all pcb-tda2030 - 2.1 channell

Upload: jose-garcia

Post on 03-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    1/18

    2011 te1.com.br

    2011 te1.com.br

    2011 te1.com.br

    TDA2030V

    NE5532NNE5532N

    4700F/35v

    4700F/35v

    7812

    7912

    100nF

    100nF

    10F/25v

    10F/25v

    GND

    V+

    V-

    10F/25v

    10k

    10k

    GND

    GND

    33k

    10k

    10k

    GND

    2n2

    100n

    100n

    GND

    GND

    GND

    10F/25v

    10F/25v

    GND

    GND

    10F/25v

    GND GND

    33k

    GND

    10k 10k

    100n

    220n

    GND

    10F/25v

    10k

    V+

    V-

    4.7

    k

    10

    470

    10k

    4.7

    k

    470

    100n

    GND

    VDD

    VDD

    VSS

    VS

    S

    2

    1

    4

    IC65

    3

    2

    31

    IC4A

    6

    5

    7

    IC4B8

    4

    AC1

    AC2

    - +

    B1

    C4

    C3

    IC2

    GND

    IN OUT

    IC1

    GND

    OUTIN

    C2

    C1

    C5

    C6

    -IN-1

    -IN-2 C20

    1-1

    1-3

    1-2

    P2/1

    2-1

    2-3

    2-2

    P2/2

    R17

    R15

    R19

    C22

    C23

    C14

    C18

    R-IN-1

    R-IN-2 C19

    C 1 6

    C12

    R6

    R5 R3

    C10

    C9

    C8

    P1

    R18

    R20

    R16

    R10

    R7

    R8

    C21

    AC-1

    AC-2

    AC-3

    L-OUT-1

    L-OUT-2

    +

    +

    +

    +

    +

    +

    +

    +

    +

    2011 te1.com.br

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    2/18

    1 2 1 2

    1

    2

    1

    2

    - IO

    +

    I

    O

    IC6

    IC4

    IC2

    IC1

    C5

    C6

    L-INC20

    P2

    R17

    R15

    R19

    C22

    C23

    C14

    C18

    IC5

    R-IN

    C19

    R12

    C16

    C17

    C13

    C12

    R6

    R5

    R3

    C10C9

    C8

    P1

    IC3

    R2 R

    1R4

    C7

    C11

    J6

    J7

    J4

    J5

    J1

    R18

    R20

    R16

    R13

    R9

    R14

    R10

    R11

    R7

    R8C15C21

    J3

    J2

    L-OUT

    R-OUT

    TDA2030V

    NE55

    32N

    4700F/35v

    4700F

    7812

    7912

    10F/25v

    10F/25v

    10F/25v

    10k

    33k

    10k10k

    2n2

    100n

    100n

    10F/25v

    TDA2030V

    10F/25v

    33k

    2n2

    100n

    10F/25v

    10F/25v

    33k

    10k

    10k

    100n

    220n

    10F/25v

    10k

    TDA2030V

    22k

    10470

    100n

    47F/25v

    4.7

    k10

    470

    4.7

    k470

    10

    10k

    10k

    4.7

    k

    470

    100n100n

    LIN RIN

    LOUT

    R-OUT

    2011 te1.com.br

    2011 te1.com.br

    TDA

    +

    + +- -

    --

    +

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    3/18

    LIN RIN

    LOUT

    R-OUT

    2011 te1.com.br

    2011 te1.com.br

    TDA

    +

    + +- -

    --

    +

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    4/18

    LIN RIN

    LOUT

    R-OUT

    2011 te1.com.br

    2011 te1.com.br

    TDA

    +

    + +- -

    --

    +

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    5/18

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    6/18

    TDA2030

    14W Hi-Fi AUDIO AMPLIFIER

    DESCRIPTION

    The TDA2030 is a monolithic integrated circuit inPentawatt package, intended for use as a lowfrequency class AB amplifier. Typically it provides14W output power (d = 0.5%) at 14V/4; at 14Vor 28V, the guaranteed output power is 12W on a4 load and 8W on a 8 (DIN45500).TheTDA2030 provideshigh outputcurrentandhasvery low harmonic and cross-over distortion.Further the device incorporates an original (andpatented) short circuit protection system compris-ing an arrangement for automatically limiting thedissipated power so as to keep the working pointof the output transistors within their safe operatingarea. A conventional thermalshut-downsystem isalso included.

    June 1998

    Symbol Parameter Value Unit

    Vs Supply voltage 18 (36) V

    Vi Input voltage Vs

    Vi Differential input voltage 15 V

    Io Output peak current (internally limited) 3.5 A

    Ptot Power dissipation at Tcase = 90C 20 W

    Tstg, Tj Stoprage and junction temperature -40 to 150 C

    ABSOLUTE MAXIMUM RATINGS

    TYPICAL APPLICATION

    Pentawatt

    ORDERING NUMBERS : TDA2030HTDA2030V

    1/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    7/18

    PIN CONNECTION (top view)

    TEST CIRCUIT

    +VS

    OUTPUT

    -VS

    INVERTING INPUT

    NON INVERTING INPUT

    TDA2030

    2/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    8/18

    Symbol Parameter Test conditions Min. Typ. Max. Unit

    Vs Supply voltage 612

    1836

    V

    Id Quiescent drain current

    Vs = 18V (Vs = 36V)

    40 60 mA

    Ib Input bias current 0.2 2 A

    Vos Input offset voltage 2 20 mV

    Ios Input offset current 20 200 nA

    Po Output power d = 0.5% Gv = 30 dBf = 40 to 15,000 HzRL = 4RL = 8

    128

    149

    WW

    d = 10%f = 1 KHzRL = 4RL = 8

    Gv = 30 dB

    1811

    WW

    d Distortion Po = 0.1 to 12WRL = 4 Gv = 30 dBf = 40 to 15,000 Hz 0.2 0.5 %

    Po = 0.1 to 8WRL = 8 Gv = 30 dBf = 40 to 15,000 Hz 0.1 0.5 %

    B Power Bandwidth(-3 dB)

    Gv = 30 dBPo = 12W RL = 4

    10 to 140,000 Hz

    Ri Input resistance (pin 1) 0.5 5 M

    Gv Voltage gain (open loop) 90 dB

    Gv

    Voltage gain (closed loop) f = 1 kHz 29.5 30 30.5 dB

    eN Input noise voltage B = 22 Hz to 22 KHz 3 10 V

    iN Input noise current 80 200 pA

    SVR Supply voltage r ejection RL = 4 Gv = 30 dBRg = 22 kVripple = 0.5 Vefffripple = 100 Hz

    40 50 dB

    Id Drain current Po = 14WPo = W

    RL = 4RL = 8

    900500

    mAmA

    ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs = 14V , Tamb = 25C unlessotherwisespecified) for single Supply refer to fig. 15 Vs= 28V

    Symbol Parameter Value Unit

    Rth j-case Thermal resistance junction-case max 3 C/W

    THERMAL DATA

    TDA2030

    3/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    9/18

    Figure 1. Output power vs.supply voltage

    Figure 2. Output power vs.supply voltage

    F i g u re 3 . D i s t o rt i on v s .output power

    F i g u r e 4 . D i s t o rt i on v s .output power

    F i g u re 5 . D i s t o r ti o n v s .output power

    F i g u re 6 . D i s t o rt i on v s .frequency

    F i g u r e 7 . D i s t o r t i o n v s .frequency

    Figure 8. Frequency re-sponse with different valuesof the rolloff capacitor C8(see fig. 13)

    Figure 9. Quiescent currentvs. supply voltage

    TDA2030

    4/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    10/18

    Figure 10. Supply voltagerejection vs. voltage gain

    Figure 11. Power dissipa-tion and efficiency vs.outputpower

    Figure 12. Maximum powerdissipation vs. supply volt-age (sine wave operation)

    APPLICATION INFORMATION

    Figure 13. Typical amplifierwith split power supply

    Figure 14. P.C.board and component layout forthe circuit of fig. 13 (1 : 1 scale)

    TDA2030

    5/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    11/18

    APPLICATION INFORMATION (continued)

    Figure 15. Typical amplifierwith single power supply Figure 16. P.C.board and component layout forthe circuit of fig. 15 (1 : 1 scale)

    Figure 17. Bridge amplifier configuration with split power supply (Po = 28W,Vs = 14V)

    TDA2030

    6/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    12/18

    PRACTICAL CONSIDERATIONS

    Printed circuit board

    The layout shown in Fig. 16 should be adopted bythe designers. If different layouts are used, theground points of input 1 and input 2 must be welldecoupled from the ground return of the output inwhich a high current flows.

    Assembly suggestion

    No electri cal isolation is needed between the

    packageand the heatsinkwithsinglesupplyvoltage

    configuration.

    Application suggestions

    The recommended values of the components arethoseshown on applicationcircuit of fig.13.Different values can be used. The following tablecan help the designer.

    ComponentRecomm.

    valuePurpose

    Larger thanrecommended value

    Smaller thanrecommended value

    R1 22 k Closed loop gainsetting

    Increase of gain Decrease of gain (*)

    R2 680 Closed loop gainsetting

    Decrease of gain (*) Increase of gain

    R3 22 k Non inverting inputbiasing

    Increase of inputimpedance

    Decrease of inputimpedance

    R4 1 Frequency stability Danger of osccilat. athigh frequencieswith induct. loads

    R5 3 R2 Upper frequencycutoff

    Poor high frequenciesattenuation

    Danger ofoscillation

    C1 1 F Input DCdecoupling

    Increase of lowfrequencies cutoff

    C2 22 F Inverting DCdecoupling

    Increase of lowfrequencies cutoff

    C3, C4 0.1 F Supply voltagebypass

    Danger ofoscillation

    C5, C6 100 F Supply voltagebypass

    Danger ofoscillation

    C7 0.22 F Frequency stability Danger of oscillation

    C8

    1

    2 B R1Upper frequencycutoff

    Smaller bandwidth Larger bandwidth

    D1, D2 1N4001 To protect the deviceagainst output voltage spikes

    (*) Closed loop gain must be higher than 24dB

    TDA2030

    7/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    13/18

    SINGLE SUPPLY APPLICATION

    ComponentRecomm.

    valuePurpose

    Larger thanrecommended value

    Smaller thanrecommended value

    R1 150 k Closed loop gainsetting

    Increase of gain Decrease of gain (*)

    R2 4.7 k Closed loop gainsetting

    Decrease of gain (*) Increase of gain

    R3 100 k Non inverting inputbiasing

    Increase of inputimpedance

    Decrease of inputimpedance

    R4 1 Frequency stability Danger of osccilat. athigh frequencieswith induct.loads

    RA/RB 100 k Non inverting input Biasing Power Consumption

    C1 1 F Input DCdecoupling

    Increase of lowfrequencies cutoff

    C2 22 F Inverting DCdecoupling

    Increase of lowfrequencies cutoff

    C3 0.1 F Supply voltagebypass

    Danger ofoscillation

    C5 100 F Supply voltagebypass

    Danger ofoscillation

    C7 0.22 F Frequency stability Danger of oscillation

    C8

    1

    2 B R1

    Upper frequency

    cutoff

    Smaller bandwidth Larger bandwidth

    D1, D2 1N4001 To protect the device against output voltage spikes

    (*) Closed loop gain must be higher than 24dB

    TDA2030

    8/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    14/18

    SHORT CIRCUIT PROTECTION

    TheTDA2030has an originalcircuit whichlimits thecurrent of the output transistors.Fig. 18 shows thatthe maximum output current is a function of thecollector emitter voltage; hence the output transis-tors work within their safe operating area (Fig. 2).This functioncan thereforebe consideredas being

    peak power limiting rather than simple current lim-iting.It reduces the possibilitythat the device gets dam-aged during an accidental short circuit from ACoutput to ground.

    F i g ur e 1 8 . M a x i mu mou tpu t c u rr en t v s.voltage [VCEsat] acrosseach output transistor

    Figure 19. Safe operating area andcollector characteristics of theprotected power transistor

    THERMAL SHUT-DOWN

    The presence of a thermal limiting circuit offers thefollowing advantages:

    1. An overload on the output (even if it is perma-nent),oran abovelimitambienttemperaturecanbe easily supported since the Tj cannot behigher than 150C.

    2. Theheatsinkcan have a smaller factorof safetycompared with that of a conventional circuit.Thereis no possibilityof devicedamage due tohigh junction temperature.If for any reason, the

    junction temperatureincreasesup to 150C, thethermal shut-down simply reduces the powerdissipationat the current consumption.

    The maximum allowable power dissipation de-pendsupon the size of theexternalheatsink (i.e.itsthermal resistance); fig. 22 shows this dissipablepower as a function of ambient temperature fordifferent thermal resistance.

    TDA2030

    9/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    15/18

    Figure 20. Output power andd r ai n c u rr e nt v s . c a s etemperature (RL = 4)

    Figure 21. Output power andd r ai n c u rr e nt v s . c a s etemperature (RL = 8)

    Fi gur e 22. Max imumallowable power dissipationvs. ambient temperature

    Figure 23. Example of heat-sink Dimension : suggestion.

    The following table shows the length thattheheatsinkin fig.23 must haveforseveralvalues of Ptot and Rth.

    Ptot (W) 12 8 6

    Length of heatsink(mm)

    60 40 30

    Rth of heatsink( C/W)

    4.2 6.2 8.3

    TDA2030

    10/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    16/18

    DIM.mm inch

    MIN. TYP. MAX. MIN. TYP. MAX.

    A 4.8 0.189C 1.37 0.054

    D 2.4 2.8 0.094 0.110

    D1 1.2 1.35 0.047 0.053

    E 0.35 0.55 0.014 0.022

    E1 0.76 1.19 0.030 0.047

    F 0.8 1.05 0.031 0.041

    F1 1 1.4 0.039 0.055

    G 3.2 3.4 3.6 0.126 0.134 0.142

    G1 6.6 6.8 7 0.260 0.268 0.276

    H2 10.4 0.409

    H3 10.05 10.4 0.396 0.409

    L 17.55 17.85 18.15 0.691 0.703 0.715L1 15.55 15.75 15.95 0.612 0.620 0.628

    L2 21.2 21.4 21.6 0.831 0.843 0.850

    L3 22.3 22.5 22.7 0.878 0.886 0.894

    L4 1.29 0.051

    L5 2.6 3 0.102 0.118

    L6 15.1 15.8 0.594 0.622

    L7 6 6.6 0.236 0.260

    L9 0.2 0.008

    M 4.23 4.5 4.75 0.167 0.177 0.187

    M1 3.75 4 4.25 0.148 0.157 0.167

    V4 40 (typ.)

    Dia 3.65 3.85 0.144 0.152

    PENTAWATT PACKAGE MECHANICAL DATA

    L

    L1

    A

    C

    L5

    D1 L2

    L3

    E

    M1

    MD

    H3

    Dia.

    L7

    L6

    F1H2

    F

    G G1

    E1

    F

    E

    L9V4

    R

    R

    R

    RESIN BETWEEN

    LEADS

    H1

    V3

    H2

    L8

    V VV1

    B

    V V

    V4

    V4

    TDA2030

    11/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    17/18

    Information furnished is believedto be accurate andreliable. However, STMicroelectronics assumes no responsibility for theconsequences ofuse of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is grantedby implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subjecttochange without notice. This publication supersedes and replaces all i nformation previous ly supplied. STMicroelectronics products are notauthorized foruse as critical components in life support devicesor systems withoutexpress written approval of STMicroelectronics.

    The ST logo is a registered trademark of STMicroelectronics

    1998 STMicroelectronics Printed in Italy All Rights Reserved

    STMicroelectronics GROUP OF COMPANIES

    Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico- Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom- U.S.A.

    TDA2030

    12/12

  • 7/28/2019 All Pcb-tda2030 - 2.1 Channell

    18/18

    This datasheet has been download from:

    www.datasheetcatalog.com

    Datasheets for electronics components.