hidrostática e hidrodinâmica - fÍsica

15
1 DANIEL FERNANDES

Upload: danf97

Post on 14-Jan-2017

1.141 views

Category:

Science


8 download

TRANSCRIPT

Page 1: Hidrostática e Hidrodinâmica - FÍSICA

1DANIEL FERNANDES

Page 2: Hidrostática e Hidrodinâmica - FÍSICA

2 MÓDULO F2 - HIDROSTÁTICA E HIDRODINÂMICA

HIDROSTÁCIA E HIDRODINÂMICAFÍSICAMÓDULO F2 - HIDROSTÁCIA E HIDRODINÂMICAESCOLA SECUNDÁRIA POETA ANTÓNIO ALEIXOCURSO PROFICIONAL TÉCNICO DE MULTIMÉDIA12º KDANIEL FERNANDES

Page 3: Hidrostática e Hidrodinâmica - FÍSICA

Pág.

4

4

4

4

4

5

5

5

5

6

6

6

6

7

7

8

8

8

9

10

10

10

10

10

11

11

11

12

12

12

12

13

14

HIDROSTÁTICA

O que é?

Os fluidos e a sua classificação

O que é um fluido

Classificações de um fluido

Propriedades de um fluido

Massa especifica

Densidade

Pressão

Gases Ideais

Comportamento de um gás ideal

Características de um gás ideal

Lei dos gases ideais

Principío de Pascal

Características do princípio de Pascal

Princípio de Arquimedes

Exemplo

Condições se um corpo estiver totalmente imerso num fluido

Como aplicar o princípio de Arquimedes

HIDRODINÂMICA

O que é?

Movimento de um fluido

Classificação do movimento de um fluido

Lei da conservação da massa

Equação da continuidade

Lei da conservação de energia

Lei de Bernoulli

TECNOLÓGIAS IMPORTANTES

Aquedutos romanos

Dirigíveis

Navios

Submarinos

RECURSOS

ÍNDICE

3DANIEL FERNANDES

Page 4: Hidrostática e Hidrodinâmica - FÍSICA

O QUE É?

Hidrostática, fluidostática ou estática dos fluidos, é um ramo da hidromecânica[1] que estu-

da as forças exercidas nos fluidos (líquidos ou gasosos) que se encontram em equilíbrio. A

palavra “hidrostática” vem do primeiro fluido estudado, a água.

O QUE É UM FLUIDO?

É uma substancia ou uma mistura de substancias que escoa e flui com maior ou menor

facilidade. A diferença entre um sólido e um fluido tem a haver com a sua estrutura mole-

cular. Nos sólidos existe uma grande força de atração, tendo assim, um solido, um formato

próprio. Nos fluidos isto já acontece de maneira diferente, as suas moléculas apresentam

apenas uma pequena força de atração, criando uma liberdade entre as moléculas, assim

este não apresenta um formato próprio.

CLASSIFICAÇÕES DE UM FLUIDO

• Líquidos: Apresenta um volume próprio tornado difícil altera-lo, quando colocado num

recipiente toma sua forma apresenta uma superfície plana. São classificados como incom-

pressíveis.

• Gases e vapores: Não apresentam volume próprio, ocupa todo o volume do recipiente,

não apresenta nenhuma superfície e as forças de atração são altamente reduzidas. São

classificados como compressíveis.

1 Ciênciaqueestudaamecânicadosfluidosecompreendeahidrostáticaeahidrodinâmica.

OS

FLU

IDO

S E

A S

UA

CLA

SS

IFIC

ÃO

HID

RO

STÁ

TIC

A

HIDROSTÁTICA

4 MÓDULO F2 - HIDROSTÁTICA E HIDRODINÂMICA

Page 5: Hidrostática e Hidrodinâmica - FÍSICA

MASSA ESPECIFICA

A massa especifica é uma característica que é única em cada substancia. É obtida pela

razão entre a massa e o volume.

ρ = m / V

• ρ: massa especifica - quilograma por metro cúbico (kg/m3);

• m: massa - kg;

• V: volume - m3.

DENSIDADE

A densidade de um fluido é uma grandeza física que mostra a quantidade de massa que

está contida num determinado volume.

d = m / V

• d: densidade - quilograma por metro cúbico (kg/m3);

• m: massa - kg;

• V: volume - m3.

PRESSÃO

Num fluido as moléculas que o constituem estão constantemente em colisão, as forças

resultantes da colisão são chamadas de forças de pressão. A pressão é a relação entre a

força aplicada perpendicularmente sobre um corpo e a área,

P = F / A

• P: pressão em N/m2 (unidade SI) ou Pa (pascal);

• F: forças de pressão em Newton;

• A: area em m2.

HIDROSTÁTICAP

RO

PR

IED

AD

ES

DE

UM

FLU

IDO

5DANIEL FERNANDES

Page 6: Hidrostática e Hidrodinâmica - FÍSICA

COMPORTAMENTO DE UM GÁS IDEAL

Nos sólidos e nos líquidos quando a sua temperatura aumenta podemos observar que o

seu volume também aumenta. Nos gases isso já não acontece, pois estes já ocupam todo

o volume existente no recipiente e sofrem pressões diferentes. Para descrevermos um

gás temos que tomar atenção a quatro variáveis: a temperatura, o volume, a pressão e

a quantidade de gás (em massa ou em número de moléculas). Para um gás ser ideal tem

que possuir as seguintes características.

CARACTERÍSTICAS DE UM GÁS IDEAL

• É composto de partículas puntiformes, ou seja, de tamanho desprezível.

• Não pode haver interação elétrica entre as partículas, deva estar afastadas para que

não haja força elétrica.

• Apenas existe interação quando as partículas colidem e estas não perdem energia sobre

forma de calor.

• A pressão é baixa, as partículas estão afastadas umas das outras.

• A temperatura é alta, as partículas virão com mais energia.

• Obedece à lei dos gases ideias.

LEI DOS GASES IDEAIS

Através das variáveis anteriormente referidas, a temperatura, o volume, a pressão e a

quantidade de gás, foi criada uma relação que se designa por lei dos gases ideais ou por

equação de Clapeyron. Esta lei não se aplica em casos de transição de temperatura.

P * V = n * R * T

• P: pressão;

• V: volume:

• n: numero de mols[2];

• R: constante dos gases (8,314 J / K * mol);

• T: temperatura;

2 MoloumoleéaunidadeSIparaagrandezaquantidadedesubstância.

HIDROSTÁTICAG

AS

ES

IDE

IAIS

6 MÓDULO F2 - HIDROSTÁTICA E HIDRODINÂMICA

Page 7: Hidrostática e Hidrodinâmica - FÍSICA

A equação de Clapeyron foi unificar as equações anteriormente descobertas.

• Lei de Boyle-Mariotte: P * V = k (k: constante que apresenta a pressão e volume dos siste-

ma). Enquanto a temperatura permanecer constante então k permanecerá constante.

• Lei de Charles: V * T = k. A pressão constante, o volume de uma determinada massa de

gás é diretamente proporcional à sua temperatura absoluta.

• Lei de Gay-Lussac: P * T = k

• Lei de Avogadro: P * V / T * n = k

PRINCIPÍO DE PASCAL

Princípio de Pascal ou lei de Pascal, foi formado em 1653 por Blaise Pascal[3]. Esta lei diz que

a pressão que é aplicada num fluido que se encontra num recipiente fechado vai se trans-

mitir uniformemente em todas as direções.

CARACTERÍSTICAS DO PRINCÍPIO DE PASCAL:

• A força é transmitida à velocidade do som ao longo do fluido;

• A força actua perpendicularmente.

• A pressão é igual em todo o fluido.

Através desta lei foi possível criar a prensa hidráulica, o que permite uma grande vanta-

gem porque transforma forças pequenas em uma forças muito maiores. Este mecanismo

funciona da seguinte forma: existe duas superfícies, uma maior e outra menor, quando se

exerce uma força na superfície mais pequena vai criar uma pressão de igual valor por todo

o fluido o que vai resultar a que a superfície maior suba com muito mais força do que a

exercida.

3 Matemático,físicoefilósofofrancês.

HIDROSTÁTICAP

RIN

CÍP

IO D

E P

AS

CA

L

7DANIEL FERNANDES

Page 8: Hidrostática e Hidrodinâmica - FÍSICA

PRINCÍPIO DE ARQUIMEDES

“Todo corpo mergulhado num fluido em repouso sofre, por parte do fluido, uma força verti-

cal para cima, cuja intensidade é igual ao peso do fluido deslocado pelo corpo.”

- Arquimedes

O princípio de Arquimedes foi descoberto por Arquimedes de Siracusa, um grego mate-

mático, físico, engenheiro, inventor e astrónomo grego. Este principio baseia-se em que um

corpo que esta imerso num fluido sofre uma força vertical para cima que se chama impul-

são ou empuxo. Quando um corpo esta imerso num fluido podemos concluir que existem

duas forças: o peso (P) e a impulsão (I).

EXEMPLO:

Se um objecto de 500g de peso for mergulhado e deslocar 200g de água, vai receber um

impulso para cima que lhe vai retirar 200g do seu peso, ou seja, foca a pesar 300g.

CONDIÇÕES SE UM CORPO ESTIVER TOTALMENTE IMERSO NUM FLUI-

DO:

• Se o corpo permanecer no mesmo sitio que foi colocado, a intensidade da força de impul-

são é igual à intensidade da força peso (I = P);

• Se o corpo descer, a intensidade da força de impulsão é menor do que a intensidade da

força peso (I < P);

• Se o corpo subir, a intensidade da força de impulsão é maior do que a intensidade da

força peso (I > P).

PR

INC

ÍPIO

DE

AR

QU

IME

DE

S

HIDROSTÁTICA

8 MÓDULO F2 - HIDROSTÁTICA E HIDRODINÂMICA

Page 9: Hidrostática e Hidrodinâmica - FÍSICA

VAMOS ADMITIR QUE:

• m é a massa de um corpo imerso;

• ρ é a massa especifica ou a densidade do fluido;

• V é o volume do corpo imerso;

• g é a aceleração da gravidade;

• I é a força de impulsão;

• P é o peso real do corpo.

COMO APLICAR O PRINCÍPIO DE ARQUIMEDES:

• A massa do fluido deslocado é calculada da seguinte maneira:

m = ρ * V

• A intensidade da impulsão é igual à do peso dessa massa deslocada:

I = m * g = ρ * V * g

• Para corpos totalmente imersos, o volume de fluido deslocado é igual ao próprio volume

do corpo. Neste caso, a intensidade do peso do corpo e da impulsão são dadas por:

P = ρ * V * g e I = ρ * V * g

• Podemos concluir que o peso aparente (Pa) resulta da diferença do peso real (Pr) e a

força de impulsão (I).

Pa = Pr - I

PR

INC

ÍPIO

DE

AR

QU

IME

DE

S

HIDROSTÁTICA

9DANIEL FERNANDES

Page 10: Hidrostática e Hidrodinâmica - FÍSICA

O QUE É?

Hidrodinâmica, ou dinâmica dos fluidos, é um ramo da hidromecânica[4] que estuda as for-

ças exercidas nos fluidos (líquidos ou gasosos) que se encontram em movimento. Através

da hidrodinâmica podemos calcular varias propriedades dos fluidos tais como velocidade,

pressão, densidade e temperatura.

CLASSIFICAÇÃO DO MOVIMENTO DE UM FLUIDO

Um fluido pode ser viscoso ou não viscoso, no caso de um fluido viscoso pode-se classificar

o seu movendo das seguintes formas:

• Laminar:

Também conhecido como escoamento estacionário, é quando a velocidade do escoamen-

to é reduzida, o fluido anda com a mesma velocidade em todos os pontos e o movimento é

feito por camadas.

• Turbulento:

Também conhecido como escoamento não estacionário, é quando as partículas do fluido

misturam-se umas entre as outras a velocidades diferentes.

LEI DA CONSERVAÇÃO DA MASSA

A lei da conservação das massas, foi publicada em 1720, e também é conhecida como Lei

de Lavoisier. Esta lei baseia-se em que uma matéria, seja ela qual for, nunca é eliminada e

é transformada em outra matéria.

“Na Natureza nada se cria e nada se perde, tudo se transforma.”

- Antoine Lavoisier

Com esta lei dá para concluir que num sistema fechado (em que mão há trocas de maté-

ria com o exterior) existe absorção ou libertação de gases durante reacções químicas.

4 Ciênciaqueestudaamecânicadosfluidosecompreendeahidrostáticaeahidrodinâmica.

LEI D

A C

ON

SE

RV

ÃO

DA

MA

SS

A

HIDRODINÂMICAH

IDR

OD

INÂ

MIC

AM

OV

IME

NTO

DE

UM

FLU

IDO

10 MÓDULO F2 - HIDROSTÁTICA E HIDRODINÂMICA

Page 11: Hidrostática e Hidrodinâmica - FÍSICA

EQUAÇÃO DA CONTINUIDADE

A1 * v1 = A2 * v2 = Av

• A: area

• v: velocidae

• Av = A * v = constante (vazão) - Unidade SI: m2/s (metros quadrados por segundo)

A equação da continuidade é a relação entre a velocidade do fluido e a área onde o fluido

corre. Um fluido quando percorre um meio a uma certa velocidade e esse meio é sujeito a

uma diminuição da área este vai aumentar a sua velocidade.

Como podemos observar na figura, o fluido entra uma velocidade v1 e é sujeito a uma di-

minuição da área e a sua velocidade v2 aumenta.

LEI DA CONSERVAÇÃO DE ENERGIA

A lei da conservação de energia baseia-se no modelo da lei da conservação de massas.

Foi apresentada, em 1843, por Julius Robert Mayer, em que a energia que é perdida é

transformada em outro tipo de energia. Podemos dizer que a energia de todo o Universo

se mantém igual desde a sua existência. Tecnicamente não existe perdas de energia mas

sim uma degradação, acontece uma degradação de energia utilizável.

LEI DE BERNOULLI

Como referido anteriormente pela equação da continuidade, quando um fluido escoa por

uma região onde o diâmetro diminui a velocidade aumenta. Mas a velocidade do fluido

também é efectuada pela inclinação da região. Podemos deduzir que existe uma reação

entre a pressão, velocidade e a altura do fluido. Esta relação é chamada de equação de

Bernoulli. As forças de pressão que fazem mover o fluido vão originar uma variação de

energia mecânica do fluido. Equação de Bernoulli:

p + 1/2ρ v^2 + ρ * g * h = constante

EQ

UA

ÇÃ

O D

A C

ON

TIN

UID

AD

EE

NE

RG

IALE

I DE

BE

RN

OU

LLI

HIDRODINÂMICA

11DANIEL FERNANDES

Page 12: Hidrostática e Hidrodinâmica - FÍSICA

AQUEDUTOS ROMANOS

Os aquedutos eram uma canalização suspensa por arcos. A sua função era fornecer agua

a habitações e a reservatórios. Para este sistema funcionar a fonte de água teria de ser

fornecida de um ponto alto. A força da gravidade encarregava-se de escoar a água pelo

canal até aos destinos pretendidos. O maior aqueduto romano foi o Aqua Marcia que pos-

suía 91 km de extensão.

DIRIGÍVEIS

Surgiu em França na segunda metade do séc. XIX. O seu funcionamento baseia-se na

utilização de um gás mais leve que o ar, neste caso hélio. Isto vai causar a sua levitação. O

deslocamento para a frente ou para trás é através das hélices. O hélio sendo menos den-

so que o ar vai fazer subir o dirigível, consoante o peso do dirigível acrescenta-se ou não

mais hélio. Há dirigíveis que chegam a ter cerca de 6 milhões de litros de hélio. Para condu-

zir um dirigível é preciso a utilização de um leme, para virar para esquerda ou para a direi-

ta.

NAVIOS

Como os navios flutuam? A resposta é bastante simples, um navio é mais leve que a água.

Como isto acontece? Todos sabemos que um navio pode pesar muitas toneladas e para

que este flutue tem de haver uma distribuição do seu peso. Então para que ele flutue

tem que ter uma devida forma. Dependendo do volume do navio existe uma alteração na

quantidade de água deslocada e essa agua vai tentar voltar para a sua posição original, o

que vai causar uma reação. Quando maior o navio maior a reação. Concluindo é a força da

agua a tentar voltar á sua posição original que faz flutuar o navio.

TECNOLÓGIAS IMPORTANTES

12 MÓDULO F2 - HIDROSTÁTICA E HIDRODINÂMICA

Page 13: Hidrostática e Hidrodinâmica - FÍSICA

SUBMARINOS

O funcionamento de um submarino, mais propriamente o método usado para emergir e

submergir, é baseado no principio de Arquimedes. Ou seja, existe uma existe uma alte-

ração do peso do submarino para este descer ou subir. Existe uns tanques de agua e ar

dentro do submarino. Quando se pretende descer acrescenta-se água e quando se pre-

tende subir retira-se agua, isto vai causar a alteração do seu peso, pois o ar é mais leve

que a água. Resumidamente quando a força de impulsão do submarino é maior que o

peso este sobe e quando a força de impulsão é menor este desce.

TECNOLÓGIAS IMPORTANTES

13DANIEL FERNANDES

Page 14: Hidrostática e Hidrodinâmica - FÍSICA

• http://guiadoestudante.abril.com.br/estudar/fisica/resumo-fisica-hidrostatica-697997.

shtml

• http://www.fisica.net/hidrostatica/

• http://www.infopedia.pt/$lei-fundamental-da-hidrostatica,2

• http://www.infopedia.pt/dicionarios/lingua-portuguesa/hidrost%C3%A1tica

• http://brasilescola.uol.com.br/fisica/hidrostatica.htm

• https://prezi.com/f7mqjgzxz_59/fluidos-e-a-sua-classificacao/

• https://pt.wikipedia.org/wiki/Fluido

• http://fisicaevestibular.com.br/novo/mecanica/hidrostatica/

• http://brasilescola.uol.com.br/fisica/gas-ideal.htm

• https://pt.wikipedia.org/wiki/Lei_de_Boyle-Mariotte

• https://pt.wikipedia.org/wiki/Lei_de_Charles

• https://pt.wikipedia.org/wiki/Lei_de_Gay-Lussac

• https://pt.wikipedia.org/wiki/Lei_de_Avogadro

• https://pt.wikipedia.org/wiki/Mol

• http://www.infopedia.pt/$lei-de-pascal,4?uri=lingua-portuguesa/pascal

• http://brasilescola.uol.com.br/fisica/hidrostatica.htm

• http://www.infopedia.pt/$lei-de-pascal,4?uri=lingua-portuguesa/pascal

• http://www.infoescola.com/fisica/pressao-hidraulica-principio-de-pascal/

• https://pt.wikipedia.org/wiki/Princ%C3%ADpio_de_Pascal

• http://w3.ualg.pt/~pjsilva/guias/principio%20de%20Arquimedes.htm

• http://www.infoescola.com/fisica/principio-de-arquimedes-empuxo/

• https://pt.wikipedia.org/wiki/Impulsão

• http://www.explicatorium.com/cfq-9/lei-de-arquimedes.html

• http://www.infopedia.pt/$mecanica-dos-fluidos?uri=lingua-portuguesa/hidrodinâmica

• https://pt.wikipedia.org/wiki/Hidrodinâmica

• http://eduloureiro.com.br/index_arquivos/mfaula1.pdf

• https://pt.wikipedia.org/wiki/Conservação_da_massa

• http://www.infoescola.com/mecanica-de-fluidos/equacao-da-continuidade/

• https://pt.wikipedia.org/wiki/Equação_de_continuidade

RECURSOS

14 MÓDULO F2 - HIDROSTÁTICA E HIDRODINÂMICA

Page 15: Hidrostática e Hidrodinâmica - FÍSICA

• http://profs.ccems.pt/PauloPortugal/CFQ/Massa_Energia/Massa_Energia.html

• http://www.efeitojoule.com/2015/07/lei-de-conservacao-da-energia.html

• https://www.google.pt/search?client=safari&rls=en&q=lei+da+conserva%C3%A7%-

C3%A3o+da+energia&ie=UTF-8&oe=UTF-8&gfe_rd=cr&ei=C9YfV6unDZGs8wf0wYrYDQ

• http://eduloureiro.com.br/index_arquivos/mfaula1.pdf

• http://mundoeducacao.bol.uol.com.br/fisica/hidrodinamica.htm

• http://www.infoescola.com/mecanica-de-fluidos/tipos-de-fluxos-e-escoamentos/

• http://www.ebah.pt/content/ABAAAAcaoAD/movimento-propriedades-fluidos

• http://www.coladaweb.com/quimica/fisico-quimica/gas-perfeito-ou-gas-ideal

• http://fisicaevestibular.com.br/novo/mecanica/hidrostatica/teorema-de-stevin-pressao-

-hidrostatica-vasos-comunicantes/

• http://www.madeira.ufpr.br/disciplinasalan/AT087-Aula03.pdf

• https://pt.wikipedia.org/wiki/Fluido

• https://fisicaoquadrado.wordpress.com/sberes-com-tic/a-fisica-explica/manobras-a-e-

fectuar-para-um-submarino-emergir-ou-submergir/

• http://ciencia.hsw.uol.com.br/submarinos1.htm

• Livro Fisica-Quimica 12º Ano

RECURSOS

15DANIEL FERNANDES