canabinóides sintéticos e as novas drogas...

86
Canabinóides Sintéticos e as Novas drogas psicoativas Leonardo Ludwig Paim Médico Psiquiatra Mestre em Psiquiatria UFRGS

Upload: duongtruc

Post on 19-Nov-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Canabinóides Sintéticos e as Novas drogas psicoativas

Leonardo Ludwig Paim

Médico Psiquiatra

Mestre em Psiquiatria – UFRGS

“O termo designer drug refere-se a um grupo de substâncias sintéticas com efeitos similares a

drogas ilícitas”

NIDA

Identificação de Novas Substâncias Psicoativas (NPS)

UNODC, 2014

UNODC, 2014

Novas Substâncias Psicoativas Detectadas

UNODC, 2014

EMMCDDA, 2014

Visitas a emergência por intoxicação

Maxwell JC, Drug Alcohol Dep, 2014

Apreensões Ecstasy America Latina

UNODC, 2014

Ecstasy x Cocaína

LENAD II, resultados parciais

Composição dos Comprimidos de Ecstasy no Brasil

Togni LR et al, J Forensic Sci, 2014

Plano de apresentação

• MDMA

• N-BOME

• Canabinoides sintéticos

• Catinonas sintéticas

“Quantos de vocês viram a Molly hoje?”

Madonna Ultra Music Festival, Miami, 2012

MDMA 3-4 metilenodioximetanfetamina

EMCDA, 2013

MDMA 3-4 metilenodioximetanfetamina

1912 – Síntese pelo laboratório Merck

1950 – Primeiros estudos em animais

1978 – Primeira descrição de seus efeitos

1980 – Inicio do uso recreativo

1985 – Proibida nos Estados Unidos

Meyer JS, Subst Abuse Reab 2013

Nomenclatura

• Ecstasy

• Bala

• XTC

• A

• E

• MD

• ADAM

Mecanismo de Ação

• Ligação ao transportador de monoaminas

– Serotonina

– Dopamina

– Noradrenalina

Principais Vias

• Nucleo da Rafe

• Neocortex

• Amidala

• Hipocampo

NIDA

Ocupação do Transportador

dancesafe.org

Liberação Mediada por Transportador

dancesafe.org

Inundação de 5-HT, DA, NE na Fenda Sináptica

dancesafe.org

Dopamina

• Euforia

• Excitabilidade

• Reforço ao uso

Noradrenalina

• Taquicardia

• Aumento da pressão arterial

• Hipertermia

Hysek CM et al, Br J Pharmacol, 2012

Serotonina

• Alterações de percepção – 5HT2a

• Prazer no movimento e toque

• Efeito pró-social – 5HT1a

– Empatia

– Proximidade com o outro

– Conexão com o mundo ou com sentimentos

Meyer JS, Subst Abuse Reab 2013

Ocitocina e MDMA

• 5-HT1a estimula liberação de ocitocina nos núcleos supraóptico e paraventricular

• Ativação de circuitos de “affiliative behavior”

• Hiponatremia, desidratação e hipertermia aumentam ainda mais a secreção de ocitocina

McGregor IS, Hormon Behav 2012

Efeitos Pós-Uso Agudo

• Midweekend blues

• Alterações cognitivas

Depleção de serotonina

– Bloqueio do transportador de monoaminas

– Bloqueio da triptofano-hidroxilase

Efeitos Crônicos

• Trajetória de uso de cerca de 1 ano

– 1 a 2 comprimidos por semana

• Alteração de Funções cognitivas superiores

• Maior presença de sintomas psiquiátricos

Smirnov et al, Addict Behav, 2013; Parrot ES, Neurosci Biobehav Rev, 2013

MDMA Use Trajectory

Smirnov et al, Addict Behav, 2013

Efeitos Crônicos – Modelos Animais

Substance Abuse and Rehabilitation 2013:4submit your manuscript | www.dovepress.com

Dovepress

Dovepress

90

Meyer

Fisk and Sharp68 proposed that working memory consists

of a central executive function along with four subcompo-

nents which they termed “updating,” “attention shifting,”

“inhibition,” and “access to long-term memory.” A recent

meta-analysis comparing ecstasy users to polydrug-using

controls on these four subcomponents found significant

ecstasy-associated deficits in updating, attention shifting, and

access to long-term memory.69 Effect sizes were generally

moderate for the three significant subcomponents, whereas

the inhibition subcomponent was not significantly affected.

Meta-analyses that examined aspects of cognitive function

other than memory found significant impairment in attention

and concentration, verbal comprehension, processing speed,

and motor/psychomotor speed.70,71 Together with the reviews

of memory performance, these findings suggest that regular

ecstasy users suffer from widespread problems across a wide

range of cognitive domains.

Despite the positive findings from a number of different

analyses, the literature on cognitive deficits in ecstasy users

suffers from some of the same interpretive problems as the lit-

erature on mood changes. For example, Gouzoulis-Mayfrank

and Daumann19 discuss the issue that, even if ecstasy users

are compared to drug users who do not consume ecstasy, the

latter often have a more moderate pattern of drug consumption

than the ecstasy-using group. Cannabis is particularly prob-

lematic in studies of cognitive function, given the evidence

for significant cognitive deficits in heavy cannabis users.72

Comorbidity of psychopathology with ecstasy use may

additionally contribute to the cognitive impairment observed

in some studies.73 Finally, the typical use of cross-sectional

studies again makes it impossible, in such cases, to ascertain

whether cognitive differences between the ecstasy-using and

control group(s) preceded or followed the onset of ecstasy

use. Two prospective studies have addressed this issue by

recruiting new ecstasy users, assessing their cognitive function

at baseline, and then retesting the subjects from 1 to 3 years

later.74,75 Interestingly, in both cases, the users did not differ

from controls at baseline but did exhibit significant deficits in

immediate and delayed verbal recall memory. These findings

point up the limitations inherent in cross-sectional studies in

which baseline mood or cognitive function prior to the onset

of ecstasy use is not known. Importantly, the results suggest

that, at least for some ecstasy users, repeated exposure to the

drug leads to later impairment in certain cognitive domains.

Longitudinal studies of up to 2 years in length have also

asked whether cognitive function keeps declining with con-

tinued ecstasy use, and whether cessation of use leads to a

recovery of cognitive function. In general, such studies have

found neither further deterioration in users nor recovery of

function in subjects who discontinued ecstasy use76–78 (see

Zakzanis and Campbell79 for an exception to these findings).

Because in these studies the ecstasy users already differed from

controls at the time of initial testing, the results are difficult to

interpret. There may have been preexisting cognitive differences

that were unchanged by ecstasy use, or the typical use patterns

of the subjects in the first three studies may have caused an

asymptotic decline in cognitive performance that neither got

worse over time nor recovered upon 2 years of abstinence.

NeurotoxicityThe abovementioned evidence for mood changes and neurop-

sychological deficits in ecstasy users raises the question of

how MDMA might be acting within the brain to cause these

effects. The answer given most often centers around numer-

ous findings obtained from experimental animals, mainly

rats and nonhuman primates (eg, squirrel monkeys), for a

toxic effect of MDMA on the serotonergic system. The first

evidence for MDMA neurotoxicity was published in the mid-

1980s, and these and numerous follow-up studies showed that

high doses of MDMA (or MDA) lead to a long-lasting deple-

tion of 5-HT, reduced 5-HT uptake and SERT binding sites,

and decreased activity of tryptophan hydroxylase in forebrain

areas such as the neocortex, hippocampus, and striatum (see

Green et al33). Time-course studies demonstrated a biphasic

action of MDMA consisting of the initial 5-HT depletion

discussed earlier, a short-term recovery of 5-HT levels seen

at 1–2 days following dosing, and then a secondary, more

long-lasting depletion measured at 1–2 weeks and beyond.33

Histological examination of brain tissues from treated rats

and monkeys consistently showed a persistent reduction in

the density of axons immunoreactive for 5-HT or for SERT

(Figure 1). Moreover, staining of brain tissues obtained at

Figure 1 Photomicrograph of serotonin transporter-immunoreactive axons

in the upper layers of occipital cortex of a control rat (A) compared to a 3,4-

methylenedioxymethamphetamine (MDMA)-treated rat ( B).

Notes: The animals received twice-daily injections of either saline or MDMA

(10 mg/kg per injection) from the firs t to the fourth day of life and then were

killed at 9 months of age (see Meyer et al80 for experimental details). These results

illustrate the long-lasting nature of MDMA-induced serotonergic defici ts when the

drug is administered early in development.

Substance Abuse and Rehabilitation 2013:4submit your manuscript | www.dovepress.com

Dovepress

Dovepress

90

Meyer

Fisk and Sharp68 proposed that working memory consists

of a central executive function along with four subcompo-

nents which they termed “updating,” “attention shifting,”

“inhibition,” and “access to long-term memory.” A recent

meta-analysis comparing ecstasy users to polydrug-using

controls on these four subcomponents found significant

ecstasy-associated deficits in updating, attention shifting, and

access to long-term memory.69 Effect sizes were generally

moderate for the three significant subcomponents, whereas

the inhibition subcomponent was not significantly affected.

Meta-analyses that examined aspects of cognitive function

other than memory found significant impairment in attention

and concentration, verbal comprehension, processing speed,

and motor/psychomotor speed.70,71 Together with the reviews

of memory performance, these findings suggest that regular

ecstasy users suffer from widespread problems across a wide

range of cognitive domains.

Despite the positive findings from a number of different

analyses, the literature on cognitive deficits in ecstasy users

suffers from some of the same interpretive problems as the lit-

erature on mood changes. For example, Gouzoulis-Mayfrank

and Daumann19 discuss the issue that, even if ecstasy users

are compared to drug users who do not consume ecstasy, the

latter often have a more moderate pattern of drug consumption

than the ecstasy-using group. Cannabis is particularly prob-

lematic in studies of cognitive function, given the evidence

for significant cognitive deficits in heavy cannabis users.72

Comorbidity of psychopathology with ecstasy use may

additionally contribute to the cognitive impairment observed

in some studies.73 Finally, the typical use of cross-sectional

studies again makes it impossible, in such cases, to ascertain

whether cognitive differences between the ecstasy-using and

control group(s) preceded or followed the onset of ecstasy

use. Two prospective studies have addressed this issue by

recruiting new ecstasy users, assessing their cognitive function

at baseline, and then retesting the subjects from 1 to 3 years

later.74,75 Interestingly, in both cases, the users did not differ

from controls at baseline but did exhibit significant deficits in

immediate and delayed verbal recall memory. These findings

point up the limitations inherent in cross-sectional studies in

which baseline mood or cognitive function prior to the onset

of ecstasy use is not known. Importantly, the results suggest

that, at least for some ecstasy users, repeated exposure to the

drug leads to later impairment in certain cognitive domains.

Longitudinal studies of up to 2 years in length have also

asked whether cognitive function keeps declining with con-

tinued ecstasy use, and whether cessation of use leads to a

recovery of cognitive function. In general, such studies have

found neither further deterioration in users nor recovery of

function in subjects who discontinued ecstasy use76–78 (see

Zakzanis and Campbell79 for an exception to these findings).

Because in these studies the ecstasy users already differed from

controls at the time of initial testing, the results are difficult to

interpret. There may have been preexisting cognitive differences

that were unchanged by ecstasy use, or the typical use patterns

of the subjects in the first three studies may have caused an

asymptotic decline in cognitive performance that neither got

worse over time nor recovered upon 2 years of abstinence.

NeurotoxicityThe abovementioned evidence for mood changes and neurop-

sychological deficits in ecstasy users raises the question of

how MDMA might be acting within the brain to cause these

effects. The answer given most often centers around numer-

ous findings obtained from experimental animals, mainly

rats and nonhuman primates (eg, squirrel monkeys), for a

toxic effect of MDMA on the serotonergic system. The first

evidence for MDMA neurotoxicity was published in the mid-

1980s, and these and numerous follow-up studies showed that

high doses of MDMA (or MDA) lead to a long-lasting deple-

tion of 5-HT, reduced 5-HT uptake and SERT binding sites,

and decreased activity of tryptophan hydroxylase in forebrain

areas such as the neocortex, hippocampus, and striatum (see

Green et al33). Time-course studies demonstrated a biphasic

action of MDMA consisting of the initial 5-HT depletion

discussed earlier, a short-term recovery of 5-HT levels seen

at 1–2 days following dosing, and then a secondary, more

long-lasting depletion measured at 1–2 weeks and beyond.33

Histological examination of brain tissues from treated rats

and monkeys consistently showed a persistent reduction in

the density of axons immunoreactive for 5-HT or for SERT

(Figure 1). Moreover, staining of brain tissues obtained at

Figure 1 Photomicrograph of serotonin transporter-immunoreactive axons

in the upper layers of occipital cortex of a control rat (A) compared to a 3,4-

methylenedioxymethamphetamine (MDMA)-treated rat ( B).

Notes: The animals received twice-daily injections of either saline or MDMA

(10 mg/kg per injection) from the firs t to the fourth day of life and then were

killed at 9 months of age (see Meyer et al80 for experimental details). These results

illustrate the long-lasting nature of MDMA-induced serotonergic defici ts when the

drug is administered early in development.

Fotomicrografia dos axonios imunoreativos ao transportador de serotonina (SERT) nos córtices ocipitais de ratos pós administração perinatal de MDMA

Meyer JS et al, Int J Dev Neurosci, 2004

Efeitos Crônicos - Humanos

Iorio CR et al, Arch Gen Psych, 2012

Efeitos Crônicos - Humanos

Urban NB et al, neuropsychophamacology, 2012

Mecanismos de Neurotoxidade

• Pouco elucidado

• Envolve Espécies Ativas de Oxigênio (ROS)

• Hipotese do metabólito neurotóxico

• Hipotese do influxo de dopamina nos neurônios serotonérgicos

Meyer JS, Subst Abuse Reab 2013

Morbi-Mortalidade

• Série de casos de uma rave em San Francisco:

– 12 pacientes admitidos em CTI

– 10 deles com temperaturas de 40-43oC

– 8 necessitaram entubação endotraqueal

– 2 óbitos

• Análise de 106 casos de óbitos por MDMA

– 43% envolviam antidepressivos ou fármacos serotonérgicos

Pilgrim JL et al 2011; Armenian P et al, 2013

“Seu Doce era LSD ou N-BOME?”

Anônimo

Web Forum

N-BOME

N-BOME

• Família de compostos derivados da feniletilamina

• Notoriedade recente devido a múltiplos óbitos relacionados com overdose

• Ingerido inadvertidamente com LSD

• Vendido livremente em webpages

Ninneman A et al, 2013; Bersani FS et al, 2013, Zuba D, 2013

N-BOME

• Não existem estudos de prevalência

• 2,6% de 22,289 individuos que responderam ao Global drug Survey usaram

• 11,3% dos frequentadores de casas noturnas conhecem a droga

Wood DM, 2015, Bersani FS, 2013

LSD

Nomenclatura

• N-Bomb

• Pandora

• Boom

• Holland Film

• Dime

Mecanismo de Ação

• Potente agonista parcial 5HT2A

• Efeitos lembram os alucinógenos clássicos como LSD com algumas características de anfetaminas

Bersani FS et al, 2013

Efeitos

• Adormecimento da língua

– Diferencia da intoxicação por LSD

• Body high: formigamento em todo corpo

• Euforia

• Agitação psicomotora intensa

Bersani FS et al, 2013

Efeitos Psicodélicos

• Instrospeção

• Despersonalização

• Desrealização

• Alucinações visuais e auditivas

– Reconhecimento de padrões

– Borramento visual

– Tracing

Bersani FS et al, 2013

Litgens RP et al 2014

Litgens RP et al 2014

Litgens RP et al 2014

Modulação de Impulsos Visuais por Neurônios Serotonérgicos

Litgens RP et al 2014

Toxicidade

• Confusão

• Agitação psicomotora

• Hipertensão

• Taquicardia

• Hipertermia

• Convulsões

• Acidose metabólica

• Falência de múltiplos orgãos

Síndrome Serotonérgica

Toxicidade

• 29 óbitos por toxicidade aguda

• 25 casos adicionais relatados no EMMCDA

• Muito mais tóxico que o ácido lisérgico

• Conhecimento dos efeitos desta nova droga são especialmente importantes no contexto das emergências médicas

Bersani FS et al, 2013

Canabinóides Sintéticos

Introdução

• Canabinóides sintéticos: análogos ao THC (princípio ativo da maconha).

• Fazem parte das designer drugs.

Vendidos misturados a ervas em produtos chamados:

• Spice, K2, Synthetic Marijuana, Dream, Yucatan Fire, Aroma…

• Brasil: Hi-5, Incenso do Mal

• Pouca informação (não ECR).

Amsterdam JV 2015; NIDA 2014

Spaderna M 2014

Introdução

• 2014 (EMCDDA): relato de 207 canabinóides sintéticos.

• Canabinóides mais encontrados: JWH-018, JWH-07, CP-47,497, XLR11, AM2201, JWH-122, JWH-210.

• Efeitos similares a maconha, porém mais intensos.

Brents LK 2014; Seely KA 2013

Hohmann N 2014

Histórico “Maconha Sintética”

Adaptado de Fattore L 2011; cortesia de Dr Petros Levounis

Br: ANVISA proibe

JWH-018

Introdução

• Vendidos: internet , postos de gasolina ou em lojas como incensos ou odorizadores de ambiente.

• “Not for human consumption”.

Cottencin O 2014

Castaneto MS 2014

Introdução

Motives de uso:

•Curiosidade (78-91%),

•Sentir-se Bem/ficar “chapado”(89%)

•Relaxar (71%)

•Ficar “chapado” e escapar do screening de drogas(30%)

Amsterdam JV 2015, Castaneto MS 2014; Bonar 2014

Introdução

• Não são detectados em testes usuais de maconha.

• EUA: Apenas 34% dos médicos que trabalham em emergências sabiam o que era K2 e 49% o que era Spice.

• 91,3% dos usuários de canabonóides sintéticos também usam maconha.

Spaderna M 2014; Lank PM 2013

Lank PM 2013

Castaneto MS 2014

Mecanismo de Ação Canabinóides Sintéticos

Canabinóides Sintéticos (JWH-018) THC

Agonista de CB1 e CB2 Agonista CB1 e CB2

Agonista total de CB1 Agonista parcial CB1

4 X mais afinidade ao CB1 -

10 X mais afinidade ao CB2 -

• Canabinóides sintéticos 2-100 vezes mais potentes que THC.

Castaneto MS 2014; Spaderna M 2014; Fattore L 2011

• Não há dados sobre a ação do Spice em seres humanos. Alves AO 2012

Adaptado de NIDA 2014 por Ribeiro M

Estrutura de um Canabinóide Sintético

JWH-018

Hohmann N 2014

Number of New Psychoactive

Substance reported EU Early Warning System

(2005-14)

EMCDDA 2015

Uso de Drogas em Estudantes da 8th e 12th Séries

Monitoring The Future 2014 (NIDA)

NIDA 2014

Efeitos Canabinóides Sintéticos

Cardiovascular:

•Taquicardia

•Hipertensão

•IAM

Neurológico:

•Tontura

•Convulsão

•AVC

•Déficit cognitivo

•Déficit de memória

Psiquiátrico:

•Euforia/relaxamento

•Agitação

•Alucinação

•Ansiedade

•Pânico

•Psicose (18–41% nas emergências)

Castaneto MS 2014; Hohmann N 2014; EMCDDA 2014

Efeitos Canabinóides Sintéticos

Renal:

•Insuficiência Renal

Muscular:

•Aumento da CPK

Ocular:

•Midríase

•Hiperemia conjuntival

Metabólico:

•Hiperglicemia

•Hipocalemia

Outros:

•Xerostomia

•Sudorese

•Morte

•Acidentes carro (motor vehicle accidents)

Castaneto MS 2014; Hohmann N 2014; Spaderna M 2014

Tratamento de Emergência

• 30 vezes mais chance de necessitar de serviço de emergência após o uso de canabinoides sintéticos do que com canabis

Sintomas mais comuns:

• Pânico

• Ansiedade

• Paranóia

Winstock A 2015

Mais frequente em usuários de canabinóides sintéticos

NIDA 2014

41 casos de overdose em New Hampshire em agosto 2014

Catinonas Sintéticas (Sais de Banho)

Histórico

• Catinona encontrada nas folhas da planta Catha edulis (Kthat).

• Catinonas sintéticas são derivados anfetamínicos similares às metanfetaminas e ao ecstasy.

Katz DP 2014; Capriola M 2013

Hohmann N 2014

Catinonas Sintéticas

• Vendidas como sais de banho, repelentes de insetos, odorizador de ambiente, fertilizantes para plantas.

• Mais comuns: mefedrona, metilona e MDPV (3,4-metilenodioxipirovalerona).

• Nomes coloquiais: Sais de Banho, Vanila Sky, Ivory Wave, Cloud 9, Miau Miau.

Hohmann N 2014

Capriola M 2013

Histórico

• 2000: surgiu como alterantiva legalizada para o “high” das anfetaminas, cocaína, ecstasy.

• 2012 (EUA): mefedrone, MDPV e metilona entram na lista das

substâncias controladas . No Brasil também são proscritas.

• Muitas ainda legalizadas (dificuldade de reconhecer). • Existem > 40 tipos de catinonas sintéticas no mercado

clandestino.

Glennon RA 2014

Valente MJ 2014

ANVISA 2014; Capriola M 2013

Valente MJ 2014

Catinonas Sintéticas

Capriola M 2013

Catinonas Sintéticas

•Origem: China e India.

•Venda: internet, postos de gasolina, “head shops”, lojas de conveniência.

•Uso: oral, intranasal ou injetável.

•Não detectada por screening.

Capriola M 2013

Paillet-Loilier M 2014

Mecanismos de Ação Catinonas Sintéticas

• Inibem a recaptação da dopamina, noradrenalina, serotonina

• Estudos ratos: também demonstrou aumento da liberação desses neurotransmissores

• Algumas (mefedrona): aumentam liberação de dopamina, como as metanfetaminas

• Outras: inibem a recaptação de dopamina, como a cocaína

Paillet-Loilier M 2014; Zawilska JB 2013

Prevalência Anual de uso de substâncias ilicitas por estudantes da 12a série

UNODC 2014

Efeitos Catinonas Sintéticas

Aumento:

•Energia/ Euforia

•Libido

•Percepções (orgãos sentidos)

•Sociabilidade

Redução:

•Apetite

Johnson PS 2014; Hohmann N 2014; Paillet-Loilier M 2014

Efeitos Adversos Catinonas Sintéticas

Cardiovascular:

•Taquicardia

•Hipertensão

•Dor precordial

Neurológico:

•Convulsão

•Cefaléia

•Midríase

Psiquiátricos:

•Agitação

•Agressão

•Paranóia

•Alucinação

•Depressão

•Ansiedade

Hohmann N 2014; Blum K 2013

Efeitos Adversos Catinonas Sintéticas

Gastrointestinal:

•Vômitos

Renal:

•Aumento de CPK

•Insuficiência Renal

Muscular:

•Rabdomiólise

Metabólico:

•Hipocalemia

Outros:

•Febre

•Bruxismo

•Morte

Hohmann N 2014; Blum K 2013

Conclusões

• Novo desafio para profissionais de saúde.

• Consumo de drogas sintéticas vem aumentando em todo o mundo nos últimos anos.

• Parecem ser mais potentes do que as drogas não sintéticas.

• Pouca informação sobre consumo e efeitos à longo prazo em humanos.

• Dificuldades legais de conter novas subsâncias.