03 amplificadores de potência

Post on 25-Jul-2015

392 Views

Category:

Engineering

12 Downloads

Preview:

Click to see full reader

TRANSCRIPT

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Amplificadores de Potência(Estágios de Saída)

Prof. Jader A. De Lima

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

η% - eficiência do amplificador

Pout – potência de saída do amplificador entregue à cargaPdc – potência DC retirada da fonte de alimentação

Ex: amplificador de audio

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Output Stage Requirements:

• deliver a specified amount of signal power to a load with acceptably low levels of signal distortion;

• high input impedance/low output impedance (why?);

• low quiescent power (when the input signal is zero

the power dissipation should be low).

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Collector current waveforms for transistors operating in (a) class A, (b) class B,

Estágios de Sáida (Estágios de Potência)

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

(Continued) (c) class AB, and (d) class C amplifier stages.

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Estágios de Sáida (Estágios de Potência)

Classe A - Seguidor de Fonte

oLm

0ioutin

outV

r//Rg

11

1

v

vA

x

xin

i

vr

mL

moL0vinout

g

1//R

g

1//r//Rr

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Class A amplifiers ( the transistor conducts for the entirecycle of the input signal) are highly (power) inefficient.

• Large power dissipation occurs even for no signal input (standby).

• Why save power?

• Preserve natural resources/reduce pollution

• Extend battery life

• Reduce costs, improve reliability (power wasted

is dissipated in the active devices: temperature,performance , chance of failure and larger

devices are required cost

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Vin

VL

Vbe

- RL Is

Vcc - Vcesat

Vcc - Vcesat + Vbe

- RL Is + Vbe

Vin

VL

Vcc

-Vcc

IsRL

Q1

~

Va

Vs

Rs

• Classe A (seguidor de emissor) com fonte de corrente

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• class-A efficiency:

CEsat

CCV

Vvo

2max

CEsat

CC

LLV

V

RR

voIQ

2

1maxmin

CC

CEsatCC

V

VV 2

4

1max

Ex: VCC = 3V e VCEsat = 0.3V → max = 20.5%

< 25% !!

{

CEsatCC

L

CCL

CEsatCC

VVR

VR

VV

2

22

12

max

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• class-A amplifier with inductive coupling

• small speaker of 3.2 (8) needs only 100mW (500mW) to operate

• class-A amplifier may be adequate for output power of a few hundred mW

• using the transformer impedance reflexion, speaker load apperas (Np/Ns)2 largerat the collector; Ex: if turns ratio is 10:1, a 3.2-speaker appears as 320 load.

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Classe B – Push-Pull

Transfer characteristic for the class B output stage

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Distorção de cruzamento (crossover distortion)

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

≈ 78.6%

• class-B efficiency:

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• class-B amplifier with inductive coupling

• however, audio transformers are bulky and expensive

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Classe AB – Push-Pull (eliminar distorção de cruzamento)

Class AB output stage. A bias voltage VBB is applied between the bases of QN and QP, giving rise to a bias current IQ .Thus, for small vI, both transistors conduct and crossover distortion is almost completely eliminated.

• quiescent current

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• D1 (D2) must match VBE curves of QN (QP)in saturation current , area and temperature;

→ only good approach for integrated deisgn

• compensating biased diodes

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

ex:Determinar o rendimento do estágio:

i) Ibias (resistores)ii) IC_pk (transistor limite saturação)iii) IC_aviv) Idcv) Pdcvi) PL_maxvii)

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

ex:

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

ex:

A

R

VVVI

L

CCCEsatCCC 97.0

10

103.0205.0max

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

ex:

AI

ICMAX

AV 309.01416.3

97.0

A

R

VVVI

L

CCCEsatCCC 97.0

10

103.0205.0max

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

ex:

AAmAIdc 311.0309.038.2

A

R

VVVI

L

CCCEsatCCC 97.0

10

103.0205.0max

AI

ICMAX

AV 309.01416.3

97.0

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

ex:

WAVxPdc 22.6311.020

A

R

VVVI

L

CCCEsatCCC 97.0

10

103.0205.0max

AI

ICMAX

AV 309.01416.3

97.0

AAmAIdc 311.0309.038.2

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

W

R

VVVP

L

CCCEsatCCL 70.4

10

103.020

2

15.0

2

1 22

max

ex:

A

R

VVVI

L

CCCEsatCCC 97.0

10

103.0205.0max

AI

ICMAX

AV 309.01416.3

97.0

AAmAIdc 311.0309.038.2

WAVxPdc 22.60311.020

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

%5.75%10022.6

70.4%100

maxmax xx

P

P

dc

L

ex:

A

R

VVVI

L

CCCEsatCCC 97.0

10

103.0205.0max

AI

ICMAX

AV 309.01416.3

97.0

AAmAIdc 311.0309.038.2

WAVxPdc 22.60311.020

W

R

VVVP

L

CCCEsatCCL 70.4

10

103.020

2

15.0

2

1 22

max

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• push-pull com multiplicador de VBE

VBB = VBE1 (1 + ( R2 / R1 ))

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

QPNPBEQQNPNBEQBB IVIVV @@ __

- curvas dos BJTs devem ser consultadas para se determinar correto valor de VBB

R2/R1 definido

Projeto Multiplicador VBE

• passo #1

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

1

1_2

max_max__max__

21_max__max_3

max_max__max_33

R

VI

R

VII

IIII

VVIRV

QBER

LNPN

o

NPN

NPNCNPNB

RQCNPNBR

onpnBERCC

• no máximo de excursão no semiciclo positivo tem-se:

R3 definido

para IB_Q1 << IR2

Obs:assume-se um valor inicial para IC_Q1 para se determinar VBE_Q1 a partir

Da curva característica IC x VBE de Q1

• passo #2

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

1

1_1

max_max__max__

11_max__max_4

max_max__max_44

R

VI

R

VII

IIII

VVIRV

QBER

LPNP

o

PNP

PNPCPNPB

RQEPNPBR

opnpBERCC

• no máximo de excursão do semiciclo negativo tem-se:

R4 definido

• passo #3

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• passo #4

• re-calcular valores de IR2 e VBE_Q1 • no caso de diferença importante, reiniciar a partir do passo #2

Homework

• Considerando npn Q2N2222 e pnp Q2N3906, projetar um estágio classe-AB para IQ = 5mA, RL = 8 e Vo_max = 2.5V. Admitir fontes simétricas, sendo VCC = 5V.

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• capacitive coupling is not the preferred coupling mechanism for audio push-pull stages (bulky caps!)

• common-emitter driver: In addition to providing a higher input resistance, the buffer Q1 biases the output transistors Q2 and Q3

driver(Av ~ R3/R4)

small

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

The compound-pnp configuration.

The Darlington configuration.

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• overload protection

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• overload protection• short-circuit protection occurs by sensing current threough R6

• VR6 = VBE_Q15

• When load current reaches a given limit, Q15becomes forwardly-biased and diverts any further base current of Q14

→ load current no longer increases

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• thermal shutdown

• Q2 acts as a swicth and is normally off at operating temperatures

• with temperature increase above a given threshold, positive tempco of Zener and negative tempco of VBE_Q1 increses Q1 current

→ VBE_Q2 increases and Q2 turns on

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• power opamp

low-powergain stage

current booster

• when Q5 turns on, it sources additiona load current

• when Q6 turns on, it sinks additiona load current

buffer

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Class B circuit with an op amp connected in a negative-feedback loop to reduce crossover distortion

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• bridge amplifier

critical match

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• 741

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Class C (tuning amplifier)

• power devices conducts less than 180o

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

tank is driven by current pulses

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

rich in harmonics (f, 2f, 3f, ..., nf)

only ressonance frequency f(like pure sinewave)

fundamental frequency f

Very-low impedance at harmonics → no gain

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Series to Parallel Conversion for RL Circuits

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Coil Q > 50• class-C amps have Q > 10 usually

(for overall circuit)

narrowband operation

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

- for QL_coil = 100, determine:• resonance frequency: fr• bandwidth: BW

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

class-A, B, AB

class-D

Class D

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• power devices (normally MOSFETs) operate as switches (either fully ON or OFF) → reducing their power losses (efficiency 90 – 95% is possible, as swictheshave zero DC current when not switching and low VDS when conducting)

• input signal modulates a PWM carrier that drives the output switches

• commonly used in audio power amplifiers

PWM

~ lossless filter

high-side

low-side

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Despite the complexity involved, a properly designed class D amplifier offers the following benefits:

• Reduction in size and weight of the amplifier

• Reduced power waste as heat dissipation and hence smaller (or no) heat sinks

• Reduction in cost due to smaller heat sink and compact circuitry

• Very high power conversion efficiency, usually better than 90% above one quarter of the amplifier's maximum power, and around 50% at low power levels

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• The value of deadtime should be based on the device characteristics, ambient operating conditions, parasitic parameters of switching devices and load conditions.

• Reduces the RMS output to a certain extent and increases THD.

No deadtime:

deadtime:

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Using Feedback to Improve Performance

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Many class D amplifiers utilize negative feedback from the PWM output back to the input of the device.

• A closed-loop approach:• improves linearity• allows better power-supply rejection.

• Open-loop amplifier inherently has minimal (if any) supply rejection.

• In closed-loop topology, as the output waveform is sensed and fed back to the input of the amplifier, deviations in the supply rail are detected at the output and corrected by the control loop.

• Drawback: control loop must be carefully designed and compensated to ensure stability under all operating conditions

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Many Class D amplifiers are implemented as full-bridge output stage.

• A full bridge uses two half-bridge stages to drive the load differentially.

• The full-bridge configuration operates by alternating the conduction path through the load. This allows bidirectional current to flow through the load without the need of a negative supply or a DC-blocking capacitor.

Half Bridge vs. Full Bridge

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Half-bridge amplifier:

• output swings between VDD and ground and idles at 50% duty cycle→ output has a DC offset equal to VDD/2

• efficiency >90% while delivering more than 14W per channel into 8Ω.

• Full-bridge amplifier:

• does not require DC-blocking capacitors on outputs when operating from a single supply→ offset appears on each side of the load, which means that zero DC current flows at the output.

• can achieve twice the output signal as the load is driven differentially. → 4x increase in maximum output power over a half-bridge amplifier operating from the same supply (at cost of twice as many MOSFET switches)

• efficiency in the range of 80% to 88% with 8Ω loads

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

deadtime:

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Class E

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• current I is diverted through C1 when S1 is opened (see IC and IS)• RFC: only DC current• Theorectical zero overlap between VDS and IS → ideally 100% efficiency• LC resonator ensures single tone at output

RFC

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• C1: shunt cap to switch ( + device parasitics) – exact value for max efficiency

• L2 – C2 resonates below the operating frequency (↑Q → sinewave output current)→ excessive inductive reactance → max efficiency at center frequency (not max power)

• ↑ L1 RF choke (only DC current)

high Qhigh L

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• switch driven with 50%-duty cycle

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Rise of Vds is delayeduntil Is = 0

Vds returns to zero before Is increases

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• efficiency as function of duty-cycle

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Safe Operating Area (SOA)

• voltage and current conditions over which the device can be expected to operate without self-damage

(only BJT´s)

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Transistor Power Rating

• temperature at collector junction places a limit on allowable power dissipation PD.

Ex: 2N3904 → Tj (max) = 150oC 2N3710 → Tj (max) = 200oC

• ambient temperature: heat produced in junction passes through the transistor case (metal or plastic) and radiates to the surrounding air (ambient temperature, usually around 25oC)

• Derating Factor: data sheets often specify PD (max) @25oC.Ex: 2N1936 has PD (max) @25oC = 4W.

• What happens if temperature is higher than 25oC? → power rating must bederated (reduced)

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Power Derating

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Heat Sinks

• increase transistor power rating→ area of transistor case is increased

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Ex: assuming the circuit below must operate from 0oC to 50oC, what is themaximum power rating of the transistor?

• for TO-92 case, PD(max) = 625mW@25oC derating factor D = 5mW/oC

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Ex: assuming the circuit below must operate from 0oC to 50oC, what is themaximum power rating of the transistor?

• for TO-92 case, PD(max) = 625mW@25oC derating factor D = 5mW/oC

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

• Failure mechanisms in ICs are accentuated by increased temperatures (leakage in reverse biased diodes, electromigration, and hot-electron trapping).

• To prevent failure, the die temperature must be kept within certain ranges:

• commercial devices [0° to 70°C]• military parts [–55° to 125°C]

• 40-pin DIP has a thermal resistance of 38 °C/W (natural) and 25 °C/W (forced air convection).

→ DIP can dissipate 2 watts (natural) or 3 watts (forced), and still keep the temperature difference between the die and the environment below 75 °C

• PGA has thermal resistance from 15 ° to 30 °C/W.

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

Electromigration

EEL 7303 – Circuitos Eletrônicos AnalógicosJader A. De Lima UFSC, 2013

REFERÊNCIAS:

• Fundamentals of Microelectronics, B. Razavi, John Wiley and Sons, 2006

• Microelectronic Circuits, A. Sedra and K. Smith, Oxford university Press, 5th Edition, 2003

• Analysis and Design of Analog Circuits, Gary, Hurst, Lewis and Meyer, 4th Edition, 2001

top related