apostila de mecânica dos solos - tallesmello.com.br · prof talles mello – -...

42
CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SOLOS Caderno de Conteúdo e Exercícios da disciplina de Mecânica dos Solos do Curso de Engenharia Civil da Estácio de Sá, UCDB, Unigran e da Facsul. Professor: Eng. Civil Esp. Talles Mello www.tallesmello.com.br [email protected] Acadêmico: Campo Grande – MS 4ª Edição

Upload: others

Post on 25-Jun-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

CURSO DE ENGENHARIA CIVIL

MECÂNICA DOS SOLOS

Caderno de Conteúdo e Exercícios da disciplina de Mecânica dos Solos do Curso de Engenharia Civil da Estácio de Sá, UCDB, Unigran e da Facsul.

Professor: Eng. Civil Esp. Talles Mello

www.tallesmello.com.br [email protected]

Acadêmico:

Campo Grande – MS

4ª Edição

Page 2: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

Prof Talles Mello – www.tallesmello.com.br - [email protected] - 3ª Edição - 2019 2

Solicita-se aos usuários deste trabalho a apresentação de sugestões que tenham por objetivo aperfeiçoa-lo ou que se destinem à supressão de eventuais incorreções.

As observações apresentadas, mencionando a página, o parágrafo e a linha do texto a que se referem, devem conter comentários apropriados para seu entendimento ou sua justificação.

A correspondência deve ser enviada diretamente ao autor, por meio do e-mail: [email protected]

Ficha Catalográfica

Mello, Talles.

Mecânica dos Solos I/Talles Taylor dos Santos Mello–Campo Grande,MS, 2020.

42 p. : il. color. – (Material didático)

Caderno de aula de exercícios da disciplina de Mecânica dos Solos, do Curso de ECV da Universidade Católica Dom Bosco, Estácio de Sá, Universidade da Grande Dourados e da Facsul, de Campo Grande/MS.

1. Engenharia Civil – composição, proporção, etc. 2. Solos. 3. Apostila.I. Universidade Católica Dom Bosco. Unigran. Estácio de Sá. Facsul. Curso de Engenharia Civil.II.Título.

CDD (20) 720.7

Page 3: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

3 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

SumárioSumárioSumárioSumário

1 ORIGEM E FORMAÇÃO DOS SOLOS .................................................................................................................................. 4

2. ÍNDICES FÍSICOS .................................................................................................................................................................. 5

2.1. ÍNDICES FÍSICOS: EXERCÍCIOS ............................................................................................................................................. 7

3. GRANULOMETRIA ............................................................................................................................................................. 13

3.1. COEFICIENTE DE UNIFORMIDADE (CUN).............................................................................................................................. 13

3.2. COEFICIENTE DE CURVATURA (CC) .................................................................................................................................... 13

3.3. GRANULOMETRIA : EXERCÍCIOS ......................................................................................................................................... 14

4. PERMEABILIDADE ............................................................................................................................................................. 16

4.1. PERMEABILIDADE : FÓRMULAS ................................................................................................................................................ 16

4.2. PERMEABILIDADE : EXERCÍCIOS ............................................................................................................................................... 17

5 - LIMITES DE LIQUIDEZ E LIMITES DE PLASTICIDADE .................................................................................................. 22

6. TENSÕES NOS SOLOS ....................................................................................................................................................... 22

6.1. CARGA PONTUAL : SOLUÇÃO DE BUSSINESQ ............................................................................................................................ 23

6.2. CARREGAMENTO UNIFORMEMENTE DISTRIBUÍDO SOBRE PLACA R ETANGULAR ................................................................ 23

6.3. CARREGAMENTOS UNIFORMEMENTE DISTRIBUÍDOS SOBRE PLACA CIRCULAR .................................................................. 25

6.4. TENSÕES: EXERCÍCIOS ....................................................................................................................................................... 26

7. REDES DE FLUXO ............................................................................................................................................................... 29

7.1. REDES DE FLUXO : FORMULÁRIO ........................................................................................................................................ 29

7.2. REDES DE FLUXO – EXERCÍCIOS ......................................................................................................................................... 29

8. CLASSIFICAÇÃO DOS SOLOS .......................................................................................................................................... 33

8.1. CLASSIFICAÇÃO TRILINEAR ............................................................................................................................................... 33

8.2. SISTEMA UNIFICADO DE CLASSIFICAÇÃO DOS SOLOS (SUCS)............................................................................................ 33

8.3. CLASSIFICAÇÃO HRB OU AASHO ..................................................................................................................................... 35

9. ADENSAMENTO .................................................................................................................................................................. 36

9.1. ADENSAMENTO : FÓRMULAS ............................................................................................................................................... 36

9.2. ADENSAMENTO : EXERCÍCIOS ............................................................................................................................................. 37

10. MÉTODOS DE INVESTIGAÇÃO GEOTÉCNICA ........................................................................................................... 38

10.1. MÉTODOS DE INVESTIGAÇÃO GEOTÉCNICA : EXERCÍCIOS ............................................................................................... 39

Page 4: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

4 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

1 Origem e Formação dos Solos

1) O que se entende por:

a) Solo

b) Solo residual

c) Solo transportado

d) Solo coluvional (ou solo com coluviamento)

e) Aluvião

f) Solo orgânico

g) Solo pedregulhoso

h) Turfa

i) Mangue

2) Por que o material orgânico em decomposição piora as características

tecnológicas de um solo?

Page 5: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

5 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

2. Índices Físicos

Na Mecânica dos Solos, os índices físicos são utilizados na caracterização das condições

do solo, em um dado momento, que pode ser alterado ao longo do tempo.

Os Índices Físicos são definidos como grandezas que expressam as proporções entre

Pesos e Volumes nas três fases constituintes do solo: sólidos, líquido e ar, para caracterizar o

estado do solo. Grandezas obtidas em laboratório:

• Teor de umidade (w).

• Peso específico dos grãos (γg ou δ)

• Peso específico natural (γ ou γnat)

• O peso específico da água é adotado (γa ou γw)

Os demais Índices Físicos são calculados

� � �� � �� �� � �� � ��� � � � �

A) Teor de Umidade (w ou h)

É a relação entre a massa ou o peso da água contida no solo e a massa ou o peso de sua

fase sólida, expressa em percentagem.

A umidade varia teoricamente de 0 a ∞. Os maiores valores conhecidos no mundo são os

de algumas argilas japonesas que chegam a 1400%.

Em geral os solos brasileiros apresentam umidade natural abaixo de 50%. Se ocorre

matéria orgânica, esta umidade pode aumentar muito, podendo chegar até a 400% em solos

turfosos.

� ��

Page 6: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

6 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

B) Índice de Vazios (e)

Indica variação volumétrica ao longo do tempo (história das tensões e deformações

ocorridas no solo). É a relação entre o volume de vazios e o volume de sólidos.Embora possa

variar, teoricamente, de 0 a ∞, o menor valor encontrado em campo para o índice de vazios é de

0.25 (para uma areia muito compacta com finos) e o maior de 15 (para uma argila altamente

compressível).

� � ����

C) Porosidade (n)

• É a relação entre o volume de vazios e o volume total da amostra, expressa em

percentagem.

� � �1 � � �� � =��

D) Grau de Saturação (S ou Sr)

• É a relação entre o volume de água e o volume de vazios de um solo, expressa em

percentagem. Varia de 0% para um solo seco a 100% para um solo saturado.

� =��

��

E) Peso Específico Aparente Natural do Solo (ɣ ou ɣnat ou ɣn)

� =

Magnitude depende da quantidade de água nos vazios e do mineral constituinte

predominante. Utilizado no cálculo dos esforços. Para determinação de g, geralmente utiliza-se o

“método do Frasco de Areia”

F) Peso Específico Aparente Seco do Solo (ɣs ou ɣd)

Empregado para verificar o grau de compactação de bases e sub-bases de pavimentos,

aterros e barragens de terra.

��

=�

Page 7: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

7 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

G) Peso Específico Real dos Grãos ou Sólidos (ɣg ou δδδδ)

Empregado para verificar gradiente hidráulico crítico.

� � ���

H) Relação entre Índices Físicos

� � 1 � ��

=�

1 + � =

1 + �

��

=�

1 + � � =

� + � . � . ��

1 + � � =

. �

� . ��

2.1. Índices Físicos: Exercícios

1) Uma amostra de solo saturado tem um volume de 0,0283m3 e uma massa de 57,2kg. O

peso específico dos grãos é 2,79 tf/m3. Considerando-se que os vazios estão tomados por água

pura, determinar o teor de umidade e o índice de vazios do solo.Resposta: w = 27,17%; e =

75,78%.

2) Um recipiente de vidro e uma amostra indeformada de um solo saturado pesaram

68,959gf. Depois de seco o peso foi de 62,011gf, o recipiente de vidro pesa 35,046gf e o peso

específico dos grãos é de 2,80 gf/cm3. Determinar o índice de vazios, o teor de umidade e a

porosidade da amostra original.Resposta: e = 72,15%; w =25,77%; n = 41,91%.

Page 8: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

8 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

3) Uma amostra de areia úmida tem um volume de 464 cm3 em seu estado natural e um

peso de 793,0gf. O seu peso seco é 735,0gf e peso específico dos grãos é 2,68gf/cm3. Determinar

o índice de vazios, a porosidade, o teor de umidade e o grau de saturação. Resposta: e =

69,19%; n = 40,89%; w = 7,89%; s = 30,57%.

4) Um corpo de prova cilíndrico de um solo argiloso tinha H= 12,5cm, φ = 5,0cm e sua

massa era de 478,25g, após secagem passou a 418,32g. Sabendo-se que o peso específico dos

grãos é 2,70gf/cm3, determinar o peso específico aparente seco, índice de vazios, porosidade,

grau de saturação e teor de umidade.Resposta:γγγγd = 1,7gf/cm³; n = 36,88%; s =66,21%; w

=14,33%; e =58,42%.

5) Uma amostra de solo de 1.000,0g com umidade de 16,0% , passou a ter umidade de

26,0% em função da adição de água. Qual a quantidade de água acrescida a esta amostra

?Resposta: ∆PA = 86,21gf.

Page 9: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

9 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

6) Escavou-se um buraco em um terreno, retirando-se 1080 g de solo. Logo em

seguida preencheu-se este buraco com 1500 g de uma areia seca com peso específico aparente de

18,63 kN/m3. Calcular o peso específico seco, o índice de vazios e o grau de saturação deste

terreno sabendo-se que de uma parcela do solo retirado do buraco determinou-se a umidade do

terreno em 14% e a densidade relativa dos grãos em 2,5.Resposta:γγγγd = 1,18 gf/cm³; e = 112%; s

= 31%.

7) Um recipiente de vidro e uma amostra indeformada de um solo saturado pesaram

0,674 N. Depois de seco em estufa o peso tornou-se 0,608 N. O recipiente de vidro pesa 0,344 N

e o peso específico dos grãos do solo é 27,5 kN/m3. Determinar o índice de vazios e o teor de

umidade da amostra original. Resposta: e = 68,75%; w = 25,0%.

8) Um solo saturado tem um peso específico aparente de 18,83 kN/m3 e umidade de

32,5%. Calcular o índice de vazios e o peso específico dos grãos do solo.Resposta: e = 85,83%;

δ =26,41 KN/m³.

Page 10: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

10 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

9) Tem se 1900gf de solo úmido, o qual será compactado num molde, cujo volume é de

1000 cm3. O solo seco em estufa apresentou um peso de 1705gf. Sabendo-se que o peso

específico dos grãos (partículas) é de 2,66gf/cm3 determine, o teor de umidade, a porosidade e

o grau de saturação. Dados: 3/66,2 cmgfG =γ / P = 1900gf / PG =1705gf / V = 1000cm3

Resposta: w =11,44%; n = 35,9%; s = 54,34%.

10) Uma amostra de solo úmido pesa 920 g, com o teor de umidade de 30%. Que

quantidade de água é necessária acrescentar nessa amostra para que o teor de umidade passe para

35%?

11) Uma amostra de solo de 1.000,0g com umidade de 16,0%, passou a ter umidade de

26,0% em função da adição de água. Qual a quantidade de água acrescida a esta amostra ?

12) O peso de uma amostra de solo saturado é de 870g. O volume correspondente é de

520 cm3. Sendo o índice de vazios igual a 65%, determinar o peso específico real do solo?

Page 11: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

11 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

13) Considere um solo com índice de vazios igual 0,67, peso específico relativo igual

2,68 e com 12% de teor de umidade. Determine o peso da água a ser adicionada a 10 m³ de solo

para saturação total.

14) Uma amostra de solo úmido em uma cápsula de alumínio tem um peso de 462 gf.

Após a secagem em estufa se obteve peso da amostra igual a 364 gf. Determinar o teor de

umidade do solo considerando o peso da cápsula de 39 gf. Resposta: w = 30,2 %.

15) Um solo saturado tem teor de umidade igual a 38 % e peso específico dos sólidos

igual a 2,85 gf/cm³ . Determinar o índice de vazios, a porosidade e a massa específica do solo.

Resposta: e = 1,08, n = 52 % e γγγγ= 1,89 g/cm3 .

16) Qual a quantidade de água a ser acrescentada a uma amostra de 1500 g com teor de

umidade de 17 %, para que esta amostra passe a ter 30 % de umidade. Resposta: Volume a

acrescentar igual a 166,67 cm³

Page 12: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

12 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

17) Um corpo de prova de argila saturada tem uma altura de 2,5 cm e 6,5 cm de

diâmetro, e um volume de água igual a 48,7 cm3 . Foi comprimida em um ensaio até que sua

altura se reduzisse para 1,85 cm, sem alteração do seu diâmetro. Esta amostra possuía um índice

de vazios inicial de 1,42 e uma massa específica dos grãos de 2,82 g/ cm3 . Admitindo que toda

compressão tenha se dado por expulsão de água dos vazios e que a amostra ainda continue

saturada, determinar: Respostas: a) 0,79 b) 22,4% c) 109,09 cm³

a) Índice de vazios após a compressão.

b) Variação do teor de umidade.

c) Considerando que foi retirada uma outra amostra de 1 kg do solo de fundação, calcular

a quantidade de água (em cm3) que é necessário adicionar a esse 1 Kg de solo, cujo teor de

umidade é de 10 %, para que esse teor de umidade tenha um acréscimo de 12 %.

Page 13: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

13 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

3. Granulometria

A Curva Granulométrica é a representação gráfica da distribuição granulométrica do solo.

• abscissa → diâmetros dos grãos

• ordenadas → porcentagens, em peso, dos grãos de diâmetros inferiores aos da

abscissa correspondente.

Ensaios (NBR 7181/12)

• peneiramento

• sedimentação

Frações Limites

• Pedregulho de 4,8 mm a 7,6 cm

• Areia grossa de 2,0 mm a 4,8 mm

• Areia média de 0,42 mm a 2,00 mm

• Areia fina de 0,05 mm a 0,42 mm

• Silte de 0,005 mm a 0,05 mm

• Argila inferior a 0,005 mm

3.1. Coeficiente de uniformidade (CUN)

• Cun (U) < 5 → solo uniforme (mal graduado)

• 5 < Cun (U) < 15 → solo medianamente uniforme (medianamente graduado)

• Cun (U) > 15 → solo desuniforme (bem graduado)

��� � � � ���

���

3.2.Coeficiente de Curvatura (CC)

Fornece a idéia do formato da curva permitindo detectar descontinuidades no conjunto.

�� =���²

��� .���

Page 14: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

14 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

3.3. Granulometria: Exercícios

1) Segundo a ABNT como se classificam os solos grossos?

2) Segundo a ABNT como se classificam os solos finos?

3) O que é um solo graduado e mal graduado?

4) Em que o consiste o coeficiente de uniformidade?

5) Calcule: as porcentagens de solo de cada curva e nomeie, CC e CUN.

a)

Page 15: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

15 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

b)

6) Represente no gráfico:

a) Solo argilo siltoso

b) Solo arenoso

c) Solo silto argiloso

Page 16: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

16 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

4. Permeabilidade

A permeabilidade é a propriedade que o solo apresenta de permitir o escoamento da água

através dele, sendo o seu grau de permeabilidade expresso numericamente pelo "coeficiente de

permeabilidade".

4.1. Permeabilidade: Fórmulas

���� � ! " 11 � � � #$%&#' � � ∆)* + � ,. �. -

A lei de Darcy é válida para um escoamento “laminar”, nº de Reynolds (R) ≤ 2000,

verdadeiro para quase todos os tipos de solos (argila, silte e areia), tal como é possível e deve ser

considerado o escoamento na maioria dos solos naturais. Tambem sua validade é para solos

saturados.

Um escoamento se define como laminar quando as trajetórias das partículas d’água não

se cortam; em caso contrário, denomina-se turbulento.

O permeâmetro de nível constante é utilizado para medir a permeabilidade dos solos

granulares (solos com razoável quantidade de areia e/ou pedregulho), os quais apresentam

valores de permeabilidade elevados.

O permeâmetro de nível variável é considerado mais vantajoso que o anterior, sendo

preferencialmente usado para solos finos, nos quais o volume d’água que percola através da

amostra é pequeno. Quando o coeficiente de permeabilidade é muito baixo, a determinação pelo

permeâmetro de carga constante é pouco precisa.

Page 17: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

17 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

Equação empírica de Hazen

(Válida para areias uniformes) . � 100 . ���0 → D10 em cm

4.2. Permeabilidade: Exercícios

1) Estimar o coeficiente de permeabilidade de um solo (k), cujo resultado do ensaio de

granulometria foi o seguinte: (D10 = 0,1 mm; K = 0,01 cm/s)

2) Uma amostra de areia é ensaiada em um permeâmetro de nível constante. O diâmetro

da amostra é 10,2 cm e a altura 0,125 m. a diferença de nível entre os dois tubos

piezométricos é de 0,86 m e a quantidade de água coletada durante 2 minutos é de

0,733 litros. Calcule a descarga (por segundo) e o coeficiente de permeabilidade desta

areia. (Q = 0,00000611 m³/s; K =0,000108 m/s)

Page 18: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

18 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

3) Verificar se a areia contida no aparelho esquematizado está sujeita ao fenômeno de

“areia movediça”. Se não estiver, calcular H para que se inicie o fenômeno. Dados:

γSAT=26,5kN/m³ (Não ocorre, ic > i; ∆H = 82,5 cm)

4) No aparelho esquematizado abaixo, mediu-se uma vazão de 6 cm³/seg. Calcular a

permeabilidade do solo. (K = 0,00195 cm/s)

5) Qual a vazão que passa através da amostra de areia contida no aparelho abaixo? Esta

areia, submetida a um ensaio de classificação granulométrica por peneiramento

apresentou o resultado abaixo: (K = 0,0625 cm/s; Q = 49,09 cm³/s)

Page 19: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

19 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

6) Para a areia (K = 10-2 cm/s; δ = 2,67gf/cm³) contida no aparelho abaixo, pede-se:

a) A vazão que percola pelo sistema; (Q=33,69cm³/s)

b) A velocidade de percolação da água no solo; (v = 0,0043 cm/s)

c) Verificar se ocorre o fenômeno da areia movediça, (Não ocorre, i<ic)

d) Se não ocorrer, qual deve ser a carga hidráulica para que se inicie o processo? (∆H = 61,6 cm)

e) A diferença de carga total entre os pontos A e B. (HA - HB = 21,45 cm)

7) Com os dados do sistema hidráulico abaixo, determinar qual a cota que deveria

atingir uma escavação na camada de areia para ocorrer o fenômeno de areia

movediça, considerando inalterados os níveis d’água dos reservatórios durante a

escavação. (Cota -9,0 m)

Page 20: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

20 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

8) A figura seguinte representa um permeâmetro de carga constante utilizado para

determinação do coeficiente de permeabilidade dos solos. Determine o valor do

coeficiente de permeabilidade determinado para as condições mostradas na figura,

sabendo‐se que a vazão percolada pelo solo vale Q= 0,3 cm³/s, e que a área da

amostra é igual a 706 cm². (K = 0,0005 cm/s)

9) Em um permeâmetro de nível constante, 6x10-5 m³ de água percola através de uma

amostra cilíndrica de 0,13 m de altura e 0,07 m de diâmetro, durante um período de

1,5 minutos, com um nível efetivo de 0,30 m. Qual é o coeficiente de permeabilidade

da amostra, em cm/s, na temperatura do ensaio?

10) O permeâmetro da figura possui seção transversal de 530 cm². Determine a

permeabilidade do solo cujo peso específico é 18 kN/m³. Em 18 s, o volume de água

que passou pelo permeâmetro foi de 100 cm³. (K = 0,0187 cm/s)

Page 21: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

21 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

11) Estimar o coeficiente de permeabilidade por meio do diâmetro efetivo, do solo abaixo

(traçejado): (K = 0,0001 cm/s)

12) Considere o escoamento representado na figura.

a) Qual o sentido do escoamento? (A→B)

b) Determine o gradiente hidráulico. (i = 0,333)

c) Determine a velocidade. (v = 6,66 . 10-4 m³/s)

Page 22: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

22 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

13) Calcular os valores da carga total, da carga topografica e da carga piezometrica,

no pontos indicados, do exercicios abaixo (cm), sabendo que o PHR se encontra 30 cm abaixo do

ponto B.

5 - Limites de Liquidez e Limites de Plasticidade

1) Na determinação do Limite de Liquidez de um solo, de acordo com o Método

Brasileiro NBR 6459, foram feitas cinco determinações do número de golpes para que a ranhura

se feche, com teores de umidade crescentes como na tabela a seguir. Qual o Limite de Liquidez

do solo ensaiado?

6. Tensões nos solos Os solos são constituídos de partículas e forças aplicadas a eles são transmitidas de

partícula a partícula, além das que são suportadas pela água dos vazios. Nos solos, ocorrem

tensões devidas ao peso próprio e às cargas aplicadas.

Ponto HZ HP H

B’ 0 290 290

B 30 236 266

A 120 74 194

A’ 150 20 170

Page 23: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

23 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

6.1. Carga pontual: Solução de Bussinesq

A distribuição de tensões devido a uma carga pontual aplicada perpendicularmente à

superfície do terreno é conhecida como solução de Bussinesq. As hipóteses desta solução são:

· maciço homogêneo, isotrópico e continuo

· comportamento elástico linear

· variação de volume do solo é desconsiderada

∆23 � 3527 . 8�9: 90 � 80 � �²

6.2. Carregamento uniformemente distribuído sobre placa retangular

Newmark apresentou uma solução para determinar a tensão vertical induzida no canto de

uma área retangular uniformemente carregada.

Figura 2 – Placa retangular uniformemente carregada

A expressão é longa, por isso utiliza-se um fator de influência Iσ: 28 � ; . <2

O fator de influência Iσ é função da área carregada e da profundidade. Existem ábacos

(como o da figura 3) que fornecem o fator de influência. São definidas as seguintes relações com

os parâmetros m e n, sendo a > b:

= � >8 � � � �8

Page 24: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

24 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

Figura 3 – Ábaco de Newmark

Page 25: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

25 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

6.3.Carregamentos uniformemente distribuídos sobre placa circular

Quando o carregamento é uniformemente distribuído sobre uma placa circular pode-se

usar a solução de Love que permite calcular a tensão em qualquer ponto de um semi-espaço

infinito. Existem ábacos e tabelas (Fig. 4) com dados de entrada z/r e x/r para calcular quando o

ponto a ser calculado está fora do eixo, onde z é a profundidade, r é o raio da placa e x é a

distância horizontal em relação ao centro da placa.

<2 � ?1 " @ 1A1 � BCDE0FGHIJ

28 � ; . <2

Figura 4 - Carregamento uniformemente distribuído sob uma área circular.

Page 26: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

26 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

6.4. Tensões: Exercícios

1) Calcular a tensão induzida por uma carga pontual de 1500 tf a um ponto situado a

5 m de profundidade afastado 5,3 m da aplicação da carga.

2) Calcular a tensão induzida (pressão transmitida) por uma carga circular (raio de 5

m) com 100 kN/m2 a pontos situados a 5 m de profundidade, sob o centro da placa e afastado a

6m do centro da placa.

3) Calcular o acréscimo de tensão produzida pela placa da figura abaixo, carregada

com 78 kN/m2, a um ponto situado a 5 m de profundidade abaixo do ponto O, indicado na

figura, sabendo-se que a1 = 3 m; a2 = 4 m; b1 = 1 m; b2 = 2 m;

4) Dada a situação da planta abaixo, calcule o acréscimo de tensão devido a sapata

carregada com 480 kN/m2 a 5 m de profundidade no ponto A.

Page 27: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

27 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

5) Calcular o acréscimo de pressão causado por uma placa circular, com 5 m de

diâmetro, carregada com 20 t/m2, em pontos situados sob o seu eixo, a 2,5; 5,0 e 10,0 m de

profundidade e traçar o respectivo diagrama.

6) A sapata mostrada na figura está submetida a um carregamento uniforme de 250

kN/m2 na área hachurada e de 150 kN/m2 na área restante. Determinar a intensidade da tensão

vertical no ponto A a 3,00m de profundidade, usando a equação de Newmark para CARGA

RETANGULAR UNIFORMEMENTE DISTRIBUIDA.

7) Calcular o acréscimo de carga sobre o ponto F, situado a 10m de profundidade,

provocado pelos carregamentos transmitidos ao terreno pelas obras A, B e C, cujas

características estão indicadas abaixo.

Page 28: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

28 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

8) Calcule o acréscimo de tensão vertical no ponto A, induzido por um carregamento

de 20 t/m2 aplicado na superfície da área retangular, mostrada na figura abaixo. O ponto A situa-

se a 2,4m de profundidade.

9) Uma placa em forma de anel transmite uma carga uniforme de 500kN/m2.

Determinar os acréscimos de tensões induzidas nos pontos A e B indicados, situados a 2,5m de

profundidade.

Page 29: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

29 Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

7. Redes de Fluxo

O estudo do fluxo bidimensional é facilitado pela representação gráfica dos caminhos

percorridos pela água e da correspondente dissipação da carga. Esta representação é conhecida

como Rede de Fluxo.

7.1. Redes de Fluxo: Formulário

+ � AKLKMF . ) . N ∆) � )KM ) � )8 � ); O � ); . �PHQ

K � R " S� R � - . 1 . #�TU��V T

7.2. Redes de Fluxo – Exercícios

1) Calcule: a) A vazão por metro linear e;

b) A força normal resultante da barragem. Dados: K = 10-3 cm/s; γconcreto = 25KN/m³

Page 30: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

30

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

2) Calcule:

a) A vazão por metro linear e;

b) A força normal resultante da barragem.

Dados: K = 10-6 cm/s; γconcreto = 25KN/m³

Page 31: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

31

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

3) Calcule:

a) A vazão por metro linear e;

b) A carga piezométrica nos pontos A, B, C e D.

Dados: K = 2x10-5 cm/s; γconcreto = 25KN/m³

Page 32: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

32

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

4) Calcule:

a) A vazão por metro linear e;

b) A força normal resultante da barragem. Dados: K = 2x10-5 cm/s; γconcreto =

25KN/m³

Page 33: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

33

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

8. Classificação dos Solos

Devido a heterogeneidade dos solos e a grande variedade de suas aplicações, é praticamente

impossível estabelecer um único critério para sua classificação. Conclui-se, então, que há a

necessidade de existirem vários sistemas de classificação de solos, cada um procurando atender de

maneira especifica os vários campos da Geotecnia.

8.1. Classificação Trilinear

Como complementação à classificação granulométrica, o triângulo de Feret agrupa os tipos

de solo conforme sua divisão nas frações areia, silte e argila.

8.2. Sistema Unificado de Classificação dos Solos (SUCS)

Esta classificação foi proposta em 1952 pelo U.S. Bureau of Reclamation e U.S. Corps of

Engineers e tem como origem uma classificação proposta por Arthur Casagrande (1942).

Nesse sistema são utilizados a granulometria e os limites de consistência do solo.

Prefixo

G (gravel) – pedregulho S (sand) – areia C (clay) – argila M (mo) – silte O (organic soil) – solo orgânico Pt (peat) – turfa

Sufixo

W (well graded) – bem graduado P (poor graded) – mal graduado H (high) – alta compressibilidade L (low) – baixa compressibilidadeO (organic soil) – solo orgânico C ou M – solo grosso argiloso

ou siltoso

Page 34: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

34

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

Page 35: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

35

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

8.3. Classificação HRB ou AASHO

Esta classificação leva em conta a granulometria, o limite de liquidez e o índice de

plasticidade do solo.

Provém de uma utilização especifica na classificação de solos na área de estradas, sendo

reunidos por grupos e subgrupos.

Nesta classificação é introduzido o chamado índice de grupo (IG), n.° inteiro que varia de

0 a 20 e avalia a qualidade do solo como subleito de rodovias, sendo dado em função de:

Ex. 1) Calcular o IG de um solo em que 65% do material passa na peneira 200, o LL é

32% e o IP = 13%. Resposta: IG = 7

Ex. 2) Um solo apresenta 97,0% passando em peso pela peneira 200 e 100,0% passando

na peneira 40. Os limites são LL = 55,0% e IP= 15,0%. Determinar o IG. Classificá-lo de acordo

com a classificação HRB e SUCS (Classificação Unificada). Resposta: IG = 13; HRB: A-7-5

(13); SUCS: MH

Page 36: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

36

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

)�)�)�

)� )�

9. Adensamento

9.1. Adensamento: Fórmulas

Índice de Compressão (Cc)

�W � �� " �0X�Y 2′0 " X�Y 2′�

Fator tempo ([3)

[3 � W\ . P]²

Cv - coeficiente de adensamento Hd - a maior distância percorrida por uma partícula de água, no processo de drenagem

Espessura de Drenagem )� (duas superfícies de drenagem) (uma superfície de drenagem)

)� � P0 )� � )�

% do Adensamento

Para U = 0 a 60%, [_ � a b�²c

Para U = > 60%, [_ � "0,933 logb1 " �c " 0,085

Determinação da Espessura a ser Adensada

∆) � A �k1 � ��F . )� . log l2�Lm2��m n

Page 37: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

37

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

9.2. Adensamento: Exercícios

1. Preencha a tabela abaixo, sabendo que na camada situada entre -3,0 e -4,5 m é uma

camada de argila normalmente adensada, devido a construção de um reservatório cilíndrico com

10 metros de diâmetro e 20 metros de altura sobre o perfil abaixo, utilizado para comportar óleo

(γ=9KN/m³). Dados da argila: Cc = 0,8; umidade 30%; peso específico dos grãos 20KN/m³; Cv =

4x10-2 cm²/s (4,0)

U (%) t (segundos) Tv ΔH (cm) 10 20 30 40 50

60

70

80

90

99

Page 38: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

38

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

10. Métodos de Investigação Geotécnica

Investigações geotécnicas, geológicas e observações locais

10.1 Generalidades

10.1.1 Para fins de projeto e execução de fundações, as investigações do terreno de

fundação constituído por solo, rocha, mistura de ambos ou rejeitos compreendem:

a) investigações de campo:

-sondagens a trado, conforme a NBR 9603, poços e trincheiras, conforme a NBR 9604,

de inspeção ou de amostragem, sondagens de simples reconhecimento à percussão, sondagens

rotativas e sondagens especiais para retirada de amostras indeformadas conforme a NBR 9820;

-ensaios de penetração quase estática ou dinâmica, ensaios in situ de resistência e

deformabilidade, conforme a NBR 12069;

- ensaios in situ de permeabilidade ou determinação da perda d’água;

- medições de níveis d’água e de pressões neutras;

- medições dos movimentos das águas subterrâneas;

- processos geofísicos de reconhecimento;

- realização de provas de carga no terreno ou nos elementos de fundação;

Nota: Nas investigações de campo, visitas ao local da obra são consideradas de importância fundamental.

10.1.2 As sondagens de reconhecimento à percussão são indispensáveis e devem ser

executadas de acordo com a NBR 6484, levando-se em conta as peculiaridades da obra em

projeto. Tais sondagens devem fornecer no mínimo a descrição das camadas atravessadas, os

valores dos índices de resistência à penetração (S.P.T.) e as posições dos níveis de água.

Quantidade de furos de sondagem (NBR 8036)

Conforme área de projeção em planta:

Quantidade mínima:

Área de projeção < 200 m²: 2 sondagens

Área de projeção (m²) Quantidade de furos

< 1200 1 a cada 200 m²

Entre 1200 e 2400 1 a cada 400 m² que excederem 1200 m²

> 2400 De acordo com o plano da obra

Page 39: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

39

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

200 m² < Área de projeção < 400 m²: 3 sondagens

10.1. Métodos de Investigação Geotécnica: Exercícios

1) Em um terreno com as dimensões de 100 x 100m se implantara um edifício com

projeção no terreno de 30x50 m, qual é o número mínimo de sondagens a percussão a sereme

executadas? Qual a disposição das sondagens no terreno?

2) Quais os subsídios mínimos que uma campanha de investigação do subsolo, destinada a

um projeto de fundações deve fornecer?

Ano: 2014 - Banca: FGV - Órgão: Prefeitura de Florianópolis - SC - Prova: Geólogo

3) Os projetos de engenharia geotécnica voltados para a estabilização de encostas

urbanas contam frequentemente com sondagens que identificam a estratigrafia dos terrenos e a

resistência relativa dos diferentes materiais que compõem o subsolo. O método de investigação

mais adequado para a elaboração deste tipo de projeto é:

a) sondagem à trado;

b) poço de inspeção;

c) rock quality designation - RQD;

d) cone penetration test - CPT;

e) standard penetration test - SPT.

Page 40: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

40

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

Anexo A: Modelo de Relatório

EMPRESA RESPONSÁVEL:

N.º DOCUMENTO:

TMPE-201710/02 CATEGORIA:

LAUDOS TÉCNICOS DE SEGURANÇA ESTRUTURAL ÁREA DE ATIVIDADE:

ENGENHARIA DE PROJETOS NBR-6118

DATA EMISSÃO:

08/10/2017

EMPREENDIMENTO:

CENTRO BENEFICENTE ESPANHOL ENDEREÇO DA OBRA:

RUA 13 DE MAIO, Nº 3072, CENTRO, CAMPO GRANDE – MS.

ELABORAÇÃO:

RESPONSÁVEL TÉCNICO:

ENGENHEIRO CIVIL

TALLES TAYLOR DOS SANTOS MELLO

CREA: 26047-D/MS

EQUIPAMENTO:

N/A

OBJETIVO:

LAUDO TÉCNICO DE SEGURANÇA ESTRUTURAL DO ÉDIFICIO

LOCALIZAÇÃO:

LATINO AMERICANO

ÍNDICE GERAL

1.

1.1

1.2

1.3

1.4

1.5

1.6

RELATÓRIO INSPEÇÃO ELÉTRICA

OBJETIVO

DATA E HORÁRIO DA INSPEÇÃO

DADOS GERAIS

NORMAS DE REFERÊNCIA

DESCRIÇÃO

CONCLUSÃO

Expedição original Rev. A Rev. B Rev. C Rev. D Rev. E Rev. F Rev. G Rev. H

Data 03/10/2017

Execução 03/10/2017

Verificação 03/10/2017

Aprovação 03/10/2017

RUA GENERAL GENTIL MARCONDES, 58 – VILA

PARATI

CEP: 79.081 – 550 CAMPO GRANDE-MS BRASIL

TEL:+55 (67) 9940-9427

www.tallesmello.com.br

Page 41: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

41

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

1. RELATÓRIO INSPEÇÃO DA ESTRUTURA

1.1 Objetivo: O presente laudo tem por finalidade a verificação da estrutura do empreendimento IFMS.

1.2 Data e Horário da Inspeção:

Data Hora

Início Inspeção 01/10/2017 08:00 Término Inspeção 01/10/2017 10:00

1.3 Dados gerais:

Proprietário CENTRO BENEFICENTE ESPANHOL Endereço RUA 13 DE MAIO, Nº 3072, CENTRO, CAMPO GRANDE-MS. Local LATINO AMERICANO

1.4 Normas de Referência:

Norma Regulamentadora Brasileira – NBR6118

Norma Regulamentadora Brasileira – NBR8681

Norma Regulamentadora Brasileira – NBR15575-1

1.5 Descrição:

Conforme vistoria realizada “in loco” as instalações do referido prédio foram verificadas

e analisadas, afim de averiguar se as mesmas se encontram dentro das Normas Técnicas Brasileiras. Não foi encontrada nenhuma irregularidade nas instalações que pudessem ocasionar algum tipo de sinistro. Toda a estrutura incluindo laje, vigas, pilares e estruturas metálicas, estão dimensionados corretamente para suas finalidades, não apresentando riscos como trincas, fissuras ou carbonatação da estrutura. Todas as instalações estão de acordo com as Normas Técnicas Brasileiras (NBR´s).

1.6 Conclusão:

Portanto, concluo, que a estrutura do prédio acima descrito não apresenta riscos de

sinistros, estando em condições seguras de uso.

.........................................................

Eng. Talles T. S. Mello

CREA 26047-D/MS

Page 42: Apostila de Mecânica dos Solos - tallesmello.com.br · Prof Talles Mello – - eng.tallesmello@gmail.com - 3ª Edição - 2019 2 Solicita-se aos usuários deste trabalho a apresentação

42

Mecânica dos Solos – Prof. Talles Mello – www.tallesmello.com.br

Anexo B: Ensaio Táctil Visual Aparelhagem necessária para o ensaio: 1º Peneira Nº 10 (2,00 mm) e Fundo. 2٥ Um Almofariz pequena com soquete; 3º Uma Proveta graduada de 500 Ml; 4º Um Becker 200 Ml / 250 Ml; 5º Uma bisnaga de água; 6º Uma colher média; 7º Um cronômetro / relógio; OBS: A amostra ao retirar seca-se ao ar, caso no laboratório estufa em 105ºC a 110 ºC, observando, as areias não forma torrões as outras tem que obter torrões para o ensaio do Becker e da resistência a seco, 2 torrões pequeno antes de passar na 10 (2,00 mm), para outros ensaios a seguir: Finalidade do ensaio *Reconhecimento do solo em campo: *Seis ensaios para definição.

1º Teste: Reconhecimento Visual ao tato: Nesse ensaio formam-se duas classificações, Areia ou Argila. - Coloca-se a amostra entre os dedos indicador e polegar, e faz uma flexão para ver se é áspera, após coloque de 2 a 3 pingos de água, flexione e verifica, se continuar áspera é Areia, caso vire uma pasta de sabão escorregadia, é Argila. Resposta: Areia.

2º Teste: Sujar as Mãos. Coloque na palma da mão um pouco de amostra e pingue algumas gotas de água flexionando para formar uma pasta na mão; após vai a torneira deixa escorrendo um filete de água e com a palma da mão inclinada vai e volta em sentido horizontal. Esse teste da direito a 3 classificações, Areia, Silte e Argila. 1º Classificação: Nessa primeira passada na água não soltar nada, descarta se a Areia. 2º Classificação: Na segunda passada com a ponta do dedo indicador flexione de leve na água corrente em direção horizontal vai e volta, caso limpe a mão é Silte. 3º Classificação: Se a caso continua impregnado na palma da mão, faça novamente a flexão mais forte e faça a mesma coisa em direção horizontal vai e vem em baixo da água, limpando é Argila. Resposta: Argila

3º Teste: Desagregação do solo: Use um Becker de 200 Ml e um pequeno torrão da amostra, coloque no fundo do Becker e aplica-se água com a Bisnaga na parede do Becker até que cubra a metade da amostra, notando que a amostra não se desmanche, se desmanchar lentamente é Argila, caso a amostra se desmanche rápida é Silte. Lembrete: As areias não formam torrões. Resposta: Silte

4º Teste: Dispersão do Solo: Na proveta 500 Ml de água, coloque + ou – 3 colheres média do material passado na peneira 10 (2,00 mm), e faça durante 1 minuto no cronômetro movimentos para cima e para baixo e em seguida coloque a proveta em um local plano. Esse teste dá se 3 classificações: Areia, Silte ou Argila. Após colocar a proveta em um local plano acione o cronômetro. De 15 a 30 segundos: é Areia. De 30 segundos a 1 minuto: é Silte. Após 1 minuto: é Argila . 1 – Areia decanta rápida; 2 – Silte fica turva, clareando; 3 – Argila permanece barreada; Resposta: Argila.

5º Teste: Resistência do Solo: Pegue outro torrão + ou – do tamanho de uma bolita, feche a mão e coloque o torrão em cima é pressiona com o dedo polegar. 1º Quebrando em várias partes: é Silte. 2º Não conseguindo quebrar: é Argila. Obs: Esse ensaio são 2 testes. Resposta: Silte

6º Teste: Mobilidade da água Intersticial (Sheik Teste). Da amostra passada na peneira 10 (2,00mm), faça uma bolinha do tamanho de uma bolita, coloca na palma da mão e faz um tipo de concha e coloca umas 3 gotas de água e com a outra mão dá um leve toque batendo com a outra mão para que a bolinha da amostra esteja embebida e aparece o brilho total, pegue a amostra com o dedo polegar e o indicador, faça uma leve compressão, caso a água (Brilho) desaparecer rápida é Areia, e continuandopressionando um pouco mais forte e demorar um pouco mais é Argila. Obs: Esse teste tem 2 classificações: Areia ou Argila. Resposta: Argila.

OBS: ESSA AMOSTRA ENSAIADA FOI CLASSIFICADA EM ARGILA SILTE ARENOSO – COR AMARELADO , HOUVE: 3 ARGILAS, 2 SILTE E UMA AREIA.