blogbio_1

46

Upload: profemanuely

Post on 08-Aug-2015

2.434 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: blogBIO_1
Page 2: blogBIO_1

SUMÁRIO

Apresentação.................................................................................................................................................03

Estrutura de um relatório para as atividades práticas..............................................................................04

Normas Básicas para o Trabalho em Laboratório.....................................................................................06

Roteiro das Aulas Experimentais para o 1º Ano do Ensino Médio

Prática 01: Conhecendo o Laboratório de Biologia...................................................................................07Prática 02: Pesquisando Água nos Alimentos.............................................................................................08Prática 03: Aprendendo com as Observações.............................................................................................10Prática 04: Observação ao Microscópio e Conhecimento de suas Estruturas Básicas............................13Prática 05: Diversidade Celular...................................................................................................................15Prática 06: Investigando a Ação da Catalase..............................................................................................17Prática 07: Plasmólise Macroscópica..........................................................................................................19Prática 08: Identificação do Amido.............................................................................................................21Prática 09: Vida e Diabetes – Teste para Glicose.......................................................................................23Prática 10: Identificação e Digestão do Amido...........................................................................................24Prática 11: Pesquisa de Vitamina C............................................................................................................26Prática 12: Demonstrando a Osmose em Ovos de Codorna......................................................................28Prática 13: Observação de Células do Epitélio Bucal................................................................................30Prática 14: Condições Necessárias para a Fotossíntese..............................................................................32Prática 15: A Importância da Luz Solar para a Síntese de Clorofila.......................................................33Prática 16: Osmômetro – Construção e Uso...............................................................................................34Prática 17: Identificação de Proteínas.........................................................................................................36Prática 18: Observando Fungos...................................................................................................................38Prática 19: Identificação de Lípideos..........................................................................................................39Prática 20: Verificação do Crescimento Microbiano.................................................................................40Prática 21: Sistema Locomotor, Estrutura e Movimento..........................................................................42

Page 3: blogBIO_1

APRESENTAÇÃO

O presente manual foi elaborado a partir de uma coletânea de atividades práticas, instrumentais disponibilizados à disciplina de Biologia, com base em diversas bibliografias, nas propostas curriculares do Plano de Ação do docente e dentro da realidade do Laboratório Escolar de Ciências da Escola Estadual de Educação Profissional Adriano Nobre

Os experimentos propostos possuem um nível didático, com o objetivo de facilitar a compreensão da parte teórica na referida disciplina, aprimorando o conhecimento e, consequentemente, melhorando o aprendizado, tornando-o mais significativo.

Além do vínculo pedagógico, também acentuamos a importância da vivência no ambiente laboratorial para a aquisição de novos saberes, já que os avanços das ciências são colocados à nossa disposição.

Enfim, é através da interação com esse ambiente de aprendizagem e a partir da fundamentação básica, que se pode despertar para o mundo da pesquisa científica. Portanto, este manual dará suporte pedagógico, orientando o docente na complementação de sua prática e no cumprimento da carga horária exigida pelo Sistema Estadual de Educação.

3

Page 4: blogBIO_1

ESTRUTURA DE UM RELATÓRIO PARA AS ATIVIDADES PRÁTICAS

1- CAPA

2- FOLHA DE ROSTO (opcional)

3- SUMÁRIO OU ÍNDICE (opcional)

4- INTRODUÇÃO/APRESENTAÇÃO

5- OBJETIVOS

6- MATERIAIS UTILIZADOS

7- PROCEDIMENTOS EXPERIMENTAIS

8- RESULTADOS E DISCUSSÃO

9- CONCLUSÃO

10- ANEXOS (opcional)

11- BIBLIOGRAFIA

ITENS NECESSÁRIOS

1- CAPAÉ a identificação do relatório e do(s) autores. Deve conter: Nome da escola; disciplina; série; turma; turno;

nome/equipe; título; local; data. Deve ser padronizado e formal.

Escola

Disciplina

Professor

Turma e Turno

TÍTULO DA PRÁTICA

Nome/Equipe

ITAPAJÉ

MÊS - ANO

2. INTRODUÇÃO/APRESENTAÇÃOÉ a síntese do conteúdo pesquisado e da prática realizada, de forma ampla e objetiva. É o convite a leitura do

relatório.

3. OBJETIVO(S)É o motivo/intuito da realização da prática que pode ser fornecido ou não para os alunos. Pode servir de feed-

back ao professor que deseja saber se os alunos captaram os objetivos da prática.

4. MATERIAIS UTILIZADOSÉ a listagem de todos os equipamentos, vidrarias, reagentes, materiais etc. utilizados durante a realização da

prática. É muito importante para que o aluno saiba identificar e associar a função dos materiais utilizados.

4

Page 5: blogBIO_1

5. PROCEDIMENTO EXPERIMENTALDevem ser fornecidos pelo professor para a realização da prática, de forma objetiva e clara, com intuito de

facilitar o entendimento e ação dos alunos durante a realização da prática. No relatório, é cobrado o procedimento fornecido pelo professor acrescido de um embasamento teórico (pesquisa) para reforçar o experimento realizado, os métodos e técnicas usadas no trabalho experimental.

6. RESULTADOS E DISCUSSÃOÉ uma das partes mais importantes do relatório, pois é onde o aluno expõe os resultados obtidos da prática

realizada, questiona o experimento e relata as facilidades e dificuldades enfrentadas. É onde o professor detecta as expectativas dos resultados versus resultados adquiridos.

7. CONCLUSÃOAs conclusões são feitas com base nos resultados obtidos; são deduções originadas da discussão destes. São

afirmativas que envolvem a ideia principal do trabalho.

8. ANEXOSÉ a parte onde estão anexados: questionário proposto, esquemas, gravuras, tabelas, gráficos, fotocópias,

recortes de jornais, revistas etc. É onde se colocam aditivos que enriquecem o relatório, mas que não são essenciais.

9. BIBLIOGRAFIAA bibliografia consultada deve ser citada. A citação dos livros ou trabalhos consultados deve conter nome do

autor, título da obra, número da edição, local da publicação, editora, ano da publicação e as páginas: Autor. Título e subtítulo; Edição (número); local: Editora. Data. Página.

Exemplo: GONDIM, Maria Eunice R.; GOMES, Rickardo Léo Ramos. Práticas de Biologia; Fortaleza: Edições Demócrito Rocha. 2004.1-122p.

REGRAS BÁSICAS PARA FORMATAÇÃO

• Papel A4 branco, impresso em preto (exceto as ilustrações);

• Fonte Arial ou Times New Roman, tamanho 12;

• Espaçamento entrelinhas duplo;

• Alinhamento justificado;

• Margens superior e esquerda de 3 cm;

• Margens inferior e direita de 2 cm;

• Numeração das páginas a partir da introdução;

5

Page 6: blogBIO_1

Habitualmente os trabalhos realizados em laboratório são efetuados em equipe. Para que o trabalho seja satisfatório, é necessário que estejamos aptos a utilizar com técnica e correção todo equipamento e material de laboratório, que todos conheçam normas de funcionamento que visam a facilitar as atividades e prevenção de acidentes.

• No laboratório devemos estar sempre trajados de bata, pois a mesma nos protege de acidentes mais graves.

• Não retire frascos de reagentes do lugar onde se encontram. Leve seu recipiente ao lugar dos reativos e retire o que precisar.

• Manter o ambiente limpo, colocar resíduos sólidos e papéis na lixeira e líquidos na pia; no caso de líquidos corrosivos, como ácidos ou bases e de corantes, manter a torneira aberta por algum tempo para evitar danos na pia.

• Manter cada equipamento ou vidraria no lugar adequado e todo frasco de reagente etiquetado.

• Só usar um equipamento quando realmente souber manejá-lo corretamente.

• Verificar se o equipamento a ser usado está em perfeita ordem.

• Ter cuidado com as tomadas e interruptores; estes não devem ficar expostos à umidade.

• Estar atento para não colocar as mãos nos olhos ou na boca, enquanto estiver trabalhando, e lavá-las antes de sair.

• Porções de reativos não utilizados, não devem voltar ao frasco original.

• Aprender nomes e a utilização da vidraria.

• Ler sempre o rótulo de cada frasco antes de usar.

• Não usar vidraria suja, nem pipetas de um frasco de reagente para outro.

• Lavar o material usado com detergente e água da torneira, enxaguar com água destilada (se possível) e deixar sobre a bancada para secar (de preferência sobre o suporte plástico).

• Lavar lâminas e lamínulas com detergente e água, e guardá-las imersas em álcool em frascos separados.

• Não desmontar lâminas ou descartar culturas sem perguntar antes ao instrutor.

• Nunca usar substâncias inflamáveis, como álcool, éter, acetona, etc., para aquecer em chama, estas substâncias podem ser aquecidas com cuidado em chapas aquecedoras.

• Anotar sempre os dados principais do procedimento da prática, bem como os resultados precisos. Quando realizar observação microscópica (ou no monitor acoplado ao microscópio), desenhar as estruturas e anotar ao aumento da objetiva.

• Não expor estudantes a agentes patogênicos, como esporos de fungos, água contaminada com protozoários, etc.

• Manter fechados os frascos de culturas e terrários em ambiente com ar condicionado.

• Qualquer dúvida pergunte ao professor.

6

NORMAS BÁSICAS PARA O TRABALHO NO LABORATÓRIO DE BIOLOGIA

Page 7: blogBIO_1

INTRODUÇÃOLaboratório se define como o local construído com a finalidade de se realizar experimentos. Para ser

considerado ideal ele precisa contar com os instrumentos e condições adequadas para oferecer segurança ao profissional.

Do mesmo modo, torna-se impossível confundir as funções do laboratório de ensino médio, com os laboratórios de pesquisas científicas; são duas instâncias diversas e com objetivos específicos, em relação à ciência.

Assim sendo, o trabalho do professor tem um caráter eminentemente pedagógico, no sentido da alfabetização científica que o mesmo pode realizar, em um processo pelo qual o aluno vai decodificando a linguagem científica e se apropriando de elementos dessa linguagem, passando a utilizá-la como ferramenta de ação criativa, no seu dia a dia.

OBJETIVOS

• Apresentar equipamentos, vidrarias, materiais orgânicos, reagentes químicos e outros recursos do laboratório para o conhecimento da função e manutenção pelos alunos;

• Preparar os alunos para que usem com atenção e consciência os materiais e recursos do laboratório;

• Orientar aos alunos para que saibam usar, higienizar, compartilhar e guardar os materiais disponíveis no laboratório.

FUNDAMENTAÇÃO TEÓRICA

A Biologia tem como objeto de estudo a relação dos seres vivos com o meio, e, o resultado de todas as interações realizadas neste âmbito são os fatos, os processos e os fenômenos observados face à interferência dos seres que nele vivem, em suas trocas dinâmicas como o meio.

O desenvolvimento do conhecimento biológico, em construção contínua e permanente, se dinamiza com o trabalho pedagógico, em sala de aula, e através da apreensão do conhecimento mediante novas situações e aplicações oportunizadas pelo contexto experimental.

O Ensino da Biologia através de atividades laboratoriais deve estar voltado à apropriação do conhecimento científico, das técnicas e tecnologias, bem como ao desenvolvimento da responsabilidade social e ética dos alunos.

PROCEDIMENTO

• O professor, junto com os alunos, percorre o laboratório apresentando todos os equipamentos, vidrarias e outros recursos disponíveis, explicando e demonstrando como usar corretamente e onde pegar e guardá-los.

• Mostrar tudo de forma objetiva e prática para que o aluno possa utilizar os recursos do laboratório com segurança e economia.

• Demonstrar e propor a utilização de vidrarias e equipamentos.

• Diferenciar vidrarias de aproximação e precisão (utilizando a medição quantitativa de água em várias vidrarias).

• Explicar quais vidrarias pode aquecer ou não (de acordo com a dilatação e perda da precisão).

• Demonstrar a forma correta de usar a pipeta.

• Como e onde utilizar os equipamentos elétricos.

• A forma correta de aquecimento de tubos de ensaios e vidrarias.

• Reforçar o perigo do manuseio incorreto ou proibido de substâncias e equipamentos do laboratório e os possíveis acidentes, prejuízos etc.

PÓS-LABORATÓRIO1. Pesquise sobre os procedimentos para a realização de primeiros socorros no laboratório.2. Informe o nome e a função dos equipamentos e vidrarias conhecidos no laboratório.

7

PRÁTICA 01: CONHECENDO O LABORATÓRIO DE BIOLOGIA

Page 8: blogBIO_1

INTRODUÇÃOA substância em maior quantidade nos seres vivos é a água, ela é tão essencial para o corpo humano que

constitui cerca de 70% do nosso peso. Até os nossos ossos têm água, e tudo aquilo que comemos, dos animais aos vegetais. Verduras e legumes são ricos em água e sais minerais. Na água, encontramos alguns sais minerais, que também são encontrados em uma série de alimentos, desde carnes até vegetais. Os sais minerais são necessários para o funcionamento de nossas células, e participam ativamente do nosso metabolismo.

OBJETIVOS

• Perceber a importância da água e dos sais minerais na nossa alimentação;

• Determinar a porcentagem de água presente em diferentes alimentos.

FUNDAMENTAÇÃO TEÓRICAA água e os sais minerais formam os componentes inorgânicos da célula e devem estar em quantidades

balanceadas para manter o equilíbrio do organismo. A água atua como solvente dos íons minerais e de substâncias orgânicas celulares, funciona como meio onde ocorrem as reações química (respiração, digestão e excreção, entre outros), é indispensável à realização da fotossíntese, é considerado o solvente universal, exerce o papel de lubrificante nas articulações ósseas, diminuindo as áreas de atritos, participa como reagente químico, decompondo macromoléculas em moléculas menores (reações de hidrólise), mantém a temperatura dos animais homeotérmicos (aves e mamíferos);

Os sais minerais são denominados substâncias reguladoras do metabolismo celular. São necessários para a formação da hemoglobina, apresentam um papel relevante na ativação da glândula tireóide, participam do tecido ósseo, conjuntivo e na formação da molécula de clorofila. Possuem ativa participação na transmissão dos impulsos nervoso através dos neurônios, atuam na contração das fibras musculares, no mecanismo de coagulação sanguínea e integram as moléculas de ácidos nucléicos.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Alimentos (pedaços de batata, chuchu, tomate, cenoura, maçã...)

Tubo de ensaioPinça de madeira

BalançaRolha para tubo de ensaio

Bico de BunsenVidro de relógio

Suporte com garra

PROCEDIMENTO

• Pese o tubo de ensaio vazio e anote a massa na tabela abaixo.

• Pese um pedaço de batata, e anote a massa. Em seguida, coloque-o no tubo de ensaio pesado anteriormente.

• Prenda o tubo, contendo a batata, na garra de um suporte.

• Aqueça o tubo, segurando um vidro de relógio a 5 mm da boca do tubo.

• Continue aquecendo o tubo até eliminar do tubo todo o vapor de água produzido.

• Feche o tubo com uma rolha e deixe esfriar. Tire a rolha, pese o conjunto novamente e anote a massa.

• Repita o mesmo procedimento para o chuchu.

PÓS-LABORATÓRIO1. Complete a tabela com os fatos observados:

8

PRÁTICA 02: PESQUISANDO ÁGUA NOS ALIMENTOS

Page 9: blogBIO_1

ALIMENTO Tubo vazio (g) Massa alimento (g) Tubo com resíduo após aquecimento (g)

Massa de água (g)

BATATA

CHUCHU

Ia

9

Page 10: blogBIO_1

INTRODUÇÃOOs olhos humanos, assim como muitos instrumentos ópticos construídos pelo ser humano, têm seu

funcionamento relacionado às propriedades das lentes. Portanto, uma lente humana ou artificial é usada para projetar ou visualizar imagens de objetos, pois tanto a imagem projetada quanto a imagem visualizada podem ser maiores ou menores do que o objeto.

OBJETIVOS

• Constatar que uma lente pode ser usada para projetar e visualizar imagens ampliadas ou reduzidas, direitas ou invertidas;

• Construir uma lente e investigar seu poder de ampliação de imagens.

FUNDAMENTAÇÃO TEÓRICAEm nosso campo de visão sempre existirão objetos que se encontram a diferentes distâncias de nossos olhos. A

associação conveniente de lentes a um olho de visão normal ou corrigida pode permitir que vejamos detalhes que a olho nu não seria possível, por esses objetos estarem muito distantes ou por serem muito pequenos.

Assim, pode-se citar como exemplo de lentes:1. O olho humano: atua como se fosse instrumento óptico. Se fosse fazer uma analogia o seu funcionamento poderia ser comparado ao da máquina fotográfica onde a luz entra por um pequeno orifício, a pupila, e projeta uma imagem na parte de trás do olho, chamado retina. Na parte dianteira do olho, existe um conjunto formado pela córnea e pelo cristalino, que atua como uma lente e "focaliza" a imagem na retina.2. O microscópio simples (lupa): é usado para observar objetos próximos, pois fornece uma imagem ampliada desse objeto.3. O microscópio óptico: podem-se encontrar vários tipos de microscópio óptico com diferentes capacidades de ampliação. Essas capacidades podem variar de cem a duas mil vezes. 4. O microscópio eletrônico comum: utiliza feixe de elétrons que, acelerados por uma diferença de potencial de 60.000 volts, tem um comprimento de ondas de 0,005 nm, passam por uma primeira lente magnética (chamada de condensador que dirige os elétrons em feixe uniforme na direção do objeto). Após atravessar o objeto, onde muitos elétrons são desviados (esses não contribuem para formação de imagem), o feixe de elétrons passa pela segunda lente magnética, que corresponde à objetiva do microscópio óptico. Por fim, esse feixe de elétron passa por uma terceira lente magnética que o projeta.5. O microscópio eletrônico de varredura: também usa feixe de elétrons. No entanto, no microscópio de varredura, o trajeto do feixe de elétrons ao atingir o objeto examinado causa diversos efeitos, entre os quais a emissão de elétrons pelo próprio objeto examinado. Este feixe de elétrons é colhido por um coletor e passa por uma ampliação e é transformada em pontos de maior ou menor luminosidade, numa tela semelhante a um televisor. Esse coletor provocará os movimentos do feixe de elétrons sobre o objeto examinado permitindo assim, a formação da imagem através da coleta de elétrons do objeto examinado, no exato momento em que esses elétrons são produzidos.Em relação às micrografias, são obtidas pela fotografia da imagem na tela e não pela ação dos próprios elétrons sobre o filme fotográfico, como acontece no microscópio eletrônico comum.6. A luneta astronômica: é um instrumento óptico usado para ampliar corpos celestes. O seu princípio de funcionamento é o mesmo do microscópio óptico. Porém, ao contrário dele, o objeto observado não está perto da objetiva, mas bastante distante. Por isso, as lentes usadas na construção das lunetas astronômicas são apropriadas para fornecer uma imagem nítida de objetos observados distantes da objetiva. No entanto, a luneta astronômica fornece uma imagem invertida do objeto observado. Isso não representa problema quando se observa corpo celeste distantes que aparecem como pontinhos luminosos, mas quando se observa corpo terrestre, não se deve enxergá-los invertidos, pois atrapalharia bastante.7. A luneta terrestre e o binóculo: são utilizados para visualizar objetos terrestres, são adaptações da luneta astronômicas. Esses instrumentos são construídos de modo que forneçam uma imagem não-invertida dos objetos.8. O telescópio: assim como a luneta terrestre e o binóculo é aprimoramento da luneta astronômica, no qual se utiliza também um espelho especial, que auxilia na obtenção de uma imagem melhor dos corpos celestes.

10

PRÁTICA 03: APRENDENDO COM AS OBSERVAÇÕES

Page 11: blogBIO_1

9. A máquina fotográfica e a filmadora de cinema: o interior da máquina fotográfica é totalmente preto e fechado, onde fica protegido o filme contra a claridade. O filme fotográfico é feito de um metal sensível à luz. Apenas no instante de fotografar é que um pequeno orifício se abre e deixa a luz entrar por uma fração de segundos. Nesse momento, uma lente, ou um conjunto de lentes, projeta uma imagem da cena observada sobre o filme fotográfico. Essa imagem fica registrada no filme. Somente quando ele é revelado, tal registro se torna visível, formando o que se chama de negativo fotográfico. Esse negativo pode ser usado para fazer cópias da cena fotografa em um papel especial, o papel fotográfico.

A filmadora de cinema se baseia no mesmo princípio da máquina fotográfica, só que em vez de obter uma única foto de uma cena, obtém um número bem significante de fotografias a cada segundo. A projeção dessa seqüência de fotos dá ao olho humano a sensação de que há movimento na cena.10. O projetor de slides e projetor de cinema: um slide é uma fotografia feita em material plástico transparente. A imagem contida em slide pode ser projetada sobre uma tela ou parede com auxílio do projetor de slides. Dentro do projetor de slides, existe uma lâmpada bem forte e uma lente ou um conjunto de lentes. A luz da lâmpada passa pelo slide e pelas lentes e chega até a superfície onde a imagem aparece projetada.

O projetor de cinema usa o mesmo princípio do projetor de slides, só que ele projeta 24 imagens, como se fossem 24 slides, a cada segundo. Cada uma das imagens é um pouco diferente da anterior e, para o olho humano, isso dá ilusão de movimento.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Água

MicroscópioLâmina e lamínulaJornal ou revista

TesouraRégua milimetrada transparente

PinçaLupa

Fita métricaPipeta

Papel toalhaGarrafa plástica de refrigerante com tampa

PROCEDIMENTO PARTE I – Preparação de material para exame ao microscópio

• Recorte um pedaço de jornal contendo algumas letras minúsculas e, de preferência com o verso em branco.

• Coloque o pedaço de jornal sobre uma lâmina de vidro e pingue sobre ele três gotas de água.

• Ponha uma lamínula por cima do material (papel) a ser observado.

• Coloque a lâmina preparada na mesa ou platina do microscópio, fixando-a pelas presilhas ou charriot e mantendo o papel sobre a abertura de luz.

• Gire o revólver colocando a objetiva de menor aumento em posição de uso.

• Olhando por fora, gire o parafuso macrométrico e abaixe o canhão até quase tocar a lamínula.

• Olhando pela ocular, gire o parafuso macrométrico e levante o canhão até observar alguma imagem.

• Gire o parafuso micrométrico para obter uma imagem bem nítida.

• Desloque a lâmina para encontrar um grupo de letras para serem observadas.

11

Page 12: blogBIO_1

PARTE II – Cuidados com o microscópio

• Ao terminar as observações, retire a preparação, limpe a platina e vire o revólver, encaixando a objetiva de menor aumento.

• Levante o tubo para que a extremidade da objetiva fique aproximadamente 1cm acima da platina, desligue a luz e cubra-o com capa protetora.

PARTE III – Exame de material com outros tipos de lentes

• Encha completamente a garrafa com água. Feche bem e enxugue-a com a toalha.

• Coloque a garrafa deitada sobre a folha de jornal. Se houver bolhas de ar, é porque você não encheu a garrafa completamente. Nesse caso, repita o item 1.

• Coloque o jornal sobre a mesa e a lupa sobre ele. Feche um dos olhos. Posicione o olho aberto 30 centímetros acima da lupa. Levante-a devagar e depois a abaixe devagar.

• A seguir, peça a alguém do grupo que segure o jornal na sua frente, a 2 metros. Segure a lupa e estenda o braço. Feche um dos olhos e olhe o jornal através da lupa. Se a imagem não estiver nítida, estique o braço até que fique nítida.

PÓS-LABORATÓRIO1. Após algum treinamento, você pode se familiarizar com o manuseio de um relógio, de uma calculadora, de um system, CD player, etc. Será que adquirir prática de microscopia exige mais coordenação e preparo para o seu manuseio? Justifique sua resposta.2. Compare as letras do jornal quando vistas diretamente a olho nu ou quando vistas através da garrafa com água.3. Em qual das duas situações a imagem das palavras do jornal fica maior? Em qual delas as palavras parecem estar de cabeça para baixo?4. Uma lente pode ser usada para projetar e visualizar imagens ampliadas ou reduzidas, direitas ou invertidas? Justifique.5. É possível construir uma lente e investigar seu poder de ampliação de imagens? Justifique.

12

Page 13: blogBIO_1

INTRODUÇÃO

Para progredir cada vez mais na investigação da natureza, o homem construiu instrumentos capazes de estender os limites impostos por seus órgãos sensoriais. Assim como o telescópio abriu as portas do infinitamente grande, o microscópio permitiu a realização de estudos e análise de estruturas com dimensões ínfimas, como a célula, base da vida, e até átomos.

OBJETIVOS

• Conhecer as técnicas básicas para utilização e para elaboração da função de cada parte do microscópio óptico e os cuidados requeridos para o seu uso;

• Identificar as partes do microscópio;

• Treinar a focalização com lâminas preparadas.

FUNDAMENTAÇÃO TEÓRICAO microscópio é um aparelho destinado a ampliar a imagem das microestruturas observadas, utilizando para

isso, a luz. Em geral, os microscópios são constituídos basicamente de duas partes: uma parte mecânica, que serve de suporte e uma parte óptica. A parte mecânica é constituída por: tubo com oculares, revólver com objetivas, dispositivo micrométrico e macrométrico, charriot, mesa ou platina, base ou pé e estativa ou braço. Ocular, objetivas, condensador, lentes colimadoras com lâmpada embutida e controlador lateral de luminosidade constituem a parte óptica.

PARTES DO MICROSCÓPIOBASE ou ESTATIVA: suporte basal, que sustenta o microscópio e permite manter a estabilidade do aparelho.CORPO ou BRAÇO: parte do microscópio unida á base, que sustenta o sistema de lentes.MESA ou PLATINA: plataforma horizontal, unida à parte inferior do braço, com um orifício no centro. A lâmina a ser observada deve ser colocada sobre a platina, e o centro da preparação deve coincidir com o centro do orifício da platina ou mesa.CHARRIOT: sistema de dois parafusos, que permitem a movimentação da lâmina no sentido horizontal e vertical.PARAFUSO MACROMÉTRICO ou MACRÔMETRO: disco móvel maior, que serve para ajuste grosseiro do foco (grandes mudanças de foco).PARAFUSO MICROMÉTRICO ou MICRÔMETRO: o disco móvel menor, que serve para ajuste fino do foco (pequenas mudanças de foco).OCULARES: sistema de lentes superior, próximo ao olho do observador.CANHÃO ou TUBO: tubo através do qual a luz passa da estrutura observada até as oculares.OBJETIVAS: sistema de lentes, próximo da lâmina examinada, de aumentos diferentes (4x, 10x, 40x e 100x). A menor objetiva é a de menor aumento, e a maior, a que amplia mais a imagem. Esta objetiva (100x) só deve ser usada com óleo de imersão.REVÓLVER: peça móvel, que sustenta as objetivas, e permite mudar por rotação a posição destas em relação ao orifício da platina.FONTE DE LUZ: lâmpada, situada na base do microscópio; fonte de feixe luminoso que atravessará a preparação.CONDENSADOR: sistema de lentes, entre a fonte de luz e a platina, que condensa o feixe luminoso. Pode ser movimentado para cima e para baixo, por um parafuso (do lado direito do condensador), regulando a intensidade de luz.DIAFRAGMA ou ÍRIS: dispositivo unido ao condensador, usado para regular o feixe luminoso que atravessa a lâmina. Funciona movido por uma pequena haste, que controla a abertura de passagem da luz.

13

PRÁTICA 04: OBSERVAÇÃO AO MICROSCÓPIO E CONHECIMENTO DAS SUAS ESTRUTURAS BÁSICAS

Page 14: blogBIO_1

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Água

MicroscópioLâminas prontas

Lâmina e lamínulaJornal ou revista

TesouraPipeta

Papel toalha

PROCEDIMENTO1. Ligue o estabilizador de voltagem (se houver)2. Ligue o interruptor da fonte na base do microscópio.3. Ajuste a intensidade de luz no regulador de luminosidade (também na base do microscópio)4. Coloque a lâmina na platina, com a preparação no centro do orifício. Mova o Charriot se for necessário, para centralizar a preparação.5. Abaixe a objetiva de menor aumento (4x) com o parafuso macrométrico, aproximando-o ao máximo da lâmina.6. Olhe pelas oculares e ajuste a distância entre estas. Esta distância varia de observador para observador.7. Regule a intensidade de luz mais cômoda à vista. Podem ser usados o regulador de luminosidade, o condensador ou o diagrama.8. Olhando pelas oculares gire lentamente o parafuso macrométrico no sentido contrário (afastando o objetiva da lâmina), até que seja obtida uma focalização grosseira.9. Em seguida gire o parafuso micrométrico para ajustar o foco fino.10. Após a focalização na objetiva menor, faça um movimento de rotação no revólver (movimento de acordo com a direção dos ponteiros de um relógio) até certificar-se de que encaixou a objetiva seguinte (10%).11. Ajuste a centralização da estrutura e corrija o foco fino com o parafuso micrométrico.12. O mesmo procedimento (item 10 e 11) deve ser seguido quando transferir para a objetiva seguinte (40x), geralmente um pequeno movimento no parafuso micrométrico e ajuste na iluminação são suficientes. Não use a objetiva de 100x para qualquer preparação, porque para esta faz-se necessário a utilização de óleo de imersão.13. Coloque duas gotas d’água numa lâmina limpa e uma letra recortada de um jornal. Cubra com lamínula e observe ao microscópio.

PÓS-LABORATÓRIO1. Como as letras lhe parecem, vistas através do microscópio? Por que isso acontece?2. Qual a função de cada peça do microscópio?3. Esquematize as lâminas visualizadas. Atente para as sensíveis diferenças de detalhes.

14

Page 15: blogBIO_1

INTRODUÇÃOA diversidade celular é de fundamental importância para a constituição, manutenção e regulação de todo

organismo, sejam por vias metabólicas diferenciadas, estruturas celulares distintas ou localizações específicas, a verdade é uma só: sem tal diversificação, as espécies de vida não seriam como a que conhecemos hoje.

As células, apesar de muito pequenas, são extremamente complexas e essenciais para o desenvolvimento da ciência e da saúde, já que proporcionam ambientes biológicos completamente diferenciados para pesquisas e estudos.

No interior do corpo humano, encontramos uma diversidade de micro-organismos vivos, uni e pluricelulares, em simbiose com o organismo. Um bom exemplo está na flora intestinal, as bactérias que naturalmente habitam o intestino do homem, auxiliam na digestão e controlam o crescimento de outros micro-organismos patógenos.

OBJETIVOS

• Entender sobre o significado dos termos como células procariotas e eucariotas;

• Diferenciar células animais e vegetais;

• Promover uma visão global sobre a grande diversidade celular que constitui o mundo vivo.

FUNDAMENTAÇÃO TEÓRICA

Os antigos filósofos e naturalistas chegaram à conclusão de que "todos os animais e vegetais, por mais complicados que fossem, eram constituídos por uns poucos elementos que se repetiam em cada um deles". Referiam-se às estruturas macroscópicas de um organismo, tais como as raízes, os caules ou os segmentos de órgãos que se repetem no mundo animal. Muitos séculos mais tarde, graças ao invento e posterior aperfeiçoamento dos microscópios, foi descoberto que por detrás desta estrutura macroscópica, existe também um mundo de dimensões microscópicas.

As células são as unidades estruturais e funcionais dos seres vivos. Apesar da grande diversidade existente entre os seres vivos consideram-se apenas dois tipos celulares básicos: as células procariotas e as eucariotas. As células procariotas apresentam menores dimensões e caracterizam-se por não possuírem um sistema de membranas que divida a célula em compartimentos funcionais. Nestas o genoma está em contato direto com a porção plasmática.

As células eucariotas apresentam-se divididas em compartimentos funcionais graças à presença de um complexo sistema de membranas. Os principais componentes destas células são o núcleo, o invólucro nuclear, o retículo endoplasmático, o aparelho de Golgi, os lisossomas, as mitocôndrias e, nas células vegetais, os cloroplastos.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Azul de metilenoIogurte

Infusão de palhaÁguaCauleCebola

MicroscópioLâmina e lamínula

PinçaBisturiPipeta

Vareta de vidroPapel toalha

Bico de BunsenÓleo de imersão

15

PRÁTICA 05: DIVERSIDADE CELULAR

Page 16: blogBIO_1

PROCEDIMENTOPARTE I - Observação de células da epiderme do bulbo da cebola (Allium cepa L.) 1. Retire com uma pinça, uma porção da epiderme interna de uma escama do bolbo da cebola.2. Coloque-a sobre uma lâmina com uma gota de água. 3. Cubra com lamínula.4. Observe ao microscópio e registe. 5. Deite uma ou duas gotas de azul de metileno ao longo de uma das bordas da lamínula. Com papel de filtro, aspire na margem oposta até à infiltração do corante. 6. Observe ao microscópio e registe.

PARTE II - Observação de células da epiderme do caule de Tradescantia sp. 1. Corte um fragmento de caule com cerca de 3 cm. 2. Com a ajuda de uma pinça retire uma porção da película epidérmica. 3. Coloque-a sobre uma lâmina com cuidado por forma a não dobrar. 4. Adicione uma gota de água. 5. Coloque a lamínula. 6. Observe e registe.

PARTE III - Observação de células do epitélio bucal 1. Desinfete o dedo indicador com álcool. 2. Raspe a parte interna da bochecha com a ponta do dedo. 3. Esfregue a ponta do dedo numa lâmina e cubra-a com a lamínula. 4. Observe ao microscópio. 5. Deite uma ou duas gotas de azul de metileno ao longo de uma das bordas da lamínula. Com papel de filtro, aspire na margem oposta até à infiltração do corante. 6. Observe ao microscópio e registe.

PARTE IV - Observação de bactérias do iogurte 1. Coloque um pouco de iogurte sobre uma lâmina com o auxílio de uma vareta de vidro. 2. Passe a lâmina três ou quatro vezes sobre a chama da lamparina. Deixe arrefecer. 3. Deite uma ou duas gotas de azul de metileno e deixe atuar durante alguns minutos. 4. Lave a lâmina com água destilada e deixe secar. 5. Coloque uma gota de óleo de imersão e cubra com lamínula .6. Observe e registe (utilize a objetiva de imersão - 100 X - colocando uma gota de óleo de imersão sobre a lamínula).

PÓS-LABORATÓRIO1. Esquematize as imagens observadas, informando as características pertinentes a cada tipo de célula.2. Qual o tipo de bactéria encontrada no iogurte e qual a sua função nesse alimento?

16

Page 17: blogBIO_1

INTRODUÇÃOA catalase é uma enzima produzida pelos animais e vegetais, portanto de ocorrência geral, que degrada o

peróxido de hidrogênio. A ação dessa enzima é extremamente rápida. Uma molécula de catalase é capaz de degradar até 42.000 moléculas de peróxido de hidrogênio por segundo, dependendo da concentração do peróxido.

É produzida no retículo endoplasmático dos seres vivos e sua importância também reside no fato de seu mau funcionamento ou falta estar ligada a doenças como o vitiligo, onde a baixa atividade da catalase e acúmulo de peróxido hidrogenado na pele dos pacientes resulta no acúmulo de radicais livres tóxicos que danificam os melanócitos, uma vez danificados, os melanócitos não sintetizam mais a melanina, causando as manchas características do vitiligo.

OBJETIVOS

• Observar o efeito da enzima catalase sobre o peróxido do hidrogênio;

• Conhecer a função dos peroxissomos.

FUNDAMENTAÇÃO TEÓRICAA catalase é largamente distribuída na natureza, estando presente em tecidos animais, vegetais e em bactérias.

A concentração é alta no fígado de mamíferos, nesse órgão a catalase está confinada aos peroxissomos e, secundariamente, nas mitocôndrias.

Os peroxissomos são organelas citoplasmáticas que foram observadas em rins e fígado de roedores, no início da década de 1950, quando a microscopia eletrônica estava no seu início. No interior dos peroxissomos encontramos várias enzimas que produzem peróxido de hidrogênio (H2O2 = água oxigenada), como uratoxidase, por exemplo. Sintetizam também a catalase que decompõem o H2O2. O peróxido de hidrogênio é uma molécula altamente reativa, capaz de danificar componentes celulares. O papel da catalase é transformar o H2O2 em O2 e H2O.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Água oxigenadaBatata crua e cozida

Folha de alfacePedacinhos de carne crua

Tubo de ensaioEstante para tubo de ensaioPincel marcador de vidro

PROCEDIMENTO

• Com o pincel identifique os tubos de ensaio.

• Coloque os diferentes materiais (batata crua, cozida, folha de alface, carne crua) um tipo de cada, dentro dos tubos de ensaio.

• Adicione água oxigenada até cobrir cada amostra. Observe.

• Complete a tabela com os resultados obtidos.

MATERIAL REAÇÃO COM GÁS REAÇÃO SEM GÁSBATATA CRUA

BATATA COZIDAFOLHA DE ALFACE

CARNE CRUA

17

PRÁTICA 06: INVESTIGANDO A AÇÃO DA CATALASE

Page 18: blogBIO_1

PÓS-LABORATÓRIO1. Baseado nos resultados, o que podemos dizer a respeito da produção da catalase pelos materiais experimentados?2. Como você interpreta o resultado obtido com a batata cozida?3. Qual a relação entre o experimento e a reação da água oxigenada usada num ferimento?4. Faça a reação da decomposição da água oxigenada na presença da catalase.5. Qual a causa do fenômeno da decomposição da água oxigenada colocada na presença de tecido animal cru?6. Por que não houve reação com o alimento cozido?

18

Page 19: blogBIO_1

INTRODUÇÃOUm dos primeiros indícios da existência da membrana celular decorreu da observação de que as células se

comportam com pequenos osmômetros, modificando seu volume de acordo com a concentração das soluções em que são colocadas.

A membrana plasmática é seletivamente permeável. Essa característica é muito importante, pois permite à célula manter uma determinada composição interna, independente do meio em que se encontre. Se colocamos duas soluções de concentrações diferentes em duas partes de um recipiente separadas por uma membrana permeável, isto é, através da qual as moléculas de soluto e de solvente passam livremente, observamos o fenômeno da Difusão.

Se colocamos duas soluções de concentrações diferentes em duas partes de um recipiente separadas por uma membrana semipermeável, isto é, uma membrana permeável ao solvente e impermeável ao soluto, observamos o fenômeno da Osmose.

OBJETIVO• Observar o fenômeno da plasmólise.

FUNDAMENTAÇÃO TEÓRICAA plasmólise é a retração do volume das células por perda de água. Este fenômeno se dá quando a célula é

colocada em meio hipertônico, ou seja, quando o meio exterior é mais concentrado que o citoplasma e a célula perde água por osmose. A saída da água contida no seu vacúolo, provoca uma diminuição do volume celular e, consequentemente, o afastamento da membrana plasmática.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

BatataCloreto de sódio

AçúcarGlicerina

PregoPlaca de Petri

Tubo de ensaioSuporte para tubo de ensaio

RéguaGilete

Caneta marcadora

PROCEDIMENTO• Prepare 6 cubos de batata de 2 cm de lado.• Coloque três cubos em cada placa de Petri.• Identifique com caneta marcadora as placas A e B.• Na placa A, cubra os cubos com NaCl e na placa B, com açúcar.• Após 15 minutos, retire os cubos e registre suas medidas.• Corte um cilindro de batata medindo 4 cm de altura e diâmetro menor que o do tubo de ensaio. No centro,

introduza um prego.• Coloque o conjunto em um tubo de ensaio.• Adicione glicerina e marque seu nível no tubo.• Após 15 minutos, retire o tablete do tubo d ensaio e force a saída do prego.

PÓS-LABORATÓRIO1. O que ocorreu com os cubos e o cilindro de batata?2. Saiu alguma substância da célula? Qual a evidência que confirma a sua conclusão?3. Qual o sentido do deslocamento do solvente?4. Existe alguma diferença entre o resultado obtido com cloreto de sódio, açúcar e glicerina?

19

PRÁTICA 07: PLAMÓLISE MACROSCÓPICA

Page 20: blogBIO_1

5. Como esses resultados podem ser utilizados para orientar a aplicação de fertilizantes na agricultura, jardins ou em vasos com planta?6. Como você relaciona esse fato com a produção de frutas cristalizadas? Procure saber como se realiza esse processo.

20

Page 21: blogBIO_1

INTRODUÇÃOOs polissacarídeos são carboidratos formados pela reunião de muitos monossacarídeos, que assumem as

formas lineares ou ramificadas como os glicogênios, o amido, a celulose, a quitina e a heparina. O glicogênio acumula-se no citoplasma das células do fígado e dos músculos, funcionando como reserva energética nos animais. Quando a taxa de glicose diminui no sangue, o glicogênio hepático é desdobrado em muitas moléculas de glicose que, liberadas, corrigem a deficiência de glicose sanguínea. O amido é a reserva energética das plantas que resulta da associação de muitas moléculas de glicose obtidas durante a fotossíntese. A celulose é o mais importante polissacarídeo estrutural dos vegetais, formando a parede celular das plantas e das algas. Por causa da maneira como as moléculas de glicose estão associadas para formar a celulose, este polissacarídeo não é digerido no organismo humano, que carece de enzima celulase. A quitina, outro polissacarídeo estrutural, forma o exoesqueleto dos artrópodes, que é substituído durante a metamorfose. A quitina compõe também a parede celular dos fungos. A heparina é um polissacarídeo de importância biológica que funciona como poderoso inibidor da coagulação sanguínea.

OBJETIVOS

• Identificação do amido e do amiloplastos na célula de batata inglesa.

• Conhecer as principais características estruturais e químicas das substâncias orgânicas, atribuir-lhes as respectivas funções desempenhadas nos seres vivos e perceber a sua importância.

FUNDAMENTAÇÃO TEÓRICAAmido ou amilo é encontrado no interior do caule, mas se concentra principalmente em raízes e tubérculos

(batata, mandioca etc.), cereais (arroz, milho, trigo etc.) e sementes. Sua fórmula é (C6H10O5)n e tem massa molecular ente 60.000 u e 1.000.000 u. O amido é a principal fonte de energia em nossa alimentação, sua digestão é feita pela enzima amilase, resultando em moléculas de maltose, que, depois, são quebradas em glicose.

Em contato com o iodo, o amido produz uma coloração violeta-escura e por isso é usado como indicador do iodo.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Farinha de trigoAmido de milho

Solução de iodo ou lugolBatata

Clara de ovoLeiteÁgua

MicroscópioLâminas e lamínulas

EstileteVidro de relógioTubos de ensaio

Estante para tubos de ensaioPipetaBéquer

PROCEDIMENTO

• Quebre o ovo cuidadosamente, coloque a clara no béquer e acrescente um pouco de água.

• Misture bem. Transfira 1 mL dessa mistura para um dos tubos de ensaio. Nos outros tubos coloque o leite, o amido de milho, a farinha de trigo dissolvidos em água, um pedaço de batata crua e outro cozido em um vidro de relógio.

• Em cada uma das amostras adicione 3 gotas de lugol. Anote todos os resultados na tabela abaixo.

• Colocar em uma lâmina uma fatia delgada de batata, corando-a com iodo.

• Observar ao microscópio os grãos de amido (amiloplastos) corado de azul nas células de batata.

21

PRÁTICA 08: IDENTIFICAÇÃO DO AMIDO

Page 22: blogBIO_1

ALIMENTO LEITE CLARA DE OVO

FARINHA DE TRIGO

BATATA CRUA BATATA COZIDA

AMIDO

COLORAÇÃO

PÓS-LABORATÓRIO1. Que substância existe nos alimentos que ao reagir com a solução de iodo obteve o resultado que você observou?2. Essa substância pode ser facilmente identificada? A qual classificação ela pertence?3. Para identificá-la e fazer sua classificação que procedimentos devem ser realizados? Por quê?

22

Page 23: blogBIO_1

INTRODUÇÃOO diabetes é uma doença provocada pela deficiência de produção e/ou de ação da insulina, que leva a sintomas

agudos e a complicações crônicas características. O distúrbio envolve metabolismo da glicose, das gorduras e das proteínas e tem graves consequências tanto quando surge rapidamente como quando se instala lentamente. Nos dias atuais se constitui em problema de saúde pública pelo número de pessoas que apresentam a doença, principalmente no Brasil.

OBJETIVO

• Comprovar a presença de açúcar na urina.

FUNDAMENTAÇÃO TEÓRICAO pâncreas é o órgão responsável pela produção do hormônio denominado insulina, o qual regula o nível de

glicose no sangue. Para que as células das diversas partes do corpo humano possam realizar o processo de respiração aeróbia, é necessário que a glicose esteja presente na célula.

Visando manter a glicemia constante, o pâncreas também produz outro hormônio antagônico à insulina, denominado glucagon. Assim, quando a glicemia cai, uma maior quantidade de glucagon é secretada visando reestabelecer o nível de glicose na circulação.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Amostras de urinaÁgua

Reagente de BenedictSolução de glicose

Tubos de ensaioSuporte para tubos de ensaio

PipetaCaneta marcadoraPinça de madeiraBico de Bunsen

PROCEDIMENTOPARTE I - TESTE CONTROLE

• Separe dois tubos de ensaio e a cada um adicione 1 mL do reagente de Benedict.

• A um dos tubos acrescente 1 mL de água e ao outro tubo 1 mL da solução de glicose. Leve a chama para aquecer. Observe e registre o ocorrido.

PARTE II - ATIVIDADE PRÁTICA

• Registre nos dois tubos restantes marcações para diferenciar as amostras de urina, essas amostras devem estar filtradas. Ex: amostra 1 (A1), amostra 2 (A2).

• A cada um desses tubos de ensaio, adicione 1 mL do reagente de Benedict.

• Agora, acrescente 1mL das amostras de urina. Aqueça e observe.

• Deixe esfriar e verifique a coloração final da amostra. A reação é negativa quando a amostra permanece azul. A reação é positiva quando a cor da amostra fica verde, verde-amarelado, amarelo alaranjado ou vermelho-tijolo (mais de 1g de glicose), dependendo da quantidade de glicose presente na urina.

PÓS-LABORATÓRIO1. Como você faria para determinar a relação entre as diferenças de cores resultantes e a concentração de glicose?2. Que outro processo é utilizado atualmente para determinar rapidamente a presença de glicose na urina?3. Pesquise sobre os tipos de diabetes, os tratamentos utilizados e os meios para evitá-la.4. Identifique os hormônios envolvidos no controle do açúcar do sangue, explicando suas funções.5. Quais os fatores de risco para o Diabetes Mellitus?

23

PRÁTICA 09: VIDA E DIABETES – TESTE PARA GLICOSE

Page 24: blogBIO_1

INTRODUÇÃONão é difícil nos darmos conta da importância do amido, entre outros carboidratos, na alimentação do ser

humano. O amido é uma substância com alto teor energético, o que a torna fundamental para realizar as diversas atividades de nosso dia a dia. Quando cozinhamos uma batata, evidenciam-se as diferenças entre a amilose e a amilopectina. A amilose é extraída durante a fervura, dando aspecto esbranquiçado à água, enquanto a amilopectina permanece na raiz, servindo de alimento para nós.

OBJETIVO

• Identificar alimentos constituídos por amido;

• Verificar a ação da amilase na digestão do amido.

FUNDAMENTAÇÃO TEÓRICAO amido é um polissacarídeo de fórmula (C6H10O5)n , sendo considerado uma macromolécula. Pouco solúvel e

de elevado peso molecular que se forma nos cloroplastos das plantas como amido de assimilação, nos leucoplastos como amido de reserva e sob a forma de pequenos grânulos redondos ou ovais em raízes, tubérculos, sementes e frutos

A molécula de amido pode ser descrita como uma grande cadeia de moléculas de glicose interligadas, por isso é considerada um polissacarídeo. Há dois tipos de amido: a amilose e a amilopectina. Esse dois polissacarídeos distinguem-se pelo tipo de ligação que ocorre entre as moléculas de glicose.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Cloreto de sódioAmido de trigo ou pão desfeito em água

Solução de lugolÁlcool

Alimentos (açúcar, pão, arroz cozido, frutas, sebo)

Maisena

Placa de PetriSuporte para tubos de ensaio

PipetaCaneta marcadoraPinça de madeiraBico de Bunsen

BéquerBastão de vidro

Colher de plástico

PROCEDIMENTOPARTE I: IDENTIFICANDO A PRESENÇA DO AMIDO

• Coloque amido em duas extremidades da placa de Petri e nas outras duas, coloque sal.

• Pingue uma gota da solução de lugol sobre uma amostra com amido e uma sobre a amostra com sal.

• Faça a mesma coisa com o álcool para as outras amostras da placa.

• Observe se ocorreu a formação de alguma cor diferente e preencha os dados na tabela.

SUBSTÂNCIA ADICIONADA COR COM AMIDO COR COM SAL

Iodo

Álcool

Parte II: IDENTIFICAÇÃO DA PRESENÇA DE AMIDO EM DIVERSAS SUBSTÂNCIAS

• Disponha nas placas de Petri amostras de alimentos.

• Teste cada amostra com uma gota de lugol.

24

PRÁTICA 10: IDENTIFICAÇÃO E DIGESTÃO DO AMIDO

Page 25: blogBIO_1

Parte III: DIGESTÃO DO AMIDO

• Em meio béquer com água, misture meia colher de maisena e mexa com o bastão até formar uma suspensão de amido.

• Use como medida a colher e coloque uma porção da suspensão de amido em duas placas de Petri.

• Ao conteúdo de uma das placas adicione uma colher de saliva e misture.

• Ao conteúdo da outra placa, acrescente igual quantidade de água. Misture com o bastão limpo.

• Após meia hora, coloque algumas gotas de tintura de iodo em cada placa e mexa.

PÓS-LABORATÓRIO1. Qual a coloração assumida quando o amido é misturado ao lugol?2. De acordo com os resultados dos testes da Parte II, o lugol pode ser usado para identificar a presença de açúcares e gorduras nos alimentos?3. Como você explica os resultados obtidos na Parte III?4. Qual a enzima presente na saliva? 5. Planeje um experimento para verificar se essa enzima é degradada com o calor. 6. Quais alimentos que você ingere diariamente e que apresenta amido na sua constituição?7. Amido em excesso pode engordar?

25

Page 26: blogBIO_1

INTRODUÇÃOA vitamina C ajuda as células do organismo, incluindo os ossos, os dentes, as gengivas os ligamentos e os

vasos sanguíneos, a crescer e permanecer sadias. Também ajuda o organismo a responder à infecção e ao estresse, além de auxiliar a utilização eficiente de ferro. Se o seu organismo não receber quantidades diárias suficientes de vitamina C, você ficará mais propenso a apresentar esquimoses na pele, sangramento nas gengivas, má cicatrização das feridas, perda de dentes, dores nas articulações e infecções.

Algumas pessoas tomam grandes quantidades de suplementos vitamínicos porque acreditam que podem evitar algumas doenças, como resfriados. Entretanto, essas suposições não foram comprovadas. Ingerir quantidades excessivas de vitamina C (mais do que 100mg por dia, aproximadamente) pode causar náuseas, cólicas estomacais, diarréia e, possivelmente, cálculos renais.

OBJETIVOS

• Identificar qualitativamente a presença de vitamina C nos alimentos;

• Identificar alimentos ricos e pobres em vitaminas;

• Orientar a importância de uma alimentação balanceada.

FUNDAMENTAÇÃO TEÓRICAO ácido ascórbico (Vitamina C) é um sólido cristalino, de cor branca,

hidrossolúvel. O ácido ascórbico presente em frutas e legumes é destruído por temperaturas altas por um período prolongado. Também, sofre oxidação irreversível, perdendo a sua atividade biológica, em alimentos frescos guardados por longos períodos. A carência desta vitamina provoca a avitaminose designada por escorbuto.

É importante observar que a vitamina C (ácido ascórbico) é extremamente instável. Ela reage com o oxigênio do ar, com a luz e até mesmo com a água. Assim que é exposta têm-se início reações químicas que a destroem, daí o surgimento do gosto ruim no suco pronto. Estima-se que, em uma hora, quase que a totalidade do conteúdo vitamínico já reagiu e desapareceu, por isso é importante consumir as frutas ou o suco fresco feito na hora, deste modo, temos certeza que o teor de vitaminas está garantido.

É também usado na síntese de algumas moléculas que servem como hormônios ou neurotransmissores. Em gêneros alimentícios é referido pelo número INS 300.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Fontes de vitamina C: sucos de frutas ou comprimidos efervescentes.Lugol ou solução de iodo

Água destiladaFarinha de trigo

Tubos de ensaioSuporte para tubos de ensaio

PipetaBéquer

Colher (medida de café)

PROCEDIMENTO

• Dissolva uma colher de farinha de trigo em cerca de 15 mL de água destilada. Se necessário aqueça um pouco a mistura para facilitar a dissolução. Não deixe ferver.

• Acrescente à mistura três gotas de lugol. Você deverá obter uma coloração escura que é característica da reação de amido-lugol.

• Adicione dez gotas da mistura em tubos de ensaio distintos.

26

PRÁTICA 11: PESQUISA DE VITAMINA C

Page 27: blogBIO_1

• Acrescente a esses tubos de ensaio dez gotas das amostras a serem testadas. A descoloração da mistura indica a presença de vitamina C.

• Este teste pode ser feito com outros alimentos para que possam ser comparados os resultados obtidos.

PÓS-LABORATÓRIO1. Qual a importância da vitamina C na alimentação?2. As avitaminoses mais freqüentes na carência de vitamina C?3. Quais são os alimentos ricos em vitamina C?4. Como a vitamina C pode evitar os radicais livres?

27

Page 28: blogBIO_1

INTRODUÇÃOO processo de Osmose pode ser observada em nosso cotidiano em diversas situações como quando, por

exemplo, temperamos uma salada com sal. Neste caso, é adicionado ao meio extracelular, ou seja, fora das células que compõem os vegetais, uma quantidade de soluto, o sal, o que o torna o meio hipertônico.

Com isso, o meio intracelular se torna hipotônico com relação ao meio extracelular e a água encontrada dentro das células dos vegetais atravessa a membrana plasmática para tornar o meio extracelular isotônico ao meio intracelular. É por isso que após um tempo do preparo da salada notamos que há o acúmulo de água no recipiente e que os vegetais ficam murchos.

OBJETIVOS

• Identificar o processo de osmose;

• Identificar o conceito de osmose;

• Reconhecer que a osmose é aplicada para equilibrar a concentração entre os meios.

FUNDAMENTAÇÃO TEÓRICAOsmose é o nome dado ao movimento do solvente entre meios com concentrações diferentes de solutos,

separados por uma membrana semipermeável. É um processo físico-químico importante na sobrevivência das células. A osmose pode ser vista como um tipo especial de difusão em seres vivos.

O solvente movimenta-se sempre de um meio hipotônico (menos concentrado em soluto) para um meio hipertônico (mais concentrado em soluto) com o objetivo de se atingir a mesma concentração em ambos os meios (isotônicos) através de uma membrana semipermeável, ou seja, uma membrana cujos poros permitem a passagem de moléculas de água, mas impedem a passagem de soluto.

Este tipo de transporte não apresenta gastos de energia por parte da célula, por isso é considerado um tipo de transporte passivo. Esse processo está relacionado com a pressão de vapor dos líquidos envolvidos que é regulada pela quantidade de soluto no solvente. Assim, a osmose pode ajudar a controlar o gradiente de concentração de sais nas células.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

4 ovos de codornaÁgua filtrada

Vinagre brancoSacarose (açúcar)

Recipiente médioRecipientes de vidro

Etiquetas

PROCEDIMENTO

• Coloque o vinagre no recipiente e mergulhe os ovos, de modo a cobri-los completamente. Deixe-os assim por cerca de 24 horas ou até a total remoção da casca calcária. Lave-os bem sob água corrente.

• Coloque água em dois recipientes de vidro, até cerca da metade da capacidade. Em um deles dissolva a máxima quantidade possível de açúcar (5 ou 6 colheres de sopa), preparando uma solução altamente concentrada, viscosa como calda de doce. O outro copo ficará apenas com água. Etiquete os copos, identificando as soluções que eles contêm.

• Coloque dois ovos com a casca calcária removida em cada solução. Observe a forma e a consistência deles a cada 2 horas. Anote os resultados.

• Depois de observar o que ocorre nessa demonstração de osmose, é interessante transferir um dos ovos murchos da solução de açúcar para o copo de água filtrada, e um dos ovos inchados da água filtrada para a solução açucarada. Esse procedimento confirma os resultados.

28

PRÁTICA 12: DEMONSTRANDO A OSMOSE EM OVOS DE CODORNA

Page 29: blogBIO_1

PÓS-LABORATÓRIO1. Com relação ao aspecto físico, qual a diferença de um milho verde cozido em água com sal de outro cozido somente em água? Justifique.2. Como você pode usar o fenômeno da osmose para a conservação de alimentos?3. Você acha que peixe de água doce sobrevive em água do mar e vice-versa? Justifique.4. Do ponto de vista biológico, por que a membrana do ovo tem que ser permeável?5. Você observou que o ovo sem casca ficou submerso na solução de vinagre e flutuou na solução saturada de açúcar. Explique porque.

6. Informe a reação química para a remoção da casca calcária presente nos ovos de codorna.

29

Page 30: blogBIO_1

INTRODUÇÃOÉ possível que você já tenha ouvido falar que a célula é a unidade fundamental da vida. Isso significa dizer que

para um "ser vivo" possuir vida, no mínimo, ele deverá ser formado por uma célula. No corpo humano há diferentes tipos de células, e cada tipo, desempenha uma função específica visando a manutenção da vida no organismo. Quase todas as células possuem características comuns em relação a sua forma, tais como: membrana plasmática, citoplasma e núcleo. Vale lembrar que estas características estão presentes tanto na célula animal quanto na vegetal.

As células são geralmente muito pequenas e, dificilmente visualizadas a olho nu. Por isso, a observação de uma célula só foi possível depois da invenção do microscópio.

OBJETIVOS

• Observar e classificar as células do epitélio animal;

• Identificar as estruturas constituintes da célula animal.

FUNDAMENTAÇÃO TEÓRICAA observação de células vivas, que permite a observação dos movimentos celulares, só é possível ao

microscópio óptico. Para se obter boa visualização das pequenas estruturas celulares, é necessário tratar a célula com corantes (coloração), porém nem todas as estruturas são coradas pelos mesmos corantes, é preciso que haja uma afinidade. Apenas alguns corantes como o azul de metileno não matam a célula (corantes vitais). Na maioria dos casos, porém, trabalha-se com células mortas. Para evitar que a célula tenha suas estruturas alteradas quando mortas, promove-se sua Fixação. Os fixadores matam a célula rapidamente, estabilizando suas estruturas. Para tal, usam-se agentes químicos como álcool, formol e ácido acético. O material a ser observado deve ser suficientemente fino para que seja atravessado pela luz ou pelo elétron. Um tecido compacto, como se apresenta o material depois de fixado, deve ser colocado em parafina (ou outra resina) e fatiado em um aparelho chamado de micrótomo. Logo após, preparado em lâmina de vidro para microscopia. O estudo da organização celular permite que as células sejam classificadas em dois tipos reconhecíveis: procarióticas e eucarióticas. Somente as bactérias e algas cianofíceas são células procarióticas, enquanto todos os demais reinos estão formados por organismos compostos por células eucarióticas. A principal diferença entre ambos os tipos celulares é que as células procarióticas (do grego karyon, núcleo) não possuem envoltório nuclear, através do qual ocorrem os intercâmbios nucleocitoplasmáticos.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Azul de metilenoÁgua

MicroscópioLâmina

LamínulaEspátula de madeira

PROCEDIMENTO

• Com a espátula de madeira, raspe a parte interna da bochecha.

• Esfregue o material colhido no centro da lâmina. Pingue uma gota de água sobre o material.

• Cubra o material com uma lamínula e coloque a lâmina no microscópio.

• Observe primeiro o material com a objetiva de menor aumento, regulando o foco com o botão do macrométrico e o botão do micrométrico. Para observar em maior aumento, muda para a objetiva de aumento subsequentemente maior e ajuste o foco apenas com o botão do micrométrico. Anote os resultados.

• Repita o mesmo procedimento substituindo a água por azul de metileno.

• Desenhe as células observadas e identifique suas partes.

30

PRÁTICA 13: OBSERVAÇÃO DE CÉLULAS DO EPITÉLIO BUCAL

Page 31: blogBIO_1

PÓS-LABORATÓRIO1. Existe diferença na facilidade de observação da célula com corante? Explique.2. De acordo com sua observação, você classifica a sua célula como eucarionte ou procarionte? Explique.3. Por que não conseguimos observar todos os componentes celulares?4. Qual a razão do núcleo ficar mais corado que o citoplasma?5. È possível observar a membrana citoplasmática? Justifique sua resposta.6. Qual a importância prática de estudamos as características celulares?

31

Page 32: blogBIO_1

INTRODUÇÃOA água e os sais minerais são indispensáveis à vida da planta. A clorofila é essencial, pois é responsável por

captar energia luminosa, sem a qual a fotossíntese não ocorreria. Mas existe ainda um outro fator necessário à realização da fotossíntese - o dióxido de carbono.

A fotossíntese das plantas é dividida em etapas, uma vez que estamos falando de um processo bastante complexo, e durante essas etapas existem condições que interferem, prejudicando ou potencializando o processo fotossintetizante.

OBJETIVOS

• Compreende porque as plantas precisam de água e luz do sol para viver;

• Conhecer os fatores necessários para que as plantas fabriquem seus alimentos.

FUNDAMENTAÇÃO TEÓRICAFotossíntese é basicamente um processo celular pelo qual a maioria dos seres autótrofos produz seu próprio

alimento (substâncias orgânicas) a partir de elementos inorgânicos. A energia para a realização desse processo vem da luz, tendo como principal fonte o próprio Sol. A energia luminosa solar fica armazenada nas moléculas de glicídios, e passa a ser utilizada como reserva de nutrientes ou fonte de alimento para outros seres vivos.

Para se realizar a fotossíntese, a maioria dos seres autótrofos, como as plantas por exemplo, utilizam como reagente o gás carbônico, a água na presença de uma substância de cor verde conhecida como clorofila, que tem a capacidade de absorver a energia luminosa presente na luz solar produzindo oxigênio e glicídios. Os glicídios produzidos são armazenados e podem ser utilizados como fonte de energia e de matéria-prima para a formação de novas estruturas e compostos.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Azul de bromotimolTrês plantas verdes aquáticas (agrião)Cogumelos ( seres vivos do reino dos

fungos, sem clorofila)Água fervida

Água gaseificadaAzeite

Quatro Tubos de ensaioSuporte para tubos de ensaio

Caixa de papelão

PROCEDIMENTO

• Identifique os tubos de ensaio por A, B, C e D.

• Coloque no tubo A uma planta e água fervida; no tubo B e D uma planta e água gaseificada e no tubo C os cogumelos e água gaseificada, sempre de modo a que a água cubra totalmente as plantas e os cogumelos.

• Adicione aos quatros tubos 5 gotas de bromotimol e cubra cada um deles com um pouco de azeite, para isolar o conteúdo dos tubos do ar.

• Coloque os tubos A, C e D à luz e o tubo B às escuras, dentro da caixa de papelão.

• Aguarda 48 horas e compara os resultados entre as diferentes montagens.

PÓS-LABORATÓRIO1. O que aconteceu quando foi adicionado as gotas de bromotimol a todas os experimentos?2. Que conclusões é possível relatar sobre o experimento em cada tubo de ensaio?3. Por que apenas no tubo D houve alteração de cor?4. Quais os fatores necessários para que uma planta possa realizar fotossíntese?

32

PRÁTICA 14: CONDIÇÕES NECESSÁRIAS PARA A FOTOSSÍNTESE

Page 33: blogBIO_1

INTRODUÇÃOToda vida na Terra é mantida por um fluxo de energia proveniente do sol e que passa pela biosfera. Por meio

do processo fotossintético, a energia radiante é fixada em energia química potencial, utilizada por todos os componentes da cadeia alimentar para realizar os processos vitais. A radiação é também a fonte primária de energia para a reposição da matéria orgânica consumida na cadeia alimentar, regulando o balanço hídrico e o balanço de energia na Terra favorável para a vida dos organismos.

OBJETIVO

• Provar a relação da presença de luz e a formação de cloroplastos em organismos vegetais.

FUNDAMENTAÇÃO TEÓRICAOs cloroplastos são estruturas celulares presentes apenas nos vegetais e responsáveis pela realização da

fotossíntese. Nas células vegetais existem dois tipos de plastídeos: amiloplastos e cromoplastos.Os amiloplastos são responsáveis pela reserva de amido fabricados pela planta e os cromoplastos são

responsáveis pela coloração nos vegetais como folhas, flores e frutos. Os cloroplastos originam-se de estruturas denominadas proplastídeos. Essas, para se diferenciarem e se manterem ativas, necessitam da presença de luz. Na falta desta a síntese de clorofila fica prejudicada e as folhas se tornam pálidas e esbranquiçadas.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Vaso com gerânio Cartolina preta ou papel alumínioFita adesiva

Tesoura

PROCEDIMENTO

• Com a tesoura, corte oito quadrados de cartolina maiores que as folhas de gerânio.

• Recorte uma figura no centro de um dos papéis. Por exemplo, um coração.

• Coloque o papel cortado com a figura no lado superior da folha e no lado de baixo, o outro papel, deixando a folha no meio dos dois.

• Prenda as bordas dos papéis com fita adesiva.

• Repita o procedimento para as outras três folhas.

• Coloque a planta em área ensolarada.

• Após sete dias, remova com cuidado os papéis, sem danificar as folhas.

• Compare a área da folha que ficou coberta com papel com a outra, não coberta.

PÓS-LABORATÓRIO1. Explique o que você observou.2. Qual resultado você espera obter se fizer o teste do amido nestas folhas?3. Estabeleça uma hipótese considerando que o mesmo teste fosse realizado na presença de uma lâmpada?4. Todas as plantas necessitam da mesma quantidade de luz para sobreviver?

33

PRÁTICA 15: A IMPORTÂNCIA DA LUZ SOLAR PARA A SÍNTESE DE CLOROFILA

Page 34: blogBIO_1

INTRODUÇÃOA osmose ocorre em vários sistemas da natureza. Os seres vivos depararam-se com a osmose desde sua

origem, uma vez que tudo indica que eles surgiram em meio aquoso como sistemas isolados do ambiente por uma membrana semipermeável. Durante o processo evolutivo os seres vivos desenvolveram não só maneiras de evitar problemas causados pela osmose (inchação ou dessecamento), como também processos que aproveitam a dinâmica osmótica nos fenômenos biológicos. Nas células do corpo humano, a osmose é um processo de extrema importância. A concentração de sais nas células, por exemplo, é controlada pelo sistema de osmose. Como não ocorre gasto de energia, a osmose é considerada um tipo de transporte passivo.

OBJETIVOS

• Entender o mecanismo de transporte de substâncias;

• Construir um osmômetro caseiro e realizar avaliações quantitativas sobre a osmose.

FUNDAMENTAÇÃO TEÓRICADenomina-se osmose à passagem de solvente através de uma membrana semipermeável de uma solução mais

concentrada para uma de menor concentração ou de um solvente puro para uma solução. A osmose ocorre, portanto a favor do gradiente de concentração do solvente, isto é, do compartimento no qual o solvente está em maior concentração para aquela em que a concentração do mesmo é menor.

Por outro lado, em relação ao soluto, a osmose ocorre do meio menos para o meio mais concentrado, ou seja, contra o gradiente de concentração do soluto. Se colocarmos uma solução em um recipiente constituído por uma membrana semipermeável, submergindo-a em um outro recipiente que contem solvente puro, cuidando para que as superfícies dos líquidos estejam no mesmo nível, ocorre uma passagem do solvente para o interior da solução, chamado fluxo osmótico.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

AçúcarAzul de metileno

Água

Papel celofanePipeta de 10 mL

ElásticoBéquer de 250 mL

TesouraSuporte universal

Garra

PROCEDIMENTO

• Umedeça o papel celofane por 30 minutos.

• Arrume-o em forma de saquinho e coloque água, açúcar e algumas gotas de azul de metileno

• Amarre a boca do saquinho à pipeta com o elástico.

• Coloque o sistema verticalmente, mergulhando o saquinho dentro do béquer com água.

• Prenda a pipeta na garra do suporte.

• Observe o nível da solução na pipeta no início e a cada 5 minutos.

• Anote os valores na tabela.

34

PRÁTICA 16: OSMÔMETRO – CONSTRUÇÃO E USO

Page 35: blogBIO_1

TEMPO NÍVEL

Inicial

Após 5 min

Após 10 min

Após 15 min

Após 20 min

Após 25 min

Após 30 min

PÓS-LABORATÓRIO1. Que alterações ocorreram no nível do líquido da pipeta durante a experiência?2. À medida que ocorre o experimento, o que acontece com a pressão osmótica?3. O que aconteceria ao nível do líquido da pipeta se a solução estivesse no béquer e a água no saquinho?4. Por que depois de um certo tempo não se observa mais alteração do experimento?5. Esse mecanismo serve para explicar o transporte de água nos vegetais?

35

Page 36: blogBIO_1

INTRODUÇÃONo nosso dia a dia ouvimos falar com frequência em algumas classes de proteínas. É o caso das enzimas que

aceleram determinadas reações químicas, dos anticorpos aos quais cabe a tarefa de identificar e eliminar os agentes invasores (vírus e bactérias) e ainda das hormonais que asseguram a transmissão de informação entre células.

As proteínas desempenham papel na manutenção, no reparo e no crescimento dos tecidos corporais, podendo inclusive ser fonte de energia alimentar. Quando as reservas de glicogênio estão reduzidas, a produção de glicose começa a ser realizada a partir da proteína. Isto acontece muito no exercício prolongado e de resistência. Consequentemente há uma redução temporária nas "reservas" corporais de proteína muscular e em condições extremas, pode causar uma redução significativa no tecido magro (perda de massa muscular).

OBJETIVOS

• Identificar qualitativamente a quantidade de proteína nos alimentos;

• Identificar alimentos ricos e pobres em proteínas;

• Orientar a importância de uma alimentação balanceada;

• Comparar a identificação de proteínas nas células. FUNDAMENTAÇÃO TEÓRICA

As proteínas são estruturas compostas pela união de diversas moléculas de aminoácidos através de ligações peptídicas. Todas as proteínas iniciam sua existência no ribossomo como uma sequência linear de resíduos de aminoácidos. Esse polipeptídeo deve enovelar-se durante e em seguida à síntese, à fim de atingir a sua conformação nativa. Pequenas alterações no meio em que se localiza a proteína podem resultar em alterações estruturais, que poderá levar à uma deficiência no seu funcionamento.

As proteínas podem ter quatro tipos de estrutura dependendo do tipo de aminoácidos que possui, do tamanho da cadeia e da configuração espacial da cadeia polipeptídica.

MATERIAL NECESSÁRIO

Reagentes e Soluções Vidraria e Instrumental

Clara de ovoSolução de hidróxido de sódio

Solução de sulfato de cobre a 10%ÁguaLeite

Amido de milhoFarinha de trigo

Tubo de ensaioSuporte para tubo de ensaio

BéquerPipeta

Bastão de vidro

PROCEDIMENTO

• Quebre o ovo cuidadosamente, coloque a clara no béquer e acrescente um pouco de água. Misture bem. Transfira 1mL dessa mistura para um dos tubos de ensaio. No outro tubo coloque o leite, o amido de milho,a farinha de trigo dissolvidos em água;

• Em cada um dos tubos adicione algumas gotas de hidróxido de sódio e misture. Em seguida, coloque algumas gotas de sulfato de cobre, misturando novamente;

• Se o alimento contiver proteína vai ocorrer uma reação que PIGMENTA a solução de lilás (pouca proteína) a roxo (muita proteína). Esta reação entre proteína + hidróxido de sódio + sulfato de cobre é chamada BIURETO.

36

PRÁTICA 17: IDENTIFICAÇÃO DE PROTEÍNAS

Page 37: blogBIO_1

ALIMENTO OCORREU REAÇÃO COLORAÇÃO

Leite

Amido de milho

Farinha de trigo

Clara de ovo

PÓS-LABORATÓRIO1. O que é um aminoácido?2. As funções das proteínas?3. O que é uma ligação peptídica? Como ocorre?4. Importância das proteínas na alimentação?5. Cite alguns alimentos ricos em proteínas.

37

Page 38: blogBIO_1

INTRODUÇÃOProteja-se das micoses! Pois é, quem ainda não sofreu com aquela coceirinha oportunista que surge na pele, nas unhas e até nos

cabelos, causando infecções incômodas e resistentes? Pode parecer estranho, mas esses seres vivos muito comuns e ao mesmo tempo desconhecidos, apresentam diferenças fundamentais para a ecologia do planeta. Há aqueles que são extremamente prejudicais para a saúde do homem, provocando inúmeras doenças, existem os que parasitam vegetais e animais mortos, os que servem para alimento e até aqueles dos quais se pode extrair medicamentos importantes para o homem, como a penicilina.

OBJETIVOS

• Reconhecer as diferentes estruturas corporais de um fungo, bem como sua importância na alimentação, na produção de medicamentos e os que causam doenças.

• Observar a presença de fungos, em alimentos mantidos em ambientes quentes.

FUNDAMENTAÇÃO TEÓRICATambém conhecidos como bolores, mofos, leveduras, cogumelos, os fungos contribuem para o ciclo nos

ecossistemas. São heterotróficos e nutrem-se de matéria orgânica morta (fungos saprofíticos), ou viva (fungos parasitários).

Podem ser unicelulares ou pluricelulares. Alguns são causadores de doenças, venenosos, outros são comestíveis e utilizados na indústria de alimentos. Alguns vivem em associações de mutualismo. Não sintetizam clorofila, sua parede celular é formada por quitina. MATERIAL NECESSÁRIO

Soluções e Reagentes Vidraria e Instrumental

Fermento biológicoExemplares de fungos (mofos)

Água com açúcarFatia de pão

Laranja

MicroscópioLupa

Lâminas e LamínulasSaco plástico transparente

PipetaPapel absorventeBastão de vidro

PROCEDIMENTO PARTE I - Preparação das soluçõesSolução de água com açúcar (100 g de açúcar + 1 L de água)Prepare o fermento biológico (50 g) em água com açúcar (um dia antes), para que os fungos possam se desenvolver.

PARTE II - Parte experimental1. Preparar lâmina com amostras do fermento desenvolvido e observar ao microscópio.2. Preparar lâminas com os fungos presentes na laranja e no pão (ponha a laranja dentro do saco plástico e lacre. Umedeça a fatia de pão, coloque-a no saco plástico e amarre-o). Observe as modificações ocorridas.3. Com um bastão de vidro colha um pouco de mofo desses materiais e espalhe sobre lâminas de vidro. Pingue uma gota de água sobre a amostra e cubra-a com uma lamínula. Observe-a ao microscópio.

PÓS-LABORATÓRIO1. Para cada material, desenhe o que você viu e tente identificar as partes do mofo.

38

PRÁTICA 18: OBSERVANDO FUNGOS

Page 39: blogBIO_1

2. Desenhe o que observou na lâmina do fermento e identifique se o fungo é unicelular ou pluricelular.

INTRODUÇÃOOs óleos e gorduras fazem parte de um grupo amplo de nutrientes chamado lipídeos. Como os lipídeos estão

presentes em alimentos geralmente mais calóricos, eles devem aparecer em menor quantidade na alimentação, especialmente na dos que buscam o emagrecimento. O consumo excessivo desses nutrientes é um dos fatores que contribuem para o desenvolvimento de várias doenças crônicas, inclusive a obesidade. No entanto, quando consumidos na quantidade certa, os lipídeos não trazem prejuízos e ainda auxiliam no bom funcionamento do organismo.

São facilmente armazenados e dificilmente consumidos. Isso significa que, quando ingeridos, os lipídeos são absorvidos e, se não houver gasto energético, são armazenados no tecido adiposo contribuindo para a formação dos famosos "pneuzinhos" nas regiões da cintura e do quadril. Para complicar a situação, durante a atividade física, os lipídeos são os últimos a serem utilizados como fonte energética.

OBJETIVO

• Identificar a presença de lipídeos (gorduras) nos alimentos.

FUNDAMENTAÇÃO TEÓRICAOs lipídeos são compostos com estrutura molecular variada, formados por ácidos graxos combinados ao

glicerol. Servem de reserva energética (fonte de energia para os animais hibernantes), atuam como isolante térmico (mamíferos), além de colaborar na composição da membrana plasmática das células, por exemplo: glicerídeos (glicerol ligado a ácidos graxos), correspondendo aos óleos vegetais e gorduras animais; cerídeos (álcool de longa cadeia com ácido graxos); fosfolipídeos (possuem ácido fosfórico e uma molécula nitrogenada, além de glicerol e ácido graxo); esteróides (álcool com várias cadeias fechadas).

São substâncias cuja característica principal é a insolubilidade em solventes polares e a solubilidade em solventes orgânicos (apolares), apresentando natureza hidrofóbica, ou seja, aversão à molécula de água. Os lipídios podem ser classificados em óleos (substâncias insaturadas) e gorduras (substâncias saturadas), encontrados nos alimentos, tanto de origem vegetal quanto animal.

MATERIAL NECESSÁRIO

Soluções e Reagentes Vidraria e Instrumental

Alimentos (toucinho, margarina, miolo de pão, leite desnatado, leite integral, chocolate, alface,

arroz cozido)

EspátulaPipeta

Papel absorventeLápisRégua

PROCEDIMENTO1. Usando a régua e o lápis, quadricule a folha de papel sulfite em oito quadrados iguais.2. Anote o nome de cada alimento a ser usado na parte superior de cada um dos quadrados.3. Esfregue, em cada quadrado, um dos alimentos pedidos. No caso do leite, pingue 5 gotas.4. Deixe o papel ao sol ou próximo de uma lâmpada acesa, para secar.5. Observe as manchas deixadas pelos vários tipos de alimentos, mesmo depois de secas.

PÓS-LABORATÓRIO1. Como você identificaria a presença de lipídios (gorduras) nos alimentos utilizados neste experimento? Em quais deles a presença foi observada?2. Qual é a principal diferença entre o leite integral e o desnatado?

39

PRÁTICA 19: IDENTIFICAÇÃO DOS LÍPIDEOS

Page 40: blogBIO_1

INTRODUÇÃOAs bactérias estão entre os menores e mais simples organismos e são, provavelmente, os mais abundantes do

planeta, sendo encontradas em praticamente todos os meios: na terra, na água e no ar, na superfície ou no interior de organismos, em objetos e nos materiais em decomposição.

Na correria do dia a dia, você nem se dá conta de que está em contato direto com esses organismo, no trabalho, na escola, no ônibus e até mesmo em casa. Algumas delas são inofensivas, porém, outras podem causar gripes, diarreias ou doenças mais graves. “Alguns cuidados de higiene podem evitar o problema”.

OBJETIVOS

• Reconhecer a morfologia bacteriana;

• Coletar bactérias de diferentes locais;

• Inocular em meio de cultura e observar o subsequente crescimento das colônias bacterianas.

FUNDAMENTAÇÃO TEÓRICAAs bactérias são organismos muito pequeno, visíveis somente ao microscópico, medindo em média cerca de

1µm de diâmetro; são unicelulares e apresentam as seguintes formas: Cocos (bactérias com forma redonda), bacilos (bactérias de forma alongadas), espirilos (bactérias que tem a forma espiraladas) e vibriões (bactérias que tem a forma parecendo com vírgulas). Os cocos e mais raramente os bacilos podem formar colônias, o que não acontece com os espirilos e os vibriões. As colônias de cocos formam arranjos típicos para espécies particulares de bactérias. Esses arranjos podem ser: Diplococo (dois cocos juntos), Estreptococo (vários cocos dispostos em fileiras), Estafilococos (vários cocos dispostos em arranjos semelhantes a cachos de uvas), Tétrade (quatro cocos formando um quadro) e Sarcina (vários cocos dispostos em arranjos cúbicos). Os bacilos são células isoladas, mas raramente em alguns casos podem ocorrer aos pares, formando diplobacilos (dois bacilos juntos) e Estreptobacilos (bacilos formando cadeias).

Nas células bacterianas pode haver externamente à parede celular, uma cápsula formada por substâncias viscosas produzidas pela própria célula. Essa cápsula atua como envoltório protetor, além de aumentar o poder infectante nas espécies patogênicas. No citoplasma das bactérias estão presentes as seguintes organelas: os ribossomos e uma estrutura membranosa chamada mesossomo, que corresponde simplesmente a uma invaginação da membrana plasmática. Os mesossomos aumentam a superfície da membrana plasmática e atuam como locais de concentração de enzimas, principalmente daquelas relacionadas com respiração; além disso, o DNA está, em geral, ligado ao mesossomo. O DNA bacteriano é uma molécula circular e corresponde ao cromossomo; não existindo carioteca. Além do DNA principal, há plasmídeos, que podem ser transferidos por conjugação para outras bactérias. A maioria das bactérias são heterótrofas, obtendo seus alimentos por absorção. Existem, no entanto, bactérias autótrofas, que produzem seus próprios alimentos por fotossíntese (cianobactérias) ou por quimiossíntese (bactérias nitrosas e nítricas). Quanto à respiração, podem ser aeróbias ou anaeróbias (obrigatórias ou facultativas). As cianobactérias possuem clorofila e outros pigmentos responsáveis pela fotossíntese. A reprodução é assexuada, ocorrendo também conjugação. Em algumas bactérias a formação de esporos ajuda a sobrevivência em condições adversas.

MATERIAL NECESSÁRIO

Soluções e Reagentes Vidraria e Instrumental

Tablete de caldo de carneGelatina incolor

ÁguaDetergente

Placa de PetriEtiquetaCotonete

Bastão de vidro

40

PRÁTICA 20: VERIFICAÇÃO DO CRESCIMENTO MICROBIANO

Page 41: blogBIO_1

Água clorada BéquerLuva

MicroscópioPapel toalha

PROCEDIMENTO

• Dissolva a gelatina incolor com água e depois leve ao fogo para dissolver todos os grânulos.

• Em seguida misture o conteúdo da gelatina com o caldo de carne dissolvido em três colheres de sopa de água.

• Despeje o conteúdo na placa de Petri até ocupar todo o espaço do fundo.

• Passe o cotonete no material contaminado (material de bochecha e de tampa da bacia sanitária) de forma zigue-zague na placa de Petri etiquetando-a.

• Coloque o material preparado na estufa com uma temperatura de 37ºC durante 24 horas e depois observar a morfologia das colônias.

PÓS-LABORATÓRIO1. Explique por que as bactérias podem ser cultivadas em meios de cultura (líquidos ou pastas com material nutritivo) e os vírus não?2. Se o caldo nutritivo que você usou para fazer a análise demonstrou conter bactérias, significa que você teria ficado doente se o tivesse ingerido? Explique.3. Desenhe a morfologia identificando as bactérias observadas.4. Pesquise e descreva o ciclo reprodutivo das bactérias.5. Pesquise a forma de preservação de alimentos e os aditivos químicos utilizados para a conservação.

41

Page 42: blogBIO_1

INTRODUÇÃOVocê já se imaginou com alguma limitação, incapaz de andar ou usar suas mãos? Uma dessas consequências

pode estar associada a problemas nos sistema locomotor. Esse aparelho é formado pelos ossos, articulações e músculos e é o responsável pela nossa mobilidade.

O sistema esquelético é formado por um conjunto de ossos que podem ser de vários tipos (longos, chatos, curtos e irregulares). Além da sustentação do corpo, os ossos também produzem células do sangue e servem como reserva de cálcio. Ligados aos músculos por meio de tendões, realizam movimentos responsáveis pela nossa locomoção.

Na união dos ossos existem cartilagens, que são responsáveis por não deixarem que ocorra atrito e eventual desgaste ósseo. Do esqueleto fazem parte também os ligamentos. Eles são encontrados nas articulações e se prendem firmemente nos tecidos ósseos. Às vezes pode ocorrer ruptura desses ligamentos, em casos mais graves a intervenção cirúrgica pode ser necessária.

OBJETIVOS

• Compreender a importância do esqueleto humano na sustentação do corpo e proteção dos órgãos;

• Identificar a organização do esqueleto humano.

FUNDAMENTAÇÃO TEÓRICAAlém de dar sustentação ao corpo, o esqueleto protege os órgãos internos e fornece pontos de apoio para a

fixação dos músculos. Ele constitui-se de peças ósseas (ao todo 208 ossos no indivíduo adulto) e cartilaginosas articuladas, que formam um sistema de alavancas movimentadas pelos músculos.O esqueleto humano pode ser dividido em duas partes:1-Esqueleto axial: formado pela caixa craniana, coluna vertebral caixa torácica.2-Esqueleto apendicular: compreende a cintura escapular, formada pelas escápulas e clavículas; cintura pélvica, formada pelos ossos ilíacos (da bacia) e o esqueleto dos membros (superiores ou anteriores e inferiores ou posteriores).

MATERIAL NECESSÁRIO

42

PRÁTICA 21: SISTEMA LOCOMOTOR, ESTRUTURA E MOVIMENTO – O ESQUELETO

Page 43: blogBIO_1

Instrumental

Modelo anatômico do esqueleto humanoLâmina histológica contendo corte do tecido ósseo

Microscópio

PROCEDIMENTO

• Observe a organização do esqueleto humano

PÓS-LABORATÓRIO1. Identifique na figura a seguir, os principais ossos do esqueleto humano.

REFERÊNCIAS BIBLIOGRÁFICAS

ÁGUA, VITAMINAS, SAIS MINERAIS. GRUPOS DE ALIMENTOS. Disponível em: http://www.canalkids.com.br/alimentacao/grupos/agua.htm. Acessado 02/02/2012.

AMABIS E MARTHO. Atividade de Laboratório. Editora Moderna. CD-ROM APOIO DIDÁTICO.

AMARAL, MARCO ANTÔNIO. Portal do Professor. OSMOSE. Disponível em http://portaldoprofessor.mec.gov.br/fichaTecnicaAula.html?aula=24680 Acessado em 30/04/2012.

ALVES, LÍRIA. Brasil Escola. OSMOSE. Disponível em http://www.brasilescola.com/quimica/osmose.htm Acessado em 30/04/2012.

ARRUDA, AVANY MARTINS DE.; GOMES, EDIENE FERREIRA CAVALCANTI.; CAVALCANTE, MARIA ETIENE.; OLIVEIRA, MINANCY GOMES DE.; CRISTINA, IZABEL.; RAMOS, EDUARDO.; VILAR, LOURDES.; FONS, LUCINÉIA FARIAS.; SOUZA, MARIA DE ARAÚJO MEDEIROS.; MACIEL, RINEUDO DIAS. Manual de Laboratório: Experimentos de Biologia. CENTROS DE ENSINO EXPERIMENTAL GINÁSIO PERNAMBUCANO, PANELAS E TIMBAÚBA.

BELLINELLO, LUIZ C. Difusão, Osmose, Pressão osmótica. Disponível em http://www.passeiweb.com/na_ponta_lingua/sala_de_aula/quimica/fisico_quimica/osmose/osmose Acessado em 10/05/2012

Condições Necessárias para a Fotossíntese. Disponível em http://www.portalsaofrancisco.com.br/alfa/fotossintese/condicoes-necessarias-para-a-fotossintese.php Acessado em 02/05/2012.

FONSECA, KRUKEMBERGHE. Lípidios. Disponível em http://www.brasilescola.com/biologia/lipidios.htm Acessado em 11/05/2012.

43

Page 44: blogBIO_1

FUNGOS E BACTÉRIAS. Disponível em: http://www.educarbrasil.org.br/Portal.Base/Web/VerContenido.aspx?GUID=929a7fcc-b48c-427b-b729-7b969c3e3fc9&ID=210462. Acessado em 06 de fevereiro de 2012.

GOMES, ALINE PITOL. Disponível em http://www.grupoescolar.com/pesquisa/quimica-alimentar--carboidratos--lipidios--proteinas.html Acessado em 11/05/2012.

LINHARES, Sérgio; GEWANDSZNAJDER, Fernando. Biologia Hoje – Os seres vivos. Editora Ática. Volume 2. 1ª edição. São Paulo – 2012.

LOPES, DANIEL RICARDO XIMENES; ROCHA, DANIEL VASCONCELOS; FILHO, FERNANDO BARROS DA SILVA; TEÓFILO, JOSÉ WELLINGTON LEITE; FELIPE, RICARDO ARAÚJO; FILHO, TARGINO MAGALHÃES DE CARVALHO. Manual de Práticas Laboratoriais: Biologia. Comissão de Formação e Pesquisa da SEFOR. Fortaleza – Ceará, 2010.

LOUREDO, PAULA. Sistema Locomotor. Disponível em http://www.brasilescola.com/biologia/sistema-locomotor.htm Acessado em 14/05/2012.

MOBILAB – Manual de Biologia - Laboratório Interdisciplinar – 2004.

PAIXÃO, GERMANA COSTA; LUCENA, ELISEU MARTÔNIO PEREIRA DE; MEDEIROS, JEANNE BARROS LEAL DE PONTES; BONILLA, ORIEL HERRERA. Práticas de Biologia: da origem da vida à biotecnologia. Coleção Programa de Formação Continuada e em Serviço na área de Ciências da Natureza, Matemática e suas Tecnologias. Fortaleza, CE, Secretária de Educação, 2009.

PEREIRA, FABRÍCIO ALVES. Fotossíntese. Disponível em http://www.brasilescola.com/biologia/fotossintese.htm Acessado em 02/05/2012.

SOARES, CRISTINA PACHECO.; SILVA, NEWTON SOARES DA. Práticas de Biologia Celular. Disponível em http://www.ebah.com.br/content/ABAAABfcMAB/praticas-biologia-celular Acessado em 10/05/2012

SOUSA, GEORGIA CARLA DE; Apostila de Práticas do Laboratório Interdisciplinar de Ciências. Itapipoca – Ce, 2010.

www.sed.sc.gov.br/secretaria/.../362-proposta-curricular- biologia Acessado em 01 de fevereiro de 2013.

44

Page 45: blogBIO_1

Coordenação da Coleção

Marcos Weyne Gomes Rocha

Maria de Lourdes Eufrásio Lima

Maria do Socorro Braga Silva

Samid Jurandy Coelho Rocha

Capa

45

Page 46: blogBIO_1

Veruska Mesquita Sousa

Coordenação Laboratório Escolar de Ciências

José da Mota Silva Neto

ESCOLA ESTADUAL DE EDUCAÇÃO PROFISSIONAL ADRIANO NOBREReconhecido pelo C.E.C. - Parecer 220/08

Rua Francisco José de Oliveira, S/N – Santa Rita.CEP: 62.600-000

E-mail: [email protected]

46