máquinas elétricas eletrotécnica. definições máquinas elétricas são dispositivos capazes de...

Post on 17-Apr-2015

128 Views

Category:

Documents

10 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Máquinas Elétricas

Eletrotécnica

Definições

• Máquinas elétricas são dispositivos capazes de converter energia elétrica em energia mecânica e vice-versa.

• Geradores: convertem energia mecânica em elétrica.

• Motores: convertem energia elétrica em mecânica.

Motores Elétricos

Motor de InduçãoMotor de Indução

Motor de indução

Máquina Assíncrona

Enrolamento de estator trifásico

Rotor tipo gaiola de esquilo

Rotor gaiola de esquilo

Rotor tipo bobinado

Pacote magnético do estator

• A máquina de indução é, dentre as máquinas elétricas, a mais utilizada na indústria.

Máquina Assíncrona

Na máquina assíncrona tanto o rotor quanto o estator conduzem corrente alternada.

• A corrente que circula pelo rotor é uma corrente induzida devido a um campo variável devido à diferença de velocidade de rotação do rotor e do campo girante. Por isso a nomenclatura máquina de indução.

Máquina Assíncrona

Campo magnético girante• Os enrolamentos trifásicos localizados no estator e

representados pelos enrolamentos aa’, bb’ e cc’ estão deslocados de 120 graus entre si. Quando uma corrente alternada senoidal circula por um enrolamento ela produz uma força magneto motriz senoidal centrada no eixo do enrolamento.

• A força magneto motriz resultante é a composição vetorial das três componentes de força magneto motriz.

Campo magnético girante

• Devido a corrente na fase A está em um instante de máximo, a força magneto motriz produzida por este enrolamento é máxima.

• O vetor resultante força magneto motriz F possui a mesma amplitude em todos os instantes de tempo, girando em sentido anti-horário.

No instante de tempo to, a corrente na fase A passa por um máximo positivo e as corrente nas fases B e C por metade da amplitude máxima negativa.

Campo magnético girante

Princípio de funcionamento

Tensões induzidas

• O campo magnético girante induz tensões nas fases do estator. As expressões para as tensões induzidas podem ser obtidas utilizando a lei de Faraday

wp KNfE 11 44,4

Escorregamento

• É óbvio que a velocidade do rotor não pode ser igual à velocidade síncrona, pois assim, nenhuma corrente seria induzida no enrolamento do rotor e consequentemente nenhum torque seria produzido.

s

s

n

nns

Circuito do rotor

wp KNfE 212 44,4 Rotor parado

22 EsE s Rotor girando

snsn )1(

Freqüência da corrente induzida no Rotor12 fsf

Velocidade do Rotor

Circuito equivalente• O circuito equivalente pode ser utilizado

para estudar e antecipar o desempenho da máquina de indução com apreciável proximidade da realidade.

Ensaio a vazio

Ensaio com rotor bloqueado

Equações para determinação dos parâmetros

sc

asemcfasesc I

VZ )arg(23 sc

scsc

I

PR

22

scscsc RZX

23 rb

rbrb

I

PR

rb

bloqueadorotorfaserb I

VZ )_(

22rbrbrb RZX

msc XXX 1

21 XXX rb 221rbX

XX

Curva conjugado x rotação para o motor assíncrono

Classificação por categorias

São caracterizados por possuírem um conjugado de partida normal, corrente de partida normal e pequeno valor de escorregamento em regime permanente. Constituem a maioria dos motores encontrados no mercado e prestam-se ao acionamento de cargas normais, com baixo conjugado de partida como: bombas e máquinas operatrizes.

Categoria N

Os motores dessa categoria são caracterizados por possuírem um conjugado de partida elevado, corrente de partida normal e baixo valor para o escorregamento em regime permanente. Esta categoria de motores é utilizada para acionamento de cargas que exigem maior conjugado de partida, como peneiras, transportadores carregados, cargas com alta inércia, etc.

Categoria H

São caracterizados por conjugado de partida elevado, corrente de partida normal e alto escorregamento. Utilizados para acionamento de cargas como: prensas excêntricas e máquinas semelhantes, em que a carga apresenta picos periódicos e cargas que necessitam de conjugado de partida elevado e corrente de partida limitada.

Categoria D

Controle de velocidade

• Um motor de indução possui velocidade aproximadamente constante quando conectado a uma fonte de tensão constante com uma freqüência fixa. A velocidade em regime permanente é muito próxima da velocidade síncrona. Quando o torque solicitado aumenta, a velocidade diminui.

Variação da velocidade em função da carga

• Em muitas aplicações industriais, velocidades variáveis ou continuamente ajustáveis são necessárias.

Controle de velocidade

• Tradicionalmente, motores de corrente contínua sempre foram utilizados em aplicações onde era necessário variar a velocidade da máquina.

• Entretanto, motores de corrente contínua são caros, requerem manutenção das escovas e dos comutadores e são proibitivos em ambientes agressivos.

Controle de velocidade

• Em contrapartida, motores de indução são baratos, não requerem manutenção, estão aptos a funcionar em ambientes agressivos e estão disponíveis para velocidades elevadas.

Controle de velocidade através da variação da freqüência.

MotorDe

Indução

Inversor de freqüência

Métodos de partida dos motores de indução

• Além de causar uma queda de tensão apreciável, pode afetar outras cargas conectadas à rede de alimentação. Além disso, se uma corrente elevada circular no motor por um longo intervalo de tempo, poderá aquecê-lo, danificando o isolamento do enrolamento.

• Uma corrente de partida de 500 a 800 % maior que a corrente nominal pode circular pela rede de alimentação.

Autotransformador abaixador

Partida estrela-triângulo

Fase dividida

Conversor de estado sólido

• É importante ressaltar que embora tensões menores reduzam a corrente durante a partida dos motores, o torque de partida decresce porque o torque é proporcional ao quadrado da tensão aplicada.

Métodos de partida dos motores de indução

Influência da rede elétrica na operação do MIT

• A operação eficiente dos motores de indução trifásicos depende, entre outras coisas, da qualidade da rede elétrica de alimentação. O ideal é que esta rede seja equilibrada e com suas tensões apresentando amplitudes e freqüência constantes.

• A eficiência e o fator de potência dos motores de indução trifásicos variam segundo o valor da tensão de alimentação. Estes motores são projetados para suportarem variações de ±10% da tensão nominal.

• Os motores devem suportar variações de freqüência de -5% a até +3%. Uma variação simultânea da amplitude e da freqüência pode ser prejudicial para o motor.

Influência da rede elétrica na operação do MIT

• Uma tensão de alimentação abaixo do valor nominal do motor provoca aumento da corrente e da temperatura e ainda redução dos torques de partida e de regime. Por outro lado, um valor de tensão acima do nominal acarreta redução do fator de potência e aumento da corrente de partida.

Influência da rede elétrica na operação do MIT

Influência da carga mecânica na operação do MIT

• As principais conseqüências do superdimensionamento são:

• Maior custo, volume e peso do motor.• Redução do fator de potência.• Redução da eficiência, embora muito motores

apresentem sua eficiência máxima a, aproximadamente, 75% da sua carga nominal.

• Maior corrente de partida, acarretando maior custo da instalação e proteção.

Fator de serviço

• A norma ABNT NBR 7094/1996, define fator de serviço como um multiplicador que, quando aplicado à potência nominal do motor, indica a carga que pode ser acionada continuamente sob tensão e freqüência nominais. Entretanto, a utilização do fator de serviço implica em vida útil inferior àquela do motor com carga nominal.

Influência do ambiente na operação do MIT

• As condições ambientais onde está instalado um motor têm influência na sua operação. Poeiras que se depositam na sua carcaça, ao absorverem umidade ou partículas de óleo, formam uma crosta que dificulta a liberação do calor. Por causa disso, a temperatura interna do motor se eleva. Uma das conseqüências é aumentar o valor da resistência do enrolamento e diminuir a eficiência do motor.

Grau de proteção - IP

• Motores que trabalham em ambientes desfavoráveis ou mesmo agressivos devem ser providos de um grau de proteção. A norma brasileira NBR 6146 define os vários graus de proteção que os motores elétricos podem apresentar, por meio das letras características IP, seguida por dois algarismos. As tabelas 2.1 e 2.2 apresentam os critérios de proteção.

Tabela 2.1 – Indica grau de proteção contra penetração de corpos sólidos estranhos e contato acidental.

1o Algarismo

Algarismo Indicação

0 Sem proteção

1 Corpos estranhos acima de 50mm

2 Corpos estranhos acima de 12mm

3 Corpos estranhos acima de 2,5mm

4 Corpos estranhos acima de 1,0mm

5 Proteção contra acúmulo de poeiras prejudiciais ao motor.

6 Totalmente protegido contra poeira.

Tabela 2.2 – Indica grau de proteção contra penetração de água no interior do motor.

2o Algarismo

Algarismo Indicação

0 Sem proteção

1 Pingos de água na vertical.

2 Pingos de água até a inclinação de 15o com a vertical.

3 Pingos de água até a inclinação de 60o com a vertical.

4 Respingos em todas as direções.

5 Jatos de água em todas as direções.

6 Água de vagalhões.

7 Imersão temporária.

8 Imersão permanente.

Classes de Isolação

• Classe A – 105 graus

• Classe E – 120 graus

• Classe B – 130 graus

• Classe F – 155 graus

• Classe H – 180 graus

Motor de alto rendimento

Motores de alto rendimento => custo de aquisição inicial maior

Entretanto, sua utilização pode trazer grande economia em um curto prazo.

Especificação de motores

motorac

acacmotor n

CnC

argarg

motormotormotor CnP 2

Relação de transmissão

motor

ac

n

nR arg

Inércia da carga referida ao eixo do motor

2arg RJJ ace

Conjugado motor médio

81,945,0 max

n

nn

pmmed C

C

C

C

CC

Conjugado resistente médio

cmedrmed CRC

Tempo de aceleração

• É necessário que o tempo de aceleração do motor seja menor que 80% do tempo de rotor bloqueado

rmedmmed

ma CC

JeJnt 2

Exemplo: Considere o sistema abaixo utilizado para levantamento de peso com capacidade para levantamento de 50kg, com uma velocidade de içamento igual a 0,5m/s. Se o raio da polia é igual a 90mm, a redução de 1:32, o rendimento da talha é igual a 97%, a inércia das partes girantes é igual a 0,0005Kgm2.

Wvgm

Ptalha

25297,0

5,081,950

mN

R

vPP

C

polia

ccc 36,45

09,0

5,0252

rpmrpsR

nn acmotor 16993,28

32

109,02

5,0

arg

Tipo do motor Motor de alto rendimento plus

Potência 0,5 CV

Número de pólos 4 pólos

Rotação 1720 rpm

Conjugado nominal (Cn) 0,21 Kgfm

Cp/Cn 2,7

Cmax/Cn 3

J 0,00079

Tempo de rotor bloqueado 10 s

In 2,07 A

232

2_ 10395,0

32

109,050 KgmJ emassa

262

_ 10488,32

10005,0 KgmJ ePG

23__ 10395,0 KgmJJJ ePGemassae

NmCrmed 42,136,4532

1

NmCmmed 28,581,921,037,245,0

msta 5542,128,5

10395,000079,0

60

17202

3

Gerador Assíncrono

• O escorregamento no gerador assíncrono é negativo:

• O gerador de indução é acionado a uma velocidade maior do que a velocidade síncrona.

s

s

n

nns

Corrente de excitação

• Uma corrente de excitação deve ser fornecida ao enrolamento de armadura para indução no rotor. A amplitude da corrente de excitação irá determinar a amplitude da tensão nos terminais do gerador.

Gerador assíncrono com capacitor para excitação da máquina

• Nesta configuração é necessário utilizar capacitores para fornecer os reativos de que a máquina necessita.

Gerador assíncrono com conversor para excitação da máquina

• Nesta configuração não é necessário utilizar capacitores pois a demanda de reativos de que a máquina necessita é fornecida pelo conversor.

• O conversor onera o sistema uma vez que toda a potência gerada circula através do mesmo.

Gerador assíncrono alimentado através de escovas

• Nesta configuração a excitação é proveniente da rede, através de um conversor, que é conectado ao enrolamento do rotor através de anéis coletores e de escovas. A vantagem é que o conversor não necessita processar a potência nominal do gerador.

Gerador assíncrono duplamente alimentado sem escovas (GATDASE)

• Nesta configuração a máquina possui dois enrolamentos no estator, um principal, de potência, e um auxiliar. O enrolamento auxiliar, ou de controle, é ligado à rede através de um conversor que permite controlar o torque, a velocidade e o fator de potência da máquina.

Curva Torque x velocidade

Curva Torque x velocidade

Motor

Gerador

top related