corvis st: biomecÁnica corneal

39
GRADO EN ÓPTICA Y OPTOMETRÍA TRABAJO DE FINAL DE GRADO CORVIS ST: BIOMECÁNICA CORNEAL ADRIANA FERNÁNDEZ RODRÍGUEZ DIRECTOR: JOAN PEREZ CORRAL DEPARTAMENTO DE ÓPTICA Y OPTOMETRÍA Facultat d’Òptica i Optometria de Terrassa © Universitat Politècnica de Catalunya, año 2020. Todos los derechos reservados

Upload: others

Post on 19-Oct-2021

2 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: CORVIS ST: BIOMECÁNICA CORNEAL

GRADO EN ÓPTICA Y OPTOMETRÍA

TRABAJO DE FINAL DE GRADO

CORVIS ST: BIOMECÁNICA CORNEAL

ADRIANA FERNÁNDEZ RODRÍGUEZ

DIRECTOR: JOAN PEREZ CORRAL

DEPARTAMENTO DE ÓPTICA Y OPTOMETRÍA

Facultat d’Òptica i Optometria de Terrassa © Universitat Politècnica de Catalunya, año 2020. Todos los derechos reservados

Page 2: CORVIS ST: BIOMECÁNICA CORNEAL

2

GRADO EN ÓPTICA Y OPTOMETRÍA

CORVIS ST: BIOMECÁNICA CORNEAL

RESUMEN

La biomecánica corneal hace referencia al equilibrio y la deformación que mantiene

la córnea al ser sometida a una fuerza externa. Mediante el análisis del

comportamiento corneal se establecen bases que permiten la predicción, detección

y control de córneas tanto sanas como patológicas.

El Corvis ST es un nuevo dispositivo experimental introducido por Oculus (Wetzlar,

Alemania) que permite la evaluación in vivo de los parámetros corneales

relacionados con el comportamiento biomecánico de la córnea como son por

ejemplo la amplitud de deformación, longitudes de aplanación, velocidades de

aplanación, curvatura máxima de la córnea cuando está en el punto máximo de

concavidad y grosor corneal. El Corvis ST ofrece además el cálculo de la presión

intraocular y paquimetría corneal, demostrando una gran fiabilidad a la hora de

realizar las medidas.

Gracias a la realización de varios estudios, se ha generado una base de datos que

permite establecer valores límite de sospecha, pudiendo así utilizar este instrumento

en un sector clínico para la detección de valores impropios en la población.

Asimismo, sirve para establecer modelos biomecánicos para estudiar el efecto de

la cirugía refractiva o para el análisis del efecto de la ortoqueratología nocturna en

las estructuras relacionadas con la respuesta biomecánica.

Page 3: CORVIS ST: BIOMECÁNICA CORNEAL

3

GRADO EN ÓPTICA Y OPTOMETRÍA

CORVIS ST: BIOMECÀNICA CORNEAL

RESUM

La biomecànica corneal fa referència a l'equilibri i la deformació que manté la còrnia

en ser sotmesa a una força externa. Mitjançant l'anàlisi del comportament corneal

s'estableixen bases que permeten la predicció, detecció i control de còrnies tant

sanas com patològiques.

El Corvis ST és un nou dispositiu experimental introduït per Oculus (Wetzlar,

Alemanya) que permet l'avaluació in vivo dels paràmetres corneals relacionats amb

el comportament biomecànic de la còrnia com són per exemple l'amplitud de

deformació, longituds d’aplanació, velocitats d’aplanació, curvatura màxima de la

còrnia quan està en el punt màxim de concavitat i gruix corneal. El Corvis ST ofereix

a més el càlcul de la pressió intraocular i paquimetría corneal, demostrant una gran

fiabilitat a l'hora de realitzar les mesures.

Gràcies a la realització de diversos estudis, s'ha generat una base de dades que

permet establir valors límit de sospita, podent així utilitzar aquest instrument en un

sector clínic per a la detecció de valors impropis en la població. Així mateix, serveix

per establir models biomecànics per a estudiar l'efecte de la cirurgia refractiva o per

l'anàlisi de l'efecte de la ortoqueratología nocturna en les estructures relacionades

amb la resposta biomecànica.

Page 4: CORVIS ST: BIOMECÁNICA CORNEAL

4

GRADO EN ÓPTICA Y OPTOMETRÍA

CORVIS ST: CORNEAL BIOMECHANICS

ABSTRACT

Corneal biomechanics refers to the balance and deformation that the cornea

maintains when it’s subjected to an external force. Bases are established through the

analysis of corneal behavior that allow the prediction, detection and control of both

healthy and pathological corneas.

The Corvis ST is a new experimental device introduced by Oculus (Wetzlar,

Germany) that allows the in vivo evaluation of the corneal parameters related to the

biomechanical behavior of the cornea such as, for example, the deformation

amplitude, applanation lengths, applanation velocities, maximum curvature of the

cornea when it is at the maximum point of concavity and corneal thickness. The

Corvis ST also offers the calculation of intraocular pressure and corneal pachymetry,

demonstrating great reliability when performing measurements.

Thanks to the performance of several studies, a database has been generated that

allows establishing suspicion limit values, thus being able to use this instrument in a

clinical sector to detect inappropriate values in the population. It also serves to

establish biomechanical models to study the effect of refractive surgery or to analyze

the effect of overnight orthokeratology on structures related to the biomechanical

response.

Page 5: CORVIS ST: BIOMECÁNICA CORNEAL

5

ABREVIATURAS DEL TEXTO: AL1: Longitud primera aplanación

AL2: Longitud segunda aplanación

ARTh: Grosor relacional de Ambrosio al perfil horizontal

AT1: Tiempo de primera aplanación

AT2: Tiempo segunda aplanación

AUC: Área debajo de la curva

AV1: Velocidad primera aplanación

AV2: Velocidad segunda aplanación

CBI: Índice biomecánico del Corvis ST

CCT: Grosor central corneal

CV: Coeficiente de variación

D: Dioptrías

DArc Length: longitud delta arc

DA radio max: Radio máximo de amplitud de deformación

DCR: Respuesta corneal dinámica

HC: Histéresis corneal

HCDA: Amplitud de deformación en la máxima concavidad

HCPD: Distancia máxima entre picos en la máxima concavidad

HCR: Radio de máxima concavidad

HCT: Tiempo de máxima concavidad

ICC: Coeficiente de correlación intraclase

INR: Radio integrado ORA: Ocular Response Analyzer

P1: Primera fase

P2: Segunda fase

PIO: Presión intraocular

PIOc: Presión intraocular compensada biomecánicamente

ROC: Curvas de características operativas del receptor

SP A1: Parámetro de rigidez en la primera aplanación

1/R: Radio cóncavo inverso

Page 6: CORVIS ST: BIOMECÁNICA CORNEAL

6

ÍNDICE 1. INTRODUCCIÓN A LA BIOMECÁNICA CORNEAL……………………………..7

2. INSTRUMENTOS PARA MEDIR LA BIOMECÁNICA CORNEAL…………….14

2.1. OCULAR RESPONSE ANALYZER (ORA)................................................14

2.2. TONÓMETRO CORVIS ST…………………………………………………....15

2.2.1. Tecnología de funcionamiento……………………………………….18

2.2.2. Parámetros……………………………………………………………....21

3. APLICACIONES CLÍNICAS………………………………………………………..30

3.1. Patologías……………………………………………………………………….30

3.1.1. Queratocono…………………………………………………………….30

3.1.2. Glaucoma………………………………………………………………...33

3.2. Tratamientos refractivos……………………………………………………..34

3.2.1. Cirugía refractiva……………………………………………………….34

3.2.2. Ortoqueratología………………………………………………………..35

4. CONCLUSIONES……………..………………………………..…………………...36

5. WEBGRAFÍA / BIBLIOGRAFÍA…………………………………………………...37

Page 7: CORVIS ST: BIOMECÁNICA CORNEAL

7

1. INTRODUCCIÓN A LA BIOMECÁNICA CORNEAL

La biomecánica corneal comenzó a estudiarse a finales de 1970, cuando

Kobayashi publicó un estudio donde se evaluaba la respuesta viscoelástica de la

córnea. Pero, ¿qué se entiende por biomecánica corneal?

La biomecánica corneal hace referencia al estudio del equilibrio y grado de

deformación que sufre la córnea al ser sometida a una fuerza externa. Se trata de

una ciencia multidisciplinar, que combina varias disciplinas como son la biología, la

mecánica y la arquitectura1. Esta ciencia presenta un doble objetivo: por un lado,

analizar el comportamiento mecánico del tejido corneal y, por otro lado, realizar

modelos físico-matemáticos que permitan establecer respuestas a diversas

condiciones relacionadas con el tejido corneal.1

Para entender esta ciencia, es necesario conocer cuáles son las propiedades del

tejido corneal que están sujetas a la biomecánica y, por otra parte, conocer en qué

consiste dicha disciplina.

La córnea es un tejido transparente, avascular, viscoelástico y resistente a la

deformación, que constituye junto con la esclerótica la capa fibrosa externa del

globo ocular.

Anatómicamente la córnea presenta una forma elíptica, donde el diámetro

horizontal es mayor al vertical, de 11,7 y 10,6 mm de media respectivamente, y

presenta una profundidad sagital de 2,6 mm de media. La córnea presenta dos

radios de curvatura medios, por un lado, el radio de curvatura anterior de

aproximadamente 7,8 mm que tiene un poder dióptrico de 43,27 D, mientras que el

radio de curvatura posterior es de 6,5 mm con un poder dióptrico de -6,15 D. Según

el estudio de T. Freegard2 donde se explican las bases físicas que aportan a la

córnea su transparencia, hace referencia a los valores medios de la córnea,

afirmando la asimetría de la córnea, ya que la cara anterior presenta cierto grado de

Page 8: CORVIS ST: BIOMECÁNICA CORNEAL

8

aplanación hacia la periferia de la misma, provocando así que la córnea sea más

gruesa en la periferia (0,69 mm) que en la zona central (0,50 mm).2

Una vez definida la córnea en términos técnicos, es necesario saber la relación

que presenta con la biomecánica. Uno de los indicadores utilizados en la

biomecánica es el Módulo de Young, también conocido como módulo de elasticidad.

Es un indicador intrínseco de la rigidez y elasticidad de un material, en nuestro caso,

el material considerado sería el tejido corneal.3,4 Un material elástico presenta un

comportamiento lineal, lo que quiere decir que es capaz de recuperar su forma

original en el momento que cesa la fuerza externa aplicada sobre él. Esta fuerza se

aplica en la misma dirección en la que se está produciendo el desplazamiento del

material.

De esta manera, el módulo de elasticidad viene determinado por la relación que

se establece entre el incremento de la fuerza aplicada y el desplazamiento que se

produce en el material (Figura 1).3

Figura 1. Comportamiento lineal de un material elástico durante su deformación. El material

recupera su forma original siguiendo la misma pendiente.3

Page 9: CORVIS ST: BIOMECÁNICA CORNEAL

9

Como podemos observar en la gráfica (Figura 1), el comportamiento de un

material elástico es lineal. Sin embargo, la córnea no se comporta como un material

100% elástico, pero tampoco como un material viscoso que no recupera su forma

original tras la aplicación de una fuerza, sino que presenta propiedades

viscoelásticas, esto quiere decir que el tejido corneal recupera igualmente su forma

original tras el cese de la fuerza externa, pero lo hace de manera más lenta al

presentar componentes viscosos (Figura 2).

Figura 2. Comportamiento no lineal de un material viscoelástico. El área entre ambas curvas

representa la energía disipada por el material para poder recuperar su forma original.3

Si comparamos ambas gráficas (Figura 1 y Figura 2) podemos apreciar la

diferencia entre ambos comportamientos, destacando que en la Figura 2 la variación

entre ambas curvas es producida por la liberación de energía por parte del tejido

corneal para poder recuperar su forma original.3

Los valores que adopta el módulo de Young dependen del material considerado.

Por un lado, un módulo de elasticidad bajo de un cierto material indica que se

requiere de poco esfuerzo para su deformación. Por otro lado, los materiales rígidos

que presentan gran resistencia durante la deformación tienen un valor elevado del

Módulo de Young. Entonces, ¿qué sucede con el tejido corneal? como se ha

Page 10: CORVIS ST: BIOMECÁNICA CORNEAL

10

comentado anteriormente, se trata de un material viscoelástico, su módulo de Young

varía según la dirección y región en la que se aplique el esfuerzo externo. Presenta

valores de módulo alto para las regiones centrales y paracentrales de la córnea y la

zona circunferencial al limbo a consecuencia de la orientación lamelar de las fibras

de colágeno del estroma que son las encargadas de modular la respuesta

biomecánica.3,5

En la figura 2 podemos apreciar el comportamiento no lineal del tejido corneal

tras la realización de un estudio ex vivo.3,5 Actualmente no disponemos de estudios

in vivo que nos permitan establecer unos valores de normalidad del Módulo de

Young, solamente disponemos de modelos matemáticos que establecen relación

entre ciertos parámetros como la presión intraocular (PIO) y la rigidez de la

córnea.3,5

La necesidad de mejorar el conocimiento de la respuesta corneal ha generado la

inquietud de crear nuevas medidas, y poder conocer así de manera más exacta las

propiedades corneales. Dichas propiedades tienen una gran importancia clínica

relacionadas con la presión intraocular, la cirugía refractiva y diversas patologías,

siendo claves a la hora de realizar el diagnóstico exhaustivo y completo, tanto para

la selección de pacientes como para el seguimiento de tratamientos o patologías.

La biomecánica corneal ha evolucionado de la mano de los avances tecnológicos

de la medida de la córnea in vivo, permitiéndo el análisis del tejido sobre organismos

vivos.

En relación al globo ocular, hay diferentes factores que juegan una importante

influencia sobre la biomecánica. Se pueden clasificar en factores que mantienen

una relación directa con la estructura corneal, factores oculares y factores externos

a dicha estructura (Tabla 1).

Page 11: CORVIS ST: BIOMECÁNICA CORNEAL

11

Tabla 1. Clasificación de los factores que influyen en la biomecánica corneal adaptado de Del Buey.3

Los factores relacionados directamente con el tejido corneal son:

1. El grosor corneal y la disposición de las fibras de colágeno que forman la

córnea. La córnea está formada en un 90% por el estroma, además de otras

cuatro capas (epitelio, membrana de Bowman, membrana de Descemet y

endotelio). La composición del estroma aporta un gran papel en las

propiedades biomecánicas, esto es debido a que está formado

fundamentalmente por lamelas de colágeno encargadas de proporcionar a la

córnea fuerza y flexibilidad.2,6 La disposición y empaquetamiento paralelo de

las lamelas de colágeno de limbo a limbo le otorga a la córnea su

transparencia. Pero, la distribución de la red lamelar varía según la región

corneal, entrecruzándose de manera más densa en la región cercana a la

superficie corneal. También varía la disposición de las láminas próximas al

limbo, por lo que los diferentes ángulos de cruzamiento atribuyen al tejido

corneal una especial resistencia, considerando así al colágeno como el

componente encargado de mantener la estructura y plasticidad tisular6, ya

Page 12: CORVIS ST: BIOMECÁNICA CORNEAL

12

que tiene un papel importante en la absorción de agua de la córnea gracias

a su carácter hidrofílico.2,6

2. Otro de los factores cruciales es la hidratación del tejido corneal, que

normalmente tiene un valor aproximado al 78% del peso total del estroma.

Supone una de las principales características de la córnea dado que, si se

aumenta este contenido acuoso se produce una edematización corneal y por

consecuencia se perderá la transparencia tisular, pudiendo llegar a

situaciones irreversibles donde se produce una cicatrización estromal.

Además, la pérdida de la transparencia corneal supone una afectación

directa a la calidad visual debido a la ruptura del estado de equilibrio que dota

a la córnea de sus propiedades ópticas.6

Los factores oculares son (Figura 3):

1. La presión intraocular se considera uno de los factores más importantes.

Corresponde a la fuerza que ejerce el humor acuoso sobre las estructuras

internas del globo ocular. Su control y estabilidad son de especial relevancia

a la hora de evitar lesiones en el nervio óptico. Un incremento de la presión

intraocular genera una variación en las tensiones soportadas por la

estructura corneal, de manera que se puede llegar a generar un moldeado

de la estructura corneal modificándose así la biomecánica de la misma.3 A

su vez, la presión intraocular depende del grosor corneal, la edad de la

persona y la respuesta biomecánica corneal, como se explicará en los

siguientes apartados.3

2. La tensión palpebral a la vez que la tensión ejercida por los músculos

oculares también son consideradas factores influyentes en la biomecánica

corneal.3

Page 13: CORVIS ST: BIOMECÁNICA CORNEAL

13

Por último, factores externos al globo ocular (Figura 3):

1. El factor externo que más repercute en la estructura corneal es la presión

atmosférica que se ejerce sobre la capa más externa del ojo y que podría

influir en su estado de equilibrio.3 A su vez, también son considerados

factores que pueden modificar el comportamiento y estructura del tejido

corneal enfermedades generales o específicas, sin olvidarnos de

traumatismos o cirugías que puedan alterar la fisiología corneal.3

Figura 3. Esquema de las tensiones extracorneales y externos al globo ocular

influyentes en la biomecánica corneal.3

Page 14: CORVIS ST: BIOMECÁNICA CORNEAL

14

2. INSTRUMENTOS PARA MEDIR LA BIOMECÁNICA CORNEAL. 2.1 OCULAR RESPONSE ANALYZER (ORA)

El ORA, desarrollado por Reichert (Buffalo NY, EE.UU.) fue uno de los primeros

instrumentos diseñados para medir in vivo diversas propiedades biomecánicas

corneales como la histéresis corneal y el factor de resistencia corneal.7 La histéresis

corneal hace referencia a la capacidad de absorción y disipación de la energía por

parte del tejido corneal, mientras que el factor de resistencia corneal representa la

resistencia estática de la córnea al ser deformada. Entre otros objetivos, estos dos

parámetros son utilizados para obtener un valor de presión intraocular lo menos

influenciado por las propiedades corneales, como pueden ser el grosor corneal o

los radios de curvatura.

Su método de funcionamiento consiste en un proceso dinámico de aplanación

bidireccional. Este proceso se consigue al utilizar un pulso de aire sobre la córnea

para aplicar una presión y generar así una deformación en el tejido corneal que será

monitorizado por un sistema óptico electrónico. Como podemos observar en el

gráfico (Figura 4), este proceso consta de dos fases de aplanación: una primera

fase (P1) donde la córnea recibe el impulso de aire y pasa de su forma natural

convexa a una forma cóncava, y una segunda fase (P2) donde al reducirse la

presión ejercida sobre la córnea, esta pasa de la forma cóncava a su forma original.7

Figura 4. Representación gráfica del proceso dinámico de aplanación bidireccional.8

Page 15: CORVIS ST: BIOMECÁNICA CORNEAL

15

A partir de la interpretación de esta gráfica se obteniene, según la Ley de Imbert-

Fick, dos valores diferentes de PIO correspondientes a cada pico del proceso de

aplanación, los valores de histéresis corneal correspondientes a cada punto de

intersección de ambas curvas y el factor de resistencia corneal.

Este instrumento sirve de especial utilidad en el sector clínico, ya que a pesar de

haberse diseñado en un principio para el análisis de las propiedades biomecánicas

en el sector de la cirugía refractiva8,9, existen numerosos estudios que demuestran

su utilidad para la detección de córneas patológicas, como por ejemplo casos de

queratocono, ectasias, glaucoma, etc. Esto es gracias a la base de datos que se

genera de los estudios en nuestra población, permitiendo así establecer unos

valores de normalidad que nos permita identificar parámetros anómalos.

Por todas estas características descritas, el ORA se convierte en uno de los

instrumentos clínicos más capacitados en la actualidad para medir con exactitud la

presión intraocular.

2.2 TONÓMETRO CORVIS ST

Las propiedades biomecánicas fueron evaluadas inicialmente con el Ocular

Response Analyzer y posteriormente descritas por primera vez en 2005 por Luce10

pero este dispositivo sólo permitía una evaluación corneal indirecta. El nuevo

dispositivo experimental Corvis ST (OCULUS Optikgeräte Inc.,Wetzlar, Germany),

permite contrastar verídicamente lo que sucede durante la deformación corneal.

Page 16: CORVIS ST: BIOMECÁNICA CORNEAL

16

Figura 5. Dispositivo Corvis ST (OCULUS Optikgeräte Inc,Wetzlar,Germany).11

Este nuevo tonómetro de no-contacto (Figura 5) se basa en la incorporación de

una cámara con tecnología Scheimpflug de ultra-alta velocidad capaz de

monitorizar, durante 30 ms y mediante un LED azul de 455 nm12, una superficie

horizontal de 8,5 mm, obteniendo más de 4.300 fotogramas por segundo,

adquiriendo un total de 140 fotogramas12,13,14,15 en los cuales se obtiene información

de aproximadamente 576 puntos de la superficie corneal; cada imagen presenta

una resolución de 640x480 píxeles.15 Con este instrumento se facilita la comparación

de parámetros entre ambos ojos de un paciente, ya que cada una de las córneas

experimenta la misma carga durante el mismo periodo de tiempo.

El Corvis ST presenta numerosas aplicaciones gracias al dominio que ejerce

sobre todos los aspectos relacionados con la biomecánica.16 Al deshacer el vínculo

existente entre biomecánica, grosor corneal y presión intraocular, el intrumento es

capaz de obtener información aislada de cada parámetro, permitiendo así conocer

información más precisa sobre la presión intraocular, identificar factores de riesgo

en patologías como glaucoma y su posterior tratamiento, detección de pacientes

con ectasia, medición del efecto crosslinking corneal sin tener la necesidad de

esperar a ver alteraciones paquimétricas o elevaciones de cara posterior y por

supuesto para mejorar la predicción de los resultados refractivos.16

Page 17: CORVIS ST: BIOMECÁNICA CORNEAL

17

Actualmente es un instrumento que se encuentra en fase de experimentación,

por lo que el número de artículos que evalúan su aplicación clínica es limitado,

pudiendo encontrar actualmente un total de 277 artículos en sistemas de búsqueda

como PubMED. Jiaxu Hong et al.15 compararon la actuación del nuevo tonómetro

Corvis ST con dos tonómetros tradicionales, el tradicional tonómetro de no contacto

y el tonómetro de Goldmann, utilizados en la medición de la presión intraocular en

pacientes sanos y pacientes con glaucoma. Comprobaron que en los valores

obtenidos de PIO no había variaciones significativas entre los tres instrumentos.

Además, mostraron que el nuevo tonómetro, Corvis ST, presenta la menor

variabilidad interobservador e intraobservador.15

La reproducibilidad de las medidas hace referencia a la variación en las

mediciones repetidas realizadas sobre el mismo sujeto bajo condiciones idénticas

mientras que la repetibilidad de las medidas indican las variaciones en las

mediciones realizadas en el mismo sujeto modificando las condiciones.

Ambas características fueron contrastadas en el estudio de Bernardo T. Lopes

et al.10, donde utilizaron tres dispositivos Corvis ST para medir de manera aleatoria

los 32 ojos sanos de los voluntarios. En este estudio se realizaron medidas de PIO,

PIO compensada y de la respuesta corneal dinámica (DCR). Se obtuvieron valores

de reproducibilidad y repetibilidad de la PIO muy buenas con tan sólo una variación

de 1 mmHg, obteniendo un coeficiente de variación (CV) del 6,6% para la

repetibilidad y del 7,6% para la reproducibilidad, confirmó así la precisión del

instrumento a la hora de realizar las medidas. Además, estos valores son similares

a los obtenidos en estudios previos, como por ejemplo el estudio de Nemeth et al. donde obtuvieron un valor de CV de 6,9% para la repetibilidad de la PIO.10

En el estudio realizado por Michele Lanza12 se recogen diferentes estudios

donde se investigó la repetibilidad y reproducibilidad de los parámetros medidos con

el Corvis ST. Incluye también la confrontación de la fiabilidad del Corvis ST con otros

instrumentos (Tabla 2):

Page 18: CORVIS ST: BIOMECÁNICA CORNEAL

18

Tabla 2. Demostración de la fiabilidad y exactitud los parámetros medidos con Corvis ST. Comparación con

otros instrumentos.12

2.2.1 TECNOLOGÍA DE FUNCIONAMIENTO

Al comenzar la prueba, se le pide al paciente que apoye la barbilla en la

mentonera que presenta el dispositivo, y a su vez que acerque lo máximo posible

su frente al dispositivo hasta tocarlo. De esta manera, el instrumento podrá mediante

su cámara central enfocar y alinear la zona del ápex corneal (Figura 5) sobre la cual

aplicará el pulso de aire y de donde se obtendrán los parámetros necesarios.

Page 19: CORVIS ST: BIOMECÁNICA CORNEAL

19

Antes de realizar las medidas, sería conveniente avisar al paciente de que el

instrumento realizará un soplido de aire sobre la córnea.

Figura 5. Cámara central del Corvis ST, donde enfocamos el ápex corneal para hacer la medida.11

Al paciente se le pedirá que fije su atención en un LED central de color rojo,

mientras que la persona que realiza el examen, con la ayuda de la cámara central,

tendrá que enfocar el ápex corneal. El enfoque se realiza mediante el ajuste de las

flechas rojas (Figura 5) en el círculo rojo central, es decir, para que se dispare el

pulso de aire de manera automática, es necesario que la cámara se alinee con la

primera imagen de Purkinje.12 Si este alineamiento no fuese posible, el instrumento

también consta de la opción manual. Este instrumento incorpora una cámara con

tecnología Scheimpflug, la cual se activa y comienza a grabar inmediatamente antes

de que el pulso de aire se aplique en la córnea, de manera que se monitoriza la

actividad corneal para su futura evaluación.11,12

Page 20: CORVIS ST: BIOMECÁNICA CORNEAL

20

En el momento que el soplo de aire alcanza la superficie corneal, esta comienza

a desplazarse hacia el interior (Figura 6,Figura 7)14 cambiando su curvatura hasta

alcanzar una forma cóncava. En la figura 6 se puede apreciar que la córnea de color

azul está en su forma original pre-deformación, en el momento que recibe el pulso

se desplaza hacia el interior una zona central de 0,5 mm de diámetro alrededor del

ápex corneal12,14 hasta alcanzar el punto de concavidad máxima, descrito en la

figura como la córnea en color rojo. En el momento que el soplo cesa, la córnea

recupera su forma original.

Figura 6. Esquema de la deformación que sufre la córnea al aplicarse el pulso de aire.14

Como ya se ha comentado anteriormente, este nuevo dispositivo incorpora una

tecnología de alta velocidad capaz de monitorizar la respuesta corneal, mediante la

obtención de 4.330 fotogramas por segundo. En la figura 7 se puede apreciar el

movimiento que realiza la córnea durante el pulso de aire (Figura 7). Gracias a esta

monitorización de los diferentes fotogramas, se podrán calcular los parámetros que

servirán para valorar el estado corneal.11

Page 21: CORVIS ST: BIOMECÁNICA CORNEAL

21

Figura 7. Secuencia de fotogramas.11

2.2.1 PARÁMETROS

Los principales parámetros estudiados por el Corvis ST para evaluar el

comportamiento biomecánico de la córnea son los que están relacionados con la

amplitud, longitud y velocidad de la deformación corneal, la presión intraocular y los

diferentes estados que presenta la córnea durante la aplanación. A continuación, se

explicarán cada uno de los parámetros que ofrece este nuevo dispositivo.11,12,14

● Amplitud de deformación (mm): se representa mediante una gráfica donde

se muestra el progreso de la deformación corneal en el ápex durante los 30

ms que dura la prueba. Dentro de los parámetros relacionados con la

amplitud de deformación del tejido corneal están:

○ Amplitud de deformación en el punto máximo de concavidad (HCDA):

amplitud máxima de deformación desde que empieza el pulso de aire

hasta que se alcanza la máxima concavidad del ápex corneal

siguiendo una dirección anteroposterior (Figura 8), teniendo en

cuenta que cuando se está realizando la medición, el globo ocular

Page 22: CORVIS ST: BIOMECÁNICA CORNEAL

22

realiza un leve pero significativo movimiento lineal en la misma

dirección cuando la córnea alcanza su desplazamiento máximo. Una

vez alcanzado el grado máximo de concavidad, este movimiento se

vuelve más pronunciado y de naturaleza no lineal debido a que el

pulso de aire todavía no cesó. Por lo tanto, se considera que la

amplitud de deformación es la suma total de la amplitud real de

deflexión de la córnea y el movimiento completo que realiza el ojo.

Figura 8. Hoja de resultados. En el extremo superior izquierdo está la gráfica donde se muestra el progreso de

la deformación corneal, es este caso el cursor del tiempo está parado en el momento correspondiente a la

máxima concavidad que alcanza el tejido corneal.11

○ Distancia máxima (HCPD): distancia máxima entre los dos puntos

horizontales donde empieza la máxima amplitud de deformación

(Figura 9).

Page 23: CORVIS ST: BIOMECÁNICA CORNEAL

23

Figura 9. Representación de la distancia máxima.11

○ Tiempo de máxima concavidad (HCT): tiempo en el que se alcanza el

punto de máxima concavidad. En la figura 8 aparece un recuadro

donde lo contabiliza.

○ Radio de la máxima concavidad (HCR): radio de la córnea central en

el grado máximo de concavidad.

○ Radio cóncavo inverso (1/R): se calcula trazando el radio inverso que

forma la córnea a lo largo del tiempo que dura el pulso de aire y

encontrando la suma integrada de ambos momentos de aplanación.

○ Longitud delta arc (dArc length): describe el cambio en la longitud del

arco en el momento de máxima concavidad desde el estado inicial,

definido en una zona de 7 mm desde el ápex corneal.

● Longitud de aplanación (mm): en esta gráfica se analiza el área aplanada

durante el pulso de aire. Normalmente se suelen apreciar en esta gráfica dos

picos máximos de aplanación, correspondientes con las dos aplanaciones

que sufre la córnea. En la figura 10 esta gráfica corresponde a la del medio.

○ Longitud de la primera aplanación (AL1): longitud del tramo corneal

aplanado por primera vez. Se da como dato la distancia que hay entre

la posición original y la que alcanza el tejido al someterse al pulso de

aire.

○ Tiempo de la primera aplanación (AT1): tiempo en milisegundos que

pasa desde que se inicia la grabación hasta que el pulso de aire causa

la deformación corneal.

Page 24: CORVIS ST: BIOMECÁNICA CORNEAL

24

○ Longitud de la segunda aplanación (AL2): longitud de la córnea

cuando se aplana por segunda vez.

○ Tiempo de la segunda aplanación (AT2): tiempo en milisegundos que

pasa desde el momento de máxima concavidad de la córnea hasta

que recupera su curvatura original.

● Velocidad de deformación corneal (m/seg): se representa con una gráfica y

muestra cómo varía la velocidad de la deformación corneal, desde la primera

aplanación hasta la segunda. Cuando el tejido corneal alcanza su máxima

concavidad la velocidad se hace nula. Una vez que el pulso de aire cesa la

córnea recupera su forma original con velocidad negativa, pasando así por

un nuevo valor de velocidad máxima durante la segunda aplanación. En el

momento que la córnea recupera su forma original la velocidad del

movimiento que alcanza el tejido vuelve a hacerse nula, teniendo en cuenta

que la velocidad de deformación no tiene por qué ser igual a la de

recuperación, esto es debido a la capacidad de absorción y disipación de

energía que presenta la córnea. Corresponde a la última de las gráficas

representadas en la figura 10.

○ Velocidad de la primera aplanación (AV1): velocidad que alcanza la

primera aplanación. Se representa en metros/segundos.

○ Velocidad de la segunda aplanación (AV2): velocidad negativa que

alcanza la segunda aplanación. Se representa en metros/segundos.

Figura 10. Gráficas de resultados de amplitud de deformación, longitud de aplanación y velocidad de

deformación de la deformación del tejido corneal en un paciente aparentemente sano.11

Page 25: CORVIS ST: BIOMECÁNICA CORNEAL

25

● Presión intraocular (PIO): el valor de la PIO se ajusta a partir de la primera

aplanación corneal y de la paquimetría (valor en micras) del ápex corneal que

proporciona la imagen de Scheimpflug. Se obtiene un valor en mmHg como

se puede observar en la figura 8.

Además de los principales parámetros mencionados, este nuevo dispositivo

experimental también incluye un informe Screening de Vinciguerra14 el cual permite

comparar los valores obtenidos con una base de datos donde se registraron los

valores de normalidad de exámenes anteriormente importados, incorporando a su

vez un índice que permite separar valores de normalidad con valores de córneas

patológicas como en el caso del queratocono. Este informe incluye los parámetros

de (Figura 11):14

● Radio máximo de amplitud de deformación (2 mm): (DA radio max) radio

entre la amplitud de deformación en el ápex corneal y el promedio de

amplitud de deformación medido a 2 mm del centro corneal.

● Grosor relacional de Ambrosio al perfil horizontal: (ARTh) describe el perfil

de grosor en la dirección temporal-nasal y se define como grosor corneal más

delgado a progresión paquimétrica.

● Radio integrado: (INR) área debajo del radio cóncavo inverso versus la curva

tiempo.

● Parámetro de rigidez en A1: (SP A1) define la rigidez corneal en función de

la presión resultante (Pr) dividida por la amplitud de deformación en A1.

● Índice biomecánico del Corvis: (CBI) índice biomecánico general para la

detección de queratocono.

Page 26: CORVIS ST: BIOMECÁNICA CORNEAL

26

Figura 11. Informe Vinciguerra. Análisis de cuatro parámetros del comportamiento biomecánico corneal y

vídeo del proceso de deformación del tejido corneal.14

La figura 11 muestra un ejemplo de cómo sería el informe Screening de

Vinciguerra, donde se nos presenta en la parte superior información gráfica de

cuatro parámetros de respuesta biomecánica seleccionados por el examinador,

además de un vídeo en la parte inferior izquierda de la deformación de la córnea

junto con los valores de desviación estándar y del índice biomecánico de Corvis.14

En cada una de las cuatro gráficas compara los valores obtenidos con los valores

de normalidad en función de la presión intraocular corregida, obteniendo así una

gráfica que muestra los valores de desviación estándar por encima y por debajo de

los datos obtenidos (Figura 12):

Page 27: CORVIS ST: BIOMECÁNICA CORNEAL

27

Figura 12. Gráfica de la derecha muestra el parámetro biomecánico de amplitud de deformación con el rango

de valores de normalidad para la presión intraocular corregida (bIOP) para el paciente examinado. La gráfica

de la izquierda muestra el valor obtenido en comparación al rango de valores de normalidad de bIOP.14

Para cada una de las gráficas se presenta información sobre la desviación

estándar comprendida en un rango de ±2 SD. El valor entre el que está comprendido

se representa debajo de cada trazado, sirviendo de indicador para pacientes con

queratocono los cuales superan el valor de +2 SD.14 También nos ofrece los valores

de presión intraocular biomecánicamente compensada (bIOP) junto con el grosor

corneal del paciente (CCT) (Figura 13):

Figura 13. Informe con los valores de los parámetros de radio máximo de amplitud de deformación, radio

integrado, grosor relacional de Ambrosio, parámetro de rigidez durante A1 e índice biomecánico del Corvis.14

Page 28: CORVIS ST: BIOMECÁNICA CORNEAL

28

Diferentes estudios analizan la repetibilidad y precisión de los parámetros

obtenidos por este instrumento. En el estudio realizado con la nueva versión del

software por Ying Wu et al.17 examinaron un total de 783 pacientes chinos sanos

de entre 13-89 años de edad durante un período comprendido entre Julio de 2013

y Agosto de 2015. El análisis de la repetibilidad se basó en la realización de tres

medidas de 90 ojos seleccionados aleatoriamente de entre los 783 pacientes que

participaron, estas medidas fueron realizadas durante el mismo día y manteniendo

un margen de tiempo de tres minutos entre cada toma. En la tabla 3 aparecen

representados los valores de precisión, repetibilidad, coeficiente de variación y

coeficiente de correlación intraclase. Este último define la similitud relativa que

comparten las mismas unidades de observación de un proceso de medición18. Se

definió de la siguiente manera: valores {ICC<0,75} son considerados parámetros

con poca-moderada repetibilidad, {ICC=0,75-0,90} presenta una buena repetibilidad

y {ICC>0,90} son parámetros con excelente repetibilidad en medidas clínicas.17

Tabla 3. Repetibilidad de los parámetros recalculados con tecnología Scheimpflug para las tres mediciones.17

La tabla 3 muestra que los parámetros que presentan una repetibilidad excelente

son los que proporcionan los valores del grosor corneal central, la amplitud de

deformación corneal y el tiempo de la primera y segunda aplanación, ya que

presentan valores bajos de coeficiente de variación y a la vez un valor de

{ICC>0,90}. Por otro lado, también presentan buena repetibilidad la presión

Page 29: CORVIS ST: BIOMECÁNICA CORNEAL

29

intraocular y la distancia máxima entre los picos horizontales de la máxima

concavidad. El resto de parámetros tienen un {ICC<0,75} y se consideran

parámetros con baja repetibilidad.17

El estudio de Valbon et al.13 demuestra que los únicos parámetros que no

comparten una correlación con el grosor corneal central son el tiempo de la segunda

aplanación, el tiempo de máxima concavidad y el radio de curvatura, sin embargo,

la presión intraocular si presenta una correlación con el grosor corneal mencionado.

En la misma línea de resultados están los estudios como el de Reznicek et al.19 y

Hom and Lam20 entre otros, que corroboran esta relación entre PIO y grosor

corneal.

En general, se puede concluir que la mayoría de los parámetros están

correlacionados con el grosor corneal y a su vez son independientes del sexo de

paciente, como se ha podido comprobar en estudios como el de B. Valbon et al.13

y Ying Wu et al.17. Sin embargo, la correlación que hay entre la edad y la respuesta

biomecánica es todavía objeto de investigación, en el estudio de Ying Wu et al.17

afirman la falta de correlación entre la edad y los parámetros biomecánicos medidos

por Corvis ST, pero a su vez también mencionan otros estudios que demuestran

que la edad afecta a la estructura corneal, concretamente se produce un aumento

en el diámetro de las fibras de colágeno provocando un aumento de la rigidez del

tejido17. Esta relación también se corrobora en otros estudios como el de Sharifipour

et al.21 o B. Valbon22.

Algunos autores12,23,24 han evaluado la relación entre los parámetros de

deformación corneal procedentes del ORA con algunos del Corvis ST, todos están

de acuerdo que ambos trabajan de distinta manera dando resultados difíciles de

comparar. La principal diferencia se encuentra en el pulso de aire utilizado, Corvis

ST utiliza un pulso de aire fijo mientras que ORA no.12 Otra de las principales

características que diferencia a estos dos dispositivos son los parámetros que

ofrecen, la histéresis corneal y el factor de resistencia corneal proporcionados por

Page 30: CORVIS ST: BIOMECÁNICA CORNEAL

30

ORA frente al amplio abanico de parámetros descritos en este apartado que

proporciona el Corvis ST.

3. APLICACIONES CLÍNICAS

El estudio de la biomecánica corneal abarca gran relevancia en el sector clínico.

Desde la importancia que supone el comportamiento corneal para la detección y

control de patologías oculares como queratoconos, glaucoma, ectasias corneales,

distrofias corneales, etc, hasta la notoria relevancia que presenta con el entorno de

la cirugía refractiva.25

3.1 PATOLOGÍAS

El estudio y análisis de diferentes ojos sanos y patológicos mediante el

instrumento ORA ha permitido realizar una base de datos donde se registran los

diferentes valores límite de sospecha. Sirven, como orientación clínica a la hora de

evaluar a los pacientes. Las principales patologías que pueden presentar

alteraciones de la respuesta biomecánica corneal son el queratocono y el glaucoma.

3.1.1 QUERATOCONO

El queratocono es una afección en la cual la córnea asume una forma cónica

como resultado del adelgazamiento no inflamatorio del estroma corneal. El

adelgazamiento corneal induce astigmatismo irregular, miopía y protrusión, lo que

lleva a un deterioro de leve a marcado en la calidad de la visión. Es un trastorno

progresivo que afecta en última instancia a ambos ojos, aunque solo un ojo puede

verse afectado inicialmente.26 Se origina en la pubertad y avanza de manera

progresiva hasta los 30-40 años de edad.

Page 31: CORVIS ST: BIOMECÁNICA CORNEAL

31

Dependiendo del estadio en el que se encuentre, sus signos serán detectables

mediante un examen con la lámpara de hendidura. Los estadios moderado-

avanzado presentaran signos como estrías en el estroma, anillo de Fleischer,

visualización de nervios corneales, protrusión cónica, etc.

En los diferentes estudios en los que se evalúan los parámetros relacionados con

las propiedades biomecánicas de la córnea, se ha corroborado la relación que

mantiene la PIO con el grosor corneal y dichas propiedades. Una córnea alterada

con queratocono presentará alterada la estructura corneal y por consecuencia

tendrá alterada la PIO.27

El estado inicial del queratocono se manifiesta con la reducción de las

propiedades biomecánicas consecuente del adelgazamiento que se produce en el

tejido, por ello Vinciguerra et al.27 tuvieron como objetivo realizar un examen in vivo

de la biomecánica corneal para mejorar el diagnóstico temprano del queratocono.

Realizaron dos amplios estudios con el fin de conseguir una base de datos lo

suficientemente extensa para poder desarrollar una fórmula eficaz en la detección

del queratocono.27 El modelo de diagnóstico creado presentó una gran sensibilidad

y especificidad, clasificando correctamente al 98% de los pacientes examinados y

obteniendo un valor de AUC (área de debajo de la curva) del 0,990 valor que

proviene del análisis de las curvas de características operativas del receptor (ROC).

Estas curvas se obtienen del trazado de dos curvas, una para la sensibilidad y otra

para la especifidad, donde el valor del grado de discriminación viene descrito por el

área de debajo de la curva (AUC).27 Un valor del 100% indica la perfecta

discriminación que realiza el instrumento entre ambos grupos de pacientes, en este

caso, pacientes con córneas sanas y pacientes con córneas con queratocono. A

partir de la aplicación de dichas curvas se obtiene el siguiente gráfico (Figura 14):

Page 32: CORVIS ST: BIOMECÁNICA CORNEAL

32

Figura 14. Funcionamiento del receptor (ROC) en función de los datos del estudio, donde se obtiene un valor

por debajo del área de 0.983.27

En este estudio de Vinciguerra et al.27 se estableció un rango de valores que iba

desde el 0, considerado valor normal, hasta el 1, considerado valor anómalo, a su

vez establecieron un valor de corte de 0,5, donde el índice biomecánico del Corvis

es capaz de clasificar correctamente los pacientes con ectasia en el tejido corneal.

En otro estudio, también realizado por Vinciguerra et al.14, se estudió la capacidad

de este parámetro para detectar casos de queratocono. También concluyeron con

que el valor de corte 0,5 proporciona unos valores de 98,2% de fiabilidad en cuanto

a la correcta clasificación del paciente14, convirtiéndose en el primer índice que se

conoce capaz de realizar dicha separación basándose en la biomecánica corneal.

A partir del desarrollo del nuevo parámetro CBI del Corvis ST para la detección

del queratocono, Oculus introdujo un nuevo índice tomográfico y biomecánico que

surge de la combinación de la tecnología del Corvis ST con la tomografía realizada

por el Pentacam HD. En el estudio R. Ambrósio Jr. et al.14 menciona elevada

sensibilidad (92,55%) y especificidad (98,74%) que presenta este nuevo índice para

la detección de queratoconos con forma frustre. Presenta menor sensibilidad que el

CBI, pero la combinación de ambos indicadores permite una mejor clasificación y

Page 33: CORVIS ST: BIOMECÁNICA CORNEAL

33

un diagnóstico temprano de la patología, considerándose factores clave en el sector

clínico.28

Por último, destacar los tratamientos disponibles para esta enfermedad. Por un

lado, está la colocación de anillos intracorneales encargados de recentrar la zona

de protrusión, con el fin de reducir las aberraciones ópticas producidas por el

queratocono y por otro, la técnica de crosslinking para endurecer la estructura

corneal, por eso es de gran importancia conocer el comportamiento biomecánico

para asegurarnos de seleccionar el mejor tratamiento posible, a la vez que para

realizar un control de la enfermedad.

3.1.2 GLAUCOMA

El glaucoma es una enfermedad clasificada en el grupo de neuropatías ópticas

caracterizada por la degeneración progresiva de las células ganglionares de la

retina. Estas neuronas del sistema nervioso central tienen sus cuerpos celulares

dispuestos en la retina interna y los axones forman el nervio óptico. Esta

degeneración otorga al disco óptico un aspecto característico a la vez que genera

una pérdida visual.29 Uno de los factores relevantes de esta enfermedad es el

aumento de la PIO, por lo que es de gran relevancia realizar controles tensionales.

Además, supone una de las complicaciones postoperatorias más frecuentes de la

queratoplastia, creándose así un nuevo frente de investigación entre el glaucoma y

la afectación a las propiedades biomecánica.

El ORA fue el primer dispositivo capaz de evaluar las propiedades biomecánicas

y obtener un valor de PIO menos influenciado por las mismas. La evaluación de los

parámetros proporcionados por el ORA contribuye a realizar el diagnóstico de esta

enfermedad, teniendo en cuenta que la PIO no es el único factor de riesgo

determinante de la enfermedad. Existen casos donde los pacientes presentan

valores bajos de PIO con alteraciones en la cabeza del nervio óptico, y al revés,

pacientes con cifras elevadas de PIO pero sin el manifiesto de daño en el nervio

Page 34: CORVIS ST: BIOMECÁNICA CORNEAL

34

óptico, por ello es importante tener una valor de la PIO lo más preciso posible, para

poder junto con otros factores determinantes diagnosticar de manera efectiva la

enfermedad. En el estudio recopilatorio de Del Buey Sayas30 se llegó a la

conclusión de que la histéresis corneal se ve significativamente reducida solo en

pacientes diagnosticados de glaucoma o con daños glaucomatosos evidentes. El

factor de resistencia corneal presenta valores elevados para los pacientes

sospechosos de glaucoma, habiendo diferencias estadísticamente significativas

entre el grupo de control y el grupo de diagnosticados.

3.2 TRATAMIENTOS REFRACTIVOS

La corrección de los errores refractivos ha estado en constante evolución desde

la aparición de las primeras técnicas quirúrgicas hasta la introducción de

tratamientos que permiten reducir la graduación de manera reversible.

3.2.1 CIRUGÍA REFRACTIVA

La cirugía refractiva tiene como objetivo corregir de manera irreversible el defecto

refractivo de los pacientes, teniendo como consecuencia una modificación de las

propiedades biomecánicas corneales.31 Las técnicas ablativas son las más

frecuentes, suponen así una modificación de la estructura corneal.31 Así pues, la

biomecánica corneal es un factor de gran importancia a la hora de realizar los

cálculos de ablación, según del tipo de ablación y localización, las propiedades

biomecánicas se verán alteradas en mayor o menor medida, dando lugar a una

disminución de la histéresis corneal y del factor de resistencia corneal25,31 a la vez

que un debilitamiento de la córnea.

Es de gran importancia conocer el comportamiento biomecánico para realizar un

control preoperatorio y descartar así córneas biomecánicamente alteradas que

supongan futuras complicaciones si son sometidas a una cirugía refractiva, además

Page 35: CORVIS ST: BIOMECÁNICA CORNEAL

35

de ser necesario para realizar controles postoperatorios que nos permitan evaluar

cómo se han modificado los parámetros y poder realizar un seguimiento de cada

paciente.

3.2.2 ORTOQUERATOLOGÍA

La ortoqueratología nocturna es un tratamiento utilizado para reducir el defecto

refractivo de manera reversible. El uso de una lente de contacto rígida durante la

noche provoca la aplanación de la zona central y como consecuencia se espera que

la lente de contacto provoque una modificación del radio de curvatura y grosor

corneal.32 Diversos estudios comprueban que tras la primera noche de su uso ya se

producen cambios en las propiedades biomecánicas. Mao et al.32 comprobó los

cambios que se produjeron en la histéresis corneal y factor de resistencia corneal,

los cuales se redujeron en la primera noche, pero al cabo de los tres meses se

revirtieron. Lo mismo pasó con los valores de PIO que se estabilizaron con el tiempo.

Como conclusión establecieron que los cambios producidos en la biomecánica

corneal no están directamente relacionados con los cambios que se producen en

los parámetros del segmento anterior de la córnea después de la ortoqueratología,

afirmando que las propiedades biomecánicas están relacionadas con el grosor del

estroma y la capa de Bowman, no con el grosor del epitelio corneal o la curvatura

de la misma.32

Todavía son necesarios futuros estudios donde se investigue con mayor

profundidad la relación que mantiene las propiedades biomecánicas de la córnea

con la aplicación de este tratamiento corrector.

Page 36: CORVIS ST: BIOMECÁNICA CORNEAL

36

4. CONCLUSIONES

La conclusión general que se pude extraer de este nuevo dispositivo es que, a

pesar de ser un instrumento experimental del que todavía faltan estudios, se

considera una herramienta de trabajo con gran potencial que ofrece un amplio

abanico de parámetros, los cuales nos permiten trabajar sobre el análisis del

comportamiento biomecánico, suponiendo de gran relevancia para diversos campos

del sector clínico y de la investigación.

Page 37: CORVIS ST: BIOMECÁNICA CORNEAL

37

6. WEBGRAFÍA/ BIBLIOGRAFÍA

1. Del Buey M.,Peris M. C. (2014) Biomecánica corneal: concepto,desarrollo y aplicaciones clínicas. En

Barcelona, Biomecánica y arquitectura corneal. Elsevier.3-10.

2. Freegard, T. J. (1997). The physical basis of transparency of the normal cornea. Eye, 11(4), 465–471

https://doi.org/10.1038/eye.1997.127

3. Del Buey M.,Peris M. C. (2014).Factores que influyen sobre la biomecánica corneal. En Barcelona,

Biomecánica y arquitectura corneal.Elsevier.11-22.

4. Kotecha, A. (2007). What Biomechanical Properties of the Cornea Are Relevant for the Clinician?

Survey of Ophthalmology, 52(6 SUPPL.), 109–114.

https://doi.org/10.1016/j.survophthal.2007.08.004

5. Hjortdal, J. (1996). Regional elastic performance of the human cornea. Journal of Biomechanics, 29(7),

931–942.

https://doi.org/10.1016/0021-9290(95)00152-2

6. Del Buey M.,Peris M. C. (2014).Métodos de estudio y diagnóstico de la morfología y la estructura

corneal.En Barcelona, Biomecánica y arquitectura corneal.Elsevier.61-90

7. Luce, D. A. (2005). Determining in vivo biomechanical properties of the cornea with an ocular response

analyzer. Journal of Cataract and Refractive Surgery, 31(1), 156–162.

https:// doi.org/10.1016/j.jcrs.2004.10.044

8. Del Buey M.,Peris M. C. (2014).Biomecánica corneal y presión intraocular.En Barcelona, Biomecánica

y arquitectura corneal.Elsevier.91-102.

9. Del Buey M.,Peris M. C. (2014). Estudio de la biomecánica corneal y presión intraocular con el Ocular

Response Analyzer.En Barcelona, Biomecánica y arquitectura corneal.Elsevier.103-118.

10. Lopes, B. T., Roberts, C. J., Elsheikh, A., Vinciguerra, R., Vinciguerra, P., Reisdorf, S., … Ambrósio,

R. (2017). Repeatability and Reproducibility of Intraocular Pressure and Dynamic Corneal Response

Parameters Assessed by the Corvis ST. Journal of Ophthalmology, 2017, 7–10.

https://doi.org/10.1155/2017/8515742

11. Del Buey M.,Peris M. C. (2014).Nuevas tecnologías para el estudio de la biomecánica de la córnea:

Corvis ST y otros dispositivos.En Barcelona, Biomecánica y arquitectura corneal. Elsevier.129-141.

12. Lanza, M., Iaccarino, S., & Bifani, M. (2016). In vivo human corneal deformation analysis with a

Scheimpflug camera, a critical review. Journal of Biophotonics, 2(5), 464–477.

https://doi.org/10.1002/jbio.201500233

Page 38: CORVIS ST: BIOMECÁNICA CORNEAL

38

13. Valbon, B. F., Ambrośio, R., Fontes, B. M., Luz, A., Roberts, C. J., & Ruiz Alves, M. (2014). Ocular

biomechanical metrics by CorVis ST in healthy Brazilian patients. Journal of Refractive Surgery, 30(7),

468–473.

https://doi.org/10.3928/1081597X-20140521-01

14. Prof, A., & Roberts, C. (n.d.). OCULUS Two Novel Stiffness Parameters for the Corvis ST.

15. Hong, J., Xu, J., Wei, A., Deng, S. X., Cui, X., Yu, X., & Sun, X. (2013). A new tonometer-the corvis ST

tonometer: Clinical comparison with noncontact and goldmann applanation tonometers. Investigative

Ophthalmology and Visual Science, 54(1), 659–665.

https://doi.org/10.1167/iovs.12-10984

16. (178) NUEVO Corvis ST Y NUEVO SOFTWARE DE BIOMECÁNICA CORNEAL - YouTube. (n.d.).

Retrieved June 10, 2020, from

https://www.youtube.com/watch?v=hR7FgmoQXpI

17. Wu, Y., Tian, L., & Huang, Y. (2016). In Vivo Corneal Biomechanical Properties with Corneal

Visualization Scheimpflug Technology in Chinese Population. BioMed Research International, 1–9.

https://doi.org/10.1155/2016/7840284

18. Salkind, N. (2012). Intraclass Correlation. Encyclopedia of Research Design, 2, 1–5.

19. Reznicek, L., Muth, D., Kampik, A., Neubauer, A. S., & Hirneiss, C. (2013). Evaluation of a novel

Scheimpflug-based non-contact tonometer in healthy subjects and patients with ocular hypertension

and glaucoma. British Journal of Ophthalmology, 97(11), 1410–1414.

https://doi.org/10.1136/bjophthalmol-2013-303400

20. Hon, Y., & Lam, A. K. C. (2013). Corneal deformation measurement using scheimpflug noncontact

tonometry. Optometry and Vision Science, 90(1), 1–8.

https://doi.org/10.1097/OPX.0b013e318279eb87

21. Sharifipour, F., Panahi-bazaz, M., Bidar, R., Idani, A., & Cheraghian, B. (2016). Age-related variations

in corneal biomechanical properties. Journal of Current Ophthalmology, 28(3), 117–122.

https://doi.org/10.1016/j.joco.2016.05.004

22. Valbon, B. F., Ambrósio, R., Fontes, B. M., & Alves, M. R. (2013). Effects of age on corneal deformation

by non-contact tonometry integrated with an ultra-high-speed (UHS) scheimpflug camera. Arquivos

Brasileiros de Oftalmologia, 76(4), 229–232.

https://doi.org/10.1590/S0004-27492013000400008

23. Han, Z., Tao, C., Zhou, D., Sun, Y., Zhou, C., Ren, Q., & Roberts, C. J. (2014). Air puff induced corneal

vibrations: Theoretical simulations and clinical observations. Journal of Refractive Surgery, 30(3), 208–

Page 39: CORVIS ST: BIOMECÁNICA CORNEAL

39

213.

https://doi.org/10.3928/1081597X-20140212-02

24. Tejwani, S., Shetty, R., Kurien, M., Dinakaran, S., Ghosh, A., & Roy, A. S. (2014). Biomechanics of the

cornea evaluated by spectral analysis of waveforms from ocular response analyzer and corvis-ST.

PLoS ONE, 9(8).

https://doi.org/10.1371/journal.pone.0097591

25. Del Buey M.,Peris M. C. (2014).Cirugía refractiva corneal y biomecánica.En Barcelona, Biomecánica y

arquitectura corneal.Elsevier.247-276.

26. Rabinowitz, Y. S. (1998). Keratoconus. Survey of Ophthalmology, 42(4), 297–319.

https://doi.org/10.1016/S0039-6257(97)00119-7

27. Vinciguerra, R., Ambrósio, R., Elsheikh, A., Roberts, C. J., Lopes, B., Morenghi, E., Azzolini, C., &

Vinciguerra, P. (2016). Detection of keratoconus with a new biomechanical index. Journal of Refractive

Surgery, 32(12), 803–810.

https://doi.org/10.3928/1081597X-20160629-01

28. Jȩdzierowska, M., & Koprowski, R. (2019). Novel dynamic corneal response parameters in a practice

use: A critical review. BioMedical Engineering Online, 18(1), 1–18.

https://doi.org/10.1186/s12938-019-0636-3

29. Weinreb, R. N., Aung, T., & Medeiros, F. A. (2014). The pathophysiology and treatment of glaucoma:

A review. JAMA - Journal of the American Medical Association, 311(18), 1901–1911.

https://doi.org/10.1001/jama.2014.3192

30. Del Buey M.,Peris M. C. (2014).Biomecánica en el glaucoma.En Barcelona, Biomecánica y arquitectura

corneal.Elsevier.205-219.

31. Hamilton, D. R., Johnson, R. D., Lee, N., & Bourla, N. (2008). Differences in the corneal biomechanical

effects of surface ablation compared with laser in situ keratomileusis using a microkeratome or

femtosecond laser. Journal of Cataract and Refractive Surgery, 34(12), 2049–2056.

https://doi.org/10.1016/j.jcrs.2008.08.021

32. Chen, R., Mao, X., Jiang, J., Shen, M., Lian, Y., Zhang, B., & Lu, F. (2017). The relationship between

corneal biomechanics and anterior segment parameters in the early stage of orthokeratology. Medicine

(United States), 96(19), 1–6.

https://doi.org/10.1097/MD.0000000000006907