaz) e Hz 60=f . Devido à disponibilidade em laboratório, foi

utilizado um arranjo fotovoltaico de 360 Wp, composto por três painéis PV do tipo BP

SX-120, fabricados pela BP Solar [25].

Foi adotada uma freqüência de chaveamento kHz 3=sf para as chaves 1S e 2S .

Deste modo tem-se um PWM senoidal MNC com 50=fm . Já o índice de modulação de

amplitude considerado para o projeto dos componentes do sistema foi considerado como

9,0=am .

O circuito completo do inversor boost MNC pode ser dividido em duas partes

básicas:

q circuito de potência;

q circuito de acionamento das chaves.

O circuito de potência é o módulo principal do protótipo, responsável pelo

processamento da energia solar convertida pelos painéis fotovoltaicos, composto pelas

chaves semicondutoras, diodos e indutores, ou seja, a nova topologia de inversor MNC

Page 172: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 156

propriamente dita. O circuito de acionamento das chaves é constituído pelos circuitos

de sincronismo e geração dos pulsos de comando das chaves e pelos drivers ou circuitos

responsáveis pela interface entre os circuitos lógicos e o circuito de potência. O circuito de

acionamento das chaves é responsável pela implementação do PWM senoidal MNC. Estes

circuitos são descritos detalhadamente a seguir.

5.1.1 – Circuito de Potência

A apresentação do circuito de potência será realizada na forma de um exemplo de

projeto. Nesta seção é abordada a seleção do arranjo fotovoltaico, dos indutores, das

chaves semicondutoras e dos diodos do protótipo desenvolvido, bem como o projeto dos

dissipadores e do filtro de linha utilizados. A seleção dos componentes é feita empregando

as equações desenvolvidas no Capítulo 4, buscando, dentro do possível, uma adequação à

disponibilidade de componentes em laboratório. O esquema elétrico do circuito de

potência é mostrado na Fig. 5.1, onde as chaves semicondutoras autocomutadas são

MOSFETs, que foram escolhidas para implementar as chaves ativas da topologia devido à

sua disponibilidade em laboratório. Vale recordar que os conjuntos ( HS1 , HD1 ), ( LS1 ,

LD1 ), ( HS2 , HD2 ) e ( LS2 , LD2 ), que implementam as chaves unidirecionais em

corrente da ponte inversora, poderiam ser substituídos por tiristores. Nessa figura, pode-

se observar a inclusão de um capacitor, lcC , entre o conversor CC-CC boost MNC e a

ponte inversora, que não existe na topologia idealizada. Como é sabido da análise da

topologia, na operação correta do PWM senoidal MNC, a corrente no instante de

comutação das chaves da ponte inversora (cruzamento por zero da tensão senoidal da

rede) é nula, logo não é preciso que haja um “tempo vivo” no chaveamento da ponte

inversora, sobrepondo em um pequeno intervalo de tempo, os períodos de condução de

chaves de um mesmo braço. Entretanto, por segurança, para evitar sobretensões nos

componentes do circuito de potência caso haja falha no PWM senoidal MNC, um

pequeno capacitor de snubber, nF 100=snC , foi incluído entre o conversor CC-CC e a

ponte inversora como proteção, de modo a garantir que sempre haja caminho para

circulação da corrente dos indutores de entrada e de equilíbrio.

Page 173: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 157

Fig. 5.1 – Esquema elétrico do circuito de potência.

5.1.1.1 – Seleção do Arranjo Fotovoltaico

O arranjo fotovoltaico é definido de acordo com a potência desejada para o

sistema e de modo a proporcionar uma tensão superior ao limiar de inversão8 na entrada

do inversor boost MNC 2 células. A menor tensão de entrada necessária para que o sistema

opere como um inversor é dada por (4.84). Assim,

212729,0

22 ⋅⋅

=>Vm

V ai

V81>∴ iV . (5.1)

Deste modo, o arranjo fotovoltaico deve possuir um número mínimo de painéis

conectados em série, a fim de que a tensão de entrada seja superior a 81 V. No circuito

prático, ainda existe um diodo conectado em série com o arranjo fotovoltaico, cuja tensão

de polarização direta (cerca de 1 V) deve ser levada em consideração. Os painéis

fotovoltaicos disponíveis em laboratório são do tipo BP SX-120, cuja tensão no ponto de

potência máxima é igual a 33,7 V [25]. Conforme discutido no Capítulo 4, é razoável

realizar o projeto do arranjo fotovoltaico considerando seus parâmetros no ponto de

potência máxima. Logo, a configuração adotada utiliza três painéis fotovoltaicos

8 Vj. seções 4.2.3.1 e 4.3.2.3.

Page 174: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 158

conectados em série, resultando em uma tensão de entrada em torno de 100 V. Devido à

limitação da disponibilidade de painéis PV para serem utilizados no protótipo do sistema

proposto, foi utilizado um arranjo fotovoltaico com apenas três painéis.

Entre o arranjo PV e o indutor de entrada foi conectado um diodo retificador,

PVD , de 6 A / 800 V (especificado por “6A8”) e um capacitor eletrolítico, PVC , de

1000 Fµ / 250 V. Vale salientar que o diodo PVD está sobre-dimensionado, tendo sido

escolhido de acordo com a disponibilidade de componentes.

5.1.1.2 – Seleção dos Indutores

Os indutores de entrada e de equilíbrio foram dimensionados considerando a

entrada do circuito igual a 3,56 A, ou seja, igual à corrente de potência máxima dos painéis

PV [25].

Para o indutor de entrada, adotando uma ondulação de corrente igual a 10 % do

valor médio da corrente elétrica neste elemento, a partir de (4.94), tem-se:

( )6021056,39,0127250250

%⋅π⋅⋅⋅⋅⋅

=ω∆

=i

ai iI

mVL

mH 600≈∴ iL . (5.2)

Devido ao alto valor de indutância e à corrente nominal necessários, este indutor

deve ser construído com núcleo de ferro-silício, minimizando suas dimensões físicas

(proporcionais a 2ILi e dependentes da densidade de fluxo magnético de saturação do

núcleo). Um indutor de 600 mH / 5 A foi fabricado sob encomenda9 e utilizado no

protótipo do sistema.

Já o indutor de equilíbrio, a partir de (4.109), para uma ondulação de corrente de

10 %, deve ter uma indutância igual a:

9 Fabricado pela Powerbras Indústria Eletrônica LTDA. (www.powerbras.com.br).

Page 175: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 159

1056,330009,0127250250

%⋅⋅⋅

⋅=

∆=

bsab iIfm

VL

mH 93=∴ bL . (5.3)

A corrente nominal para este indutor deve ser superior a 1,78 A (metade da

corrente de entrada do circuito). Como já existia um indutor de 60 mH / 12,5 A, com

núcleo de ferro-silício, disponível em laboratório, optou-se em utilizar este elemento na

implementação do protótipo, devido a restrições orçamentárias. A partir de (4.109),

verifica-se que a ondulação de corrente para este valor de indutância é igual a 15,56 %, o

que ainda é um valor aceitável.

Cabe ressaltar que a freqüência de chaveamento do circuito se encontra dentro da

faixa de aplicação de núcleos de ferro-silício na construção de indutores e transformadores

[69].

5.1.1.3 – Seleção das Chaves Semicondutoras e Diodos

O dimensionamento das chaves semicondutoras e dos diodos pode ser realizado

para uma situação de sobrecarga do sistema, permitindo sua operação de uma forma mais

segura em condições normais. Na seleção das chaves e diodos do protótipo foi

considerada uma sobrecarga de 25 % em relação a corrente de potência máxima, ou seja,

A 4,5A 45,456,325,1 ≈=⋅=I . (5.4)

De acordo com a disponibilidade de componentes em laboratório, optou-se pelo

uso de MOSFETs na implementação das chaves autocomutadas do sistema. Tanto

MOSFETs quanto diodos são especificados pela corrente média que o dispositivo é capaz

de conduzir e pela máxima tensão de bloqueio do componente, além da freqüência de

chaveamento a qual estiverem submetidos.

Todas as chaves e diodos do circuito, com exceção de PVD , são submetidos,

quando em estado de bloqueio, a uma tensão de até V2 .

Page 176: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 160

A corrente média nas chaves 1S e 2S é calculada por (4.111). Assim,

5,49,021

21

1 ⋅

π−=⋅

π−= ImI a

S

A 9685,01 =∴ SI . (5.5)

Já as chaves e diodos da ponte inversora têm o valor médio de suas correntes

elétricas dado por (4.113), ou seja,

π⋅

=5,49,0

1ImI a

HS

A 2892,11 =∴ HSI (5.6)

O valor médio da corrente nos diodos 1D e 2D é dado por (4.115), que é uma

expressão idêntica a (4.113). Logo:

A 2892,11 =∴ DI (5.7)

As chaves 1S e 2S são comutadas em 3 kHz, o que faz com que os diodos 1D e

2D sejam comutados (bloqueio e livre circulação) com a mesma freqüência. Já as chaves

da ponte inversora (conjuntos MOSFET+diodo), apesar de serem comutadas na

freqüência da rede elétrica (60 Hz), não devem ser chaves “lentas”, pois suas correntes

elétricas variam numa freqüência igual a sf2 , ou seja, 6 kHz.

De acordo com os parâmetros calculados, e levando em consideração também a

disponibilidade em laboratório, foram escolhidos os componentes IRF740 e MUR860

como MOSFETs e diodos do circuito, respectivamente. As principais características

elétricas destes componentes são apresentadas na Tabela 5.1.

Page 177: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 161

Tabela 5.1 – Características elétricas dos componentes empregados no protótipo.

Parâmetro MOSFET IRF740 [71] Diodo MUR860 [72] Corrente média (A) 10 8

Corrente de pico (A) 40 100 Tensão de bloqueio (V) 400 600

Queda de tensão direta (V) --- 1,5 Resistência de condução (Ω) 0,55 ---

5.1.1.4 – Projeto dos Dissipadores de Calor

A capacidade natural de um dispositivo semicondutor de transportar o calor

gerado em sua junção, devido ao efeito Joule, muitas vezes não é suficiente para manter

sua temperatura de junção dentro de seus limites físicos, o que pode acarretar na sua

destruição. Daí surge a necessidade do emprego de dispositivos que venham a facilitar o

transporte de calor da junção para o ambiente externo ao componente. Esses dispositivos

são os chamados dissipadores de calor (ou radiadores de calor). Geralmente, no projeto de

um conversor estático é necessário o emprego de dissipadores de calor para as chaves

semicondutoras e diodos, de modo a aumentar a confiabilidade da operação do mesmo.

Dentre as possibilidades de acondicionamento dos MOSFETs e diodos do circuito

do inversor boost MNC em dissipadores de calor, optou-se pela configuração mostrada na

Fig. 5.2. Os MOSFETs e diodos de uma mesma célula MNC ( 1S e 1D ; 2S e 2D ) foram

montados sobre o mesmo dissipador, pois possuem comportamento complementar (no

que se refere a condução e bloqueio) e um ponto comum de conexão no circuito, o que

facilita o layout da placa de circuito impresso do circuito de potência. Já para os

dispositivos da ponte inversora, cada par que implementa uma chave unidirecional em

corrente ( HS1 e HD1 ; LS1 e LD1 ; HS2 e HD2 ; LS2 e LD2 ) foi montado sobre o

mesmo dissipador, única e exclusivamente em função do layout da placa de circuito

impresso do circuito de potência.

Page 178: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 162

IRF740 MUR860

DISSIPADOR

ISOLADOR(MICA) ISOLADOR

(MICA)

PLACA DE CIRCUITO IMPRESSO Fig. 5.2 – Configuração escolhida para acondicionar os MOSFETs e diodos nos

dissipadores de calor.

Dada a configuração da Fig. 5.2, é possível desenhar um circuito análogo térmico-

elétrico genérico, para cada par MOSFET-diodo, para modelar o transporte de calor da

junção dos dispositivos para o ar, conforme mostrado na Fig. 5.3 [66] e [70]. Nesta figura,

as resistências térmicas que modelam a dificuldade de se transportar calor de um ponto do

circuito ao outro são designadas pela letra grega Θ , seguida do índice que indica os pontos

onde são conectadas. Os índices “M” e “D” são referentes aos parâmetros do MOSFET e

do diodo, respectivamente. As resistências térmicas junção-encapsulamento ( jcΘ ) e

temperaturas máximas admissíveis na junção do IRF740 e do MUR860 são apresentadas na

Tabela 5.2. A potência dissipada em cada MOSFET pode ser calculada por (5.8).

( )2MondsM IrP ⋅= , (5.8)

onde ( )ondsr é a resistência de condução do IRF740 e 1SM II = ou HSM II 1= ,

dependendo do MOSFET sob análise. Já a potência dissipada em cada diodo é dada por:

DFD IVP ⋅= , (5.9)

onde FV é a queda de tensão direta do MUR860 e 1DD II = ou HSD II 1= , dependendo

do diodo sob análise.

Page 179: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 163

Fig. 5.3 – Circuito análogo térmico-elétrico genérico (para cada par MOSFET-diodo).

Tabela 5.2 – Características térmicas dos componentes empregados no protótipo.

Parâmetro Símbolo MOSFET IRF740 [71] Diodo MUR860 [72] Máxima temperatura na

junção (°C) máxjT , 150 175

Resistência térmica junção-encapsulamento

(°C/W) jcΘ 1 2

O projeto do dissipador consiste em determinar o valor máximo de sua resistência

térmica ( saΘ ) que permita retirar calor da junção dos dispositivos de modo que sua

temperatura não exceda seus limites físicos, evitando a destruição do componente.

Usualmente, no projeto de um dissipador, considera-se a temperatura de trabalho da

junção do dispositivo semicondutor igual a 70 % ou 80 % de máxjT , . Assim, tem-se

C1201508,0 °=⋅=jMT para os MOSFETs e C1401758,0 °=⋅=jDT para os diodos.

A temperatura ambiente, aT , deve ser considerada igual a 40 °C em ambientes onde não

existe um controle rígido da temperatura. A resistência térmica encapsulamento-dissipador

( csΘ ) típica para os MOSFETs e diodos (encapsulamento TO-220 AB), utilizando

isolador (mica) e pasta térmica, é igual a 2,5 °C/W. A partir do circuito da Fig. 5.3 pode-se

escrever as expressões que determinam o maior valor de saΘ admissível para cada chave.

Page 180: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 164

Para os MOSFETs,

( )

DM

McsjcMajMsaM PP

PTT+

⋅Θ+Θ−−≤Θ . (5.10)

Para os diodos,

( )

DM

DcsjcDajDsaD PP

PTT+

⋅Θ+Θ−−≤Θ . (5.11)

O dissipador deve ser escolhido de modo que sua resistência térmica atenda (5.10)

e (5.11) simultaneamente. Assim,

( )saDsaMsa ΘΘ≤Θ ,min . (5.12)

A Tabela 5.3 traz um resumo dos valores calculados no projeto dos dissipadores do

inversor boost MNC 2 células. Os resultados exibidos para os pares ( 1S e 1D ) e ( HS1 e

HD1 ) representam os cálculos efetuados para todas as chaves do circuito de potência.

Tabela 5.3 – Projeto dos dissipadores de calor.

Dispositivo 1S 1D HS1 HD1

Potência Dissipada (W) 0,5159 1,9338 0,914 1,9338

Máxima saΘ admissível para o dispositivo

(°C/W) 31,9 37,3 26,97 32,06

Máxima saΘ admissível para o conjunto (°C/W)

31,90 26,97

Para todos os pares MOSFET-diodo utilizou-se o mesmo tipo de dissipador, cuja

Page 181: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 165

resistência térmica saΘ , estimada a partir de [66], é igual a 23,7 °C/W e atende às

necessidades de dissipação de calor de todos os dispositivos semicondutores.

5.1.1.5 – Projeto do Filtro de Linha

A seleção dos valores dos componentes do filtro de linha foi realizada de forma

empírica, seguindo os princípios discutidos na seção 4.3.2.6. A configuração escolhida é

apresentada na Tabela 5.4.

Tabela 5.4 – Elementos do filtro de linha.

mH 3=fL H 7,4 µ=fC Ω= 7,4fR

O indutor do filtro de linha foi construído com um núcleo de ferrite EE 65/26,

com 90 espiras de fio 16 AWG. O projeto deste indutor, baseado em [73] – [75], é

apresentado no Apêndice C.

A análise da resposta em freqüência do filtro pode ser realizada por meio do

diagrama de Bode traçado a partir da equação (4.116). Este diagrama de Bode,

considerando a indutância característica da rede, sL , igual a 0,5 mH é mostrado na Fig.

5.4. O ganho e a fase do filtro em 60 Hz ficaram em 0,02 dB e -0,00115°, respectivamente.

A impedância do filtro em 60 Hz é igual a Ω°−∠ 5,89563 , que faz com que o filtro

consuma uma corrente capacitiva de 0,3197 A da rede elétrica, nesta freqüência. As

freqüências em torno de sf2 (ou seja, 6 kHz) são atenuadas em 24,7 dB.

Page 182: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 166

Fig. 5.4 – Diagrama de Bode do filtro de linha.

5.1.1.6 – Quadro Resumo dos Componentes do Circuito de Potência

A Tabela 5.5 traz um resumo dos componentes empregados no circuito de

potência a fim de permitir uma rápida referência aos tipos e valores dos elementos

utilizados.

Tabela 5.5 – Quadro resumo dos componentes do circuito de potência.

Elemento Tipo ou Valor Painéis Fotovoltaicos 3 × BP SX-120

PVD Diodo retificador 6A8

PVC 1000 µF / 250 V (eletrolítico)

iL 600 mH / 5 A (CC) – núcleo de ferro-silício

bL 60 mH / 12,5 A (CC) – núcleo de ferro-silício

1S , 2S , HS1 , LS1 , HS2 e LS2 MOSFET IRF740

1D , 2D , HD1 , LD1 , HD2 e LD2 Diodo MUR860

fL 3 mH / 4,5 A(rms) – núcleo de ferrite

fR 4,7 Ω / 5 W

fC 4,7 µF / 250 V (poliéster)

Page 183: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 167

5.1.2 – Circuito de Acionamento das Chaves

O circuito de acionamento das chaves é composto pelos circuitos de sincronismo e

geração dos pulsos de comando das chaves e pelos drivers ou circuitos responsáveis pela

interface entre os circuitos lógicos e o circuito de potência. O diagrama funcional do

circuito de acionamento das chaves é apresentado na Fig. 5.5.

Fig. 5.5 – Circuito de acionamento das chaves (diagrama funcional).

O PWM senoidal MNC é realizado por meio da comparação de duas ondas

triangulares de 3 kHz, defasadas de 180° entre si, com uma tensão senoidal retificada (cuja

amplitude pode ser ajustada, permitindo a variação do valor de am ). A tensão senoidal

retificada é uma cópia da tensão da rede elétrica, obtida por meio de um transformador

abaixador. Deste modo, os pulsos de comando das chaves 1S e 2S variam de forma

sincronizada com a tensão da rede elétrica. Estas chaves são acionadas utilizando o driver

integrado IR2104, através de sua saída inversora (LO), que é referenciada ao terra do

circuito de acionamento das chaves [76].

Os pulsos que comandam as chaves da ponte inversora são gerados de forma

simples, a partir da comparação de uma cópia da tensão da rede, obtida com o mesmo

Page 184: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 168

transformador abaixador utilizado na modulação por largura de pulso, ao nível de

referência (terra) do circuito de acionamento. Como já foi dito anteriormente, não é

necessária a preocupação em evitar que as chaves de um mesmo braço da ponte sejam

bloqueadas simultaneamente, como ocorre com inversores CSI convencionais. Esses

pulsos são aplicados às chaves HS1 , LS1 , HS2 e LS2 por meio de dois drivers com

isolamento magnético, pois os terminais de referência para o acionamento destes

MOSFETs (terminais source) não são conectados aos mesmos pontos do circuito de

potência. Neste caso, não é possível utilizar o driver integrado IR2104, nem outro de sua

família, de tecnologia bootstrap, pois este tipo de circuito integrado não suporta a conexão

direta à rede elétrica. Os drivers isolados utilizados são adaptações dos circuitos de

acionamento empregados em [51] e [52]. O esquema elétrico destes drivers é mostrado na

Fig. 5.6. O esquema elétrico completo do circuito de acionamento das chaves é exibido na

Fig. 5.7.

Uma fotografia do protótipo do sistema PV baseado no inversor boost MNC 2

células é mostrada na Fig. 5.8. Nesta figura pode-se observar a presença de alguns “jumpers”

inseridos na placa de circuito impresso do circuito de potência com a finalidade de

possibilitar a medição da corrente nos principais ramos deste circuito. Estes jumpers são

responsáveis pelo aumento da indutância parasita nos ramos em que estão conectados.

Isto pode provocar sobretensões nos instantes de desligamento das chaves da estrutura.

No entanto, não se observou elevações exageradas nas tensões sobre os elementos do

circuito, em testes com tensão reduzida, o que fez desnecessário o uso de snubbers de

sobretensão [66]. Este fato vem comprovar a boa qualidade do layout e da confecção da

placa de circuito impresso do protótipo desenvolvido.

Fig. 5.6 – Driver com isolamento magnético.

Page 185: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 169

Fig. 5.7 – Circuito de acionamento das chaves.

Page 186: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 170

Fig. 5.8 – Foto do protótipo do sistema PV baseado no inversor boost MNC 2 células.

5.2 – Simulação Incluindo Elementos Parasitas

Uma forma de verificar se os resultados obtidos em medições no protótipo

montado em laboratório refletem os conceitos teóricos é por meio do confrontamento

com uma simulação computacional que represente a situação encontrada na prática. Por

isso, nesta seção é apresentada a simulação computacional de um circuito elétrico que

modela o protótipo do sistema PV baseado no inversor boost MNC 2 células, mostrado na

Fig. 5.9.

Fig. 5.9 – Circuito utilizado na simulação incluindo elementos parasitas.

Page 187: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 171

Nesta simulação são utilizados os mesmos valores de capacitores e indutores e o

modelo do mesmo arranjo fotovoltaico da Tabela 5.5. Para as chaves e diodos, optou-se

em utilizar os modelos “Sbreak” e “Dbreak” do Pspice, pois foi observado que uso dos

modelos correspondentes aos componentes verdadeiros (IRF740 e MUR860, disponíveis

neste software) introduz problemas de convergência na simulação do sistema. Para o

componente “Sbreak” foi considerada uma resistência de condução igual a 0,55 Ω.

São incluídos alguns elementos parasitas, de modo a tornar a simulação

computacional mais próxima da realidade. As resistências série dos indutores de entrada e

de equilíbrio são consideradas como 1,2 Ω e 0,3 Ω, que são seus respectivos valores

medidos em laboratório. A indutância característica da rede foi considerada igual a 0,5 mH.

As principais formas de onda de corrente e da tensão de saída (PCC) do circuito

são apresentadas na Fig. 5.10. Outras formas de onda de tensão são exibidas na Fig. 5.11

Fig. 5.10 – Simulação incluindo elementos parasitas (principais formas de onda):

(a) corrente nos indutores de entrada e de equilíbrio; (b) corrente em S1; (c) corrente em S2; (d) corrente em D1; (e) corrente em D2; (f) corrente na saída do conversor CC-CC boost MNC (3 níveis);

(g) corrente em S1H; (h) corrente em S1L; (i) corrente sintetizada pelo inversor (5 níveis); (j) corrente injetada na rede e tensão da rede (escala reduzida em 40 vezes).

Page 188: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 172

Fig. 5.11 – Simulação incluindo elementos parasitas (formas de onda de tensão): (a) tensão no indutor de entrada; (b) tensão no indutor de equilíbrio; (c) tensão em S1;

(d) tensão em S2; (e) tensão em S1H; (f) tensão em S1L.

Nesta simulação foi obtida uma corrente com THD = 3,303 %, com ângulo de

defasagem da componente fundamental igual a -4,628°, resultando num FP = 0,9962. Os

valores médios das correntes nos indutores, chaves e diodos do conversor CC-CC boost

MNC 2 células são apresentados na Tabela 5.6. Pode-se observar uma divisão bem

equilibrada da corrente entre as chaves 1S e 2S e entre os diodos 1D e 2D , mesmo com

a consideração da resistência série do indutor de equilíbrio, o que confirma que a operação

com PWM senoidal MNC é capaz minimizar este tipo de desequilíbrio de corrente. A

Page 189: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 173

potência de entrada do sistema obtida foi de 311,3 W, sendo que 283,8 W foram entregues

à rede elétrica. Como as resistências série dos indutores e de condução das chaves foram

incluídas na simulação, este resultado pode ser utilizado para estimar o rendimento teórico

do sistema. Assim, o rendimento teórico do sistema ficou em 91,18 %. As formas de onda

das figuras anteriores podem ser utilizadas como referência para comparação dos

resultados experimentais que serão apresentados a seguir.

Tabela 5.6 – Verificação do equilíbrio de corrente da operação MNC.

iI 3,523 A

bI 1,6319 A

1SI 0,8155

2SI 0,6993 A

1DI 1,076 A

2DI 0,9324 A

5.3 – Resultados Experimentais

As principais formas de onda obtidas para o protótipo desenvolvido são

apresentadas nesta seção. A aquisição destas formas de onda foi realizada utilizando o

osciloscópio digital TDS 524A, da Tektronix. As correntes nos principais ramos do circuito

de potência foram medidas utilizando ponteiras de corrente A622, da Tektronix, na escala

de 100 mV/A. As medições de tensão do circuito de potência foram efetuadas utilizando o

sensor de efeito Hall LV 25-P, fabricado pela LEM, com relação de 50:1. Para minimizar o

erro na medição da fase da corrente injetada na rede elétrica, esta foi medida utilizando um

sensor de efeito Hall semelhante ao utilizado para as medições de tensão. Este sensor é o

LA 55-P, também fabricado pela LEM, e a relação de medição utilizada foi de 1 V/A.

Todas as formas de onda apresentadas aqui foram obtidas com 9,0=am . Na Fig.

5.12 são apresentadas as principais formas de onda do circuito de acionamento das chaves.

As portadoras triangulares, com defasagem de 180° entre si, são exibidas na Fig. 5.12(a). A

portadora 1 é obtida a partir do gerador de sinais CFG250, da Tektronix e a portadora 2 é

obtida pelo circuito defasador mostrado na Fig. 5.7. A composição do PWM senoidal

MNC é detalhada, para uma das portadoras triangulares, na Fig. 5.12(b). Os pulsos de

Page 190: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 174

comando das chaves 1S e 2S , tomados na saída dos drivers IR2104 são apresentados na

Fig. 5.12(c). Na Fig. 5.12(d) são apresentados os pulsos de comando das chaves da ponte

inversora, na saída do driver com isolamento magnético. Pode-se observar nesta figura que

estes pulsos são sincronizados com a tensão da rede de energia elétrica.

(5 V/div; 200 µs/div)

(a)

(5 V/div; 500 µs/div)

(b)

(5 V/div; 2 ms/div)

(c)

(10 V/div; 5 ms/div)

(d)

Fig. 5.12 – Principais formas de onda do circuito de acionamento das chaves: (a) portadoras triangulares defasadas de 180° entre si; (b) detalhe do PWM senoidal para uma das

portadoras; (c) pulsos de comando de S1 e S2; (d) pulsos de comando das chaves da ponte inversora e sincronismo com a tensão da rede.

As principais formas de onda do circuito de potência são apresentadas na Fig. 5.13.

As tensões sobre os indutores de entrada e de equilíbrio são exibidas na Fig. 5.13(a) e na

Page 191: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 175

Fig. 5.13(b), respectivamente. As formas de onda de tensão sobre as chaves do conversor

boost MNC 2 células são mostradas na Fig. 5.13(c) e as formas de onda de tensão sobre as

chaves de um dos braços da ponte inversora são exibidas na Fig. 5.13(d). Todas essas

formas de onda apresentam boa conformidade com os resultados teóricos.

(100 V/div; 2 ms/div)

(a)

(100 V/div; 2 ms/div)

(b)

(100 V/div; 2 ms/div)

(c)

(100 V/div; 5 ms/div)

(d)

Fig. 5.13 – Principais formas de onda de tensão do circuito de potência: (a) tensão sobre o indutor de entrada; (b) tensão sobre o indutor de equilíbrio; (c) tensões nas

chaves S1 e S2; (d) tensões nas chaves S1H e S1L.

Na Fig. 5.14 são apresentadas as principais formas de onda de corrente medidas no

protótipo desenvolvido. As medições foram realizadas em um dia com grandes variações

de insolação, o que pode trazer ligeira divergência entre algumas medições, já que não

Page 192: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 176

foram realizadas simultaneamente. As correntes nos indutores de entrada e de equilíbrio

são exibidas na Fig. 5.14(a). As correntes nas chaves e diodos do conversor CC-CC boost

MNC 2 células são mostradas na Fig. 5.14(b) e Fig. 5.14(c), respectivamente. Na Fig.

5.14(d) é exibida a corrente na saída do conversor CC-CC, com três níveis. As correntes

nas chaves de um braço da ponte inversora são mostradas na Fig. 5.14(e). A forma de

onda da corrente sintetizada na saída do inversor, antes do filtro, com cinco níveis, é

mostrada na Fig. 5.14(f).

Pode-se observar uma divisão bem equilibrada entre a corrente nas chaves e nos

diodos do conversor CC-CC boost MNC 2 células, com 1S e 1D assumindo a ondulação

de corrente em iL (como na simulação). Apesar do equilíbrio da divisão de corrente poder

ser verificado visualmente pelas formas de onda de corrente nos indutores (Fig. 5.14(a)), os

valores médios das correntes nestes elementos, nas chaves e diodos do conversor CC-CC

medidos são apresentados na Tabela 5.7, de modo a proporcionar uma análise quantitativa

da divisão de corrente. Destas medições observa-se que o desequilíbrio da divisão da

corrente entre os indutores (ou entre as células MNC) ficou em 3,3%. O desequilíbrio no

compartilhamento da corrente total de entrada do sistema entre os diodos ficou em 2,5 %

e, entre as chaves, ficou em 11,15 %. Estes valores porcentuais de erro vêm reforçar a

verificação da capacidade de divisão de corrente entre os componentes das células MNC.

A principal causa de divergência na divisão de corrente é a resistência série do indutor de

equilíbrio, conforme discutido no Capítulo 4.

Tabela 5.7 – Verificação do equilíbrio de corrente da operação MNC.

iI 2,996 A

bI 1,548 A

1SI 0,590

2SI 0,664 A

1DI 0,942 A

2DI 0,918 A

Page 193: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 177

(1 A/div; 5 ms/div)

(a)

(1 A/div; 2 ms/div)

(b)

(1 A/div; 2 ms/div)

(c)

(2 A/div; 5 ms/div)

(d)

(2 A/div; 5 ms/div)

(e)

(2 A/div; 5 ms/div)

(f)

Fig. 5.14 – Principais formas de onda de corrente do circuito de potência: (a) correntes nos indutores de entrada e de equilíbrio; (b) correntes nas chaves S1 e S2; (c) correntes

nos diodos D1 e D2; (d) corrente na saída do conversor CC-CC boost MNC 2 células (3 níveis); (e) correntes nas chaves S1H e S1L; (f) corrente na saída do inversor (5 níveis).

Page 194: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 178

Na Fig. 5.15 são apresentadas as formas de onda da corrente injetada na rede e da

tensão da rede no ponto de acoplamento comum. A corrente injetada na rede apresentou

uma THD = 4,62 %, com ângulo de defasagem da componente fundamental igual a

-3,889 °, resultando numa operação com FP = 0,9966. Este valor de taxa de distorção

harmônica de corrente faz com que o sistema proposto esteja em conformidade com a

IEEE Std. 929-2000, no que se refere à qualidade de energia elétrica. O espectro

harmônico da corrente injetada na rede, para 51 harmônicas, obtido com o software

WaveStar é mostrado na Fig. 5.16. Nesta figura pode-se verificar que a amplitude de cada

harmônico é inferior a 2,4 % da amplitude da componente fundamental da corrente

injetada na rede. A análise da variação da THD da corrente injetada na rede, do FP e do

rendimento do protótipo em função da potência processada e do índice de modulação de

amplitude é abordada nas próximas seções.

Fig. 5.15 – Corrente injetada na rede (2 A/div; 5ms/div) e tensão no PCC (50 V/div; 5

ms/div)

Page 195: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 179

Fig. 5.16 – Espectro harmônico da corrente injetada na rede (valores de amplitude

expressos em % da componente fundamental).

5.3.1 – Avaliação da Taxa de Distorção Harmônica da Corrente Injetada na Rede Elétrica

A avaliação do comportamento da THD da corrente injetada na rede é

extremamente importante para o conhecimento pleno da funcionalidade e utilidade do

sistema. Nesta seção é desenvolvida uma análise, por meio de gráficos, da variação da

THD da corrente injetada na rede em função das potências de saída e de entrada e da

corrente de entrada do sistema. O comportamento da THD da corrente injetada na rede

em função da potência de entrada do sistema é incluído nesta análise, pois permite avaliar

quando o sistema está operando em sua capacidade nominal (ou potência máxima dos

painéis PV), onde a THD deve ser menor do que 5 %. Já a análise da variação da THD de

si em função da corrente de entrada do sistema (corrente drenada dos painéis PV)

permite avaliar o comportamento da operação MNC. Quanto menor a corrente na entrada

do sistema, mais significativa é a ondulação de corrente nos indutores, o que pode

distorcer a forma de onda de corrente multinível e comprometer o PWM senoidal MNC.

Estas análises são realizadas para índices de modulação de amplitude iguais a 0,8,

0,9, 1,0 e 1,1, sendo que uma atenção especial é dada para o caso onde 9,0=am , pois

corresponde à situação de projeto do sistema. Foi incluído um caso de sobre-modulação

Page 196: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 180

( 1,1=am ) para verificar o comportamento do sistema neste tipo de situação (que pode

ser explorada por alguma estratégia de rastreamento do ponto de máxima potência dos

painéis) [66].

Os valores de THD da corrente injetada na rede elétrica foram obtidos com o

software WaveStar. A potência de entrada e de saída do sistema foram calculadas por

(5.13) e (5.14), respectivamente.

PVPVi IVP ⋅= . (5.13)

( )11 cos ϕ⋅⋅= so IVP , (5.14)

onde 1sI e 1ϕ são, respectivamente, o valor eficaz e o ângulo de fase (em relação à tensão

no PCC) da componente fundamental da corrente injetada na rede, obtidos com o

software WaveStar.

Na Fig. 5.17 é apresentado o comportamento da THD da corrente injetada na rede

em função da variação da potência injetada na rede elétrica (potência de saída do sistema).

Pode-se observar que para uma potência de saída em torno de 120 W, a THD já é menor

que 10 %. A THD torna-se inferior a 5 % quando uma potência ligeiramente superior a

300 W é injetada na rede.

O comportamento da THD da corrente injetada na rede em função da potência de

saída do sistema, para outros valore de am é mostrado na Fig. 5.18. Para 8,0=am e

0,1=am , obteve-se um comportamento similar ao obtido para 9,0=am . Para

1,1=am , observa-se ligeiro aumento na THD da corrente injetada na rede.

Page 197: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 181

0 50 100 150 200 250 300 3500

10

20

30

40

50

60ma=0.9

Po (W)

THD

(%)

Fig. 5.17 – Variação da THD em função da potência de saída do sistema ( 9,0=am ).

0 50 100 150 200 250 300 3500

20

40

60

Po (W)

THD

(%)

0 50 100 150 200 250 300 3500

20

40

60

Po (W)

THD

(%)

0 50 100 150 200 250 300 3500

20

40

60

Po (W)

THD

(%)

ma=0.8

ma=1.0

ma=1.1

Fig. 5.18 – Variação da THD em função da potência de saída do sistema (avaliação com

variação de am ).

Na Fig. 5.19 é mostrado o comportamento da THD da corrente injetada na rede

em função da potência fornecida pelos painéis PV para 9,0=am . Observa-se que o

sistema sintetiza uma corrente com THD inferior a 5 %, quando opera próximo à sua

potência nominal (potência máxima dos painéis PV). Neste caso, a THD obtida foi igual a

Page 198: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 182

4,62 %. Um comportamento semelhante é obtido para 8,0=am e 0,1=am , como pode

ser visto na Fig. 5.20. Não foi possível levar o sistema a operar próximo às condições

nominais para 1,1=am , mas a THD obtida para este caso chegou a 6,32 %

0 50 100 150 200 250 300 3500

10

20

30

40

50

60ma=0.9

Pi (W)

THD

(%)

Fig. 5.19 – Variação da THD em função da potência de entrada do sistema ( 9,0=am ).

0 50 100 150 200 250 300 3500

20

40

60

Pi (W)

THD

(%)

0 50 100 150 200 250 300 3500

20

40

60

Pi (W)

THD

(%)

0 50 100 150 200 250 300 3500

20

40

60

Pi (W)

THD

(%)

ma=0.8

ma=1.0

ma=1.1

Fig. 5.20 – Variação da THD em função da potência de entrada do sistema (avaliação com

variação de am ).

O comportamento da THD da corrente injetada na rede em função da corrente

drenada dos painéis fotovoltaicos é mostrada na Fig. 5.21, para 9,0=am , e na Fig. 5.22,

Page 199: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 183

para outros valores de am . Como esperado, em todos os casos, observa-se a diminuição

da THD da corrente injetada na rede com o aumento da corrente drenada dos painéis.

Quanto maior a corrente de entrada do sistema, melhor definidos são os níveis da corrente

sintetizada pelo inversor, tornando o PWM senoidal MNC melhor caracterizado,

reduzindo a amplitude dos harmônicos espúrios que surgem entre f e sf2 .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

10

20

30

40

50

60ma=0.9

Ipv (A)

THD

(%)

Fig. 5.21 – Variação da THD em função da corrente de entrada do sistema ( 9,0=am ).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

20

40

60

Ipv (A)

THD

(%)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

20

40

60

Ipv (A)

THD

(%)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

20

40

60

Ipv (A)

THD

(%)

ma=0.8

ma=1.0

ma=1.1

Fig. 5.22 – Variação da THD em função da corrente de entrada do sistema (avaliação com

variação de am ).

Page 200: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 184

5.3.2 – Avaliação do Fator de Potência

O fator de potência é calculado a partir de (5.15), onde os valores de 1ϕ e THD

foram obtidos com o software WaveStar.

( )

21

1

cos

THDFP

+

ϕ= (5.15)

A curva que representa o comportamento do fator de potência em função da

potência injetada na rede elétrica, para 9,0=am , é apresentada na Fig. 5.23. Observa-se

que o sistema opera com alto fator de potência, apresentando 95,0>FP a partir de 75 W

de potência de saída. O maior fator de potência obtido nas medições foi igual a 0,9966,

correspondente a uma potência de saída em torno de 330 W. Uma operação com alto

fator de potência também foi obtida para outros valores de am , como pode ser visto na

Fig. 5.24.

0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1ma=0.9

Po (W)

FP

Fig. 5.23 – Variação do FP em função da potência de saída do sistema ( 9,0=am ).

Page 201: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 185

0 50 100 150 200 250 300 3500

0.2

0.4

0.6

0.8

1

Po (W)

FP

0 50 100 150 200 250 300 3500

0.2

0.4

0.6

0.8

1

Po (W)

FP

0 50 100 150 200 250 300 3500

0.2

0.4

0.6

0.8

1

Po (W)

FP

ma=0.8

ma=1.0

ma=1.1

Fig. 5.24 – Variação do FP em função da potência de saída do sistema (avaliação com

variação de am ).

5.3.3 – Avaliação do Rendimento da Topologia Proposta

O rendimento, η , de um sistema qualquer é dado pela relação entre suas potências

de entrada e saída, em porcentagem, ou seja,

%100⋅=η

i

o

P

P, (5.16)

onde iP e oP são calculadas através de (5.13) e (5.14), respectivamente.

A avaliação do rendimento da topologia em função da potência ativa injetada na

rede elétrica é apresentada, graficamente, para 9,0=am , na Fig. 5.25. O rendimento

obtido experimentalmente ficou entre 88 % e 96 %. A média dos valores de rendimento

calculados a partir das medições no protótipo é igual a 93,17 %, que é um valor próximo

do estimado na simulação incluindo elementos parasitas da Seção 5.2. Na Fig. 5.26 é

apresentada a avaliação do rendimento da topologia para outros valores de am . Como

esperado, de acordo com (4.82), os maiores valores de rendimento ocorrem para

Page 202: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 186

0,1=am . Para este caso, a média dos rendimentos obtidos experimentalmente ficou em

94,56 %.

0 50 100 150 200 250 300 3500

10

20

30

40

50

60

70

80

90

100ma=0.9

Po (W)

Ren

dim

ento

(%)

93.17

média

Fig. 5.25 – Variação do rendimento em função da potência de saída do sistema

( 9,0=am ).

0 50 100 150 200 250 300 3500

20

40

60

80

100

Po (W)

Ren

dim

ento

(%)

0 50 100 150 200 250 300 3500

20

40

60

80

100

Po (W)

Ren

dim

ento

(%)

0 50 100 150 200 250 300 3500

20

40

60

80

100

Po (W)

Ren

dim

ento

(%)

ma=0.8

ma=1.0

ma=1.1

93.17

média

média

média

94.56

93.78

Fig. 5.26 – Variação do rendimento em função da potência de saída do sistema (avaliação com variação de am ).

Page 203: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 187

5.4 – Conclusões Parciais

Este capítulo apresentou a implementação do protótipo de um sistema

fotovoltaico conectado à rede de energia elétrica baseado no inversor boost MNC 2 células,

operando com PWM senoidal MNC, e os respectivos resultados experimentais obtidos. O

protótipo foi implementado com características em escala reduzida, com o objetivo de

conciliar a validação dos conceitos teóricos descritos no Capítulo 4 com a disponibilidade

de painéis fotovoltaicos em laboratório.

O protótipo implementado foi dividido em duas partes principais, de modo a

tornar sua apresentação mais organizada: o circuito de potência e o circuito de

acionamento das chaves.

O circuito de potência engloba os elementos principais da topologia proposta

(painéis PV, chaves, diodos, indutores, etc.) e é responsável pelo processamento e

condicionamento da energia convertida pelo arranjo fotovoltaico. Este circuito foi

montado em uma placa de circuito impresso com layout apropriado para um sistema

experimental acadêmico, incluindo pontos de medição das correntes (jumpers) nos

principais elementos da topologia. O circuito de potência foi descrito no texto na forma de

um exemplo de projeto para o inversor boost MNC 2 células operando com PWM senoidal.

Por sua vez, o circuito de acionamento das chaves é constituído pelo circuito de

sincronismo e geração de pulsos e dos drivers que acionam os MOSFETs do circuito de

potência. Toda a lógica responsável pela composição do PWM senoidal MNC encontra-se

neste circuito. O sincronismo com a tensão da rede elétrica e geração dos pulsos de

acionamento das chaves foram implementados utilizando amplificadores operacionais e

comparadores de uso geral, como o LM324 e o LM339, respectivamente. Cada chave do

conversor CC-CC boost MNC foi acionada utilizando o driver integrado IR2104, enquanto o

acionamento das chaves da ponte inversora empregou dois drivers com isolamento

magnético, devido à necessidade de saídas referenciadas a diferentes pontos do circuito de

potência.

Uma grande conformidade foi observada entre os resultados experimentais obtidos

nas medições efetuadas no protótipo implementado e os obtidos por meio de simulação

computacional (que foi realizada incluindo elementos parasitas). Isto vem a evidenciar a

validação do modelo empregado na simulação da seção 5.2 e dos conceitos teóricos

Page 204: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 5- Protótipo de um Sistema Fotovoltaico Monofásico Baseado no Inversor Boost MNC 188

desenvolvidos no Capítulo 4. Foram apresentadas as principais formas de onda de tensão e

corrente do inversor boost MNC 2 células, para 9,0=am . A taxa de distorção harmônica,

o fator de potência e o rendimento do protótipo implementado foram avaliados, por meio

de gráficos, para diversos níveis de potência processada. Nestas análises observou-se,

também, o efeito da variação do índice de modulação de amplitude, incluindo um caso de

operação com sobre-modulação.

O sistema proposto apresentou um bom desempenho, seja do ponto de vista da

eficiência, da qualidade de energia elétrica ou da divisão equilibrada da corrente entre as

chaves do conversor CC-CC boost MNC 2 células.

Nas condições de projeto obteve-se uma corrente injetada na rede com THD igual

a 4,62 %, em conformidade com a recomendação IEEE Std. 929-2000. Para este caso, o

ângulo de defasagem da componente fundamental ficou em -3,889 °, resultando numa

operação com FP = 0,9966. Isto significa que foi possível injetar na rede uma corrente

praticamente senoidal e em fase com a tensão no PCC.

Como esperado, a topologia proposta apresentou alta eficiência na conversão de

energia, com rendimento médio igual a 93,17 %. Os principais focos de perda de energia

no inversor são as resistências parasitas dos indutores. No caso das chaves, com o

emprego de uma freqüência de chaveamento de 3 kHz, prevalecem as perdas por

condução, sendo praticamente desprezíveis as perdas por chaveamento.

A utilização do PWM senoidal MNC mostrou-se capaz de proporcionar uma

divisão bem equilibrada da corrente entre as chaves e diodos do conversor CC-CC boost

MNC, que foi obtida sem a inclusão de nenhuma técnica de compensação devido à

presença de elementos parasitas.

Os resultados apresentados neste capítulo constituem um passo muito importante,

não só no estudo da topologia proposta, mas também no estudo de conversores MNC em

geral, pois evidenciam a confiabilidade do sistema proposto, permitindo vislumbrar sua

aplicação em sistemas fotovoltaicos de maiores potências, onde a técnica MNC apresenta

suas melhores vantagens, e, também, a aplicação do PWM senoidal MNC a outras

topologias de inversores e retificadores multiníveis em corrente.

Page 205: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

CCCaaapppííítttuuulllooo 666

CCCooonnncccllluuusssõõõeeesss FFFiiinnnaaaiiisss &&& TTTrrraaabbbaaalllhhhooosss

FFFuuutttuuurrrooosss

Neste trabalho foi apresentada uma nova topologia de inversor multinível em

corrente e sua aplicação no processamento e condicionamento de energia em sistemas

fotovoltaicos monofásicos conectados à rede de energia elétrica. A estrutura proposta,

baseada no conversor CC-CC boost MNC 2 células, permite que um sistema fotovoltaico

opere com alto fator de potência, injetando na rede elétrica uma corrente praticamente

senoidal e em fase com a tensão no ponto de acoplamento comum entre o sistema PV e

as cargas. Os principais atrativos da utilização da técnica multinível em corrente são a

divisão equilibrada de corrente entre chaves semicondutoras (característica associada ao

paralelismo de células de comutação), redução da taxa de variação de corrente ( dtdi/ )

nos dispositivos do circuito e conseqüente diminuição da interferência eletromagnética

(EMI) conduzida e irradiada, além da possibilidade de ajuste ou minimização do conteúdo

harmônico de formas de onda de corrente.

Esta nova topologia de inversor MNC é composta pela conexão em cascata de um

conversor CC-CC boost MNC, empregando duas células MNC, e um inversor CSI

convencional, como mostrado na Fig. 4.1. Devido à forma de sua composição, a topologia

apresentada neste trabalho foi denominada “inversor boost MNC 2 células”. Na

configuração proposta, apenas duas chaves devem ser, obrigatoriamente, autocomutadas.

Page 206: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 6- Conclusões Finais & Trabalhos Futuros 190

Estas são as chaves que compõem o conversor CC-CC boost MNC, responsáveis pela

modulação da corrente de saída do inversor. A corrente total do circuito é divida de forma

equilibrada entre essas chaves. As chaves da ponte inversora têm apenas a função de

condicionar convenientemente a polaridade na qual a corrente sintetizada é injetada na

rede, podendo ser implementadas com o emprego de tiristores, como em um inversor

comutado pela linha (LCI).

Duas técnicas de modulação da corrente sintetizada pela estrutura proposta foram

abordadas neste trabalho: modulação MNC e PWM senoidal MNC. Ambas as técnicas

permitem a síntese de uma corrente com até cinco níveis na saída do inversor,

empregando estratégias de comando simples e chaveamentos em freqüências relativamente

baixas (120 Hz e 3 kHz, respectivamente), de modo a proporcionar uma operação mais

eficiente do sistema (com perdas por chaveamento desprezíveis). Estas técnicas

possibilitam, ainda, a divisão equilibrada de corrente entre as chaves do conversor CC-CC

boost MNC.

O inversor boost MNC 2 células representa um avanço no estudo de conversores

multiníveis em corrente, pois oferece uma série de vantagens, quando comparado à

topologia de inversor MNC capaz de operar em cinco níveis, proposta em trabalhos

anteriores. Esta emprega oito chaves semicondutoras, que devem ser autocomutadas,

acionadas por uma estratégia de chaveamento complexa. É necessário, ainda, o uso de dois

indutores de equilíbrio. Já a topologia aqui proposta necessita, obrigatoriamente, de apenas

duas chaves condutoras autocomutadas, que são comandadas com uma estratégia de

chaveamento simples, seja para a operação com modulação MNC ou com PWM senoidal

MNC. Outra vantagem é a necessidade de apenas um indutor de equilíbrio. Cabe ressaltar

que, devido às baixas freqüências de chaveamento utilizadas, os valores das indutâncias

necessárias para implementar uma operação MNC são relativamente altos (da ordem de

dezenas a centenas de mH), constituindo um ponto crítico para as duas topologias. A

redução do número de elementos (chaves semicondutoras autocomutadas, diodos e

indutores) se deve basicamente pela forma de concepção das topologias. O primeiro

inversor MNC proposto foi criado a partir da aplicação da célula MNC a inversores CSI,

enquanto a topologia proposta neste trabalho é concebida por meio da aplicação da célula

MNC a conversores CC-CC.

A operação do inversor boost MNC 2 células empregando modulação MNC

Page 207: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 6- Conclusões Finais & Trabalhos Futuros 191

permite a síntese de uma corrente com até cinco níveis, baixo conteúdo harmônico, na

saída do inversor e chaveamento em baixa freqüência. Com o acionamento das chaves de

forma sincronizada com a tensão da rede elétrica, obtém-se uma operação com fator de

deslocamento praticamente unitário e alto fator de potência. A menor THD que pode ser

obtida, teoricamente, com este tipo de modulação é de 16,421 %, que resulta em um

9861,0=FP (considerando-se o fator de deslocamento unitário). Tratando-se de uma

técnica de modulação que emprega chaveamento em baixa freqüência, os resultados

obtidos com o uso da modulação MNC são extremamente interessantes. No entanto, para

uma aplicação em sistemas fotovoltaicos conectados à rede de energia elétrica, a corrente

sintetizada na saída do inversor com este tipo de modulação possui um conteúdo

harmônico alto. Segundo a recomendação IEEE Std. 929-2000 a THD da corrente

injetada na rede por um sistema de processamento de energia fotovoltaica deve ser,

tipicamente, inferior a 5 % (operação em condições nominais). Uma forma de diminuir o

conteúdo harmônico da corrente injetada na rede pelo sistema proposto é através do

emprego de modulação por largura de pulso senoidal.

O inversor boost MNC mostrou-se uma topologia conveniente para a aplicação, de

forma análoga, de técnicas de PWM senoidal aplicadas a inversores VSI multipulso (que

possuem operação multinível em tensão), adaptadas para utilização em células MNC. Esta

adaptação foi denominada PWM senoidal MNC. Para o caso do inversor boost MNC 2

células, o PWM senoidal MNC é implementado por meio da comparação de um sinal

senoidal retificado, sincronizado com a tensão da rede elétrica, com duas portadoras

triangulares, defasadas de 180° entre si, cada uma dando origem aos pulsos de comando de

uma das chaves do conversor CC-CC boost MNC 2 células. Já as chaves da ponte inversora

permanecem sendo comutadas na freqüência da rede. Com esta estratégia de comando, a

forma de onda sintetizada na saída do inversor pode ter até cinco níveis e os harmônicos

devidos aos chaveamentos aparecem em bandas laterais a partir do dobro da freqüência de

chaveamento (definida pela freqüência das portadoras triangulares). Essa característica faz

com que a eliminação dos harmônicos oriundos dos chaveamentos seja extremamente

simples. Assim, com um filtro de linha de segunda ordem, ajustado de forma conveniente,

conectado na saída do inversor, uma corrente praticamente senoidal, com baixa distorção

harmônica e em fase com a tensão no PCC, pode ser injetada na rede. Utilizando este tipo

de modulação, o sistema proposto passa a estar em conformidade com a IEEE Std. 929-

Page 208: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 6- Conclusões Finais & Trabalhos Futuros 192

2000, no que se refere à distorção harmônica de corrente. Mais ainda, problemas como

desequilíbrio na divisão da corrente entre os indutores e distorção da tensão no PCC, que

podem surgir na operação com modulação MNC, são minimizados com o emprego do

PWM senoidal MNC. Adicionalmente, a modulação PWM senoidal MNC é uma estratégia

de chaveamento conveniente para a implementação de um sistema de controle capaz de

rastrear o ponto de potência máxima do arranjo fotovoltaico, o que não foi explorado

neste trabalho.

A motivação do estudo de sistemas de energia renovável, bem como uma breve

descrição de algumas destas principais fontes alternativas de energia foram apresentados

no Capítulo 1.

No Capítulo 2 foi apresentada uma revisão bibliográfica sobre topologias de

sistemas fotovoltaicos conectados à rede de energia elétrica. Foram discutidas as principais

características desejadas para um sistema fotovoltaico deste tipo e abordados vários tipos

de topologias, desde as mais simples, utilizando apenas um inversor CSI ou VSI, às mais

complexas, empregando vários estágios de processamento de energia e isolamento

galvânico dos painéis. A partir do estudo desenvolvido, foi vislumbrada a possibilidade de

aplicação de conversores multiníveis em corrente em sistemas PV conectados à rede.

Assim, no Capítulo 3, foram apresentadas as principais características e aplicações

dos conversores MNC, com o objetivo de formar um arcabouço teórico adequado para a

proposição de novas topologias de inversores MNC, para aplicação em sistemas PV.

Dentre as topologias estudadas, uma atenção especial foi direcionada ao inversor CSI

MNC, ao conversor CC-CC buck MNC e ao retificador buck MNC, que foram fontes de

inspiração para a nova topologia proposta neste trabalho: o inversor boost MNC.

Adicionalmente, foi sugerida a possibilidade de implementação de outras novas topologias

de inversores MNC, baseadas nos conversores CC-CC sepic MNC e zeta MNC.

O Capítulo 4 trouxe a descrição e formalização da nova topologia de inversor

MNC aplicada a sistemas PV proposta neste trabalho. Para os dois modos de operação

abordados neste trabalho (modulação MNC e PWM senoidal MNC), foi desenvolvida uma

análise detalhada da estrutura, definindo seus estágios de operação, apresentando suas

principais formas de onda idealizadas e analisando o conteúdo harmônico da corrente

sintetizada pelo inversor. Foram apresentadas expressões matemáticas úteis para o

dimensionamento das chaves semicondutoras, diodos e indutores da topologia, bem como

Page 209: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 6- Conclusões Finais & Trabalhos Futuros 193

para a definição do arranjo fotovoltaico a ser utilizado. Os conceitos teóricos

desenvolvidos foram verificados por meio de simulações computacionais.

A implementação de um protótipo de pequena escala e os resultados de medições

que validam experimentalmente os conceitos propostos neste trabalho (já verificados por

simulação computacional) são apresentados no Capítulo 5. Assim, garante-se maior

consistência aos conceitos propostos teoricamente. Nos ensaios laboratoriais foi possível,

em condições próximas às nominais, injetar na rede uma corrente com THD igual 4,62 %,

com ângulo de defasagem da componente fundamental igual a -3,889 °, resultando numa

operação com FP = 0,9966. Isto significa que foi possível injetar na rede uma corrente

praticamente senoidal e em fase com a tensão no PCC e que o sistema opera em

conformidade com a IEEE Std. 929-2000. Como esperado, a topologia proposta

apresentou alta eficiência na conversão de energia, com rendimento médio igual a 93,17 %.

Além disso, a utilização do PWM senoidal MNC mostrou-se capaz de proporcionar uma

divisão bem equilibrada da corrente entre as chaves e diodos do conversor CC-CC boost

MNC, que foi obtida sem a adoção de técnicas de compensação devido à presença de

elementos parasitas. Os resultados obtidos em medições validam os conceitos teóricos

propostos e evidenciam a confiabilidade da nova topologia apresentada neste trabalho,

constituindo um passo muito importante no estudo de conversores MNC e suas

aplicações.

Alguns tópicos podem ser sugeridos como trabalhos futuros, de modo a

aperfeiçoar o sistema implementado, bem como a definir novas diretrizes dentro da linha

de pesquisa da aplicação de conversores MNC a sistemas de energia renovável, conforme

listado abaixo:

q Implementação de um sistema digital de rastreamento do ponto de potência

máxima do arranjo fotovoltaico (empregando microcontroladores ou DSPs, por

exemplo) para o inversor boost MNC 2 células;

q Implementação de um protótipo do inversor boost MNC para um sistema

fotovoltaico conectado à rede de energia elétrica com maior potência nominal (da

ordem de alguns kW);

q Estudo da compatibilidade eletromagnética (EMC) da topologia proposta;

q Avaliação do comportamento do sistema proposto em condições críticas (falta de

Page 210: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Capítulo 6- Conclusões Finais & Trabalhos Futuros 194

energia da concessionária, islanding, etc.);

q Aplicação do inversor boost MNC 2 células no processamento de outras fontes

alternativas de energia como, por exemplo, células a combustível;

q Estudo da viabilidade da aplicação de outras possíveis topologias de inversores

MNC, baseadas nos conversores CC-CC buck-boost MNC e sepic MNC, em sistemas

fotovoltaicos;

q Estudo minucioso das recomendações internacionais para conexão de sistemas

fotovoltaicos à rede de energia elétrica, de modo a propor uma adequação destas

ao sistema elétrico brasileiro;

q Adaptação do sistema proposto para atuar na compensação de reativos e

harmônicos da instalação na qual está conectado.

Page 211: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

RRReeefffeeerrrêêênnnccciiiaaasss BBBiiibbbllliiiooogggrrráááfffiiicccaaasss [1] RÜTHER, R., “Panorama Atual da Utilização da Energia Solar Fotovoltaica e o

Trabalho do Labsolar nesta Área”, em Fontes Não-Convencionais de Energia – As Tecnologias

Solar, Eólica e de Biomassa. Terceira Edição, Labsolar (Laboratório de Energia Solar) / NCT

(Núcleo de Controle Térmico de Satélites), Departamento de Engenharia Mecânica –

UFSC, 2000.

[2] Energia Solar – Princípios e Aplicações. Centro de Referencia para Energia Solar e Eólica

Sérgio de Sálvio Brito (CRESESB) – CEPEL.

Disponível em: www.cresesb.cepel.br/tutorial/tutorial_solar.pdf (acessado em 23/04/04).

[3] GALDINO, M. A. E., LIMA, J. H. G., RIBEIRO, C. M., SERRA, E. T., O Contexto

das Energias Renováveis no Brasil. Revista da DIRENG – Diretoria de Engenharia Aeronáutica.

Disponível em: www.cresesb.cepel.br/publicacoes/download/Direng.pdf (acessado em

23/04/04).

[4] Clean Energy Basics, National Renewable Energy Laboratory, Departamento de Energia

(DOE) – EUA.

Disponível em: http://www.nrel.gov/clean_energy (acessado em 23/04/04).

[5] RAHMAN, S., “Green Power: What Is It and Where Can We Find It?”, IEEE Power &

Energy Magazine, vol. 1, no. 1, pp. 30-37, 2003.

[6] BP Statistical Review of World Energy June 2002, British Petroleum.

Disponível em:

http://www.bp.com/liveassets/bp_internet/globalbp/STAGING/global_assets/downloa

ds/B/BP_statistical_review_of_world_energy_2002_print.pdf (acessado em 23/04/04).

[7] Atlas de Energia Elétrica do Brasil, Agência Nacional de Energia Elétrica (ANEEL), 2002.

Disponível em: www.aneel.gov.br/arquivos/PDF/livro_atlas.pdf (acessado em 23/04/04).

[8] PÜTTGEN, B., MACGREGOR, P. R., LAMBERT, F. C., “Distributed Generation:

Semantic Hype or the Dawn of a New Era?”, IEEE Power & Energy Magazine, vol. 1, no. 1,

pp. 22-29, 2003.

Page 212: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Referências Bibliográficas 196

[9] Situação e Perspectivas das Fontes de Energia Renovável no Brasil – Ministério da Ciência e

Tecnologia.

Disponível em: www.mct.gov.br/clima/comunicnova/clima/comunic_old/renov.htm

(acessado em 23/04/04).

[10] Operação do Sistema Interligado Nacional – Dados Relevantes de 2002, CD-ROM. Operador

Nacional do Sistema Elétrico (ONS).

[11] Centro Brasileiro de Energia Eólica (www.eolica.com.br).

[12] Energia Eólica – Princípios e Aplicações. Centro de Referencia para Energia Solar e Eólica

Sérgio de Sálvio Brito (CRESESB) – CEPEL.

Disponível em: www.cresesb.cepel.br/tutorial/tutorial_eolica.pdf (acessado em 23/04/04).

[13] Programa Brasileiro de Células a Combustível – CTEnerg – CGEE.

Disponível em:

http://www.mct.gov.br/Temas/Desenv/PBCaC%20-2009Jul021%20com%20linhas.pdf

(acessado em 23/04/04).

[14] Fuel Cells 2000 – The Online Fuel Cell Information Center (www.fuelcells.org).

[15] ELLIS, M. W., VON SPAKOVSKY, M. R., NELSON, D. J., “Fuel Cell Systems:

Efficient, Flexible Energy Conversion for the 21st Century”, Proceedings of the IEEE, vol. 89,

no. 12, pp.1808-1818, 2001.

[16] FAROOQUE, M., MARU, H. C., “Fuel Cells – The Clean and Efficient Power

Generators”, Proceedings of the IEEE, vol. 89, no. 12, pp.1819-1829, 2001.

[17] CHENG, K. W. E., SUTANTO, D., HO, Y. L., LAW, K. K., “Exploring the Power

Conditioning System for Fuel Cell”, Proceedings of the PESC’2001, pp. 2197-2202, 2001.

[18] LAUGHTON, M. A., “Fuel Cells”, IEE Engineering Science and Education Journal, pp.7-

16, February, 2002.

[19] Grupo Electrocell Células a Combustível (www.electrocell.com.br).

[20] Green Solar (www.green.pucminas.br).

Page 213: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Referências Bibliográficas 197

[21] Atlas de Irradiação Solar do Brasil – LABSOLAR/EMC/UFSC – INMET, 1998.

Disponível em: www.labsolar.ufsc.br/portug/atlas/Arquivo/atlas98.pdf (acessado em

10/12/2003).

[22] FRAIDENRAICH, N., LIRA, F., Energia Solar: Fundamentos e Tecnologia de Conversão

Heliotérmica e Fotovoltaica. Editora Universitária - UFPE, 1995.

[23] FAIRLEY, P., “BP Solar Ditches Thin-Film Photovoltaics”, IEEE Spectrum, vol. 40,

no. 1, pp. 18-19, January, 2003.

[24] KOUTROULIS, E., KALAITZAKIS, K., VOULGARIS, N. C., “Development of a

Microcontroller-Based, Photovoltaic Maximum Power Point Tracking Control System”,

IEEE Transactions on Power Electronics, vol. 15, no. 1, pp. 46-54, 2001.

[25] Folha de dados do painel fotovoltaico BP SX-120.

Disponível em: www.bpsolar.com/ContentDocuments/123/BP_SX_120_Data_Sheet.pdf

(acessado em 23/04/04).

[26] BLAUTH, Y. B., WISBECK, J. O., KRENZINGER, A., “Condicionador de Energia

para Painéis Solares com Melhoria do Conteúdo Harmônico e do Fator de Potência da

Instalação”, Anais do XIV Congresso Brasileiro de Automática (CBA 2002), pp. 251-256, Natal,

Setembro, 2002.

[27] KROPOSKI, B., DE BLASIO, R., “Technologies for the New Millenium:

Photovoltaics as a Distributed Resource”. IEEE Power Engineering Society Summer Meeting,

2000.

[28] RODRIGUES, M. C. B., TEIXEIRA, E. C., BRAGA, H. A. C., “Uma Visão

Topológica Sobre Sistemas Fotovoltaicos Monofásicos Conectados à Rede de Energia

Elétrica”, CD-ROM do V Congresso Latino-Americano: Geração e Transmissão de Energia Elétrica

(V CLAGTEE), São Pedro, Novembro, 2003.

[29] IEEE Std. 929-2000, “Recommended Practices for Utility Interface of Photovoltaic

Systems”, 2000.

[30] UL Subject 1741, “Standard for Static Inverters and Charge Controllers for Use in

Photovoltaic Power Systems”.

Page 214: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Referências Bibliográficas 198

[31] IEEE Std. 519-1992, “Recommended Practices and Requirements for Harmonic

Control in Electrical Power Systems”, 1992.

[32] KJAER, S. B., PEDERSEN, J. K., BLAABJERG, F., “Power Inverter Topologies for

Photovoltaic Modules – A Review”, Proceedings of the 37th IEEE Industry Applications Society

Conference (IAS’2002), pp. 782-788, 2002.

[33] CALAIS, M., MYRZIK, J., SPOONER, T., AGELIDES, V. G., “Inverters for Single-

Phase Grid Connected Photovoltaic Systems – An Overview”, Proceedings of the IEEE 33rd

Power Electronics Specialists Conference (PESC’2002), vol. 4, pp. 1995-2000, 2002.

[34] ANDERSEN, M., ALVSTEN, B., “200 W Low Cost Module Integrated Utility

Interface for Modular Photovoltaic Energy Systems”, Proceedings of the 1995 IEEE IECON

(IECON 21), pp. 572-577, 1995.

[35] ENSLIN, J. H. R., WOLF, M. S., SNYMAN, D. B., SWIEGERS, W., “Integrated

Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial

Electronics, vol. 44, no. 6, December, 1997.

[36] MARTINS, G. M., POMILIO, J. A., BUSO, S., “A Single-Phase Low-Frequency

Commutation Inverter for Renewables”, Anais do VI Congresso Brasileiro de Eletrônica de

Potência (COBEP 2001), pp. 735-739, Florianópolis, Novembro, 2001.

[37] KUO, Y. C., LIANG, T. J., CHEN, J. F., “Novel Maximum Power-Point-Tracking

Controller for Photovoltaic Energy Conversion System”, IEEE Transactions on Industrial

Electronics, Vol. 48, No. 3, pp. 594-601, June, 2001.

[38] OISHI, H., OKADA, H., ISHIZAKA, K., ITOH, R., “Single-Phase Soft-Switched

Current-Source Inverter for Utility Interactive Photovoltaic Power Generation System”,

Proceedings of the 2002 IEEE Power Conversion Conference (PCC 2002), Osaka, Japão, 2002.

[39] AGELIDES, V. G., BAKER, D. M., LAWRANCE, W. B., NAYAR, C. V., “A

Multilevel PWM Inverter Topology for Photovoltaic Applications”, Proceedings of the IEEE

International Symposium on Industrial Electronics (ISIE’97), 1997.

[40] CALAIS, M., AGELIDES, V. G., “A Transformerless Five Level Cascaded Inverter

Based Single Phase Photovoltaic System”, Proceedings of the IEEE 31st Power Electronics

Page 215: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Referências Bibliográficas 199

Specialists Conference (PESC’2000), pp. 1173-1178, 2000.

[41] SOUZA, K., DAHER, S, ANTUNES, F., “A Single-Phase Inverter for PV Systems”.

Anais do VI Congresso Brasileiro de Eletrônica de Potência (COBEP 2001), pp. 215-219,

Florianópolis, Novembro de 2001.

[42] THOMAS, G. H., Power Inverter for Generating Voltage Regulated Sine Wave

Replica, US Patent no. 5373433.

[43] DEMONTI, R., MARTINS, D. C., “Photovoltaic Energy Processing for Utility

Connected System”, Anais do VI Congresso Brasileiro de Eletrônica de Potência (COBEP 2001),

pp. 735-739, Florianópolis, Novembro, 2001.

[44] BOSE, B. K., SZCZESNY, P. M., STEIGERWALD, R. L., “Microcomputer Control

of a Residential Photovoltaic Power Conditioning System”, IEEE Ind. Appl. Soc. Annual

Meeting, pp. 852-859, September, 1984.

[45] GOW, J. A., BLEIJS, J. A. M., “A Modular DC-DC Converter and Maximum Power

Tracking Controller for Medium to Large Scale Photovoltaic Generating Plant”, CD-ROM

of the 8th European Conference on Power Electronics and Applications (EPE’99), Lausanne, Suíça,

1999.

[46] MERWE, G., MERWE, L., “150 W Inverter – An Optimal Design for Use in Solar

Home Systems”, Proceedings of the IEEE International Symposium on Industrial Electronics

(ISIE’98), Vol. 1, pp. 57-62, June, 1998.

[47] DEMONTI, R., MARTINS, D. C., BARBI, I., “Static Conversion System for

Treatment of the Solar Energy and Interconnection with the Mains Power Supply”, CD-

ROM do V Congresso Brasileiro de Eletrônica de Potência (COBEP 99), Foz do Iguaçu, 1999.

[48] GOW, J. A., MANNING, C. D., “Photovoltaic Converter System Suitable for Use in

Small Scale Stand-Alone or Grid Connected Applications”, IEE Proc. on Electr. Power Appl.,

vol. 147, no. 6, pp. 535-543, November, 2000.

[49] KANG, F. S., KIM, C. U., PARK, S. J., PARK, H. W., “Interface Circuit for

Photovoltaic System Based on Buck-Boost Current-Source PWM Inverter”, Proceedings of

the 28th IEEE Industrial Electronics Society Conference (IES’2000), pp. 3257-3261.

Page 216: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Referências Bibliográficas 200

[50] CHOMSUWAN, K., PRISUWANNA, P., MONYAKUL, V., “Photovoltaic Grid-

Connected Inverter Using Two-Switch Buck-Boost Converter”, Proceedings of the 29th IEEE

Photovoltaic Specialists Conference, pp. 1527-1530.

[51] BRAGA, H. A. C., Conversores Multiníveis em Corrente. Tese de Dr. Eng., INEP/UFSC,

Florianópolis, SC, Brasil, 1996.

[52] TEIXEIRA, E. C., Retificador Monofásico de Elevado Fator de Potência Baseado no Conversor

Buck Multinível em Corrente. Dissertação de M. E. E., UFJF, Juiz de Fora, MG, Brasil, 2002.

[53] BRAGA, H. A. C., BARBI, I., “Conversores Estáticos Multiníveis: Uma Revisão”,

Revista Controle & Automação, Sociedade Brasileira de Automática (SBA), pp. 20-28, vol. 11,

no. 01, 2000.

[54] GARTH, D. R., MULDOON, W. J. BENSON, G. C., COSTAGUE, E. N., “Multi-

Phase, 2 Kilowatt, High Voltage, Regulated Power Supply”, IEEE Power Conditioning

Specialists Conference Record, pp. 110-116, 1971.

[55] MIWA, B. A., OTTER, D. M., SCHLECHT, M. F., “High Efficiency Power Factor

Correction Using Continuous-Inductor-Current Mode”, Proceedings of the IEEE APEC’92,

pp. 557-568, 1992.

[56] REDL, R., BALOGH, L., “Power-Factor Correction with Interleaved Boost

Converters in Continuous-Inductor-Current Mode”, Proceedings of the IEEE APEC’93.

[57] MATSUI, K. et al, “A Technique of Parallel Connections of Pulse-Width Modulated

NPC Inverters by Using Current Sharing Reactors”, IEEE PESC’93, pp. 1246-1251.

[58] HOMBU, M. et al, “A Multiple Current Source GTO Inverter with Sinusoidal Output

Voltage and Current”, IEEE IAS’87.

[59] VORPÉRIAN, V. “Simplified Analisys of PWM Converters Using the Model of the

PWM Switch; Part I: Continuous Conduction Mode”, VPEC Newsletter Current, pp. 1-9,

1998.

[60] BRAGA, H. A. C., BARBI, I., “A New Technique for Parallel Connection of

Commutation Cells: Analysis, Design, and Experimentation”, IEEE Transactions on Power

Electronics, vol. 12, no. 2, March, 1997.

Page 217: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Referências Bibliográficas 201

[61] BRAGA, H. A. C., BARBI, I., “Current Multilevel DC-DC Converters”, Anais do III

Congresso Brasileiro de Eletrônica de Potência (COBEP’95), 1995.

[62] TEIXEIRA, E. C., BRAGA, H. A. C., “Um Retificador Monofásico com Elevado

Fator de Potência Baseado no Conversor Buck Multinível em Corrente”, Revista Eletrônica

de Potência, Sociedade Brasileira de Eletrônica de Potência (SOBRAEP), vol. 7, no. 1, pp.

62-70, Novembro, 2002.

[63] ANDRADE, A. F., TEIXEIRA, E. C., BRAGA, H. A. C., “A Family of High Power

Factor Rectifiers Based on DC-to-DC Current Multilevel Converters”, CD-ROM of the

2003 IEEE International Symposium on Industrial Electronics (ISIE’2003), Rio de Janeiro, June,

2003.

[64] ANTUNES, F., BRAGA, H., BARBI, I., “Application of a Generalized Current

Multilevel Cell to Current-Source Inverters”, IEEE Transactions on Industrial Electronics, vol.

46, no. 1, pp. 31-38, February, 1999.

[65] RODRIGUES, M. C. B., TEIXEIRA, E. C., BRAGA, H. A. C., “A Current Five-

Level Boost Inverter Applied to a Grid-Connected Photovoltaic System”, CD-ROM do

VII Congresso Brasileiro de Eletrônica de Potência (COBEP’2003), Fortaleza, Setembro, 2003.

[66] MOHAN, N., UNDELAND, T. M., ROBBINS, W. P., Power Electronics: Converters,

Applications, and Design. Second Edition, John Wiley & Sons Inc., 1995.

[67] BARBOSA, P. G., Compensador Série Síncrono Estático Baseado em Conversores VSI

Multipulso. Tese de D. Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 2000.

[68] OGATA, K., Engenharia de Controle Moderno. Segunda Edição, McGraw-Hill, 1993.

[69] LEE, R., WILSON, L., CARTER, C. E., Electronic Transformers and Circuits. Third

Edition, John Wiley & Sons Inc., 1988.

[70] POMILIO, J. A., Eletrônica de Potência. Apostila da disciplina Eletrônica de Potência da

FEEC/UNICAMP, 2000.

[71] INTERNATIONAL RECTIFIER: Folha de dados do IRF740 (www.irf.com).

[72] ON SEMICONDUCTOR: Folha de dados do MUR860 (www.onsemi.com).

Page 218: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Referências Bibliográficas 202

[73] ERICKSON, R., Fundamentals of Power Electronics. Chapman&Hall, 1997.

[74] SOUZA, F. P., Correção do Fator de Potência de Instalações de Baixa Potência Empregando

Filtros Ativos. Tese de Dr. Eng., INEP/UFSC, Florianópolis, SC, Brasil, 2000.

[75] MARTIGNONI, A., Transformadores. 8ª edição, Editora Globo.

[76] INTERNATIONAL RECTIFIER: Folha de dados do IR2104 (www.irf.com).

[77] RODRIGUES, M. C. B., DUTRA, C. A. C., TEIXEIRA, E. C., BARBOSA, P. G.,

BRAGA, H. A. C., “Protótipo de um Sistema Fotovoltaico Baseado no Inversor Boost

Multinível em Corrente”, XV Congresso Brasileiro de Automática (CBA 2004), Gramado,

Setembro, 2004 (no prelo).

Page 219: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

203

AAApppêêênnndddiiiccceee AAA

LLLiiissstttaaagggeeemmm dddooosss AAArrrqqquuuiiivvvooosss dddeee

SSSiiimmmuuulllaaaçççãããooo nnnooo PPPSSSpppiiiccceee®®®

A.1 – Retificador Buck MNC (Fig. 3.16)

* arquivo retif_mnc.net D_D5 0 $N_0001 Dbreak D_D3 $N_0001 $N_0002 Dbreak D_D6 0 $N_0003 Dbreak D_D4 $N_0003 $N_0002 Dbreak V_Vs $N_0001 $N_0003 DC 0 AC 0 +SIN 0 180 60 0 0 0 R_R1 $N_0004 0 5 L_L2 $N_0005 $N_0004 100mH IC=0 L_L1 $N_0006 $N_0005 60mH IC=0 V_Vdisp2 gateS2 0 DC 0 AC 0 +PULSE 0 15 (alfa+fi)/(360*f) 100n 100n (1/(2*f))-((2*alfa+fi)/(360*f)) + 1/(2*f) V_Vdisp1 gateS1 0 DC 0 AC 0 +PULSE 0 15 alfa/(360*f) 100n 100n (1/(2*f))-((2*alfa+fi)/(360*f)) + 1/(2*f) X_S2 gateS2 0 $N_0007 $N_0006 retif_mnc_S2 D_D2 0 $N_0006 Dbreak V_V_IS2 $N_0007 $N_0002 0V V_V_IS1 $N_0008 $N_0002 0V X_S1 gateS1 0 $N_0008 $N_0005 retif_mnc_S1 D_D1 0 $N_0005 Dbreak .subckt retif_mnc_S2 1 2 3 4 S_S2 3 4 1 2 Sbreak

Page 220: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 204

RS_S2 1 2 1G .ends retif_mnc_S2 .subckt retif_mnc_S1 1 2 3 4 S_S1 3 4 1 2 Sbreak RS_S1 1 2 1G .ends retif_mnc_S1

A.2 – Painel Fotovoltaico BP SX-120 (Fig. 4.24)

* arquivo celulaPV.net D_D4 $N_0001 0 Dbreak-X D_D3 $N_0002 $N_0001 Dbreak-X I_I4 0 $N_0002 DC 3.87 R_R1 $N_0002 0 142.5 R_R2 $N_0002 PV+ .1 I_Ipv PV+ 0 DC 0 AC 0 +PWL 0 0 1 3.87 .model Dbreak-X(Is=5e-8 Cjo=.1pF Rs=.1 Vj=10 N=44.5)

A.3 – Inversor Boost MNC 2 Células (Fig. 4.25)

* arquivo simul_invboostmnc.net V_Vdisp1a gateS1H 0 DC 0 AC 0 +PULSE 0 15 0 100n 100n (1/120) 1/60 V_Vdisp1b gateS1L 0 DC 0 AC 0 +PULSE 0 15 (1/120) 100n 100n (1/120) 1/60 V_Vdisp1 gateS1 0 DC 0 AC 0 +PULSE 15 0 alfa/(360*f) 100n 100n (1/(2*f))-((2*alfa+fi)/(360*f)) + 1/(2*f) V_Vdisp2 gateS2 0 DC 0 AC 0 +PULSE 15 0 (alfa+fi)/(360*f) 100n 100n (1/(2*f))-((2*alfa+fi)/(360*f)) + 1/(2*f) * inicio do modelo do arranjo PV D_D11pv $N_0001 $N_0002 Dbreak-X D_D12pv $N_0002 $N_0003 Dbreak-X R_Rsh11pv $N_0001 $N_0003 142.5 I_I11pv $N_0003 $N_0001 DC 3.87A

R_Rs12pv $N_0004 $N_0003 .1 D_D13pv $N_0004 $N_0005 Dbreak-X D_D14pv $N_0005 $N_0006 Dbreak-X D_D15pv $N_0007 $N_0008 Dbreak-X D_D16pv $N_0008 0 Dbreak-X R_Rsh12pv $N_0004 $N_0006 142.5 I_I13pv 0 $N_0007 DC 3.87A I_I21pv $N_0009 $N_0010 DC 3.87A D_D21pv $N_0010 $N_0011 Dbreak-X D_D22pv $N_0011 $N_0009 Dbreak-X D_D23pv $N_0012 $N_0013 Dbreak-X D_D24pv $N_0013 $N_0014 Dbreak-X D_D25pv $N_0015 $N_0016 Dbreak-X D_D26pv $N_0016 0 Dbreak-X R_Rsh21pv $N_0010 $N_0009 142.5 R_Rsh23pv $N_0015 0 142.5 R_Rsh13pv $N_0007 0 142.5

Page 221: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 205

I_I22pv $N_0014 $N_0012 DC 3.87A I_I12pv $N_0006 $N_0004 DC 3.87A R_Rs22pv $N_0012 $N_0009 .1 R_Rs23pv $N_0015 $N_0014 .1 R_Rs13pv $N_0007 $N_0006 .1 R_Rs11pv $N_0001 PV .1 R_Rs21pv $N_0010 PV .1 I_I23pv 0 $N_0015 DC 3.87A R_Rs31pv $N_0017 PV .1 I_I31pv $N_0018 $N_0017 DC 3.87A D_D31pv $N_0017 $N_0019 Dbreak-X D_D32pv $N_0019 $N_0018 Dbreak-X R_Rsh31pv $N_0017 $N_0018 142.5 R_Rs32pv $N_0020 $N_0018 .1 R_Rsh22pv $N_0012 $N_0014 142.5 I_I32pv $N_0021 $N_0020 DC 3.87A D_D33pv $N_0020 $N_0022 Dbreak-X D_D34pv $N_0022 $N_0021 Dbreak-X R_Rsh32pv $N_0020 $N_0021 142.5 R_Rs33pv $N_0023 $N_0021 .1 I_I33pv 0 $N_0023 DC 3.87A D_D35pv $N_0023 $N_0024 Dbreak-X D_D36pv $N_0024 0 Dbreak-X R_Rsh33pv $N_0023 0 142.5 R_Rs41pv $N_0025 PV .1 I_I41pv $N_0026 $N_0025 DC 3.87A D_D41pv $N_0025 $N_0027 Dbreak-X D_D42pv $N_0027 $N_0026 Dbreak-X R_Rsh41pv $N_0025 $N_0026 142.5 R_Rs42pv $N_0028 $N_0026 .1 I_I42pv $N_0029 $N_0028 DC 3.87A D_D43pv $N_0028 $N_0030 Dbreak-X D_D44pv $N_0030 $N_0029 Dbreak-X R_Rsh42pv $N_0028 $N_0029 142.5 R_Rs43pv $N_0031 $N_0029 .1 I_I43pv 0 $N_0031 DC 3.87A D_D45pv $N_0031 $N_0032 Dbreak-X D_D46pv $N_0032 0 Dbreak-X R_Rs51pv $N_0033 PV .1

I_I51pv $N_0034 $N_0033 DC 3.87A D_D51pv $N_0033 $N_0035 Dbreak-X D_D52pv $N_0035 $N_0034 Dbreak-X R_Rsh51pv $N_0033 $N_0034 142.5 R_Rs52pv $N_0036 $N_0034 .1 I_I52pv $N_0037 $N_0036 DC 3.87A D_D53pv $N_0036 $N_0038 Dbreak-X D_D54pv $N_0038 $N_0037 Dbreak-X R_Rsh52pv $N_0036 $N_0037 142.5 R_Rs53pv $N_0039 $N_0037 .1 I_I53pv 0 $N_0039 DC 3.87A D_D55pv $N_0039 $N_0040 Dbreak-X D_D56pv $N_0040 0 Dbreak-X R_Rsh53pv $N_0039 0 142.5 R_Rs61pv $N_0041 PV .1 I_I61pv $N_0042 $N_0041 DC 3.87A D_D61pv $N_0041 $N_0043 Dbreak-X D_D62pv $N_0043 $N_0042 Dbreak-X R_Rsh61pv $N_0041 $N_0042 142.5 R_Rs62pv $N_0044 $N_0042 .1 I_I62pv $N_0045 $N_0044 DC 3.87A D_D63pv $N_0044 $N_0046 Dbreak-X D_D64pv $N_0046 $N_0045 Dbreak-X R_Rsh62pv $N_0044 $N_0045 142.5 R_Rs63pv $N_0047 $N_0045 .1 I_I63pv 0 $N_0047 DC 3.87A D_D65pv $N_0047 $N_0048 Dbreak-X D_D66pv $N_0048 0 Dbreak-X R_Rsh63pv $N_0047 0 142.5 R_Rs71pv $N_0049 PV .1 I_I71pv $N_0050 $N_0049 DC 3.87A D_D71pv $N_0049 $N_0051 Dbreak-X D_D72pv $N_0051 $N_0050 Dbreak-X R_Rsh71pv $N_0049 $N_0050 142.5 R_Rs72pv $N_0052 $N_0050 .1 I_I72pv $N_0053 $N_0052 DC 3.87A D_D73pv $N_0052 $N_0054 Dbreak-X D_D74pv $N_0054 $N_0053 Dbreak-X

Page 222: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 206

R_Rsh72pv $N_0052 $N_0053 142.5 R_Rs73pv $N_0055 $N_0053 .1 I_I73pv 0 $N_0055 DC 3.87A D_D75pv $N_0055 $N_0056 Dbreak-X D_D76pv $N_0056 0 Dbreak-X R_Rsh73pv $N_0055 0 142.5 R_Rs81pv $N_0057 PV .1 I_I81pv $N_0058 $N_0057 DC 3.87A D_D81pv $N_0057 $N_0059 Dbreak-X D_D82pv $N_0059 $N_0058 Dbreak-X R_Rsh81pv $N_0057 $N_0058 142.5 R_Rs82pv $N_0060 $N_0058 .1 I_I82pv $N_0061 $N_0060 DC 3.87A D_D83pv $N_0060 $N_0062 Dbreak-X D_D84pv $N_0062 $N_0061 Dbreak-X R_Rsh82pv $N_0060 $N_0061 142.5 R_Rs83pv $N_0063 $N_0061 .1 I_I83pv 0 $N_0063 DC 3.87A D_D85pv $N_0063 $N_0064 Dbreak-X D_D86pv $N_0064 0 Dbreak-X R_Rsh83pv $N_0063 0 142.5 R_Rs91pv $N_0065 PV .1 I_I91pv $N_0066 $N_0065 DC 3.87A D_D91pv $N_0065 $N_0067 Dbreak-X D_D92pv $N_0067 $N_0066 Dbreak-X R_Rsh91pv $N_0065 $N_0066 142.5 R_Rs92pv $N_0068 $N_0066 .1 I_I92pv $N_0069 $N_0068 DC 3.87A D_D93pv $N_0068 $N_0070 Dbreak-X D_D94pv $N_0070 $N_0069 Dbreak-X I_I93pv 0 $N_0071 DC 3.87A D_D95pv $N_0071 $N_0072 Dbreak-X D_D96pv $N_0072 0 Dbreak-X I_I101pv $N_0073 $N_0074 DC 3.87A R_Rs101pv $N_0074 PV .1 D_D101pv $N_0074 $N_0075 Dbreak-X D_D102pv $N_0075 $N_0073 Dbreak-X R_Rsh101pv $N_0074 $N_0073 142.5 I_I102pv $N_0076 $N_0077 DC 3.87A

D_D103pv $N_0077 $N_0078 Dbreak-X D_D104pv $N_0078 $N_0076 Dbreak-X R_Rsh102pv $N_0077 $N_0076 142.5 R_Rs103pv $N_0079 $N_0076 .1 I_I103pv 0 $N_0079 DC 3.87A D_D105pv $N_0079 $N_0080 Dbreak-X D_D106pv $N_0080 0 Dbreak-X R_Rsh103pv $N_0079 0 142.5 R_Rsh43pv $N_0031 0 142.5 R_Rsh92pv $N_0068 $N_0069 142.5 R_Rsh93pv $N_0071 0 142.5 R_Rs102pv $N_0077 $N_0073 .1 R_Rs93pv $N_0071 $N_0069 .1 * fim do modelo do arranjo PV V_Vs $N_0081 $N_0082 DC 0 AC 0 +SIN 0 180 60 0 0 0 X_S1L gateS1L 0 $N_0083 0 simul_invboostmnc_S1L X_S2H gateS1L 0 $N_0084 $N_0082 simul_invboostmnc_S2H X_S2L gateS1H 0 $N_0085 0 simul_invboostmnc_S2L X_S1H gateS1H 0 $N_0086 $N_0081 simul_invboostmnc_S1H V_V_iS2 $N_0087 0 0V V_V_iS1 $N_0088 0 0V X_S1 gateS1 0 $N_0089 $N_0088 simul_invboostmnc_S1 X_S2 gateS2 0 $N_0090 $N_0087 simul_invboostmnc_S2 V_V_io $N_0091 vo 0V D_D2H vo $N_0084 Dbreak D_D2L $N_0082 $N_0085 Dbreak L_Li $N_0092 $N_0089 72mH IC=0 D_D2 $N_0090 $N_0091 Dbreak D_D1 $N_0089 $N_0091 Dbreak L_Lb $N_0089 $N_0090 62mH IC=0 D_Dpv PV $N_0092 Dbreak C_Cpv $N_0092 0 1000u D_D1H vo $N_0086 Dbreak D_D1L $N_0081 $N_0083 Dbreak .subckt simul_invboostmnc_S1L 1 2 3 4 S_S1L 3 4 1 2 Sbreak-X RS_S1L 1 2 1G .ends simul_invboostmnc_S1L .subckt simul_invboostmnc_S2H 1 2 3 4 S_S2H 3 4 1 2 Sbreak-X RS_S2H 1 2 1G .ends simul_invboostmnc_S2H

Page 223: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 207

.subckt simul_invboostmnc_S2L 1 2 3 4 S_S2L 3 4 1 2 Sbreak-X RS_S2L 1 2 1G .ends simul_invboostmnc_S2L .subckt simul_invboostmnc_S1H 1 2 3 4 S_S1H 3 4 1 2 Sbreak-X RS_S1H 1 2 1G .ends simul_invboostmnc_S1H .subckt simul_invboostmnc_S1 1 2 3 4

S_S1 3 4 1 2 Sbreak-X RS_S1 1 2 1G .ends simul_invboostmnc_S1 .subckt simul_invboostmnc_S2 1 2 3 4 S_S2 3 4 1 2 Sbreak-X RS_S2 1 2 1G .ends simul_invboostmnc_S2

.model Dbreak-X(Is=5e-8 Cjo=.1pF Rs=.1 Vj=10 N=44.5)

A.4 – Avaliação do Número de Níveis e Espectro Harmônico de Inversores MNC (Fig. 4.36)

A.4.1 – Inversor CSI MNC 1 Célula (Inversor CSI Convencional)

* csi_1cel_pwm.net X_S1L gateS1L 0 $N_0001 $N_0002 csi_1cel_pwm_S1L X_S1 gateS1 0 $N_0001 $N_0003 csi_1cel_pwm_S1 D_D1 $N_0003 $N_0004 Dbreak X_S3 gateS1L 0 $N_0004 $N_0005 csi_1cel_pwm_S3 D_D5 $N_0002 $N_0006 Dbreak X_S3L gateS1 0 $N_0006 $N_0007 csi_1cel_pwm_S3L V_Vsref seno 0 DC 0 AC 0 +SIN 0 10*ma 60 0 0 0 V_Vt1 $N_0008 0 DC 0 AC 0 +PULSE -10 10 0 1/(2*fs)-1n 1/(2*fs) 1n 1/fs E_E1 gateS1 0 TABLE V(seno, $N_0008)

+ ( (0,0) (0.01,15) ) E_E3 gateS1L 0 TABLE V(gateS1, 0) + ( (0,15) (0.01,0) ) R_RL $N_0004 $N_0006 10 I_I1 0 $N_0001 DC 6A D_D3 $N_0005 0 Dbreak D_D6 $N_0007 0 Dbreak .subckt csi_1cel_pwm_S1L 1 2 3 4 S_S1L 3 4 1 2 Sbreak RS_S1L 1 2 1G .ends csi_1cel_pwm_S1L .subckt csi_1cel_pwm_S1 1 2 3 4 S_S1 3 4 1 2 Sbreak RS_S1 1 2 1G .ends csi_1cel_pwm_S1

Page 224: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 208

.subckt csi_1cel_pwm_S3 1 2 3 4 S_S3 3 4 1 2 Sbreak RS_S3 1 2 1G .ends csi_1cel_pwm_S3

.subckt csi_1cel_pwm_S3L 1 2 3 4 S_S3L 3 4 1 2 Sbreak RS_S3L 1 2 1G .ends csi_1cel_pwm_S3L

A.4.2 - Inversor CSI MNC 2 Células

* arquivo: csi_2cel_pwm.net D_D7 $N_0001 $N_0002 Dbreak X_S2L gateS2L 0 $N_0003 $N_0001 csi_2cel_pwm_S2L I_Ip $N_0003 $N_0004 DC 3A D_D8 $N_0005 0 Dbreak X_S4L gateS2 0 $N_0002 $N_0005 csi_2cel_pwm_S4L X_S1L gateS1L 0 $N_0004 $N_0006 csi_2cel_pwm_S1L X_S1 gateS1 0 $N_0004 $N_0007 csi_2cel_pwm_S1 D_D2 $N_0008 $N_0009 Dbreak X_S2 gateS2 0 $N_0003 $N_0008 csi_2cel_pwm_S2 I_I1 0 $N_0003 DC 6A D_D4 $N_0010 0 Dbreak X_S4 gateS2L 0 $N_0009 $N_0010 csi_2cel_pwm_S4 D_D3 $N_0011 $N_0012 Dbreak I_In $N_0012 0 DC 3A D_D6 $N_0013 $N_0012 Dbreak D_D1 $N_0007 $N_0009 Dbreak X_S3 gateS1L 0 $N_0009 $N_0011 csi_2cel_pwm_S3 D_D5 $N_0006 $N_0002 Dbreak X_S3L gateS1 0 $N_0002 $N_0013 csi_2cel_pwm_S3L V_Vsref seno 0 DC 0 AC 0 +SIN 0 10*ma 60 0 0 0 V_Vt1 $N_0014 0 DC 0 AC 0 +PULSE -10 10 0 1/(2*fs)-1n 1/(2*fs) 1n 1/fs V_Vt2 $N_0015 0 DC 0 AC 0 +PULSE 10 -10 0 1/(2*fs)-1n 1/(2*fs) 1n 1/fs

E_E1 gateS1 0 TABLE V(seno, $N_0014) + ( (0,0) (0.01,15) ) E_E2 gateS2 0 TABLE V(seno, $N_0015) + ( (0,0) (0.01,15) ) E_E4 gateS2L 0 TABLE V(gateS2, 0) + ( (0,15) (0.01,0) ) E_E3 gateS1L 0 TABLE V(gateS1, 0) + ( (0,15) (0.01,0) ) R_RL $N_0009 $N_0002 10 .subckt csi_2cel_pwm_S2L 1 2 3 4 S_S2L 3 4 1 2 Sbreak RS_S2L 1 2 1G .ends csi_2cel_pwm_S2L .subckt csi_2cel_pwm_S4L 1 2 3 4 S_S4L 3 4 1 2 Sbreak RS_S4L 1 2 1G .ends csi_2cel_pwm_S4L .subckt csi_2cel_pwm_S1L 1 2 3 4 S_S1L 3 4 1 2 Sbreak RS_S1L 1 2 1G .ends csi_2cel_pwm_S1L .subckt csi_2cel_pwm_S1 1 2 3 4 S_S1 3 4 1 2 Sbreak RS_S1 1 2 1G .ends csi_2cel_pwm_S1 .subckt csi_2cel_pwm_S2 1 2 3 4 S_S2 3 4 1 2 Sbreak RS_S2 1 2 1G

Page 225: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 209

.ends csi_2cel_pwm_S2 .subckt csi_2cel_pwm_S4 1 2 3 4 S_S4 3 4 1 2 Sbreak RS_S4 1 2 1G .ends csi_2cel_pwm_S4 .subckt csi_2cel_pwm_S3 1 2 3 4

S_S3 3 4 1 2 Sbreak RS_S3 1 2 1G .ends csi_2cel_pwm_S3 .subckt csi_2cel_pwm_S3L 1 2 3 4 S_S3L 3 4 1 2 Sbreak RS_S3L 1 2 1G .ends csi_2cel_pwm_S3L

A.4.3 - Inversor CSI MNC 3 Células

I_Ip $N_0001 $N_0002 DC 3A X_S1L gateS1L 0 $N_0002 $N_0003 csi_3cel_pwm_S1L X_S1 gateS1 0 $N_0002 $N_0004 csi_3cel_pwm_S1 D_D3 $N_0005 $N_0006 Dbreak D_D6 $N_0007 $N_0006 Dbreak X_S3 gateS1L 0 $N_0008 $N_0005 csi_3cel_pwm_S3 V_Vt1 $N_0009 0 DC 0 AC 0 +PULSE -10 10 0 1/(2*fs)-1n 1/(2*fs) 1n 1/fs I_In $N_0006 $N_0010 DC 3A V_Vt2 $N_0011 0 DC 0 AC 0 +PULSE -10 10 1/(3*fs) 1/(2*fs)-1n 1/(2*fs) 1n 1/fs V_Vt3 $N_0012 0 DC 0 AC 0 +PULSE -10 10 2/(3*fs) 1/(2*fs)-1n 1/(2*fs) 1n 1/fs X_S2L gateS2L 0 $N_0001 $N_0013 csi_3cel_pwm_S2L D_D8 $N_0014 $N_0010 Dbreak X_S4 gateS2L 0 $N_0008 $N_0015 csi_3cel_pwm_S4 D_D4 $N_0015 $N_0010 Dbreak X_S2 gateS2 0 $N_0001 $N_0016 csi_3cel_pwm_S2 D_D2 $N_0016 $N_0008 Dbreak E_E1 gateS1 0 TABLE V(seno, $N_0009) + ( (0,-15) (0.01,15) )

E_E3 gateS1L 0 TABLE V(gateS1, 0) + ( (0,15) (0.01,-15) ) E_E2 gateS2 0 TABLE V(seno, $N_0011) + ( (0,-15) (0.01,15) ) E_E4 gateS2L 0 TABLE V(gateS2, 0) + ( (0,15) (0.01,-15) ) E_E5 gateS3 0 TABLE V(seno, $N_0012) + ( (0,-15) (0.01,15) ) D_D1 $N_0004 $N_0008 Dbreak X_S15 gateS3 0 $N_0017 $N_0018 csi_3cel_pwm_S15 D_D16 $N_0019 $N_0017 Dbreak X_S13 gateS3L 0 $N_0008 $N_0020 csi_3cel_pwm_S13 D_D14 $N_0021 $N_0008 Dbreak X_S16 gateS3L 0 $N_0022 $N_0019 csi_3cel_pwm_S16 I_I1 $N_0022 $N_0001 DC 6A X_S14 gateS3 0 $N_0022 $N_0021 csi_3cel_pwm_S14 D_D15 $N_0018 0 Dbreak I_I2 $N_0010 0 DC 6A D_D13 $N_0020 0 Dbreak E_E6 gateS3L 0 TABLE V(gateS3, 0)

Page 226: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 210

+ ( (0,15) (0.01,-15) ) I_Ii 0 $N_0022 DC 9A D_D7 $N_0013 $N_0017 Dbreak R_RL $N_0008 $N_0017 10 X_S3L gateS1 0 $N_0017 $N_0007 csi_3cel_pwm_S3L D_D5 $N_0003 $N_0017 Dbreak X_S4L gateS2 0 $N_0017 $N_0014 csi_3cel_pwm_S4L V_Vsref seno 0 DC 0 AC 0 +SIN 0 10*ma 60 0 0 0 .subckt csi_3cel_pwm_S1L 1 2 3 4 S_S1L 3 4 1 2 Sbreak RS_S1L 1 2 1G .ends csi_3cel_pwm_S1L .subckt csi_3cel_pwm_S1 1 2 3 4 S_S1 3 4 1 2 Sbreak RS_S1 1 2 1G .ends csi_3cel_pwm_S1 .subckt csi_3cel_pwm_S3 1 2 3 4 S_S3 3 4 1 2 Sbreak RS_S3 1 2 1G .ends csi_3cel_pwm_S3 .subckt csi_3cel_pwm_S2L 1 2 3 4 S_S2L 3 4 1 2 Sbreak RS_S2L 1 2 1G .ends csi_3cel_pwm_S2L .subckt csi_3cel_pwm_S4 1 2 3 4 S_S4 3 4 1 2 Sbreak RS_S4 1 2 1G .ends csi_3cel_pwm_S4

.subckt csi_3cel_pwm_S2 1 2 3 4 S_S2 3 4 1 2 Sbreak RS_S2 1 2 1G .ends csi_3cel_pwm_S2 .subckt csi_3cel_pwm_S15 1 2 3 4 S_S15 3 4 1 2 Sbreak RS_S15 1 2 1G .ends csi_3cel_pwm_S15 .subckt csi_3cel_pwm_S13 1 2 3 4 S_S13 3 4 1 2 Sbreak RS_S13 1 2 1G .ends csi_3cel_pwm_S13 .subckt csi_3cel_pwm_S16 1 2 3 4 S_S16 3 4 1 2 Sbreak RS_S16 1 2 1G .ends csi_3cel_pwm_S16 .subckt csi_3cel_pwm_S14 1 2 3 4 S_S14 3 4 1 2 Sbreak RS_S14 1 2 1G .ends csi_3cel_pwm_S14 .subckt csi_3cel_pwm_S3L 1 2 3 4 S_S3L 3 4 1 2 Sbreak RS_S3L 1 2 1G .ends csi_3cel_pwm_S3L .subckt csi_3cel_pwm_S4L 1 2 3 4 S_S4L 3 4 1 2 Sbreak RS_S4L 1 2 1G .ends csi_3cel_pwm_S4L

A.4.4 – Inversor Boost MNC 1 Célula

* arquivo: ideal_3npwm_defas.net E_GAIN6 gateS2a 0 VALUE -1

* V(gateS1a) V_Vdisp1a gateS1a 0 DC 0 AC 0

Page 227: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 211

+PULSE -15 15 0 100n 100n (1/120) 1/60 X_S2b gateS1a 0 $N_0001 0 ideal_3npwm_defas_S2b X_S1b gateS2a 0 $N_0002 0 ideal_3npwm_defas_S1b X_S2a gateS2a 0 $N_0003 $N_0004 ideal_3npwm_defas_S2a D_D19 $N_0004 $N_0001 Dbreak X_S1a gateS1a 0 $N_0005 $N_0006 ideal_3npwm_defas_S1a D_D20 $N_0006 $N_0002 Dbreak V_V24 $N_0007 $N_0006 0V X_S1 gateS1 0 $N_0008 0 ideal_3npwm_defas_S1 I_I9 0 $N_0008 DC 4A V_V7 $N_0009 $N_0010 0V D_D21 $N_0009 $N_0005 Dbreak D_D18 $N_0009 $N_0003 Dbreak V_Vt1 $N_0011 0 DC 0 AC 0 +PULSE 0 10 0 1/(2*fs)-1n 1/(2*fs) 1n 1/fs E_ABS4 ref 0 VALUE ABS(V($N_0012)) D_D1 $N_0008 $N_0010 Dbreak R_RL $N_0004 $N_0007 10 V_Vsref $N_0012 0 DC 0 AC 0 +SIN 0 10 60 0 0 0 E_E4 gateS1 0 TABLE

V(ref, $N_0011) + ( (0,15) (0.01,0) ) .subckt ideal_3npwm_defas_S2b 1 2 3 4 S_S2b 3 4 1 2 Sbreak-X RS_S2b 1 2 1G .ends ideal_3npwm_defas_S2b .subckt ideal_3npwm_defas_S1b 1 2 3 4 S_S1b 3 4 1 2 Sbreak-X RS_S1b 1 2 1G .ends ideal_3npwm_defas_S1b .subckt ideal_3npwm_defas_S2a 1 2 3 4 S_S2a 3 4 1 2 Sbreak-X RS_S2a 1 2 1G .ends ideal_3npwm_defas_S2a .subckt ideal_3npwm_defas_S1a 1 2 3 4 S_S1a 3 4 1 2 Sbreak-X RS_S1a 1 2 1G .ends ideal_3npwm_defas_S1a .subckt ideal_3npwm_defas_S1 1 2 3 4 S_S1 3 4 1 2 Sbreak-X RS_S1 1 2 1G .ends ideal_3npwm_defas_S1

A.4.5 – Inversor Boost MNC 2 Células

* arquivo ideal_5npwm_defas.net V_Vdisp1a gateS1a 0 DC 0 AC 0 +PULSE -15 15 0 100n 100n (1/120) 1/60

X_S2b gateS1a 0 $N_0001 0 ideal_5npwm_defas_S2b X_S1b gateS2a 0 $N_0002 0 ideal_5npwm_defas_S1b X_S2a gateS2a 0 $N_0003 $N_0004 ideal_5npwm_defas_S2a

Page 228: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 212

D_D19 $N_0004 $N_0001 Dbreak X_S1a gateS1a 0 $N_0005 $N_0006 ideal_5npwm_defas_S1a D_D20 $N_0006 $N_0002 Dbreak V_V24 $N_0007 $N_0006 0V X_S2 gateS2 0 $N_0008 0 ideal_5npwm_defas_S2 I_I10 $N_0009 $N_0008 DC 2A I_I9 0 $N_0009 DC 4A V_V7 $N_0010 $N_0011 0V D_D21 $N_0010 $N_0005 Dbreak D_D18 $N_0010 $N_0003 Dbreak V_Vt1 $N_0012 0 DC 0 AC 0 +PULSE 0 10 0 1/(2*fs)-1n 1/(2*fs) 1n 1/fs V_Vt2 $N_0013 0 DC 0 AC 0 +PULSE 10 0 0 1/(2*fs)-1n 1/(2*fs) 1n 1/fs E_ABS4 ref 0 VALUE ABS(V($N_0014)) D_D1 $N_0009 $N_0011 Dbreak D_D2 $N_0008 $N_0011 Dbreak R_RL $N_0004 $N_0007 10 X_S1 gateS1 0 $N_0009 0 ideal_5npwm_defas_S1 E_GAIN6 gateS2a 0 VALUE -1 * V(gateS1a) V_Vsref $N_0014 0 DC 0 AC 0 +SIN 9 0 60 0 0 0 E_E4 gateS1 0 TABLE V(ref, $N_0012) + ( (0,15) (0.01,0) ) E_E5 gateS2 0 TABLE V(ref, $N_0013)

+ ( (0,15) (0.01,0) ) .subckt ideal_5npwm_defas_S2b 1 2 3 4 S_S2b 3 4 1 2 Sbreak-X RS_S2b 1 2 1G .ends ideal_5npwm_defas_S2b .subckt ideal_5npwm_defas_S1b 1 2 3 4 S_S1b 3 4 1 2 Sbreak-X RS_S1b 1 2 1G .ends ideal_5npwm_defas_S1b .subckt ideal_5npwm_defas_S2a 1 2 3 4 S_S2a 3 4 1 2 Sbreak-X RS_S2a 1 2 1G .ends ideal_5npwm_defas_S2a .subckt ideal_5npwm_defas_S1a 1 2 3 4 S_S1a 3 4 1 2 Sbreak-X RS_S1a 1 2 1G .ends ideal_5npwm_defas_S1a .subckt ideal_5npwm_defas_S2 1 2 3 4 S_S2 3 4 1 2 Sbreak-X RS_S2 1 2 1G .ends ideal_5npwm_defas_S2 .subckt ideal_5npwm_defas_S1 1 2 3 4 S_S1 3 4 1 2 Sbreak-X RS_S1 1 2 1G .ends ideal_5npwm_defas_S1

A.4.6 – Inversor Boost MNC 3 Células

Page 229: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 213

* arquivo: ideal_7npwm_defas.net E_GAIN6 gateS2a 0 VALUE -1 * V(gateS1a) V_Vdisp1a gateS1a 0 DC 0 AC 0 +PULSE -15 15 0 100n 100n (1/120) 1/60 X_S2b gateS1a 0 $N_0001 0 ideal_7npwm_defas_S2b X_S1b gateS2a 0 $N_0002 0 ideal_7npwm_defas_S1b X_S2a gateS2a 0 $N_0003 $N_0004 ideal_7npwm_defas_S2a D_D19 $N_0004 $N_0001 Dbreak X_S1a gateS1a 0 $N_0005 $N_0006 ideal_7npwm_defas_S1a D_D20 $N_0006 $N_0002 Dbreak V_V24 $N_0007 $N_0006 0V V_V7 $N_0008 $N_0009 0V D_D21 $N_0008 $N_0005 Dbreak D_D18 $N_0008 $N_0003 Dbreak E_ABS4 ref 0 VALUE ABS(V($N_0010)) R_RL $N_0004 $N_0007 10 V_Vsref $N_0010 0 DC 0 AC 0 +SIN 0 10 60 0 0 0 V_Vt1 $N_0011 0 DC 0 AC 0 +PULSE 0 10 0 1/(2*fs)-1n 1/(2*fs) 1n 1/fs X_S1 gateS1 0 $N_0012 0 ideal_7npwm_defas_S1 D_D1 $N_0012 $N_0009 Dbreak D_D2 $N_0013 $N_0009 Dbreak I_I9 0 $N_0012 DC 9A I_I10 $N_0012 $N_0013 DC 6A I_I11 $N_0013 $N_0014 DC 3A X_S2 gateS2 0 $N_0013 0 ideal_7npwm_defas_S2 X_S3 gateS3 0 $N_0014 0 ideal_7npwm_defas_S3

D_D3 $N_0014 $N_0009 Dbreak E_E7 gateS3 0 TABLE V(ref, $N_0015) + ( (0,15) (0.1,0) ) E_E6 gateS2 0 TABLE V(ref, $N_0016) + ( (0,15) (0.1,0) ) E_E4 gateS1 0 TABLE V(ref, $N_0011) + ( (0,15) (0.1,0) ) V_Vt2 $N_0016 0 DC 0 AC 0 +PULSE 0 10 1/(3*fs) 1/(2*fs)-1n 1/(2*fs) 1n 1/fs V_Vt3 $N_0015 0 DC 0 AC 0 +PULSE 0 10 2/(3*fs) 1/(2*fs)-1n 1/(2*fs) 1n 1/fs .subckt ideal_7npwm_defas_S2b 1 2 3 4 S_S2b 3 4 1 2 Sbreak-X RS_S2b 1 2 1G .ends ideal_7npwm_defas_S2b .subckt ideal_7npwm_defas_S1b 1 2 3 4 S_S1b 3 4 1 2 Sbreak-X RS_S1b 1 2 1G .ends ideal_7npwm_defas_S1b .subckt ideal_7npwm_defas_S2a 1 2 3 4 S_S2a 3 4 1 2 Sbreak-X RS_S2a 1 2 1G .ends ideal_7npwm_defas_S2a .subckt ideal_7npwm_defas_S1a 1 2 3 4 S_S1a 3 4 1 2 Sbreak-X RS_S1a 1 2 1G .ends ideal_7npwm_defas_S1a .subckt ideal_7npwm_defas_S1 1 2 3 4 S_S1 3 4 1 2 Sbreak-X RS_S1 1 2 1G

Page 230: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 214

.ends ideal_7npwm_defas_S1 .subckt ideal_7npwm_defas_S2 1 2 3 4 S_S2 3 4 1 2 Sbreak-X RS_S2 1 2 1G .ends ideal_7npwm_defas_S2

.subckt ideal_7npwm_defas_S3 1 2 3 4 S_S3 3 4 1 2 Sbreak-X RS_S3 1 2 1G .ends ideal_7npwm_defas_S3

A.5 – Inversor Boost MNC 2 Células com PWM Senoidal MNC (Fig. 4.57)

* arquivo: simul_invboostmnc_PWM.net V_Vdisp1a gateS1H 0 DC 0 AC 0 +PULSE 0 15 0 100n 100n (1/120) 1/60 V_Vdisp1b gateS1L 0 DC 0 AC 0 +PULSE 0 15 (1/120) 100n 100n (1/120) 1/60 * inicio do modelo do arranjo PV D_D11pv $N_0001 $N_0002 Dbreak-X D_D12pv $N_0002 $N_0003 Dbreak-X R_Rsh11pv $N_0001 $N_0003 142.5 I_I11pv $N_0003 $N_0001 DC 3.87A R_Rs12pv $N_0004 $N_0003 .1 D_D13pv $N_0004 $N_0005 Dbreak-X D_D14pv $N_0005 $N_0006 Dbreak-X D_D15pv $N_0007 $N_0008 Dbreak-X D_D16pv $N_0008 0 Dbreak-X R_Rsh12pv $N_0004 $N_0006 142.5 I_I13pv 0 $N_0007 DC 3.87A I_I21pv $N_0009 $N_0010 DC 3.87A D_D21pv $N_0010 $N_0011 Dbreak-X D_D22pv $N_0011 $N_0009 Dbreak-X D_D23pv $N_0012 $N_0013 Dbreak-X

D_D24pv $N_0013 $N_0014 Dbreak-X D_D25pv $N_0015 $N_0016 Dbreak-X D_D26pv $N_0016 0 Dbreak-X R_Rsh21pv $N_0010 $N_0009 142.5 R_Rsh23pv $N_0015 0 142.5 R_Rsh13pv $N_0007 0 142.5 I_I22pv $N_0014 $N_0012 DC 3.87A I_I12pv $N_0006 $N_0004 DC 3.87A R_Rs22pv $N_0012 $N_0009 .1 R_Rs23pv $N_0015 $N_0014 .1 R_Rs13pv $N_0007 $N_0006 .1 R_Rs11pv $N_0001 PV .1 R_Rs21pv $N_0010 PV .1 I_I23pv 0 $N_0015 DC 3.87A R_Rs31pv $N_0017 PV .1 I_I31pv $N_0018 $N_0017 DC 3.87A D_D31pv $N_0017 $N_0019 Dbreak-X D_D32pv $N_0019 $N_0018 Dbreak-X R_Rsh31pv $N_0017 $N_0018 142.5 R_Rs32pv $N_0020 $N_0018 .1 R_Rsh22pv $N_0012 $N_0014 142.5 I_I32pv $N_0021 $N_0020 DC 3.87A D_D33pv $N_0020 $N_0022 Dbreak-X D_D34pv $N_0022 $N_0021 Dbreak-X

Page 231: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 215

R_Rsh32pv $N_0020 $N_0021 142.5 R_Rs33pv $N_0023 $N_0021 .1 I_I33pv 0 $N_0023 DC 3.87A D_D35pv $N_0023 $N_0024 Dbreak-X D_D36pv $N_0024 0 Dbreak-X R_Rsh33pv $N_0023 0 142.5 R_Rs41pv $N_0025 PV .1 I_I41pv $N_0026 $N_0025 DC 3.87A D_D41pv $N_0025 $N_0027 Dbreak-X D_D42pv $N_0027 $N_0026 Dbreak-X R_Rsh41pv $N_0025 $N_0026 142.5 R_Rs42pv $N_0028 $N_0026 .1 I_I42pv $N_0029 $N_0028 DC 3.87A D_D43pv $N_0028 $N_0030 Dbreak-X D_D44pv $N_0030 $N_0029 Dbreak-X R_Rsh42pv $N_0028 $N_0029 142.5 R_Rs43pv $N_0031 $N_0029 .1 I_I43pv 0 $N_0031 DC 3.87A D_D45pv $N_0031 $N_0032 Dbreak-X D_D46pv $N_0032 0 Dbreak-X R_Rs51pv $N_0033 PV .1 I_I51pv $N_0034 $N_0033 DC 3.87A D_D51pv $N_0033 $N_0035 Dbreak-X D_D52pv $N_0035 $N_0034 Dbreak-X R_Rsh51pv $N_0033 $N_0034 142.5 R_Rs52pv $N_0036 $N_0034 .1 I_I52pv $N_0037 $N_0036 DC 3.87A D_D53pv $N_0036 $N_0038 Dbreak-X D_D54pv $N_0038 $N_0037 Dbreak-X R_Rsh52pv $N_0036 $N_0037 142.5 R_Rs53pv $N_0039 $N_0037 .1 I_I53pv 0 $N_0039 DC 3.87A D_D55pv $N_0039 $N_0040 Dbreak-X D_D56pv $N_0040 0 Dbreak-X R_Rsh53pv $N_0039 0 142.5 R_Rs61pv $N_0041 PV .1 I_I61pv $N_0042 $N_0041 DC 3.87A D_D61pv $N_0041 $N_0043 Dbreak-X D_D62pv $N_0043 $N_0042 Dbreak-X

R_Rsh61pv $N_0041 $N_0042 142.5 R_Rs62pv $N_0044 $N_0042 .1 I_I62pv $N_0045 $N_0044 DC 3.87A D_D63pv $N_0044 $N_0046 Dbreak-X D_D64pv $N_0046 $N_0045 Dbreak-X R_Rsh62pv $N_0044 $N_0045 142.5 R_Rs63pv $N_0047 $N_0045 .1 I_I63pv 0 $N_0047 DC 3.87A D_D65pv $N_0047 $N_0048 Dbreak-X D_D66pv $N_0048 0 Dbreak-X R_Rsh63pv $N_0047 0 142.5 R_Rs71pv $N_0049 PV .1 I_I71pv $N_0050 $N_0049 DC 3.87A D_D71pv $N_0049 $N_0051 Dbreak-X D_D72pv $N_0051 $N_0050 Dbreak-X R_Rsh71pv $N_0049 $N_0050 142.5 R_Rs72pv $N_0052 $N_0050 .1 I_I72pv $N_0053 $N_0052 DC 3.87A D_D73pv $N_0052 $N_0054 Dbreak-X D_D74pv $N_0054 $N_0053 Dbreak-X R_Rsh72pv $N_0052 $N_0053 142.5 R_Rs73pv $N_0055 $N_0053 .1 I_I73pv 0 $N_0055 DC 3.87A D_D75pv $N_0055 $N_0056 Dbreak-X D_D76pv $N_0056 0 Dbreak-X R_Rsh73pv $N_0055 0 142.5 R_Rs81pv $N_0057 PV .1 I_I81pv $N_0058 $N_0057 DC 3.87A D_D81pv $N_0057 $N_0059 Dbreak-X D_D82pv $N_0059 $N_0058 Dbreak-X R_Rsh81pv $N_0057 $N_0058 142.5 R_Rs82pv $N_0060 $N_0058 .1 I_I82pv $N_0061 $N_0060 DC 3.87A D_D83pv $N_0060 $N_0062 Dbreak-X D_D84pv $N_0062 $N_0061 Dbreak-X R_Rsh82pv $N_0060 $N_0061 142.5 R_Rs83pv $N_0063 $N_0061 .1 I_I83pv 0 $N_0063 DC 3.87A

Page 232: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 216

D_D85pv $N_0063 $N_0064 Dbreak-X D_D86pv $N_0064 0 Dbreak-X R_Rsh83pv $N_0063 0 142.5 R_Rs91pv $N_0065 PV .1 I_I91pv $N_0066 $N_0065 DC 3.87A D_D91pv $N_0065 $N_0067 Dbreak-X D_D92pv $N_0067 $N_0066 Dbreak-X R_Rsh91pv $N_0065 $N_0066 142.5 R_Rs92pv $N_0068 $N_0066 .1 I_I92pv $N_0069 $N_0068 DC 3.87A D_D93pv $N_0068 $N_0070 Dbreak-X D_D94pv $N_0070 $N_0069 Dbreak-X I_I93pv 0 $N_0071 DC 3.87A D_D95pv $N_0071 $N_0072 Dbreak-X D_D96pv $N_0072 0 Dbreak-X I_I101pv $N_0073 $N_0074 DC 3.87A R_Rs101pv $N_0074 PV .1 D_D101pv $N_0074 $N_0075 Dbreak-X D_D102pv $N_0075 $N_0073 Dbreak-X R_Rsh101pv $N_0074 $N_0073 142.5 I_I102pv $N_0076 $N_0077 DC 3.87A D_D103pv $N_0077 $N_0078 Dbreak-X D_D104pv $N_0078 $N_0076 Dbreak-X R_Rsh102pv $N_0077 $N_0076 142.5 R_Rs103pv $N_0079 $N_0076 .1 I_I103pv 0 $N_0079 DC 3.87A D_D105pv $N_0079 $N_0080 Dbreak-X D_D106pv $N_0080 0 Dbreak-X R_Rsh103pv $N_0079 0 142.5 R_Rsh43pv $N_0031 0 142.5 R_Rsh92pv $N_0068 $N_0069 142.5 R_Rsh93pv $N_0071 0 142.5 R_Rs102pv $N_0077 $N_0073 .1 R_Rs93pv $N_0071 $N_0069 .1 * inicio do modelo do arranjo PV X_S1L gateS1L 0 $N_0081 0 simul_invboostmnc_PWM_S1L X_S2L gateS1H 0 $N_0082 0 simul_invboostmnc_PWM_S2L X_S1H gateS1H 0 $N_0083 $N_0084 simul_invboostmnc_PWM_S1H V_V_iS2 $N_0085 0 0V V_V_iS1 $N_0086 0 0V X_S1 gateS1 0 $N_0087 $N_0086 simul_invboostmnc_PWM_S1

X_S2 gateS2 0 $N_0088 $N_0085 simul_invboostmnc_PWM_S2 V_V_io $N_0089 vo 0V D_D2H vo $N_0090 Dbreak D_D2 $N_0088 $N_0089 Dbreak D_D1 $N_0087 $N_0089 Dbreak D_Dpv PV $N_0091 Dbreak C_Cpv $N_0091 0 1000u D_D1L $N_0084 $N_0081 Dbreak L_Li $N_0091 $N_0087 60mH IC=0 L_Lb $N_0087 $N_0088 9.3mH IC=0 V_Vt1 $N_0092 0 DC 0 AC 0 +PULSE 0 10 0 1/(2*3000)-1n 1/(2*3000) 1n 1/3000 V_Vsref $N_0093 0 DC 0 AC 0 +SIN 0 9 60 0 0 0 E_ABS1 ref 0 VALUE ABS(V($N_0093)) E_E1 gateS1 0 TABLE V(ref, $N_0092) + ( (0,15) (0.01,0) ) V_Vt2 $N_0094 0 DC 0 AC 0 +PULSE 10 0 0 1/(2*3000)-1n 1/(2*3000) 1n 1/3000 E_E2 gateS2 0 TABLE V(ref, $N_0094) + ( (0,15) (0.01,0) ) D_D2L $N_0095 $N_0082 Dbreak X_S2H gateS1L 0 $N_0090 $N_0095 simul_invboostmnc_PWM_S2H D_D1H vo $N_0083 Dbreak V_V_iinv $N_0096 $N_0084 0V V_Vs $N_0097 $N_0095 DC 0 AC 0 +SIN 0 180 60 0 0 0 R_Rf $N_0098 $N_0095 3.3 C_Cf $N_0096 $N_0098 15u L_Lf $N_0096 $N_0097 0.8m .subckt simul_invboostmnc_PWM_S1L 1 2 3 4 S_S1L 3 4 1 2 Sbreak-X RS_S1L 1 2 1G .ends simul_invboostmnc_PWM_S1L .subckt simul_invboostmnc_PWM_S2L 1 2 3 4 S_S2L 3 4 1 2 Sbreak-X RS_S2L 1 2 1G .ends simul_invboostmnc_PWM_S2L .subckt simul_invboostmnc_PWM_S1H 1 2 3 4 S_S1H 3 4 1 2 Sbreak-X RS_S1H 1 2 1G .ends simul_invboostmnc_PWM_S1H .subckt simul_invboostmnc_PWM_S1 1 2 3 4 S_S1 3 4 1 2 Sbreak-X RS_S1 1 2 1G .ends simul_invboostmnc_PWM_S1

Page 233: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 217

.subckt simul_invboostmnc_PWM_S2 1 2 3 4 S_S2 3 4 1 2 Sbreak-X RS_S2 1 2 1G .ends simul_invboostmnc_PWM_S2 .subckt simul_invboostmnc_PWM_S2H 1 2 3 4

S_S2H 3 4 1 2 Sbreak-X RS_S2H 1 2 1G .ends simul_invboostmnc_PWM_S2H

.model Dbreak-X(Is=5e-8 Cjo=.1pF Rs=.1 Vj=10 N=44.5)

A.6 – Simulação do Sistema PV Baseado no Inversor Boost MNC 2 Células, Incluindo Elementos Parasitas (Fig. 5.10 e Fig. 5.11)

arquivo: invboostPWMMNC_completo.net L_Li PV $N_0001 600mH IC=0 R_R17 $N_0003 $N_0002 100 D_D21pv $N_0003 $N_0004 Dbreak-X D_D22pv $N_0004 $N_0002 Dbreak-X D_D23pv $N_0002 $N_0005 Dbreak-X I_I8 $N_0002 $N_0003 DC Isc D_D25pv $N_0006 $N_0007 Dbreak-X D_D24pv $N_0005 $N_0006 Dbreak-X I_I6 $N_0006 $N_0002 DC Isc R_R15 $N_0002 $N_0006 100 I_I9 0 $N_0006 DC Isc D_D26pv $N_0007 0 Dbreak-X R_R27 $N_0006 0 100 C_Cf $N_0008 $N_0009 4.7u R_Rf $N_0009 $N_0010 4.7 V_V5n $N_0008 $N_0011 0V L_Lf $N_0008 $N_0012 3m L_Ls $N_0012 $N_0013 0.5m C_C6 PV 0 1000u

R_R31 $N_0014 $N_0003 1 D_D32 $N_0014 PV Dbreak R_RLi $N_0001 $N_0015 1.2 R_RLb $N_0017 $N_0016 .3 D_D1 $N_0015 $N_0018 Dbreak D_D2 $N_0016 $N_0018 Dbreak D_D1L $N_0011 $N_0019 Dbreak D_D2L $N_0010 $N_0020 Dbreak V_Vdisp1L gateS1L 0 DC 0 AC 0 +PULSE 15 0 0 10n 10n (1/(2*f))-(2*10n) 1/f V_Vdisp1H gateS1H 0 DC 0 AC 0 +PULSE 0 15 0 10n 10n (1/(2*f))-(2*10n) 1/f D_D2H $N_0021 $N_0022 Dbreak V_V_iS2 $N_0016 $N_0023 0V V_Vs $N_0013 $N_0010 DC 0 AC 0 +SIN 0 180 60 0 0 0 L_Lb $N_0015 $N_0017 60m IC=0 V_V_iS1 $N_0015 $N_0024 0V D_D1H $N_0021 $N_0025

Page 234: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice A- Listagem dos Arquivos de Simulação no PSpice® 218

Dbreak V_V3n $N_0021 $N_0018 0V C_C9 $N_0021 0 100n X_S1 gateS1 0 $N_0024 0 invboostPWMMNC_completo_S1 X_S2 gateS2 0 $N_0023 0 invboostPWMMNC_completo_S2 X_S1H gateS1H 0 $N_0025 $N_0011 invboostPWMMNC_completo_S1H X_S1L gateS1L 0 $N_0019 0 invboostPWMMNC_completo_S1L X_S2L gateS1H 0 $N_0020 0 invboostPWMMNC_completo_S2L X_S2H gateS1L 0 $N_0022 $N_0010 invboostPWMMNC_completo_S2H V_Vt1 $N_0026 0 DC 0 AC 0 +PULSE 0 10 0 1/(2*fs)-1n 1/(2*fs) 1n 1/fs V_Vsref $N_0027 0 DC 0 AC 0 +SIN 0 9 60 0 0 0 E_ABS2 ref 0 VALUE ABS(V($N_0027)) E_E5 gateS1 0 TABLE V(ref, $N_0026) + ( (0,15) (0.01,0) ) V_Vt2 $N_0028 0 DC 0 AC 0 +PULSE 10 0 0 1/(2*fs)-1n 1/(2*fs) 1n 1/fs E_E6 gateS2 0 TABLE V(ref, $N_0028) + ( (0,15) (0.01,0) ) .subckt invboostPWMMNC_completo_S1 1 2 3 4 S_S1 3 4 1 2 Sbreak-X RS_S1 1 2 1G .ends invboostPWMMNC_completo_S1 .subckt invboostPWMMNC_completo_S2 1 2 3 4 S_S2 3 4 1 2 Sbreak-X RS_S2 1 2 1G .ends invboostPWMMNC_completo_S2 .subckt invboostPWMMNC_completo_S1H 1 2 3 4

S_S1H 3 4 1 2 Sbreak-X RS_S1H 1 2 1G .ends invboostPWMMNC_completo_S1H .subckt invboostPWMMNC_completo_S1L 1 2 3 4 S_S1L 3 4 1 2 Sbreak-X RS_S1L 1 2 1G .ends invboostPWMMNC_completo_S1L .subckt invboostPWMMNC_completo_S2L 1 2 3 4 S_S2L 3 4 1 2 Sbreak-X RS_S2L 1 2 1G .ends invboostPWMMNC_completo_S2L .subckt invboostPWMMNC_completo_S2H 1 2 3 4 S_S2H 3 4 1 2 Sbreak-X RS_S2H 1 2 1G .ends invboostPWMMNC_completo_S2H .model Dbreak-X(Is=5e-8 Cjo=.1pF Rs=.1 Vj=10 N=44.5)

Page 235: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

AAApppêêênnndddiiiccceee BBB

DDDeeefffiiinnniiiçççãããooo dddaaasss FFFiiiggguuurrraaasss dddeee MMMééérrriiitttooo

RRReeelllaaaccciiiooonnnaaadddaaasss ààà QQQuuuaaallliiidddaaadddeee dddeee

EEEnnneeerrrgggiiiaaa EEElllééétttrrriiicccaaa

Este apêndice apresenta as definições das figuras de mérito que são utilizadas neste

trabalho com o objetivo de avaliar a operação de um determinado dispositivo, no que se

refere à sua influência na qualidade de energia elétrica de sua instalação. Essas figuras de

mérito são a taxa de distorção harmônica ou distorção harmônica total (THD , do inglês

total harmonic distortion), o fator de deslocamento ( FD ) e o fator de potência ( FP ).

Geralmente, estes indicadores são definidos para uma carga conectada à rede elétrica de

uma determinada instalação [66]. Contudo, neste trabalho, deseja-se avaliar o

comportamento de sistemas fotovoltaicos conectados à rede elétrica, ou seja, de geradores

de energia elétrica. Assim, é necessário adaptar a convenção adotada para o sentido da

corrente do sistema a ser avaliado, de modo que as mesmas definições possam ser

utilizadas, tanto para cargas quanto para geradores, conforme ilustrado na Fig. B.1. É

interessante ressaltar que, para um sistema com presença de harmônicos, a tradicional

definição de fator de potência como cosseno do ângulo entre tensão e corrente pode

mascarar sua real operação. Atualmente é necessário lançar mão de uma definição que

Page 236: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice B- Definição das Figuras de Mérito Relacionadas à Qualidade de Energia Elétrica 220

incorpore os efeitos dos harmônicos no valor do fator de potência [66].

Fig. B.1 – Convenção de tensão e corrente adotada para definição das figuras de mérito. (a) carga; (b) gerador.

Sejam P e S , respectivamente, as potências ativa e aparente de uma carga

(gerador) que esteja drenando (injetando) uma corrente ( )tis , cujo valor eficaz é sI , da

(na) rede elétrica, cuja tensão é dada por ( ) ( )tVtvS ω= sen2 . Define-se fator de

potência por:

SPFP = , (B.1)

onde,

( ) ( )dttitvT

PT

SS∫=0

1 (B.2)

e

sIVS = . (B.3)

. A corrente da rede, pode ser decomposta em série de Fourier, sendo expressa na

forma mostrada em (B.4).

( ) ( ) ( )∑≠

ϕ−ω+ϕ−ω=1

11 sen2sen 21

hhhssS tItIti

h (B.4)

Page 237: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice B- Definição das Figuras de Mérito Relacionadas à Qualidade de Energia Elétrica 221

Onde ω=ω1 é a freqüência fundamental da forma de onda de corrente.

Substituindo (B.4) em (B.2) e observando que as integrais que contém produto de

funções com freqüências distintas são nulas, obtém-se:

( ) ( ) ( )110cossen2sen21

11ϕ=ϕ−ω⋅ω= ∫ ss

TIVdttItV

TP (B.5)

A substituição de (B.3) e (B.5) em (B.1) resulta em:

( )FD

II

IVIV

FPs

s

s

s⋅=

ϕ= 11 1cos

, (B.6)

donde é definido o fator de deslocamento:

( )1cos ϕ=FD (B.7) .

A taxa de distorção harmônica é definida por [66]:

1

122

s

ss

I

IITHD

−= (B.8)

Usualmente costuma-se multiplicar o valor de THD por 100 % para obter o seu

valor em porcentagem.

Substituindo (B.8) em (B.6), obtém-se a expressão utilizada para o cálculo do fator

de potência, levando em consideração a presença de harmônicos [66]:

21 THD

FDFP+

= (B.9)

. Para se obter fator de potência unitário, que é o desejável, é necessário que a taxa

de distorção harmônica e o deslocamento angular da componente fundamental da

Page 238: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice B- Definição das Figuras de Mérito Relacionadas à Qualidade de Energia Elétrica 222

corrente consumida pela carga em relação à tensão da rede sejam nulos, ou seja, 0=THD

e 1=FD .

Para um sistema sem harmônicos, o fator de potência é igual ao fator de

deslocamento, conforme a definição original (clássica) de fator de potência, o que permite

que (B.9) seja utilizada também para este caso. Na avaliação da operação de um

determinado sistema, o ângulo de defasagem da componente fundamental, 1ϕ , deve ser

levado em consideração, definindo se o fator de deslocamento correspondente é

“adiantado” ou “atrasado”. Neste trabalho, foi escolhido utilizar referência ao ângulo 1ϕ

ao invés do FD no relatório dos resultados simulados e experimentais obtidos.

Page 239: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

AAApppêêênnndddiiiccceee CCC

PPPrrrooojjjeeetttooo dddooo IIInnnddduuutttooorrr dddooo FFFiiillltttrrrooo dddeee

LLLiiinnnhhhaaa

O projeto do indutor utilizado no filtro de linha foi realizado seguindo os

procedimentos e informações encontrados em [73]–[75]. Para o filtro de linha

dimensionado no Capítulo 5, necessita-se de um indutor mH 3=fL . Considerando que

os parâmetros do filtro de linha foram ajustados de forma conveniente, a corrente que flui

através do indutor fL deve ser praticamente senoidal, com baixo conteúdo harmônico,

pois é a corrente que é efetivamente injetada na rede. Pode-se aproximar, então, com a

eliminação dos harmônicos em (4.81), a corrente no indutor do filtro de linha por:

( ) ( )tImti as ω= sen (C.1)

Conforme discutido no Capítulo 5, será considerado no projeto do indutor do

filtro de linha, A 5,4=I . Considerar-se-á, também, o índice de modulação de amplitude

1=am , de modo que o indutor projetado possa ser utilizado, sem saturação de seu

núcleo, em toda a faixa de operação linear do sistema ( 10 ≤≤ am ). Assim, com

602 ⋅π=ω rad/s,

Page 240: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice C- Projeto do Indutor do Filtro de Linha 224

( ) ( )ttis ⋅⋅π= 602sen5,4 . (C.2)

Optou-se, devido à disponibilidade em laboratório, o uso de núcleo de ferrite na

construção do indutor de filtragem. Seu dimensionamento é feito a partir do produto das

áreas mostrado na Fig. C.1.

(a)

(b)

Fig. C.1 – Produto de áreas. (a) área efetiva; (b) área da janela.

O produto de áreas do núcleo de ferrite a ser utilizado deve ser:

máxmáxw

ssfwe JBK

iiLAA RMSpico

⋅⋅

⋅⋅⋅≥⋅

410)()( , (C.3)

onde, A 5,4)( =picosi , A 182,32/5,4)( ==picosi , T 3,0=máxB , 5,0=wK e

2A/cm 300=máxJ .

Logo:

Page 241: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice C- Projeto do Indutor do Filtro de Linha 225

4

43cm546,9

3003,05,010182,35,4103

≈⋅⋅

⋅⋅⋅⋅≥⋅

we AA . (C.4)

O núcleo de ferrite com carretel disponível em laboratório é o EE 65/26, que

possui o produto de áreas igual a:

[ ] ( ) 4cm64,2723,22,15 =⋅⋅⋅=⋅ ESCOLHIDOwe AA . (C.5)

Este produto de áreas é quase três vezes maior que o necessário para a construção

do indutor. Utilizando um núcleo com maior área efetiva (conseqüentemente, maior

produto de áreas) consegue-se reduzir o número de espiras do indutor, tornando mais fácil

sua construção. O número de espiras, espn é dado por:

( )

emáx

sfesp AB

iLn pico

⋅⋅=

410. (C.6)

espiras90

53,0105,4103 43

=⋅

⋅⋅⋅=

espn . (C.7)

O tamanho total do entreferro (gap) pode ser estimado por:

mm16,0

1031051049010μ

3

27-220

2=

⋅⋅⋅π⋅=

⋅⋅⋅= −

−−

f

eespg L

Anl . (C.8)

Este valor deve ser utilizado como ponto de partida para o tamanho do entreferro,

que deve ser variado até que a indutância desejada seja conseguida [75].

Para a determinação dos condutores, devem ser levadas em consideração a área do

condutor de cobre a ser utilizado (relacionada à corrente conduzida pelos condutores) e o

diâmetro do condutor (relacionado às perdas por efeito pelicular, já que o indutor terá, na

prática, componentes harmônicas de alta freqüência, da ordem de 6 kHz, oriundas dos

Page 242: Inversor Boost Multinível em Corrente e sua Aplicação no ...§ão-Marcio-do-Carmo.pdf · 3.3 – Retificadores MNC ... Capítulo 4 – Inversor Boost Multinível em Corrente e

Apêndice C- Projeto do Indutor do Filtro de Linha 226

chaveamentos). O parâmetro profundidade de penetração ( pδ ) determina o máximo raio

que um condutor pode ter quando está trabalhando em uma determinada freqüência, opf .

No caso em questão, sop ff 2= .

cm0968,0

1032

5,75,7δ3

=⋅⋅

==op

p f. (C.9)

Sendo assim, o maior diâmetro de fio que pode ser usado é 0,1936 cm, o que

permite que até o fio 13 AWG seja utilizado [73]–[75]. A área do fio necessário para a

confecção das espiras do indutor do filtro de linha é dada por:

( ) 2cm 0106,0300182,3

===máx

sCu J

IS rms . (3.19)

Assim, optou-se por utilizar o fio 16 AWG, cuja área da seção transversal é igual a

0,013088 cm², na construção do indutor do filtro de linha.

Resumindo, o indutor projetado utiliza um núcleo de ferrite EE 65/26, com 90

espiras de fio 16 AWG.