apostila de laboratorio de eletronica analogica - completa

204

Click here to load reader

Upload: andrecc2010

Post on 06-Feb-2016

131 views

Category:

Documents


57 download

DESCRIPTION

eletronica para laboratorio

TRANSCRIPT

Page 1: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Curso Técnico em Mecatrônica Disciplina de Eletrônica Analógica

Apostila de Laboratório de Eletrônica Analógica Prof. Marcelo do C.C. Gaiotto.

Aluno:________________________________________ Turno:_____________

Page 2: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

2

EXPERIÊNCIA 1 Objetivos:

Conhecer os equipamentos utilizados para efetuar as práticas; Iniciar as práticas em circuitos com diodo retificador e diodo zener. Comprovar o funcionamento dos diodos na 1 e 2 aproximações.

Tempo de Execução: ____ aulas Desenvolvimento Equipamentos e materiais necessários:

3 - diodos 1N4007 – por aluno; 1 - diodo Zener de 5V1/500mW – por aluno; 10 - resistores de 1K de 1/8W; 1 - potenciometro de 10K – por aluno; 1 - placa de montagem com pontes de terminais para cada aluno; 2 - multímetro analógico ou digital; 2 - ferro de solda; 1 - Fonte Analógica Tektronix; * - Solda; 2 - suporte para ferro de solda; * - Cabos banana-banana e banana- garra;

1) Para cada um dos circuitos (1, 2, 3, 4, 5, 6, 7 e 8), calcule as correntes e

tensões nos resistores com os diodos em 1 e 2 aproximações. 2) Somente após o cálculo monte os circuitos na placa de pontes de terminais;

3) Realize as medidas de tensão sobre os resistores e os diodos, também e nos

pontos indicados para cada circuito procurando preencher com cuidado a sua tabela.(Ex: VAB)

4) Monte e identifique quais são as funções Lógicas dos circuitos 9 e 10.

Relatório: Fazer relatório detalhado (1 por Aluno) mostrando todas as características e conclusões observadas nesta experiência, entregando-o na data estabelecida.

Page 3: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

3

Desenvolvimento do Circuito 1 – Cálculos Tabela do Circuito 1

Valor de Tensão

Calculado em 2

Aproximação (V)

Valor de Corrente Calculada

em 2 Aproximação

(A)

Valor de

Tensão Medida

(V)

Valor de Corrente Medida

(A)

R1 D1

Page 4: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

4

Desenvolvimento do Circuito 2 – Cálculos Tabela do Circuito 2

Valor de Tensão

Calculado em 2

Aproximação (V)

Valor de Corrente Calculada

em 2 Aproximação

(A)

Valor de

Tensão Medida

(V)

Valor de Corrente Medida

(A)

R1 D1

Page 5: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

5

Desenvolvimento do Circuito 3 – Cálculos Tabela do Circuito 3

Valor de Tensão

Calculado em 2

Aproximação (V)

Valor de Corrente Calculada

em 2 Aproximação

(A)

Valor de

Tensão Medida

(V)

Valor de Corrente Medida

(A)

R1 R2 R3 D1

Page 6: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

6

Desenvolvimento do Circuito 4 – Cálculos Tabela do Circuito 4

Valor de Tensão

Calculado em 2

Aproximação (V)

Valor de Corrente Calculada

em 2 Aproximação

(A)

Valor de

Tensão Medida

(V)

Valor de Corrente Medida

(A)

R1 R2 R3 D1

Page 7: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

7

Desenvolvimento do Circuito 5 – Cálculos Tabela do Circuito 5

Valor de Tensão

Calculado em 2

Aproximação (V)

Valor de Corrente Calculada

em 2 Aproximação

(A)

Valor de

Tensão Medida

(V)

Valor de Corrente Medida

(A)

R1 R2 R3 D1 D2 D3 VAB

Page 8: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

8

Desenvolvimento do Circuito 6 – Cálculos Tabela do Circuito 6

Valor de Tensão

Calculado em 2

Aproximação (V)

Valor de Corrente Calculada

em 2 Aproximação

(A)

Valor de

Tensão Medida

(V)

Valor de Corrente Medida

(A)

R1 D1 Com a fonte em 0V, Observe o que acontece quando você aumenta a tensão em passos de 0,5V até o valor máximo de 10V. Anote suas observações!

Page 9: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

9

Desenvolvimento do Circuito 7 – Cálculos Tabela do Circuito 7

Valor de Tensão

Calculado em 2

Aproximação (V)

Valor de Corrente Calculada

em 2 Aproximação

(A)

Valor de

Tensão Medida

(V)

Valor de Corrente Medida

(A)

R1 D1 Com a fonte em 0V, Observe o que acontece quando você aumenta a tensão em passos de 0,5V até o valor máximo de 10V. Anote suas observações!

Page 10: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

10

Desenvolvimento do Circuito 8 – Cálculos Tabela do Circuito 8

Valor de Tensão

Calculado em 2

Aproximação (V)

Valor de Corrente Calculada

em 2 Aproximação

(A)

Valor de

Tensão Medida

(V)

Valor de Corrente Medida

(A)

R1 D1

Observe o que acontece quando você varia o potenciômetro. Anote suas observações!

Page 11: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

11

Circuito 9

Coloque as combinações Binárias e observe o que acontece na saída. Anote suas observações!

Circuito 10

Coloque as combinações Binárias e observe o que acontece na saída. Anote suas observações!

A B Saída

A B Saída

Page 12: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

12

Protocolo de recebimento de Relatório – esta parte fica no caderno de Laboratório Relatório Recebido em : ______/______/______

Aluno:___________________________________________________ Turno: _____________ Professor:________________________________________________ Cortar aqui - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Esta parte deve ser anexada no relatório.

Aluno:___________________________________________________ Turno: _____________ Relatório Recebido em : ______/______/______

1. Circuito 1: ____________________________________________ Visto:_______ 2. Circuito 2: ____________________________________________ Visto:_______ 3. Circuito 3: ____________________________________________ Visto:_______ 4. Circuito 4: ____________________________________________ Visto:_______ 5. Circuito 5: ____________________________________________ Visto:_______ 6. Circuito 6: ____________________________________________ Visto:_______ 7. Circuito 7: ____________________________________________ Visto:_______ 8. Circuito 8: ____________________________________________ Visto:_______ 9. Circuito 9: ____________________________________________ Visto:_______ 10. Circuito 10:____________________________________________Visto:_______

Page 13: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

13

EXPERIÊNCIA 2

Objetivos:

Conhecer os equipamentos utilizados para efetuar as práticas; Iniciar as práticas de retificadores. Comprovar o funcionamento dos retificadores com e sem filtros

capacitivos. Tempo de Execução: ____ aulas

Desenvolvimento Equipamentos e materiais necessários:

1 - transformador de 12V+12V ou 9V+9V; 1 - osciloscópio analógico; 1 - placa de montagem com pontes de terminais; (de cada equipe) 1 - multímetro digital MINIPA; 1 - suporte para ferro de solda; * - Cabos banana-banana e banana- garra;

1) Medir as formas de onda da saída de calibração do osciloscópio,

apresentando os ajustes de Volts/Div. dos canais 1 e 2, Time/Div. E ajustes das pontas de prova. Apresente ainda a freqüência e a tensão pico-a-pico.

2) Medir e apresentar as formas de onda do secundário do transformador

apresentando os valores para: Freqüência, Período, Tensão pico a pico, e tensão RMS.

3) Implementar um circuito retificador de meia onda, anotando as formas de onda

de entrada, saída e seus valores de pico;

4) Testar o circuito montado anteriormente com capacitores eletrolíticos de 10, 100, e 1000uF, e anotar as formas de onda da tensão de saída;

5) Implementar um circuito retificador de onda completa com 2 diodos, anotando

as formas de onda de entrada, saída e seus valores de pico;

6) Testar o circuito montado anteriormente com capacitores eletrolíticos de 10, 100, e 1000uF, e anotar as formas de onda da tensão de saída;

7) Implementar um circuito retificador de onda completa em Ponte (4 diodos),

anotando as formas de onda de entrada, saída e seus valores de pico;

8) Testar o circuito montado anteriormente com capacitores eletrolíticos de 10, 100, e 1000uF, e anotar as formas de onda da tensão de saída;

*obs: utilizar um resistor de carga para os retificadores de 1K.

Relatório: Fazer relatório detalhado (1 por Aluno) mostrando todas as características e conclusões observadas nesta experiência, entregando-o na data estabelecida.

Page 14: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

14

Projeto ponto de calibração do osciloscópio: ____________ Visto Projeto:___________ Escala Volts/DIV Canal1:____________Ponta de Prova:_____ Canal2:____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 15: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

15

Projeto transformador e osciloscópio Visto Projeto:___________ Escala Volts/DIV Canal1:____________Ponta de Prova:_____ Canal2:____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 16: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

16

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:____________Ponta de Prova:_____ Canal2:____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 17: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

17

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 18: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

18

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 19: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

19

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 20: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

20

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 21: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

21

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 22: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

22

Protocolo de recebimento de Relatório – esta parte fica no caderno de Laboratório Relatório Recebido em : ______/______/______

Aluno:___________________________________________________ Turno: _____________ Professor:________________________________________________ Cortar aqui - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Esta parte deve ser anexada no relatório.

Aluno:___________________________________________________ Turno: _____________ Relatório Recebido em : ______/______/______

1. Projeto:_______________________________________________Visto:_______ 2. Projeto:_______________________________________________Visto:_______ 3. Projeto:_______________________________________________Visto:_______ 4. Projeto:_______________________________________________Visto:_______ 5. Projeto:_______________________________________________Visto:_______ 6. Projeto:_______________________________________________Visto:_______ 7. Projeto:_______________________________________________Visto:_______ 8. Projeto:_______________________________________________Visto:_______

Page 23: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

23

EXPERIÊNCIA 3

Objetivos:

Aprender como interpretar os dados da especificação técnica do fabricante;

Conhecer os equipamentos utilizados para efetuar as práticas; Comprovar o funcionamento dos ceifadores polarizados.

Tempo de Execução: ____ aulas

Desenvolvimento Equipamentos e materiais necessários:

1 – Gerador de Funções; 1 – Fonte Analógica Tektronix; 2 – Pontas de prova para osciloscópio; 1 – Osciloscópio analógico; 2 – Diodos de sinal 1N4148 1 – Resistor de 1K 1 – Placa de montagem com pontes de terminais; (de cada equipe) 1 – Multímetro digital MINIPA; 1 – Suporte para ferro de solda; * - Cabos banana-banana e banana- garra;

1. Implemente o seguinte circuito Ceifador polarizado.

Siga o seguinte procedimento para o circuito acima: 1. Ajuste o canal 1 do osciloscópio em AC; 2. Ajuste o canal 2 do osciloscópio em DC; 3. Selecione a forma de onda do gerador como Senoidal; 4. Conecte o gerador de funções no canal 1 do osciloscópio e ajuste a

freqüência para 1KHz; 5. Agora, ajuste a amplitude do gerador para fornecer 15Volts de pico-a-pico; 6. Conecte o gerador de funções na entrada do circuito indicada como Vi

juntamente com o canal 1 do osciloscópio (respeite a indicação de + e - ); 7. Conecte o canal 2 do osciloscópio na saída do circuito indicada como Vo; 8. Explicar teoricamente o funcionamento para justificar os resultados de saída; 9. Troque a forma de onda para Triangular; 10. Explicar teoricamente o funcionamento para justificar os resultados de saída; 11. Troque a forma de onda para quadrada; 12. Explicar teoricamente o funcionamento para justificar os resultados de saída; 13. Inverta a polaridade da fonte V1 e realize novamente os itens 1 – 6 – 7 – 8 – 9

– 10, para este novo circuito.

Page 24: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

24

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 25: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

25

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 26: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

26

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 27: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

27

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 28: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

28

Protocolo de recebimento de Relatório – esta parte fica no caderno de Laboratório Relatório Recebido em : ______/______/______

Aluno:___________________________________________________ Turno: _____________ Professor:________________________________________________ Cortar aqui - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Esta parte deve ser anexada no relatório.

Aluno:___________________________________________________ Turno: _____________ Relatório Recebido em : ______/______/______

1) Projeto:_______________________________________________ Visto:_______

2) Projeto:_______________________________________________ Visto:_______

3) Projeto:_______________________________________________ Visto:_______

4) Projeto:_______________________________________________ Visto:_______

5) Projeto:_______________________________________________ Visto:_______

6) Projeto:_______________________________________________ Visto:_______

Page 29: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

29

EXPERIÊNCIA 4

Objetivos:

Aprender como interpretar os dados da especificação técnica do fabricante;

Conhecer os equipamentos utilizados para efetuar as práticas; Comprovar o funcionamento dos Grampeadores e Multiplicadores.

Tempo de Execução: ____ aulas

Desenvolvimento Equipamentos e materiais necessários:

1 – Osciloscópio analógico; 2 – Pontas de prova para osciloscópio; 2 – Diodos 1N4004 ou 1N4007 2 – Capacitores eletrolíticos de 1000uF/25V ou maior 1 – Resistor de 1K 1 – Placa de montagem com pontes de terminais; (de cada equipe) 1 – Suporte para ferro de solda; * - Cabos banana-banana e banana- garra;

1. Implemente o seguinte circuito Grampeador.

Siga o seguinte procedimento para o circuito acima: 1. Ajuste o canal 1 do osciloscópio em AC; 2. Ajuste o canal 2 do osciloscópio em DC; 3. Conecte o canal 1 do osciloscópio na saída do transformador que está sendo

utilizada e o canal 2 na saída do circuito indicada como Vout; 4. Explique teoricamente o funcionamento para justificar os resultados de saída,

identificando qual é o tipo de grampeador (positivo ou negativo);

Page 30: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

30

2. Implemente o seguinte circuito Multiplicador:

Siga o seguinte procedimento para o circuito acima: 1. Ajuste o canal 1 do osciloscópio em DC – cuidado só utilize o canal 1 – ; 2. Conecte o canal 1 do osciloscópio na saída do circuito indicada como Vout; 3. Explique teoricamente o funcionamento para justificar os resultados de saída,

identificando qual é o tipo de multiplicador (meia onda ou onda completa); Relatório: Fazer relatório detalhado (1 por Aluno) mostrando todas as características e conclusões observadas nesta experiência, entregando-o na data estabelecida.

Page 31: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

31

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações

Page 32: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

32

Protocolo de recebimento de Relatório – esta parte fica no caderno de Laboratório Relatório Recebido em : ______/______/______

Aluno:___________________________________________________ Turno: _____________ Professor:________________________________________________ Cortar aqui - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Esta parte deve ser anexada no relatório.

Aluno:___________________________________________________ Turno: _____________ Relatório Recebido em : ______/______/______

1) Projeto:_______________________________________________ Visto:_______

2) Projeto:_______________________________________________ Visto:_______

Page 33: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

33

EXPERIÊNCIA 5 Objetivos:

Aprender como interpretar os dados da especificação técnica do fabricante;

Conhecer os equipamentos utilizados para efetuar as práticas; Iniciar o trabalho com transistores como chave.

Tempo de Execução: ____ aulas Desenvolvimento Equipamentos e materiais necessários:

1 – Fonte Analógica; 1 – Multímetro; 1 – Placa de Pontes de Terminais da EQUIPE; * - Resistores diversos e demais componentes da EQUIPE; * - Cabos banana jacaré da EQUIPE.

1) Considerando o circuito abaixo, calcule e realize as medidas pedidas:

a) Medir o ganho do transistor no multímetro (hFE = beta) e anotar o valo na tabela;

b) Para efeito de cálculo considerar VBE = 0,7V e VBB = Vi (podendo ser 0V e 5V);

c) Calcular a corrente IC e IB através das formulas:

IBIC

=β e RbVBEVBBIB −

= ;

d) Com o ponto Vi em 5V: medir as tensões VBE e VCE; e) Com o ponto Vi em GND: medir as tensões VBE e VCE; f) Com o ponto Vi em 5V: medir as correntes de base (IB) e do coletor (IC); g) Com o ponto Vi em GND: medir as correntes de base (IB) e do coletor (IC); h) Comparar com as correntes e tensões teóricas calculadas respectivamente

e anotar as conclusões justificando-as;

Page 34: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

34

2) Considerando o circuito abaixo, calcule e realize as medidas pedidas:

Figura: acionamento direto do relé.

a) Medir a corrente de acionamento do Relé para acionamento direto; b) Utilizar o valor do ganho do transistor (hFE = beta) da experiência anterior; c) Para efeitos de cálculo da polarização, considerar VBE = 0,7V e VBB =

12V; d) Calcular a corrente IC e IB através das formulas:

IBIC

=β e RbVBEVBBIB −

= ;

e) Implementar o circuito de acionamento com transistor;

Acionamento com transistor

f) Com o ponto Vin em 12V: medir as tensões VBE e VCE; g) Com o ponto Vin em GND: medir as tensões VBE e VCE; h) Com o ponto Vin em 12V: medir as correntes de base (IB) e do coletor (IC); i) Com o ponto Vin em GND: medir as correntes de base (IB) e do coletor

(IC); j) Comparar com as correntes e tensões teóricas calculadas respectivamente

e anotar as conclusões justificando-as; Relatório: Fazer relatório detalhado (1 por aluno) mostrando todas as características e conclusões observadas nesta experiência, entregando-o na data estabelecida para esta turma.

Page 35: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

35

Desenvolvimento do Circuito – Cálculos Tabela do Circuito

Ganho do transistor Bc = Vin = 12V Vi = GND

IC calculado IB calculado IC medido IB medido

VCE medido VBE medido

Observações

Page 36: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

36

Protocolo de recebimento de Relatório – esta parte fica no caderno de Laboratório Relatório Recebido em : ______/______/______

Aluno:___________________________________________________ Turno: _____________ Professor:________________________________________________ Cortar aqui - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Esta parte deve ser anexada no relatório.

Aluno:___________________________________________________ Turno: _____________ Relatório Recebido em : ______/______/______

1) Projeto:_______________________________________________ Visto:_______ 2) Projeto:_______________________________________________ Visto:_______

Page 37: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

37

EXPERIÊNCIA 6 Objetivos:

Aprender como interpretar os dados da especificação técnica do fabricante;

Conhecer os equipamentos utilizados para efetuar as práticas; Iniciar o trabalho com transistores como AMPLIFICADORES

Tempo de Execução: ____ aulas Desenvolvimento: Equipamentos e materiais necessários:

1 – Fonte Analógica; 1 – Osciloscópio Digital; 2 – Pontas de prova para osciloscópio; 1 – Multímetros; 1 – Placa de Pontes de Terminais da EQUIPE; • Cabos banana jacaré da EQUIPE; • Componentes diversos da EQUIPE.

1) Considerando o circuito a seguir, calcule os resistores de polarização e realize as medidas pedidas com os seguintes dados: iB = 250µA, VCC = 12V e VBB = 2V. Utilize as formulas propostas para realização dos cálculos.

a) Com o circuito alimentado corretamente e sem conectar o gerador de

funções e o osciloscópio, medir a corrente IC; b) Conecte o canal 1 do osciloscópio no gerador de funções e ajuste a

freqüência para 1KHz, com forma de onda senoidal; c) Conecte o gerador de funções juntamente com o canal 1 do

osciloscópio à entrada do circuito (Vin) com seu ajuste de amplitude em ZERO;

d) Conecte o canal 2 do osciloscópio na saída do circuito indicada como Vout.

e) Comece a aumentar a amplitude do gerador até obter o melhor sinal de saída amplificado, e sem distorção;

f) Anotar os valores corretos de amplitude encontrados; g) Desenhar a forma de onda do canal 1 (Vin) e canal 2 (Vout) do

osciloscópio (entrada e saída respectivamente); h) Mantendo o valor da amplitude encontrado, aumente gradativamente a

freqüência no gerador de funções até obter uma redução do ganho de saída do amplificador em 70,7% do valor máximo obtido no item f;

Relatório:

Fazer relatório detalhado (1 por aluno) mostrando todas as características e conclusões observadas nesta experiência, entregando-o na data estabelecida para esta turma.

Page 38: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

38

Circuito de polarização por divisor de tensão na base

Desenvolvimento do Circuito – Cálculos

Ω=Ω=

=

+=

+=

kRkR

RVI

RRRV

RRRRR

E

L

B

BBB

BB

B

13,3

1221

2

21

21

Observações dos cálculos

Page 39: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

39

Projeto:_________________________________________________ Visto Projeto:___________ Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Escala Volts/DIV Canal1:_____________Ponta de Prova:_____ Canal2:_____________Ponta de Prova:_____ Escala Time/DIV TIME/DIV:_____________

Observações das medidas

Page 40: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

40

Protocolo de recebimento de Relatório – esta parte fica no caderno de Laboratório Relatório Recebido em : ______/______/______

Aluno:___________________________________________________ Turno: _____________ Professor:________________________________________________ Cortar aqui - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Esta parte deve ser anexada no relatório.

Aluno:___________________________________________________ Turno: _____________ Relatório Recebido em : ______/______/______

1) Projeto:_______________________________________________ Visto:_______

Page 41: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

41

ANEXO – Material de apoio

Page 42: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

43

PROJETO DA FONTE REGULADA VERSÃO 2

FONTEC

Curso Técnico em Mecatrônica Disciplina de Eletrônica Analógica

Prof. Marcelo do C. C. Gaiotto

Page 43: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

44

Funcionamento

O primeiro passo para construção de uma fonte de alimentação é saber qual a tensão de saída que se deseja ter. Neste projeto de fonte possuímos 2 tensões, 1 regulada e uma fixa de 5V/1A. A tensão regulada será aborda mais à frente.

Como a rede elétrica possui sua tensão eficaz muito mais alta que a grande maioria dos equipamentos eletrônicos opera, necessitamos de um componente que reduza este valor de tensão alternada. Como estamos considerando uma fonte de alimentação linear utilizaremos um transformador, para realizar este serviço. O Diagrama em blocos da figura 1 representa esta seqüência.

Figura 1. Diagrama de blocos de acoplamento com transformador.

Toda fonte de alimentação de corrente contínua possui um bloco de

retificação. A configuração utilizada no bloco retificador é do tipo retificador de onda completa com dois diodos (D1 e D2). Este é responsável em tornar a tensão alternada entregue pelo transformador em contínua, ou seja, elimina a mudança de polaridade da tensão. Vejamos agora como fica esta alteração no diagrama da figura 2.

Figura 2. Diagrama de blocos da etapa de retificadores.

Embora a tensão de saída do retificador seja contínua, ela ainda é pulsada,

ou seja, muda de zero até o valor máximo. Para que esta oscilação (RIPPLE) não prejudique o funcionamento nem os componentes de um circuito que possa ser conectado nesta fonte devemos inserir uma nova etapa, a etapa de filtragem, que será composta pelo capacitor eletrolítico (C1). O novo diagrama de blocos está apresentado na figura 3.

Figura 3. Diagrama de blocos com a etapa de filtragem.

Page 44: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

45

Este projeto possui ainda capacitores cerâmicos adicionados ao circuito para aumentar o coeficiente de filtragem.

Até este ponto não temos novidades e dificuldades quanto à configuração e funcionamento. Para possibilitar a variação da tensão de saída de forma regulada e controlada utilizamos uma etapa reguladora, como por exemplo, a do diagrama em blocos da figura 4.

Figura 4. Diagrama de blocos da etapa de Regulagem.

O circuito regulador de tensão utilizado para desempenhar esta função é o

LM317. Este possibilita o acionamento de uma carga com consumo de até 1,5A em sua saída. Repare que a saída do regulador possui um capacitor eletrolítico, possibilitando uma segunda filtragem, tornando nossa saída mais estável. O diagrama em blocos da parte regulada da fonte é apresentado na figura 5.

Figura 5. Diagrama em blocos da parte regulada da fonte.

O circuito básico de configuração do regulador utilizado foi extraído das folhas

de dados dos fabricantes que estão em anexo neste manual. A fonte fixa é composta por outro regulador de tensão LM317, porém com

seus resistores de ajuste fixos para que a tensão em sua saída seja de 5V, e também um capacitor eletrolítico após o regulador, possibilitando uma segunda filtragem, tornando nossa saída mais estável, como é desejável para qualquer circuito de alimentação para circuitos digitais da família TTL.

1. Procedimentos para cálculos dos resistores das fontes reguladas

Podemos alterar as características de nossa fonte se calcularmos os valores dos resistores que realizam a configuração do regulador, utilizando a seguinte fórmula fornecida pelo fabricante:

)2*()1

1(* PIADJRPotVrefVout ++=

Page 45: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

46

Onde: Vo- tensão de saída ; Iadj – corrente de ajuste. POT – Valor do potenciômetro utilizado. Através deste cálculo, podemos alterar o valor de tensão máximo que o

regulador apresentará em sua saída. Este procedimento deve ser realizado com bastante cuidado e atenção, pois serão necessárias alterações de componentes do circuito como:

• Adequar os Capacitores eletrolíticos – tensão de operação; • Transformador – tensão e corrente de saída para o valor que se

deseja trabalhar, levando em consideração as quedas de tensão dos componentes envolvidos (***calcular o transformador***)

• Fusível – redimensionar o fusível para o novo circuito; • Re-projetar placa se for necessário;

Esquema elétrico da fonte da FonTec V2.

Page 46: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

47

Esquema de ligação do fusível, da chave de seleção de tensão, da chave

liga/desliga ao transformador e a rede elétrica.

Placa de Circuito impresso da fonte de tensão vista dos componentes, não invertida e fora da medida real.

Placa de Circuito impresso da fonte de tensão vista dos componentes com as trilhas, não invertida e fora da medida real.

Page 47: Apostila de Laboratorio de Eletronica Analogica - Completa
Page 48: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

49

Exemplo de Caixa de montagem Patola PB209 e PB211.

Exemplo de disposição dos itens do painel frontal. (não está em tamanho real é apenas um exemplo)

Exemplo de disposição dos itens do painel traseiro. (não está em tamanho real é apenas um exemplo)

Page 49: Apostila de Laboratorio de Eletronica Analogica - Completa

Centro de Educação Profissional Irmão Mário Cristóvão Laboratório de Eletrônica Analógica

50

Lista de componentes da Fonte Regulada FONTEC V2

Loja:_______________________________ Fone:____________________ Atendente:___________________________________ QTD DESCRIÇÃO DOS COMPONENTES E MATERIAIS Preço

unitário R$ 1 Transformador de 110V/220V de primário, 15V+15V / 1A à 2A 1 placa de fenolite face simples de 50x100 (mm) 2 LM317 2 Capacitores cerâmicos de 100nF 2 diodos retificadores 1N5404 2 diodos retificadores 1N4004 1 chave HH com marcação 110/200V 1 chave de alavanca 3 contatos e duas posições 1 capacitor eletrolítico de 2200uF/50V 2 capacitor eletrolítico de 2200uF/25V 1 borne para painel vermelho 1 borne para painel preto 1 borne para painel amarelo 1 porta fusível para painel pequeno 1 fusível de 500mA pequeno 1 rabicho para alimentação 1 Knob 1 potenciômetro de 4K7 ou 5K 5 pés de borracha pequenos para colar 2 dissipadores DM830 ½ metro de fio Preto 22 ½ metro de fio vermelho 22 1 led vermelho 5mm 1 Suporte para led de 5mm para painel 1 caixa para montagem patola PB209 ou PB 211 preta 1 resistor de 1K 2 resistor de 270R 1 resistor de 680R 2 resistor de 120R 8 Parafusos M3x10 cabeça cônica

18 Porcas para parafuso M3 6 Arruelas para parafuso M3

Total dos componentes

Page 50: Apostila de Laboratorio de Eletronica Analogica - Completa

Semiconductor Components Industries, LLC, 2001

March, 2001 – Rev. 71 Publication Order Number:

1N4001/D

1N4001, 1N4002, 1N4003,1N4004, 1N4005, 1N4006,1N4007

1N4004 and 1N4007 are Preferred Devices

Axial Lead StandardRecovery Rectifiers

This data sheet provides information on subminiature size, axiallead mounted rectifiers for general–purpose low–power applications.

Mechanical Characteristics• Case: Epoxy, Molded

• Weight: 0.4 gram (approximately)

• Finish: All External Surfaces Corrosion Resistant and TerminalLeads are Readily Solderable

• Lead and Mounting Surface Temperature for Soldering Purposes:220°C Max. for 10 Seconds, 1/16″ from case

• Shipped in plastic bags, 1000 per bag.

• Available Tape and Reeled, 5000 per reel, by adding a “RL” suffix tothe part number

• Available in Fan–Fold Packaging, 3000 per box, by adding a “FF”suffix to the part number

• Polarity: Cathode Indicated by Polarity Band

• Marking: 1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006,1N4007

MAXIMUM RATINGS

Rating Symbol 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 Unit

*Peak Repetitive Reverse VoltageWorking Peak Reverse VoltageDC Blocking Voltage

VRRMVRWM

VR

50 100 200 400 600 800 1000 Volts

*Non–Repetitive Peak Reverse Voltage(halfwave, single phase, 60 Hz)

VRSM 60 120 240 480 720 1000 1200 Volts

*RMS Reverse Voltage VR(RMS) 35 70 140 280 420 560 700 Volts

*Average Rectified Forward Current(single phase, resistive load,60 Hz, TA = 75°C)

IO 1.0 Amp

*Non–Repetitive Peak Surge Current(surge applied at rated loadconditions)

IFSM 30 (for 1 cycle) Amp

Operating and Storage JunctionTemperature Range

TJTstg

–65 to +175 °C

*Indicates JEDEC Registered Data

http://onsemi.com

CASE 59–03AXIAL LEAD

PLASTIC

LEAD MOUNTED RECTIFIERS50–1000 VOLTS

DIFFUSED JUNCTION

Preferred devices are recommended choices for future useand best overall value.

MARKING DIAGRAM

See detailed ordering and shipping information on page 2 ofthis data sheet.

ORDERING INFORMATION

AL = Assembly Location1N400x = Device Numberx = 1, 2, 3, 4, 5, 6 or 7YY = YearWW = Work Week

AL1N400xYYWW

Page 51: Apostila de Laboratorio de Eletronica Analogica - Completa

1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007

http://onsemi.com2

ELECTRICAL CHARACTERISTICS*

Rating Symbol Typ Max Unit

Maximum Instantaneous Forward Voltage Drop(iF = 1.0 Amp, TJ = 25°C)

vF 0.93 1.1 Volts

Maximum Full–Cycle Average Forward Voltage Drop(IO = 1.0 Amp, TL = 75°C, 1 inch leads)

VF(AV) – 0.8 Volts

Maximum Reverse Current (rated dc voltage)(TJ = 25°C)(TJ = 100°C)

IR0.051.0

1050

µA

Maximum Full–Cycle Average Reverse Current(IO = 1.0 Amp, TL = 75°C, 1 inch leads)

IR(AV) – 30 µA

*Indicates JEDEC Registered Data

ORDERING & SHIPPING INFORMATION

Device Package Shipping

1N4001 Axial Lead 1000 Units/Bag

1N4001FF Axial Lead 3000 Units/Box

1N4001RL Axial Lead 5000/Tape & Reel

1N4002 Axial Lead 1000 Units/Bag

1N4002FF Axial Lead 3000 Units/Box

1N4002RL Axial Lead 5000/Tape & Reel

1N4003 Axial Lead 1000 Units/Bag

1N4003FF Axial Lead 3000 Units/Box

1N4003RL Axial Lead 5000/Tape & Reel

1N4004 Axial Lead 1000 Units/Bag

1N4004FF Axial Lead 3000 Units/Box

1N4004RL Axial Lead 5000/Tape & Reel

1N4005 Axial Lead 1000 Units/Bag

1N4005FF Axial Lead 3000 Units/Box

1N4005RL Axial Lead 5000/Tape & Reel

1N4006 Axial Lead 1000 Units/Bag

1N4006FF Axial Lead 3000 Units/Box

1N4006RL Axial Lead 5000/Tape & Reel

1N4007 Axial Lead 1000 Units/Bag

1N4007FF Axial Lead 3000 Units/Box

1N4007RL Axial Lead 5000/Tape & Reel

Page 52: Apostila de Laboratorio de Eletronica Analogica - Completa

1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007

http://onsemi.com3

PACKAGE DIMENSIONS

AXIAL LEADCASE 59–03

ISSUE M

B

DK

KF

F

A

DIM MIN MAX MIN MAX

INCHESMILLIMETERS

A 4.07 5.20 0.160 0.205

B 2.04 2.71 0.080 0.107

D 0.71 0.86 0.028 0.034

F --- 1.27 --- 0.050

K 27.94 --- 1.100 ---

NOTES:

1. ALL RULES AND NOTES ASSOCIATED WITH

JEDEC DO-41 OUTLINE SHALL APPLY.

2. POLARITY DENOTED BY CATHODE BAND.

3. LEAD DIAMETER NOT CONTROLLED WITHIN F

DIMENSION.

Page 53: Apostila de Laboratorio de Eletronica Analogica - Completa

1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007

http://onsemi.com4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changeswithout further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particularpurpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/orspecifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must bevalidated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applicationsintended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury ordeath may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and holdSCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonableattorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claimalleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATIONCENTRAL/SOUTH AMERICA:Spanish Phone : 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)

Email : ONlit–[email protected]–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC : LDC for ON Semiconductor – Asia SupportPhone : 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:001–800–4422–3781

Email : ONlit–[email protected]

JAPAN : ON Semiconductor, Japan Customer Focus Center4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031Phone : 81–3–5740–2700Email : [email protected]

ON Semiconductor Website : http://onsemi.com

For additional information, please contact your localSales Representative.

1N4001/D

NORTH AMERICA Literature Fulfillment :Literature Distribution Center for ON SemiconductorP.O. Box 5163, Denver, Colorado 80217 USAPhone : 303–675–2175 or 800–344–3860 Toll Free USA/CanadaFax: 303–675–2176 or 800–344–3867 Toll Free USA/CanadaEmail : [email protected] Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support : 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European SupportGerman Phone : (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email : ONlit–[email protected] Phone : (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email : ONlit–[email protected] Phone : (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email : [email protected]

EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781*Available from Germany, France, Italy, UK, Ireland

Page 54: Apostila de Laboratorio de Eletronica Analogica - Completa

DS12019 Rev. B-2 1 of 2 1N4148 / 1N4448

Features

1N4148 / 1N4448FAST SWITCHING DIODE

Fast Switching Speed General Purpose Rectification Silicon Epitaxial Planar Construction

Characteristic Symbol 1N4148 1N4448 Unit

Non-Repetitive Peak Reverse Voltage VRM 100 V

Peak Repetitive Reverse VoltageWorking Peak Reverse VoltageDC Blocking Voltage

VRRMVRWM

VR

75 V

RMS Reverse Voltage VR(RMS) 53 V

Forward Continuous Current (Note 1) IFM 300 500 mA

Average Rectified Output Current (Note 1) IO 150 mA

Non-Repetitive Peak Forward Surge Current @ t = 1.0s@ t = 1.0s IFSM

1.02.0 A

Power Dissipation (Note 1)Derate Above 25C Pd

5001.68

mWmW/C

Thermal Resistance, Junction to Ambient Air (Note 1) RJA 300 K/W

Operating and Storage Temperature Range Tj , TSTG -65 to +175 C

Maximum Ratings @ TA = 25C unless otherwise specified

Notes: 1. Valid provided that device terminals are kept at ambient temperature.

Characteristic Symbol Min Max Unit Test Condition

Maximum Forward Voltage 1N41481N44481N4448

VFM

0.62

1.00.721.0

VIF = 10mAIF = 5.0mAIF = 100mA

Maximum Peak Reverse Current IRM

5.0503025

AAAnA

VR = 75VVR = 70V, Tj = 150CVR = 20V, Tj = 150CVR = 20V

Capacitance Cj 4.0 pF VR = 0, f = 1.0MHz

Reverse Recovery Time trr 4.0 ns IF = 10mA to IR =1.0mAVR = 6.0V, RL = 100

Electrical Characteristics @ TA = 25C unless otherwise specified

Features

Case: DO-35 Leads: Solderable per MIL-STD-202,

Method 208 Polarity: Cathode Band Marking: Type Number Weight: 0.13 grams (approx.)

Mechanical Data

A AB

CD

DO-35

Dim Min Max

A 25.40

B 4.00

C 0.60

D 2.00

All Dimensions in mm

Page 55: Apostila de Laboratorio de Eletronica Analogica - Completa

DS12019 Rev. B-2 2 of 2 1N4148 / 1N4448

1

10

100

1000

10,000

0 100 200

I,

LE

AK

AG

EC

UR

RE

NT

(nA

)R

T , JUNCTION TEMPERATURE ( C)

Fig. 2, Leakage Current vs Junction Temperaturej °

V = 20VR

10

1.0

100

1000

0.1

0.01

0 1 2

I,

INS

TA

NTA

NE

OU

SF

OR

WA

RD

CU

RR

EN

T(m

A)

F

V , INSTANTANEOUS FORWARD VOLTAGE (V)

Fig. 1 Forward CharacteristicsF

Page 56: Apostila de Laboratorio de Eletronica Analogica - Completa

BC

548 / BC

548A / B

C548B

/ BC

548CDiscrete POWER & Signal

Technologies

NPN General Purpose Amplifier

BC548BC548ABC548BBC548C

This device is designed for use as general purpose amplifiersand switches requiring collector currents to 300 mA. Sourced fromProcess 10. See PN100A for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:1) These ratings are based on a maximum junction temperature of 150 degrees C.2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol Parameter Value UnitsVCEO Collector-Emitter Voltage 30 V

VCES Collector-Base Voltage 30 V

VEBO Emitter-Base Voltage 5.0 V

IC Collector Current - Continuous 500 mA

TJ, Tstg Operating and Storage Junction Temperature Range -55 to +150 °C

Symbol Characteristic Max UnitsBC548 / A / B / C

PD Total Device DissipationDerate above 25°C

6255.0

mWmW/°C

RθJC Thermal Resistance, Junction to Case 83.3 °C/W

RθJA Thermal Resistance, Junction to Ambient 200 °C/W

EB C

TO-92

1997 Fairchild Semiconductor Corporation 548-ABC, Rev B

Page 57: Apostila de Laboratorio de Eletronica Analogica - Completa

BC

548 / BC

548A / B

C548B

/ BC

548CNPN General Purpose Amplifier

(continued)

Electrical Characteristics TA = 25°C unless otherwise noted

OFF CHARACTERISTICS

Symbol Parameter Test C onditions Min Max Units

V(BR)CEO Collector-Emitter Breakdown Voltage IC = 10 mA, IB = 0 30 V

V(BR)CBO Collector-Base Breakdown Voltage IC = 10 µA, IE = 0 30 V

V(BR)CES Collector-Base Breakdown Voltage IC = 10 µA, IE = 0 30 V

V(BR)EBO Emitter-Base Breakdown Voltage IE = 10 µA, IC = 0 5.0 V

ICBO Collector Cutoff Current VCB = 30 V, IE = 0VCB = 30 V, IE = 0, TA = +150 °C

155.0

nAµA

ON CHARACTERISTICShFE DC Current Gain VCE = 5.0 V, IC = 2.0 mA 548

548A 548B

548C

110110200420

800220450800

VCE(sat) Collector-Emitter Saturation Voltage IC = 10 mA, IB = 0.5 mAIC = 100 mA, IB = 5.0 mA

0.250.60

VV

VBE(on) Base-Emitter On Voltage VCE = 5.0 V, IC = 2.0 mAVCE = 5.0 V, IC = 10 mA

0.58 0.700.77

VV

SMALL SIGNAL CHARACTERISTICShfe Small-Signal Current Gain IC = 2.0 mA, VCE = 5.0 V,

f = 1.0 kHz125 900

NF Noise Figure VCE = 5.0 V, IC = 200 µA,RS = 2.0 kΩ, f = 1.0 kHz,BW = 200 Hz

10 dB

Page 58: Apostila de Laboratorio de Eletronica Analogica - Completa

©2002 Fairchild Semiconductor Corporation Rev. B1, August 2002

BC

327/328

PNP Epitaxial Silicon TransistorAbsolute Maximum Ratings Ta=25°C unless otherwise noted

Electrical Characteristics Ta=25°C unless otherwise noted

hFE Classification

Symbol Parameter Value UnitsVCES Collector-Emitter Voltage

: BC327 : BC328

-50-30

VV

VCEO Collector-Emitter Voltage: BC327 : BC328

-45-25

VV

VEBO Emitter-Base Voltage -5 VIC Collector Current (DC) -800 mAPC Collector Power Dissipation 625 mWTJ Junction Temperature 150 °CTSTG Storage Temperature -55 ~ 150 °C

Symbol Parameter Test Condition Min. Typ. Max. UnitsBVCEO Collector-Emitter Breakdown Voltage

: BC327 : BC328

IC= -10mA, IB=0-45-25

VV

BVCES Collector-Emitter Breakdown Voltage: BC327 : BC328

IC= -0.1mA, VBE=0-50-30

VV

BVEBO Emitter-Base Breakdown Voltage IE= -10µA, IC=0 -5 VICES Collector Cut-off Current

: BC327: BC328

VCE= -45V, VBE=0VCE= -25V, VBE=0

-2-2

-100-100

nAnA

hFE1hFE2

DC Current Gain

VCE= -1V, IC= -100mAVCE= -1V, IC= -300mA

100 40

630

VCE (sat) Collector-Emitter Saturation Voltage IC= -500mA, IB= -50mA -0.7 VVBE (on) Base-Emitter On Voltage VCE= -1V, IC= -300mA -1.2 VfT Current Gain Bandwidth Product VCE= -5V, IC= -10mA, f=20MHz 100 MHzCob Output Capacitance VCB= -10V, IE=0, f=1MHz 12 pF

Classification 16 25 40hFE1 100 ~ 250 160 ~ 400 250 ~ 630hFE2 60- 100- 170-

BC327/328

Switching and Amplifier Applications• Suitable for AF-Driver stages and low power output stages• Complement to BC337/BC338

1. Collector 2. Base 3. Emitter

TO-921

Page 59: Apostila de Laboratorio de Eletronica Analogica - Completa

©2002 Fairchild Semiconductor Corporation Rev. B1, August 2002

BC

327/328Typical Characteristics

Figure 1. Static Characteristic Figure 2. Static Characteristic

Figure 3. DC current Gain Figure 4. Base-Emitter Saturation VoltageCollector-Emitter Saturation Voltage

Figure 5. Base-Emitter On Voltage Figure 6. Gain Bandwidth Product

-1 -2 -3 -4 -5-0

-100

-200

-300

-400

-500

PT = 600mW

IB = - 3.0mA

IB = - 2.0mAIB = - 3.5mA

IB = - 1.0mA

IB = - 1.5mA

IB = - 0.5mA

IB = - 4.0mA

IB = - 2.5mA

IB = - 4.5mAIB = - 5.0mA

IB = 0

I C[m

A], C

OLL

ECTO

R C

UR

REN

T

VCE[V], COLLECTOR-EMITTER VOLTAGE

-10 -20 -30 -40 -50

-4

-8

-12

-16

-20

PT = 600mW

IB = - 80µA

IB = - 70µA

IB = - 60µA

IB = - 50µA

IB = - 40µA

IB = - 30µA

IB = - 20µA

IB = - 10µA

IB = 0

I C[m

A], C

OLL

ECTO

R C

UR

REN

T

VCE[V], COLLECTOR-EMITTER VOLTAGE

-0.1 -1 -10 -100 -10001

10

100

1000

PULSE

- 1.0V

VCE = - 2.0V

h FE,

DC

CU

RR

ENT

GAI

N

IC[mA], COLLECTOR CURRENT

-0.1 -1 -10 -100 -1000-0.01

-0.1

-1

-10

IC = 10 IB

PULSE

VCE(sat)

VBE(sat)

V B

E(sa

t), V

CE(

sat)[

V], S

ATU

RAT

ION

VO

LTAG

E

IC[mA], COLLECTOR CURRENT

-0.4 -0.5 -0.6 -0.7 -0.8 -0.9-0.1

-1

-10

-100

-1000

VCE = -1VPULSE

I C[m

A], C

OLL

EC

TOR

CU

RR

ENT

VBE[V], BASE-EMITTER VOLTAGE

-1 -10 -10010

100

1000

VCE = -5.0V

f T[M

Hz]

, GAI

N-B

AND

WID

TH P

RO

DU

CT

IC[mA], COLLECTOR CURRENT

Page 60: Apostila de Laboratorio de Eletronica Analogica - Completa

Package DimensionsB

C327/328

0.46 ±0.10

1.27TYP

(R2.29)

3.86

MA

X

[1.27 ±0.20]

1.27TYP

[1.27 ±0.20]

3.60 ±0.20

14.4

7 ±0

.40

1.02

±0.

10

(0.2

5)4.

58 ±

0.20

4.58+0.25–0.15

0.38+0.10–0.05

0.38

+0.1

0–0

.05

TO-92

Dimensions in Millimeters

©2002 Fairchild Semiconductor Corporation Rev. B1, August 2002

Page 61: Apostila de Laboratorio de Eletronica Analogica - Completa

©2002 Fairchild Semiconductor Corporation Rev. I1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is notintended to be an exhaustive list of all such trademarks.

DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANYPRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANYLIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTORCORPORATION.As used herein:1. Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body,or (b) support or sustain life, or (c) whose failure to performwhen properly used in accordance with instructions for useprovided in the labeling, can be reasonably expected toresult in significant injury to the user.

2. A critical component is any component of a life supportdevice or system whose failure to perform can bereasonably expected to cause the failure of the life supportdevice or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status Definition

Advance Information Formative or In Design

This datasheet contains the design specifications forproduct development. Specifications may change inany manner without notice.

Preliminary First Production This datasheet contains preliminary data, andsupplementary data will be published at a later date.Fairchild Semiconductor reserves the right to makechanges at any time without notice in order to improvedesign.

No Identification Needed Full Production This datasheet contains final specifications. FairchildSemiconductor reserves the right to make changes atany time without notice in order to improve design.

Obsolete Not In Production This datasheet contains specifications on a productthat has been discontinued by Fairchild semiconductor.The datasheet is printed for reference information only.

FACT™FACT Quiet series™FAST®

FASTr™FRFET™GlobalOptoisolator™GTO™HiSeC™I2C™

ImpliedDisconnect™ISOPLANAR™LittleFET™MicroFET™MicroPak™MICROWIRE™MSX™MSXPro™OCX™OCXPro™OPTOLOGIC®

OPTOPLANAR™

PACMAN™POP™Power247™PowerTrench®

QFET™QS™QT Optoelectronics™Quiet Series™RapidConfigure™RapidConnect™SILENT SWITCHER®

SMART START™

SPM™Stealth™SuperSOT™-3SuperSOT™-6SuperSOT™-8SyncFET™TinyLogic™TruTranslation™UHC™UltraFET®

VCX™

ACEx™ActiveArray™Bottomless™CoolFET™CROSSVOLT™DOME™EcoSPARK™E2CMOS™EnSigna™Across the board. Around the world.™The Power Franchise™Programmable Active Droop™

Page 62: Apostila de Laboratorio de Eletronica Analogica - Completa

MOTOROLASEMICONDUCTORTECHNICAL DATA

Motorola TVS/Zener Device Data6-97

500 mW DO-35 Glass Data Sheet

500 mW DO-35 GlassZener Voltage Regulator DiodesGENERAL DATA APPLICABLE TO ALL SERIES INTHIS GROUP

500 MilliwattHermetically SealedGlass Silicon Zener DiodesSpecification Features:• Complete Voltage Range — 1.8 to 200 Volts• DO-204AH Package — Smaller than Conventional DO-204AA Package• Double Slug Type Construction• Metallurgically Bonded Construction

Mechanical Characteristics:

CASE: Double slug type, hermetically sealed glassMAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16″ from

case for 10 secondsFINISH: All external surfaces are corrosion resistant with readily solderable leadsPOLARITY: Cathode indicated by color band. When operated in zener mode, cathode

will be positive with respect to anodeMOUNTING POSITION: AnyWAFER FAB LOCATION: Phoenix, ArizonaASSEMBLY/TEST LOCATION: Seoul, Korea

MAXIMUM RATINGS (Motorola Devices)*

Rating Symbol Value Unit

DC Power Dissipation and TL ≤ 75°CLead Length = 3/8″Derate above TL = 75°C

PD5004

mWmW/°C

Operating and Storage Temperature Range TJ, Tstg – 65 to +200 °C* Some part number series have lower JEDEC registered ratings.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

00 20 40 60 80 100 120 140 160 180 200

TL, LEAD TEMPERATURE (°C)

P D, M

AXIM

UM

PO

WER

DIS

SIPA

TIO

N (W

ATTS

)

Figure 1. Steady State Power Derating

HEATSINKS

3/8” 3/8”

GENERALDATA

CASE 299DO-204AH

GLASS

500 mWDO-35 GLASS

GLASS ZENER DIODES500 MILLIWATTS1.8–200 VOLTS

Page 63: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-98500 mW DO-35 Glass Data Sheet

APPLICATION NOTE — ZENER VOLTAGE

Since the actual voltage available from a given zener diodeis temperature dependent, it is necessary to determine junc-tion temperature under any set of operating conditions in orderto calculate its value. The following procedure is recom-mended:

Lead Temperature, TL, should be determined from:

TL = θLAPD + TA.

θLA is the lead-to-ambient thermal resistance (°C/W) and PD isthe power dissipation. The value for θLA will vary and dependson the device mounting method. θLA is generally 30 to 40°C/Wfor the various clips and tie points in common use and forprinted circuit board wiring.

The temperature of the lead can also be measured using athermocouple placed on the lead as close as possible to the tiepoint. The thermal mass connected to the tie point is normallylarge enough so that it will not significantly respond to heatsurges generated in the diode as a result of pulsed operationonce steady-state conditions are achieved. Using the mea-sured value of TL, the junction temperature may be deter-mined by:

TJ = TL + ∆TJL.

∆TJL is the increase in junction temperature above the leadtemperature and may be found from Figure 2 for dc power:

∆TJL = θJLPD.

For worst-case design, using expected limits of IZ, limits ofPD and the extremes of TJ(∆TJ) may be estimated. Changes involtage, VZ, can then be found from:

∆V = θVZTJ.

θVZ, the zener voltage temperature coefficient, is found fromFigures 4 and 5.

Under high power-pulse operation, the zener voltage willvary with time and may also be affected significantly by thezener resistance. For best regulation, keep current excursionsas low as possible.

Surge limitations are given in Figure 7. They are lower thanwould be expected by considering only junction temperature,as current crowding effects cause temperatures to be ex-tremely high in small spots, resulting in device degradationshould the limits of Figure 7 be exceeded.

L L

500

400

300

200

100

00 0.2 0.4 0.6 0.8 1

2.4–60 V

62–200 V

L, LEAD LENGTH TO HEAT SINK (INCH)JL, J

UN

CTI

ON

-TO

-LEA

D T

HER

MAL

RES

ISTA

NC

E (

C/W

°

Figure 2. Typical Thermal Resistance

TYPICAL LEAKAGE CURRENTAT 80% OF NOMINALBREAKDOWN VOLTAGE

+25°C

+125°C

100070005000

2000

1000700500

200

1007050

20

1075

2

10.70.5

0.2

0.10.070.05

0.02

0.010.0070.005

0.002

0.0013 4 5 6 7 8 9 10 11 12 13 14 15

VZ, NOMINAL ZENER VOLTAGE (VOLTS)

I, L

EAKA

GE

CU

RR

ENT

(A)µ

R

Figure 3. Typical Leakage Current

Page 64: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-99

500 mW DO-35 Glass Data Sheet

+12

+10

+8

+6

+4

+2

0

–2

–42 3 4 5 6 7 8 9 10 11 12

VZ, ZENER VOLTAGE (VOLTS)

Figure 4a. Range for Units to 12 Volts

VZ @ IZT(NOTE 2)

RANGE

TEMPERATURE COEFFICIENTS(–55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)

1007050

30

20

10

75

3

2

12 3 4 5 6 7 8 9 10 11 12 10 20 30 50 70 100

VZ, ZENER VOLTAGE (VOLTS)

Figure 4b. Range for Units 12 to 100 Volts

RANGE VZ @ IZ (NOTE 2)

120 130 140 150 160 170 180 190 200

200

180

160

140

120

100

VZ, ZENER VOLTAGE (VOLTS)

Figure 4c. Range for Units 120 to 200 Volts

VZ @ IZT(NOTE 2)

+6

+4

+2

0

–2

–43 4 5 6 7 8

VZ, ZENER VOLTAGE (VOLTS)

Figure 5. Effect of Zener Current

NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTSNOTE: CHANGES IN ZENER CURRENT DO NOTNOTE: AFFECT TEMPERATURE COEFFICIENTS

1 mA

0.01 mA

VZ @ IZTA = 25°C

1000

C, C

APAC

ITAN

CE

(pF)

500

200

100

50

20

10

5

2

11 2 5 10 20 50 100

VZ, ZENER VOLTAGE (VOLTS)

Figure 6a. Typical Capacitance 2.4–100 Volts

TA = 25°C

0 V BIAS

1 V BIAS

50% OFVZ BIAS

1007050

30

20

1075

3

2

1120 140 160 180 190 200 220

VZ, ZENER VOLTAGE (VOLTS)

Figure 6b. Typical Capacitance 120–200 Volts

TA = 25°C

1 VOLT BIAS

50% OF VZ BIAS

0 BIAS

θVZ

, TEM

PER

ATU

RE

CO

EFFI

CIE

NT

(mV/

°C)

20 mA

C, C

APAC

ITAN

CE

(pF)

θVZ

, TEM

PER

ATU

RE

CO

EFFI

CIE

NT

(mV/

°C)

θVZ

, TEM

PER

ATU

RE

CO

EFFI

CIE

NT

(mV/

°C)

θVZ

, TEM

PER

ATU

RE

CO

EFFI

CIE

NT

(mV/

°C)

Page 65: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-100500 mW DO-35 Glass Data Sheet

1007050

30

20

1075

3

2

10.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000

P pk

, PEA

K SU

RG

E PO

WER

(WAT

TS)

PW, PULSE WIDTH (ms)

5% DUTY CYCLE

10% DUTY CYCLE

20% DUTY CYCLE

11 V–91 V NONREPETITIVE

1.8 V–10 V NONREPETITIVE

RECTANGULARWAVEFORMTJ = 25°C PRIOR TOINITIAL PULSE

Figure 7a. Maximum Surge Power 1.8–91 Volts

1000700500300200

10070503020

10753210.01 0.1 1 10 100 1000

P pk

, PEA

K SU

RG

E PO

WER

(WAT

TS)

PW, PULSE WIDTH (ms)

Figure 7b. Maximum Surge Power DO-204AH100–200 Volts

1000500

200

100

50

20

10

1

2

5

0.1 0.2 0.5 1 2 5 10 20 50 100

IZ, ZENER CURRENT (mA)

Figure 8. Effect of Zener Current onZener Impedance

Z Z, D

YNAM

IC IM

PED

ANC

E (O

HM

S)

Z Z, D

YNAM

IC IM

PED

ANC

E (O

HM

S)

1000700500

200

1007050

20

1075

2

11 2 3 5 7 10 20 30 50 70 100

VZ, ZENER VOLTAGE (VOLTS)

Figure 9. Effect of Zener Voltage on Zener Impedance Figure 10. Typical Forward Characteristics

RECTANGULARWAVEFORM, TJ = 25°C

100–200 VOLTS NONREPETITIVE

TJ = 25°CiZ(rms) = 0.1 IZ(dc)f = 60 HzIZ = 1 mA

5 mA

20 mA

TJ = 25°CiZ(rms) = 0.1 IZ(dc)f = 60 Hz

VZ = 2.7 V

47 V

27 V

6.2 V

VF, FORWARD VOLTAGE (VOLTS)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

1000

500

200

100

50

20

10

5

2

1

I F, F

OR

WAR

D C

UR

REN

T (m

A)

MINIMUM

MAXIMUM

150°C

75°C

0°C

25°C

Page 66: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-101

500 mW DO-35 Glass Data Sheet

Figure 11. Zener Voltage versus Zener Current — V Z = 1 thru 16 Volts

VZ, ZENER VOLTAGE (VOLTS)

I Z, Z

ENER

CU

RR

ENT

(mA)

20

10

1

0.1

0.011 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TA = 25°

Figure 12. Zener Voltage versus Zener Current — V Z = 15 thru 30 Volts

VZ, ZENER VOLTAGE (VOLTS)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

10

1

0.1

0.01

TA = 25°

I Z, Z

ENER

CU

RR

ENT

(mA)

Page 67: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-102500 mW DO-35 Glass Data Sheet

Figure 13. Zener Voltage versus Zener Current — V Z = 30 thru 105 Volts

VZ, ZENER VOLTAGE (VOLTS)

10

1

0.1

0.0130 35 40 45 50 55 60 70 75 80 85 90 95 100

Figure 14. Zener Voltage versus Zener Current — V Z = 110 thru 220 Volts

VZ, ZENER VOLTAGE (VOLTS)

110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

10

1

0.1

0.01

TA = 25°

65 105

I Z, Z

ENER

CU

RR

ENT

(mA)

I Z, Z

ENER

CU

RR

ENT

(mA)

Page 68: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-103

500 mW DO-35 Glass Data Sheet

ELECTRICAL CHARACTERISTICS (TA = 25°C, VF = 1.5 V Max at 200 mA for all types)

T

NominalZener Voltage Test Maximum Zener Impedance

MaximumDC Zener Current

Maximum Reverse Leakage Current

TypeNumber(Note 1)

Zener VoltageVZ @ IZT(Note 2)

Volts

TestCurrent

IZTmA

Maximum Zener ImpedanceZZT @ IZT

(Note 3)Ohms

DC Zener Curren tIZM

(Note 4)mA

TA = 25°CIR @ VR = 1 V

µA

TA = 150°CIR @ VR = 1 V

µA

1N4370A 2.4 20 30 150 100 2001N4371A 2.7 20 30 135 75 1501N4372A 3 20 29 120 50 1001N746A 3.3 20 28 110 10 301N747A 3.6 20 24 100 10 301N748A 3.9 20 23 95 10 30

1N749A 4.3 20 22 85 2 301N750A 4.7 20 19 75 2 301N751A 5.1 20 17 70 1 201N752A 5.6 20 11 65 1 201N753A 6.2 20 7 60 0.1 201N754A 6.8 20 5 55 0.1 20

1N755A 7.5 20 6 50 0.1 201N756A 8.2 20 8 45 0.1 201N757A 9.1 20 10 40 0.1 201N758A 10 20 17 35 0.1 201N759A 12 20 30 30 0.1 20

Type

NominalZener Voltage

VZ

TestCurrent

Maximum Zener Impedance(Note 3)

MaximumDC Zener Current

IZMMaximum Reverse Current

TypeNumber(Note 1)

VZ(Note 2)

Volts

Curren tIZTmA

ZZT @ IZTOhms

ZZK @ IZKOhms

IZKmA

IZM(Note 4)

mAIR Maximum

µATest Voltage Vdc

VR

1N957B 6.8 18.5 4.5 700 1 47 150 5.21N958B 7.5 16.5 5.5 700 0.5 42 75 5.71N959B 8.2 15 6.5 700 0.5 38 50 6.21N960B 9.1 14 7.5 700 0.5 35 25 6.91N961B 10 12.5 8.5 700 0.25 32 10 7.61N962B 11 11.5 9.5 700 0.25 28 5 8.4

1N963B 12 10.5 11.5 700 0.25 26 5 9.11N964B 13 9.5 13 700 0.25 24 5 9.91N965B 15 8.5 16 700 0.25 21 5 11.41N966B 16 7.8 17 700 0.25 19 5 12.21N967B 18 7 21 750 0.25 17 5 13.71N968B 20 6.2 25 750 0.25 15 5 15.2

1N969B 22 5.6 29 750 0.25 14 5 16.71N970B 24 5.2 33 750 0.25 13 5 18.21N971B 27 4.6 41 750 0.25 11 5 20.61N972B 30 4.2 49 1000 0.25 10 5 22.81N973B 33 3.8 58 1000 0.25 9.2 5 25.11N974B 36 3.4 70 1000 0.25 8.5 5 27.4

1N975B 39 3.2 80 1000 0.25 7.8 5 29.71N976B 43 3 93 1500 0.25 7 5 32.71N977B 47 2.7 105 1500 0.25 6.4 5 35.81N978B 51 2.5 125 1500 0.25 5.9 5 38.81N979B 56 2.2 150 2000 0.25 5.4 5 42.61N980B 62 2 185 2000 0.25 4.9 5 47.1

Page 69: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-104500 mW DO-35 Glass Data Sheet

Type

NominalZener Voltage

VZ

TestCurrent

Maximum Zener Impedance(Note 3)

MaximumDC Zener Current

IZMMaximum Reverse Leakage Current

TypeNumber(Note 1)

VZ(Note 2)

Volts

Curren tIZTmA

ZZT @ IZTOhms

ZZK @ IZKOhms

IZKmA

IZM(Note 4)

mAIR Maximum

µATest Voltage Vdc

VR

1N981B 68 1.8 230 2000 0.25 4.5 5 51.71N982B 75 1.7 270 2000 0.25 4.1 5 561N983B 82 1.5 330 3000 0.25 3.7 5 62.21N984B 91 1.4 400 3000 0.25 3.3 5 69.21N985B 100 1.3 500 3000 0.25 3 5 761N986B 110 1.1 750 4000 0.25 2.7 5 83.6

1N987B 120 1 900 4500 0.25 2.5 5 91.21N988B 130 0.95 1100 5000 0.25 2.3 5 98.81N989B 150 0.85 1500 6000 0.25 2 5 1141N990B 160 0.8 1700 6500 0.25 1.9 5 121.61N991B 180 0.68 2200 7100 0.25 1.7 5 136.81N992B 200 0.65 2500 8000 0.25 1.5 5 152

NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION

Tolerance DesignationThe type numbers shown have tolerance designations as follows:1N4370A series: ±5% units, C for ±2%, D for ±1%.1N746A series: ±5% units, C for ±2%, D for ±1%.1N957B series: ±5% units, C for ±2%, D for ±1%.

NOTE 2. ZENER VOLTAGE (VZ) MEASUREMENT

Nominal zener voltage is measured with the device junction in thermal equilibrium at the leadtemperature of 30°C ±1°C and 3/8″ lead length.

NOTE 3. ZENER IMPEDANCE (ZZ) DERIVATION

ZZT and ZZK are measured by dividing the ac voltage drop across the device by the ac currentapplied. The specified limits are for IZ(ac) = 0.1 IZ(dc) with the ac frequency = 60 Hz.

NOTE 4. MAXIMUM ZENER CURRENT RATINGS (IZM)

Values shown are based on the JEDEC rating of 400 mW. Where the actual zener voltage(VZ) is known at the operating point, the maximum zener current may be increased and islimited by the derating curve.

Page 70: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-105

500 mW DO-35 Glass Data Sheet

Low level oxide passivated zener diodes for applications re-quiring extremely low operating currents, low leakage, andsharp breakdown voltage.

• Zener Voltage Specified @ IZT = 50 µA• Maximum Delta VZ Given from 10 to 100 µA

ELECTRICAL CHARACTERISTICS (TA = 25°C, VF = 1.5 V Max at IF = 100 mA for all types)

TypeNumber

Zener VoltageVZ @ IZT = 50 µA

Volts

MaximumReverse Current

IR µA

TestVoltageVR Volts

MaximumZener Current

IZM mA

MaximumVoltage Change

∆VZ VoltsNumber(Note 1) Nom (Note 1) Min Max (Note 3)

IZM mA(Note 2)

∆VZ Volts(Note 4)

1N4678 1.8 1.71 1.89 7.5 1 120 0.71N4679 2 1.9 2.1 5 1 110 0.71N4680 2.2 2.09 2.31 4 1 100 0.751N4681 2.4 2.28 2.52 2 1 95 0.81N4682 2.7 2.565 2.835 1 1 90 0.85

1N4683 3 2.85 3.15 0.8 1 85 0.91N4684 3.3 3.135 3.465 7.5 1.5 80 0.951N4685 3.6 3.42 3.78 7.5 2 75 0.951N4686 3.9 3.705 4.095 5 2 70 0.971N4687 4.3 4.085 4.515 4 2 65 0.99

1N4688 4.7 4.465 4.935 10 3 60 0.991N4689 5.1 4.845 5.355 10 3 55 0.971N4690 5.6 5.32 5.88 10 4 50 0.961N4691 6.2 5.89 6.51 10 5 45 0.951N4692 6.8 6.46 7.14 10 5.1 35 0.9

1N4693 7.5 7.125 7.875 10 5.7 31.8 0.751N4694 8.2 7.79 8.61 1 6.2 29 0.51N4695 8.7 8.265 9.135 1 6.6 27.4 0.11N4696 9.1 8.645 9.555 1 6.9 26.2 0.081N4697 10 9.5 10.5 1 7.6 24.8 0.1

1N4698 11 10.45 11.55 0.05 8.4 21.6 0.111N4699 12 11.4 12.6 0.05 9.1 20.4 0.121N4700 13 12.35 13.65 0.05 9.8 19 0.131N4701 14 13.3 14.7 0.05 10.6 17.5 0.141N4702 15 14.25 15.75 0.05 11.4 16.3 0.15

1N4703 16 15.2 16.8 0.05 12.1 15.4 0.161N4704 17 16.15 17.85 0.05 12.9 14.5 0.171N4705 18 17.1 18.9 0.05 13.6 13.2 0.181N4706 19 18.05 19.95 0.05 14.4 12.5 0.191N4707 20 19 21 0.01 15.2 11.9 0.2

1N4708 22 20.9 23.1 0.01 16.7 10.8 0.221N4709 24 22.8 25.2 0.01 18.2 9.9 0.241N4710 25 23.75 26.25 0.01 19 9.5 0.251N4711 27 25.65 28.35 0.01 20.4 8.8 0.271N4712 28 26.6 29.4 0.01 21.2 8.5 0.28

1N4713 30 28.5 31.5 0.01 22.8 7.9 0.31N4714 33 31.35 34.65 0.01 25 7.2 0.331N4715 36 34.2 37.8 0.01 27.3 6.6 0.361N4716 39 37.05 40.95 0.01 29.6 6.1 0.391N4717 43 40.85 45.15 0.01 32.6 5.5 0.43

NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION (V Z)

The type numbers shown have a standard tolerance of ±5% on the nominal Zener voltage,C for ±2%, D for ±1%.

NOTE 2. MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum Zener current ratings are based on maximum Zener voltage of the individual unitsand JEDEC 250 mW rating.

NOTE 3. REVERSE LEAKAGE CURRENT (I R)

Reverse leakage currents are guaranteed and measured at VR as shown on the table.

NOTE 4. MAXIMUM VOLTAGE CHANGE ( ∆VZ)

Voltage change is equal to the difference between VZ at 100 µA and VZ at 10 µA.

NOTE 5. ZENER VOLTAGE (VZ) MEASUREMENT

Nominal Zener voltage is measured with the device junction in thermal equilibrium at the leadtemperature at 30°C ±1°C and 3/8″ lead length.

Page 71: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-106500 mW DO-35 Glass Data Sheet

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted. Based on dc measurements at thermal equilibrium; lead length= 3/8″; thermal resistance of heat sink = 30°C/W) VF = 1.1 Max @ IF = 200 mA for all types.

JEDEC

NominalZener Voltage

VZ @ IZT

TestCurrent

Max Zener Impedance(Note 4)

Max ReverseLeakage Current Max Zener Voltage

Temperature CoeffJEDECType No.(Note 1)

VZ @ IZTVolts

(Note 3)

Curren tIZTmA

ZZT @ IZTOhms

ZZK @ IZK = 0.25 mAOhms

IRµA

VRVolts

Tempera ture Coeff .θVZ (%/°C)

(Note 2)

1N5221B 2.4 20 30 1200 100 1 –0.0851N5222B 2.5 20 30 1250 100 1 –0.0851N5223B 2.7 20 30 1300 75 1 –0.081N5224B 2.8 20 30 1400 75 1 –0.081N5225B 3 20 29 1600 50 1 –0.075

1N5226B 3.3 20 28 1600 25 1 –0.071N5227B 3.6 20 24 1700 15 1 –0.0651N5228B 3.9 20 23 1900 10 1 –0.061N5229B 4.3 20 22 2000 5 1 ±0.0551N5230B 4.7 20 19 1900 5 2 ±0.03

1N5231B 5.1 20 17 1600 5 2 ±0.031N5232B 5.6 20 11 1600 5 3 +0.0381N5233B 6 20 7 1600 5 3.5 +0.0381N5234B 6.2 20 7 1000 5 4 +0.0451N5235B 6.8 20 5 750 3 5 +0.05

1N5236B 7.5 20 6 500 3 6 +0.0581N5237B 8.2 20 8 500 3 6.5 +0.0621N5238B 8.7 20 8 600 3 6.5 +0.0651N5239B 9.1 20 10 600 3 7 +0.0681N5240B 10 20 17 600 3 8 +0.075

1N5241B 11 20 22 600 2 8.4 +0.0761N5242B 12 20 30 600 1 9.1 +0.0771N5243B 13 9.5 13 600 0.5 9.9 +0.0791N5244B 14 9 15 600 0.1 10 +0.0821N5245B 15 8.5 16 600 0.1 11 +0.082

1N5246B 16 7.8 17 600 0.1 12 +0.0831N5247B 17 7.4 19 600 0.1 13 +0.0841N5248B 18 7 21 600 0.1 14 +0.0851N5249B 19 6.6 23 600 0.1 14 +0.0861N5250B 20 6.2 25 600 0.1 15 +0.086

1N5251B 22 5.6 29 600 0.1 17 +0.0871N5252B 24 5.2 33 600 0.1 18 +0.0881N5253B 25 5 35 600 0.1 19 +0.0891N5254B 27 4.6 41 600 0.1 21 +0.091N5255B 28 4.5 44 600 0.1 21 +0.091

1N5256B 30 4.2 49 600 0.1 23 +0.0911N5257B 33 3.8 58 700 0.1 25 +0.0921N5258B 36 3.4 70 700 0.1 27 +0.0931N5259B 39 3.2 80 800 0.1 30 +0.0941N5260B 43 3 93 900 0.1 33 +0.095

1N5261B 47 2.7 105 1000 0.1 36 +0.0951N5262B 51 2.5 125 1100 0.1 39 +0.0961N5263B 56 2.2 150 1300 0.1 43 +0.0961N5264B 60 2.1 170 1400 0.1 46 +0.0971N5265B 62 2 185 1400 0.1 47 +0.097

(continued)

Page 72: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-107

500 mW DO-35 Glass Data Sheet

ELECTRICAL CHARACTERISTICS — continued (TA = 25°C unless otherwise noted. Based on dc measurements at thermal equi-librium; lead length = 3/8″; thermal resistance of heat sink = 30°C/W) VF = 1.1 Max @ IF = 200 mA for all types.

JEDEC

NominalZener Voltage

VZ @ IZT

TestCurrent

Max Zener Impedance(Note 4)

Max ReverseLeakage Current Max Zener Voltage

Temperature CoeffJEDECType No.(Note 1)

VZ @ IZTVolts

(Note 3)

Curren tIZTmA

ZZT @ IZTOhms

ZZK @ IZK = 0.25 mAOhms

IRµA

VRVolts

Tempera ture Coeff .θVZ (%/°C)

(Note 2)

1N5266B 68 1.8 230 1600 0.1 52 +0.0971N5267B 75 1.7 270 1700 0.1 56 +0.0981N5268B 82 1.5 330 2000 0.1 62 +0.0981N5269B 87 1.4 370 2200 0.1 68 +0.0991N5270B 91 1.4 400 2300 0.1 69 +0.099

1N5271B 100 1.3 500 2600 0.1 76 +0.111N5272B 110 1.1 750 3000 0.1 84 +0.111N5273B 120 1 900 4000 0.1 91 +0.111N5274B 130 0.95 1100 4500 0.1 99 +0.111N5275B 140 0.9 1300 4500 0.1 106 +0.11

1N5276B 150 0.85 1500 5000 0.1 114 +0.111N5277B 160 0.8 1700 5500 0.1 122 +0.111N5278B 170 0.74 1900 5500 0.1 129 +0.111N5279B 180 0.68 2200 6000 0.1 137 +0.111N5280B 190 0.66 2400 6500 0.1 144 +0.111N5281B 200 0.65 2500 7000 0.1 152 +0.11

NOTE 1. TOLERANCE

The JEDEC type numbers shown indicate a tolerance of ±5%. For tighter tolerance devicesuse suffixes “C” for ±2% and “D” for ±1%.

NOTE 2. TEMPERATURE COEFFICIENT (θVZ)

Test conditions for temperature coefficient are as follows:a. IZT = 7.5 mA, T1 = 25°C,a. T2 = 125°C (1N5221B through 1N5242B).b. IZT = Rated IZT, T1 = 25°C,a. T2 = 125°C (1N5243B through 1N5281B).

Device to be temperature stabilized with current applied prior to reading breakdown voltageat the specified ambient temperature.

NOTE 3. ZENER VOLTAGE (VZ) MEASUREMENT

Nominal zener voltage is measured with the device junction in thermal equilibrium at the leadtemperature of 30°C ±1°C and 3/8″ lead length.

NOTE 4. ZENER IMPEDANCE (ZZ) DERIVATION

ZZT and ZZK are measured by dividing the ac voltage drop across the device by the ac currentapplied. The specified limits are for IZ(ac) = 0.1 IZ(dc) with the ac frequency = 60 Hz.

For more information on special selections contact your nearest Motorola representa-tive.

Page 73: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-108500 mW DO-35 Glass Data Sheet

*ELECTRICAL CHARACTERISTICS (TL = 30°C unless otherwise noted.) (VF = 1.5 Volts Max @ IF = 100 mAdc for all types.)

MotorolaNominal

Zener Voltage TestMax Zener Impedance (Note 3) Max Reverse Leakage Current Max DC

ZenerMotorolaType

Number(Note 1)

Zener VoltageVZ @ IZT

Volts(Note 4)

TestCurrent

IZTmA

ZZT @ IZTOhms

ZZK @ IZK =Ohms 0.25 mA

IRµA

VRVolts

ZenerCurrent

IZM(Note 2)

1N5985B 2.4 5 100 1800 100 1 2081N5986B 2.7 5 100 1900 75 1 1851N5987B 3 5 95 2000 50 1 1671N5988B 3.3 5 95 2200 25 1 1521N5989B 3.6 5 90 2300 15 1 139

1N5990B 3.9 5 90 2400 10 1 1281N5991B 4.3 5 88 2500 5 1 1161N5992B 4.7 5 70 2200 3 1.5 1061N5993B 5.1 5 50 2050 2 2 981N5994B 5.6 5 25 1800 2 3 89

1N5995B 6.2 5 10 1300 1 4 811N5996B 6.8 5 8 750 1 5.2 741N5997B 7.5 5 7 600 0.5 6 671N5998B 8.2 5 7 600 0.5 6.5 611N5999B 9.1 5 10 600 0.1 7 55

1N6000B 10 5 15 600 0.1 8 501N6001B 11 5 18 600 0.1 8.4 451N6002B 12 5 22 600 0.1 9.1 421N6003B 13 5 25 600 0.1 9.9 381N6004B 15 5 32 600 0.1 11 33

1N6005B 16 5 36 600 0.1 12 311N6006B 18 5 42 600 0.1 14 281N6007B 20 5 48 600 0.1 15 251N6008B 22 5 55 600 0.1 17 231N6009B 24 5 62 600 0.1 18 21

1N6010B 27 5 70 600 0.1 21 191N6011B 30 5 78 600 0.1 23 171N6012B 33 5 88 700 0.1 25 151N6013B 36 5 95 700 0.1 27 141N6014B 39 2 130 800 0.1 30 13

1N6015B 43 2 150 900 0.1 33 121N6016B 47 2 170 1000 0.1 36 111N6017B 51 2 180 1300 0.1 39 9.81N6018B 56 2 200 1400 0.1 43 8.91N6019B 62 2 225 1400 0.1 47 8

1N6020B 68 2 240 1600 0.1 52 7.41N6021B 75 2 265 1700 0.1 56 6.71N6022B 82 2 280 2000 0.1 62 6.11N6023B 91 2 300 2300 0.1 69 5.51N6024B 100 1 500 2600 0.1 76 51N6025B 110 1 650 3000 0.1 84 4.5

*Indicates JEDEC Registered Data

NOTE 1. TOLERANCE AND VOLTAGE DESIGNATIONTolerance designation — Device tolerances of ±5% are indicated by a “B” suffix, ±2% by a“C” suffix, ±1% by a “D” suffix.

NOTE 2.

This data was calculated using nominal voltages. The maximum current handling capabilityon a worst case basis is limited by the actual zener voltage at the operating point and the pow-er derating curve.

NOTE 3.

ZZT and ZZK are measured by dividing the ac voltage drop across the device by the ac currentapplied. The specified limits are for IZ(ac) = 0.1 IZ(dc) with the ac frequency = 1.0 kHz.

NOTE 4.

Nominal Zener Voltage (VZ) is measured with the device junction in thermal equilibrium at thelead temperature of 30°C ±1°C and 3/8″ lead length.

@

Page 74: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-109

500 mW DO-35 Glass Data Sheet

ELECTRICAL CHARACTERISTICS (TL = 30°C unless otherwise noted.) (VF = 1.3 Volts Max, IF = 100 mAdc for all types.)

VZT at IZT(V)

Max ZenerImpedance

(Note 3)

I

Max ReverseLeakage Current

IR at VR(µA)

IMotorolaType

NumberMin

(Note 1)Max

(Note 1)

(Note 3)ZZT @ IZT

(Ohms)Max

IZT(mA)

Tamb25°CMax

Tamb125°CMax

VR(V)

IZM(mA)

(Note 2)

BZX55C2V4RL 2.28 2.56 85 5 50 100 1 155BZX55C2V7RL 2.5 2.9 85 5 10 50 1 135BZX55C3V0RL 2.8 3.2 85 5 4 40 1 125BZX55C3V3RL 3.1 3.5 85 5 2 40 1 115BZX55C3V6RL 3.4 3.8 85 5 2 40 1 105

BZX55C3V9RL 3.7 4.1 85 5 2 40 1 95BZX55C4V3RL 4 4.6 75 5 1 20 1 90BZX55C4V7RL 4.4 5 60 5 0.5 10 1 85BZX55C5V1RL 4.8 5.4 35 5 0.1 2 1 80BZX55C5V6RL 5.2 6 25 5 0.1 2 1 70

BZX55C6V2RL 5.8 6.6 10 5 0.1 2 2 64BZX55C6V8RL 6.4 7.2 8 5 0.1 2 3 58BZX55C7V5RL 7 7.9 7 5 0.1 2 5 53BZX55C8V2RL 7.7 8.7 7 5 0.1 2 6 47BZX55C9V1RL 8.5 9.6 10 5 0.1 2 7 43

BZX55C10RL 9.4 10.6 15 5 0.1 2 7.5 40BZX55C11RL 10.4 11.6 20 5 0.1 2 8.5 36BZX55C12RL 11.4 12.7 20 5 0.1 2 9 32BZX55C13RL 12.4 14.1 26 5 0.1 2 10 29BZX55C15RL 13.8 15.6 30 5 0.1 2 11 27

BZX55C16RL 15.3 17.1 40 5 0.1 2 12 24BZX55C18RL 16.8 19.1 50 5 0.1 2 14 21BZX55C20RL 18.8 21.1 55 5 0.1 2 15 20BZX55C22RL 20.8 23.3 55 5 0.1 2 17 18BZX55C24RL 22.8 25.6 80 5 0.1 2 18 16

BZX55C27RL 25.1 28.9 80 5 0.1 2 20 14BZX55C30RL 28 32 80 5 0.1 2 22 13BZX55C33RL 31 35 80 5 0.1 2 24 12BZX55C36RL 34 38 80 5 0.1 2 27 11BZX55C39RL 37 41 90 2.5 0.1 5 28 10

BZX55C43RL 40 46 90 2.5 0.1 5 32 9.2BZX55C47RL 44 50 110 2.5 0.1 5 35 8.5BZX55C51RL 48 54 125 2.5 0.1 10 38 7.8BZX55C56RL 52 60 135 2.5 0.1 10 42 7BZX55C62RL 58 66 150 2.5 0.1 10 47 6.4

BZX55C68RL 64 72 160 2.5 0.1 10 51 5.9BZX55C75RL 70 80 170 2.5 0.1 10 56 5.3BZX55C82RL 77 87 200 2.5 0.1 10 62 4.8BZX55C91RL 85 96 250 1 0.1 10 69 4.3

NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION

Tolerance designation — The type numbers listed have zener voltage min/max limits asshown. Device tolerance of ±2% are indicated by a “B” instead of a “C”. Zener voltage is mea-sured with the device junction in thermal equilibrium at the lead temperature of 30°C ±1°Cand 3/8″ lead length.

NOTE 2.

This data was calculated using nominal voltages. The maximum current handling capability

on a worst case basis is limited by the actual zener voltage at the operating point and the pow-er derating curve.

NOTE 3.

ZZT and ZZK are measured by dividing the ac voltage drop across the device by the ac currentapplied. The specified limtis are for IZ(ac) = 0.1 IZ(dc) with the ac frequency = 1.0 kHz.

Page 75: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-110500 mW DO-35 Glass Data Sheet

*ELECTRICAL CHARACTERISTICS (TL = 30°C unless otherwise noted.) (VF = 1.5 Volts Max @ IF = 100 mAdc for all types.)

D i T

Zener Voltage(Note 1)(Note 4)

Impedance (Ohm)@ IZT

f = 1000 HzLeakage Current

(µA)

Temp. Coefficient(Typical)(mV/°C)

Capacitance(Typical)

(pF)Device Type

(Note 2) Min MaxIZT =(mA)

Max(Note 3) Max

@ VR =(Volt) Min Max

(pF)VR = 0,

f = 1.0 MHz

BZX79C2V4RL 2.2 2.6 5 100 100 1 –3.5 0 255BZX79C2V7RL 2.5 2.9 5 100 75 1 –3.5 0 230BZX79C3V0RL 2.8 3.2 5 95 50 1 –3.5 0 215BZX79C3V3RL 3.1 3.5 5 95 25 1 –3.5 0 200BZX79C3V6RL 3.4 3.8 5 90 15 1 –3.5 0 185

BZX79C3V9RL 3.7 4.1 5 90 10 1 –3.5 +0.3 175BZX79C4V3RL 4 4.6 5 90 5 1 –3.5 +1 160BZX79C4V7RL 4.4 5 5 80 3 2 –3.5 +0.2 130BZX79C5V1RL 4.8 5.4 5 60 2 2 –2.7 +1.2 110BZX79C5V6RL 5.2 6 5 40 1 2 –2 +2.5 95

BZX79C6V2RL 5.8 6.6 5 10 3 4 0.4 3.7 90BZX79C6V8RL 6.4 7.2 5 15 2 4 1.2 4.5 85BZX79C7V5RL 7 7.9 5 15 1 5 2.5 5.3 80BZX79C8V2RL 7.7 8.7 5 15 0.7 5 3.2 6.2 75BZX79C9V1RL 8.5 9.6 5 15 0.5 6 3.8 7 70

BZX79C10RL 9.4 10.6 5 20 0.2 7 4.5 8 70BZX79C11RL 10.4 11.6 5 20 0.1 8 5.4 9 65BZX79C12RL 11.4 12.7 5 25 0.1 8 6 10 65BZX79C13RL 12.4 14.1 5 30 0.1 8 7 11 60BZX79C15RL 13.8 15.6 5 30 0.05 10.5 9.2 13 55

BZX79C16RL 15.3 17.1 5 40 0.05 11.2 10.4 14 52BZX79C18RL 16.8 19.1 5 45 0.05 12.6 12.9 16 47BZX79C20RL 18.8 21.2 5 55 0.05 14 14.4 18 36BZX79C22RL 20.8 23.3 5 55 0.05 15.4 16.4 20 34BZX79C24RL 22.8 25.6 5 70 0.05 16.8 18.4 22 33

BZX79C27RL 25.1 28.9 2 80 0.05 18.9 23.5 30BZX79C30RL 28 32 2 80 0.05 21 26 27BZX79C33RL 31 35 2 80 0.05 23.1 29 25BZX79C36RL 34 38 2 90 0.05 25.2 31 23BZX79C39RL 37 41 2 130 0.05 27.3 34 21

BZX79C43RL 40 46 2 150 0.05 30.1 37 21BZX79C47RL 44 50 2 170 0.05 32.9 40 19BZX79C51RL 48 54 2 180 0.05 35.7 44 19BZX79C56RL 52 60 2 200 0.05 39.2 47 18BZX79C62RL 58 66 2 215 0.05 43.4 51 17

BZX79C68RL 64 72 2 240 0.05 47.6 56 17BZX79C75RL 70 79 2 255 0.05 52.5 60 16.5BZX79C82RL 77 87 2 280 0.1 62 46 95 29BZX79C91RL 85 96 2 300 0.1 69 51 107 28BZX79C100RL 94 106 1 500 0.1 76 57 119 27

BZX79C110RL 104 116 1 650 0.1 84 63 131 26BZX79C120RL 114 127 1 800 0.1 91 69 144 24BZX79C130RL 124 141 1 950 0.1 99 75 158 23BZX79C150RL 138 156 1 1250 0.1 114 87 185 21BZX79C160RL 153 171 1 1400 0.1 122 93 200 20

BZX79C180RL 168 191 1 1700 0.1 137 105 228 18BZX79C200RL 188 212 1 2000 0.1 152 120 255 17

NOTE 1. Zener voltage is measured under pulse conditions such that TJ is no more than 2°Cabove TA.

NOTE 2. TOLERANCE AND VOLTAGE DESIGNATION

Tolerance designation —– The type numbers listed have zener voltage min/max limits as

shown. Device tolerances of ±2% are indicated by a “B” instead of a “C,” and ±1% by “A.”

NOTE 3. ZZT is measured by dividing the ac voltage drop across the device by the ac currentapplied. The specified limits are for IZ(ac) = 0.1 IZ(dc) with the ac frequency = 1.0 kHz.

Page 76: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-111

500 mW DO-35 Glass Data Sheet

ELECTRICAL CHARACTERISTICS (at TA = 25°C)Motorola ZPD and BZX83C series. Forward Voltage VF = 1 Volt Max at IF = 50 mA.

Zener Voltage (Note 1)at IZT = 5.0 mA

Impedance ( Ω)Max (Note 2) Typ. Temp.

C ff

VR Min

at IZ = 1 mA

yp pCoeff.at IZT

V

Device Type Nominal Min Max at IZT BZX83 ZPDat IZT

% per °C BZX83 ZPD at IR

BZX83C2V7RL ZPD2.7RL 2.7 2.5 2.9 85 600 500 –0.09...–0.04 1 — 100 mABZX83C3V0RL ZPD3.0RL 3 2.8 3.2 90 600 500 –0.09...–0.03 1 — 160 mABZX83C3V3RL ZPD3.3RL 3.3 3.1 3.5 90 600 500 –0.08...–0.03 1 — 130 mABZX83C3V6RL ZPD3.6RL 3.6 3.4 3.8 90 600 500 –0.08...–0.03 1 — 120 mABZX83C3V9RL ZPD3.9RL 3.9 3.7 4.1 85 600 500 –0.07...–0.03 1 — 110 mA

BZX83C4V3RL ZPD4.3RL 4.3 4 4.6 80 600 500 –0.06...–0.01 1 — 115 mABZX83C4V7RL ZPD4.7RL 4.7 4.4 5 78 600 500 –0.05...+0.02 1 — 112 mABZX83C5V1RL ZPD5.1RL 5.1 4.8 5.4 60 550 480 –0.03...+0.04 0.8 100 nABZX83C5V6RL ZPD5.6RL 5.6 5.2 6 40 450 400 –0.02...+0.06 1 100 nABZX83C6V2RL ZPD6.2RL 6.2 5.8 6.6 10 200 –0.01...+0.07 2 100 nA

BZX83C6V8RL ZPD6.8RL 6.8 6.4 7.2 8 150 +0.02...+0.07 3 100 nABZX83C7V5RL ZPD7.5RL 7.5 7 7.9 7 50 +0.03...+0.07 5 100 nABZX83C8V2RL ZPD8.2RL 8.2 7.7 8.7 7 50 +0.04...+0.07 6 100 nABZX83C9V1RL ZPD9.1RL 9.1 8.5 9.6 10 50 +0.05...+0.08 7 100 nABZX83C10RL ZPD10RL 10 9.4 10.6 15 70 +0.05...+0.08 7.5 100 nA

BZX83C11RL ZPD11RL 11 10.4 11.6 20 70 +0.05...+0.09 8.5 100 nABZX83C12RL ZPD12RL 12 11.4 12.7 20 90 +0.06...+0.09 9 100 nABZX83C13RL ZPD13RL 13 12.4 14.1 25 110 +0.07...+0.09 10 100 nABZX83C15RL ZPD15RL 15 13.8 15.6 30 110 +0.07...+0.09 11 100 nABZX83C16RL ZPD16RL 16 15.3 17.1 40 170 +0.08...+0.095 12 100 nA

BZX83C18RL ZPD18RL 18 16.8 19.1 50 170 +0.08...+0.10 14 100 nABZX83C20RL ZPD20RL 20 18.8 21.2 55 220 +0.08...+0.10 15 100 nABZX83C22RL ZPD22RL 22 20.8 23.3 55 220 +0.08...+0.10 17 100 nABZX83C24RL ZPD24RL 24 22.8 25.6 80 220 +0.08...+0.10 18 100 nABZX83C27RL ZPD27RL 27 25.1 28.9 80 250 +0.08...+0.10 20 100 nABZX83C30RL ZPD30RL 30 28 32 80 250 +0.08...+0.10 22 100 nABZX83C33RL ZPD33RL 33 31 35 80 250 +0.08...+0.10 24 100 nA

NOTE 1. Pulse test.NOTE 2. f = 1.0 kHz, IZ(ac) = 0.1 IZ(dc).

Page 77: Apostila de Laboratorio de Eletronica Analogica - Completa

@(Note 5)

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-112500 mW DO-35 Glass Data Sheet

Designed for 250 mW applications requiring low leakage,low impedance. Same as 1N4099 through 1N4104 and1N4614 through 1N4627 except low noise test omitted.

• Voltage Range from 1.8 to 10 Volts• Zener Impedance and Zener Voltage Specified for Low-

Level Operation at IZT = 250 µA

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise specified. IZT = 250 µA and VF = 1 V Max @ IF = 200 mA for allELECTRICAL CHARACTERISTICS types)

TypeNumber(Note 1)

NominalZener Voltage

VZ(Note 2)(Volts)

Max ZenerImpedance

ZZT(Note 3)(Ohms)

MaxReverseCurrent

IR(µA)

TestVoltage

VR(Volts)

Max Zener CurrentIZM

(Note 4)(mA)

MZ4614 1.8 1200 7.5 1 120MZ4615 2 1250 5 1 110MZ4616 2.2 1300 4 1 100MZ4617 2.4 1400 2 1 95MZ4618 2.7 1500 1 1 90

MZ4619 3 1600 0.8 1 85MZ4620 3.3 1650 7.5 1.5 80MZ4621 3.6 1700 7.5 2 75MZ4622 3.9 1650 5 2 70MZ4623 4.3 1600 4 2 65

MZ4624 4.7 1550 10 3 60MZ4625 5.1 1500 10 3 55MZ4626 5.6 1400 10 4 50MZ4627 6.2 1200 10 5 45MZ4099 6.8 200 10 5.2 35

MZ4100 7.5 200 10 5.7 31.8MZ4101 8.2 200 1 6.3 29MZ4102 8.7 200 1 6.7 27.4MZ4103 9.1 200 1 7 26.2MZ4104 10 200 1 7.6 24.8

NOTE 1. TOLERANCE AND VOLTAGE DESIGNATIONThe type numbers shown have a standard tolerance of ±5% on the nominal zener voltage.

NOTE 2. ZENER VOLTAGE (VZ) MEASUREMENT

Nominal Zener Voltage is measured with the device junction in the thermal equilibrium withambient temperature of 25°C.

NOTE 3. ZENER IMPEDANCE (ZZT) DERIVATION

The zener impedance is derived from the 60 cycle ac voltage, which results when an ac cur-rent having an rms value equal to 10% of the dc zener current (IZT) is superimposed on IZT.

NOTE 4. MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum zener current ratings are based on maximum zener voltage of the individual units.

NOTE 5. REVERSE LEAKAGE CURRENT I RReverse leakage currents are guaranteed and are measured at VR as shown on the table.

NOTE 6. SPECIAL SELECTORS AVAILABLE INCLUDE:

A) Tighter voltage tolerances. Contact your nearest Motorola representative for more infor-mation.

Page 78: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-113

500 mW DO-35 Glass Data Sheet

Low Voltage Avalanche PassivatedSilicon Oxide Zener Regulator DiodesSame as 1N5520B through 1N5530B except low noise testspec omitted.• Low Maximum Regulation Factor• Low Zener Impedance• Low Leakage Current

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise specified. Based on dc measurements at thermal equilibrium;ELECTRICAL CHARACTERISTICS VF = 1.1 Max @ IF = 200 mA for all types.)

M l

NominalZener

TMax Zener

Max Reverse Leakage Current MaximumDC Zener Regulation Low

MotorolaType No.(Note 1)

ZenerVoltage

VZ @ IZTVolts

(Note 2)

TestCurrent

IZTmAdc

Max ZenerImpedanceZZT @ IZT

Ohms(Note 3)

IRµAdc

(Note 4) VR – Volts

DC ZenerCurrent

IZMmAdc

(Note 5)

RegulationFactor

∆VZVolts

(Note 6)

LowVZ

CurrentIZL

mAdc

MZ5520B 3.9 20 22 1 1 98 0.85 2.0MZ5521B 4.3 20 18 3 1.5 88 0.75 2.0MZ5522B 4.7 10 22 2 2 81 0.6 1.0MZ5523B 5.1 5 26 2 2.5 75 0.65 0.25MZ5524B 5.6 3 30 2 3.5 68 0.3 0.25

MZ5525B 6.2 1 30 1 5 61 0.2 0.01MZ5526B 6.8 1 30 1 6.2 56 0.1 0.01MZ5527B 7.5 1 35 0.5 6.8 51 0.05 0.01MZ5528B 8.2 1 40 0.5 7.5 46 0.05 0.01MZ5529B 9.1 1 45 0.1 8.2 42 0.05 0.01MZ5530B 10 1 60 0.05 9.1 38 0.1 0.01

NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION

The “B” suffix type numbers listed are ±5% tolerance of nominal VZ.

NOTE 2. ZENER VOLTAGE (VZ) MEASUREMENT

Nominal zener voltage is measured with the device junction in thermal equilibrium with ambi-ent temperature of 25°C.

NOTE 3. ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 60 Hz ac voltage, which results when an ac currenthaving an rms value equal to 10% of the dc zener current (IZT) is superimposed on IZT.

NOTE 4. REVERSE LEAKAGE CURRENT I RReverse leakage currents are guaranteed and are measured at VR as shown on the table.

NOTE 5. MAXIMUM REGULATOR CURRENT (I ZM)

The maximum current shown is based on the maximum voltage of a ±5% type unit, therefore,it applies only to the “B” suffix device. The actual IZM for any device may not exceed the valueof 400 milliwatts divided by the actual VZ of the device.

NOTE 6. MAXIMUM REGULATION FACTOR ( ∆VZ)

∆VZ is the maximum difference between VZ at IZT and VZ at IZL measured with the devicejunction in thermal equilibrium.

NOTE 7. SPECIAL SELECTORS AVAILABLE INCLUDE:

A) Tighter voltage tolerances. Contact your nearest Motorola representative for more infor-mation.

Page 79: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-114500 mW DO-35 Glass Data Sheet

500 mW DO-35 Glass

MULTIPLE PACKAGE QUANTITY (MPQ)REQUIREMENTS

Zener Voltage Regulator Diodes — Axial Leaded

CASE 299-02DO-204AH

GLASS

(Refer to Section 10 for Surface Mount, Thermal Data and Footprint Information.)

Refer to Section 10 for more information on Packaging Specifications.

MIN MINMAX MAXMILLIMETERS INCHES

DIM3.051.520.46—

25.40

5.082.290.561.2738.10

0.1200.0600.018—

1.000

0.2000.0900.0220.0501.500

ABDFK

All JEDEC dimensions and notes apply.

NOTES:1. PACKAGE CONTOUR OPTIONAL WITHIN A AND B

HEAT SLUGS, IF ANY, SHALL BE INCLUDEDWITHIN THIS CYLINDER, BUT NOT SUBJECT TOTHE MINIMUM LIMIT OF B.

2. LEAD DIAMETER NOT CONTROLLED IN ZONE FTO ALLOW FOR FLASH, LEAD FINISH BUILDUPAND MINOR IRREGULARITIES OTHER THANHEAT SLUGS.

3. POLARITY DENOTED BY CATHODE BAND.4. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.

B

A

KD

F

F

K

Package Option

Tape and Reel 5K

Type No. Suffix

RL, RL2(1)

MPQ (Units)

Tape and Ammo TA, TA2(1) 5K

NOTES: 1. The “2” suffix refers to 26 mm tape spacing.NOTES: 2. Radial Tape and Reel may be available. Please contact your MotorolaNOTES: 2. representative.

Page 80: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-115

500 mW DO-35 Glass Data Sheet

1–1.3 Watt DO-41 GlassZener Voltage Regulator DiodesGENERAL DATA APPLICABLE TO ALL SERIES INTHIS GROUP

One Watt Hermetically Sealed GlassSilicon Zener Diodes

Specification Features:• Complete Voltage Range — 3.3 to 100 Volts• DO-41 Package• Double Slug Type Construction• Metallurgically Bonded Construction• Oxide Passivated Die

Mechanical Characteristics:

CASE: Double slug type, hermetically sealed glassMAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16″ from

case for 10 secondsFINISH: All external surfaces are corrosion resistant with readily solderable leadsPOLARITY: Cathode indicated by color band. When operated in zener mode, cathode

will be positive with respect to anodeMOUNTING POSITION: AnyWAFER FAB LOCATION: Phoenix, ArizonaASSEMBLY/TEST LOCATION: Seoul, Korea

MAXIMUM RATINGS

Rating Symbol Value Unit

DC Power Dissipation @ TA = 50°CDerate above 50°C

PD 16.67

WattmW/°C

Operating and Storage Junction Temperature Range TJ, Tstg – 65 to +200 °C

Figure 1. Power Temperature Derating Curve

TL, LEAD TEMPERATURE (°C)

P ,

MAX

IMU

M D

ISSI

PATI

ON

(WAT

TS)

D

0 20 40 60 20080 100 120 140 160 180

0.25

0.5

0.75

1

1.25L = LEAD LENGTH TO HEAT SINK

L = 3/8″L = 1/8″L = 1″

GENERALDATA

CASE 59-03DO-41GLASS

1–1.3 WATTDO-41 GLASS

1 WATTZENER REGULATOR

DIODES3.3–100 VOLTS

Page 81: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-116500 mW DO-35 Glass Data Sheet

Figure 2. Temperature Coefficients(–55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)

a. Range for Units to 12 Volts b. Range for Units to 12 to 100 Volts

+12

+10

+8

+6

+4

+2

0

–2

–42 3 4 5 6 7 8 9 10 11 12

VZ, ZENER VOLTAGE (VOLTS)

θVZ

, TEM

PER

ATU

RE

CO

EFFI

CIE

NT

(mV/

°C) 100

7050

30

20

1075

3

2

110 20 30 50 70 100

VZ, ZENER VOLTAGE (VOLTS)

θVZ

, TEM

PER

ATU

RE

CO

EFFI

CIE

NT

(mV/

°C)

VZ @ IZTRANGE

RANGE VZ @ IZT

Figure 3. Typical Thermal Resistanceversus Lead Length

Figure 4. Effect of Zener Current

175

150

125

100

75

50

25

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L, LEAD LENGTH TO HEAT SINK (INCHES)θ JL

, JU

NC

TIO

N-T

O-L

EAD

TH

ERM

AL R

ESIS

TAN

CE

(mV/

°C/W

)

θVZ

, TEM

PER

ATU

RE

CO

EFFI

CIE

NT

(mV/

°C) +6

+4

+2

0

–2

–43 4 5 6 7 8

VZ, ZENER VOLTAGE (VOLTS)

VZ @ IZTA = 25°C

20 mA

0.01 mA1 mA

NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTSNOTE: CHANGES IN ZENER CURRENT DO NOTNOTE: EFFECT TEMPERATURE COEFFICIENTS

Figure 5. Maximum Surge Power

1007050

30

20

1075

32

10.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500 1000

PW, PULSE WIDTH (ms)This graph represents 90 percentile data points.For worst case design characteristics, multiply surge power by 2/3.

P pk,

PEA

K SU

RG

E PO

WER

(WAT

TS)

11 V–100 V NONREPETITIVE

3.3 V–10 V NONREPETITIVE5% DUTY CYCLE

10% DUTY CYCLE

20% DUTY CYCLE

RECTANGULARWAVEFORMTJ = 25°C PRIOR TOINITIAL PULSE

Page 82: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-117

500 mW DO-35 Glass Data Sheet

Figure 10. Typical Forward Characteristics

VF, FORWARD VOLTAGE (VOLTS)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

1000500

200

100

50

20

10

5

2

1

I F, F

OR

WAR

D C

UR

REN

T (m

A)

MAXIMUM

150°C

75°C

0°C

25°C

Figure 6. Effect of Zener Currenton Zener Impedance

Figure 7. Effect of Zener Voltageon Zener Impedance

Figure 9. Typical Capacitance versus V Z

Figure 8. Typical Leakage Current

1000500

200

100

50

20

10

5

2

10.1 0.2 0.5 1 2 5 10 20 50 100

IZ, ZENER CURRENT (mA)

ZZ

, DYN

AMIC

IMPE

DAN

CE

(OH

MS)

1000700500

200

1007050

20

1075

2

11 2 100

VZ, ZENER CURRENT (mA)3 5 7 10 20 30 50 70

ZZ

, DYN

AMIC

IMPE

DAN

CE

(OH

MS)

1000070005000

2000

1000700500

200

1007050

20

1075

2

10.70.5

0.2

0.10.070.05

0.02

0.010.0070.005

0.002

0.001

I R, L

EAKA

GE

CU

RR

ENT

(µA)

3 4 5 6 7 8 9 10 11 12 13 14 15

VZ, NOMINAL ZENER VOLTAGE (VOLTS)

+25°C

+125°C

TYPICAL LEAKAGE CURRENTAT 80% OF NOMINALBREAKDOWN VOLTAGE

TJ = 25°CiZ(rms) = 0.1 IZ(dc)f = 60 Hz

6.2 V

27 V

VZ = 2.7 V

47 V

TJ = 25°CiZ(rms) = 0.1 IZ(dc)f = 60 Hz

20 mA

5 mA

IZ = 1 mA

0 V BIAS

1 V BIAS

400300

200

100

50

20

108

41 2 5 10 20 50 100

VZ, NOMINAL VZ (VOLTS)

C, C

APAC

ITAN

CE

(pF)

50% OF BREAKDOWN BIAS

MINIMUM

Page 83: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-118500 mW DO-35 Glass Data Sheet

APPLICATION NOTE

Since the actual voltage available from a given zener diodeis temperature dependent, it is necessary to determine junc-tion temperature under any set of operating conditions in orderto calculate its value. The following procedure is recom-mended:

Lead Temperature, TL, should be determined from:

TL = θLAPD + TA.

θLA is the lead-to-ambient thermal resistance (°C/W) and PD isthe power dissipation. The value for θLA will vary and dependson the device mounting method. θLA is generally 30 to 40°C/Wfor the various clips and tie points in common use and forprinted circuit board wiring.

The temperature of the lead can also be measured using athermocouple placed on the lead as close as possible to the tiepoint. The thermal mass connected to the tie point is normallylarge enough so that it will not significantly respond to heatsurges generated in the diode as a result of pulsed operationonce steady-state conditions are achieved. Using the mea-sured value of TL, the junction temperature may be deter-mined by:

TJ = TL + ∆TJL.∆TJL is the increase in junction temperature above the lead

temperature and may be found as follows:

∆TJL = θJLPD.

θJL may be determined from Figure 3 for dc power condi-tions. For worst-case design, using expected limits of IZ, limitsof PD and the extremes of TJ(∆TJ) may be estimated. Changesin voltage, VZ, can then be found from:

∆V = θVZ ∆TJ.

θVZ, the zener voltage temperature coefficient, is found fromFigure 2.

Under high power-pulse operation, the zener voltage willvary with time and may also be affected significantly by thezener resistance. For best regulation, keep current excursionsas low as possible.

Surge limitations are given in Figure 5. They are lower thanwould be expected by considering only junction temperature,as current crowding effects cause temperatures to be ex-tremely high in small spots, resulting in device degradationshould the limits of Figure 5 be exceeded.

Page 84: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-119

500 mW DO-35 Glass Data Sheet

*ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 1.2 V Max, IF = 200 mA for all types.

JEDEC

NominalZener Voltage Test

Maximum Zener Impedance (Note 4) Leakage CurrentSurge Current @

JEDECType No.(Note 1)

Zener VoltageVZ @ IZT

Volts(Notes 2 and 3)

TestCurrent

IZTmA

ZZT @ IZTOhms

ZZK @ IZKOhms

IZKmA

IRµA Max

VRVolts

Surge Current @TA = 25°C

ir – mA(Note 5)

1N4728A 3.3 76 10 400 1 100 1 13801N4729A 3.6 69 10 400 1 100 1 12601N4730A 3.9 64 9 400 1 50 1 11901N4731A 4.3 58 9 400 1 10 1 10701N4732A 4.7 53 8 500 1 10 1 970

1N4733A 5.1 49 7 550 1 10 1 8901N4734A 5.6 45 5 600 1 10 2 8101N4735A 6.2 41 2 700 1 10 3 7301N4736A 6.8 37 3.5 700 1 10 4 6601N4737A 7.5 34 4 700 0.5 10 5 605

1N4738A 8.2 31 4.5 700 0.5 10 6 5501N4739A 9.1 28 5 700 0.5 10 7 5001N4740A 10 25 7 700 0.25 10 7.6 4541N4741A 11 23 8 700 0.25 5 8.4 4141N4742A 12 21 9 700 0.25 5 9.1 380

1N4743A 13 19 10 700 0.25 5 9.9 3441N4744A 15 17 14 700 0.25 5 11.4 3041N4745A 16 15.5 16 700 0.25 5 12.2 2851N4746A 18 14 20 750 0.25 5 13.7 2501N4747A 20 12.5 22 750 0.25 5 15.2 225

1N4748A 22 11.5 23 750 0.25 5 16.7 2051N4749A 24 10.5 25 750 0.25 5 18.2 1901N4750A 27 9.5 35 750 0.25 5 20.6 1701N4751A 30 8.5 40 1000 0.25 5 22.8 1501N4752A 33 7.5 45 1000 0.25 5 25.1 135

1N4753A 36 7 50 1000 0.25 5 27.4 1251N4754A 39 6.5 60 1000 0.25 5 29.7 1151N4755A 43 6 70 1500 0.25 5 32.7 1101N4756A 47 5.5 80 1500 0.25 5 35.8 951N4757A 51 5 95 1500 0.25 5 38.8 90

1N4758A 56 4.5 110 2000 0.25 5 42.6 801N4759A 62 4 125 2000 0.25 5 47.1 701N4760A 68 3.7 150 2000 0.25 5 51.7 651N4761A 75 3.3 175 2000 0.25 5 56 601N4762A 82 3 200 3000 0.25 5 62.2 551N4763A 91 2.8 250 3000 0.25 5 69.2 501N4764A 100 2.5 350 3000 0.25 5 76 45

*Indicates JEDEC Registered Data.

NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATION

The JEDEC type numbers listed have a standard tolerance on the nominal zener voltage of±5%. C for ±2%, D for ±1%.

NOTE 2. SPECIALS AVAILABLE INCLUDE:

Nominal zener voltages between the voltages shown and tighter voltage tolerances.

For detailed information on price, availability, and delivery, contact your nearest Motorola rep-resentative.

NOTE 3. ZENER VOLTAGE (VZ) MEASUREMENT

Motorola guarantees the zener voltage when measured at 90 seconds while maintaining thelead temperature (TL) at 30°C ± 1°C, 3/8″ from the diode body.

NOTE 4. ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 60 cycle ac voltage, which results when an ac cur-rent having an rms value equal to 10% of the dc zener current (IZT or IZK) is superimposedon IZT or IZK.

NOTE 5. SURGE CURRENT (ir) NON-REPETITIVE

The rating listed in the electrical characteristics table is maximum peak, non-repetitive, re-verse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second dura-tion superimposed on the test current, IZT, per JEDEC registration; however, actual devicecapability is as described in Figure 5 of the General Data — DO-41 Glass.

Page 85: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-120500 mW DO-35 Glass Data Sheet

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.) (VF = 1.2 V Max, IF = 200 mA for all types.)

T

Zener VoltageVZT (V)

(Notes 2 and 3) TestC t

Zener ImpedanceZZ (ohms)(Note 4)

LeakageCurrent

(µA)Surge

CurrentT 25 C

Type VZ VZCurrent

IZT MaxMax at IZ IR

TA = 25°Cir (mA)Type

(Note 1)VZMin

VZMax

IZT(mA)

Maxat IZT (mA) VR (V)

IRMax

ir (mA)(Note 5)

BZX85C3V3RL 3.1 3.5 80 20 400 1 1 60 1380BZX85C3V6RL 3.4 3.8 60 15 500 1 1 30 1260BZX85C3V9RL 3.7 4.1 60 15 500 1 1 5 1190BZX85C4V3RL 4 4.6 50 13 500 1 1 3 1070BZX85C4V7RL 4.4 5 45 13 600 1 1.5 3 970

BZX85C5V1RL 4.8 5.4 45 10 500 1 2 1 890BZX85C5V6RL 5.2 6 45 7 400 1 2 1 810BZX85C6V2RL 5.8 6.6 35 4 300 1 3 1 730BZX85C6V8RL 6.4 7.2 35 3.5 300 1 4 1 660BZX85C7V5RL 7 7.9 35 3 200 0.5 4.5 1 605

BZX85C8V2RL 7.7 8.7 25 5 200 0.5 5 1 550BZX85C9V1RL 8.5 9.6 25 5 200 0.5 6.5 1 500BZX85C10RL 9.4 10.6 25 7 200 0.5 7 0.5 454BZX85C11RL 10.4 11.6 20 8 300 0.5 7.7 0.5 414BZX85C12RL 11.4 12.7 20 9 350 0.5 8.4 0.5 380

BZX85C13RL 12.4 14.1 20 10 400 0.5 9.1 0.5 344BZX85C15RL 13.8 15.6 15 15 500 0.5 10.5 0.5 304BZX85C16RL 15.3 17.1 15 15 500 0.5 11 0.5 285BZX85C18RL 16.8 19.1 15 20 500 0.5 12.5 0.5 250BZX85C20RL 18.8 21.2 10 24 600 0.5 14 0.5 225

BZX85C22RL 20.8 23.3 10 25 600 0.5 15.5 0.5 205BZX85C24RL 22.8 25.6 10 25 600 0.5 17 0.5 190BZX85C27RL 25.1 28.9 8 30 750 0.25 19 0.5 170BZX85C30RL 28 32 8 30 1000 0.25 21 0.5 150BZX85C33RL 31 35 8 35 1000 0.25 23 0.5 135

BZX85C36RL 34 38 8 40 1000 0.25 25 0.5 125BZX85C39RL 37 41 6 45 1000 0.25 27 0.5 115BZX85C43RL 40 46 6 50 1000 0.25 30 0.5 110BZX85C47RL 44 50 4 90 1500 0.25 33 0.5 95BZX85C51RL 48 54 4 115 1500 0.25 36 0.5 90

BZX85C56RL 52 60 4 120 2000 0.25 39 0.5 80BZX85C62RL 58 66 4 125 2000 0.25 43 0.5 70BZX85C68RL 64 72 4 130 2000 0.25 47 0.5 65BZX85C75RL 70 80 4 150 2000 0.25 51 0.5 60BZX85C82RL 77 87 2.7 200 3000 0.25 56 0.5 55

BZX85C91RL 85 96 2.7 250 3000 0.25 62 0.5 50BZX85C100RL 96 106 2.7 350 3000 0.25 68 0.5 45

NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATION

The type numbers listed have zener voltage min/max limits as shown. Device tolerance of±2% are indicated by a “B” instead of “C.”

NOTE 2. SPECIALS AVAILABLE INCLUDE:

Nominal zener voltages between the voltages shown and tighter voltage tolerances.

For detailed information on price, availability, and delivery, contact your nearest Motorola rep-resentative.

NOTE 3. ZENER VOLTAGE (VZ) MEASUREMENTVZ is measured after the test current has been applied to 40 ± 10 msec., while maintainingthe lead temperature (TL) at 30°C ± 1°C, 3/8″ from the diode body.

NOTE 4. ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 1 kHz cycle ac voltage, which results when an accurrent having an rms value equal to 10% of the dc zener current (IZT) or (IZK) is superim-posed on IZT or IZK.

NOTE 5. SURGE CURRENT (ir) NON-REPETITIVE

The rating listed in the electrical characteristics table is maximum peak, non-repetitive, re-verse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second dura-tion superimposed on the test current IZT. However, actual device capability is as describedin Figure 5 of General Data DO-41 glass.

Page 86: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-121

500 mW DO-35 Glass Data Sheet

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 1.2 V Max, IF = 200 mA for all types.

Type No

Zener Voltage (V)(Notes 2 and 3) Test Current

IZT

Zener Impedance(Note 4)

f = 1 kHz (ohms)Blocking

Volt Min (V)

SurgeCurrent

TA = 25°Ci (ma)Type No.

(Note 1) VZ Min VZ MaxIZT

(mA) Typ Max IR = 1 µAir (ma)

(Note 5)

MZPY3.9RL 3.7 4.1 100 4 7 — 1190MZPY4.3RL 4 4.6 100 4 7 — 1070MZPY4.7RL 4.4 5 100 4 7 — 970MZPY5.1RL 4.8 5.4 100 2 5 0.7 890MZPY5.6RL 5.2 6 100 1 2 1.5 810

MZPY6.2RL 5.8 6.6 100 1 2 2 730MZPY6.8RL 6.4 7.2 100 1 2 3 660MZPY7.5RL 7 7.9 100 1 2 5 605MZPY8.2RL 7.7 8.7 100 1 2 6 550MZPY9.1RL 8.5 9.6 50 2 4 7 500

MZPY10RL 9.4 10.6 50 2 4 7.5 454MZPY11RL 10.4 11.6 50 3 7 8.5 414MZPY12RL 11.4 12.7 50 3 7 9 380MZPY13RL 12.4 14.1 50 4 9 10 344MZPY15RL 14.2 15.8 50 4 9 11 304

MZPY16RL 15.3 17.1 25 5 10 12 285MZPY18RL 16.8 19.1 25 5 11 14 250MZPY20RL 18.8 21.2 25 6 12 15 225MZPY22RL 20.8 23.3 25 7 13 17 205MZPY24RL 22.8 25.6 25 8 14 18 190

MZPY27RL 25.1 28.9 25 9 15 20 170MZPY30RL 28 32 25 10 20 22.5 150MZPY33RL 31 35 25 11 20 25 135MZPY36RL 34 38 10 25 60 27 125MZPY39RL 37 41 10 30 60 29 115

MZPY43RL 40 46 10 35 80 32 110MZPY47RL 44 50 10 40 80 35 95MZPY51RL 48 54 10 45 100 38 90MZPY56RL 52 60 10 50 100 42 80MZPY62RL 58 66 10 60 130 47 70

MZPY68RL 64 72 10 65 130 51 65MZPY75RL 70 79 10 70 160 56 60MZPY82RL 77 88 10 80 160 61 55MZPY91RL 85 96 5 120 250 68 50MZPY100RL 94 106 5 130 250 75 45

NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATION

The type numbers listed have zener voltage min/max limits as shown. Device tolerance of±2% are indicated by a “C” and ±1% by a “D” suffix.

NOTE 2. SPECIALS AVAILABLE INCLUDE:

Nominal zener voltages between the voltages shown and tighter voltage tolerances.

For detailed information on price, availability, and delivery, contact your nearest Motorola rep-resentative.

NOTE 3. ZENER VOLTAGE (VZ) MEASUREMENTVZ is measured after the test current has been applied to 40 ± 10 msec., while maintainingthe lead temperature (TL) at 30°C ± 1°C, 3/8″ from the diode body.

NOTE 4. ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 1 kHz cycle ac voltage, which results when an accurrent having an rms value equal to 10% of the dc zener current (IZT) of (IZK) is superim-posed on IZT or IZK.

NOTE 5. SURGE CURRENT (ir) NON-REPETITIVE

The rating listed in the electrical characteristics table is maximum peak, non-repetitive, re-verse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second dura-tion superimposed on the test current IZT, however, actual device capability is as describedin Figure 5 of General Data DO-41 glass.

Page 87: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-122500 mW DO-35 Glass Data Sheet

1–1.3 Watt DO-41 Glass

MULTIPLE PACKAGE QUANTITY (MPQ)REQUIREMENTS

Zener Voltage Regulator Diodes — Axial Leaded

CASE 59-03DO-41GLASS

(Refer to Section 10 for Surface Mount, Thermal Data and Footprint Information.)

(Refer to Section 10 for more information on Packaging Specifications.)

Package Option

Tape and Reel 6K

Type No. Suffix

RL, RL2

MPQ (Units)

Tape and Ammo TA, TA2 4K

NOTES:1. ALL RULES AND NOTES ASSOCIATED WITH

JEDEC DO-41 OUTLINE SHALL APPLY.2. POLARITY DENOTED BY CATHODE BAND.3. LEAD DIAMETER NOT CONTROLLED WITHIN F

DIMENSION.

K

K

F

A

F

D

MIN MINMAX MAXMILLIMETERS INCHES

DIM4.072.040.71—

27.94

5.202.710.861.27—

0.1600.0800.028

— 1.100

0.2050.1070.0340.050

ABDFK

B

NOTE: 1. The “2” suffix refers to 26 mm tape spacing.

Page 88: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-123

500 mW DO-35 Glass Data Sheet

1 to 3 Watt DO-41 Surmetic 30Zener Voltage Regulator DiodesGENERAL DATA APPLICABLE TO ALL SERIES INTHIS GROUP

1 to 3 Watt Surmetic 30Silicon Zener Diodes. . . a complete series of 1 to 3 Watt Zener Diodes with limits and operating characteristicsthat reflect the superior capabilities of silicon-oxide-passivated junctions. All this in anaxial-lead, transfer-molded plastic package offering protection in all common environmen-tal conditions.

Specification Features:• Surge Rating of 98 Watts @ 1 ms• Maximum Limits Guaranteed On Up To Six Electrical Parameters• Package No Larger Than the Conventional 1 Watt Package

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plasticFINISH: All external surfaces are corrosion resistant and leads are readily solderablePOLARITY: Cathode indicated by color band. When operated in zener mode, cathode

will be positive with respect to anodeMOUNTING POSITION: AnyWEIGHT: 0.4 gram (approx)WAFER FAB LOCATION: Phoenix, ArizonaASSEMBLY/TEST LOCATION: Seoul, Korea

MAXIMUM RATINGS

Rating Symbol Value Unit

DC Power Dissipation @ TL = 75°CLead Length = 3/8″Derate above 75°C

PD 3

24

Watts

mW/°C

DC Power Dissipation @ TA = 50°CDerate above 50°C

PD 16.67

WattmW/°C

Operating and Storage Junction Temperature Range TJ, Tstg – 65 to +200 °C

GENERALDATA

CASE 59-03DO-41

PLASTIC

1–3 WATTDO-41

SURMETIC 30

1 TO 3 WATTZENER REGULATOR

DIODES3.3–400 VOLTS

Figure 1. Power Temperature Derating Curve

TL, LEAD TEMPERATURE (°C)

P ,

MAX

IMU

M D

ISSI

PATI

ON

(WAT

TS)

D

0 20 40 60 20080 100 120 140 160 1800

1

2

3

4

5

L = 1/8″

L = 3/8″

L = 1″

L = LEAD LENGTH TO HEAT SINK

Page 89: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-124500 mW DO-35 Glass Data Sheet

t, TIME (SECONDS)0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10

0.3

0.50.7

1

2

3

57

10

20

30

D =0.5

0.2

0.1

0.05

0.01

D = 0

DUTY CYCLE, D =t1/t2

θ JL(t,

D) T

RAN

SIEN

T TH

ERM

AL R

ESIS

TAN

CE

JU

NC

TIO

N-T

O-L

EAD

( C

/W)

°

PPK t1

NOTE: BELOW 0.1 SECOND, THERMAL RESPONSE CURVE IS APPLICABLE

TO ANY LEAD LENGTH (L).

SINGLE PULSE ∆TJL = θJL (t)PPKREPETITIVE PULSES ∆TJL = θJL (t,D)PPK

t20.02

10

20

30

50

100

200

300

500

1K

0.1 0.2 0.3 0.5 1 2 3 5 10 20 30 50 100PW, PULSE WIDTH (ms)

P

, PE

AK S

UR

GE

POW

ER (W

ATTS

)PK

1 2 5 10 20 50 100 200 400 10000.00030.0005

0.0010.002

0.0050.010.02

0.050.10.2

0.5123

TA = 125°C

TA = 125°C

NOMINAL VZ (VOLTS)

AS S

PEC

IFIE

D IN

ELE

C. C

HAR

. TAB

LE

Figure 2. Typical Thermal Response L, Lead Length = 3/8 Inch

Figure 3. Maximum Surge Power Figure 4. Typical Reverse Leakage

I R, R

EVER

SE L

EAKA

GE

(µAd

c) @

VRRECTANGULAR

NONREPETITIVEWAVEFORMTJ = 25°C PRIORTO INITIAL PULSE

APPLICATION NOTE

Since the actual voltage available from a given zener diodeis temperature dependent, it is necessary to determine junc-tion temperature under any set of operating conditions in orderto calculate its value. The following procedure is recom-mended:

Lead Temperature, TL, should be determined from:

TL = θLA PD + TAθLA is the lead-to-ambient thermal resistance (°C/W) andPD is the power dissipation. The value for θLA will vary anddepends on the device mounting method. θLA is generally30–40°C/W for the various clips and tie points in commonuse and for printed circuit board wiring.

The temperature of the lead can also be measured using athermocouple placed on the lead as close as possible to the tiepoint. The thermal mass connected to the tie point is normallylarge enough so that it will not significantly respond to heatsurges generated in the diode as a result of pulsed operationonce steady-state conditions are achieved. Using the mea-sured value of TL, the junction temperature may be deter-mined by:

TJ = TL + ∆TJL

∆TJL is the increase in junction temperature above the leadtemperature and may be found from Figure 2 for a train ofpower pulses (L = 3/8 inch) or from Figure 10 for dc power.

∆TJL = θJL PD

For worst-case design, using expected limits of IZ, limits ofPD and the extremes of TJ (∆TJ) may be estimated. Changesin voltage, VZ, can then be found from:

∆V = θVZ ∆TJ

θVZ, the zener voltage temperature coefficient, is found fromFigures 5 and 6.Under high power-pulse operation, the zener voltage will

vary with time and may also be affected significantly by thezener resistance. For best regulation, keep current excursionsas low as possible.

Data of Figure 2 should not be used to compute surge capa-bility. Surge limitations are given in Figure 3. They are lowerthan would be expected by considering only junction tempera-ture, as current crowding effects cause temperatures to be ex-tremely high in small spots resulting in device degradationshould the limits of Figure 3 be exceeded.

Page 90: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-125

500 mW DO-35 Glass Data Sheet

Figure 5. Units To 12 Volts Figure 6. Units 10 To 400 Volts

Figure 7. V Z = 3.3 thru 10 Volts Figure 8. V Z = 12 thru 82 Volts

Figure 9. V Z = 100 thru 400 Volts Figure 10. Typical Thermal Resistance

ZENER VOLTAGE versus ZENER CURRENT(Figures 7, 8 and 9)

TEMPERATURE COEFFICIENT RANGES(90% of the Units are in the Ranges Indicated)

VZ, ZENER VOLTAGE @ IZT (VOLTS)3 4 5 6 7 8 9 10 11 12

10

8

6

4

2

0

–2

–4

RANGE

, TEM

PER

ATU

RE

CO

EFFI

CIE

NT

(mV/

C) @

IZT

VZ°

θ

1000

500

200

100

50

20

1010 20 50 100 200 400 1000

VZ, ZENER VOLTAGE @ IZT (VOLTS)

, TEM

PER

ATU

RE

CO

EFFI

CIE

NT

(mV/

C) @

I ZT

VZ°

θ

0 1 2 3 4 5 6 7 8 9 10

100

503020

10

1

0.50.30.2

0.1

VZ, ZENER VOLTAGE (VOLTS)

I , Z

ENER

CU

RR

ENT

(mA)

Z

2

53

0 10 20 30 40 50 60 70 80 90 100VZ, ZENER VOLTAGE (VOLTS)

I ,

ZEN

ER C

UR

REN

T (m

A)Z

100

503020

10

1

0.50.30.2

0.1

2

53

100 200 300 400250 350150

10

1

0.5

0.2

0.1

VZ, ZENER VOLTAGE (VOLTS)

2

5

I ,

ZEN

ER C

UR

REN

T (m

A)Z

0

10

20

30

40

50

60

70

80

L, LEAD LENGTH TO HEAT SINK (INCH)

PRIMARY PATH OFCONDUCTION IS THROUGH

THE CATHODE LEAD

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

TL

JL, J

UN

CTI

ON

-TO

-LEA

D T

HER

MAL

RES

ISTA

NC

LL

( C

/W)

°

Page 91: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-126500 mW DO-35 Glass Data Sheet

*MAXIMUM RATINGS

Rating Symbol Value Unit

DC Power Dissipation @ TL = 75°C, Lead Length = 3/8″Derate above 75°C

PD 1.512

WattsmW/°C

*ELECTRICAL CHARACTERISTICS (TL = 30°C unless otherwise noted. VF = 1.5 Volts Max @ lF = 200 mAdc for all types.)

MotorolaType

NominalZener Voltage

VZ @ IZT

TestCurrent

Max. Zener Impedance (Note 4)Max. Reverse

Leakage CurrentMaximum DC

ZenerCurrentType

Number(Note 1)

VZ @ IZTVolts

(Note 2 and 3)

Curren tIZTmA

ZZT @ IZTOhms

ZZKOhms

IZKmA

@ IRµA

VRVolts

@Current

IZMmAdc

1N5913B 3.3 113.6 10 500 1 100 1 4541N5914B 3.6 104.2 9 500 1 75 1 4161N5915B 3.9 96.1 7.5 500 1 25 1 3841N5916B 4.3 87.2 6 500 1 5 1 3481N5917B 4.7 79.8 5 500 1 5 1.5 319

1N5918B 5.1 73.5 4 350 1 5 2 2941N5919B 5.6 66.9 2 250 1 5 3 2671N5920B 6.2 60.5 2 200 1 5 4 2411N5921B 6.8 55.1 2.5 200 1 5 5.2 2201N5922B 7.5 50 3 400 0.5 5 6 200

1N5923B 8.2 45.7 3.5 400 0.5 5 6.5 1821N5924B 9.1 41.2 4 500 0.5 5 7 1641N5925B 10 37.5 4.5 500 0.25 5 8 1501N5926B 11 34.1 5.5 550 0.25 1 8.4 1361N5927B 12 31.2 6.5 550 0.25 1 9.1 125

1N5928B 13 28.8 7 550 0.25 1 9.9 1151N5929B 15 25 9 600 0.25 1 11.4 1001N5930B 16 23.4 10 600 0.25 1 12.2 931N5931B 18 20.8 12 650 0.25 1 13.7 831N5932B 20 18.7 14 650 0.25 1 15.2 75

1N5933B 22 17 17.5 650 0.25 1 16.7 681N5934B 24 15.6 19 700 0.25 1 18.2 621N5935B 27 13.9 23 700 0.25 1 20.6 551N5936B 30 12.5 26 750 0.25 1 22.8 501N5937B 33 11.4 33 800 0.25 1 25.1 45

1N5938B 36 10.4 38 850 0.25 1 27.4 411N5939B 39 9.6 45 900 0.25 1 29.7 381N5940B 43 8.7 53 950 0.25 1 32.7 341N5941B 47 8 67 1000 0.25 1 35.8 311N5942B 51 7.3 70 1100 0.25 1 38.8 29

1N5943B 56 6.7 86 1300 0.25 1 42.6 261N5944B 62 6 100 1500 0.25 1 47.1 241N5945B 68 5.5 120 1700 0.25 1 51.7 221N5946B 75 5 140 2000 0.25 1 56 201N5947B 82 4.6 160 2500 0.25 1 62.2 18

(continued)

*Indicates JEDEC Registered Data.

Page 92: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-127

500 mW DO-35 Glass Data Sheet

*ELECTRICAL CHARACTERISTICS — continued (TL = 30°C unless otherwise noted. VF = 1.5 Volts Max @ lF = 200 mAdc for alltypes.)

MotorolaType

NominalZener Voltage

VZ @ IZT

TestCurrent

Max. Zener Impedance (Note 4)Max. Reverse

Leakage CurrentMaximum DC

ZenerCurrentType

Number(Note 1)

VZ @ IZTVolts

(Note 2 and 3)

Curren tIZTmA

ZZT @ IZTOhms

ZZKOhms

IZKmA

@ IRµA

VRVolts

@Current

IZMmAdc

1N5948B 91 4.1 200 3000 0.25 1 69.2 161N5949B 100 3.7 250 3100 0.25 1 76 151N5950B 110 3.4 300 4000 0.25 1 83.6 131N5951B 120 3.1 380 4500 0.25 1 91.2 121N5952B 130 2.9 450 5000 0.25 1 98.8 11

1N5953B 150 2.5 600 6000 0.25 1 114 101N5954B 160 2.3 700 6500 0.25 1 121.6 91N5955B 180 2.1 900 7000 0.25 1 136.8 81N5956B 200 1.9 1200 8000 0.25 1 152 7

*Indicates JEDEC Registered Data.

NOTE 1. TOLERANCE AND VOLTAGE DESIGNATIONTolerance designation — Device tolerances of ±5% are indicated by a “B” suffix.

NOTE 2. SPECIAL SELECTIONS AVAILABLE INCLUDE:Nominal zener voltages between those shown and ±1% and ±2% tight voltage tolerances.Consult factory.

NOTE 3. ZENER VOLTAGE (VZ) MEASUREMENT

Motorola guarantees the zener voltage when meausred at 90 seconds while maintaining thelead temperature (TL) at 30°C ±1°C, 3/8″ from the diode body.

NOTE 4. ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 60 cycle ac voltage, which results when an ac cur-rent having an rms value equal to 10% of the dc zener current (IZT or IZK) is superimposedon IZT or IZK.

Page 93: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-128500 mW DO-35 Glass Data Sheet

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 1.5 V Max, IF = 200 mA for all types)

Motorola

NominalZener Voltage

VZ @ IZT

TestCurrent

Max Zener Impedance(Note 3)

LeakageCurrent

MaximumZener

Current

SurgeCurrent

@ TA = 25°CMotoro laType No.(Note 1)

VZ @ IZTVolts

(Note 2)

Curren tIZTmA

ZZT @ IZTOhms

ZZK @ IZKOhms

IZKmA

IRµA Max

VRVolts

@Current

IZMmA

@ TA = 25°Cir – mA(Note 4)

3EZ3.9D5 3.9 192 4.5 400 1 80 1 630 4.43EZ4.3D5 4.3 174 4.5 400 1 30 1 590 4.13EZ4.7D5 4.7 160 4 500 1 20 1 550 3.83EZ5.1D5 5.1 147 3.5 550 1 5 1 520 3.5

3EZ5.6D5 5.6 134 2.5 600 1 5 2 480 3.33EZ6.2D5 6.2 121 1.5 700 1 5 3 435 3.13EZ6.8D5 6.8 110 2 700 1 5 4 393 2.93EZ7.5D5 7.5 100 2 700 0.5 5 5 360 2.66

3EZ8.2D5 8.2 91 2.3 700 0.5 5 6 330 2.443EZ9.1D5 9.1 82 2.5 700 0.5 3 7 297 2.23EZ10D5 10 75 3.5 700 0.25 3 7.6 270 23EZ11D5 11 68 4 700 0.25 1 8.4 245 1.82

3EZ12D5 12 63 4.5 700 0.25 1 9.1 225 1.663EZ13D5 13 58 4.5 700 0.25 0.5 9.9 208 1.543EZ14D5 14 53 5 700 0.25 0.5 10.6 193 1.433EZ15D5 15 50 5.5 700 0.25 0.5 11.4 180 1.33

3EZ16D5 16 47 5.5 700 0.25 0.5 12.2 169 1.253EZ17D5 17 44 6 750 0.25 0.5 13 159 1.183EZ18D5 18 42 6 750 0.25 0.5 13.7 150 1.113EZ19D5 19 40 7 750 0.25 0.5 14.4 142 1.05

3EZ20D5 20 37 7 750 0.25 0.5 15.2 135 13EZ22D5 22 34 8 750 0.25 0.5 16.7 123 0.913EZ24D5 24 31 9 750 0.25 0.5 18.2 112 0.833EZ27D5 27 28 10 750 0.25 0.5 20.6 100 0.74

3EZ28D5 28 27 12 750 0.25 0.5 21 96 0.713EZ30D5 30 25 16 1000 0.25 0.5 22.5 90 0.673EZ33D5 33 23 20 1000 0.25 0.5 25.1 82 0.613EZ36D5 36 21 22 1000 0.25 0.5 27.4 75 0.56

3EZ39D5 39 19 28 1000 0.25 0.5 29.7 69 0.513EZ43D5 43 17 33 1500 0.25 0.5 32.7 63 0.453EZ47D5 47 16 38 1500 0.25 0.5 35.6 57 0.423EZ51D5 51 15 45 1500 0.25 0.5 38.8 53 0.39

3EZ56D5 56 13 50 2000 0.25 0.5 42.6 48 0.363EZ62D5 62 12 55 2000 0.25 0.5 47.1 44 0.323EZ68D5 68 11 70 2000 0.25 0.5 51.7 40 0.293EZ75D5 75 10 85 2000 0.25 0.5 56 36 0.27

3EZ82D5 82 9.1 95 3000 0.25 0.5 62.2 33 0.243EZ91D5 91 8.2 115 3000 0.25 0.5 69.2 30 0.223EZ100D5 100 7.5 160 3000 0.25 0.5 76 27 0.23EZ110D5 110 6.8 225 4000 0.25 0.5 83.6 25 0.18

3EZ120D5 120 6.3 300 4500 0.25 0.5 91.2 22 0.163EZ130D5 130 5.8 375 5000 0.25 0.5 98.8 21 0.153EZ140D5 140 5.3 475 5000 0.25 0.5 106.4 19 0.143EZ150D5 150 5 550 6000 0.25 0.5 114 18 0.13

3EZ160D5 160 4.7 625 6500 0.25 0.5 121.6 17 0.123EZ170D5 170 4.4 650 7000 0.25 0.5 130.4 16 0.123EZ180D5 180 4.2 700 7000 0.25 0.5 136.8 15 0.113EZ190D5 190 4 800 8000 0.25 0.5 144.8 14 0.1

(continued)

Page 94: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-129

500 mW DO-35 Glass Data Sheet

ELECTRICAL CHARACTERISTICS — continued (TA = 25°C unless otherwise noted) VF = 1.5 V Max, IF = 200 mA for all types)

Motorola

NominalZener Voltage

VZ @ IZT

TestCurrent

Max Zener Impedance(Note 3)

LeakageCurrent

MaximumZener

Current

SurgeCurrent

@ TA = 25°CMotoro laType No.(Note 1)

VZ @ IZTVolts

(Note 2)

Curren tIZTmA

ZZT @ IZTOhms

ZZK @ IZKOhms

IZKmA

IRµA Max

VRVolts

@Current

IZMmA

@ TA = 25°Cir – mA(Note 4)

3EZ200D5 200 3.7 875 8000 0.25 0.5 152 13 0.13EZ220D5 220 3.4 1600 9000 0.25 1 167 12 0.093EZ240D5 240 3.1 1700 9000 0.25 1 182 11 0.093EZ270D5 270 2.8 1800 9000 0.25 1 205 10 0.08

3EZ300D5 300 2.5 1900 9000 0.25 1 228 9 0.073EZ330D5 330 2.3 2200 9000 0.25 1 251 8 0.063EZ360D5 360 2.1 2700 9000 0.25 1 274 8 0.063EZ400D5 400 1.9 3500 9000 0.25 1 304 7 0.06

NOTE 1. TOLERANCES

Suffix 5 indicates 5% tolerance. Any other tolerance will be considered as a special device.

NOTE 2. ZENER VOLTAGE (VZ) MEASUREMENTMotorola guarantees the zener voltage when measured at 40 ms ±10 ms 3/8″ from the diodebody, and an ambient temperature of 25°C (+8°C, –2°C)

NOTE 3. ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 60 cycle ac voltage, which results when an ac cur-rent having an rms value equal to 10% of the dc zener current (IZT or IZK) is superimposedon IZT or IZK.

NOTE 4. SURGE CURRENT (ir) NON-REPETITIVE

The rating listed in the electrical characteristics table is maximum peak, non-repetitive, re-verse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second dura-tion superimposed on the test current, IZT, per JEDEC standards, however, actual device ca-pability is as described in Figure 3 of General Data sheet for Surmetic 30s.

NOTE 5. SPECIAL SELECTIONS AVAILABLE INCLUDE:Nominal zener voltages between those shown. Tight voltage tolerances such as ±1% and±2%. Consult factory.

Page 95: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-130500 mW DO-35 Glass Data Sheet

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.) VF = 1.5 V Max, IF = 200 mA for all types.

Type No.

Zener Voltage(Note 2)

TestCurrent

IZT

Zener Impedance at I ZTf = 1000 Hz (Ohm)

Blocking VoltageTypical

TC

Surge Current@ TL = 25°C

ir – mAType No.(Note 1) Min Max

IZTmA Typ Max

Blocking VoltageIR = 1 µA

TC%/°C

ir – mA(Note 3)

MZD3.9 3.7 4.1 100 3.8 7 — –0.06 1380MZD4.3 4 4.6 100 3.8 7 — +0.055 1260MZD4.7 4.4 5 100 3.8 7 — +0.03 1190MZD5.1 4.8 5.4 100 2 5 — +0.03 1070MZD5.6 5.2 6 100 1 2 1.5 +0.038 970

MZD6.2 5.8 6.6 100 1 2 1.5 +0.045 890MZD6.8 6.4 7.2 100 1 2 2 +0.05 810MZD7.5 7 7.9 100 1 2 2 +0.058 730MZD8.2 7.7 8.7 100 1 2 3.5 +0.062 660MZD9.1 8.5 9.6 50 2 4 3.5 +0.068 605

MZD10 9.4 10.6 50 2 4 5 +0.075 550MZD11 10.4 11.6 50 4 7 5 +0.076 500MZD12 11.4 12.7 50 4 7 7 +0.077 454MZD13 12.4 14.1 50 5 10 7 +0.079 414MZD15 13.8 15.8 50 5 10 10 +0.082 380

MZD16 15.3 17.1 25 6 15 10 +0.083 344MZD18 16.8 19.1 25 6 15 10 +0.085 304MZD20 18.8 21.2 25 6 15 10 +0.086 285MZD22 20.8 23.3 25 6 15 12 +0.087 250MZD24 22.8 25.6 25 7 15 12 +0.088 225

MZD27 25.1 28.9 25 7 15 14 +0.09 205MZD30 28 32 25 8 15 14 +0.091 190MZD33 31 35 25 8 15 17 +0.092 170MZD36 34 38 10 21 40 17 +0.093 150MZD39 37 41 10 21 40 20 +0.094 135

MZD43 40 46 10 24 45 20 +0.095 125MZD47 44 50 10 24 45 24 +0.095 115MZD51 48 54 10 25 60 24 +0.096 110MZD56 52 60 10 25 60 28 +0.096 95MZD62 58 66 10 25 80 28 +0.097 90

MZD68 64 72 10 25 80 34 +0.097 80MZD75 70 79 10 30 100 34 +0.098 70MZD82 77 88 10 30 100 41 +0.098 65MZD91 85 96 5 60 200 41 +0.099 60MZD100 94 106 5 60 200 50 +0.11 55

MZD110 104 116 5 80 250 50 +0.11 50MZD120 114 127 5 80 250 60 +0.11 45MZD130 124 141 5 110 300 60 +0.11 —MZD150 138 156 5 110 300 75 +0.11 —MZD160 153 171 5 150 350 75 +0.11 —

MZD180 168 191 5 150 350 90 +0.11 —MZD200 188 212 5 150 350 90 +0.11 —

NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATIONThe type numbers listed have zener voltage min/max limits as shown.

NOTE 2. ZENER VOLTAGE (VZ) MEASUREMENTThe zener voltage is measured after the test current (IZT) has been applied for 40±10 millisec-onds, while maintaining a lead temperautre (TL) of 30°C at a point of 10 mm from the diodebody.

NOTE 3. (ir) NON-REPETITIVE SURGE CURRENT

Maximum peak, non-repetitive reverse surge current of half square wave or equivalent sinewave pulse of 50 ms duration, superimposed on the test current (IZT).

NOTE 4. SPECIAL SELECTIONS AVAILABLE INCLUDE:

Nominal zener voltages between those shown. Tight voltage tolerances such as ±1% and±2%. Consult factory.

Page 96: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-131

500 mW DO-35 Glass Data Sheet

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 1.5 V Max, lF = 200 mA for all types

Motorola

NominalZener Voltage

VZ @ IZT Test Current

Max Zener Impedance(Note 3)

LeakageCurrent

SurgeCurrent

@ TA = 25°CMotoro laType No.(Note 1)

VZ @ IZTVolts

(Note 2)

Test Curren tIZTmA

ZZT @ IZTOhms

ZZK @ IZKOhms

IZKmA

IRµA Max

VRVolts

@

@ TA = 25°Cir – mA(Note 4)

MZP4728A 3.3 76 10 400 1 100 1 1380MZP4729A 3.6 69 10 400 1 100 1 1260MZP4730A 3.9 64 9 400 1 50 1 1190MZP4731A 4.3 58 9 400 1 10 1 1070MZP4732A 4.7 53 8 500 1 10 1 970

MZP4733A 5.1 49 7 550 1 10 1 890MZP4734A 5.6 45 5 600 1 10 2 810MZP4735A 6.2 41 2 700 1 10 3 730MZP4736A 6.8 37 3.5 700 1 10 4 660MZP4737A 7.5 34 4 700 0.5 10 5 605

MZP4738A 8.2 31 4.5 700 0.5 10 6 550MZP4739A 9.1 28 5 700 0.5 10 7 500MZP4740A 10 25 7 700 0.25 10 7.6 454MZP4741A 11 23 8 700 0.25 5 8.4 414MZP4742A 12 21 9 700 0.25 5 9.1 380

MZP4743A 13 19 10 700 0.25 5 9.9 344MZP4744A 15 17 14 700 0.25 5 11.4 304MZP4745A 16 15.5 16 700 0.25 5 12.2 285MZP4746A 18 14 20 750 0.25 5 13.7 250MZP4747A 20 12.5 22 750 0.25 5 15.2 225

MZP4748A 22 11.5 23 750 0.25 5 16.7 205MZP4749A 24 10.5 25 750 0.25 5 18.2 190MZP4750A 27 9.5 35 750 0.25 5 20.6 170MZP4751A 30 8.5 40 1000 0.25 5 22.8 150MZP4752A 33 7.5 45 1000 0.25 5 25.1 135

MZP4753A 36 7 50 1000 0.25 5 27.4 125MZP4754A 39 6.5 60 1000 0.25 5 29.7 115MZP4755A 43 6 70 1500 0.25 5 32.7 110MZP4756A 47 5.5 80 1500 0.25 5 35.8 95MZP4757A 51 5 95 1500 0.25 5 38.8 90

MZP4758A 56 4.5 110 2000 0.25 5 42.6 80MZP4759A 62 4 125 2000 0.25 5 47.1 70MZP4760A 68 3.7 150 2000 0.25 5 51.7 65MZP4761A 75 3.3 175 2000 0.25 5 56 60MZP4762A 82 3 200 3000 0.25 5 62.2 55

MZP4763A 91 2.8 250 3000 0.25 5 69.2 50MZP4764A 100 2.5 350 3000 0.25 5 76 451M110ZS5 110 2.3 450 4000 0.25 5 83.6 —1M120ZS5 120 2 550 4500 0.25 5 91.2 —1M130ZS5 130 1.9 700 5000 0.25 5 98.8 —

1M150ZS5 150 1.7 1000 6000 0.25 5 114 —1M160ZS5 160 1.6 1100 6500 0.25 5 121.6 —1M180ZS5 180 1.4 1200 7000 0.25 5 136.8 —1M200ZS5 200 1.2 1500 8000 0.25 5 152 —

The type numbers listed have a standard tolerance on the nominal zener voltage of ±5%. Thetolerance on the 1M type numbers is indicated by the digits following ZS in the part number.“5” indicates a ±5% VZ tolerance.

NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATION

NOTE 4. SURGE CURRENT (ir) NON-REPETITIVE

NOTE 2. ZENER VOLTAGE (VZ) MEASUREMENTMotorola guarantees the zener voltage when measured at 90 seconds while maintaining thelead temperature (TL) at 30°C ±1°C, 3/8″ from the diode body.

NOTE 3. ZENER IMPEDANCE (ZZ) DERIVATIONThe zener impedance is derived from the 60 cycle ac voltage, which results when an ac

The rating listed in the electrical characteristics table is maximum peak, non-repetitive,reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 secondduration superimposed on the test current, IZT, however, actual device capability is asdescribed in Figure 3 of General Data — Surmetic 30.

NOTE 5. SPECIAL SELECTIONS AVAILABLE INCLUDE:Nominal zener voltages between those shown. Tight voltage tolerances such as ±1% and±2%. Consult factory.

current having an rms value equal to 10% of the dc zener current (IZT or IZK) is superimposedon IZT or IZK.

Page 97: Apostila de Laboratorio de Eletronica Analogica - Completa

GENERAL DATA — 500 mW DO-35 GLASS

Motorola TVS/Zener Device Data6-132500 mW DO-35 Glass Data Sheet

1–3 Watt DO-41 Surmetic 30

MULTIPLE PACKAGE QUANTITY (MPQ)REQUIREMENTS

Zener Voltage Regulator Diodes — Axial Leaded

CASE 59-03DO-41

PLASTIC

(Refer to Section 10 for Surface Mount, Thermal Data and Footprint Information.)

(Refer to Section 10 for more information on Packaging Specifications.)

Package Option

Tape and Reel 6K

Type No. Suffix

RL

MPQ (Units)

Tape and Ammo TA 4K

NOTES:1. ALL RULES AND NOTES ASSOCIATED WITH

JEDEC DO-41 OUTLINE SHALL APPLY.2. POLARITY DENOTED BY CATHODE BAND.3. LEAD DIAMETER NOT CONTROLLED WITHIN F

DIMENSION.

K

K

F

A

F

D

MIN MINMAX MAXMILLIMETERS INCHES

DIM4.072.040.71—

27.94

5.202.710.861.27—

0.1600.0800.028

— 1.100

0.2050.1070.0340.050

ABDFK

B

Page 98: Apostila de Laboratorio de Eletronica Analogica - Completa

MOTOROLASEMICONDUCTORTECHNICAL DATA

Motorola TVS/Zener Device Data6-1335 Watt Surmetic 40 Data Sheet

5 Watt Surmetic 40Silicon Zener Diodes

This is a complete series of 5 Watt Zener Diodes with tight limits and better operatingcharacteristics that reflect the superior capabilities of silicon-oxide-passivated junctions.All this is in an axial-lead, transfer-molded plastic package that offers protection in all com-mon environmental conditions.

Specification Features:• Up to 180 Watt Surge Rating @ 8.3 ms• Maximum Limits Guaranteed on Seven Electrical Parameters

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plasticFINISH: All external surfaces are corrosion resistant and leads are readily solderablePOLARITY: Cathode indicated by color band. When operated in zener mode, cathode

will be positive with respect to anodeMOUNTING POSITION: AnyWEIGHT: 0.7 gram (approx)WAFER FAB LOCATION: Phoenix, ArizonaASSEMBLY/TEST LOCATION: Seoul, Korea

MAXIMUM RATINGS

Rating Symbol Value Unit

DC Power Dissipation @ TL = 75°CLead Length = 3/8″Derate above 75°C

PD 5

40

Watts

mW/°C

Operating and Storage Junction Temperature Range TJ, Tstg – 65 to +200 °C

Figure 1. Power Temperature Derating Curve

TL, LEAD TEMPERATURE (°C)

PD

, MAX

IMU

M P

OW

ER D

ISSI

PATI

ON

(WAT

TS) 8

6

4

2

00 20 40 60 80 100 120 140 160 180 200

L = LEAD LENGTHL = TO HEAT SINKL = (SEE FIGURE 5)L = 1/8″

L = 3/8″

L = 1″

1N5333Bthrough1N5388B

CASE 17PLASTIC

5 WATTZENER REGULATOR

DIODES3.3–200 VOLTS

Page 99: Apostila de Laboratorio de Eletronica Analogica - Completa

1N5333B through 1N5388B

Motorola TVS/Zener Device Data6-1345 Watt Surmetic 40 Data Sheet

Devices listed in bold, italic are Motorola preferred devices.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted, VF = 1.2 Max @ IF = 1 A for all types)

JEDEC

NominalZener

Voltage TestMax Zener Impedance

Max ReverseLeakage Current Max

Surge Max Voltage

MaximumRegulatorCurrent

JEDECType No.(Note 1)

VoltageVZ @ IZT

Volts(Note 2)

TestCurrent

IZTmA

ZZT @IZTOhms

(Note 2)

ZZK @ IZK = 1 mAOhms

(Note 2)IRµA

VRVolts

@

SurgeCurrentir, Amps(Note 3)

Max VoltageRegulation∆VZ, Volt(Note 4)

Curren tIZMmA

(Note 5)

1N5333B 3.3 380 3 400 300 1 20 0.85 14401N5334B 3.6 350 2.5 500 150 1 18.7 0.8 13201N5335B 3.9 320 2 500 50 1 17.6 0.54 12201N5336B 4.3 290 2 500 10 1 16.4 0.49 11001N5337B 4.7 260 2 450 5 1 15.3 0.44 1010

1N5338B 5.1 240 1.5 400 1 1 14.4 0.39 9301N5339B 5.6 220 1 400 1 2 13.4 0.25 8651N5340B 6 200 1 300 1 3 12.7 0.19 7901N5341B 6.2 200 1 200 1 3 12.4 0.1 7651N5342B 6.8 175 1 200 10 5.2 11.5 0.15 700

1N5343B 7.5 175 1.5 200 10 5.7 10.7 0.15 6301N5344B 8.2 150 1.5 200 10 6.2 10 0.2 5801N5345B 8.7 150 2 200 10 6.6 9.5 0.2 5451N5346B 9.1 150 2 150 7.5 6.9 9.2 0.22 5201N5347B 10 125 2 125 5 7.6 8.6 0.22 475

1N5348B 11 125 2.5 125 5 8.4 8 0.25 4301N5349B 12 100 2.5 125 2 9.1 7.5 0.25 3951N5350B 13 100 2.5 100 1 9.9 7 0.25 3651N5351B 14 100 2.5 75 1 10.6 6.7 0.25 3401N5352B 15 75 2.5 75 1 11.5 6.3 0.25 315

1N5353B 16 75 2.5 75 1 12.2 6 0.3 2951N5354B 17 70 2.5 75 0.5 12.9 5.8 0.35 2801N5355B 18 65 2.5 75 0.5 13.7 5.5 0.4 2651N5356B 19 65 3 75 0.5 14.4 5.3 0.4 2501N5357B 20 65 3 75 0.5 15.2 5.1 0.4 237

1N5358B 22 50 3.5 75 0.5 16.7 4.7 0.45 2161N5359B 24 50 3.5 100 0.5 18.2 4.4 0.55 1981N5360B 25 50 4 110 0.5 19 4.3 0.55 1901N5361B 27 50 5 120 0.5 20.6 4.1 0.6 1761N5362B 28 50 6 130 0.5 21.2 3.9 0.6 170

1N5363B 30 40 8 140 0.5 22.8 3.7 0.6 1581N5364B 33 40 10 150 0.5 25.1 3.5 0.6 1441N5365B 36 30 11 160 0.5 27.4 3.3 0.65 1321N5366B 39 30 14 170 0.5 29.7 3.1 0.65 1221N5367B 43 30 20 190 0.5 32.7 2.8 0.7 110

1N5368B 47 25 25 210 0.5 35.8 2.7 0.8 1001N5369B 51 25 27 230 0.5 38.8 2.5 0.9 931N5370B 56 20 35 280 0.5 42.6 2.3 1 861N5371B 60 20 40 350 0.5 42.5 2.2 1.2 791N5372B 62 20 42 400 0.5 47.1 2.1 1.35 76

1N5373B 68 20 44 500 0.5 51.7 2 1.5 701N5374B 75 20 45 620 0.5 56 1.9 1.6 631N5375B 82 15 65 720 0.5 62.2 1.8 1.8 581N5376B 87 15 75 760 0.5 66 1.7 2 54.51N5377B 91 15 75 760 0.5 69.2 1.6 2.2 52.5

1N5378B 100 12 90 800 0.5 76 1.5 2.5 47.51N5379B 110 12 125 1000 0.5 83.6 1.4 2.5 431N5380B 120 10 170 1150 0.5 91.2 1.3 2.5 39.51N5381B 130 10 190 1250 0.5 98.8 1.2 2.5 36.61N5382B 140 8 230 1500 0.5 106 1.2 2.5 34

(continued)

Page 100: Apostila de Laboratorio de Eletronica Analogica - Completa

1N5333B through 1N5388B

Motorola TVS/Zener Device Data6-135

5 Watt Surmetic 40 Data Sheet

Devices listed in bold, italic are Motorola preferred devices.

ELECTRICAL CHARACTERISTICS — continued (TA = 25°C unless otherwise noted, VF = 1.2 Max @ IF = 1 A for all types)

JEDEC

NominalZener

Voltage TestMax Zener Impedance

Max ReverseLeakage Current Max

Surge Max Voltage

MaximumRegulatorCurrent

JEDECType No.(Note 1)

VoltageVZ @ IZT

Volts(Note 2)

TestCurrent

IZTmA

ZZT @IZTOhms

(Note 2)

ZZK @ IZK = 1 mAOhms

(Note 2)IRµA

VRVolts

@

SurgeCurrentir, Amps(Note 3)

Max VoltageRegulation∆VZ, Volt(Note 4)

Curren tIZMmA

(Note 5)

1N5383B 150 8 330 1500 0.5 114 1.1 3 31.61N5384B 160 8 350 1650 0.5 122 1.1 3 29.41N5385B 170 8 380 1750 0.5 129 1 3 281N5386B 180 5 430 1750 0.5 137 1 4 26.41N5387B 190 5 450 1850 0.5 144 0.9 5 251N5388B 200 5 480 1850 0.5 152 0.9 5 23.6

NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATIONThe JEDEC type numbers shown indicate a tolerance of ±5%.

NOTE 2. ZENER VOLTAGE (VZ) AND IMPEDANCE (ZZT & ZZK)

Test conditions for zener voltage and impedance are as follows: IZ is applied 40 ± 10 ms priorto reading. Mounting contacts are located 3/8″ to 1/2″ from the inside edge of mounting clipsto the body of the diode. (TA = 25°C +8, –2°C).

NOTE 3. SURGE CURRENT (ir)

Surge current is specified as the maximum allowable peak, non-recurrent square-wave cur-rent with a pulse width, PW, of 8.3 ms. The data given in Figure 6 may be used to find themaximum surge current for a square wave of any pulse width between 1ms and 1000 ms byplotting the applicable points on logarithmic paper. Examples of this, using the 3.3 V and200 V zeners, are shown in Figure 7. Mounting contact located as specified in Note 3. (TA =25°C +8, –2°C.)

NOTE 4. VOLTAGE REGULATION ( ∆VZ)

Test conditions for voltage regulation are as follows: VZ measurements are made at 10% andthen at 50% of the IZ max value listed in the electrical characteristics table. The test currenttime duration for each VZ measurement is 40 ± 10 ms. (TA = 25°C +8, –2°C). Mounting contactlocated as specified in Note 2.

NOTE 5. MAXIMUM REGULATOR CURRENT (I ZM)

The maximum current shown is based on the maximum voltage of a 5% type unit, therefore,it applies only to the B-suffix device. The actual IZM for any device may not exceed the valueof 5 watts divided by the actual VZ of the device. TL = 75°C at 3/8″ maximum from the devicebody.

NOTE 6. SPECIALS AVAILABLE INCLUDE:

Nominal zener voltages between the voltages shown and tighter voltage tolerance such as±1% and ±2%. Consult factory.

TEMPERATURE COEFFICIENTS

Figure 2. Temperature Coefficient-Rangefor Units 3 to 10 Volts

Figure 3. Temperature Coefficient-Rangefor Units 10 to 220 Volts

VZ, ZENER VOLTAGE @ IZT (VOLTS)

10

8

6

4

2

0

–2

3 4 5 6 7 8 9 10

RANGE

300200

100

50

3020

10

50 20 40 60 80 100 120 140 160 180 200 220

VZ, ZENER VOLTAGE @ IZT (VOLTS)

θVZ

, TEM

PER

ATU

RE

CO

EFFI

CIE

NT

(mV/

°C) @

IZT

θVZ

, TEM

PER

ATU

RE

CO

EFFI

CIE

NT

(mV/

°C) @

IZT RANGE

Page 101: Apostila de Laboratorio de Eletronica Analogica - Completa

1N5333B through 1N5388B

Motorola TVS/Zener Device Data6-1365 Watt Surmetic 40 Data Sheet

Devices listed in bold, italic are Motorola preferred devices.

Figure 4. Typical Thermal ResponseL, Lead Length = 3/8 Inch

Figure 5. Typical Thermal Resistance Figure 6. Maximum Non-Repetitive Surge Currentversus Nominal Zener Voltage

(See Note 3)

θ JL

(t, D

), TR

ANSI

ENT

THER

MAL

RES

ISTA

NC

EJU

NC

TIO

N-T

O-L

EAD

( °C

/W)

20

10

5

2

1

0.5

0.20.00

10.00

50.01 0.05 0.1 0.5 1 5 10 20 50 100

D = 0.5

D = 0.2

D = 0.1

D = 0.05

D = 0.01

D = 0

NOTE: BELOW 0.1 SECOND, THERMALNOTE: RESPONSE CURVE IS APPLICABLENOTE: TO ANY LEAD LENGTH (L).

DUTY CYCLE, D = t1/t2SINGLE PULSE ∆ TJL = θJL(t)PPK

REPETITIVE PULSES ∆ TJL = θJL(t, D)PPK

PPK t1

t2

t, TIME (SECONDS)

40

30

20

10

00 0.2 0.4 0.6 0.8 1

PRIMARY PATH OFCONDUCTION IS THROUGH

THE CATHODE LEAD

L L

L, LEAD LENGTH TO HEAT SINK (INCH)JL, J

UN

CTI

ON

-TO

-LEA

D T

HER

MAL

RES

ISTA

NC

E (

θ°C

/W)

i r, P

EAK

SUR

GE

CU

RR

ENT

(AM

PS)

40

20

10

4

2

1

0.1

0.2

0.4

3 4 6 8 10 20 30 40 60 80 100 200

*SQUARE WAVE PW = 100 ms*

PW = 1000 ms*

PW = 1 ms*

PW = 8.3 ms*

NOMINAL VZ (V)

3020

10

0.1

0.2

0.5

1

2

5

1 10 100 1000

1000

100

10

1

0.11 2 3 4 5 6 7 8 9 10

I Z, Z

ENER

CU

RR

ENT

(mA)

PW, PULSE WIDTH (ms) VZ, ZENER VOLTAGE (VOLTS)

Figure 7. Peak Surge Current versus Pulse Width(See Note 3)

Figure 8. Zener Voltage versus Zener CurrentVZ = 3.3 thru 10 Volts

VZ = 200 V

VZ = 3.3 V

PLOTTED FROM INFORMATIONGIVEN IN FIGURE 6

TC = 25°C

T = 25°C

i r, P

EAK

SUR

GE

CU

RR

ENT

(AM

PS)

Page 102: Apostila de Laboratorio de Eletronica Analogica - Completa

1N5333B through 1N5388B

Motorola TVS/Zener Device Data6-137

5 Watt Surmetic 40 Data Sheet

Devices listed in bold, italic are Motorola preferred devices.

I Z, Z

ENER

CU

RR

ENT

(mA)

VZ, ZENER VOLTAGE (VOLTS)

1000

100

10

1

0.110 20 30 40 50 60 70 80

100

10

1

0.180 100 120 140 160 180 200 220

VZ, ZENER VOLTAGE (VOLTS)

I Z, Z

ENER

CU

RR

ENT

(mA)

T = 25°C

Figure 9. Zener Voltage versus Zener CurrentVZ = 11 thru 75 Volts

Figure 10. Zener Voltage versus Zener CurrentVZ = 82 thru 200 Volts

APPLICATION NOTE

Since the actual voltage available from a given zener diodeis temperature dependent, it is necessary to determine junc-tion temperature under any set of operating conditions in orderto calculate its value. The following procedure is recom-mended:

Lead Temperature, TL, should be determined from:

TL = θLA PD + TAθLA is the lead-to-ambient thermal resistance and PD is thepower dissipation.

Junction Temperature, TJ, may be found from:

TJ = TL + ∆TJL

∆TJL is the increase in junction temperature above the leadtemperature and may be found from Figure 4 for a train ofpower pulses or from Figure 5 for dc power.

∆TJL = θJL PD

For worst-case design, using expected limits of IZ, limits ofPD and the extremes of TJ (∆TJ) may be estimated. Changesin voltage, VZ, can then be found from:

∆V = θVZ ∆TJ

θVZ, the zener voltage temperature coefficient, is found fromFigures 2 and 3.

Under high power-pulse operation, the zener voltage willvary with time and may also be affected significantly by thezener resistance. For best regulation, keep current excursionsas low as possible.

Data of Figure 4 should not be used to compute surge capa-bility. Surge limitations are given in Figure 6. They are lowerthan would be expected by considering only junction tempera-ture, as current crowding effects cause temperatures to be ex-tremely high in small spots resulting in device degradationshould the limits of Figure 6 be exceeded.

Page 103: Apostila de Laboratorio de Eletronica Analogica - Completa

Motorola TVS/Zener Device Data6-138

5 Watt Surmetic 40 Data Sheet

5 Watt Surmetic 40

MULTIPLE PACKAGE QUANTITY (MPQ)REQUIREMENTS

Zener Voltage Regulator Diodes — Axial Leaded

CASE 17-02PLASTIC

(Refer to Section 10 for Surface Mount, Thermal Data and Footprint Information.)

(Refer to Section 10 for more information on Packaging Specifications.)

Package Option

Tape and Reel 4K

Type No. Suffix

RL

MPQ (Units)

Tape and Ammo TA 2K

B

A

K

D

FK

F1

2

NOTE:1. LEAD DIAMETER & FINISH NOT CONTROLLED

WITHIN DIM F.

MIN MINMAX MAXINCHES MILLIMETERS

DIM8.383.300.94—

25.40

8.893.681.091.27

31.75

0.3300.1300.037

— 1.000

0.3500.1450.0430.0501.250

ABDFK

Page 104: Apostila de Laboratorio de Eletronica Analogica - Completa

10,0±0,4

R1.6

18,1±0,29,7±0,2

2,65

±0,2

3,8±

0,2

18,3

5±0,

4

Ponto indica o Fototransistor

5,1±0,2

CROMAX ELETRÔNICA LTDA.

ATUAÇÃO Refletiva

CHAVE DE CODIGO

C 7L3

CROMAX ELETRÔNICA LTDA. RUA PEREIRO, 13 – BAIRRO VILA NOVA CUMBICA – CEP 07231-010 – GUARULHOS – SP

Fone: (0xx11) 6462-2100 – Fax: (0xx11) 6462-2111 Site: www.cromatek.com.br – Email: [email protected]

PASTILHA AlGaAs – Emissor NPN – Fototransistor

ELEMENTOS Emissor – Hialino Sensor – Fume

ESPECIFICAÇÕES TÉCNICAS

Parâmetro Cond. Teste Min. Típ. Máx. Tensão Reversa (Vf)

If = 100mA If = 20mA

1,3V 1,2V

1,7V 1,5V

Corrente Reversa (If)

Vr = 4V 10µA

IN

Comprimento de onda

If = 100mA 940nm TensãodeRuptura C – E (Vbceo)

Ic = 100µA Ib = 0

30V Tensão deRuptura E – C (Vbeco)

Ie = 100µA Ib = 0

5V Corrente “Escuro” (Iceo)

Vce = 10V 0,1µA

OUT

Corrente “Claro” (IL)

Vce = 5V If = 40mA

50µA

Chaves Óticas

Page 105: Apostila de Laboratorio de Eletronica Analogica - Completa

LM117/217LM317

1.2V TO 37V VOLTAGE REGULATOR

November 1999

OUTPUT VOLTAGE RANGE : 1.2 TO 37V OUTPUT CURRENT IN EXCESS OF 1.5A 0.1% LINE AND LOAD REGULATION FLOATING OPERATION FOR HIGH

VOLTAGES COMPLETE SERIES OF PROTECTIONS :

CURRENT LIMITING, THERMALSHUTDOWN AND SOA CONTROL

DESCRIPTIONThe LM117/LM217/LM317 are monolithicintegrated circuit in TO-220, ISOWATT220, TO-3and D2PAK packages intended for use aspositive adjustable voltage regulators.They are designed to supply more than 1.5A ofload current with an output voltage adjustableover a 1.2 to 37V range.The nominal output voltage is selected by meansof only a resistive divider, making the deviceexceptionally easy to use and eliminating thestocking of many fixed regulators.

TO-3

TO-220

D2PAK

ABSOLUTE MAXIMUM RATINGSymbol Parameter Value Unit

Vi-o Input-output Differential Voltage 40 V

IO Output Current Intenrally Limited

Top Operating Junction Temperature for: LM117LM217LM317

-55 to 150-25 to 1500 to 125

oCoCoC

Ptot Power Dissipation Internally Limited

Tstg Storage Temperature - 65 to 150 oC

THERMAL DATASymbol Parameter TO-3 TO-220 ISOWATT220 D 2PAK Unit

Rthj- ca se

Rthj-amb

Thermal Resistance Junction-case MaxThermal Resistance Junction-ambient Max

435

350

460

362.5

oC/WoC/W

ISOWATT220

1/11

Page 106: Apostila de Laboratorio de Eletronica Analogica - Completa

CONNECTION DIAGRAM AND ORDERING NUMBERS (top view)

TO-220

D2PAK TO-3

Type TO-3 TO-220 ISOWATT220 D 2PAK

LM117 LM117K

LM217 LM217K LM217T LM217D2T

LM317 LM317K LM317T LM317P LM317D2T

SCHEMATIC DIAGRAM

ISOWATT220

LM117/217/317

2/11

Page 107: Apostila de Laboratorio de Eletronica Analogica - Completa

BASIC ADJUSTABLE REGULATOR

ELECTRICAL CHARACTERISTICS (Vi - Vo = 5 V, Io = 500 mA, IMAX = 1.5A and PMAX = 20W, unlessotherwise specified)Symbol Parameter Test Conditions LM117/LM217 LM317 Unit

Min. Typ. Max. Min. Typ. Max.

∆Vo Line Regulation Vi - Vo = 3 to 40 V Tj = 25 oC 0.01 0.02 0.01 0.04 %/V

0.02 0.05 0.02 0.07 %/V

∆Vo Load Regulation Vo ≤ 5VIo = 10 mA to IMAX

Tj = 25 oC 5 15 5 25 mV

20 50 20 70 mV

Vo ≥ 5VIo = 10 mA to IMAX

Tj = 25 oC 0.1 0.3 0.1 0.5 %

0.3 1 0.3 1.5 %

IADJ Adjustment Pin Current 50 100 50 100 µA

∆IADJ Adjustment Pin Current Vi - Vo = 2.5 to 40 VIo = 10 mA to IMAX

0.2 5 0.2 5 µA

VREF Reference Voltage(between pin 3 and pin1)

Vi - Vo = 2.5 to 40 VIo = 10 mA to IMAX

PD ≤ PMAX

1.2 1.25 1.3 1.2 1.25 1.3 V

∆Vo

Vo

Output VoltageTemperature Stability

1 1 %

Io (min) Minimum Load Current Vi - Vo = 40 V 3.5 5 3.5 10 mA

Io (max ) Maximum LoadCurrent

Vi - Vo ≤ 15 VPD < PMAX

1.5 2.2 1.5 2.2 A

Vi - Vo = 40 VPD < PMAX

Tj = 25 oC

0.4 0.4 A

eN Output Noise Voltage(percentance of VO)

B = 10Hz to 10KHzTj = 25 oC

0.003 0.003 %

SVR Supply VoltageRejection (*)

Tj = 25 oCf = 120 Hz

CADJ=0 65 65 dB

CADJ=10µF 66 80 66 80 dB

(*) CADJ is connected between pin 1 and ground.Note:(1) Unless otherwise specified the above specs, apply over the following conditions : LM 117 Tj = – 55 to 150°C;

LM 217 Tj = – 25 to 150°C ; LM 317 Tj = 0 to 125°C.

LM117/217/317

3/11

Page 108: Apostila de Laboratorio de Eletronica Analogica - Completa

APPLICATION INFORMATION

The LM117/217/317 provides an internalreference voltage of 1.25V between the outputand adjustments terminals. This is used to set aconstant current flow across an external resistordivider (see fig. 4), giving an output voltage VO of:

VO = VREF (1 + R2

R1) + IADJ R2

The device was designed to minimize the termIADJ (100µA max) and to maintain it very constantwith line and load changes. Usually, the errorterm IADJ ⋅ R2 can be neglected. To obtain theprevious requirement, all the regulator quiescentcurrent is returned to the output terminal,imposing a minimum load current condition. If theload is insufficient, the output voltage will rise.Since the LM117/217317 is a floating regulatorand ”sees” only the input-to-output differential

voltage, supplies of very high voltage with respectto ground can be regulated as long as themaximum input-to-output differential is notexceeded. Furthermore, programmable regulatorare easily obtainable and, by connecting a fixedresistor between the adjustment and output, thedevice can be used as a precision currentregulator.In order to optimise the load regulation, thecurrent set resistor R1 (see fig. 4) should be tiedas close as possible to the regulator, while theground terminal of R2 should be near the groundof the load to provide remote ground sensing.Performance may be improved with addedcapacitance as follow:An input bypass capacitor of 0.1µFAn adjustment terminal to ground 10µF capacitor

Figure 4 : Basic Adjustable Regulator.

Figure 1 : Output Current vs. Input-outputDifferential Voltage.

Figure 2 : Dropout Voltage vs. JunctionTemperature.

Figure 3 : Reference Voltage vs. Junction

LM117/217/317

4/11

Page 109: Apostila de Laboratorio de Eletronica Analogica - Completa

to improve the ripple rejection of about 15 dB(CADJ).An 1µF tantalium (or 25µFAluminium electrolitic)capacitor on the output to improve transientresponse.In additional to external capacitors, it is good

practice to add protection diodes, as shown infig.5.D1 protect the device against input short circuit,while D2 protect against output short circuit forcapacitance discharging.

Figure 5 : Voltage Regulator with Protection Diodes.

D1 protect the device against input short circuit, while D2 protects against output short circuit for capacitors discharging

Figure 6 : Slow Turn-on 15V Regulator. Figure 7 : Current Regulator.

Io =VrefR1

+ IADJ ≈ 1.25VR1

LM117/217/317

5/11

Page 110: Apostila de Laboratorio de Eletronica Analogica - Completa

Figure 8 : 5V Electronic Shut-down Regulator Figure 9 : Digitally Selected Outputs

(R2 sets maximum Vo)

Figure 10 : Battery Charger (12V) Figure 11 : Current Limited 6V Charger

* RS sets output impedance of charger

Zo = RS (1 +R2

R1)

Use of RS allows low charging rates with fully charged battery.

* R3 sets peak current (0.6A for 1Ω).** C1 recommended to filter out input transients.

LM117/217/317

6/11

Page 111: Apostila de Laboratorio de Eletronica Analogica - Completa

DIM.mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

A 11.7 0.460

B 0.96 1.10 0.037 0.043

C 1.70 0.066

D 8.7 0.342

E 20.0 0.787

G 10.9 0.429

N 16.9 0.665

P 26.2 1.031

R 3.88 4.09 0.152 0.161

U 39.50 1.555

V 30.10 1.185

E

B

R

C

DAP

G

N

VU

O

P003N

TO-3 (R) MECHANICAL DATA

LM117/217/317

7/11

Page 112: Apostila de Laboratorio de Eletronica Analogica - Completa

DIM.mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

A 4.40 4.60 0.173 0.181

C 1.23 1.32 0.048 0.051

D 2.40 2.72 0.094 0.107

D1 1.27 0.050

E 0.49 0.70 0.019 0.027

F 0.61 0.88 0.024 0.034

F1 1.14 1.70 0.044 0.067

F2 1.14 1.70 0.044 0.067

G 4.95 5.15 0.194 0.203

G1 2.4 2.7 0.094 0.106

H2 10.0 10.40 0.393 0.409

L2 16.4 0.645

L4 13.0 14.0 0.511 0.551

L5 2.65 2.95 0.104 0.116

L6 15.25 15.75 0.600 0.620

L7 6.2 6.6 0.244 0.260

L9 3.5 3.93 0.137 0.154

DIA. 3.75 3.85 0.147 0.151

L6

A

C D

E

D1

F

G

L7

L2

Dia.

F1

L5

L4

H2

L9

F2

G1

TO-220 MECHANICAL DATA

P011C

LM117/217/317

8/11

Page 113: Apostila de Laboratorio de Eletronica Analogica - Completa

DIM.mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

A 4.4 4.6 0.173 0.181

B 2.5 2.7 0.098 0.106

D 2.5 2.75 0.098 0.108

E 0.4 0.7 0.015 0.027

F 0.75 1 0.030 0.039

F1 1.15 1.7 0.045 0.067

F2 1.15 1.7 0.045 0.067

G 4.95 5.2 0.195 0.204

G1 2.4 2.7 0.094 0.106

H 10 10.4 0.393 0.409

L2 16 0.630

L3 28.6 30.6 1.126 1.204

L4 9.8 10.6 0.385 0.417

L6 15.9 16.4 0.626 0.645

L7 9 9.3 0.354 0.366

Ø 3 3.2 0.118 0.126

L2

A

B

D

E

H G

L6

¯ F

L3

G1

1 2 3

F2

F1

L7

L4

ISOWATT220 MECHANICAL DATA

P011G

LM117/217/317

9/11

Page 114: Apostila de Laboratorio de Eletronica Analogica - Completa

DIM.mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

A 4.4 4.6 0.173 0.181

A1 2.49 2.69 0.098 0.106

B 0.7 0.93 0.027 0.036

B2 1.14 1.7 0.044 0.067

C 0.45 0.6 0.017 0.023

C2 1.23 1.36 0.048 0.053

D 8.95 9.35 0.352 0.368

E 10 10.4 0.393 0.409

G 4.88 5.28 0.192 0.208

L 15 15.85 0.590 0.624

L2 1.27 1.4 0.050 0.055

L3 1.4 1.75 0.055 0.068

L2 L3L

B2 B

GE

A

C2

D

C

A1

DETAIL”A”DETAIL”A”

A2

P011P6/F

TO-263 (D2PAK) MECHANICAL DATA

LM117/217/317

10/11

Page 115: Apostila de Laboratorio de Eletronica Analogica - Completa

Information furnished isbelieved to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequencesof use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license isgranted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication aresubject to change without notice. Thispublication supersedes and replaces all information previously supplied. STMicroelectronics productsare not authorized for use as critical components in life support devices or systems withoutexpress written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

1999 STMicroelectronics – Printed in Italy – All Rights ReservedSTMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - MoroccoSingapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com.

LM117/217/317

11/11

Page 116: Apostila de Laboratorio de Eletronica Analogica - Completa

LM137/LM3373-Terminal Adjustable Negative RegulatorsGeneral DescriptionThe LM137/LM337 are adjustable 3-terminal negative volt-age regulators capable of supplying in excess of −1.5A overan output voltage range of −1.2V to −37V. These regulatorsare exceptionally easy to apply, requiring only 2 externalresistors to set the output voltage and 1 output capacitor forfrequency compensation. The circuit design has been opti-mized for excellent regulation and low thermal transients.Further, the LM137 series features internal current limiting,thermal shutdown and safe-area compensation, makingthem virtually blowout-proof against overloads.

The LM137/LM337 serve a wide variety of applications in-cluding local on-card regulation, programmable-output volt-age regulation or precision current regulation. The LM137/LM337 are ideal complements to the LM117/LM317adjustable positive regulators.

Featuresn Output voltage adjustable from −1.2V to −37Vn 1.5A output current guaranteed, −55˚C to +150˚Cn Line regulation typically 0.01%/Vn Load regulation typically 0.3%

n Excellent thermal regulation, 0.002%/Wn 77 dB ripple rejectionn Excellent rejection of thermal transientsn 50 ppm/˚C temperature coefficientn Temperature-independent current limitn Internal thermal overload protectionn P+ Product Enhancement testedn Standard 3-lead transistor packagen Output is short circuit protected

LM137 Series Packages and Power Capability

Rated Design

Device Package Power Load

Dissipation Current

LM137/337 TO-3 (K) 20W 1.5A

TO-39 (H) 2W 0.5A

LM337 TO-220 (T) 15W 1.5A

LM337 SOT-223(MP)

2W 1A

Typical ApplicationsAdjustable Negative Voltage Regulator

00906701

Full output current not available at high input-output voltages

†C1 = 1 µF solid tantalum or 10 µF aluminum electrolytic required forstability

*C2 = 1 µF solid tantalum is required only if regulator is more than 4" frompower-supply filter capacitor

Output capacitors in the range of 1 µF to 1000 µF of aluminum or tantalumelectrolytic are commonly used to provide improved output impedance andrejection of transients

Comparison between SOT-223 andD-Pak (TO-252) Packages

00906731

Scale 1:1

November 2001LM

137/LM337

3-TerminalA

djustableN

egativeR

egulators

© 2001 National Semiconductor Corporation DS009067 www.national.com

Page 117: Apostila de Laboratorio de Eletronica Analogica - Completa

Absolute Maximum Ratings (Notes 1,

4)

If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Dissipation Internally Limited

Input-Output Voltage Differential 40V

Operating Junction TemperatureRange

LM137 −55˚C to +150˚C

LM337 0˚C to +125˚C

LM337I −40˚C to +125˚C

Storage Temperature −65˚C to +150˚C

Lead Temperature (Soldering, 10 sec.) 300˚C

Plastic Package (Soldering, 4 sec.) 260˚C

ESD Rating 2k Volts

Electrical Characteristics (Note 1)

Parameter Conditions LM137 LM337 Units

Min Typ Max Min Typ Max

Line Regulation Tj = 25˚C, 3V ≤ |VIN − VOUT| ≤ 40V 0.01 0.02 0.01 0.04 %/V

(Note 2) IL = 10 mA

Load Regulation Tj = 25˚C, 10 mA ≤ IOUT ≤ IMAX 0.3 0.5 0.3 1.0 %

Thermal Regulation Tj = 25˚C, 10 ms Pulse 0.002 0.02 0.003 0.04 %/W

Adjustment Pin Current 65 100 65 100 µA

Adjustment Pin Current Charge 10 mA ≤ IL ≤ IMAX 2 5 2 5 µA

3.0V ≤ |VIN − VOUT| ≤ 40V,

TA = 25˚C

Reference Voltage Tj = 25˚C (Note 3) −1.225 −1.250 −1.275 −1.213 −1.250 −1.287 V

3V ≤ |VIN − VOUT| ≤ 40V, (Note 3) −1.200 −1.250 −1.300 −1.200 −1.250 −1.300 V

10 mA ≤ IOUT ≤ IMAX, P ≤ PMAX

Line Regulation 3V ≤ |VIN − VOUT| ≤ 40V, (Note 2) 0.02 0.05 0.02 0.07 %/V

Load Regulation 10 mA ≤ IOUT ≤ IMAX, (Note 2) 0.3 1 0.3 1.5 %

Temperature Stability TMIN ≤ Tj ≤ TMAX 0.6 0.6 %

Minimum Load Current |VIN − VOUT| ≤ 40V 2.5 5 2.5 10 mA

|VIN − VOUT| ≤ 10V 1.2 3 1.5 6 mA

Current Limit |VIN − VOUT| ≤ 15V

K, MP and T Package 1.5 2.2 3.5 1.5 2.2 3.7 A

H Package 0.5 0.8 1.8 0.5 0.8 1.9 A

|VIN − VOUT| = 40V, Tj = 25˚C

K, MP and T Package 0.24 0.4 0.15 0.4 A

H Package 0.15 0.17 0.10 0.17 A

RMS Output Noise, % of VOUT Tj = 25˚C, 10 Hz ≤ f ≤ 10 kHz 0.003 0.003 %

Ripple Rejection Ratio VOUT = −10V, f = 120 Hz 60 60 dB

CADJ = 10 µF 66 77 66 77 dB

Long-Term Stability Tj = 125˚C, 1000 Hours 0.3 1 0.3 1 %

Thermal Resistance, Junction toCase

H Package 12 15 12 15 ˚C/W

K Package 2.3 3 2.3 3 ˚C/W

T Package 4 ˚C/W

Thermal Resistance, Junction toAmbient (No Heat Sink)

H Package 140 140 ˚C/W

K Package 35 35 ˚C/W

T PackageMP Package

50170

˚C/W˚C/W

Note 1: Unless otherwise specified, these specifications apply −55˚C ≤ Tj ≤ +150˚C for the LM137, 0˚C ≤ Tj ≤ +125˚C for the LM337; VIN − VOUT = 5V; and IOUT= 0.1A for the TO-39 package and IOUT = 0.5A for the TO-3, SOT-223 and TO-220 packages. Although power dissipation is internally limited, these specificationsare applicable for power dissipations of 2W for the TO-39 and SOT-223 (see Application Hints), and 20W for the TO-3, and TO-220. IMAX is 1.5A for the TO-3,SOT-223 and TO-220 packages, and 0.2A for the TO-39 package.

Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects arecovered under the specification for thermal regulation. Load regulation is measured on the output pin at a point 1⁄8" below the base of the TO-3 and TO-39 packages.

LM13

7/LM

337

www.national.com 2

Page 118: Apostila de Laboratorio de Eletronica Analogica - Completa

Electrical Characteristics (Note 1) (Continued)Note 3: Selected devices with tightened tolerance reference voltage available.

Note 4: Refer to RETS137H drawing for LM137H or RETS137K drawing for LM137K military specifications.

Schematic Diagram

00906702

Thermal RegulationWhen power is dissipated in an IC, a temperature gradientoccurs across the IC chip affecting the individual IC circuitcomponents. With an IC regulator, this gradient can be es-pecially severe since power dissipation is large. Thermalregulation is the effect of these temperature gradients onoutput voltage (in percentage output change) per Watt ofpower change in a specified time. Thermal regulation error isindependent of electrical regulation or temperature coeffi-cient, and occurs within 5 ms to 50 ms after a change inpower dissipation. Thermal regulation depends on IC layoutas well as electrical design. The thermal regulation of avoltage regulator is defined as the percentage change ofVOUT, per Watt, within the first 10 ms after a step of power isapplied. The LM137’s specification is 0.02%/W, max.

00906703

LM137, VOUT = −10V

VIN − VOUT = −40V

IIL = 0A → 0.25A → 0A

Vertical sensitivity, 5 mV/div

FIGURE 1.

LM137/LM

337

www.national.com3

Page 119: Apostila de Laboratorio de Eletronica Analogica - Completa

Thermal Regulation (Continued)

In Figure 1, a typical LM137’s output drifts only 3 mV (or0.03% of VOUT = −10V) when a 10W pulse is applied for10 ms. This performance is thus well inside the specificationlimit of 0.02%/W x 10W = 0.2% max. When the 10W pulse isended, the thermal regulation again shows a 3 mV step atthe LM137 chip cools off. Note that the load regulation errorof about 8 mV (0.08%) is additional to the thermal regulationerror. In Figure 2, when the 10W pulse is applied for 100 ms,the output drifts only slightly beyond the drift in the first10 ms, and the thermal error stays well within 0.1% (10 mV).

Connection Diagrams

TO-3Metal Can Package

00906705

Bottom ViewOrder Number LM137K/883

LM137KPQML and LM137KPQMLV (Note 5)See NS Package Number K02COrder Number LM337K STEELSee NS Package Number K02A

Case is Input

TO-39Metal Can Package

00906706

Bottom ViewOrder Number LM137H, LM137H/883 or LM337H

LM137HPQML and LM137HPQMLV (Note 5)See NS Package Number H03A

Case Is Input

Note 5: See STD Mil DWG 5962P99517 for Radiation Tolerant Devices

TO-220Plastic Package

00906707

Front ViewOrder Number LM337T

See NS Package Number T03B

3-Lead SOT-223

00906734

Front ViewOrder Number LM337IMP

Package Marked N02ASee NS Package Number MA04A

00906704

LM137, VOUT = −10V

VIN − VOUT = −40V

IL = 0A → 0.25A → 0A

Horizontal sensitivity, 20 ms/div

FIGURE 2.

LM13

7/LM

337

www.national.com 4

Page 120: Apostila de Laboratorio de Eletronica Analogica - Completa

Application HintsWhen a value for θ(H−A) is found using the equation shown,a heatsink must be selected that has a value that is less thanor equal to this number.

HEATSINKING SOT-223 PACKAGE PARTS

The SOT-223 (“MP”) packages use a copper plane on thePCB and the PCB itself as a heatsink. To optimize the heatsinking ability of the plane and PCB, solder the tab of thepackage to the plane.

Figures 3, 4 show the information for the SOT-223 package.Figure 4 assumes a θ(J−A) of 75˚C/W for 1 ounce copper and51˚C/W for 2 ounce copper and a maximum junction tem-perature of 125˚C.

Please see AN1028 for power enhancement techniques tobe used with the SOT-223 package.

Typical ApplicationsAdjustable Lab Voltage Regulator

00906709

Full output current not available

at high input-output voltages

*The 10 µF capacitors are optional to improve ripple rejection

Current Regulator

00906711

Negative Regulator with Protection Diodes

00906713

*When CL is larger than 20 µF, D1 protects the LM137 in case the inputsupply is shorted

**When C2 is larger than 10 µF and −VOUT is larger than −25V, D2protects the LM137 in case the output is shorted

00906732

FIGURE 3. θ(J−A) vs Copper (2 ounce) Area for theSOT-223 Package

00906733

FIGURE 4. Maximum Power Dissipation vs. T AMB forthe SOT-223 Package

LM137/LM

337

www.national.com5

Page 121: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Applications (Continued)

−5.2V Regulator with Electronic Shutdown *

00906710

*Minimum output . −1.3V when control input is low

Adjustable Current Regulator

00906712

High Stability −10V Regulator

00906714

LM13

7/LM

337

www.national.com 6

Page 122: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Performance Characteristics (K Steel and T Packages)

Load Regulation Current Limit

0090671600906717

Adjustment Current Dropout Voltage

00906718 00906719

Temperature Stability Minimum Operating Current

00906720 00906721

LM137/LM

337

www.national.com7

Page 123: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Performance Characteristics (K Steel and T Packages) (Continued)

Ripple Rejection Ripple Rejection

00906722 00906723

Ripple Rejection Output Impedance

00906724 00906725

Line Transient Response Load Transient Response

0090672600906727

LM13

7/LM

337

www.national.com 8

Page 124: Apostila de Laboratorio de Eletronica Analogica - Completa

Physical Dimensions inches (millimeters)unless otherwise noted

Metal Can Package (H)Order Number LM137H, LM137H/883 or LM337H

NS Package Number H03A

LM137/LM

337

www.national.com9

Page 125: Apostila de Laboratorio de Eletronica Analogica - Completa

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Metal Can Package (K)Order Number LM337K STEEL

NS Package Number K02A

Mil-Aero Metal Can Package (K)Order Number LM137K/883NS Package Number K02C

LM13

7/LM

337

www.national.com 10

Page 126: Apostila de Laboratorio de Eletronica Analogica - Completa

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

3-Lead SOT-223 PackageOrder Number LM337IMP

NS Package Number M04A

LM137/LM

337

www.national.com11

Page 127: Apostila de Laboratorio de Eletronica Analogica - Completa

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

TO-220 Plastic Package (T)Order Number LM337T

NS Package Number T03B

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERALCOUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices orsystems which, (a) are intended for surgical implantinto the body, or (b) support or sustain life, andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling, can be reasonably expected to result in asignificant injury to the user.

2. A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system, or to affect itssafety or effectiveness.

National SemiconductorCorporationAmericasEmail: [email protected]

National SemiconductorEurope

Fax: +49 (0) 180-530 85 86Email: [email protected]

Deutsch Tel: +49 (0) 69 9508 6208English Tel: +44 (0) 870 24 0 2171Français Tel: +33 (0) 1 41 91 8790

National SemiconductorAsia Pacific CustomerResponse GroupTel: 65-2544466Fax: 65-2504466Email: [email protected]

National SemiconductorJapan Ltd.Tel: 81-3-5639-7560Fax: 81-3-5639-7507

www.national.com

LM13

7/LM

337

3-Te

rmin

alA

djus

tabl

eN

egat

ive

Reg

ulat

ors

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Page 128: Apostila de Laboratorio de Eletronica Analogica - Completa

©2001 Fairchild Semiconductor Corporation

www.fairchildsemi.com

Rev. 1.0.0

Features• Output Current up to 1A • Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V • Thermal Overload Protection • Short Circuit Protection• Output Transistor Safe Operating Area Protection

DescriptionThe MC78XX/LM78XX/MC78XXA series of three terminal positive regulators are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting,thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinkingis provided, they can deliver over 1A output current.Although designed primarily as fixed voltage regulators,these devices can be used with external components toobtain adjustable voltages and currents.

TO-220

D-PAK

1. Input 2. GND 3. Output

1

1

Internal Block Digram

MC78XX/LM78XX/MC78XXA3-Terminal 1A Positive Voltage Regulator

Page 129: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

2

Absolute Maximum Ratings

Electrical Characteristics (MC7805/LM7805)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI = 10V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Value UnitInput Voltage (for VO = 5V to 18V)(for VO = 24V)

VIVI

3540

VV

Thermal Resistance Junction-Cases (TO-220) RθJC 5 oC/WThermal Resistance Junction-Air (TO-220) RθJA 65 oC/WOperating Temperature Range TOPR 0 ~ +125 oCStorage Temperature Range TSTG -65 ~ +150 oC

Parameter Symbol ConditionsMC7805/LM7805

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 4.8 5.0 5.25.0mA ≤ Io ≤ 1.0A, PO ≤ 15WVI = 7V to 20V 4.75 5.0 5.25 V

Line Regulation (Note1) Regline TJ=+25 oCVO = 7V to 25V - 4.0 100

mVVI = 8V to 12V - 1.6 50

Load Regulation (Note1) Regload TJ=+25 oCIO = 5.0mA to1.5A - 9 100

mVIO =250mA to 750mA - 4 50

Quiescent Current IQ TJ =+25 oC - 5.0 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - 0.03 0.5

mAVI= 7V to 25V - 0.3 1.3

Output Voltage Drift ∆VO/∆T IO= 5mA - -0.8 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA=+25 oC - 42 - µV/Vo

Ripple Rejection RR f = 120HzVO = 8V to 18V 62 73 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 oC - 2 - VOutput Resistance rO f = 1KHz - 15 - mΩShort Circuit Current ISC VI = 35V, TA =+25 oC - 230 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 130: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

3

Electrical Characteristics (MC7806)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =11V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7806

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 5.75 6.0 6.255.0mA ≤ IO ≤ 1.0A, PO ≤ 15WVI = 8.0V to 21V 5.7 6.0 6.3 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 8V to 25V - 5 120

mVVI = 9V to 13V - 1.5 60

Load Regulation (Note1) Regload TJ =+25 oCIO =5mA to 1.5A - 9 120

mVIO =250mA to750A - 3 60

Quiescent Current IQ TJ =+25 oC - 5.0 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1A - - 0.5

mAVI = 8V to 25V - - 1.3

Output Voltage Drift ∆VO/∆T IO = 5mA - -0.8 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 45 - µV/Vo

Ripple Rejection RR f = 120HzVI = 9V to 19V 59 75 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 oC - 2 - VOutput Resistance rO f = 1KHz - 19 - mΩShort Circuit Current ISC VI= 35V, TA=+25 oC - 250 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 131: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

4

Electrical Characteristics (MC7808)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =14V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7808

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 7.7 8.0 8.35.0mA ≤ IO ≤ 1.0A, PO ≤ 15WVI = 10.5V to 23V 7.6 8.0 8.4 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 10.5V to 25V - 5.0 160

mVVI = 11.5V to 17V - 2.0 80

Load Regulation (Note1) Regload TJ =+25 oCIO = 5.0mA to 1.5A - 10 160

mVIO= 250mA to 750mA - 5.0 80

Quiescent Current IQ TJ =+25 oC - 5.0 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - 0.05 0.5

mAVI = 10.5A to 25V - 0.5 1.0

Output Voltage Drift ∆VO/∆T IO = 5mA - -0.8 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 52 - µV/VoRipple Rejection RR f = 120Hz, VI= 11.5V to 21.5V 56 73 - dBDropout Voltage VDrop IO = 1A, TJ=+25 oC - 2 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25 oC - 230 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 132: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

5

Electrical Characteristics (MC7809)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =15V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7809

UnitMin. Typ. Max.

Output Voltage VOTJ =+25°C 8.65 9 9.355.0mA≤ IO ≤1.0A, PO ≤15WVI= 11.5V to 24V 8.6 9 9.4 V

Line Regulation (Note1) Regline TJ=+25°CVI = 11.5V to 25V - 6 180

mVVI = 12V to 17V - 2 90

Load Regulation (Note1) Regload TJ=+25°CIO = 5mA to 1.5A - 12 180

mVIO = 250mA to 750mA - 4 90

Quiescent Current IQ TJ=+25°C - 5.0 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - - 0.5

mAVI = 11.5V to 26V - - 1.3

Output Voltage Drift ∆VO/∆T IO = 5mA - -1 - mV/ °COutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 °C - 58 - µV/VoRipple Rejection RR f = 120Hz

VI = 13V to 23V 56 71 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25°C - 2 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25°C - 250 - mAPeak Current IPK TJ= +25°C - 2.2 - A

Page 133: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

6

Electrical Characteristics (MC7810)(Refer to test circuit ,0°C< TJ < 125°C, IO = 500mA, VI =16V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7810

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 °C 9.6 10 10.45.0mA ≤ IO≤1.0A, PO ≤15WVI = 12.5V to 25V 9.5 10 10.5 V

Line Regulation (Note1) Regline TJ =+25°CVI = 12.5V to 25V - 10 200

mVVI = 13V to 25V - 3 100

Load Regulation (Note1) Regload TJ =+25°CIO = 5mA to 1.5A - 12 200

mVIO = 250mA to 750mA - 4 400

Quiescent Current IQ TJ =+25°C - 5.1 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - - 0.5

mAVI = 12.5V to 29V - - 1.0

Output Voltage Drift ∆VO/∆T IO = 5mA - -1 - mV/°COutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 °C - 58 - µV/Vo

Ripple Rejection RR f = 120HzVI = 13V to 23V 56 71 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25 °C - 2 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI = 35V, TA=+25 °C - 250 - mAPeak Current IPK TJ =+25 °C - 2.2 - A

Page 134: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

7

Electrical Characteristics (MC7812)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =19V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7812

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 11.5 12 12.55.0mA ≤ IO≤1.0A, PO≤15WVI = 14.5V to 27V 11.4 12 12.6 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 14.5V to 30V - 10 240

mVVI = 16V to 22V - 3.0 120

Load Regulation (Note1) Regload TJ =+25 oCIO = 5mA to 1.5A - 11 240

mVIO = 250mA to 750mA - 5.0 120

Quiescent Current IQ TJ =+25 oC - 5.1 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - 0.1 0.5

mAVI = 14.5V to 30V - 0.5 1.0

Output Voltage Drift ∆VO/∆T IO = 5mA - -1 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 76 - µV/Vo

Ripple Rejection RR f = 120HzVI = 15V to 25V 55 71 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25 oC - 2 - VOutput Resistance rO f = 1KHz - 18 - mΩShort Circuit Current ISC VI = 35V, TA=+25 oC - 230 - mAPeak Current IPK TJ = +25 oC - 2.2 - A

Page 135: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

8

Electrical Characteristics (MC7815)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =23V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7815

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 14.4 15 15.65.0mA ≤ IO ≤ 1.0A, PO ≤ 15WVI = 17.5V to 30V 14.25 15 15.75 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 17.5V to 30V - 11 300

mVVI = 20V to 26V - 3 150

Load Regulation (Note1) Regload TJ =+25 oCIO = 5mA to 1.5A - 12 300

mVIO = 250mA to 750mA - 4 150

Quiescent Current IQ TJ =+25 oC - 5.2 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - - 0.5

mAVI = 17.5V to 30V - - 1.0

Output Voltage Drift ∆VO/∆T IO = 5mA - -1 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 90 - µV/Vo

Ripple Rejection RR f = 120HzVI = 18.5V to 28.5V 54 70 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25 oC - 2 - VOutput Resistance rO f = 1KHz - 19 - mΩShort Circuit Current ISC VI = 35V, TA=+25 oC - 250 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 136: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

9

Electrical Characteristics (MC7818)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =27V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7818

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 17.3 18 18.75.0mA ≤ IO ≤1.0A, PO ≤15WVI = 21V to 33V 17.1 18 18.9 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 21V to 33V - 15 360

mVVI = 24V to 30V - 5 180

Load Regulation (Note1) Regload TJ =+25 oCIO = 5mA to 1.5A - 15 360

mVIO = 250mA to 750mA - 5.0 180

Quiescent Current IQ TJ =+25 oC - 5.2 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - - 0.5

mAVI = 21V to 33V - - 1

Output Voltage Drift ∆VO/∆T IO = 5mA - -1 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 110 - µV/Vo

Ripple Rejection RR f = 120HzVI = 22V to 32V 53 69 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25 oC - 2 - VOutput Resistance rO f = 1KHz - 22 - mΩShort Circuit Current ISC VI = 35V, TA=+25 oC - 250 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 137: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

10

Electrical Characteristics (MC7824)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =33V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7824

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 23 24 255.0mA ≤ IO ≤ 1.0A, PO ≤ 15WVI = 27V to 38V 22.8 24 25.25 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 27V to 38V - 17 480

mVVI = 30V to 36V - 6 240

Load Regulation (Note1) Regload TJ =+25 oCIO = 5mA to 1.5A - 15 480

mVIO = 250mA to 750mA - 5.0 240

Quiescent Current IQ TJ =+25 oC - 5.2 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - 0.1 0.5

mAVI = 27V to 38V - 0.5 1

Output Voltage Drift ∆VO/∆T IO = 5mA - -1.5 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 60 - µV/Vo

Ripple Rejection RR f = 120HzVI = 28V to 38V 50 67 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25 oC - 2 - VOutput Resistance rO f = 1KHz - 28 - mΩShort Circuit Current ISC VI = 35V, TA=+25 oC - 230 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 138: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

11

Electrical Characteristics (MC7805A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 10V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VOTJ =+25 oC 4.9 5 5.1

VIO = 5mA to 1A, PO ≤ 15WVI = 7.5V to 20V 4.8 5 5.2

Line Regulation (Note1) Regline

VI = 7.5V to 25VIO = 500mA - 5 50

mVVI = 8V to 12V - 3 50

TJ =+25 oCVI= 7.3V to 20V - 5 50VI= 8V to 12V - 1.5 25

Load Regulation (Note1) Regload

TJ =+25 oCIO = 5mA to 1.5A - 9 100

mVIO = 5mA to 1A - 9 100IO = 250mA to 750mA - 4 50

Quiescent Current IQ TJ =+25 oC - 5.0 6 mA

Quiescent Current Change ∆IQ

IO = 5mA to 1A - - 0.5mAVI = 8 V to 25V, IO = 500mA - - 0.8

VI = 7.5V to 20V, TJ =+25 oC - - 0.8Output Voltage Drift ∆V/∆T Io = 5mA - -0.8 - mV/ oC

Output Noise Voltage VNf = 10Hz to 100KHzTA =+25 oC - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mAVI = 8V to 18V - 68 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 oC - 2 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25 oC - 250 - mAPeak Current IPK TJ= +25 oC - 2.2 - A

Page 139: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

12

Electrical Characteristics (MC7806A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I =11V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VOTJ =+25 oC 5.58 6 6.12

VIO = 5mA to 1A, PO ≤ 15WVI = 8.6V to 21V 5.76 6 6.24

Line Regulation (Note1) Regline

VI= 8.6V to 25VIO = 500mA - 5 60

mVVI= 9V to 13V - 3 60

TJ =+25 oCVI= 8.3V to 21V - 5 60VI= 9V to 13V - 1.5 30

Load Regulation (Note1) Regload

TJ =+25 oCIO = 5mA to 1.5A - 9 100

mVIO = 5mA to 1A - 4 100IO = 250mA to 750mA - 5.0 50

Quiescent Current IQ TJ =+25 oC - 4.3 6 mA

Quiescent Current Change ∆IQ

IO = 5mA to 1A - - 0.5mAVI = 9V to 25V, IO = 500mA - - 0.8

VI= 8.5V to 21V, TJ =+25 oC - - 0.8Output Voltage Drift ∆V/∆T IO = 5mA - -0.8 - mV/ oC

Output Noise Voltage VNf = 10Hz to 100KHzTA =+25 oC - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mAVI = 9V to 19V - 65 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 oC - 2 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25 oC - 250 - mAPeak Current IPK TJ=+25 oC - 2.2 - A

Page 140: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

13

Electrical Characteristics (MC7808A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 14V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VOTJ =+25 oC 7.84 8 8.16

VIO = 5mA to 1A, PO ≤15WVI = 10.6V to 23V 7.7 8 8.3

Line Regulation (Note1) Regline

VI= 10.6V to 25VIO = 500mA - 6 80

mVVI= 11V to 17V - 3 80

TJ =+25 oCVI= 10.4V to 23V - 6 80VI= 11V to 17V - 2 40

Load Regulation (Note1) Regload

TJ =+25 oCIO = 5mA to 1.5A - 12 100

mVIO = 5mA to 1A - 12 100IO = 250mA to 750mA - 5 50

Quiescent Current IQ TJ =+25 oC - 5.0 6 mA

Quiescent Current Change ∆IQIO = 5mA to 1A - - 0.5

mAVI = 11V to 25V, IO = 500mA - - 0.8VI= 10.6V to 23V, TJ =+25 oC - - 0.8

Output Voltage Drift ∆V/∆T IO = 5mA - -0.8 - mV/ oC

Output Noise Voltage VNf = 10Hz to 100KHzTA =+25 oC - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mAVI = 11.5V to 21.5V - 62 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 oC - 2 - VOutput Resistance rO f = 1KHz - 18 - mΩShort Circuit Current ISC VI= 35V, TA =+25 oC - 250 - mAPeak Current IPK TJ=+25 oC - 2.2 - A

Page 141: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

14

Electrical Characteristics (MC7809A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 15V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VOTJ =+25°C 8.82 9.0 9.18

VIO = 5mA to 1A, PO≤15WVI = 11.2V to 24V 8.65 9.0 9.35

Line Regulation (Note1) Regline

VI= 11.7V to 25VIO = 500mA - 6 90

mVVI= 12.5V to 19V - 4 45

TJ =+25°C VI= 11.5V to 24V - 6 90 VI= 12.5V to 19V - 2 45

Load Regulation (Note1) Regload

TJ =+25°CIO = 5mA to 1.0A - 12 100

mVIO = 5mA to 1.0A - 12 100IO = 250mA to 750mA - 5 50

Quiescent Current IQ TJ =+25 °C - 5.0 6.0 mA

Quiescent Current Change ∆IQ

VI = 11.7V to 25V, TJ=+25 °C - - 0.8mAVI = 12V to 25V, IO = 500mA - - 0.8

IO = 5mA to 1.0A - - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.0 - mV/ °C

Output Noise Voltage VNf = 10Hz to 100KHzTA =+25 °C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mAVI = 12V to 22V - 62 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 °C - 2.0 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25 °C - 250 - mAPeak Current IPK TJ=+25°C - 2.2 - A

Page 142: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

15

Electrical Characteristics (MC7810A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 16V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VO TJ =+25°C 9.8 10 10.2

V IO = 5mA to 1A, PO ≤ 15W VI =12.8V to 25V 9.6 10 10.4

Line Regulation (Note1) Regline

VI= 12.8V to 26V IO = 500mA - 8 100

mV VI= 13V to 20V - 4 50

TJ =+25 °C VI= 12.5V to 25V - 8 100 VI= 13V to 20V - 3 50

Load Regulation (Note1) Regload

TJ =+25 °C IO = 5mA to 1.5A - 12 100

mV IO = 5mA to 1.0A - 12 100 IO = 250mA to 750mA - 5 50

Quiescent Current IQ TJ =+25 °C - 5.0 6.0 mA

Quiescent Current Change ∆IQ

VI = 13V to 26V, TJ=+25 °C - - 0.5mA VI = 12.8V to 25V, IO = 500mA - - 0.8

IO = 5mA to 1.0A - - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.0 - mV/ °C

Output Noise Voltage VN f = 10Hz to 100KHz TA =+25 °C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mA VI = 14V to 24V - 62 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25°C - 2.0 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25 °C - 250 - mAPeak Current IPK TJ=+25 °C - 2.2 - A

Page 143: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

16

Electrical Characteristics (MC7812A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 19V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VO TJ =+25 °C 11.75 12 12.25

V IO = 5mA to 1A, PO ≤15W VI = 14.8V to 27V 11.5 12 12.5

Line Regulation (Note1) Regline

VI= 14.8V to 30V IO = 500mA - 10 120

mV VI= 16V to 22V - 4 120

TJ =+25 °C VI= 14.5V to 27V - 10 120 VI= 16V to 22V - 3 60

Load Regulation (Note1) Regload

TJ =+25 °C IO = 5mA to 1.5A - 12 100

mV IO = 5mA to 1.0A - 12 100 IO = 250mA to 750mA - 5 50

Quiescent Current IQ TJ =+25°C - 5.1 6.0 mA

Quiescent Current Change ∆IQ

VI = 15V to 30V, TJ=+25 °C - 0.8mA VI = 14V to 27V, IO = 500mA - 0.8

IO = 5mA to 1.0A - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.0 - mV/°C

Output Noise Voltage VN f = 10Hz to 100KHz TA =+25°C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mA VI = 14V to 24V - 60 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25°C - 2.0 - VOutput Resistance rO f = 1KHz - 18 - mΩShort Circuit Current ISC VI= 35V, TA =+25 °C - 250 - mAPeak Current IPK TJ=+25 °C - 2.2 - A

Page 144: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

17

Electrical Characteristics (MC7815A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I =23V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VO TJ =+25 °C 14.7 15 15.3

V IO = 5mA to 1A, PO ≤15W VI = 17.7V to 30V 14.4 15 15.6

Line Regulation (Note1) Regline

VI= 17.9V to 30V IO = 500mA - 10 150

mV VI= 20V to 26V - 5 150

TJ =+25°C VI= 17.5V to 30V - 11 150 VI= 20V to 26V - 3 75

Load Regulation (Note1) Regload

TJ =+25 °C IO = 5mA to 1.5A - 12 100

mV IO = 5mA to 1.0A - 12 100 IO = 250mA to 750mA - 5 50

Quiescent Current IQ TJ =+25 °C - 5.2 6.0 mA

Quiescent Current Change ∆IQ

VI = 17.5V to 30V, TJ =+25 °C - - 0.8mA VI = 17.5V to 30V, IO = 500mA - - 0.8

IO = 5mA to 1.0A - - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.0 - mV/°C

Output Noise Voltage VN f = 10Hz to 100KHz TA =+25 °C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mA VI = 18.5V to 28.5V - 58 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 °C - 2.0 - VOutput Resistance rO f = 1KHz - 19 - mΩShort Circuit Current ISC VI= 35V, TA =+25 °C - 250 - mAPeak Current IPK TJ=+25°C - 2.2 - A

Page 145: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

18

Electrical Characteristics (MC7818A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 27V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VO TJ =+25 °C 17.64 18 18.36

V IO = 5mA to 1A, PO ≤15W VI = 21V to 33V 17.3 18 18.7

Line Regulation (Note1) Regline

VI= 21V to 33V IO = 500mA - 15 180

mV VI= 21V to 33V - 5 180

TJ =+25 °C VI= 20.6V to 33V - 15 180 VI= 24V to 30V - 5 90

Load Regulation (Note1) Regload

TJ =+25°C IO = 5mA to 1.5A - 15 100

mV IO = 5mA to 1.0A - 15 100 IO = 250mA to 750mA - 7 50

Quiescent Current IQ TJ =+25 °C - 5.2 6.0 mA

Quiescent Current Change ∆IQ

VI = 21V to 33V, TJ=+25 °C - - 0.8mA VI = 21V to 33V, IO = 500mA - - 0.8

IO = 5mA to 1.0A - - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.0 - mV/ °C

Output Noise Voltage VN f = 10Hz to 100KHz TA =+25°C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mA VI = 22V to 32V - 57 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25°C - 2.0 - VOutput Resistance rO f = 1KHz - 19 - mΩShort Circuit Current ISC VI= 35V, TA =+25°C - 250 - mAPeak Current IPK TJ=+25 °C - 2.2 - A

Page 146: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

19

Electrical Characteristics (MC7824A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 33V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VO TJ =+25 °C 23.5 24 24.5

V IO = 5mA to 1A, PO ≤15W VI = 27.3V to 38V 23 24 25

Line Regulation (Note1) Regline

VI= 27V to 38V IO = 500mA - 18 240

mV VI= 21V to 33V - 6 240

TJ =+25 °C VI= 26.7V to 38V - 18 240 VI= 30V to 36V - 6 120

Load Regulation (Note1) Regload

TJ =+25 °C IO = 5mA to 1.5A - 15 100

mV IO = 5mA to 1.0A - 15 100 IO = 250mA to 750mA - 7 50

Quiescent Current IQ TJ =+25 °C - 5.2 6.0 mA

Quiescent Current Change ∆IQ

VI = 27.3V to 38V, TJ =+25 °C - - 0.8mA VI = 27.3V to 38V, IO = 500mA - - 0.8

IO = 5mA to 1.0A - - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.5 - mV/ °C

Output Noise Voltage VN f = 10Hz to 100KHz TA = 25 °C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mA VI = 28V to 38V - 54 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 °C - 2.0 - VOutput Resistance rO f = 1KHz - 20 - mΩShort Circuit Current ISC VI= 35V, TA =+25 °C - 250 - mAPeak Current IPK TJ=+25 °C - 2.2 - A

Page 147: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

20

Typical Perfomance Characteristics

Figure 1. Quiescent Current

Figure 3. Output Voltage

Figure 2. Peak Output Current

Figure 4. Quiescent Current

I

Page 148: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

21

Typical Applications

Figure 5. DC Parameters

Figure 6. Load Regulation

Figure 7. Ripple Rejection

Figure 8. Fixed Output Regulator

Input OutputMC78XX/LM78XX

Input OutputMC78XX/LM78XX

Input OutputMC78XX/LM78XX

Input OutputMC78XX/LM78XX

Page 149: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

22

Figure 9. Constant Current Regulator

Notes:(1) To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the

Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the inputripple voltage.

(2) CI is required if regulator is located an appreciable distance from power Supply filter.(3) CO improves stability and transient response.

VO = VXX(1+R2/R1)+IQR2Figure 10. Circuit for Increasing Output Voltage

IRI ≥5 IQVO = VXX(1+R2/R1)+IQR2

Figure 11. Adjustable Output Regulator (7 to 30V)

Input OutputMC78XX/LM78XX

CI

Co

Input OutputMC78XX/LM78XX

CICo

IRI 5IQ≥

Input OutputMC7805LM7805

LM741Co

CI

Page 150: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

23

Figure 12. High Current Voltage Regulator

Figure 13. High Output Current with Short Circuit Protection

Figure 14. Tracking Voltage Regulator

Input

OutputMC78XX/LM78XX

Input

OutputMC78XX/LM78XX

MC78XX/LM78XX

LM741

Page 151: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

24

Figure 15. Split Power Supply ( ±15V-1A)

Figure 16. Negative Output Voltage Circuit

Figure 17. Switching Regulator

MC7815

MC7915

Input

Output

MC78XX/LM78XX

Input Output

MC78XX/LM78XX

Page 152: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

25

Mechanical DimensionsPackage

4.50 ±0.209.90 ±0.20

1.52 ±0.10

0.80 ±0.102.40 ±0.20

10.00 ±0.20

1.27 ±0.10

ø3.60 ±0.10

(8.70)

2.80

±0.

1015

.90

±0.2

0

10.0

8 ±0

.30

18.9

5MA

X.

(1.7

0)

(3.7

0)(3

.00)

(1.4

6)

(1.0

0)

(45°)

9.20

±0.

2013

.08

±0.2

0

1.30

±0.

10

1.30+0.10–0.05

0.50+0.10–0.05

2.54TYP[2.54 ±0.20]

2.54TYP[2.54 ±0.20]

TO-220

Page 153: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

26

Mechancal Dimensions (Continued)

Package

6.60 ±0.20

2.30 ±0.10

0.50 ±0.10

5.34 ±0.30

0.70

±0.

20

0.60

±0.

200.

80 ±

0.20

9.50

±0.

30

6.10

±0.

20

2.70

±0.

209.

50 ±

0.30

6.10

±0.

20

2.70

±0.

20

MIN

0.55

0.76 ±0.10 0.50 ±0.10

1.02 ±0.20

2.30 ±0.20

6.60 ±0.20

0.76 ±0.10

(5.34)

(1.50)

(2XR0.25)

(5.04)

0.89

±0.

10

(0.1

0)(3

.05)

(1.0

0)

(0.9

0)

(0.7

0)

0.91

±0.

10

2.30TYP[2.30±0.20]

2.30TYP[2.30±0.20]

MAX0.96

(4.34)(0.50) (0.50)

D-PAK

Page 154: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

27

Ordering InformationProduct Number Output Voltage Tolerance Package Operating Temperature

LM7805CT ±4% TO-220 0 ~ + 125°C

Product Number Output Voltage Tolerance Package Operating TemperatureMC7805CT

±4%

TO-220

0 ~ + 125°C

MC7806CTMC7808CTMC7809CTMC7810CTMC7812CTMC7815CTMC7818CTMC7824CT

MC7805CDT

D-PAK

MC7806CDTMC7808CDTMC7809CDTMC7810CDTMC7812CDTMC7815CDTMC7818CDTMC7824CDTMC7805ACT

±2% TO-220

MC7806ACTMC7808ACTMC7809ACTMC7810ACTMC7812ACTMC7815ACTMC7818ACTMC7824ACT

Page 155: Apostila de Laboratorio de Eletronica Analogica - Completa

MC78XX/LM78XX/MC78XXA

6/1/01 0.0m 001Stock#DSxxxxxxxx

2001 Fairchild Semiconductor Corporation

LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

Page 156: Apostila de Laboratorio de Eletronica Analogica - Completa

TL/H/5516

LM

35/LM

35A

/LM

35C

/LM

35C

A/LM

35D

Pre

cis

ion

Centig

rade

Tem

pera

ture

Sensors

December 1994

LM35/LM35A/LM35C/LM35CA/LM35DPrecision Centigrade Temperature SensorsGeneral DescriptionThe LM35 series are precision integrated-circuit tempera-

ture sensors, whose output voltage is linearly proportional to

the Celsius (Centigrade) temperature. The LM35 thus has

an advantage over linear temperature sensors calibrated in §Kelvin, as the user is not required to subtract a large con-

stant voltage from its output to obtain convenient Centi-

grade scaling. The LM35 does not require any external cali-

bration or trimming to provide typical accuracies of g(/4§Cat room temperature and g*/4§C over a full b55 to a150§Ctemperature range. Low cost is assured by trimming and

calibration at the wafer level. The LM35’s low output imped-

ance, linear output, and precise inherent calibration make

interfacing to readout or control circuitry especially easy. It

can be used with single power supplies, or with plus and

minus supplies. As it draws only 60 mA from its supply, it has

very low self-heating, less than 0.1§C in still air. The LM35 is

rated to operate over a b55§ to a150§C temperature

range, while the LM35C is rated for a b40§ to a110§Crange (b10§ with improved accuracy). The LM35 series is

available packaged in hermetic TO-46 transistor packages,

while the LM35C, LM35CA, and LM35D are also available in

the plastic TO-92 transistor package. The LM35D is also

available in an 8-lead surface mount small outline package

and a plastic TO-202 package.

FeaturesY Calibrated directly in § Celsius (Centigrade)Y Linear a 10.0 mV/§C scale factorY 0.5§C accuracy guaranteeable (at a25§C)Y Rated for full b55§ to a150§C rangeY Suitable for remote applicationsY Low cost due to wafer-level trimmingY Operates from 4 to 30 voltsY Less than 60 mA current drainY Low self-heating, 0.08§C in still airY Nonlinearity only g(/4§C typicalY Low impedance output, 0.1 X for 1 mA load

Connection DiagramsTO-46

Metal Can Package*

TL/H/5516–1

*Case is connected to negative pin (GND)

Order Number LM35H, LM35AH,

LM35CH, LM35CAH or LM35DH

See NS Package Number H03H

TO-92

Plastic Package

TL/H/5516–2

Order Number LM35CZ,

LM35CAZ or LM35DZ

See NS Package Number Z03A

SO-8

Small Outline Molded Package

TL/H/5516–21

Top View

N.C. e No Connection

Order Number LM35DM

See NS Package Number M08A

TO-202

Plastic Package

TL/H/5516–24

Order Number LM35DP

See NS Package Number P03A

Typical Applications

TL/H/5516–3

FIGURE 1. Basic Centigrade

Temperature

Sensor (a2§C to a150§C)

TL/H/5516–4

Choose R1 e bVS/50 mA

VOUTea1,500 mV at a150§Cea250 mV at a25§Ceb550 mV at b55§C

FIGURE 2. Full-Range Centigrade

Temperature Sensor

TRI-STATEÉ is a registered trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

Page 157: Apostila de Laboratorio de Eletronica Analogica - Completa

Absolute Maximum Ratings (Note 10)

If Military/Aerospace specified devices are required,

please contact the National Semiconductor Sales

Office/Distributors for availability and specifications.

Supply Voltage a35V to b0.2V

Output Voltage a6V to b1.0V

Output Current 10 mA

Storage Temp., TO-46 Package, b60§C to a180§CTO-92 Package, b60§C to a150§CSO-8 Package, b65§C to a150§CTO-202 Package, b65§C to a150§C

Lead Temp.:

TO-46 Package, (Soldering, 10 seconds) 300§CTO-92 Package, (Soldering, 10 seconds) 260§CTO-202 Package, (Soldering, 10 seconds) a230§C

SO Package (Note 12):

Vapor Phase (60 seconds) 215§CInfrared (15 seconds) 220§C

ESD Susceptibility (Note 11) 2500V

Specified Operating Temperature Range: TMIN to TMAX

(Note 2)

LM35, LM35A b55§C to a150§CLM35C, LM35CA b40§C to a110§CLM35D 0§C to a100§C

Electrical Characteristics (Note 1) (Note 6)

LM35A LM35CA

Parameter ConditionsTested Design Tested Design Units

Typical Limit Limit Typical Limit Limit (Max.)

(Note 4) (Note 5) (Note 4) (Note 5)

Accuracy TAea25§C g0.2 g0.5 g0.2 g0.5 §C(Note 7) TAeb10§C g0.3 g0.3 g1.0 §C

TAeTMAX g0.4 g1.0 g0.4 g1.0 §CTAeTMIN g0.4 g1.0 g0.4 g1.5 §C

Nonlinearity TMINsTAsTMAX g0.18 g0.35 g0.15 g0.3 §C(Note 8)

Sensor Gain TMINsTAsTMAX a10.0 a9.9, a10.0 a9.9, mV/§C(Average Slope) a10.1 a10.1

Load Regulation TAea25§C g0.4 g1.0 g0.4 g1.0 mV/mA

(Note 3) 0sILs1 mA TMINsTAsTMAX g0.5 g3.0 g0.5 g3.0 mV/mA

Line Regulation TAea25§C g0.01 g0.05 g0.01 g0.05 mV/V

(Note 3) 4VsVSs30V g0.02 g0.1 g0.02 g0.1 mV/V

Quiescent Current VSea5V, a25§C 56 67 56 67 mA

(Note 9) VSea5V 105 131 91 114 mA

VSea30V, a25§C 56.2 68 56.2 68 mA

VSea30V 105.5 133 91.5 116 mA

Change of 4VsVSs30V, a25§C 0.2 1.0 0.2 1.0 mA

Quiescent Current 4VsVSs30V 0.5 2.0 0.5 2.0 mA

(Note 3)

Temperature a0.39 a0.5 a0.39 a0.5 mA/§CCoefficient of

Quiescent Current

Minimum Temperature In circuit of a1.5 a2.0 a1.5 a2.0 §Cfor Rated Accuracy Figure 1, ILe0

Long Term Stability TJeTMAX, for g0.08 g0.08 §C1000 hours

Note 1: Unless otherwise noted, these specifications apply: b55§CsTJsa150§C for the LM35 and LM35A; b40§sTJsa110§C for the LM35C and LM35CA; and

0§sTJsa100§C for the LM35D. VSea5Vdc and ILOADe50 mA, in the circuit of Figure 2. These specifications also apply from a2§C to TMAX in the circuit of

Figure 1. Specifications in boldface apply over the full rated temperature range.

Note 2: Thermal resistance of the TO-46 package is 400§C/W, junction to ambient, and 24§C/W junction to case. Thermal resistance of the TO-92 package is

180§C/W junction to ambient. Thermal resistance of the small outline molded package is 220§C/W junction to ambient. Thermal resistance of the TO-202 package

is 85§C/W junction to ambient. For additional thermal resistance information see table in the Applications section.

2

Page 158: Apostila de Laboratorio de Eletronica Analogica - Completa

Electrical Characteristics (Note 1) (Note 6) (Continued)

LM35 LM35C, LM35D

Parameter ConditionsTested Design Tested Design Units

Typical Limit Limit Typical Limit Limit (Max.)

(Note 4) (Note 5) (Note 4) (Note 5)

Accuracy, TAea25§C g0.4 g1.0 g0.4 g1.0 §CLM35, LM35C TAeb10§C g0.5 g0.5 g1.5 §C(Note 7) TAeTMAX g0.8 g1.5 g0.8 g1.5 §C

TAeTMIN g0.8 g1.5 g0.8 g2.0 §C

Accuracy, TAea25§C g0.6 g1.5 §CLM35D TAeTMAX g0.9 g2.0 §C(Note 7) TAeTMIN g0.9 g2.0 §C

Nonlinearity TMINsTAsTMAX g0.3 g0.5 g0.2 g0.5 §C(Note 8)

Sensor Gain TMINsTAsTMAX a10.0 a9.8, a10.0 a9.8, mV/§C(Average Slope) a10.2 a10.2

Load Regulation TAea25§C g0.4 g2.0 g0.4 g2.0 mV/mA

(Note 3) 0sILs1 mA TMINsTAsTMAX g0.5 g5.0 g0.5 g5.0 mV/mA

Line Regulation TAea25§C g0.01 g0.1 g0.01 g0.1 mV/V

(Note 3) 4VsVSs30V g0.02 g0.2 g0.02 g0.2 mV/V

Quiescent Current VSea5V, a25§C 56 80 56 80 mA

(Note 9) VSea5V 105 158 91 138 mA

VSea30V, a25§C 56.2 82 56.2 82 mA

VSea30V 105.5 161 91.5 141 mA

Change of 4VsVSs30V, a25§C 0.2 2.0 0.2 2.0 mA

Quiescent Current 4VsVSs30V 0.5 3.0 0.5 3.0 mA

(Note 3)

Temperature a0.39 a0.7 a0.39 a0.7 mA/§CCoefficient of

Quiescent Current

Minimum Temperature In circuit of a1.5 a2.0 a1.5 a2.0 §Cfor Rated Accuracy Figure 1, ILe0

Long Term Stability TJeTMAX, for g0.08 g0.08 §C1000 hours

Note 3: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be

computed by multiplying the internal dissipation by the thermal resistance.

Note 4: Tested Limits are guaranteed and 100% tested in production.

Note 5: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to

calculate outgoing quality levels.

Note 6: Specifications in boldface apply over the full rated temperature range.

Note 7: Accuracy is defined as the error between the output voltage and 10mv/§C times the device’s case temperature, at specified conditions of voltage, current,

and temperature (expressed in §C).

Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device’s rated temperature

range.

Note 9: Quiescent current is defined in the circuit of Figure 1.

Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when

operating the device beyond its rated operating conditions. See Note 1.

Note 11: Human body model, 100 pF discharged through a 1.5 kX resistor.

Note 12: See AN-450 ‘‘Surface Mounting Methods and Their Effect on Product Reliability’’ or the section titled ‘‘Surface Mount’’ found in a current National

Semiconductor Linear Data Book for other methods of soldering surface mount devices.

3

Page 159: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Performance Characteristics

Thermal Resistance

Junction to Air Thermal Time Constant

Thermal Response

in Still Air

Thermal Response in

Stirred Oil Bath

Minimum Supply

Voltage vs. Temperature

Quiescent Current

vs. Temperature

(In Circuit ofFigure 1.)

TL/H/5516–17

Quiescent Current

vs. Temperature

(In Circuit ofFigure 2.)

Accuracy vs. Temperature

(Guaranteed)

Accuracy vs. Temperature

(Guaranteed)

TL/H/5516–18

Start-Up ResponseNoise Voltage

TL/H/5516–22

4

Page 160: Apostila de Laboratorio de Eletronica Analogica - Completa

ApplicationsThe LM35 can be applied easily in the same way as other

integrated-circuit temperature sensors. It can be glued or

cemented to a surface and its temperature will be within

about 0.01§C of the surface temperature.

This presumes that the ambient air temperature is almost

the same as the surface temperature; if the air temperature

were much higher or lower than the surface temperature,

the actual temperature of the LM35 die would be at an inter-

mediate temperature between the surface temperature and

the air temperature. This is expecially true for the TO-92

plastic package, where the copper leads are the principal

thermal path to carry heat into the device, so its tempera-

ture might be closer to the air temperature than to the sur-

face temperature.

To minimize this problem, be sure that the wiring to the

LM35, as it leaves the device, is held at the same tempera-

ture as the surface of interest. The easiest way to do this is

to cover up these wires with a bead of epoxy which will

insure that the leads and wires are all at the same tempera-

ture as the surface, and that the LM35 die’s temperature will

not be affected by the air temperature.

The TO-46 metal package can also be soldered to a metal

surface or pipe without damage. Of course, in that case the

Vb terminal of the circuit will be grounded to that metal.

Alternatively, the LM35 can be mounted inside a sealed-end

metal tube, and can then be dipped into a bath or screwed

into a threaded hole in a tank. As with any IC, the LM35 and

accompanying wiring and circuits must be kept insulated

and dry, to avoid leakage and corrosion. This is especially

true if the circuit may operate at cold temperatures where

condensation can occur. Printed-circuit coatings and var-

nishes such as Humiseal and epoxy paints or dips are often

used to insure that moisture cannot corrode the LM35 or its

connections.

These devices are sometimes soldered to a small light-

weight heat fin, to decrease the thermal time constant and

speed up the response in slowly-moving air. On the other

hand, a small thermal mass may be added to the sensor, to

give the steadiest reading despite small deviations in the air

temperature.

Temperature Rise of LM35 Due To Self-heating (Thermal Resistance)

TO-46, TO-46, TO-92, TO-92, SO-8 SO-8 TO-202 TO-202 ***no heat sink small heat fin* no heat sink small heat fin** no heat sink small heat fin** no heat sink small heat fin

Still air 400§C/W 100§C/W 180§C/W 140§C/W 220§C/W 110§C/W 85§C/W 60§C/W

Moving air 100§C/W 40§C/W 90§C/W 70§C/W 105§C/W 90§C/W 25§C/W 40§C/W

Still oil 100§C/W 40§C/W 90§C/W 70§C/W

Stirred oil 50§C/W 30§C/W 45§C/W 40§C/W

(Clamped to metal,

Infinite heat sink) (24§C/W) (55§C/W) (23§C/W)

* Wakefield type 201, or 1× disc of 0.020× sheet brass, soldered to case, or similar.

** TO-92 and SO-8 packages glued and leads soldered to 1× square of (/16× printed circuit board with 2 oz. foil or similar.

Typical Applications (Continued)

TL/H/5516–19

FIGURE 3. LM35 with Decoupling from Capacitive Load

TL/H/5516–20

FIGURE 4. LM35 with R-C Damper

CAPACITIVE LOADS

Like most micropower circuits, the LM35 has a limited ability

to drive heavy capacitive loads. The LM35 by itself is able to

drive 50 pf without special precautions. If heavier loads are

anticipated, it is easy to isolate or decouple the load with a

resistor; see Figure 3. Or you can improve the tolerance of

capacitance with a series R-C damper from output to

ground; see Figure 4.

When the LM35 is applied with a 200X load resistor as

shown in Figure 5, 6, or 8, it is relatively immune to wiring

capacitance because the capacitance forms a bypass from

ground to input, not on the output. However, as with any

linear circuit connected to wires in a hostile environment, its

performance can be affected adversely by intense electro-

magnetic sources such as relays, radio transmitters, motors

with arcing brushes, SCR transients, etc, as its wiring can

act as a receiving antenna and its internal junctions can act

as rectifiers. For best results in such cases, a bypass capac-

itor from VIN to ground and a series R-C damper such as

75X in series with 0.2 or 1 mF from output to ground are

often useful. These are shown in Figures 13, 14, and 16.

5

Page 161: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Applications (Continued)

TL/H/5516–5

FIGURE 5. Two-Wire Remote Temperature Sensor

(Grounded Sensor)

TL/H/5516–6

FIGURE 6. Two-Wire Remote Temperature Sensor

(Output Referred to Ground)

TL/H/5516–7

FIGURE 7. Temperature Sensor, Single Supply, b55§ toa150§C

TL/H/5516–8

FIGURE 8. Two-Wire Remote Temperature Sensor

(Output Referred to Ground)

TL/H/5516–9

FIGURE 9. 4-To-20 mA Current Source (0§C to a100§C)

TL/H/5516–10

FIGURE 10. Fahrenheit Thermometer

6

Page 162: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Applications (Continued)

TL/H/5516–11

FIGURE 11. Centigrade Thermometer (Analog Meter)TL/H/5516–12

FIGURE 12. Expanded Scale Thermometer

(50§ to 80§ Fahrenheit, for Example Shown)

TL/H/5516–13

FIGURE 13. Temperature To Digital Converter (Serial Output) (a128§C Full Scale)

TL/H/5516–14

FIGURE 14. Temperature To Digital Converter (Parallel TRI-STATEÉ Outputs for

Standard Data Bus to mP Interface) (128§C Full Scale)

7

Page 163: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Applications (Continued)

TL/H/5516–16

*e1% or 2% film resistor

-Trim RB for VBe3.075V

-Trim RC for VCe1.955V

-Trim RA for VAe0.075V a 100mV/§C c Tambient

-Example, VAe2.275V at 22§CFIGURE 15. Bar-Graph Temperature Display (Dot Mode)

TL/H/5516–15

FIGURE 16. LM35 With Voltage-To-Frequency Converter And Isolated Output

(2§C to a150§C; 20 Hz to 1500 Hz)

8

Page 164: Apostila de Laboratorio de Eletronica Analogica - Completa

Block Diagram

TL/H/5516–23

9

Page 165: Apostila de Laboratorio de Eletronica Analogica - Completa

Physical Dimensions inches (millimeters)

TO-46 Metal Can Package (H)

Order Number LM35H, LM35AH, LM35CH,

LM35CAH, or LM35DH

NS Package Number H03H

SO-8 Molded Small Outline Package (M)

Order Number LM35DM

NS Package Number M08A

10

Page 166: Apostila de Laboratorio de Eletronica Analogica - Completa

Physical Dimensions inches (millimeters) (Continued)

Power Package TO-202 (P)

Order Number LM35DP

NS Package Number P03A

11

Page 167: Apostila de Laboratorio de Eletronica Analogica - Completa

LM

35/LM

35A

/LM

35C

/LM

35C

A/LM

35D

Pre

cis

ion

Centigra

de

Tem

pera

ture

Sensors

Physical Dimensions inches (millimeters) (Continued)

TO-92 Plastic Package (Z)

Order Number LM35CZ, LM35CAZ or LM35DZ

NS Package Number Z03A

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National SemiconductorCorporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park DriveSanta Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business ParkTel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, MelbourneTWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Page 168: Apostila de Laboratorio de Eletronica Analogica - Completa

TDA2030

14W Hi-Fi AUDIO AMPLIFIER

DESCRIPTIONThe TDA2030 is a monolithic integrated circuit inPentawatt package, intended for use as a lowfrequency class AB amplifier. Typically it provides14W output power (d = 0.5%) at 14V/4Ω; at ± 14Vthe guaranteed output power is 12W on a 4Ω loadand 8W on a 8Ω (DIN45500).TheTDA2030provideshigh outputcurrentand hasvery low harmonic and cross-over distortion.Further the device incorporates an original (andpatented) short circuit protection system compris-ing an arrangement for automatically limiting thedissipated power so as to keep the working pointof the output transistors within their safe operatingarea. A conventional thermal shut-down system isalso included.

March 1993

Symbol Parameter Value Unit

Vs Supply voltage ± 18 V

Vi Input voltage Vs

Vi Differential input voltage ± 15 V

Io Output peak current (internally limited) 3.5 A

Ptot Power dissipation at Tcase = 90°C 20 W

Tstg, Tj Stoprage and junction temperature -40 to 150 °C

ABSOLUTE MAXIMUM RATINGS

TYPICAL APPLICATION

Pentawatt

ORDERING NUMBERS : TDA2030HTDA2030V

1/11

Page 169: Apostila de Laboratorio de Eletronica Analogica - Completa

2/11

PIN CONNECTION (top view)

TEST CIRCUIT

+VS

OUTPUT-VS

INVERTING INPUTNON INVERTING INPUT

TDA2030

Page 170: Apostila de Laboratorio de Eletronica Analogica - Completa

Symbol Parameter Test conditions Min. Typ. Max. Unit

Vs Supply voltage ± 6 ± 18 V

Id Quiescent drain current

Vs = ± 18V

40 60 mA

Ib Input bias current 0.2 2 µA

Vos Input offset voltage ± 2 ± 20 mV

Ios Input offset current ± 20 ± 200 nA

Po Output power d = 0.5% Gv = 30 dBf = 40 to 15,000 HzRL = 4ΩRL = 8Ω

128

149

WW

d = 10%f = 1 KHzRL = 4ΩRL = 8Ω

Gv = 30 dB

1811

WW

d Distortion Po = 0.1 to 12WRL = 4Ω Gv = 30 dBf = 40 to 15,000 Hz 0.2 0.5 %

Po = 0.1 to 8WRL = 8Ω Gv = 30 dBf = 40 to 15,000 Hz 0.1 0.5 %

B Power Bandwidth(-3 dB)

Gv = 30 dBPo = 12W RL = 4Ω 10 to 140,000 Hz

Ri Input resistance (pin 1) 0.5 5 MΩ

Gv Voltage gain (open loop) 90 dB

Gv Voltage gain (closed loop) f = 1 kHz 29.5 30 30.5 dB

eN Input noise voltage B = 22 Hz to 22 KHz 3 10 µV

iN Input noise current 80 200 pA

SVR Supply voltage rejection RL = 4Ω Gv = 30 dBRg = 22 kΩVripple = 0.5 Vefffripple = 100 Hz

40 50 dB

Id Drain current Po = 14WPo = W

RL = 4ΩRL = 8Ω

900500

mAmA

Tj Thermal shut-down junctiontemperature

145 °C

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs = ± 14V, Tamb = 25°C unless otherwisespecified)

Symbol Parameter Value Unit

Rth j-case Thermal resistance junction-case max 3 °C/W

THERMAL DATA

3/11

TDA2030

Page 171: Apostila de Laboratorio de Eletronica Analogica - Completa

4/11

Figure 1. Output power vs.supply voltage

Figure 2. Output power vs.supply voltage

Figure 3 . Distor tion vs.output power

Figure 4. Distort ion vs.output power

Figure 5. Distort ion vs.output power

Figure 6 . Distor tion vs.frequency

Figure 7. Distor tion vs .frequency

Figure 8. Frequency re-sponse with different valuesof the rolloff capacitor C8(see fig. 13)

Figure 9. Quiescent currentvs. supply voltage

TDA2030

Page 172: Apostila de Laboratorio de Eletronica Analogica - Completa

Figure 10. Supply voltagerejection vs. voltage gain

Figure 11. Power dissipa-tionand efficiencyvs.outputpower

Figure 12. Maximum powerdissipation vs. supply volt-age (sine wave operation)

APPLICATION INFORMATION

Figure 13. Typical amplifierwith split power supply

Figure 14. P.C. board and component layout forthe circuit of fig. 13 (1 : 1 scale)

5/11

TDA2030

Page 173: Apostila de Laboratorio de Eletronica Analogica - Completa

6/11

APPLICATION INFORMATION (continued)

Figure 15. Typical amplifierwith single power supply

Figure 16. P.C. board and component layout forthe circuit of fig. 15 (1 : 1 scale)

Figure 17. Bridge amplifier configuration with split power supply (P o = 28W,Vs = ±14V)

TDA2030

Page 174: Apostila de Laboratorio de Eletronica Analogica - Completa

PRACTICAL CONSIDERATIONS

Printed circuit boardThe layout shown in Fig. 16 should be adopted bythe designers. If different layouts are used, theground points of input 1 and input 2 must be welldecoupled from the ground return of the output inwhich a high current flows.

Assembly suggestionNo electrical isolation is needed between the

packageandthe heatsinkwith singlesupplyvoltageconfiguration.

Application suggestionsThe recommended values of the components arethose shown on application circuit of fig. 13.Different values can be used. The following tablecan help the designer.

Component Recomm.value Purpose Larger than

recommended valueSmaller than

recommended value

R1 22 kΩ Closed loop gainsetting

Increase of gain Decrease of gain (*)

R2 680 Ω Closed loop gainsetting

Decrease of gain (*) Increase of gain

R3 22 kΩ Non inverting inputbiasing

Increase of inputimpedance

Decrease of inputimpedance

R4 1 Ω Frequency stability Danger of osccilat. athigh frequencieswith induct. loads

R5 ≅ 3 R2 Upper frequencycutoff

Poor high frequenciesattenuation

Danger ofoscillation

C1 1 µF Input DCdecoupling

Increase of lowfrequencies cutoff

C2 22 µF Inverting DCdecoupling

Increase of lowfrequencies cutoff

C3, C4 0.1 µF Supply voltagebypass

Danger ofoscillation

C5, C6 100 µF Supply voltagebypass

Danger ofoscillation

C7 0.22 µF Frequency stability Danger of oscillation

C8 ≅ 12π B R1

Upper frequencycutoff

Smaller bandwidth Larger bandwidth

D1, D2 1N4001 To protect the device against output voltage spikes

(*) Closed loop gain must be higher than 24dB

7/11

TDA2030

Page 175: Apostila de Laboratorio de Eletronica Analogica - Completa

8/11

SHORT CIRCUIT PROTECTION

The TDA2030has an originalcircuit which limits thecurrent of the output transistors.Fig. 18 shows thatthe maximum output current is a function of thecollector emitter voltage; hence the output transis-tors work within their safe operating area (Fig. 2).This function can thereforebe considered as being

peak power limiting rather than simple current lim-iting.It reduces the possibility that the device gets dam-aged during an accidental short circuit from ACoutput to ground.

Figure 1 8. Maximumoutput curr ent vs .voltage [V CEsat] acrosseach output transistor

Figure 19. Safe operating area andcollector characteristics of theprotected power transistor

THERMAL SHUT-DOWN

The presenceof a thermal limiting circuit offers thefollowing advantages:1. An overload on the output (even if it is perma-

nent), or an abovelimit ambient temperaturecanbe easily supported since the Tj cannot behigher than 150°C.

2. The heatsinkcan have a smaller factorof safetycompared with that of a conventional circuit.There is no possibility of device damage due tohigh junction temperature.If for any reason, the

junction temperature increasesup to 150°C, thethermal shut-down simply reduces the powerdissipation at the current consumption.

The maximum allowable power dissipation de-pends upon the size of the external heatsink (i.e. itsthermal resistance); fig. 22 shows this dissipablepower as a function of ambient temperature fordifferent thermal resistance.

TDA2030

Page 176: Apostila de Laboratorio de Eletronica Analogica - Completa

Figure 20. Output power anddra in current vs. casetemperature (R L = 4Ω)

Figure 21. Output power anddra in current vs. casetemperature (R L = 8Ω)

Figure 22. Maximumallowable power dissipationvs. ambient temperature

Figure 23. Example of heat-sink Dimension : suggestion.The following table shows the length thatthe heatsink in fig.23 musthavefor severalvalues of Ptot and Rth.

Ptot (W) 12 8 6

Length of heatsink(mm) 60 40 30

Rth of heatsink(° C/W)

4.2 6.2 8.3

9/11

TDA2030

Page 177: Apostila de Laboratorio de Eletronica Analogica - Completa

10/11

DIM.mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

A 4.8 0.189

C 1.37 0.054

D 2.4 2.8 0.094 0.110

D1 1.2 1.35 0.047 0.053

E 0.35 0.55 0.014 0.022

F 0.8 1.05 0.031 0.041

F1 1 1.4 0.039 0.055

G 3.4 0.126 0.134 0.142

G1 6.8 0.260 0.268 0.276

H2 10.4 0.409

H3 10.05 10.4 0.396 0.409

L 17.85 0.703

L1 15.75 0.620

L2 21.4 0.843

L3 22.5 0.886

L5 2.6 3 0.102 0.118

L6 15.1 15.8 0.594 0.622

L7 6 6.6 0.236 0.260

M 4.5 0.177

M1 4 0.157

Dia 3.65 3.85 0.144 0.152

PENTAWATT PACKAGE MECHANICAL DATA

L2

L3L5

L7

L6

Dia.

A

C

D

E

D1

H3

H2

F

G G1

L1

L

MM

1

F1

TDA2030

Page 178: Apostila de Laboratorio de Eletronica Analogica - Completa

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for theconsequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. Nolicense is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentionedin this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.SGS-THOMSON Microelectronics products are not authorizedfor use as critical components in lifesupport devices or systems without expresswritten approval of SGS-THOMSON Microelectronics.

1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIESAustralia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain

- Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

11/11

TDA2030

Page 179: Apostila de Laboratorio de Eletronica Analogica - Completa

LM3914Dot/Bar Display DriverGeneral DescriptionThe LM3914 is a monolithic integrated circuit that sensesanalog voltage levels and drives 10 LEDs, providing a linearanalog display. A single pin changes the display from a mov-ing dot to a bar graph. Current drive to the LEDs is regulatedand programmable, eliminating the need for resistors. Thisfeature is one that allows operation of the whole system fromless than 3V.

The circuit contains its own adjustable reference and accu-rate 10-step voltage divider. The low-bias-current inputbuffer accepts signals down to ground, or V−, yet needs noprotection against inputs of 35V above or below ground. Thebuffer drives 10 individual comparators referenced to theprecision divider. Indication non-linearity can thus be heldtypically to 1⁄2%, even over a wide temperature range.

Versatility was designed into the LM3914 so that controller,visual alarm, and expanded scale functions are easily addedon to the display system. The circuit can drive LEDs of manycolors, or low-current incandescent lamps. Many LM3914scan be “chained” to form displays of 20 to over 100 seg-ments. Both ends of the voltage divider are externally avail-able so that 2 drivers can be made into a zero-center meter.

The LM3914 is very easy to apply as an analog meter circuit.A 1.2V full-scale meter requires only 1 resistor and a single3V to 15V supply in addition to the 10 display LEDs. If the 1resistor is a pot, it becomes the LED brightness control. Thesimplified block diagram illustrates this extremely simple ex-ternal circuitry.

When in the dot mode, there is a small amount of overlap or“fade” (about 1 mV) between segments. This assures that atno time will all LEDs be “OFF”, and thus any ambiguous dis-play is avoided. Various novel displays are possible.

Much of the display flexibility derives from the fact that alloutputs are individual, DC regulated currents. Various effectscan be achieved by modulating these currents. The indi-vidual outputs can drive a transistor as well as a LED at thesame time, so controller functions including “staging” controlcan be performed. The LM3914 can also act as a program-mer, or sequencer.

The LM3914 is rated for operation from 0˚C to +70˚C. TheLM3914N-1 is available in an 18-lead molded (N) package.

The following typical application illustrates adjusting of thereference to a desired value, and proper grounding for accu-rate operation, and avoiding oscillations.

Featuresn Drives LEDs, LCDs or vacuum fluorescentsn Bar or dot display mode externally selectable by usern Expandable to displays of 100 stepsn Internal voltage reference from 1.2V to 12Vn Operates with single supply of less than 3Vn Inputs operate down to groundn Output current programmable from 2 mA to 30 mAn No multiplex switching or interaction between outputsn Input withstands ±35V without damage or false outputsn LED driver outputs are current regulated,

open-collectorsn Outputs can interface with TTL or CMOS logicn The internal 10-step divider is floating and can be

referenced to a wide range of voltages

January 2000LM

3914D

ot/Bar

Display

Driver

© 2000 National Semiconductor Corporation DS007970 www.national.com

Page 180: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Applications

0V to 5V Bar Graph Meter

DS007970-1

Note: Grounding method is typical of all uses. The 2.2 µF tantalum or 10 µF aluminum electrolytic capacitor is needed if leads to the LED supply are 6" orlonger.

LM39

14

www.national.com 2

Page 181: Apostila de Laboratorio de Eletronica Analogica - Completa

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Dissipation (Note 6)Molded DIP (N) 1365 mW

Supply Voltage 25VVoltage on Output Drivers 25VInput Signal Overvoltage (Note 4) ±35VDivider Voltage −100 mV to V+

Reference Load Current 10 mAStorage Temperature Range −55˚C to +150˚CSoldering Information

Dual-In-Line PackageSoldering (10 seconds) 260˚C

Plastic Chip Carrier PackageVapor Phase (60 seconds) 215˚CInfrared (15 seconds) 220˚C

See AN-450 “Surface Mounting Methods and Their Effecton Product Reliability” for other methods of solderingsurface mount devices.

Electrical Characteristics (Notes 2, 4)

Parameter Conditions (Note 2) Min Typ Max Units

COMPARATOR

Offset Voltage, Buffer and FirstComparator

0V ≤ VRLO = VRHI ≤ 12V,ILED = 1 mA

3 10 mV

Offset Voltage, Buffer and Any OtherComparator

0V ≤ VRLO = VRHI ≤ 12V,ILED = 1 mA

3 15 mV

Gain (∆ILED/∆VIN) IL(REF) = 2 mA, ILED = 10 mA 3 8 mA/mV

Input Bias Current (at Pin 5) 0V ≤ VIN ≤ V+ − 1.5V 25 100 nA

Input Signal Overvoltage No Change in Display −35 35 V

VOLTAGE-DIVIDER

Divider Resistance Total, Pin 6 to 4 8 12 17 kΩAccuracy (Note 3) 0.5 2 %

VOLTAGE REFERENCE

Output Voltage 0.1 mA ≤ IL(REF) ≤ 4 mA,V+ = VLED = 5V

1.2 1.28 1.34 V

Line Regulation 3V ≤ V+ ≤ 18V 0.01 0.03 %/V

Load Regulation 0.1 mA ≤ IL(REF) ≤ 4 mA,V+ = VLED = 5V

0.4 2 %

Output Voltage Change withTemperature

0˚C ≤ TA ≤ +70˚C, IL(REF) = 1 mA,V+ = 5V

1 %

Adjust Pin Current 75 120 µA

OUTPUT DRIVERS

LED Current V+ = VLED = 5V, IL(REF) = 1 mA 7 10 13 mA

LED Current Difference (BetweenLargest and Smallest LED Currents)

VLED = 5V ILED = 2 mA 0.12 0.4mA

ILED = 20 mA 1.2 3

LED Current Regulation 2V ≤ VLED ≤ 17V ILED = 2 mA 0.1 0.25mA

ILED = 20 mA 1 3

Dropout Voltage ILED(ON) = 20 mA, VLED = 5V,∆ILED = 2 mA

1.5 V

Saturation Voltage ILED = 2.0 mA, IL(REF) = 0.4 mA 0.15 0.4 V

Output Leakage, Each Collector (Bar Mode) (Note 5) 0.1 10 µA

Output Leakage (Dot Mode)(Note 5)

Pins 10–18 0.1 10 µA

Pin 1 60 150 450 µA

SUPPLY CURRENT

Standby Supply Current(All Outputs Off)

V+ = 5V,IL(REF) = 0.2 mA

2.4 4.2 mA

V+ = 20V,IL(REF) = 1.0 mA

6.1 9.2 mA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is func-tional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guar-antee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit isgiven, however, the typical value is a good indication of device performance.

LM3914

www.national.com3

Page 182: Apostila de Laboratorio de Eletronica Analogica - Completa

Electrical Characteristics (Notes 2, 4) (Continued)

Note 2: Unless otherwise stated, all specifications apply with the following conditions:

3 VDC ≤ V+ ≤ 20 VDC VREF, VRHI, VRLO ≤ (V+ − 1.5V)

3 VDC ≤ VLED ≤ V+ 0V ≤ VIN ≤ V+ − 1.5V

−0.015V ≤ VRLO ≤ 12 VDC TA = +25˚C, IL(REF) = 0.2 mA, VLED = 3.0V, pin 9 connected to pin 3 (Bar Mode).

−0.015V ≤ VRHI ≤ 12 VDC

For higher power dissipations, pulse testing is used.

Note 3: Accuracy is measured referred to +10.000 VDC at pin 6, with 0.000 VDC at pin 4. At lower full-scale voltages, buffer and comparator offset voltage may addsignificant error.

Note 4: Pin 5 input current must be limited to ±3 mA. The addition of a 39k resistor in series with pin 5 allows ±100V signals without damage.

Note 5: Bar mode results when pin 9 is within 20 mV of V+. Dot mode results when pin 9 is pulled at least 200 mV below V+ or left open circuit. LED No. 10 (pin10 output current) is disabled if pin 9 is pulled 0.9V or more below VLED.

Note 6: The maximum junction temperature of the LM3914 is 100˚C. Devices must be derated for operation at elevated temperatures. Junction to ambient thermalresistance is 55˚C/W for the molded DIP (N package).

Definition of TermsAccuracy: The difference between the observed thresholdvoltage and the ideal threshold voltage for each comparator.Specified and tested with 10V across the internal voltage di-vider so that resistor ratio matching error predominates overcomparator offset voltage.

Adjust Pin Current: Current flowing out of the reference ad-just pin when the reference amplifier is in the linear region.

Comparator Gain: The ratio of the change in output current(ILED) to the change in input voltage (VIN) required to pro-duce it for a comparator in the linear region.

Dropout Voltage: The voltage measured at the currentsource outputs required to make the output current fall by10%.

Input Bias Current: Current flowing out of the signal inputwhen the input buffer is in the linear region.

LED Current Regulation: The change in output currentover the specified range of LED supply voltage (VLED) asmeasured at the current source outputs. As the forward volt-age of an LED does not change significantly with a smallchange in forward current, this is equivalent to changing thevoltage at the LED anodes by the same amount.

Line Regulation: The average change in reference outputvoltage over the specified range of supply voltage (V+).

Load Regulation: The change in reference output voltage(VREF) over the specified range of load current (IL(REF)).

Offset Voltage: The differential input voltage which must beapplied to each comparator to bias the output in the linear re-gion. Most significant error when the voltage across the in-ternal voltage divider is small. Specified and tested with pin6 voltage (VRHI) equal to pin 4 voltage (VRLO).

Typical Performance Characteristics

Supply Current vsTemperature

DS007970-2

Operating Input BiasCurrent vs Temperature

DS007970-20

Reference Voltage vsTemperature

DS007970-21

LM39

14

www.national.com 4

Page 183: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Performance Characteristics (Continued)

Reference Adjust PinCurrent vs Temperature

DS007970-22

LED Current-RegulationDropout

DS007970-23

LED Driver SaturationVoltage

DS007970-24

Input Current BeyondSignal Range (Pin 5)

DS007970-25

LED Current vsReference Loading

DS007970-26

LED Driver CurrentRegulation

DS007970-27

Total Divider Resistancevs Temperature

DS007970-28

Common-Mode Limits

DS007970-29

Output Characteristics

DS007970-30

LM3914

www.national.com5

Page 184: Apostila de Laboratorio de Eletronica Analogica - Completa

Block Diagram (Showing Simplest Application)

DS007970-3

LM39

14

www.national.com 6

Page 185: Apostila de Laboratorio de Eletronica Analogica - Completa

Functional DescriptionThe simplifed LM3914 block diagram is to give the generalidea of the circuit’s operation. A high input impedance bufferoperates with signals from ground to 12V, and is protectedagainst reverse and overvoltage signals. The signal is thenapplied to a series of 10 comparators; each of which is bi-ased to a different comparison level by the resistor string.

In the example illustrated, the resistor string is connected tothe internal 1.25V reference voltage. In this case, for each125 mV that the input signal increases, a comparator willswitch on another indicating LED. This resistor divider canbe connected between any 2 voltages, providing that theyare 1.5V below V+ and no less than V−. If an expanded scalemeter display is desired, the total divider voltage can be aslittle as 200 mV. Expanded-scale meter displays are moreaccurate and the segments light uniformly only if bar mode isused. At 50 mV or more per step, dot mode is usable.

INTERNAL VOLTAGE REFERENCE

The reference is designed to be adjustable and develops anominal 1.25V between the REF OUT (pin 7) and REF ADJ(pin 8) terminals. The reference voltage is impressed acrossprogram resistor R1 and, since the voltage is constant, aconstant current I1 then flows through the output set resistorR2 giving an output voltage of:

Since the 120 µA current (max) from the adjust terminal rep-resents an error term, the reference was designed to mini-mize changes of this current with V+ and load changes.

CURRENT PROGRAMMING

A feature not completely illustrated by the block diagram isthe LED brightness control. The current drawn out of the ref-erence voltage pin (pin 7) determines LED current. Approxi-mately 10 times this current will be drawn through eachlighted LED, and this current will be relatively constant de-spite supply voltage and temperature changes. Currentdrawn by the internal 10-resistor divider, as well as by the ex-ternal current and voltage-setting divider should be includedin calculating LED drive current. The ability to modulate LEDbrightness with time, or in proportion to input voltage andother signals can lead to a number of novel displays or waysof indicating input overvoltages, alarms, etc.

MODE PIN USE

Pin 9, the Mode Select input controls chaining of multipleLM3914s, and controls bar or dot mode operation. The fol-lowing tabulation shows the basic ways of using this input.Other more complex uses will be illustrated in the applica-tions.

Bar Graph Display: Wire Mode Select (pin 9) directly to pin3 (V+ pin).

Dot Display, Single LM3914 Driver: Leave the Mode Selectpin open circuit.

Dot Display, 20 or More LEDs: Connect pin 9 of the firstdriver in the series (i.e., the one with the lowest input voltagecomparison points) to pin 1 of the next higher LM3914 driver.Continue connecting pin 9 of lower input drivers to pin 1 ofhigher input drivers for 30, 40, or more LED displays. Thelast LM3914 driver in the chain will have pin 9 wired to pin 11.All previous drivers should have a 20k resistor in parallel withLED No. 9 (pin 11 to VLED).

Mode Pin Functional DescriptionThis pin actually performs two functions. Refer to the simpli-fied block diagram below.

DOT OR BAR MODE SELECTION

The voltage at pin 9 is sensed by comparator C1, nominallyreferenced to (V+ − 100 mV). The chip is in bar mode whenpin 9 is above this level; otherwise it’s in dot mode. The com-parator is designed so that pin 9 can be left open circuit fordot mode.

Taking into account comparator gain and variation in the100 mV reference level, pin 9 should be no more than 20 mVbelow V+ for bar mode and more than 200 mV below V+ (oropen circuit) for dot mode. In most applications, pin 9 is ei-ther open (dot mode) or tied to V+ (bar mode). In bar mode,pin 9 should be connected directly to pin 3. Large currentsdrawn from the power supply (LED current, for example)should not share this path so that large IR drops are avoided.

DOT MODE CARRY

In order for the display to make sense when multipleLM3914s are cascaded in dot mode, special circuitry hasbeen included to shut off LED No. 10 of the first device when

DS007970-4

Block Diagram of Mode Pin Description

DS007970-5

*High for bar

LM3914

www.national.com7

Page 186: Apostila de Laboratorio de Eletronica Analogica - Completa

Mode Pin Functional Description(Continued)

LED No. 1 of the second device comes on. The connectionfor cascading in dot mode has already been described and isdepicted below.

As long as the input signal voltage is below the threshold ofthe second LM3914, LED No. 11 is off. Pin 9 of LM3914No. 1 thus sees effectively an open circuit so the chip is indot mode. As soon as the input voltage reaches the thresh-old of LED No. 11, pin 9 of LM3914 No. 1 is pulled an LEDdrop (1.5V or more) below VLED. This condition is sensed bycomparator C2, referenced 600 mV below VLED. This forcesthe output of C2 low, which shuts off output transistor Q2, ex-tinguishing LED No. 10.

VLED is sensed via the 20k resistor connected to pin 11. Thevery small current (less than 100 µA) that is diverted fromLED No. 9 does not noticeably affect its intensity.

An auxiliary current source at pin 1 keeps at least 100 µAflowing through LED No. 11 even if the input voltage riseshigh enough to extinguish the LED. This ensures that pin 9 ofLM3914 No. 1 is held low enough to force LED No. 10 offwhen any higher LED is illuminated. While 100 µA does notnormally produce significant LED illumination, it may be no-ticeable when using high-efficiency LEDs in a dark environ-ment. If this is bothersome, the simple cure is to shunt LEDNo. 11 with a 10k resistor. The 1V IR drop is more than the900 mV worst case required to hold off LED No. 10 yet smallenough that LED No. 11 does not conduct significantly.

OTHER DEVICE CHARACTERISTICS

The LM3914 is relatively low-powered itself, and since anynumber of LEDs can be powered from about 3V, it is a veryefficient display driver. Typical standby supply current (all

LEDs OFF) is 1.6 mA (2.5 mA max). However, any referenceloading adds 4 times that current drain to the V+ (pin 3) sup-ply input. For example, an LM3914 with a 1 mA reference pinload (1.3k), would supply almost 10 mA to every LED whiledrawing only 10 mA from its V+ pin supply. At full-scale, theIC is typically drawing less than 10% of the current suppliedto the display.

The display driver does not have built-in hysteresis so thatthe display does not jump instantly from one LED to the next.Under rapidly changing signal conditions, this cuts downhigh frequency noise and often an annoying flicker. An “over-lap” is built in so that at no time between segments are allLEDs completely OFF in the dot mode. Generally 1 LEDfades in while the other fades out over a mV or more ofrange (Note 3). The change may be much more rapid be-tween LED No. 10 of one device and LED No. 1 of a seconddevice “chained” to the first.

The LM3914 features individually current regulated LEDdriver transistors. Further internal circuitry detects when anydriver transistor goes into saturation, and prevents other cir-cuitry from drawing excess current. This results in the abilityof the LM3914 to drive and regulate LEDs powered from apulsating DC power source, i.e., largely unfiltered. (Due topossible oscillations at low voltages a nominal bypass ca-pacitor consisting of a 2.2 µF solid tantalum connected fromthe pulsating LED supply to pin 2 of the LM3914 is recom-mended.) This ability to operate with low or fluctuating volt-ages also allows the display driver to interface with logic cir-cuitry, opto-coupled solid-state relays, and low-currentincandescent lamps.

Cascading LM3914s in Dot Mode

DS007970-6

LM39

14

www.national.com 8

Page 187: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Applications

Zero-Center Meter, 20-Segment

DS007970-7

LM3914

www.national.com9

Page 188: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Applications (Continued)

Application Example:Grading 5V Regulators

Highest No.LED on

Color V OUT(MIN)

10 Red 5.54

9 Red 5.42

8 Yellow 5.30

7 Green 5.18

6 Green 5.06

5V

5 Green 4.94

4 Green 4.82

3 Yellow 4.7

2 Red 4.58

1 Red 4.46

Expanded Scale Meter, Dot or Bar

DS007970-8

*This application illustrates that the LED supply needs practically no filteringCalibration: With a precision meter between pins 4 and 6 adjust R1 for voltage VD of 1.20V. Apply 4.94V to pin 5, and adjust R4 until LED No. 5 just lights.The adjustments are non-interacting.

LM39

14

www.national.com 10

Page 189: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Applications (Continued)

“Exclamation Point” Display

DS007970-9

LEDs light up as illustrated with the upper lit LED indicating the actual input voltage. The display appears to increase resolution and provides an analogindication of overrange.

Indicator and Alarm, Full-Scale Changes Display from Dot to Bar

DS007970-10

*The input to the Dot-Bar Switch may be taken from cathodes of other LEDs. Display will change to bar as soon as the LED so selected begins to light.

LM3914

www.national.com11

Page 190: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Applications (Continued)

Bar Display with Alarm Flasher

DS007970-11

Full-scale causes the full bar display to flash. If the junction of R1 and C1 is connected to a different LED cathode, the display will flash when that LED lights,and at any higher input signal.

Adding Hysteresis (Single Supply, Bar Mode Only)

DS007970-12

Hysteresis is 0.5 mV to 1 mV

LM39

14

www.national.com 12

Page 191: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Applications (Continued)

Operating with a High Voltage Supply (Dot Mode Only)

DS007970-13

The LED currents are approximately 10 mA, and the LM3914 outputs operate in saturation for minimum dissipation.*This point is partially regulated and decreases in voltage with temperature. Voltage requirements of the LM3914 also decrease with temperature.

LM3914

www.national.com13

Page 192: Apostila de Laboratorio de Eletronica Analogica - Completa

Typical Applications (Continued)

Application HintsThree of the most commonly needed precautions for usingthe LM3914 are shown in the first typical application drawingshowing a 0V–5V bar graph meter. The most difficult prob-lem occurs when large LED currents are being drawn, espe-cially in bar graph mode. These currents flowing out of theground pin cause voltage drops in external wiring, and thuserrors and oscillations. Bringing the return wires from signalsources, reference ground and bottom of the resistor string(as illustrated) to a single point very near pin 2 is the best so-lution.

Long wires from VLED to LED anode common can cause os-cillations. Depending on the severity of the problem 0.05 µFto 2.2 µF decoupling capacitors from LED anode common topin 2 will damp the circuit. If LED anode line wiring is inac-cessible, often similar decoupling from pin 1 to pin 2 will besufficient.

If LED turn ON seems slow (bar mode) or several LEDs light(dot mode), oscillation or excessive noise is usually the prob-lem. In cases where proper wiring and bypassing fail to stoposcillations, V+ voltage at pin 3 is usually below suggestedlimits. Expanded scale meter applications may have one orboth ends of the internal voltage divider terminated at rela-

tively high value resistors. These high-impedance endsshould be bypassed to pin 2 with at least a 0.001 µF capaci-tor, or up to 0.1 µF in noisy environments.

Power dissipation, especially in bar mode should be givenconsideration. For example, with a 5V supply and all LEDsprogrammed to 20 mA the driver will dissipate over 600 mW.In this case a 7.5Ω resistor in series with the LED supply willcut device heating in half. The negative end of the resistorshould be bypassed with a 2.2 µF solid tantalum capacitor topin 2 of the LM3914.

Turning OFF of most of the internal current sources is ac-complished by pulling positive on the reference with a cur-rent source or resistance supplying 100 µA or so. Alternately,the input signal can be gated OFF with a transistor switch.

Other special features and applications characteristics willbe illustrated in the following applications schematics. Noteshave been added in many cases, attempting to cover anyspecial procedures or unusual characteristics of these appli-cations. A special section called “Application Tips for theLM3914 Adjustable Reference” has been included withthese schematics.

20-Segment Meter with Mode Switch

DS007970-14

*The exact wiring arrangement of this schematic shows the need for Mode Select (pin 9) to sense the V+ voltage exactly as it appears on pin 3.Programs LEDs to 10 mA

LM39

14

www.national.com 14

Page 193: Apostila de Laboratorio de Eletronica Analogica - Completa

Application Hints (Continued)

APPLICATION TIPS FOR THE LM3914 ADJUSTABLEREFERENCE

GREATLY EXPANDED SCALE (BAR MODE ONLY)

Placing the LM3914 internal resistor divider in parallel with asection (≅230Ω) of a stable, low resistance divider greatlyreduces voltage changes due to IC resistor value changeswith temperature. Voltage V1 should be trimmed to 1.1V firstby use of R2. Then the voltage V2 across the IC divider stringcan be adjusted to 200 mV, using R5 without affecting V1.LED current will be approximately 10 mA.

NON-INTERACTING ADJUSTMENTS FOR EXPANDEDSCALE METER (4.5V to 5V, Bar or Dot Mode)

This arrangement allows independent adjustment of LEDbrightness regardless of meter span and zero adjustments.

First, V1 is adjusted to 5V, using R2. Then the span (voltageacross R4) can be adjusted to exactly 0.5V using R6 withoutaffecting the previous adjustment.

R9 programs LED currents within a range of 2.2 mA to 20 mAafter the above settings are made.

ADJUSTING LINEARITY OF SEVERAL STACKEDDIVIDERS

Three internal voltage dividers are shown connected in se-ries to provide a 30-step display. If the resulting analog meteris to be accurate and linear the voltage on each divider mustbe adjusted, preferably without affecting any other adjust-ments. To do this, adjust R2 first, so that the voltage acrossR5 is exactly 1V. Then the voltages across R3 and R4 canbe independently adjusted by shunting each with selectedresistors of 6 kΩ or higher resistance. This is possible be-cause the reference of LM3914 No. 3 is acting as a constantcurrent source.

The references associated with LM3914s No. 1 and No. 2should have their Ref Adj pins (pin 8) wired to ground, andtheir Ref Outputs loaded by a 620Ω resistor to ground. Thismakes available similar 20 mA current outputs to all theLEDs in the system.

If an independent LED brightness control is desired (as inthe previous application), a unity gain buffer, such as theLM310, should be placed between pin 7 and R1, similar tothe previous application.

Greatly Expanded Scale (Bar Mode Only)

DS007970-15

LM3914

www.national.com15

Page 194: Apostila de Laboratorio de Eletronica Analogica - Completa

Application Hints (Continued)

Other Applications• “Slow” — fade bar or dot display (doubles resolution)

• 20-step meter with single pot brightness control

• 10-step (or multiples) programmer

• Multi-step or “staging” controller

• Combined controller and process deviation meter

• Direction and rate indicator (to add to DVMs)

• Exclamation point display for power saving

• Graduations can be added to dot displays. Dimly light ev-ery other LED using a resistor to ground

• Electronic “meter-relay” — display could be circle orsemi-circle

• Moving “hole” display — indicator LED is dark, rest of barlit

• Drives vacuum-fluorescent and LCDs using added pas-sive parts

Non-Interacting Adjustments for Expanded Scale Meter (4.5V to 5V, Bar or Dot Mode)

DS007970-16

Adjusting Linearity of Several Stacked Dividers

DS007970-17

LM39

14

www.national.com 16

Page 195: Apostila de Laboratorio de Eletronica Analogica - Completa

Connection Diagrams

Plastic Chip Carrier Package

DS007970-18

Top ViewOrder Number LM3914V

See NS Package Number V20A

Dual-in-Line Package

DS007970-19

Top ViewOrder Number LM3914N-1

See NS Package Number NA18AOrder Number LM3914N *

See NS Package Number N18A* Discontinued, Life Time Buy date 12/20/99

LM3914

www.national.com17

Page 196: Apostila de Laboratorio de Eletronica Analogica - Completa

Physical Dimensions inches (millimeters) unless otherwise noted

Note: Unless otherwise specified.

1. Standard Lead Finish:

200 microinches /5.08 micrometer minimum

lead/tin 37/63 or 15/85 on alloy 42 or equivalent or copper

2. Reference JEDEC registration MS-001, Variation AC, dated May 1993.

Dual-In-Line Package (N)Order Number LM3914N-1

NS Package Number NA18A

Plastic Chip Carrier Package (V)Order Number LM3914V

NS Package Number V20A

LM39

14

www.national.com 18

Page 197: Apostila de Laboratorio de Eletronica Analogica - Completa

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERALCOUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices orsystems which, (a) are intended for surgical implantinto the body, or (b) support or sustain life, andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling, can be reasonably expected to result in asignificant injury to the user.

2. A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system, or to affect itssafety or effectiveness.

National SemiconductorCorporationAmericasTel: 1-800-272-9959Fax: 1-800-737-7018Email: [email protected]

National SemiconductorEurope

Fax: +49 (0) 1 80-530 85 86Email: [email protected]

Deutsch Tel: +49 (0) 1 80-530 85 85English Tel: +49 (0) 1 80-532 78 32Français Tel: +49 (0) 1 80-532 93 58Italiano Tel: +49 (0) 1 80-534 16 80

National SemiconductorAsia Pacific CustomerResponse GroupTel: 65-2544466Fax: 65-2504466Email: [email protected]

National SemiconductorJapan Ltd.Tel: 81-3-5639-7560Fax: 81-3-5639-7507

www.national.com

Dual-In-Line Package (N)Order Number LM3914N *NS Package Number N18A

* Discontinued, Life Time Buy date 12/20/99

LM3914

Dot/B

arD

isplayD

river

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Page 198: Apostila de Laboratorio de Eletronica Analogica - Completa

The 4N25, 4N26, 4N27 and 4N28 devices consist of a gallium arsenideinfrared emitting diode optically coupled to a monolithic silicon phototransistordetector.

• Most Economical Optoisolator Choice for Medium Speed, Switching Applications

• Meets or Exceeds All JEDEC Registered Specifications

• To order devices that are tested and marked per VDE 0884 requirements, thesuffix ”V” must be included at end of part number. VDE 0884 is a test option.

Applications

• General Purpose Switching Circuits

• Interfacing and coupling systems of different potentials and impedances

• I/O Interfacing

• Solid State Relays

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating Symbol Value Unit

INPUT LED

Reverse Voltage VR 3 Volts

Forward Current — Continuous IF 60 mA

LED Power Dissipation @ TA = 25°Cwith Negligible Power in Output Detector

Derate above 25°C

PD 120

1.41

mW

mW/°C

OUTPUT TRANSISTOR

Collector–Emitter Voltage VCEO 30 Volts

Emitter–Collector Voltage VECO 7 Volts

Collector–Base Voltage VCBO 70 Volts

Collector Current — Continuous IC 150 mA

Detector Power Dissipation @ TA = 25°Cwith Negligible Power in Input LED

Derate above 25°C

PD 150

1.76

mW

mW/°C

TOTAL DEVICE

Isolation Surge Voltage(1)

(Peak ac Voltage, 60 Hz, 1 sec Duration)VISO 7500 Vac(pk)

Total Device Power Dissipation @ TA = 25°CDerate above 25°C

PD 2502.94

mWmW/°C

Ambient Operating Temperature Range TA –55 to +100 °C

Storage Temperature Range Tstg –55 to +150 °C

Soldering Temperature (10 sec, 1/16″ from case) TL 260 °C

Order this documentby 4N25/D

GlobalOptoisolator

SCHEMATIC

PIN 1. LED ANODE2. LED CATHODE3. N.C.4. EMITTER5. COLLECTOR6. BASE

1

2

3

6

5

4

STANDARD THRU HOLE

61

1. Isolation surge voltage is an internal device dielectric breakdown rating.1. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

4N254N264N274N28

Page 199: Apostila de Laboratorio de Eletronica Analogica - Completa

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)(1)

Characteristic Symbol Min Typ(1) Max Unit

INPUT LED

Forward Voltage (IF = 10 mA) TA = 25°CTA = –55°CTA = 100°C

VF ———

1.151.31.05

1.5——

Volts

Reverse Leakage Current (VR = 3 V) IR — — 100 µA

Capacitance (V = 0 V, f = 1 MHz) CJ — 18 — pF

OUTPUT TRANSISTOR

Collector–Emitter Dark Current 4N25,26,27(VCE = 10 V, TA = 25°C 4N28

ICEO ——

11

50100

nA

(VCE = 10 V, TA = 100°C) All Devices ICEO — 1 — µA

Collector–Base Dark Current (VCB = 10 V) ICBO — 0.2 — nA

Collector–Emitter Breakdown Voltage (IC = 1 mA) V(BR)CEO 30 45 — Volts

Collector–Base Breakdown Voltage (IC = 100 µA) V(BR)CBO 70 100 — Volts

Emitter–Collector Breakdown Voltage (IE = 100 µA) V(BR)ECO 7 7.8 — Volts

DC Current Gain (IC = 2 mA, VCE = 5 V) hFE — 500 — —

Collector–Emitter Capacitance (f = 1 MHz, VCE = 0) CCE — 7 — pF

Collector–Base Capacitance (f = 1 MHz, VCB = 0) CCB — 19 — pF

Emitter–Base Capacitance (f = 1 MHz, VEB = 0) CEB — 9 — pF

COUPLED

Output Collector Current (IF = 10 mA, VCE = 10 V)4N25,264N27,28

IC (CTR)(2)

2 (20)1 (10)

7 (70)5 (50)

——

mA (%)

Collector–Emitter Saturation Voltage (IC = 2 mA, IF = 50 mA) VCE(sat) — 0.15 0.5 Volts

Turn–On Time (IF = 10 mA, VCC = 10 V, RL = 100 Ω)(3) ton — 2.8 — µs

Turn–Off Time (IF = 10 mA, VCC = 10 V, RL = 100 Ω)(3) toff — 4.5 — µs

Rise Time (IF = 10 mA, VCC = 10 V, RL = 100 Ω)(3) tr — 1.2 — µs

Fall Time (IF = 10 mA, VCC = 10 V, RL = 100 Ω)(3) tf — 1.3 — µs

Isolation Voltage (f = 60 Hz, t = 1 sec)(4) VISO 7500 — — Vac(pk)

Isolation Resistance (V = 500 V)(4) RISO 1011 — — Ω

Isolation Capacitance (V = 0 V, f = 1 MHz)(4) CISO — 0.2 — pF

1. Always design to the specified minimum/maximum electrical limits (where applicable).2. Current Transfer Ratio (CTR) = IC/IF x 100%.3. For test circuit setup and waveforms, refer to Figure 11.4. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

4N25 4N26 4N27 4N28

Page 200: Apostila de Laboratorio de Eletronica Analogica - Completa

I C, O

UTP

UT

CO

LLEC

TOR

CU

RR

ENT

(NO

RM

ALIZ

ED)

TYPICAL CHARACTERISTICS

Figure 1. LED Forward Voltage versus Forward Current

2

1.8

1.6

1.4

1.2

11 10 100 1000

10

1

0.1

0.01 0.5 1IF, LED FORWARD CURRENT (mA)

2 5 10 20 50IF, LED INPUT CURRENT (mA)

V F, F

OR

WAR

D V

OLT

AGE

(VO

LTS)

25°C

100°C

TA = –55°C

NORMALIZED TO:IF = 10 mA

Figure 2. Output Current versus Input Current

PULSE ONLYPULSE OR DC

10

75

2

10.70.5

0.2

0.1–60 –40 –20 0 20 40 60 80 100

TA, AMBIENT TEMPERATURE (°C)I C, O

UTP

UT

CO

LLEC

TOR

CU

RR

ENT

(NO

RM

ALIZ

ED)

1

10

100

0.10 20 40 60 80 100

TA, AMBIENT TEMPERATURE (°C)

t, TI

ME

(s)

I

100

50

20

10

5

2

10.1 0.2 0.5 1 2 5 10 20 50 100

IF, LED INPUT CURRENT (mA)

CEO

, CO

LLEC

TOR

–EM

ITTE

R D

ARK

CU

RR

ENT

(NO

RM

ALIZ

ED)

µ

VCE = 30 V

10 V

tf

tr

tr

tf

0

VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)

I C, C

OLL

ECTO

R C

UR

REN

T (m

A)

4

8

12

16

20

24

28

5 mA

2 mA

1 mA

0 1 2 3 4 5 6 7 8 9 10

Figure 3. Collector Current versusCollector–Emitter Voltage

Figure 4. Output Current versus Ambient Temperature

Figure 5. Dark Current versus Ambient Temperature Figure 6. Rise and Fall Times(Typical Values)

IF = 10 mA NORMALIZED TO TA = 25°C

NORMALIZED TO:VCE = 10 VTA = 25°C

VCC = 10 V

RL = 1000

RL = 100

4N25 4N26 4N27 4N28

Page 201: Apostila de Laboratorio de Eletronica Analogica - Completa

1007050

20

1075

2

10.1 0.2 0.5 0.7 1 2 5 7 10 20 50 70 100

IF, LED INPUT CURRENT (mA)

RL = 1000

100

10

1007050

20

1075

2

10.1 0.2 0.5 0.7 1 2 5 7 10 20 50 70 100

IF, LED INPUT CURRENT (mA)

RL = 1000

100

10

t, T

UR

N–O

FF T

IME

(s)

off

µ

t, T

UR

N–O

N T

IME

(s)

onµ

Figure 7. Turn–On Switching Times(Typical Values)

Figure 8. Turn–Off Switching Times(Typical Values)

VCC = 10 V VCC = 10 V

6

6 µA

C, C

APAC

ITAN

CE

(pF)

Figure 9. DC Current Gain (Detector Only) Figure 10. Capacitances versus Voltage

20

18

16

14

12

10

8

4

2

0

CCE

f = 1 MHz

0.05 0.1 0.2 0.5 1 2 5 10 20 50

V, VOLTAGE (VOLTS)

CLED

CCB

CEB

5 µA

4 µA

3 µA

2 µA

1 µA

4

3

2

1

0 2 4 6 8 10 12 14 16 18 20

VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)

I C, T

YPIC

AL C

OLL

ECTO

R C

UR

REN

T (m

A)

IB = 7 µAIF = 0

TEST CIRCUIT

VCC = 10 V

IF = 10 mA

INPUT

RL = 100 Ω

OUTPUT

WAVEFORMS

10%

90%

ton

INPUT PULSE

OUTPUT PULSE

tf

toff

tr

Figure 11. Switching Time Test Circuit and Waveforms

4N25 4N26 4N27 4N28

Page 202: Apostila de Laboratorio de Eletronica Analogica - Completa

PACKAGE DIMENSIONS

THRU HOLE

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: INCH.3. DIMENSION L TO CENTER OF LEAD WHEN

FORMED PARALLEL.

STYLE 1:PIN 1. ANODE

2. CATHODE3. NC4. EMITTER5. COLLECTOR6. BASE

6 4

1 3

–A–

–B–

SEATINGPLANE

–T–

4 PLF

K

CN

G

6 PLD6 PLE

MAM0.13 (0.005) B MT

L

M

6 PLJMBM0.13 (0.005) A MT

DIM MIN MAX MIN MAXMILLIMETERSINCHES

A 0.320 0.350 8.13 8.89B 0.240 0.260 6.10 6.60C 0.115 0.200 2.93 5.08D 0.016 0.020 0.41 0.50E 0.040 0.070 1.02 1.77F 0.010 0.014 0.25 0.36G 0.100 BSC 2.54 BSCJ 0.008 0.012 0.21 0.30K 0.100 0.150 2.54 3.81L 0.300 BSC 7.62 BSCM 0 15 0 15 N 0.015 0.100 0.38 2.54

SURFACE MOUNT

–A–

–B–

SEATINGPLANE

–T–J

K

L

6 PL

MBM0.13 (0.005) A MT

C

D 6 PL

MAM0.13 (0.005) B MT

H

GE 6 PL

F 4 PL

31

46

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: INCH.

DIM MIN MAX MIN MAXMILLIMETERSINCHES

A 0.320 0.350 8.13 8.89B 0.240 0.260 6.10 6.60C 0.115 0.200 2.93 5.08D 0.016 0.020 0.41 0.50E 0.040 0.070 1.02 1.77F 0.010 0.014 0.25 0.36G 0.100 BSC 2.54 BSCH 0.020 0.025 0.51 0.63J 0.008 0.012 0.20 0.30K 0.006 0.035 0.16 0.88L 0.320 BSC 8.13 BSCS 0.332 0.390 8.43 9.90

*Consult factory for leadform option availability

4N25 4N26 4N27 4N28

Page 203: Apostila de Laboratorio de Eletronica Analogica - Completa

*Consult factory for leadform option availability

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: INCH.3. DIMENSION L TO CENTER OF LEAD WHEN

FORMED PARALLEL.

0.4" LEAD SPACING

6 4

1 3

–A–

–B–

N

C

KG

F 4 PL

SEATING

D 6 PL

E 6 PL

PLANE

–T–

MAM0.13 (0.005) B MT

L

J

DIM MIN MAX MIN MAXMILLIMETERSINCHES

A 0.320 0.350 8.13 8.89B 0.240 0.260 6.10 6.60C 0.115 0.200 2.93 5.08D 0.016 0.020 0.41 0.50E 0.040 0.070 1.02 1.77F 0.010 0.014 0.25 0.36G 0.100 BSC 2.54 BSCJ 0.008 0.012 0.21 0.30K 0.100 0.150 2.54 3.81L 0.400 0.425 10.16 10.80N 0.015 0.040 0.38 1.02

4N25 4N26 4N27 4N28

Page 204: Apostila de Laboratorio de Eletronica Analogica - Completa

LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body,or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of theuser.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life supportdevice or system, or to affect its safety or effectiveness.

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

www.fairchildsemi.com © 2000 Fairchild Semiconductor Corporation