introdução à hidrodinâmica e formulação matemática e ...25 general orientation 1....

Post on 15-Mar-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Introdução à Hidrodinâmica e Formulação Matemática e

numérica do Delft 3D

Bruna Arcie Polli

Objetivos

Descrição do sistema de coordenadas e formulações

matemáticas utilizadas no modelo Delft3D

Referência: manual do módulo Flow do Delft3D (Deltares, 2014)

2

Bruna Arcie Polli Modelagem com Delft3D

3

State-of-the-art modelling framework for hydrodynamics, water quality, ecology, waves and morphology

Bruna Arcie Polli Modelagem com Delft3D

4

Delft3D Model

Modules

Each module has its own Graphical User

Interface

Bruna Arcie Polli Modelagem com Delft3D

5

Functionality - details (1) two horizontal co-ordinate systems Cartesian co-ordinates (ξ, η) Spherical co-ordinates (λ, φ)

Delft3D: Cartesian

G

GDelft3D: Spherical

Bruna Arcie Polli Modelagem com Delft3D

6

Functionality - details (2) two vertical systems Surface and bottom following σ-layers Fixed horizontal z-layers

Follows free surface and bottom

Bruna Arcie Polli Modelagem com Delft3D

7

Grid staggering

Bruna Arcie Polli Modelagem com Delft3D

8

Equations

• Continuity, momentum and transport

Continuity

Bruna Arcie Polli Modelagem com Delft3D

9

Momentum equations in the horizontal direction

Horizontal Reynolds stresses

sources or sinks of momentum (external forces by hydraulic structures

Bruna Arcie Polli Modelagem com Delft3D

Reynolds stresses (horizontal)

10

Bruna Arcie Polli Modelagem com Delft3D

11

Vertical velocities

Bruna Arcie Polli Modelagem com Delft3D

12

Hydrostatic assumption

Bruna Arcie Polli Modelagem com Delft3D

13

Hydrostatic assumption

Bruna Arcie Polli Modelagem com Delft3D

14

Turbulence Model

Bruna Arcie Polli Modelagem com Delft3D

15

Structures

• Obstacles (gates, barriers, sluices, groynes, weirs, bridge piers) generally not resolved in geometry

• Hydrostatic assumption may be violated locally • Forces need to be parameterised • Modeled by quadratic energy loss term in momentum

equation

Bruna Arcie Polli Modelagem com Delft3D

16

Closed boundary conditions (bed)

Bruna Arcie Polli Modelagem com Delft3D

17

Closed boundary conditions (bed)

Bruna Arcie Polli Modelagem com Delft3D

18

Closed boundary conditions (bed)

Bruna Arcie Polli Modelagem com Delft3D

19

Closed boundary conditions (surface)

Bruna Arcie Polli Modelagem com Delft3D

20

Open boundary conditions

Virtual boundary!!! (Water-water)

Bruna Arcie Polli Modelagem com Delft3D

21

Transport Equation

Bruna Arcie Polli Modelagem com Delft3D

22

Equation of State

Bruna Arcie Polli Modelagem com Delft3D

23

Shallow water solver

• implicit

• unconditionally stable

• higher order discretisation advection terms

Transport equation

• maintains strong concentration gradients

• maintains vertical stratification

Numerical implementation

Bruna Arcie Polli Modelagem com Delft3D

24

Time step limitations

Bruna Arcie Polli Modelagem com Delft3D

25

General orientation

1. identification problem, how to tackle 2. literature scan, what is known yet 3. characteristics of the study area

dominant currents, seasonal effects, morphological active physical phenomena to include, 2D or 3D

4. model boundaries availability and accuracy data tidal excursion, main flow patterns, orientation boundary

5. specifications grid, bathymetry area of interest, channels, reclamations, outfalls

Bruna Arcie Polli Modelagem com Delft3D

26

Set-up of the FLOW model-1

1. Model area and grid; Delft3D-RGFGRID

specifications from previous steps boundary fitted, orthogonal

2. Bathymetry; Delft3D-QUICKIN digitising?, different reference levels? best data (recent, high resolution) first

3. Dry points, thin dams; VISUALISATION AREA jetties, small islands, reclamations

Bruna Arcie Polli Modelagem com Delft3D

27

Set-up of the FLOW model-2

1. Open boundaries

water level, velocity, discharge? number of boundary sections forcing; time-series, Harmonic, tidal constants

2. Physical and numerical parameters roughness, wind, heat, drying & flooding parameters

3. Monitoring stations, cross-sections calibration data at inside locations

4. Sensitivity time-step accurate results?

Bruna Arcie Polli Modelagem com Delft3D

28

Set-up FLOW post processing

1. QUICKPLOT (or GPP) 2. what kind of plots, graphs

computed versus measured, predicted time-series, 2DH, 2DV, profiles, vector, iso-lines

Bruna Arcie Polli Modelagem com Delft3D

29

Calibration and verification

1. strategy, which data and periods

accuracy criteria, wet-dry, wind

2. frequency and time domain first 2DH, always time domain

3. calibration parameters bathymetry, boundary conditions, roughness

Bruna Arcie Polli Modelagem com Delft3D

30

Organisation

Files/folders • Short names • No special characters

Organisation • one folder with raw data • one folder to which scenario/simulation • one table with scenarios and names • keep it in order (not test, final-test... )

Backup / no-break • Back up of the data • Install no-breaks

Bruna Arcie Polli Modelagem com Delft3D

31

Help

Start with simple process and scenarios

Start with coarse grid in 2D and then refine and 3D Add and verify process by process Example: lake just with inflows, just with wind, just with radiation

Resolution test The results changed with refined grid? The results changed with timestep?

Compare the results with simple models Example water level/flow

Check manuals and foruns Do not force the model and be critical

Bruna Arcie Polli Modelagem com Delft3D

32

Pre-processing, RGFGRID

Bruna Arcie Polli Modelagem com Delft3D

33

Delft3D-QUICKIN, bathymetry editor

Bruna Arcie Polli Modelagem com Delft3D

34

Postprocessing, Quickplot

water level (m)

16-Mar-2014 00:00:00

x coordinate (m)

y c

oord

inate

(m

)

3.9 3.95 4 4.05 4.1 4.15 4.2

x 105

9.625

9.63

9.635

9.64

9.645

9.65

9.655x 10

6

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

ele

va

tio

n (

m)

float1

0h 6h 12h 18h 0h-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Bruna Arcie Polli Modelagem com Delft3D

Exemplo: Simple channel flow

PROBLEMA

Escoamento em um canal com determinada declividade. A solução permanente é atingida, o termo de viscosidade vertical está em

balanço com o gradiente de pressão barotrópico. Para esta situação, uma solução analítica da equação das águas rasas 2D é

comparada com a solução numérica.

36

Upstream

Downstream

Bruna Arcie Polli Modelagem com Delft3D

Equacionamento

• A solução pode ser obtida das equações de águas rasas;

• Todos os gradientes na direção horizontal e tempo são zero;

• No regime permanente o termo de viscosidade na vertical está em equilíbrio com o gradiente de pressão barotrópico.

37

Bruna Arcie Polli Modelagem com Delft3D

Dados • Comprimento do canal (x): 10000 m

• Declividade: 0.01%

• Largura (y): 1500 m

• Upstream: Q=5 m2/s (constante)

• Perfil de velocidade logarítmico

• Coeficiente de Chézy (2D)= 65 m1/2/s

• Discretização uniforme (20x3)=> 500 m x 500 m (Horizontal!!)

• Vertical: 20 camadas uniformes

• Downstream: condição de contorno => water level (forçado pela profundidade de equilíbrio)

38

Bruna Arcie Polli Modelagem com Delft3D

Dados e discretização

39

x(m) m

y(m) n

Upstream

Downstream

Bruna Arcie Polli Modelagem com Delft3D

Resultados

40

Matemática Aplicada II Universidade Federal do Paraná

top related