eixo temático: sensoriamento remoto -...

71
New polar orbiting satellite generation NOAA/NASA - Eixo Temático: Sensoriamento Remoto Dra. Simone Sievert da Costa (Jurandir Rodrigues, Jose Dias, Ivan Márcio ) Divisão de Satélites e Sistemas Ambientais Centro de Previsão de Tempo e Estudos Climáticos Instituto Nacional de Pesquisas Espaciais

Upload: trinhnga

Post on 09-Nov-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

New polar orbiting satellite generation NOAA/NASA -

Eixo Temático: Sensoriamento Remoto

Dra. Simone Sievert da Costa(Jurandir Rodrigues, Jose Dias, Ivan Márcio ) Divisão de Satélites e Sistemas Ambientais

Centro de Previsão de Tempo e Estudos Climáticos

Instituto Nacional de Pesquisas Espaciais

Sensoriamento Remoto da Atmosfera

Alguns Desafios

• Transformar radiâncias em produtos meteorológicos e ambientais.

• Tratar milhares de canais de forma objetiva

• Obter informações sobre o potencial de severidade de um evento antes que ela se

desenvolva.

• Utilizar a nova geração de satélite para melhorar a previsão de tempo e o monitoramento

ambiental.

Lia Martins de Costa Amaral: Estimativas de precipitação utilizando sensores em micro-

ondas e os algoritmos do H-SAF (Hydrological Satellite Application Facilities)

Rômulo Juca de Oliveira: Validação e modelagem estatística de erros das estimativas de

precipitação por satélite sobre o Brasil.

Vinícius Banda Sperling: Tempo Severo no Sul do Brasil: estimativa de movimentos verticais

a partir de dados de radar. Detecção de granizo a partir de satélites e atividades elétricas.

Ramon Braga: Interação chuva-aerossóis sobre a região Amazônica e sua relação com a

atividade elétrica.

Dr. Daniel Vila (Estimativa de precipitação via satélite)

Linhas de pesquisa em SR

Cristiano - propagação de células de chuvas usando radar e satélites

Micael Cecchini - Nova parametrização da a Distribuição de gotas de nuvens a partir

de modelos de dois momentos.

Thiago Biscaro - como variam os hidrometeoros das nuvens em função dos aerossóis -

uso de radar polarímetro para entender a convecção

Izabelly Costa - estimativa de precipitação por satélite - Melhoria do algoritmo do GPM

para chuvas quentes ou com pouco gelo

Dr. Luiz Machado (Previsão de curto prazo)

Linhas de pesquisa em SR

Bruno Dos Santos Guimarães: Estudo dos Vórtices Ciclônicos de Altos Níveis utilizando o

canal do vapor d´água do imageador do satélite GOES.

Valesca

Marilia

Jéssica

Dr. Nelson (Meteorologia Física e por Satélite )

Linhas de pesquisa em SR

Anthony Silva: Estimativa de radiação solar à superfície e impactos do aerossol: uma

perpectiva no contexto do GOES-R

Francisco Mesquita: Balanço de radiação em condições de céu claro e com nuvens a partir

de dados de satélites. (GOES, MSG).

Hallan de Jesus: Impacto das nuvens na radiação solar UV. (GOES-R)

Nathalia Prado: Analise observacional da variabilidade espacial e temporal das propriedades

ópticas. (MODIS, S-NPP)

Nancy Rios: Adaptação da Parametrização de AOD para a América do Sul no âmbito da

Nova geração de satélites. (S-NPP e GOES-R)

Jose Dias: Validação física e experimental dos dados de AOD gerados no contexto S-NPP.

Dr. Juan Ceballos e Dra Simone Sievert (Estimativa de Radiação e Aerossóis via satélite )

Linhas de pesquisa em SR

Recentes e Futuras Gerações

NOAA JPSS(NPP)- Out/2011

(15,16,17,18,19)

AQUA & TERRA

(EUA)

GOES GOES-R - 2016

(8/10/12/13)

(EUA)

Meteosat Segunda Meteosat Terceira

Geração (MSG) Geração ~2020

(Europa)

Recentes e Futuras Gerações

NOAA NPP Out/2011

(15,16,17,18,19)

AQUA & TERRA

GOES GOES-R - 2016

(8/10/12/13)

Meteosat Segunda Meteosat Terceira

Geração (MSG) Geração - 2019

- Novidades:

• Satélite ambiental + meteorológico (Climático).

• Maior Resolução espectral,

espacial e

temporal.

Recentes e Futuras Gerações

NOAA NPP Out/2011

(15,16,17,18,19)

AQUA & TERRA

GOES GOES-R - 2016

(8/10/12/13)

Meteosat Segunda Meteosat Terceira

Geração (MSG) Geração- 2019

JPSS integral to 3-orbit Global polar Coverage

JPSS consists of three

satellites (Suomi NPP, JPSS-1,

JPSS-2), ground system and

operations through 2025.

The JPSS program is a

partnership between NOAA and

NASA, including agreements

with EUMETSAT, JAXA and

DoD to afford 3-orbit global

coverage.

Golderberg, 2013

First JPSS Satellite: Suomi - NPP

Nome: Suomi - National Polar-orbiting

Partnership (S-NPP).

Lançamento: Out. 2011

Orbita: 824 km

Tempo de vida: 5 anos

Volume de dados: 10 vezes > geração anterior da NOAA

Vern Suomi

S-NPP Instrumentation

Furgerson, 2014

Five science instruments and test key technologies for the JPSS

missions.

S-NPP GOAL

Originally intended as a platform for

observing climate variables and

testing new instruments. But it is

now an operational weather satellite.

• Climate change

• Ozone layer

• Natural disasters

• Weather predictions

• Vegetation

• Global ice cover

• Air pollution

• Temperatures

• Earth’s energy budget

S-NPP: Key science objectives and capabilities

NPP observes a variety of Weather & Climate Events

adapt. Furgerson, 2014

The first complete global image from VIIRS.

November 24, 2011

Suomi – NPP at INPE

Nome: Suomi - National Polar-orbiting Partnership (S-NPP).

Lançamento: Out. 2011

Recepção INPE: Oct. 2013

Proc. de produtos Oper.: Nov . 2013

Testes

IPOPP [NPP, testbed 2010/2011, AQUA e TERRA 2008/2009]

CSPP (2015)

Diret Readouts: Centros de

Processamento de Produtos

S-NPP

Aplicações:

Balanço de Radiação

Aerossóis

Oceano Fonte: NOAA

Fatos sobre NPP

16:4016:12

18:20

17:45

13:2115:00

TERRA AQUA NPP

Rodrigues e Costa , 2014.

DNB offers new applications

DNB Ice detection

VIIRS Day/Night Band

Focos de queimadas e Aerossol

10:20Eixo temático: Sensoriamento remoto

Prof.ª Dr.ª Simone Marilene Sievert da Costa

11:00Estudo da classificação do tipo nuvens precipitantes presente em uma linha de instabilidade na

costa do Nordeste do Brasil

Rayana Santos Araújo; Daniel Alejandro Vila

11:20Avaliação da Profundidade Óptica dos Aerossóis obtida pela nova geração de satélites de órbita

polar da NOAA sobre o território brasileiro

José Dias Neto, Simone Marilene Sievert da Costa Coelho

11:40 GOES-R - Benefícios da nova geração de satélites no monitoramento ambiental

Daniel Alejandro Vila, Luiz Augusto Toledo Machado

12:00 Almoço

13:30

Minuto Ciência

Nathália Velloso Prado , Carlos Denyson da Silva Azevedo, Lina Esther Rivelli Zea, Antonio Sérgio

Cunha Freire

14:00Estimativa da radiação de onda longa da superfície continental via dados do sensor SEVIRI do

satélite METEOSAT-8 durante condição de céu claro.

Francisco Luiz L. de Mesquita, Juan C. Ceballos e Simone M. S. Coelho

14:20Assimilação de dados de rádio ocultação GNSS do satélite METOP-B e seu impacto sobre a

América do Sul

Ivette Hernández Baños, Luiz Fernando Sapucci, Lucas Amarante Avanço

14:40Detecção de eventos severos utilizando radares de dupla polarização

Thiago Souza Biscaro

Obrigada!

[email protected]

The content presented here is base on different sources:

Visible night

https://www.meted.ucar.edu/satmet/dnb/

http://npp.gsfc.nasa.gov/atms.html

Conferencia CSPP

http://www.ssec.wisc.edu/meetings/cspp/2013/presentations/

JPSS

http://www.jpss.noaa.gov/igarss-2014.html

NOAA JPSS

http://www.jpss.noaa.gov/

NOAA STAR

http://www.star.nesdis.noaa.gov/jpss/

•STAR JPSS 2014 Annual Science Team Meeting

http://www.star.nesdis.noaa.gov/star/meeting_2014JPSSAnnual_agenda.php

Further information

:

Conclusão:

• Somente satélites podem:

• Monitorar a evolução do ciclo de vida de sistema de tempo

(RADAR)

• Realizar análise global e assimilação de dados.

• Coletar dados em todo o globo -> intercomparar regiões com o

mesmo sensor.

• Obter grande cobertura de dados em tempo real integrado em

uma única plataforma.

• Observar diversas informações sobre a atmosfera devido a

capacidade de resolução temporal, espacial e espectral.

Climate change -- long-term records of global environmental data

Ozone layer -- daily measurements of the atmospheric ozone layer

Natural disasters -- monitor wildfires, volcanic eruptions, snowstorms, droughts, floods, hurricanes.

Weather predictions -- sounding instrument (cloud cover, atmospheric temperatures, humidity and

other variables critical to accurate weather prediction)

Vegetation -- map global land vegetation and quantify changes in plant productivity to understand

the global carbon cycle and monitor agricultural processes to predict and respond to food shortages

and famines

Global ice cover -- monitor changes to Earth’s sea ice, land ice and glaciers

Air pollution -- monitor soot, particulate matter, nitrogen dioxide and sulfur dioxide.

Temperatures -- maintain a global record of atmospheric, land surface and sea surface temperatures

Earth’s energy budget -- make measurements to determine how much energy is entering and exiting

Earth's atmosphere

Key science objectives and capabilities of Suomi NPP include:

VIIRS data will be used to expand upon the

MODIS applications to fire and air quality

monitoring, agriculture monitoring and

production modeling, carbon modeling and flood

and sea ice mapping.

Csiszar et al., 2014

OMPS

This shows the thickness of the Earth's ozone layer on January 27th from 1982 to 2012. This atmospheric layer protects Earth from dangerous levels of solar

ultraviolet radiation. The thickness is measured in Dobson units, in this image, smaller amounts of overhead ozone are shown in blue, while larger amounts are

shown in orange and yellow.

These ozone measurements begin with the Nimbus 7 satellite; continue with the Earth Probe Total Ozone Mapping Spectrometer (EP TOMS); the Ozone

Monitoring Instrument (OMI) aboard the Aura satellite; and the most recent, the Ozone Mapper Profiler Suite (OMPS) aboard the satellite Suomi National Polar-

orbiting Partnership (NPP). Suomi NPP is a partnership between NASA, NOAA and the Department of Defense. Credit: NASA/NOAA

OMPS Continues More

Than 30 Years of Ozone

Data

VIIRS AVHRR

Ozone Mapping and Profiler Suite (OMPS)

Preparação S-NPP

Diret Readouts: Centros de Processamento de Produtos S-NPP

Fonte: NOAA

INPE – processed

S-NPP data in a

testbed mode.

INPE - Suomi NPP DB Coverage

Revisita: 16 dias

A passagem do NPP tem o

horário próximo ao do Aqua,

aproximadamente 1 hora.

NPP – ascendente/dia

Suomi NPP Real-Time Processing

IPOPP

CSPP

Fonte: Jurandir

35

Preparação S-NPP

Diret Readouts: Centros de Processamento de Produtos S-NPP

Fonte: NOAA

INPE – processed

S-NPP data in a

testbed mode.

NPP Algorithm

Maturity

Fatos sobre NPP

Abril de 2015: 42 meses desde o lançamento NPP

In the longwave image, heat energy radiated from Earth (in watts per square meter) is shown in

shades of yellow, red, blue and white. The brightest-yellow areas are the hottest and are emitting the

most energy out to space, while the dark blue areas and the bright white clouds are much colder,

emitting the least energy. Increasing temperature, decreasing water vapor, and decreasing clouds will

all tend to increase the ability of Earth to shed heat out to space.

Credit: NASA/NOAA/CERES Team

Clouds and the Earth's Radiant Energy System - CERES

Como o INPE está se preparando?

:

Conclusão:

•Somente satélites podem:

• Monitorar a evolução do ciclo de vida de sistema de tempo

(RADAR)

• Realizar análise global e assimilação de dados.

• Coletar dados em todo o globo -> intercomparar regiões com o

mesmo sensor.

• Obter grande cobertura de dados em tempo real integrado em

uma única plataforma.

• Observar diversas informações sobre a atmosfera devido a

capacidade de resolução temporal, espacial e espectral.

NPP –Real Time Produtos Fase da Nuvens profundidade óptica raio efetivo temperatura topo

Susp. Matter Type Aerosol Particle Size Land Surf. Temp. NDVI

VIIRS/ NPP

AOD – Intercomparação e Validação

MODIS/AQUA

Dias e Costa , 2014

MODIS/TERRA

Fatos sobre NPP

16:4016:12

18:20

17:45

13:2115:00

TERRA AQUA NPP

Rodrigues e Costa , 2014.

Sensoriamento Remoto da Atmosfera

Alguns Desafios

Transformar radiâncias em produtos meteorológicos e ambientais.

Obter informações sobre o potencial de severidade de um evento

antes que ela se desenvolva.

Tratar milhares de canais de forma objetiva.

Utilizar a nova geração de satélite para melhorar a previsão de

tempo e o monitoramento ambiental.

Curso de Satélite : 04 a 08 de Maio de 2015

LEITURA – VIIRS VIIRS and Ocean Science

VIIRS, a scanning radiometer, collects visible and infrared imagery and radiometric measurements of the land, atmosphere,

cryosphere, and oceans. VIIRS data is used to measure cloud and aerosol properties, ocean color, sea and land surface

temperature, ice motion and temperature, fires, and Earth's albedo. Climatologists use VIIRS data to improve our understanding of

global climate change.

Accurate satellite measurements of ocean pigment concentrations and sea surface temperature (SST) were first demonstrated

with the Nimbus-7 Coastal Zone Color Scanner (CZCS) and the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR)

launched in 1978 and 1981, respectively. Subsequent missions like the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and

the Moderate Resolution Imaging Spectroradiometer (MODIS) have provided high quality time series of these and other properties

by expanding the spectral information and calibration accuracy, and by improving the processing algorithms.

Like MODIS, VIIRS is a multi-disciplinary sensor providing data for the ocean, land, aerosol, and cloud research and operational

users. VIIRS spectral coverage will allow for data products similar to those from SeaWiFS as well as SST, a standard MODIS

product. SST is an Essential Climate Variable (ECV) and, through validation with instruments traceable to NIST standards, is a

Climate Data Record. Also, as with SeaWiFS and MODIS, the VIIRS scan and orbit geometries will provide global coverage every

two days.

Measurement of pigment concentrations, water clarity, suspended particulates and other properties in coastal regions are critical

for coastal zone management, fisheries management, and naval operations. Specific applications that VIIRS can continue include

operational forecasts of harmful algal blooms in the Gulf of Mexico, detection of areas at high risk for coral bleaching due to

temperature, assessing fish recruitment and climate impacts, and assessing primary productivity and ecosystem health in ocean

basins and coasts.

Similarly, accurate estimates of SST are essential for many applications such as hurricane prediction and weather forecasting. The

VIIRS SST data will be used to continue the decadal global SST time series currently derived from the AVHRR, MODIS and other

sensors that is critical for climate change research. VIIRS products will augment other satellite products to provide important real-

time ocean products for the U.S. Navy.

VIIRS and Cloud

Science

In general, clouds cover about 70 percent of the planet on any given day. They influence the amount of sunlight reaching the surface, and they regulate the amount of energy--both

solar and thermal--that reaches space.

Since 1980, polar-orbiting weather satellites have included both imagers and sounders. These types of sensors record data continuously, using different wavelengths to infer

information about clouds on a global scale. They can determine cloud top height and thermodynamic phase (ice or water particles), and make estimates of microphysical and optical

properties that indicate the amount of water and ice in the cloud layer.

The cloud products derived from VIIRS and CrIS will serve a range of communities. For example, information on cloud cover is needed by the solar energy community to optimize

energy production. Cloud products are being used increasingly in nowcasting models (up to 9 hours in the future) and in numerical weather prediction models (perhaps several days in

the future). Such products are used to determine the probability of precipitation or severe weather.

Since such models requires that cloud products be available soon after the data are collected, data reduction must be timely and efficient. On a longer time scale, these cloud data are

used to build climate data records that are critical for establishing a decadal record of cloud properties. Technical issues associated with deriving a long-term data set of cloud

properties require continual work on sensor calibration and refinement of algorithms.

Historically, cloud information was provided by the Advanced Very High Resolution Radiometer (AVHRR) and the High resolution InfraRed Sounder (HIRS). On the NASA Earth

Observing System Aqua and Terra platforms, such measurements are provided by the MODerate resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared

Sounder (AIRS). Over time, the technology behind these imager and sounder sensors has improved, with the latest imager being the Visible Infrared Imager Radiometer Suite (VIIRS)

and the Cross-track Infrared Sounder (CrIS).

VIIRS will provide information about clouds, aerosol, and surface properties at a spatial resolution of about 750 m for most spectral measurements. VIIRS records data at a set of

discrete wavelengths from the ultraviolet (0.45 _m) to the infrared (12 _m). CrIS is a hyperspectral (> 1000 spectral wavelengths) sensor that will provide complementary information

about clouds, especially in complex regions such as the poles, over bright surfaces such as snow/ice, and in areas that have strong temperature inversions.

The cloud properties from VIIRS, and in some regions from VIIRS combined with CrIS, will maintain continuity with the decadal cloud record from 1980 to the present that is provided

by historical and current sensors such as AVHRR, HIRS, MODIS, and AIRS. VIIRS cloud products will be available at higher spatial resolution, and will be well-calibrated, which is

essential for its use in continuing the climate record.

Impacto

dos Satélites

na PNT

Azevedo, 2013

0 12 24 48 72 96

horas de previsão

1

0.9

0.8

0.7

0.6

0.5

0.4

Controle (todas as obs.)

Sem Satélite

Apenas Satélite

Impacto dos Satélites na PNT do CPTEC

Trajetória associada a passagem de 3 satélites de orbita polar

durante 6 horas

Products: DSA/CPTEC-INPE

GOES, MSG,

NOAA, AQUA e TERRA.

S-NPP Environmental Data Records

Cross-track scanner (22 channels, swath 2300km):

It provides sounding observations needed to

retrieve profiles of atmospheric temperature and

moisture for civilian operational weather

forecasting as well as continuity of these

measurements for climate monitoring purposes.

ATMS measurements also provide rainfall rates,

snow and ice information.

Advanced Technology Microwave Sounder (ATMS)

Advanced Technology Microwave Sounder (ATMS)

ATMS combines the channels of the preceding sensors (AMSU-A and AMSU-B)

into a single package with considerable savings in mass, power and volume.

ATMS:

• + canais

• > resolução espacial

(75, 33 e 15 km)

• < gaps/passagens

• Swath mais largo

(2300 km)

ATMS channel 18 (183 Ghz, Water Vapour Channel)

Credit: NASA/NOAA

November 8, 2011

Cross-track Infrared Sounder (CrIS)

The CrIS is the first in a series of advanced operational

sounders (hyperspectral, 1297 spectral

channels) that provides more accurate, detailed atmospheric

temperature and moisture observations for weather and

climate applications.

CrIS long-wave

surface temperature

channel

Visible Infrared Imaging Radiometer Suite (VIIRS)

VIIRS collects VIS and IR imagery

and global observations of land,

atmosphere and cryosphere.

VIIRS data is used to measure cloud and aerosol properties,

ocean color, sea and land surface temperature, ice motion

and temperature, fires, and Earth's albedo.

Climatologists use VIIRS data to improve our understanding

of global climate change.

• VIIRS collects VIS and IR imagery and

global observations of land, atmosphere

and cryosphere.

• VIIRS extends and improves upon a

series of measurements initiated by

the Advanced Very High Resolution

Radiometer (AVHRR) and the

Moderate Resolution Imaging

Spectroradiometer (MODIS).

• VIIRS offers more spectral bands, higher

resolution, and greater accuracy resulting

in the largest number of products.

• Products: land and sea surface

temperatures, clouds, fire, smoke,

snow, ice, vegetation, and ocean

chlorophyll.

~15 Years

1999 (Terra)

~34 years

1981 (NOAA7)

Visible Infrared Imaging Radiometer Suite (VIIRS)

3-channel radiometer, measures: solar-reflected and Earth-emitted radiation

from the top of the atmosphere.

Clouds and the Earth's Radiant Energy System - CERES

3-channel radiometer, measures: solar-reflected and Earth-emitted radiation

from the top of the atmosphere.

cloud properties ( amount, height, thickness, particle size, and phase of

clouds) using simultaneous measurements by other instruments. )

Clouds and the Earth's Radiant Energy System - CERES

CERES measurements are critical for understanding cloud-radiation effects.

OMPS consists of three instruments: the

downward-looking nadir mapper and nadir

profiler, and a new instrument called the limb

profiler.

Ozone Mapping and Profiler Suite (OMPS)

OMPS products, when combined with

cloud predictions, also help produce

better ultraviolet index forecasts.

The improved vertical resolution of OMPS

data products allows for better testing and

monitoring of the complex chemistry

involved in ozone destruction near the

troposphere

Limb profiler.

The limb profiler is a experimental instrument that

measures the O3 distribution at higher vertical resolution.

Ozone Mapping and Profiler Suite (OMPS)

It's designed to continue NASA's measurements of high vertical resolution ozone

profiles from the Microwave Limb Sounder on the EOS Aura, data key to

understanding how changing greenhouse gases affect the recovery of the ozone layer.

OMPS Global Aerosol Index Image - Fires

JPSS Joint Polar Satellite System: Overview

JPSS consists of three satellites (Suomi NPP, JPSS-1, JPSS-2),

ground system and operations through 2025.

Mission: provide global imagery and atmospheric

measurements using polar-orbiting satellites .

JPSS is a partnership between NOAA and NASA:

NOAA: responsible for overall program commitment (operations,

science, data exploitation and archiving.)

NASA: acquisition agent for the flight system (satellite,

instruments and launch vehicle) and ground system.

It leads program systems engineering, and program safety

and mission assurance.

GOES10/12 - Dedicado à América do Sul

GOES-10 (Mar. 2007 – Dez. 2009) GOES-12 (Maio 2010 – Ago. 2013)

Imagens a cada 15 minutos sem interrupções.

Polares: NOAA, AQUA e TERRA

This image shows season-

long composites of ocean

chlorophyll concentrations

derived from visible

radiometric measurements

made by the VIIRS.

Credit: NASA/Suomi

NPP/Norman Kuring

VIIRS and Ocean Science

• Ocean Chlorophyll

Concentrations

• Sea Surface

Temperature

The Land Science VIIRS centers on three major areas:

vegetation dynamics

Vegetation Index, Leaf Water

Content , Leaf Area Index.

land cover change

Land Cover and Fire products.

cryospheric

Snow and Ice products

(land and sea-ice)

VIIRS and Land Science

S-NPP Algorithm

Maturity

Saharan dust storm on Each

image is a composite of three

adjacent satellite passes.

(Ozone Mapping Profiling Suite

instrument's Limb Profiler )

http://npp.gsfc.nasa.gov/viirs_sciencegallery.html

July 31 and August 1-2, 2013.

Ozone Mapping Profiling Suite instrument's Limb Profiler