aldair josÉ sarmento silva alfa-tocoferol previne os ...€¦ · neuronais em um modelo de...

119
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE UFRN CENTRO DE CIÊNCIAS DA SAÚDE DEPARTAMENTO DE FARMÁCIA PÓS-GRADUAÇÃO EM DESENVOLVIMENTO E INOVAÇÃO TECNOLÓGIA EM MEDICAMENTOS - PPgDITM ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS DÉFICITS COGNITIVOS, MOTORES E NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do Norte, para obtenção de título de doutor no curso de Desenvolvimento e Inovação Tecnológica em Medicamentos. NATAL RN, 2014

Upload: others

Post on 10-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

1

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE – UFRN

CENTRO DE CIÊNCIAS DA SAÚDE

DEPARTAMENTO DE FARMÁCIA

PÓS-GRADUAÇÃO EM DESENVOLVIMENTO E INOVAÇÃO TECNOLÓGIA EM

MEDICAMENTOS - PPgDITM

ALDAIR JOSÉ SARMENTO SILVA

ALFA-TOCOFEROL PREVINE OS DÉFICITS COGNITIVOS, MOTORES E

NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS

Tese apresentada à Universidade Federal do Rio Grande do Norte, para obtenção de título de doutor no curso de Desenvolvimento e Inovação Tecnológica em Medicamentos.

NATAL – RN, 2014

Page 2: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

1

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE – UFRN

CENTRO DE CIÊNCIAS DA SAÚDE

DEPARTAMENTO DE FARMÁCIA

PÓS-GRADUAÇÃO EM DESENVOLVIMENTO E INOVAÇÃO TECNOLÓGIA

EM MEDICAMENTOS

ALDAIR JOSÉ SARMENTO SILVA

ALFA-TOCOFEROL PREVINE OS DÉFICITS COGNITIVOS, MOTORES E

NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM

RATOS

Tese apresentada à Universidade Federal do Rio Grande do Norte, para obtenção de título de doutor no curso de Desenvolvimento e Inovação Tecnológica em Medicamentos.

ORIENTADORA: Profa. Dra. Regina Helena da Silva

NATAL – RN, 2014

Page 3: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

2

Este trabalho foi desenvolvido com auxílio da: (1) CAPES, através da

concessão de uma bolsa doutorado; (2) FAPERN, através da concessão de

auxílio deslocamento para cursar disciplinas em outros Estados e insumos e

equipamentos para pesquisa; (3) CNPq, através da concessão do suporte

financeiro e logística; do programa de pós-graduação em desenvolvimento e

inovação tecnológica em medicamentos – PPgDITM e do programa de pós-

graduação em Psicobiologia (Departamento de Fisiologia/UFRN), onde foram

desenvolvidas as atividades experimentais.

Page 4: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

3

Dedico este trabalho a minha família,

em especial, aos meus pais (Zé

Furtado e Maria José) e aos meus

avós (Chico Furtado e Mocinha), que

mesmo diante de tantas

dificuldades, nunca perderam as

esperanças.

Page 5: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

4

AGRADECIMENTOS

É diante da conclusão de uma escrita que sou remetido a defender uma

tese, tese esta que se coloca como possível e me traz certo sentido quando

remetida a estruturação familiar que me permitiu chegar aonde cheguei. A

chegada não significa o fim, e sim, a abertura de novos passos, novas

caminhadas e novas experiências. Sou grato àqueles que me concederam a

confiança, que me ensinaram a determinação, que impulsionaram a seguir com

a fé Divina.

A transmissão, que surgiu antes mesmo de uma sistematização formal de

conhecimentos, me fez acreditar em um investimento profissional que me

impulsionaria para a conquista de meus objetivos. Hoje agradeço em especial:

Aos meus avós paternos (Chico Furtado e Mocinha Furtado – in memorian)

que me ensinaram a seguir pelo caminho certo, lembro-me muito bem quando

vovô me transmitia confiança e serenidade diante das circunstâncias da vida.

Aos meus pais (Zé Furtado e Maria José), que acreditaram no saber. Minha

mãe com sua fiel e feliz transmissão sendo minha primeira e eterna professora,

me passando algo além de um ensinamento em sala de aula, devo a ela

também os ensinamentos de fé, me lembro com ternura dos agradecimentos a

Mãe Rainha quando passei no vestibular, dando assim o primeiro passo para

minha vida profissional. Meu pai, agricultor, com seu saber irredutível, que

sempre soube nos apoiar em cada momento, se doou a roça para assim

investir nos estudos dos seus oito filhos, me ensinou a calar e a falar somente

o necessário. Hoje me passa um filme de quando sai do sítio e fui estudar na

cidade, de início não quis ir, mas, meu pai me convenceu me presenteando

com uma bicicleta, cor azul e do ano. Lembro até hoje e a cada dia identifico

mais ainda o valor da frase que sempre me falaram: “a maior herança que

deixo para os meus filhos é o estudo, porque essa ninguém tira”, sou muito

grato pela significação desta transmissão.

Aos meus irmãos, por me estruturarem nesta união e colaborarem com minha

formação, a qual é enlaçada pelo amor, um afeto advindo de nossos pais que

Page 6: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

5

nos permitiu crescer na firmeza deste sentimento. Socorro Sarmento, formada

em Ciências e graduanda em Pedagogia, Tânia Sarmento Phd em Farmácia,

Eva Mônica, Dra. Em zootecnia, Gerlania Sarmento Dra. Em Farmácia,

Francisco Furtado, graduado em química, Maria José doutoranda em

medicamentos e Gorete Sarmento mestre em Psicologia. Gostaria de

agradecer aos meus tios, em especial Assis Furtado e Socorro Sarmento pela

cumplicidade e apadrinhamento.

Quando fui ao Maranhão em 2003, pude construir um novo enlace familiar,

conheci minha esposa Neysa Saiki, a quem tenho grande amor e enorme

gratidão por sua coragem, determinação e companheirismo, pois, quando

tomei a decisão de vir para o RN fazer doutorado, imediatamente arrumou as

malas e a mudança. Fruto dessa relação amorosa com Neysa, vinheram Airton

José, até então com quatro anos e Cássio Saiki, com três meses de vida, após

esses anos e a cada dia que eles crescem me deixam cada ver mais feliz e

orgulhoso, me contagiam com suas alegrias, brincadeiras e com muito amor.

Agradeço ainda, em especial, à Marinalva, que veio comigo do Maranhão a

qual considero parte da família, com sua paciência e dedicação no que se

propõe a fazer. Quero agradecer também a Nelson Saiki e Isabel Silva, pela

forma que me acolheram em sua família, com muita confiança, respeito e

incentivos, também a Nelysa, Gustavo e Rita. Como também aos meus

cunhados Gil, Celso, Maurício, Zey e Mirelly pelo apoio, aos primos, e aos

amigos que deixei em São Luís do Maranhão. Para falar dos companheiros do

LEME, prefiro iniciar agradecendo a uma pessoa que a considero intelectual e

que sabe lidar com as diversas situações para qual é solicitada, conheci

Regina via e-mail, e não poderia imaginar que estaria diante de uma pessoa

especial, obrigado Rê por sua confiança e dedicação, aprendi muito com você

e com Alessandra Mussi, à qual tenho muita admiração. Cheguei um pouco

tímido no laboratório, com uma lata de refrigerante Jesus que tinha trazido do

Maranhão para presentear as professoras e os novos colegas que foram muito

importantes durante todo o doutorado, com suas ajudas providencias e também

nas manutenções do biotério e laboratórios, são eles: Geison, Flávio, Alícia,

Fernando, Thieza, Anderson, André, Gênedi, Sophia, Priscila, Aline, Ezequiel,

Isabella, Diego, Clarissa, Ywlliane, as Jéssicas, João, Anatildes, Luiz Eduardo,

Page 7: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

6

Diana, Fernanda, Ivon, Luane, Cintia a professora Rovena, ao professor

Jeferson, e por fim ao pós-doc Ramon Hypolito Lima, que tenho muito a

agradecer por sua dedicação e capacidade de desenvolver pesquisa, a sua

contribuição foi muito importante nesta reta final do doutorado. Agradeço

também ao pessoal do laboratório da professora Miriam, a professora Elaine

Gavioli, a secretaria da PPgDITM, aos colegas de sala pelo companheirismo

durante as viagens para pagar disciplinas em outros estados. Agradeço

também à Faculdade Pitágoras – unidade São Luis/MA, em nome do Prof.

Hermínio, pelo apoio e compreenção. É com a sensação de dever cumprido,

atravessado por uma jornada árdua e gratificante, que chego ao final de uma

escrita e inicio de uma nova carreira, enlaçada pela ética, respeito,

determinação e amor à profissão.

Page 8: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

i

SUMÁRIO

ABREVIATURAS ...........................................................................................................................i

RESUMO.......................................................................................................................................iii

ABSTRACT.....................................................................................................................................iv

1. INTRODUÇÃO ....................................................................................................................... 1

1.1. TRATAMENTOS FARMACOLÓGICOS E MODELOS ANIMAIS PARA O

ESTUDO DA DOENÇA DE PARKINSON .......................................................................... 6

1.2. DOENÇA DE PARKINSON, ESTRESSE OXIDATIVO E AGENTES

ANTIOXIDANTES. ................................................................................................................. 9

2. JUSTIFICATIVA ................................................................................................................... 11

3. OBJETIVOS .......................................................................................................................... 12

3.1. OBJETIVO GERAL ........................................................................................................... 12

3.2. OBJETIVOS ESPECÍFICOS ........................................................................................... 12

3.2.1 Objetivos artigo 1 ........................................................................................................ 12

3.2.2 Objetivos artigo 2 ........................................................................................................ 12

3.2.3 Objetivos artigo 3 ........................................................................................................ 13

4. Artigo 1 ................................................................................................................................. 14

5. Abstract .................................................................................................................................. 15

6. Introduction ........................................................................................................................... 16

7. Material and Methods .......................................................................................................... 17

7.1. Animals ........................................................................................................................... 17

7.2. Drugs .............................................................................................................................. 17

7.3. Experimental design ..................................................................................................... 18

7.4. Statistical Analysis ........................................................................................................ 19

8. Results ................................................................................................................................... 19

8.1 Catalepsy ........................................................................................................................ 19

8.2. Novel object recognition .............................................................................................. 20

9. Discussion ............................................................................................................................. 22

10. Acknowledgments: ............................................................................................................. 27

11. References .......................................................................................................................... 28

12. Artigo 2 ............................................................................................................................... 34

13. Abstract ............................................................................................................................... 35

14. Introduction ......................................................................................................................... 36

Page 9: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

ii

15. Material and Methods ........................................................................................................ 37

15.1. Animals ......................................................................................................................... 37

15.2. Drugs ............................................................................................................................ 38

15.3. Experimental design and general procedures ....................................................... 38

16. Behavioral tests .................................................................................................................. 39

16.1. Catalepsy test ............................................................................................................. 39

16.2. Oral movements ......................................................................................................... 39

16.3. Rotarod test ................................................................................................................. 40

16.4. Immunohistochemistry for tyrosine hydroxylase (TH) ........................................... 40

16.5. Enzymatic Analysis .................................................................................................... 42

16.6. Statistical Analysis ...................................................................................................... 42

17. Results ................................................................................................................................. 43

17.1. Catalepsy ..................................................................................................................... 43

17.2. Oral movements ......................................................................................................... 44

17.3. Rotarod test ................................................................................................................. 44

17.4. Immunohistochemistry for tyrosine hydroxylase (TH) ........................................... 45

17.5. Determination of CAT and SOD activities .............................................................. 48

18. Discussion ........................................................................................................................... 50

19. Acknowledgments: ............................................................................................................. 54

20. References .......................................................................................................................... 55

21. Artigo 3 ............................................................................................................................... 60

22. Abstract ............................................................................................................................... 61

23. Introduction ......................................................................................................................... 62

23.1 Animal models of PD ....................................................................................................... 63

23.2. Motor and non-motor behavioral impairment in the reserpine model ..................... 65

23.3. Pharmacological and predictive quality of the reserpine model .............................. 67

23.4. Molecular and neurochemical features of the reserpine model .............................. 68

24. Final considerations ........................................................................................................... 74

25. References .......................................................................................................................... 77

26. CONSIDERAÇÕES FINAIS ............................................................................................. 96

27. REFERÊNCIAS .................................................................................................................. 97

28. Anexos ............................................................................................................................... 105

Page 10: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

iii

ABREVIATURAS

%EON - % Exploração do objeto novo

5-HT - Serotonina

6-OHDA - 6-hidroxidopamina

CEUA - Comissão de ética no uso de animais

COMT - Catecol-o-metiltransferase

CPu - Núcleo Caudado Putamen

DA - Dopamina

DAB - Diaminobenzidina

DOR - Densitometria óptica relativa

DP - Doença de Parkinson

DS - Dorsal striatum

DV - Dorsoventral

ED - Estriado dorsal

EPM - Erro Padrão da Média

GABA - Via gabaérgica

GD - Giro denteado

Glu - Via glutamatérgica

GP - Globo pálido

GPe - Globo pálido extermo

GPi - Globo pálido interno

HIP - Hipocampo

HPLC - High-Performance Liquid Chromatography

L-DOPA L-3,4-dihydroxyphenylalanine

MAO-B - Monoamino oxidase-B

MPP+ -1metilfenilpiridina

MPPP - 1-metil-4-fenilphenyl-4-propionpiperidina

i

Page 11: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

iv

MPTP - 1-metil-4-fenil-1,2,3,6-tetraidropiridina

NA - Noradrenalina

NE - Noradrenergic

NST - Núcleo subtalâmico

PB - Tampão fosfato

PBS - Tampão fosfato salina

PD - Parkinson´s disease

PFA - Paraformaldeído

PFC - Pré-frontal córtex

REM - Rapid eye movement

RES – Grupo tratado com reserpina

RESt - Grupo Reserpine treated

RESw - Grupo Reserpine withdrawn

ROD - Relative optic density

RON – Reconhecimento do objeto novo

s.c. - Subcutânea

SNpc - Substância negra parte compacta

SNpr - Substância negra parte reticulada

TH - Tirosina hidroxilase

TOC – Grupo tratado com α-tocoferol

VEI - Grupo Controle

VMAT-2 - Vesicular monoamine transporter - 2

VTA - Ventral tegmental area

Page 12: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

v

RESUMO

A doença de Parkinson (DP) é um distúrbio neurodegenerativo progressivo que

afeta aproximadamente de 1-2% da população mundial, com maior prevalência

entre os homens. Os principais sintomas são motores, e incluem bradicinesia,

rigidez, instabilidade postural e tremor em repouso. Além disso, ocorrem

sintomas não motores, tais como distúrbios do sono, ansiedade, depressão, e

déficits cognitivos. Tais alterações clínicas são consequência da perda

irreversível de neurônios dopaminérgicos principalmente na substância negra

parte compacta. O tratamento mais eficaz para a DP é o uso da levodopa,

porém, esta medicação trata apenas os sintomas, apresentando limitações

após o uso prolongado. Sendo assim, consideram-se alternativas de

tratamento que pudessem conferir neuroproteção, retardando a progressão da

doença e/ou prevenindo o surgimento dos sintomas. Um exemplo seria o uso

de antioxidantes, dentre eles, o α-tocoferol. Os mecanismos, assim como a

natureza crônica da doença, podem ser mimetizados e estudados a partir do

uso de modelos animais. Dessa forma, o principal objetivo do nosso estudo foi

investigar os efeitos da administração do α-tocoferol sobre os danos motores,

cognitivos e neuronais em um modelo animal para doença de Parkinson.

Utilizamos a administração repetida de uma dose baixade reserpina,

concomitante com a aplicação de α-tocoferol. Nós observamos que o

tratamento repetido com reserpina provocou déficits cognitivos e motores de

forma progressiva, além de uma diminuição na marcação para a enzima

tirosina hidroxilase (envolvida na síntese de dopamina) na via nigroestriatal. No

entanto, esses déficits não foram apresentados pelo grupo de animais tratados

com α-tocoferol, evidenciando um provável efeito neuroprotetor provacado pelo

antioxidante. Podemos concluir que a aplicação de α-tocoferol foi capaz de

previnir as alterações causadas pela administração de reserpina. Ainda, o

nosso estudo sugere que a indução de danos motores e cognitivos

progressivos pela reserpina quando aplicada em baixas doses são adequados

para o estudo de possíveis intervenções neuroprotetornas para a DP.

Palavras-chave: Reserpina, Doença de Parkinson; α-tocoferol; Detrimento

motor, Prejuízo mnemônico.

iii

Page 13: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

vi

ABSTRACT

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that

affects 1-2% of world population, with a higher prevalence among men. The

main symptoms are of motor nature, and include bradikynesia, rigidity, postural

instability and tremor. In addition, non-motor symptoms may occur, such as

sleep disturbances, anxiety, depression, and cognitive deficits. The motor

alterations are a consequence of the irreversible loss of dopaminergic neurons

mainly in the substantia nigra pars compacta. The most effective current

treatment for PD is L-DOPA administration. However, this drug, despite

amegliorating symptoms, does not interfere with the neurodegeneration, and

thus has limitations at long term. Thus, alternative treaments that could act by

neuroprotective mechanisms have been considered, such as antioxidant

agents. The mechanisms related to the symptoms and progressive nature of PD

can be studied in animal models. In this sense, the aim of the present study was

to investigate the effects of the antioxidant α-tocopherol on the motor, cognitive

and neuronal deficits induced by repeated treatment with reserpine (a

progressive pharmacological model of parkinsonism). Rats submitted to the

reserpine protocol were concomitantly treated with α-tocopherol. The results

showed that the repeated treatment with reserpine, as expected, induced

progressive motor and cognitive decrements, as well as dimished tyrosine

hydroxylase immunostaining in the substantia nigra pars compacta and

striatum. These deficits were not present in the animals that were co-treated

with α-tocoferol, suggesting a possible neuroprotective effect induced by this

antioxidant agent. In conclusion, α-tocoferol was able to prevent the alterations

caused by repeated reserpine administration. In addition, our study suggest that

low-dose reserpine-induced progressive motor and cognitive deficits can be

useful in the study of possible neuroprotective strategies for PD.

Keywords: Reserpine, Parkinson’s disease, α-tocopherol, motor impairment,

short-term memory impairment.

iv

Page 14: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

1

1. INTRODUÇÃO

A doença de Parkinson (DP) é uma doença neurodegenerativa

progressiva, a qual foi descrita pela primeira vez em 1817 por James Parkinson

como “paralisia agitante” (Teive,1998).

Atualmente, a DP é uma das doenças neurodegenerativas mais comuns

em indivíduos com idade avançada, surgindo em média aos 55 anos. Por volta

dos 70 anos de idade há um aumento na incidência da doença (Hald &

Lotharius, 2005; Chesselet, 2011). Nos EUA o risco de desenvolvimento da DP

entre mulheres é de 1,3%, e entre os homens 2%, enquanto que em indivíduos

com mais de 80 anos de idade a prevalência chega a 5% (De Lau & Breteler,

2006; Nussbaum & Ellis, 2003; Wood-Kaczmar et al., 2006). No Brasil essa

prevalência é de 3,3%, para a população acima de 65 anos (Barbosa et al.,

2006). Pode ser diagnosticada em qualquer idade, porém, apenas 3% dos

casos são reconhecidos em indivíduos com menos de 50 anos de idade (Van

Den Eeden, 2003). A doença se instala progressivamente, comprometendo

diretamente a qualidade de vida dos pacientes acometidos (Chesselet, 2011).

A etiologia da DP apresenta características multifatoriais e a doença está

relacionada com os fatores de risco ambientais, tais como, exposição a

herbicidas, inseticidas (Elbaz & Tranchant, 2007), metais pesados,

envenenamento por monóxido de carbono (Nicholson et al., 2002), exposição a

substâncias tóxicas tais como 6-hidroxidopamina (6-OHDA) e 1-metil-4-fenil-

1,2,3,6-tetrahidropiridina (MPTP), entre outros (Calne, 2007; Mayeux, 2003).

De 5% a 10% dos casos observam-se ligações entre a ocorrência da doença e

as mutações gênicas que podem causar diversas formas de parkinsionismo e

da DP, dentre estes genes, estão o Parkin. Pink1, DJ-1, para formas recessivas

de início precoce, e os genes da α-sinucleína, LRRK-2 e GBA para mutações

dominantes, que levam ao desenvolvimento da DP (Revesz, 2009; Przedborski,

2004; Hald & Lotharius, 2005). Outro fator seria o estresse oxidativo que está

envolvido na patogênese da DP, e é descrito como um desequilíbrio entre a

formação e a eliminação de espécies reativas de oxigênio (ERO) e de

nitrogênio (ERN; Barnham et al., 2004; Calabrese et al., 2007). O oxigênio

pode gerar ERO seja por absorção de energia ou transferência de elétrons

Page 15: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

2

(Barreiros et al., 2006), aumentando as EROs e promovendo neurotoxicidade e

danos na membrana neuronal, que como consequência, pode provocar morte

celular (Dauer & Przedborski., 2003). O sistema nervoso apresenta uma alta

vulnerabilidade às espécies reativas de oxigênio, e várias evidências sugerem

que a formação de radicais livres e estresse oxidativo possa desempenhar um

papel importante na patogênese da DP (Russel et al., 1998; Halliwell &

Gutteridge, 1999). Quando a produção das espécies reativas de oxigênio -

ROS excede a capacidade do sistema antioxidante em eliminá-las, ocorrem os

danos oxidativos (Jenkins & Goldfard, 1993), e causa danos na membrana

neuronal, que pode ter como consequência apoptose celular (Farooqui &

Farooqui, 2011; Patel & Chu, 2011). Este evento está associado à presença de

agregados ou inclusões citoplasmáticas nucleares, os corpúsculos de Lewy

(Tgo et al., 2001; Dauer & Przedborski, 2003), tais agregados, são constituídos

principalmente pela proteína neural α-sinucleína (Koo et al., 2008) e parkina

(Singh & Dikshi, 2007). O acúmulo desses corpúsculos desencadeiam

excitoxicidade com consequente morte neuronal da via dopaminérgica

nigroestriatal (Corti et al., 2001; Przedborski, 2005; Swinner et al., 2011), dessa

forma, há uma redução dos níveis de dopamina no estriado, bem como em

outros núcleos da base (Gerlach & Riederer, 1996) e surgimento dos sintomas

clínicos da DP.

O diagnóstico clínico da DP atualmente é baseado na presença de sinais

e sintomas manifestados ou relatado pelos pacientes, principalmente: (1) os

sintomas motores, tais como, bradicinesia (dificuldade em iniciar movimento),

rigidez (aumento do tônus muscular), tremor em repouso e instabilidade

postural, os quais se iniciam quando ocorre uma perda de >50% de neurônios

da substância negra parte compacta (SNpc), com consequente redução de

>80% dos níveis de dopamina (DA) do estriado (Deumens et al., 2002; Fahn,

2003; Klockgether, 2004; Reeve, 2014); (2) sintomas não-motores, tais como

alterações cognitivas com perda progressiva da memória e/ou demência

(Schapira et al., 2006), e comprometimento na aprendizagem, ansiedade,

depressão (Brown et al., 2011; Higginson et al., 2005), distúrbios do sono

(Clarenbach, 2000) e na resposta à terapia com medicações tradicionalmente

utiladas na clínica médica (Nicholson et al., 2002; Klockgether, 2004; Jankovic,

2008).

Page 16: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

3

Os distúrbios não motores da DP passaram a ser considerados com

maior importância nas últimas décadas, já que os prejuízos cognitivos afetam

significativamente a qualidade de vida das pessoas acometidas e influenciam

de forma negativa cuidadores e familiares (Korczyn, 2001; Nieoullon, 2002;

Zgaljardic et al., 2004). Ainda assim, muitos desses sintomas cognitivos não

são diagnosticados com antecedência ou não são tratados, muitas vezes

devido a poucas evidências científicas ou a abordagens profissionais mais

detalhadas (Slawek et al., 2005). Em alguns casos, os prejuízos cognitivos não

parecem estar relacionados aos sintomas motores, pois, em geral, se

manifestam antes de tais alterações (Fénelon, 1997; Shults, 2003). Além disso,

têm sido correlacionados a disfunções nas projeções das vias dopaminérgicas

envolvidas em funções de áreas fronto-corticais, tais como planejamento de

ações e a memória operacional (Pillon et al., 1997; 1997a; Cools et al., 2002),

podendo acometer a memória, atenção, linguagem, habilidades visuoespaciais,

visuoconstrutivas e funções executivas (Zgaljardic et al., 2004).

Sabe-se também que na DP os neurônios dopaminérgicos da área

tegmentar ventral (VTA) podem estar diminuídos, com consequente redução de

DA nas vias mesocortical e mesolímbica, estando relacionadas com as

alterações cognitivas e emocionais da doença (Dymecki et al., 1996; Vernier et

al., 2004).

Os neurônios dopaminérgicos originam-se de certos núcleos específicos

do cérebro, dentre eles: a SNpc, a VTA e os núcleos hipotalâmicos. As

projeções dos feixes de fibras desses núcleos formam as quatro principais vias

dopaminérgicas: a via nigroestriatal (corpos celulares da SNpc projetam-se

para os núcleos caudado e putamen); a via mesocortical (corpos celulares em

VTA projetam-se para o córtex pré-frontal); a via mesolimbica (corpos celulares

de VTA projetam-se para o núcleo accumbens, amígdala e hipocampo); e a via

tuberoinfundibular (corpos celulares no hipotálamo projetam-se para hipófise;

Machado, 2005).

Estas projeções dopaminérgicas atuam sobre dois tipos distintos de

receptores, os das classes D1 e D2. Os receptores da classe D1 são formadas

pelas famílias D1 e D5 e possuem propriedades excitatórias, enquanto os da

classe D2, são formados pelas famílias D2, D3 e D4, e possuem propriedades

inibitórias. As duas classes atuam em diversas funções, dentre elas o

Page 17: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

4

planejamento, a regulação e a execução dos movimentos voluntários

automáticos (Guttman, 1992). A ação dopaminérgica pode promover no

estriado a ativação da via direta, através dos receptores D1 e a inibição da via

indireta, através da estimulação dos receptores do tipo D2, nos circuitos

reguladores do movimento nos gânglios da base.

A via direta tem início no córtex cerebral, especificamente em áreas

motoras primária, suplementar, pré-motora e somestésica, que se projetam

para o estriado, substância negra parte reticula (SNpr) e em seguida para a

porção interna do globo pálido, cujas aferências terminam nos núcleos ventral

anterior, lateral e centro mediano do tálamo e daí os impulsos nervosos são

direcionados para a área motora primária do córtex cerebral. A via direta

provoca a perda da inibição talâmica e maior excitação do córtex motor. Já a

via indireta, inibe o movimento reduzindo a atividade do globo pálido externo, o

que consequentemente causa desinibição do núcleo subtalâmico, ao qual

possui neurônios glutamatégicos, direcionados ao globo pálido interno,

ativando os núcleos de saída e inibindo a atividade do tálamo (Figura 1 -

Ponzoni & Garcia-Cairasco, 1995; Siegel, 2006; Albin et al., 1989; Smith et al.,

1998).

Page 18: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

5

Figura 1: Representação esquemática do circuito dos gâglios basais. O esquema à esquerda (A) representa a transmissão normal e o da direita (B) representa o desequilíbrio na transmissão em pacientes com a Doença de Parkinson. Figura adaptada de Bravo et al., 2014. Abreviaturas: globo pálido interno – GPi, globo pálido externo – GPe, núcleo subtalâmico – NST, substância negra parte compacta – SNpc, substância negra parte reticulada – SNr, receptor de dopamina D1 e receptor de dopamina D2.

Com a morte das células dopaminérgicas ocorre uma diminuição da DA

liberada em estruturas que recebem projeções dopaminérgicas (Centonze et

al., 1999). A perda neuronal altera o planejamento motor, produzindo quadros

hipocinéticos devido à ação desregulada das vias direta e indireta. A morte dos

neurônios dopaminérgicos da SNpc, provoca diminuição da DA no estriado e

desinibição GABAégica dos neurônios da via indireta, gerando acentuada

hipoatividade do globo pálido externo (GPE), seguido por desinibição do núcleo

subtalâmico. Portanto, a bradicinesia e acinesia da DP, resultam do aumento

da inibição GABAérgica sobre os neurônios dos grupos ventral anterior, lateral

e centro-mediano do tálamo, por excesso informações excitatória advindas do

núcleo subtalâmico sobre o globo pálido interno (GPI) esubstância negra parte

reticulada (SNpr).

DP

Normal

Page 19: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

6

1.1. TRATAMENTOS FARMACOLÓGICOS E MODELOS ANIMAIS PARA O

ESTUDO DA DOENÇA DE PARKINSON

Apesar dos avanços científicos para o tratamento da DP, as abordagens

terapêuticas e cirúrgicas apresentam pouca eficácia no controle dos sintomas

motores da doença a longo prazo (Lees et al., 2009). Desde a década de 1960,

os tratamentos mais utilizados para a DP são sintomáticos, visando restaurar

ou disponibilizar níveis de DA nas vias dopaminérgicas. O uso da Levodopa (L-

DOPA) é uma das primeiras estratégias de tratamento a ser utilizada para o

tratamento da DP, que melhor promove diminuição dos sintomas,

principalmente os relacionados à bradicinesia e rigidez. Apesar de atualmente

ser o método mais utilizado para aliviar os sintomas, apresenta após o uso

prolongado, efeitos colaterais como: discinesias, coreia, atetose, distonias;

alucinações (Lees et al., 2009; Stayte & Vissel, 2014) e oscilações motoras

decorrentes do aumento e diminuição dos níveis plasmáticos da DA (fenômeno

“On/Off”) (Massano, 2011). Estima-se que cerca de 90% dos indivíduos

enfrentam o aparecimento desses efeitos indesejáveis após 10 anos do início

do tratamento com o fármaco (Ahlskog et al., 2001).

O sucesso inicial dessas estratégias de tratamento baseou-se no

entendimento de que a DP seria um distúrbio relacionado com a deficiência de

DA. Em face da diminuição da eficácia a longo prazo e dos importantes efeitos

colaterais, ocorre a utilização de outras medicações que agem em conjunto

com a levodopa, como os agonistas dopaminérgicos (pramipexole, ropinirone,

bromocriptina, pergolide, lisuride, e outros) (Lees et al., 2009). Além dos

fármacos acima citados, outras medicações também são usadas no tratamento

da DP, como os inibidores da monoamina oxidase - MAO-B (selegilina e

rasagilina), a amantandina e os inibidores de catecol-O-metil-transferase –

COMT (entacapone) (Nicholson et al., 2002; Lees et al., 2009). Vale ressaltar

que a maioria dos sintomas não motores apresenta baixa resposta à terapia

dopaminérgica por também serem manifestações de acometimento em vias

noradrenégicas e serotoninérgicas (Chaudhuri et al., 2011).

Entretanto, apesar das descobertas científicas sobre a etiologia,

fisiopatologia e terapêutica da DP, ainda não existe um consenso sobre os

mecanismos da doença (Shimohama, 2003). Dessa forma, utilizamos modelos

Page 20: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

7

animais para estudar os mecanismos patogênicos, os possíveis do tratamento

e os sintomas das patologias humanas, podendo inclusive sugerir novas

formas de abordagem terapêutica a serem testadas na clínica (Gerlach &

Riederer, 1996).

Sabe-se também que a DP é uma doença que tipicamente de humanos,

apresentando poucos relatos do aparecimento desta doença

neurodegenerativa em animais (Dauer & Przedborski, 2003). Dessa forma,

essas características presentes nas diferentes fases na DP só podem ser

observadas em animais através da administração de agentes neurotóxicos

(Lima et al., 2006). Infelizmente, não existe um modelo fidedigno, que

represente todos os sintomas da doença, principalmente no que diz respeito à

natureza progressiva do surgimento dos sintomas (Da Cunha et al., 2008). Nas

últimas décadas alguns modelos foram desenvolvidos e os mais estudados

utilizavam toxinas tais como 6-OHDA e MPTP (Gerlach & Riederer, 1996).

Porém, esses dois modelos têm demonstrado resultados com perdas

específicas e imediatas de células do sistema nervoso (SN), não apresentando

um processo neurodegenerativo progressivo (Meredith et al., 2008).

Outro modelo que pode ser utilizado para se estudar a DP em animais, é

a administração de reserpina. Este fármaco atua através da depleção de

monoaminas, causando distúrbios sobre a atividade motora e cognitiva dos

animais (Colpaert, 1987; Alves et al., 2000; Silva et al., 2002; Skalisy et al.,

2002). A reserpina é uma droga que evita o armazenamento de monoaminas

nas vesículas sinápticas, através do bloqueio dos transportadores da

membrana que captam as monoaminas para dentro da vesícula (Verheij &

Cools, 2007). Dessa forma, as vesículas sinápticas permanecem vazias e

consequentemente não há neurotransmissores para serem liberados na fenda

sináptica quando um potencial de ação atinge o botão sináptico (Rang et al.,

2004).

A depleção de dopamina estriatal tem demonstrado ser um bom modelo,

por promover sintomas típicos da DP, como a acinesia, a rigidez, tremores e

déficits cognitivos visuoespaciais (Colpaert, 1987; Johnston et al., 1999; Skalisy

et al., 2002; Fernandes et al., 2008; Aguiar et al., 2009). Contudo, é importante

ressaltar que o tratamento com reserpina, como um modelo de DP, apresenta

limitações, pois a administração da droga não provoca depleção de

Page 21: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

8

neurotransmissores apenas na via nigroestriatal e nem age exclusivamente em

vias dopaminérgicas. Por outro lado, como comentado acima, essa pode ser

uma vantagem em relação aos modelos seletivos para vias dopaminérgicas,

uma vez que alguns sintomas da DP, especialmente os não-motores, vem

sendo relacionados a déficits em outras vias monoaminérgicas (Chaudhuri et

al., 2011).

Outro aspecto é o fato da administração de reserpina, a priori, não

promover uma degeneração neuronal progressiva. Nesse sentido, a

administração crônica de reserpina em baixas doses pode promover déficits

cognitivos e motores de forma progressiva (Fernandes et al., 2012; Santos et

al., 2013), podendo assim ser utilizado eficazmente como um modelo para DP

em animais. A grande maioria dos trabalhos envolvendo a DP, tanto em

humanos quanto em animais, procuram responder questões relacionadas aos

prejuízos motores. Além disso, como jámensionado, os trabalhos com modelos

animais, em sua maioria, verificam respostas comportamentais após

tratamento agudo, o que leva a prejuízos motores intensos e imediatos,

impedindo a avaliação de qualquer tipo de alteração comportamental além da

motora. Esse fato é relevante, porque além dos prejuízos motores, existem

outras manifestações sintomáticas em pacientes com a DP, como alterações

na cognição, no humor e no sistema sensorial. Dessa forma, o surgimento

gradual dos sintomas pode ser vantajoso para a detecção desses sinais não

motores.

Além disso, a reserpina pode promover uma elevação no estresse

oxidativo celular, possivelmente pelo aumento da metabolização da dopamina

acumulada no citoplasma pela enzima monoaminaoxidase (Abílio et al., 2002).

Esse efeito é encontrado também após a administração crônica de baixas

doses (Fernandes et al., 2012). Nesse sentido, sugere-se que a administração

repetida de uma dose baixa de reserpina pode ser um protocolo adequado para

estudar tentativas terapêuticas que interfiram com a progressão da doença.

De fato, diante do surgimento de efeitos colaterais graves e da eficácia

apenas sintomática das drogas citadas acima, inúmeras pesquisas tem

buscado estudar tratamentos que agissem não apenas sobre os sintomas, mas

também retardando o processo neurodegenerativo.

Page 22: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

9

1.2. DOENÇA DE PARKINSON, ESTRESSE OXIDATIVO E AGENTES

ANTIOXIDANTES.

O estresse oxidativo é derivado de um desequilíbrio entre a formação e

a eliminação de espécies reativas de oxigênio – ERO, e de nitrogênio - ERN

(Barnham et al., 2004; Calabrese et al., 2007). O oxigênio pode gerar ERO por

absorção de energia ou transferência de elétrons (Barreiros et al., 2006),

promovendo neurotoxicidade e danos na membrana neuronal, que como

consequência, pode provocar morte celular (Dauer & Przedborski, 2003).

O sistema nervoso apresenta uma alta vulnerabilidade às EROs, e

evidências sugerem que a formação desses radicais livres possa desempenhar

um papel importante na patogênese da DP (Halliwell & Gutteridge, 1999;

Farooqui & Farooqui, 2011). Este evento também está associado à presença

de agregados ou inclusões citoplasmáticas nucleares, os corpúsculos de Lewy

(Dauer & Przedborski, 2003), os quais são constituídos principalmente pela

proteína neural α-sinucleína (Koo et al., 2008) e pela parkina (Singh & Dikshi,

2007). Estes agregados proteicos podem desencadear elevações na

excitoxicidade e, consequentemente, morte neuronal, principalmente na via

dopaminérgica nigroestriatal (Corti et al., 2001; Przedborski, 2005). O

desequilíbrio da via dopaminérgica leva a uma redução dos níveis de dopamina

no estriado, assim como em outros núcleos ou gânglios da base (Gerlach &

Riederer, 1996; Mizuno, 1999). Também há uma redução na atividade de

enzimas responsáveis pela síntese de dopamina, como a tirosina hidroxilase

(TH) e a DOPA-descarboxilase (Gerlach & Riederer, 1996).

A produção contínua de radicais livres durante os processos metabólicos

gera muitos mecanismos antioxidantes intracelulares para impedir a indução de

danos à célula. Os antioxidantes são agentes responsáveis pela inibição e

redução das lesões causadas pela produção de ERO nas células (Bianchi &

Antunes, 1999), atuando no retardo e/ou inibição da oxidação destes agentes

tóxicos (Halliwell & Gutteridge,1999).

Os agentes antioxidantes podem ser classificados em enzimáticos e não

enzimáticos. O sistema enzimático de defesa é constituído pelas enzimas

superóxido dismutase (SOD), catalase (CAT), glutationa peroxidase (GPx) e a

glutationa redutase (GR) (Grissa, 2007). A presença desses antioxidantes no

Page 23: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

10

sistema celular é conhecida por prevenir danos oxidativos (Therond, 2000;

Schneider & Oliveira, 2004; Wu et al., 2005), constituindo a primeira defesa

endógena de neutralização das EROs. Através delas, as células tentam manter

baixas as quantidades do radical superóxido e de peróxidos de hidrogênio,

evitando a formação do radical OH (Halliwell & Gutteridge, 1999).

Os agentes antioxidantes não enzimáticos complementam ação

antioxidante protetora do sistema biológico sendo constituídos por substâncias

como a vitamina E (tocoferóis), vitamina C (ácido ascórbico) e β-caroteno

(carotenoides) (Grissa, 2007). Estas substâncias são os antioxidantes mais

estudados em animais e humanos por atuarem na redução de radicais livres,

principalmente do radical peroxil, e do oxigênio singlete (Filipe et al., 2001). A

vitamina E, o principal antioxidante lipossolúvel presente nas membranas

celulares, tem o α-tocoferol como seu componente mais importante e atua no

bloqueio da etapa de propagação da peroxidação lipídica dos ácidos graxos

poliinsaturados das membranas e lipoproteínas, ao doar um átomo de

hidrogênio aos radicais peroxil e alcoxil. A capacidade do α-tocoferol é

conferida pela regeneração do radical α-tocoferoxil por agentes redutores,

principalmente o ácido ascórbico, exercendo assim a sua atividade antioxidante

(Halliwell & Gutteridge, 1999).

A administração exógena da vitamina E tem sido considerada para o

tratamento de distúrbios degenerativos, em especial a DP, geralmente em

associação com a terapia convencional sintomatológica (De Araújo et al., 2011;

Magyar et al., 2004; Mayo et al., 2005; Weber & Ernst, 2006; Weinreb et al.,

2010; Hsieh et al., 2012; Marin & Aguiar, 2011; Salamone & Baskin, 1996).

Embora os estudos geralmente apontem para retardo na progressão dos

sintomas, fica difícil diferenciar os efeitos da terapia complementar daqueles da

terapia principal sintomatológica. Nesse sentido, em modelos animais, tem-se a

oportunidade de avaliar o efeito do tratamento antioxidante per se, em ratoss

não-tratados com L-DOPA ou outro agonista dopaminérgico. Assim, o efeito

neuroprotetor da vitamina E na DP foi proposto por estudos in vitro e em

modelos animais de parkinsonismo (Miklya et al., 2003; Butterfield et al., 2002;

Roghani & Behzadi, 2001; Azzi, 2007; Azzi et al., 2004; Ferri et al., 2006).

Porém, na maioria desses estudos em modelos animais, os efeitos desse

agente antioxidante não foi avaliado quanto à progressão das alterações

Page 24: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

11

comportamentais inerentes à DP, focando apenas em grau de lesão neuronal

ou avaliações comportamentais não relacionadas aos sintomas da doença (por

exemplo, comportamento rotacional induzido por agonistas dopaminérgicos).

A partir disso, seria importante ampliar as pesquisas em animais,

buscando avaliar a progressão tanto dos déficits motores quanto dos cognitivos

associados ao aparecimento da doença.

Em resumo, as pesquisas para o tratamento da DP tendem a se focar

em agentes neuroprotetores que pudem atuar no processo neurodegenerativo

da patologia, retardando ou até mesmo impedindo esse processo. Nesse

sentido, os processos neurodegenerativos estariam associados ao estresse

oxidativo, levando à ideia de que várias doenças neurológicas podem ser

evitadas e/ou atenuadas pelo tratamento com agentes antioxidantes, como a

vitamina E (α-tocoferol) discutida neste estudo.

2. JUSTIFICATIVA

Uma grande variedade de intervenções tem sido estudada com o

objetivo de solucionar alguns aspectos no tratamento da DP. Ainda, pesquisas

que buscam entender o funcionamento dos mecanismos básicos que envolvem

esta doença neurodegenerativa tem atraído a atenção da comunidade científica

há algumas décadas. Os modelos animais que buscam mimetizar os sintomas

cognitivos e motores encontrados na DP estão entre as pesquisas que mais se

destacam no que diz respeito ao entendimento do fisiopatologia da doença.

Entretanto, os modelos animais mais estudados se baseiam na administração

aguda de fármacos que causam lesões em neurônios dopaminérgicos na via

nigroestriatal (o principal foco de neurodegeneração descrito na etiologia da

doença). Todavia, para tratamentos com proposta neuroprotetora, o uso de

modelos que induzem sintomas parkinsonianos crônicos ainda não foi

explorado.

Diante do exposto, a proposta desse trabalho é a utilização de um

modelo farmacológico progressivo com a administração crônica de uma dose

baixa de reserpina (um depletor de monoaminas) para estudar a ação de um

tratamento com potencial neuroprotetor.

Page 25: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

12

3. OBJETIVOS

3.1. OBJETIVO GERAL

Analisar os efeitos da administração da vitamina E sobre os danos

motores, cognitivos e neuronais em um modelo animal de doença de Parkinson

induzido pela administração repetida de reserpina. Os objetivos serão

apresentados ao longo do texto subdivididos em três distintos artigos

científicos, com isso os objetivos específicos serão distribuídos da mesma

forma.

3.2. OBJETIVOS ESPECÍFICOS

3.2.1 Objetivos artigo 1

a) Avaliar as alterações motoras, a partir do teste diário de catalepsia,

para definir o período do aparecimento desses sintomas ao longo do

tratamento, e se a vitamina E é capaz de retardar ou impedir o aparecimento

desses prejuízos motores;

b) Avaliar as alterações cognitivas, a partir do teste de reconhecimento

de objetos no campo aberto, a cada 3 injeções, para verificar o período do

aparecimento desses sintomas, através de uma tarefa de memória de

reconhecimento e se a vitamina E é capaz de retardar ou impedir o

aparecimento desses prejuízos cognitivos.

3.2.2 Objetivos artigo 2

a) Avaliar as alterações motoras, a partir do teste do rotarod, a cada 3

injeções, para definir o período do aparecimento desses sintomas motores, e

se a vitamina E é capaz de retardar ou impedir o aparecimento desses

prejuízos motores;

b) Avaliar as alterações motoras, a partir da avaliação dos movimentos

orais – protrusão da língua, tremor de queixo e mastigação não direcionada a

nenhum objeto, a cada 3 injeções, para definir o período do aparecimento

desses sintomas, e a vitamina E é capaz de retardar ou impedir o aparecimento

desses prejuízos motores;

Page 26: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

13

c) Avaliar parâmetros de estresse oxidativo pela quantificação da

atividade das enzimas antioxidantes (catalase e superóxido desmutase) no

estriado e hipocampo de ratos submetidos ao tratamento crônico com reserpina

com ou sem o tratamento com vitamina E;

d) Analisar os efeitos do tratamento repetido com reserpina com ou sem

o tratamento com a vitamina E sobre os níveis de tirosina hidroxilase (TH) em

diferentes regiões cerebrais através da imunohistoquímica.

3.2.3 Objetivos artigo 3

a) Revisar na literatura os mecanismos neuroquímicos, moleculares e

comportamentais da utilização de reserpina como modelo animal para a DP.

Page 27: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

14

4. Artigo 1

(Aceito para publicação no periódico “Biochemistry & Pharmacology”)

ALPHA-TOCOPHEROL COUNTERACTS COGNITIVE AND MOTOR

DEFICITS INDUCED BY REPEATED TREATMENT WITH RESERPINE

Aldair José Sarmento-Silvaa, Ramón Hypolito Limaa, Alicia Cabrala, Ywlliane

Meurera Alessandra Mussi Ribeiroa,b, Regina Helena Silvaa,c*

aMemory Studies Laboratory, Physiology Department, Federal University of Rio

Grande do Norte, Natal, Brazil.

bDepartment of Biosciences, Federal University of São Paulo, Santos, Brazil.

cDepartment of Pharmacology, Federal University of São Paulo, São Paulo,

Brazil.

*Corresponding Author

Departamento de Farmacologia – UNIFESP

Rua Botucatu, 862, Edifício Leal Prado, 1º.andar

CEP 04023062 - São Paulo, SP, Brasil

Email: [email protected]

Page 28: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

15

5. Abstract

Previous studies showed that chronic administration of the monoamine

depleting agent reserpine in low doses promotes progressive cognitive and

motor impairments in rats, and this protocol has been used as a

pharmacological progressive model of Parkinson's disease. These behavioral

alterations are accompanied by increased brain oxidative stress. We aimed to

verify the effects of the concomitant treatment with the antioxidant agent alpha-

tocopherol on the motor and cognitive deficits induced by chronic reserpine in

rats. Rats were repeatedly treated with 0.1 mg/kg reserpine with or without a

concomitant treatment with 40 mg/kg alpha-tocopherol. Across the treatment,

motor and cognitive performances were evaluated by the catalepsy and novel

object recognition tests, respectively. As expected, reserpine-treated rats

showed progressively increased duration of catalepsy together with short-term

memory deficits in the object recognition test. Importantly, these detrimental

outcomes due to reserpine treatment were prevented by concomitant daily

administration of the antioxidant agent alpha-tocopherol. The results show a

preventive role of alpha-tocopherol on behavioral alterations induced by

repeated reserpine treatment. This is relevant to the investigation of possible

neuroprotective interventions in Parkinson’s disease.

Keywords: Reserpine, Parkinson’s disease, α-tocopherol, motor impairment, short-term

memory impairment.

Abbreviations: NOR- Novel Object Recognition; PD – Parkinson´s Disease; RES –

reserpine; ROS – reactive oxygen species; TOC – alpha-tocopherol; VR – vehicle for

reserpine; VT – vehicle for alpha-tocopherol; PKC – protein kinase C

Page 29: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

16

6. Introduction

Reserpine precludes the storage of monoamines through the blockage of

the synaptic vesicles transporters [1]. Consequently, synaptic vesicles are still

available but there is a reduction in the amount of dopamine in the synaptic

cleft. Because an important loss of dopaminergic neurons is the core feature of

Parkinson´s disease (PD) [2], reserpine administration to rodents is a valid

approach to study this disease in animal models [3-5]. The acute administration

of a high dose of reserpine (above 1.0 mg/kg) leads to severe motor impairment

[4]. In addition, acute injection of reserpine in lower doses causes memory

deficits in the absence of motor damage [6,7]. However, although both cognitive

and motor impairments are symptoms of PD, their emergence shortly after an

acute injection is not compatible with the gradual progression of symptoms

found in the clinical situation. More recently, studies have shown that the

chronic administration of reserpine in low doses can promote progressive

cognitive and motor impairments, along with decreased tyrosine hydroxylase

levels in the nigrostriatal pathway [8]. This protocol is suggested as a

progressive pharmacological model of PD [8,9].

Besides its classical mechanism of action (i.e. blockage of the vesicular

transport of monoamines), there is clear evidence that reserpine also causes an

increase in cellular oxidative stress, possibly potentiated by the rise in the levels

of dopamine in the cytoplasm, which undergoes oxidative metabolism [10]. In

this respect, the central nervous system is quite vulnerable to reactive oxygen

species (ROS), which play a very important function in the pathogenesis of

neurodegenerative disorders, including PD [11]. For example, there is evidence

that the inclusion of antioxidant agents in the pharmacological treatment of PD

has advantages over the treatment based only in dopamine replacement [11-

13]. In addition, the repeated treatment with reserpine that induces progressive

features compatible with PD also leads to increased brain oxidative stress [9].

However, it is unclear if a possible oxidative damage is responsible for the

behavioral deficits presented by animals repeatedly treated with reserpine.

Antioxidant agents mainly act as a reinforcement of endogenous

antioxidant defenses. An important antioxidant agent is vitamin E (alpha-

tocopherol; TOC), which plays an essential role in protecting the body against

Page 30: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

17

the damaging effects of ROS. Specifically, TOC blocks the propagation step of

lipid peroxidation of polyunsaturated fatty acids in membranes and lipoproteins

[14], mainly by neutralizing the effects of peroxides and oxygen free radicals

[15].

The aim of this study was to evaluate the effects of the antioxidant agent

TOC on motor, cognitive and neuronal parameters in animals submitted to a

progressive pharmacological animal model of PD, i.e., the repeated treatment

with a low dose of reserpine.

7. Material and Methods

7.1. Animals

We used 75 five-month-old male Wistar rats (300-500g). The animals

were obtained from the Physiology Department at the Federal University of Rio

Grande do Norte, and were housed in groups of four, in plastic cages, under

controlled conditions of ventilation, temperature (23 ± 1°C), and light/dark cycle

(12h/12h, lights on 6:30 a.m.), with free access to water and food. The rats were

handled according to the Brazilian law for the use of animals in scientific

research (Law Number 11.794) and all the procedures described were

approved by the local ethical committee (CEUA/UFRN nº 051/2011).

7.2. Drugs

Reserpine (RES; Sigma Chemical Co., St. Louis, MO) was dissolved in

acetic acid and further diluted in distilled water at the concentration of 0.1

mg/mL, pH ≈ 6.5. We used this vehicle (glacial acetic acid diluted in water) as a

control for reserpine treatment (VR). RES and VR were given s.c. on alternate

days. The antioxidant alpha-tocopherol (TOC; Sigma Chemical Co., St. Louis,

MO) was diluted in distilled water with Tween-80 at the concentration of 40

mg/mL. We used the vehicle used to dilute TOC (VT) as a control for TOC

treatment. These solutions were injected i.p. daily. The volume of injection was

Page 31: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

18

1mL/kg of body weight in all cases. We prepared all solutions every 48 hours

and kept them at 4ºC between administrations.

7.3. Experimental design

The rats were randomly assigned to the following groups: VR + VT

(n=18), RES + VT (n=19), RES + TOC (n=19) and VR + TOC (n=19). Drug

treatment lasted 30 days. Animals received 15 s.c. injections of RES (0.1

mg/kg) or VR every 48 hours, concomitantly to daily i.p. administration of TOC

(40 mg/kg) or VT.

Before the beginning of the experiments, all animals were submitted to a

daily 5-minute handling session for five consecutive days. Throughout the

treatment, all the animals were subjected to catalepsy tests (performed daily)

and part of the animals (n=35, 7-11 per group) went through the novel object

recognition (NOR) tasks (days 2, 12 and 18 of treatment). The experimental

design is shown in Figure 1. Both behavioral tests were performed as described

in our previous study [8] and were conducted before the injections of that day.

Thus, all behavioral evaluations were performed 48h after the last injection of

reserpine in order to avoid acute effects of the drug. NOR sessions were

recorded with a digital camera fixed above the arena and the behavior was

analyzed through a video-tracking software (Anymaze, Stoelting Co, Wood

Dale, Illinois, USA). Before each experimental procedure, the apparatuses were

cleaned with a 5% alcohol solution, and the experimental groups were

alternated across testing.

Figure 1. Schematic illustration of the experimental design.

Page 32: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

19

7.4. Statistical Analysis

We analyzed the performances in catalepsy test (total time spent in

immobility until the animal removed both forepaws of the bar) by the two-way

ANOVA with repeated measures followed by Tukey’s multiple comparison post

hoc test. In the NOR task we conducted one-way ANOVA followed by

Bonferroni’s multiple comparison post hoc test in order to compare old versus

familiar object exploration. Analyses for the exploration ratio throughout test

sessions and among experimental groups were conducted through two-way

ANOVA followed by Tukey’s Post Hoc test.

8. Results

8.1 Catalepsy

Figure 2 shows that from day 15 onwards there was an increase in

catalepsy behavior of the group RES+VT compared to all other groups (RM

two-way ANOVA; days of treatment [F (29,2130) = 16.72, P < 0.0001], treatment [F

(3,2130) = 211.0, P < 0.0001] and days of treatment × treatment interaction effects

[F (87,2130) = 4.876, P < 0.0001]). This increase was not detected for the group

RES+TOC.

Figure 2. Repeated administration of reserpine increases catalepsy duration and this

effect is prevented by α-tocopherol. Animals were placed daily in a catalepsy bar and

Page 33: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

20

the latency to step-down was registered. Arrows indicate reserpine (RES; 0.1 mg/kg) or

vehicle (VR) s.c. injections, while α-tocopherol (TOC; 40 mg/kg) or its vehicle (VT) were

administered through daily i.p. injections. Data are expressed as mean + SEM; (*) P <

0.05 for RES+VT vs RES+TOC; (#) P < 0.01 for RES+VT vs VR+VT; (***) P < 0.001

and (****) P < 0.0001 for RES + VT vs all experimental groups in Tukey’s multiple

comparison post hoc test after RM two-way ANOVA.

8.2. Novel object recognition

We found that all animals spent more time exploring the new object in the

second day of protocol (first test; Fig. 3A; one-way ANOVA [F (7,62) = 11.23; P <

0.0001]). Reserpine treatment impaired short-term memory after the 12th day of

protocol (second and third tests). Conversely, treatment with α-tocopherol was

able to prevent the short-term memory impairment (Fig. 3B; one-way ANOVA [F

(7,74) = 6.864; P < 0.0001] and Fig. 3C; one-way ANOVA [F (7,68) = 10.00; P <

0.0001). We also performed statistical analyses in order to evaluate the effect of

drug administration in objects exploration ratio throughout test sessions and

among experimental groups. We found that in the third test session animals’

receiving RES differs on exploration rate of new (Table 1; two-way ANOVA [F

(6,89) = 2.843; P < 0.05]) and old objects (Table 1; two-way ANOVA [F (6,89) =

2.843; P < 0.05]) when comparing to both VR+VT and RES+TOC. Yet, we

found that only RES+VT group presented alterations in object discrimination

across tests. More accurately, exploration of old and new objects increased and

decreased, respectively, comparing first and second tests (Table 1; two-way

ANOVA [F (3,89) = 2.760; P < 0.05]) and first and third tests (Table 1; two-way

ANOVA [F (3,89) = 2.649; P < 0.05]).

Page 34: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

21

Figure 3. Animals were treated with reserpine (RES; 1.0 mg/kg) or vehicle (VR)

through s.c. injections, and α-tocopherol (TOC; 40 mg/kg) or its vehicle (VT) with daily

i.p. injections. Animals were tested on the following days of experiment: (A) 2nd, (B) 12th

and (C) 18th. In each day, training (with two identical objects, data not shown) and test

(with one familiar and one novel object) were performed with a one-hour interval in an

open field arena. Data are expressed as mean ± SEM. (*) P < 0.05; (**) P < 0.01; (***)

P < 0.001 and (****) P < 0.0001 when comparing old vs new object exploration ratio in

one-way ANOVA followed by Bonferroni’s multiple comparison post hoc test.

Page 35: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

22

Table 1. Exploration rate in the NOR task throughout the test sessions. Data are

expressed as mean ± SEM. (*) P < 0.05 and (€) P < 0.01 when comparing RES+VT vs

RES+TOC and VR+VT vs RES+VT respectively. (¥) P < 0.05 and (#) P < 0.001 when

comparing the first vs second test and first vs third test respectively. All statistical

analyses were conducted through two-way ANOVA followed by Tukey’s Post Hoc test.

GROUPS

TESTS OBJECTS VR+VT RES+VT RES+TOC TOC

First Test

Post 1st

injection

OLD 36.94 ± 6.61 26.06 ± 5.01 34.11 ± 5.84 40.6 ± 4.91

NEW 63.06 ± 6.61 73.94 ± 5.01 65.89 ± 5.84 59.4 ± 4.91

Second Test

Post 6th

injection

OLD 34.69 ± 5.92 43.97 ± 5.31¥ 26.85 ± 5.87 39.17 ± 6.32

NEW 65.31 ± 5.92 56.03 ± 5.31¥ 73.15 ± 5.87 60.83 ± 6.32

Third Test

Post 9th

injection

OLD 27.71 ± 4.97 59.99 ± 6.95€ #

31.99 ± 6.43* 37.07 ± 3.25

NEW 72.28 ± 4.97 40.01 ± 6.95€ #

68.01 ± 6.43* 62.93 ± 3.25

9. Discussion

In this study, we investigated the effects of concomitant treatment with

TOC on catalepsy behavior and NOR task in rats submitted to a chronic

treatment with a low dosage of reserpine. We observed that the motor and

cognitive impairments induced by chronic treatment with reserpine were

prevented by treatment with TOC. These results can be seen in the evaluation

of catalepsy behavior performed 48 h after each reserpine injection (Figure 2)

as well as in the analysis of exploration time in the novel object recognition task

(Figure 3 and Table 1).

As previously observed in studies by our group [8,9], repeated treatment

with a low dose (0.1 mg/kg) of reserpine in rats induced the progressive

appearance of motor impairment. This impairment is marked by a gradual

Page 36: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

23

increase in the duration of catalepsy behavior. Indeed, as one can see in Figure

2, reserpine-treated (RES+VT) animals start differing from control subjects after

7 reserpine s.c. injections. It is well documented that catalepsy in rodents

indicates akinesia and rigidity that are important symptoms of PD [16-18].

Importantly, we did not observe this impairment in the group that was

concomitantly treated with TOC. Indeed, the group RES+TOC (Figure 2)

presented catalepsy duration similar to control across the treatment.

Besides motor assessment, the protocol used in the present study

includes the cognitive evaluation. Cognitive deficits have been reported as

symptoms of PD, and can even appear before the motor deficits. In a previous

study, we have shown that the protocol of reserpine treatment used here

induces short-term memory deficits before the appearance of increased

catalepsy behavior and other motor signs [8]. The present study corroborates

those findings. We used the NOR task, which involves recognition memory and

executive functions, both functions that can be impaired in PD [19,20]. Our

results corroborated the previous study showing that animals treated with

reserpine failed to discriminate the objects in the test session (in the second

and third tests, see Figure 3). Further, similarly to that described for motor

evaluations, the deficit was prevented by TOC administration. Indeed, animals

treated with both reserpine and TOC presented increased novel object

exploration in all tests, similarly to control subjects. In addition, comparisons

among experimental groups showed that animals treated with RES had worse

object discrimination compared to both control and RES+TOC groups in the

third test. Finally, when performances across the three tests were analyzed,

only the group treated with reserpine alone presented discrimination deficits in

the second and third tests compared to the first test (Table 1). These additional

analyses reinforce the prevention of the reserpine-induced object recognition

impairment by co-treatment with TOC.

As mentioned, reserpine is a non-selective inhibitor of the vesicular

monoamine transporter [1]. Thus, one could raise the possibility that the

behavioral alterations induced by reserpine treatment are related exclusively to

the dopamine depletion caused by this blockage. In other words, the alterations

could be a consequence of an additive effect on dopaminergic function.

However, there is evidence that favors the hypothesis that the progressive

Page 37: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

24

effect of the repeated treatment with reserpine is due to oxidative damage. First,

a previous study has shown that the classical acute treatment (with a dose 10

times higher than the one we used) did not cause a reduction in tyrosine

hydroxylase staining (an indicative of dopaminergic neuronal function), although

causing an important motor impairment [21]. Conversely, the protocol used here

(repeated treatment with a low dose) reduced tyrosine hydroxylase staining in

the substantia nigra and striatum, and part of the alterations induced by the

treatment were not recovered after 30 days of treatment withdrawal [8]. Second,

it has been shown that reserpine treatment increases brain oxidative stress and

this alteration is accompanied by behavioral deficits [10, 22, 23]. In addition, in a

previous study [9] the repeated treatment with a low dose of reserpine induced

an increase in striatal level of lipid peroxidation, which occurred concomitantly

to the motor impairment. These results lead us to question if co-treatment with

TOC would prevent the progressive motor and cognitive alterations induced by

the repeated treatment with a low dose of reserpine. As discussed above,

treatment with TOC was able to prevent these deficits. This preventive effect

might be explained by a neuroprotection mechanism, probably by a reduction

the in neurotoxic dopamine oxidation bioproducts [24].

Despite the well-known antioxidant properties of vitamin E, it is important

to mention that tocopherol and other antioxidant agents can have pro-oxidant

effects as well. Indeed, the ability of these compounds to accept and donate

electrons enables them to cause oxidative damage under certain conditions

[25]. However, this pro-oxidant action is mainly found in vitro, and under high

concentrations [26, 27]. Some in vivo studies have also shown pro-oxidant

effects of classical antioxidants, but they are variable depending on substance,

concentration, age of the subject and target molecules [25, 28-30]. Further, it

seems that their preferential action is antioxidant when an oxidant insult from

another source is present [31]. In the case of the present results, there was no

evidence of a pro-oxidant action regarding possible behavioral alterations.

Nevertheless, an antioxidant role of vitamin E in ameliorating

neurodegeneration in PD has been consistently proposed by in vitro and animal

studies [32-37]. On the other hand, despite strong evidence favoring an

antioxidant effect, the exact mechanism of action of vitamin E in Parkinson´s

disease is still under investigation [32]. There is evidence that vitamin E,

Page 38: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

25

particularly alpha-tocopherol, can act through other mechanisms not related to

modulation of oxidative stress. For example, studies showed that alpha-

tocopherol regulates the expression of several genes [38, 39] and inhibits

protein kinase C (PKC) activity [40, 41]. The later could be related to the

neuroprotective action of this compound, because PKC activation has been

implicated in cell death signaling pathways related to PD [42]. This relationship

was found in studies with animal models of PD induced by the toxins 1-methyl-

4-phenylpyridinium [43] and paraquat [44]. If PKC activation is also relevant for

reserpine-induced parkinsonism it is still unknown.

Regardless of the specific mechanism related to the prevention of

behavioral alterations found in the present study, there is evidence that

increased oxidative stress underlies the physiopathology of neurodegenerative

diseases such as PD [45-48]. Further, clinical data suggest that neuroprotective

treatments based on increasing antioxidant defenses are able to delay the

progression of the pathology [49-56]. Thus, a neuroprotective intervention could

be a relevant line of investigation in animal models of this disease. However,

the usual acute pharmacological models includes severe motor impairment

upon a single injection of reserpine or specific neurotoxins [4, 57-61]. This

approach is not suitable for the investigation for testing neuroprotective

interventions because they usually present a preventive and/or a

neurodegeneration delaying profile. Further, most of the previous studies

investigating the effects of vitamin E treatments on PD models did not

investigate progressive behavioral deficits related to the clinical symptoms of

the disease [33, 35, 37, 62]. In this sense, the need for animal models of PD

more compatible with clinical outcomes when investigating neuroprotective

therapies has been pointed out [63]. Thus, the present findings reinforce the

idea that the protocol of progressive parkinsonism induction with reserpine is

suitable for investigating possible neuroprotective interventions in animal

models of PD.

In conclusion, concomitant treatment with alpha-tocopherol prevents

behavioral alterations induced by repeated reserpine. Although the antioxidant

action of vitamin E is probably related, the exact mechanism underlying this

preventive effect remains to be investigated. Finally, the progressive behavioral

motor and cognitive alterations induced by repeated reserpine treatment seems

Page 39: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

26

an adequate protocol to investigate possible neuroprotective interventions for

PD.

Page 40: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

27

10. Acknowledgments:

The authors would like to thank Antonio Carlos Queiroz de Aquino for

capable technical assistance. This study was supported by grants from

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq,

Brazil), Fundação de Amparo a Pesquisa do Estado do Rio Grande do Norte

(FAPERN, Brazil), and Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior (CAPES, Brazil).

Page 41: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

28

11. References

1. Henry JP, Sagne C, Botton D, Isambert MF, Gasnier B (1998). Molecular

pharmacology of the vesicular monoamine transporter. Adv Pharmacol 42: 236-

239.

2. Daeur W, Przedborski S (2003). Parkinson’s disease: mechanisms and models.

Neuron 39: 889-909.

3. Alves CSD, Andreatini R, da Cunha C, Tufik S, Vital MABF (2000).

Phosphatidylserine reserves reserpine-induced amnesia. Eur J Pharmacol 404:

161-167.

4. Colpaert FC (1987). Pharmacological characteristics of tremor, rigidity and

hypokinesia induced by reserpine in rat. Neuropharmacology 26: 1431-1440.

5. Skalisy LL, Beijamini V, Joca SL, Vital MABF, da Cunha C et al. (2002).

Evaluation of the face validity of reserpine administration as an animal modelo

of depression- Parkinson’s disease association. Prog Neuro-Psychopharmacol

Biol Psychiatry 26: 879-883.

6. Carvalho RC, Patti CC, Takatsu-Coleman AL, Kameda SR, Souza CF et al.

(2006). Effects of reserpine on the plus-maze discriminative avoidance task:

dissociation between memory and motor impairments. Brain Res 1122: 179-83.

7. Fernandes VS, Ribeiro AM, Melo TG, Godinho M, Barbosa FF et al. (2008).

Memory impairment induced by low doses of reserpinein rats: possible

relationship with emotional processing deficits in Parkinson´s disease. Prog

Neuro-Psychopharmacol Biol Psychiatry 32:1479–83.

8. Santos JR, Cunha JAS, Dierschnabel AL, Campêlo CLC, Leão AHFF et al.

(2013). A new progressive model of Parkinson´s disease: different temporal

courses of motor and cognitive deficits. Behav Brain Res 253, 68–77.

9. Fernandes VS, Santos JR, Leão AH, Medeiros AM, Melo TG et al. (2012).

Repeated treatment with a lowdose of reserpine as a progressive model of

Parkinson’s disease. Behav Brain Res 231:154–63.

10. Abílio VC, Araujo CCS, Bergamo M, Calvente PRV, D’Almeida V, et al. (2003).

Vitamin E attenuates reserpine-induced oral dyskinesia and striatal oxidized

glutathione/reduced glutathione ratio (GSSG/GSH) enhancement in rats. Prog

Neuro-Psychopharmacol Biological Psychiatry 27:109–14.

Page 42: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

29

11. Ebadi M, Srinivasan SK, Baxi MD (1996). Oxidative stress and antioxidant

therapy in Parkinson’s disease. Prog Neurobiol 48: 1–19.

12. Bavarsad-Shahripour R, Harrigan MR, Alexandrov AV (2014). N-acetylcysteine

(NAC) in neurological disorders: mechanisms of action and therapeutic

opportunities. Brain Behav 4: 108–122.

13. Pérez HJ, Carrillo SC, García E, Ruiz-Mar G, Pérez-Tamayo R et al. (2014).

Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson's

disease. Toxicology 319: 38-43.

14. Halliwell B, Gutteridge JM (2007). Free Radicals in Biology and Medicine.

Oxford University Press.

15. Jiang Q (2014). Natural forms of vitamin E: metabolism, antioxidant and anti-

inflammatory activities and the role in disease prevention and therapy. Free

Radic Biol Med 72: 76-90.

16. Sanberg PR, Bunsey MD, Giordano M, Norman AB (1988). The catalepsy test:

its ups and downs. Behav Neurosci 102: 748-59.

17. de Lau LM, Breteler MM (2006). Epidemiology of Parkinson's disease. Lancet

Neurol 5: 525-35.

18. Duty S, Jenner P (2011). Animal models of Parkinson's disease: a source of

novel treatments and clues to the cause of the disease. Br J Pharmacol 164:

1357-91.

19. Higginson CI, Wheelock VL, Carroll KE, Sigvardt KA (2005). Recognition

memory in Parkinson's disease with and without dementia: evidence

inconsistent with the retrieval deficit hypothesis. J Clin Exp Neuropsychol 27:

516-28.

20. Lewis SJ, Dove A, Robbins TW, Barker RA et al. (2003). Cognitive impairments

in early Parkinson's disease are accompanied by reductions in activity in

frontostriatal neural circuitry. J Neurosci 23: 6351-6.

21. Caudle WM, Colebrooke RE, Emson PC, Miller GW (2008). Altered vesicular

dopamine storage in Parkinson’s disease: a premature demise. Trends

Neurosci 31: 303-308.

22. Bergström T, Ersson C, Bergman J, Möller L (2012). Vitamins at physiological

levels cause oxidation to the DNA nucleoside deoxyguanosine and to DNA--

alone or in synergism with metals. Mutagenesis 27(4): 511-517.

Page 43: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

30

23. Osiecki M, Ghanavi P, Atkinson K, Nielsen LK, Doran MR (2010). The ascorbic

acid paradox. Biochem Biophys Res Commun 400(4): 466-470.

24. Palozza P, Calviello G, Serini S, Maggiano N, Lanza P, Ranelletti FO, Bartoli

GM (2001). beta-carotene at high concentrations induces apoptosis by

enhancing oxy-radical production in human adenocarcinoma cells. Free Radic

Biol Med 30(9): 1000-1007.

25. de Oliveira BF, Veloso CA, Nogueira-Machado JA, Martins Chaves M (2012).

High doses of in vitro beta-carotene, alpha-tocopherol and ascorbic acid induce

oxidative stress and secretion of IL-6 in peripheral blood mononuclear cells from

healthy donors. Curr Aging Sci 5(2): 148-156.

26. Winterbone MS, Sampson MJ, Saha S, Hughes JC, Hughes DA (2007). Pro-

oxidant effect of alpha-tocopherol in patients with type 2 diabetes after an oral

glucose tolerance test--a randomised controlled trial. Cardiovasc Diabetol. Feb

22;6:8.

27. Nadeem N, Woodside JV, Kelly S, Allister R, Young IS, McEneny J (2012). The

two faces of α- and γ-tocopherols: an in vitro and ex vivo investigation into

VLDL, LDL and HDL oxidation. J Nutr Biochem 23(7): 845-851.

28. Reich EE, Montine KS, Gross MD, Roberts LJ 2nd, Swift LL, Morrow JD,

Montine TJ (2001). Interactions between apolipoprotein E gene and dietary

alpha-tocopherol influence cerebral oxidative damage in aged mice. J Neurosci

21(16): 5993-5999.

29. Vatassery GT (1992). Vitamin E. Neurochemistry and implications for

neurodegeneration in Parkinson's disease. Ann N Y Acad Sci 669: 97-109.

30. Casani S, Gómez-Pastor R, Matallana E, Paricio N (2013). Antioxidant

compound supplementation prevents oxidative damage in a Drosophila model

of Parkinson's disease. Free Radic Biol Med 61:151-160.

31. Fariss MW, Zhang JG (2003). Vitamin E therapy in Parkinson's disease.

Toxicology 189(1-2): 129-46.

32. Miklya I, Knoll B, Knoll J (2003). A pharmacological analysis elucidating why, in

contrast to (-)-deprenyl (selegiline), alpha-tocopherol was ineffective in the

DATATOP study. Life Sci 72(23): 2641-2648.

33. Butterfield DA, Castegna A, Drake J, Scapagnini G, Calabrese V (2002).

Vitamin E and neurodegenerative disorders associated with oxidative stress.

Nutr Neurosci 5(4): 229-239.

Page 44: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

31

34. Roghani M, Behzadi G (2001). Neuroprotective effect of vitamin E on the early

model of Parkinson's disease in rat: behavioral and histochemical evidence.

Brain Res 892(1): 211-217.

35. Azzi A (2007). Molecular mechanism of alpha-tocopherol action. Free Radic

Biol Med 43(1): 16-21.

36. Azzi A, Gysin R, Kempná P, Munteanu A, Negis Y, Villacorta L, Visarius T,

Zingg JM (2004). Vitamin E mediates cell signaling and regulation of gene

expression. Ann N Y Acad Sci 1031:86-95.

37. Ferri P, Cecchini T, Ambrogini P, Betti M, Cuppini R, Del Grande P, Ciaroni S

(2006). alpha-Tocopherol affects neuronal plasticity in adult rat dentate gyrus:

the possible role of PKCdelta. J Neurobiol 66(8): 793-810.

38. Azzi A, Ricciarelli R, Zing JM (2002). Non-antioxidant molecular functions of

alpha-tocopherol (vitamin E). FEBS Letters 519: 8-10.

39. Kanthasamy A, Jin H, Mehrotra S, Mishra R, Kanthasamy A, Rana A (2010).

Novel cell death signaling pathways in neurotoxicity models of dopaminergic

degeneration: relevance to oxidative stress and neuroinflammation in

Parkinson's disease. Neurotoxicology 31(5): 555-561.

40. Chalimoniuk M, Stolecka A, Ziemińska E, Stepień A, Langfort J, Strosznajder

JB (2009). Involvement of multiple protein kinases in cPLA2 phosphorylation,

arachidonic acid release, and cell death in in vivo and in vitro models of 1-

methyl-4-phenylpyridinium-induced parkinsonism-the possible key role of PKG.

J Neurochem 110(1): 307-317.

41. Cristóvão AC, Barata J, Je G, Kim YS (2013). PKCδ mediates paraquat-

induced Nox1 expression in dopaminergic neurons. Biochem Biophys Res

Commun 437(3): 380-385.

42. Beal MF (2002). Oxidatively modified proteins in aging and disease. Free Radic

Biol Med 32: 797-803.

43. Beal MF (2003). Mitochondria, oxidative damage, and inflammation in

Parkinson's disease. Ann N Y Acad Sci 991:120-31.

44. Cadenas E, Davies KJ (2000). Mitochondrial free radical generation, oxidative

stress, and aging. Free Radic Biol Med 29: 222-30.

45. Younes-Mhenni S, Frih-Ayed M, Kerkeni A, Bost M, Chazot G (2007).

Peripheral blood markers of oxidative stress in Parkinson's disease. Eur Neurol

58: 78-83.

Page 45: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

32

46. Abdel-Salam OM (2008). Drugs used to treat Parkinson's disease, present

status and future directions. CNS Neurol Disord Drug Targets 7: 321-42.

47. Beal MF (2009). Therapeutic approaches to mitochondrial dysfunction in

Parkinson's disease. Parkinsonism Relat Disord 15 Suppl 3: S189-94.

48. Chen JJ, Ly AV (2006). Rasagiline: A second-generation monoamine oxidase

type-B inhibitor for the treatment of Parkinson's disease. Am J Health Syst

Pharm 63: 915-28.

49. De Araújo DP, Lobato R de F, Cavalcanti JR, Sampaio LR, Araújo PV et al.

(2011). The contributions of antioxidant activity of lipoic acid in reducing

neurogenerative progression of Parkinson's disease: a review. Int J Neurosci

121: 51-7.

50. Magyar K, Pálfi M, Tábi T, Kalász H, Szende B et al. (2004). Pharmacological

aspects of (-)-deprenyl. Curr Med Chem 11: 2017-31.

51. Mayo JC, Sainz RM, Tan DX, Antolín I, Rodríguez C et al. (2005). Melatonin

and Parkinson's disease. Endocrine 27: 169-78.

52. Weber CA, Ernst ME (2006). Antioxidants, supplements, and Parkinson's

disease. Ann Pharmacother 40: 935-8.

53. Weinreb O, Amit T, Bar-Am O, Youdim MB (2010). Rasagiline: a novel anti-

parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog

Neurobiol 92: 330-44.

54. Hsieh MH, Gu SL, Ho SC, Pawlak CR, Lin CL et al. (2012). Effects of MK-801

on recognition and neurodegeneration in an MPTP-induced Parkinson's rat

model. Behav Brain Res 229: 41-7.

55. Marin C, Aguilar E (2011). In vivo 6-OHDA-induced neurodegeneration and

nigral autophagic markers expression. Neurochem Int 58: 521-6.

56. Salamone JD, Baskin P. (1996). Vacuous jaw movements induced by acute

reserpine and low-dose apomorphine: possible model of parkinsonian tremor.

Pharmacol Biochem Behav 53: 179-83.

57. Salamone JD, Ishiwari K, Betz AJ, Farrar AM, Mingote SM et al. (2008).

Dopamine/adenosine interactions related to locomotion and tremor in animal

models: possible relevance to parkinsonism. Parkinsonism Relat Disord 14

Suppl 2: S130-4.

58. Tetrud JW, Langston JW (1989). MPTP-induced parkinsonism as a model for

Parkinson's disease. Acta Neurol Scand Suppl 126:35-40.

Page 46: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

33

59. Itoh N, Masuo Y, Yoshida Y, Cynshi O, Jishage K, Niki E. (2006). gamma-

Tocopherol attenuates MPTP-induced dopamine loss more efficiently than

alpha-tocopherol in mouse brain. Neurosci Lett 403(1-2): 136-140.

60. Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN, Hensley K (2008).

Antioxidants in central nervous system diseases: preclinical promise and

translational challenges. J Alzheimers Dis 15(3): 473-493.

Page 47: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

34

12. Artigo 2

(Submetido à publicação no periódico “Progress in

Neuropsychopharmacology & Biological Psychiatry”)

EFFECTS OF ALPHA-TOCOPHEROL ON BEHAVIORAL AND NEURONAL

PARAMETERS IN A RAT MODEL OF PARKINSON'S DISEASE

Aldair José Sarmento-Silvaa, Ramón Hypolito Limaa, Ywlliane Meurera, André

Macedo Medeirosb, Lisandro Lungatoc, Rovena Clara Galvão Januário

Engelbertha,d , Jeferson de Souza Cavalcanted, Alessandra Mussi Ribeiroa,e,

Vania D´Almeidac, Regina Helena Silvaa,b*

a Memory Studies Laboratory, Department of Physiology, Federal University of

Rio Grande do Norte, Natal, Brazil.

b Department of Pharmacology, Federal University of São Paulo, São Paulo,

Brazil.

c Department of Psychobiology, Federal University of São Paulo, São Paulo,

Brazil

d Laboratory of Neurochemical Studies, Department of Physiology, Federal

University of Rio Grande do Norte, Natal, Brazil.

e Department of Biosciences, Federal University of São Paulo, Santos, Brazil.

*Corresponding author: Regina H. Silva

Departamento de Farmacologia – UNIFESP

Rua Botucatu, 862, Edifício Leal Prado, 1º.andar

CEP 04023062 - São Paulo, SP, Brasil

Email: [email protected]

Page 48: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

35

13. Abstract

Parkinson's disease (PD) is a chronic and progressive syndrome that

reduces the levels of dopamine in the nigrostriatal dopaminergic pathway.

Previous studies showed that chronic administration of reserpine (RES, a

monoamine depleting agent) in low doses promotes progressive cognitive and

motor impairments in rats, along with increased brain oxidative stress. We have

recently verified that the object recognition impairment and increased catalepsy

behavior induced by repeated RES were prevented by alpha-tocopherol (TOC)

coadministration. In the present study, we verify if (1) the effects of concomitant

TOC are extensive to other motor deficits (oral movements and motor

coordination) and (2) if the prevention of behavioral alterations is accompanied

by modifications compatible with neuroprotection (tyrosine hydroxylase (TH)

immunostaining and activity of antioxidant enzymes). Rats were treated with 15

s.c. injections of RES (0.1 mg/kg) or its vehicle every 48h, concomitantly to daily

30 i.p. administrations of TOC (40 mg/kg) or its vehicle. As expected, rats

treated exclusively with reserpine presented increased catalepsy behavior,

increased oral movements, motor impairment in the rotarod and decreased TH

staining in the substantia nigra pars compacta, ventral tegmental area,

hippocampus and striatum. All these detrimental outcomes due to RES

treatment were prevented by concurrent daily administration of the antioxidant

TOC. However, we did not find any changes in the activity of catalase and

superoxide dismutase after treatment with RES and/or TOC. The data indicate

that the effect of coadministration with TOC is extensive to behavioral and

neuronal alterations induced by repeated RES, suggesting a neuroprotective

effect with relevant implications for the treatment of PD. The relationship

between the effects found here and a possible antioxidant mechanism of TOC

remains to be further investigated.

Keywords: Reserpine, Parkinson’s disease, α-tocopherol, motor impairment, short-term

memory impairment.

Page 49: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

36

14. Introduction

Parkinson's disease (PD) is a chronic and progressive syndrome that

reduces the levels of dopamine (DA) in the nigrostriatal dopaminergic pathway,

as a result from the death of dopaminergic neurons mainly in the substantia

nigra pars compacta (SNpc - Dauer & Przedborski, 2003). Commonly

associated with aging, this pathology is clinically characterized by motor

symptoms such as tremor, bradykinesia, muscular rigidity and postural

instability, as well as cognitive impairments and depression (Fahn, 2006). In

fact, those typical motor symptoms may be accompanied by cognitive

impairments threatening the patient’s life quality (Korczyn, 2001; Nieoullon,

2002; Zgaljardic et al., 2004).

Studies with animal models of PD have been useful in understanding the

mechanisms leading to the clinical symptoms, as well as potential treatments.

One of the most common approaches is administration of reserpine to rodents

(Alves et al., 2000; Colpaert, 1987; Skalisy et al., 2002). Reserpine prevents the

storage of monoamines through the blockage of the synaptic vesicles

transporters (Henry et al., 1998). Consequently, synaptic vesicles are still

available but with a reduced amount of available dopamine in the synaptic cleft.

Moreover, the treatment with reserpine causes an increase in cellular oxidative

stress, possibly potentiated by the rise in the levels of dopamine in the

cytoplasm, which undergoes oxidative metabolism (Abílio et al., 2002).

The central nervous system (CNS) is quite vulnerable to reactive oxygen

species (ROS), which play a very important function in the pathogenesis of

neurodegenerative disorders, including PD (Ebadi et al., 1996). In this respect,

there is evidence that the inclusion of antioxidant agents in the pharmacological

treatment of PD has advantages over the treatment based only in dopamine

replacement (Bavarsad et al., 2014; Ebadi et al., 1996; Pérez et al., 2014).

Importantly, previous studies showed that chronic administration of reserpine in

low doses promotes progressive cognitive and motor impairments in rats, along

with neuronal alterations compatible with damage in the nigrostriatal pathway,

including increased brain oxidative stress (Fernandes et al., 2012; Santos et al.,

2013).

Page 50: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

37

The antioxidant agent vitamin E (α-tocopherol) can be formed

metabolically or found in the environment and plays an essential role in

protecting the body against the damaging effects of ROS. Specifically, vitamin E

blocks the propagation step of lipid peroxidation of polyunsaturated fatty acids

in membranes and lipoproteins (Halliwell & Gutteridge, 2007) and is the major

lipid-soluble antioxidant present in cell membranes. We have recently

demonstrated that the object recognition impairment and increased catalepsy

behavior induced by repeated reserpine treatment were prevented by the

concomitant treatment with α-tocopherol (Sarmento-Silva et al., paper 2). The

aim of this study was to evaluate the effects of the antioxidant agent α-

tocopherol on motor and neuronal parameters in rats submitted to the repeated

treatment with a low dose of reserpine. Specifically, we verify if (1) the effects of

concomitant α-tocopherol are extensive to other motor deficits (oral movements

and motor coordination) and (2) if the prevention of behavioral alterations is

accompanied by modifications compatible with neuroprotection (tyrosine

hydroxylase (TH) immunostaining and activity of antioxidant enzymes).

15. Material and Methods

15.1. Animals

We used 4-5-month-old 96 male Wistar rats (300-500g). The animals

were obtained from the Physiology Department at the Federal University of Rio

Grande do Norte, and were housed in groups of four, in plastic cages, under

controlled conditions of ventilation, temperature (23 ± 1°C), and light/dark cycle

(12h/12h, lights on 6:30 a.m.), with free access to water and food. The rats were

handled according to the Brazilian law for the use of animals in scientific

research (Law Number 11.794) and all the procedures described were

approved by the local ethical committee (CEUA/UFRN nº 051/2011).

Page 51: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

38

15.2. Drugs

Reserpine (RES - Sigma Chemical Co., St. Louis, MO) was dissolved in

acetic acid and further diluted in distilled water at the concentration of 0.1

mg/ml, pH ≈ 6.5. We used this vehicle (glacial acetic acid diluted in water) as a

control for reserpine treatment (VR). RES and VR were given s.c. on alternate

days. The antioxidant α-tocopherol (TOC - Sigma Chemical Co., St. Louis, MO)

was diluted in distilled water with Tween-80 at the concentration of 40 mg/ml.

We used the vehicle used to dilute tocopherol as a control for TOC treatment

(VT). TOC and VT were injected i.p. daily. The volume of injection was 1ml/kg

of body weight in all cases.

15.3. Experimental design and general procedures

The rats were randomly assigned to the following groups: (1) VR + VT,

(2) RES + VT, (3) RES + TOC and (4) VR + TOC. Drug treatment lasted for 30

days. Animals received 15 s.c. injections of RES (0.1 mg/kg) or VR every 48

hours, concomitantly to daily i.p. administration of TOC (40 mg/kg) or VT.

Before the beginning of the experiments, all animals were submitted to a

daily 5-minute handling session for five consecutive days. Throughout the

treatment, the animals were subjected to the following evaluations: catalepsy

test (performed daily); evaluation of oral movements (days 1, 6, 10, 24, 30);

locomotor activity in the rotarod (days 1, 17, 25 and 31). The enzymatic assay

and immunohistochemistry for TH were performed at the end of the treatment.

The experimental design is shown in Fig. 1. All behavioral tests were conducted

before the injections of that day. Before each experimental procedure, the

apparatuses were cleaned with a 5% alcohol solution, and the experimental

groups were alternated across testing.

Page 52: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

39

Figure 1. Schematic illustration of the experimental design.

16. Behavioral tests

16.1. Catalepsy test

To evaluate the catalepsy behavior, the animal’s forepaws were daily

placed on a horizontal bar positioned at 9 cm above the bench surface (n=9

animals per group). The catalepsy behavior was measured considering the total

time spent in immobility until the animal removed both forepaws of the bar. The

animals were submitted to three consecutive exposures, up to 80 seconds for

each trial and the mean value was considered to statistical analyses.

16.2. Oral movements

The oral movements measured were: (1) the duration of oral tremor, in

seconds, (2) the number of chewing movements that were not directed to any

object (vacuous chewing movements), and (3) the number of tongue

protrusions. The animals were individually placed in a barred cage measuring

approximately 0.21 cm x 0.29 cm x 0.24 cm (L x W x H) with mirrors fixed under

and behind the cage to allow the observation of the animal´s snout by the

experimenter. This evaluation was performed on the 1st, 6th, 10th, 24th and 30th

treatment days (n=18-19 animals per group).

Page 53: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

40

16.3. Rotarod test

Animals were exposed on a rotarod test (Insight®, Brazil) to detect a

potential impairment on coordination or motor performance (Dekundy et al.,

2006). The experiments were conducted in two phases: training and test. The

training was held for 5 days prior to treatment (n=8-10 animals per group). In

each training day, animals were trained to walk on a rotary cylinder in a

constant acceleration of 8 rpm for 3 successive trials with a 40-second interval

after each fall. We considered the average of the three trials in order to

establish a baseline value. A sensor at the platform detected the fall off and

automatically recorded the latency to fall (in seconds). A cut off latency of 240

seconds was considered (Monville et al., 2006). The test session was carried

out on the 6th, 14th, 22nd and 30th days of treatment (48h after the 3rd, 8th, 12th

and 15th injection of reserpine or vehicle).

16.4. Immunohistochemistry for tyrosine hydroxylase (TH)

Upon completion of the behavioral procedures and treatment, animals

(n=5-6 animals per group) were euthanized (sodium thiopental, 40 mg/kg, i.p.)

and perfused transcardially with 200 ml phosphate-buffered saline (PBS), pH

7.4, containing 500 IU heparin (Liquemin, Roche, Brazil), followed by 300 ml

4.0% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4. We removed

animals’ brains through craniotomy and immersed in a fixative solution at 4°C

for 24 hours followed by cryoprotection for 72 hours in 30% sucrose in 0.1 M

PBS, pH 7.4. We serially sliced in 30 μm coronal sections using a cryostat

(Leica, USA). Slices were collected and allocated into five compartments

distributed in sequence with approximately 150 µm distance between sections.

Compartments were stored at 4°C in an ethylene glycol and phosphate buffer

based antifreeze solution for cryoprotection for further immunohistochemical

analysis.

Afterwards, sections were washed five times with phosphate buffered

saline (PBS, 0.1M, pH 7.4) for 5 minutes each followed by incubation in PBS

Page 54: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

41

plus hydrogen peroxide (0.3%) for 20 minutes. The brain sections were first

incubated overnight with a monoclonal anti-TH primary antibody (1:10,000;

Chemicon, CA, USA) containing 2% BSA (Sigma, St Louis, MO, USA) and

diluted in 0.3% Triton X-100 and 0.1M PBS, pH 7.4. Afterwards, the sections

were incubated with the biotinylated secondary antibody goat anti-mouse

1:10000 (Vector Labs, USA) diluted in Triton X-100 0.4% for 2 hours. Then, the

sections were incubated with the avidin-biotin-perioxidase solution (ABC Elite

kit, Vector Labs, USA) for 2 hours. The reaction was developed by the addition

of diaminobenzidine (DAB; Sigma, St Louis, MO, USA) at 2.5%, diluted in 0.1 M

PBS, pH 7.4. Between each step the tissues were washed four times with 0.1 M

PB pH 7.4 (for 5 min each). Then, the sections were dried, dehydrated in a

graded alcohol series, cleared in xylene, and coverslipped with Entellan

(Merck). All the immunostainings were performed concomitantly, minimizing

possible differences in background between the animals. An adjacent series

was stained with tionine to serve as a reference series for cytoarchitetural

purposes. Sections were examined under brightfield illumination (Olympus

Microscope, BX-41), and captured using a CCD camera (Nikon, DXM-1200).

In order to estimate the number of dopaminergic neurons, we selected

four sections of each region evaluated (SNpc and VTA): one at the rostral level,

two at medium level and one at the caudal level, representative of the

rostrocaudal extension of each area of interest. We used the Paxinos and

Watson rat brain atlas (2007) to assess the exact location of the brain regions.

Additionally, we assessed TH+ levels through analysis of relative optical

densitometry (OD) in the striatum and hippocampal subregions (CA1, CA3 and

DG) using the Image J software (Version 1.46i, NIH). We choose four

representative sections of the rostrocaudal extension of each region. In each

section, we analyzed four fields evenly distributed throughout the areas of

interest. The medium pixels in the target area were subtracted from de medium

values of a control region (areas that should not have specific TH staining) of

the same tissue (cortex or corpus calosum). Finally, we normalized all values

considering the control group, in order to evaluate proportional alterations.

Page 55: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

42

16.5. Enzymatic Analysis

Two days after the last session of behavioral tests, we euthanized the

animals by decapitation (n=5 animals per group). Subsequently, we removed

and washed the brain with ice-cold saline and rapidly dissected both

hippocampus and striatum followed by weighing and storage at −80 ºC for

further use on biochemical analysis. Before enzymatic assays, the tissues were

mechanically macerated in Hanks buffer salt solution, and the homogenate was

centrifuged in 0.1 M PO4K buffer (pH 7.0) at 1100 X g for 15 min at 4°C.

Afterwards, obtained supernatants were centrifuged at 18000 X g for 15 min at

4 °C.

We performed spectrophotometric assays for catalase (CAT) and

superoxide dismutase (SOD) activities following standard protocols (Beutler,

1975; Ewing & Janero, 1995). We measured CAT activity following hydrogen

peroxide disappearance at 240 nm. One unit of CAT corresponds to the amount

of the enzyme that hydrolyses 1lmol of hydrogen peroxide per minute, at 25ºC.

Then, we analyzed SOD activity from nitro blue tetrazolium (NBT) reduction by

superoxide anion produced via photoreduction of riboflavin at 560 nm.

According to protocol, we defined one unit of SOD as the amount that caused

50% inhibition of rate of NBT reduction. For mitochondrial SOD (MnSOD)

activity measurement, we add 15 mM potassium cyanide (KCN) in reaction

medium to inhibit the cytosolic SOD (CuZnSOD) activity. In order to normalize

antioxidant enzymes activities of brain structures, we measured the content of

total proteins in the respective homogenates using a Bio-Rad kit. Results were

expressed as U (units)/mg of protein.

16.6. Statistical Analysis

All data were tested for normality using through Kolmogorov–Smirnov

test and analyzed accordingly. We analyzed the performances in catalepsy, oral

movements, rotarod tests along treatment using two-way ANOVA with repeated

measures followed by Tukey’s multiple comparison post hoc test. We used an

ANOVA followed by the Sidak post hoc test to analyze data from TH+ neurons

Page 56: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

43

counting and relative optical densitometry (OD). To analyze the enzymatic

assay experiments, we used Kruskal Wallis test followed by Mann–Whitney U-

test comparing all groups. Results were expressed as mean ± SEM (overall) or

median for enzymatic assay (minimum; maximum values) and P < 0.05 was

considered to reflect significant differences.

17. Results

17.1. Catalepsy

Figure 2 shows that from day 17 onwards there was an increase in

catalepsy behavior of the group RES+VT compared to all other groups (RM

two-way ANOVA; days of treatment [F (29,960) = 9.005, P < 0.0001], treatment [F

(3,960) = 93.82, P < 0.0001] and days of treatment × treatment interaction effects

[F (87,960) = 2.948, P < 0.0001]). This increase was not detected for the group

RES+TOC. Data confirm that chronic administration of reserpine promotes

progressive motor impairments, starting after the 8th reserpine injection. Yet,

this detrimental effect is prevented by α-tocopherol co-administration.

Figure 2. Repeated administration of reserpine increases catalepsy duration

and this effect is prevented by α-tocopherol. Arrows indicate reserpine (RES;

0.1 mg/kg) or vehicle (VR) s.c. injections, while α-tocopherol (TOC; 40 mg/kg)

or its vehicle (VT) were given daily i.p.. Data are expressed as mean + SEM; (*)

P < 0.05 for RES+VT vs RES+TOC; (**) P < 0.01 for RES+VT vs TOC+VR and

(****) P < 0.0001 for RES + VT vs all experimental groups in Tukey’s multiple

comparison post hoc test after RM two-way ANOVA.

Page 57: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

44

17.2. Oral movements

We found an increase in the oral twitching after the 5th reserpine injection

and this impairment was attenuated by α-tocopherol treatment (Fig. 3A; two-

way ANOVA for days of treatment [F (5,384) = 14.58, P < 0.0001], treatment [F

(3,384) = 101.7, P < 0.0001], days of treatment × treatment interaction effects [F

(15,384) = 6.822, P < 0.0001]). Likewise, we found a gradual increase on vacuous

chewing movements after the 5th reserpine injection and this effect was

attenuated by α-tocopherol administration (Fig. 3B; two-way ANOVA for days of

treatment [F (5, 384) = 10.57, P < 0.0001], treatment [F (3,384) = 80.41, P < 0.0001],

days of treatment × treatment interaction effects [F (15,384) = 3.840, P < 0.0001]).

We also found that reserpine treatment increases the frequency of tongue

protrusions. However, the group RES+TOC presented significant improvement

only in the test performed on day 6 (Fig. 3C; Two-way ANOVA for days of

treatment [F (5, 384) = 1.052, P = 0.3867], treatment [F (3,384) = 28.25, P < 0.0001],

days of treatment × treatment interaction effects [F (15,384) = 0.6488, P =

0.8338]). Overall, data show that the increase in oral movements induced by

RES was prevented by concomitant TOC.

17.3. Rotarod test

We found that the reserpine administration impaired coordination and

balance. The effects due to treatment started after the 8th reserpine injection.

These motor deficits are characterized by a decrease in time spent in

behavioral apparatus and this effect is prevented by daily injections of α-

tocopherol (Fig. 3D; RM two-way ANOVA for days of treatment [F (4,165) = 6.259,

P = 0.0001], treatment [F (3,165) = 26.32, P < 0.0001], days of treatment ×

treatment interaction effects [F (12,165) = 5.862, P < 0.0001]).

Page 58: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

45

Figure 3. α-tocopherol prevented increased oral movements and impaired

motor coordination in the rotarod test induced by repeated administration of

reserpine. The animals were treated with reserpine (RES; 1.0 mg/kg) or vehicle

(VR) s.c. injections, and α-tocopherol (TOC; 40 mg/kg) or its vehicle (VT) were

given daily i.p.. (A) Oral tremor; (B) Vacuous chewing movements; (C) Tongue

protrusions; (D) Rotarod test. Data are expressed as mean + SEM; (*) P < 0.05

for RES+VT vs VR + VT; (#) P < 0.05 for RES+VT vs RES+TOC in Tukey’s post

hoc test after RM two-way ANOVA.

17.4. Immunohistochemistry for tyrosine hydroxylase (TH)

Reserpine treatment promoted a significant reduction in the total number

of TH+ immunoreactive neurons in the SNpc (Fig. 4A and 6A; ANOVA followed

by Sidak’s post hoc test [F (3,19) = 19.58, P < 0.0001]) and in the VTA (Fig. 4B

and 6B; ANOVA followed by Sidak's post hoc test [F (3,19) = 4.480, P < 0.05]).

However, daily administration of α -tocopherol prevented this effect in both

SNpc and VTA.

Page 59: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

46

We found that reserpine chronic administration produces a decrease of

OR in the striatum (Fig. 5A and 6C; ANOVA [F (3,19) = 4.480, P < 0.05] followed

by Sidak's post hoc test). Moreover, we found a reduction in the OR in the

dentate gyrus hippocampal subregion (Fig. 5D and 6D; ANOVA [F (3,19) = 3.916,

P < 0.05] followed by Sidak’s post hoc test). However, this effect was prevented

by α-tocopherol chronic treatment. Conversely, no changes were found in the

dorsal hippocampus CA1 subregion (Fig. 5A and 6D; ANOVA [F (3,19) = 0.7547,

P = 0.5332]) and CA3 (Fig. 5B and 6D; ANOVA [F (3,19) = 0.5947, P = 0.6261]).

Figure 4. Treatment with α-tocopherol reversed the neuronal damage caused

by repeated administration of reserpine. The animals were divided into following

groups: VR + VT (n = 6), RES + VT (n = 5), RES + TOC (n = 6), and VR + TOC

(n = 6). Data are expressed as mean ± SEM. (A) (****) P < 0.0001 to RES + VT

vs VR + VT and (####) P < 0.0001 to RES + VT vs RES + TOC; (B) (#) P < 0.05

and (**) P < 0.01 to RES + VT vs RES + TOC and RES + VT vs VR + VT,

respectively, in ANOVA followed by Sidak’s post hoc test.

Page 60: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

47

Figure 5. Effects of repeated administration of reserpine on TH level in optical

density in different subregions of dorsal hippocampus and Striatum. (A)

Striatum, (B) CA1, (C) CA3 and (D) GD. The animals were divided into following

groups VR + VT (n = 6), RES + VT (n = 5), RES + TOC (n = 6), and VR + TOC

(n = 6). Data are expressed as mean ± SEM. (*) P < 0.05 comparing VR + VT

vs RES + VT and (#) P < 0.05 comparing RES + VT vs RES + TOC (ANOVA

followed by Sidak’s post hoc test).

Page 61: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

48

Figure 6. Representative photomicrographs of brain coronal sections of (A)

Substantia nigra pars compacta (SNpc), (B) Ventral Tegmental Area (VTA), (C)

striatum (STR) and (D) hippocampal subregions (GD, CA3 and CA1). Animals

were repeatedly treated with vehicle (VR + VT), reserpine (RES + VT),

reserpine + tocopherol (RES + TOC) or tocopherol (VR + TOC). All the rats

were perfused on the 31st day of treatment. Scale bar in (A), (B) and (D): 200

µm; (C): 1000 µm.

17.5. Determination of CAT and SOD activities

Table 1 shows the levels of catalase (CAT) and superoxide dismutase

(SOD) in the hippocampus and striatum of all studied animals. Kruskal–Wallis

ANOVA detected no significant effects for CAT in the hippocampus [H(3) = 0.16;

P = 0.98] or striatum [H(3) = 2.10; P = 0.55] between groups. Also, Kruskal–

Wallis ANOVA revealed no significant effects for total [H(3) = 2.93; P = 0.40],

SNpc

VTA

STR

HIP

Page 62: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

49

cytosolic [H(3) = 4.89; P = 0.17] or mitochondrial [H(3) = 1.08; P = 0.78] SOD in

hippocampus neither in total [H(3) = 4.16; P = 0.24], cytosolic [H(3) = 2.58; P =

0.45] or mitochondrial [H(3) = 1.46; P = 0.69] SOD in striatum between all

groups.

Table 1. Determination of oxidative stress parameters by antioxidant enzymes

activities in hippocampus and striatum of rats subjected to different treatments.

Median (minimum; maximum values) for catalase (CAT), superoxide dismutase

(SOD) and its fractions in U (units)/mg protein of animals treated with saline

(control), reserpine (RES), tocopherol (TOC) and tocopherol + reserpine

(TOC+RES).

Brain area Oxidative stress

enzymes Control RES TOC TOC+RES

Hippocampus

CAT 7.33 (3.83; 15.66) 21.00 (2.90; 26.65) 5.87 (4.19; 22.38) 4.34 (3.19; 25.68)

Total SOD 42.25 (7.69; 53.15) 19.22 (6,90; 55,03) 10.41 (8.54; 37.31) 9.92 (9.68; 31.93)

Mitochondrial MnSOD 8.39 (1.55; 14.38) 5.53 (1.53; 14.91) 3.08 (1.82; 10.37) 2.93 (2.07; 6.06)

Cytosolic CuZnSOD 33.86 (6.14; 38.77) 7.39 (6.66; 25.87) 7.25 (5.92; 26.94) 12.49 (11.53; 13.07)

Striatum

CAT 6.81 (3.44; 10.83) 5.31 (3.05; 7.69) 7.06 (4.43; 15.04) 7.22 (4.92; 8.99)

Total SOD 18.16 (14.44; 23.24) 17.63 (15.41; 20.38) 19.75 (18.43; 21.51) 19.17 (18.13; 21.97)

Mitochondrial MnSOD 7.54 (6.68; 9.92) 8.44 (5.75; 9.61) 7.35 (5.62; 12.24) 7.14 (5.64; 9.28)

Cytosolic CuZnSOD 10.58 (6.89; 13.32) 8.98 (6.96; 14.62) 11.76 (8.25; 14.12) 12.49 (11.53; 13.07)

Page 63: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

50

18. Discussion

In this study, we show that different types of motor impairment induced

by chronic treatment with reserpine were prevented by α-tocopherol treatment,

as demonstrated by the evaluation of catalepsy behavior (Fig. 2), evaluation of

oral movements (Fig. 3A-C), and observation of balance and motor coordination

in the rotarod test (Fig. 3D). In addition, neuronal analyses showed that

reserpine treatment decreased number of TH+ cells in SNpc and VTA, and co-

treatment with α-tocopherol reversed the detrimental effect caused by reserpine

treatment on the levels of TH positive cells (Fig. 4 and Fig. 6). Likewise,

reserpine treatment diminished staining in the striatum (Fig. 5A and Fig. 6) and

dentate gyrus (Fig. 5D and Fig. 6) and α-tocopherol co-treatment reverted this

detrimental effect. However, we did not observe alterations in SOD and CAT

activity as a consequence of either reserpine or α-tocopherol treatments (Table

1).

Corroborating previous studies (Fernandes et al., 2012; Santos et al.,

2013) we showed that repeated treatment with a low dose (0.1 mg/kg) of

reserpine in rats induces short-term memory deficit followed by gradual

appearance of motor impairments, accompanied by neurochemical changes

compatible with PD pathology. Indeed, this protocol of reserpine-induced

parkinsonism is characterized by a gradual increase of catalepsy behavior, in

which reserpine-treated animals consistently start differing from control subjects

after 7 or 8 reserpine injections (present results and those previous studies). In

this respect, catalepsy in rodents reflects akinesia and rigidity that are important

clinical signs of PD (Sanberg et al., 1988; de Lau & Breteler, 2006; Duty &

Jenner, 2011). Nevertheless, we did not observe this increase in the group that

was concomitantly treated with RES and TOC, which presented catalepsy

duration similar to control until the end of the treatment. This result corroborates

a recent study (Sarmento-Silva, unpublished), indicating that the effects

observed are replicable. However, it is reasonable to speculate if the protective

effect of vitamin E would still be significant if the reserpine treatment lasted

longer. Regardless, we can suggest that TOC treatment promoted at least a

clear-cut delay in the catalepsy behavior progression. Nevertheless, the

catalepsy test evaluates only some aspects of the main motor symptoms of PD

Page 64: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

51

such as bradykinesia and akinesia. Thus, in the present study, we evaluated

other aspects of motor function under the same treatment regimen.

Some studies have suggested the induction of oral movements as a

model of tremor-related symptoms of PD (Salamone & Baskin, 1996; Salamone

et al., 2008). Indeed, these abnormal oral movements can be induced by a

number of interventions that decreases dopaminergic function (Jicha &

Salamone, 1991; Salamone & Baskin, 1996; Andreassen et al., 2003;

Salamone et al., 2008), including the repeated treatment with a low dose of

reserpine (Fernandes et al., 2012). In the present study, the animals treated

with reserpine presented increased oral twitching, vacuous chewing movements

and number of tongue protrusions from the 6th day of treatment onwards.

Conversely, animals receiving TOC concomitant to reserpine treatment did not

show this increase throughout treatment, similarly to what happened to

catalepsy behavior. However, some cases, especially regarding tongue

protrusions, RES+VT animals did not present statistical difference when

compared to RES+TOC animals, which suggests that prevention of the

alteration was not complete. This concern notwithstanding, overall analysis of

oral movement parameters shows that co-treatment with α-tocopherol

diminished the motor impairments caused by reserpine.

The rotarod test is a useful tool to evaluate motor function, and studies

on animal models of PD have classically shown deficits in motor coordination

and balance using this apparatus (Rozas et al., 1998; Klivenyi & Vecsei, 2011;

Thornton & Vink, 2012; Didonet et al., 2014). This test is relevant because it

evaluates postural instability, which is a different kind of motor impairment than

those evaluated by catalepsy and oral movement tests. However, this

evaluation has not been previously performed regarding the progressive

reserpine-induced parkinsonism. In the present study, we show that this feature

of motor behavior is also progressively impaired by the repeated treatment with

a low dose of reserpine. Indeed, animals treated with this drug have shown

decreased latency to fall from the apparatus towards the end of the treatment.

Importantly, once again the treatment with TOC prevented this alteration,

keeping the animals from the group RES+TOC similar to controls.

An important observation in animal models of PD is the reduction of brain

TH levels, especially those induced by acute administration of neurotoxins

Page 65: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

52

(Mogi et al., 1987; Jackson-Lewis et al., 1995; Bové et al., 2005; Fitzpatrick et

al., 2005; Li et al., 2005; Pérez et al., 2014). In a previous study, we have

shown that the protocol of repeated reserpine treatment induced a decrease in

the TH staining in several brain areas, including the dorsal striatum, as well as

in the number of TH+ neurons in the main dopaminergic nuclei (SNpc and VTA

– Santos et al., 2013). The present results corroborated those findings, and

added the prevention of those neuronal alterations by the co-administration of

TOC. In this respect, the decrease of TH immunostaining in the nigro-striatal

pathway and in the VTA caused by repeated reserpine correlated with the motor

and cognitive impairments induced by this treatment, respectively (Santos et al.,

2013). Thus, the prevention of TH deficiency in SNpc, striatum and VTA by

TOC could be related to the behavioral improvement observed in RES+TOC

treated animals here and in our recent previous study (Sarmento-Silva et al.,

unpublished). Alternatively, the object recognition deficit caused by reserpine

(Santos et al., 2013) and its reversion by TOC (Sarmento-Silva et al.,

unpublished) can both be related to the TH levels in the DG (see figure 5D)

because this hippocampal subregion has been implicated in some aspects of

this memory task (Barbosa et al. 2012).

In summary, both the progressive behavioral alterations and the

decrement in TH staining in the nigrostriatal pathway, VTA and DG were

prevented by a neuroprotective treatment, i.e., the antioxidant agent α-

tocopherol. As discussed previously, reserpine-induced dopamine depletion

could be implicated in the motor impairments, suggesting that reserpine

repeated treatment induces some level of neurotoxicity underlying behavioral

impairment, probably due to the increase in cytoplasmatic DA degradation.

Indeed, RES treatment increases oxidative stress in the striatum (Abílio et al.,

2003; 2004; Burger et al., 2003; Bilska et al., 2007) and the protocol of

reserpine treatment used here caused striatal lipid peroxidation in a previous

study (Fernandes et al., 2012). Nevertheless, studies regarding RES and

oxidative stress are not always consistent, and differs on dosage, days of

treatment, moment of animals’ sacrifice and molecular targets (Spina & Cohen,

1989; Abílio et al., 2002, 2003, 2004; Burger et al., 2003; Faria et al., 2005;

Bilska et al., 2007; Teixeira et al., 2008, 2009; Pereira et al., 2011; Fernandes

et al., 2012; Reckziegel et al., 2013). Yet, given the known results on RES

Page 66: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

53

acute treatment and oxidative stress, and the prevention of reserpine-induced

behavioral and neuronal alterations by classical antioxidant agents (present

results; Sarmento-Silva et al., unpublished; Burger et al., 2003; Faria et al.,

2005), we investigated parameters related to antioxidant defenses in the brain,

such as CAT and SOD activities. However, our study did not show any changes

in CAT or SOD activities in either hippocampus or striatum due to RES or TOC

treatment (See table 1). We decided to collect samples 48 hours after the last

injections of RES or TOC in order to avoid conflict with the acute effect of both

drugs. Therefore, the lack of change on enzymatic activity found on this study

might be a response to the pharmacological time window. Another possibility is

that CAT and SOD have a rapid metabolism (Muzykantov, 2001; Baureder et

al., 2014) in order to preserve the survival of neuronal cells and therefore, we

could not observe any changes in enzymatic activity. In other words, possible

rapid changes in the enzymes’ activity following day-by-day injections were not

detected due to our euthanizing schedule. In this respect, the evaluation of CAT

and SOD activities at different time points throughout the treatment, as well as

the evaluation of other parameters indicative of oxidative stress and/or

endogenous antioxidant status could be helpful in clarifying the mechanism of

the protective action of TOC. These proposals are currently under investigation

in our laboratory.

In conclusion, the present findings reinforce the idea that the prolonged

treatment with TOC is an interesting preventive approach regarding behavioral

and neuronal alterations related to PD. Further, we suggest that the protocol of

repeated reserpine-induced parkinsonism is a suitable protocol for investigating

potential neuroprotective interventions.

Page 67: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

54

19. Acknowledgments:

The authors would like to thank Antonio Carlos Queiroz de Aquino for

capable technical assistance. This study was supported by grants from

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq,

Brazil), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Norte

(FAPERN, Brazil), Pós-Graduação em Desenvolvimento e Inovação

Tecnológica em Medicamento (PPgDITM, Brazil) and Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil).

Page 68: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

55

20. References

1. Abílio VC, Araujo CCS, Bergamo M, Calvente PRV, D’Almeida V, Ribeiro RA,

Frussa-Filho R. Vitamin E attenuates reserpine-induced oral dyskinesia and

striatal oxidized glutathione/reduced glutathione ratio (GSSG/GSH)

enhancement in rats. Prog Neuro-Psychopharmacol Biological Psychiatry 2003;

27:109–14.

2. Abílio VC, Silva RH, Carvalho RC, Grassl C, Calzavara MB, Registro S,

D'Almeida V, Ribeiro R de A, Frussa-Filho R. Important role of striatal catalase

in aging- and reserpine-induced oral dyskinesia. Neuropharmacology 2004;

47(2):263-72

3. Abílio VC, Vera Jr JAR, Ferreira LSM, Duarte CRM, Carvalho RC, Grass C,

Mar-tins CR, Torres-Leite D, Bignotto M, Tufik S, de Ribeiro RA, Frussa-Filho

R. Effects of melatonin on orofacial movements in rats. Psychopharmacology

2002; 161:340–7.

4. Alves CSD, Andreatini R, da Cunha C, Tufik S, Vital MABF. Phosphatidylserine

reserves reserpine-induced amnesia. Eur J Pharmacol 2000; 404, 161-167.

5. Andreassen OA, Ferrante RJ, Aamo TO, Beal MF, Jørgensen HA. Oral

dyskinesias and histopathological alterations in substantia nigra after long-term

haloperidol treatment of old rats. Neuroscience 2003; 122(3):717-25.

6. Barbosa FF, Pontes IM, Ribeiro S, Ribeiro AM, Silva RH. Differential roles of

the dorsal hippocampal regions inthe acquisition of spatial and temporal aspect

s ofepisodic-like memory. Behav Brain Res. 2012 Jun 15;232(1):269-77.

7. Baureder M, Barane E, Hederstedt L. In vitro assembly of catalase. J Biol

Chem. 2014 Oct 10;289(41):28411-20.

8. Bavarsad SR, Harrigan MR, and Alexandrov AV. N-acetylcysteine (NAC) in

neurological disorders: mechanisms of action and therapeutic opportunities.

Brain Behav 2014; 4(2): 108–122.

9. Beutler E. Disorders in glutathione metabolism. Life Sciences 1975; 16:1499-

1506.

10. Bilska A, Dubiel M, Sokołowska-Jezewicz M, Lorenc-Koci E, Włodek L. Alpha-

lipoic acid differently affects the reserpine-induced oxidative stress in the

striatum and prefrontal cortex of rat brain. Neuroscience 2007; 146(4):1758-71.

Page 69: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

56

11. Bové J, Prou D, Perier C, Przedborski S. Toxin-induced models of Parkinson's

disease. NeuroRx 2005; 2(3):484-94.

12. Burger ME, Alves A, Callegari L, Athayde FR, Nogueira CW, Zeni G, Rocha JB.

Ebselen attenuates reserpine-induced orofacial dyskinesia and oxidative stress

in rat striatum. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27(1):135-

40.

13. Colpaert FC. Pharmacological characteristics of tremor, rigidity and hypokinesia

induced by reserpine in rat. Neuropharmacology 1987; 26(9): 1431-1440.

14. Dauer W, Przedborski S. Parkinson’s disease: Mechanisms and models.

Neuron 2003; 39: 889-909.

15. de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol

2006; 5(6):525-35.

16. Dekundy A, Pietraszek M, Schaefer D, Cenci MA, Danysz W. Effects of group I

metabotropic glutamate receptors blockade in experimental models of

Parkinson's disease. Brain Res Bull 2006; 69(3):318-26.

17. Didonet JJ, Cavalcante JC, Souza L de S, Costa MS, André E, Soares-Rachetti

V de P, Guerrini R, Calo' G, Gavioli EC. Neuropeptide S counteracts 6-OHDA-

induced motor deficits in mice. Behav Brain Res 2014; 266:29-36.

18. Duty S, Jenner P. Animal models of Parkinson's disease: a source of

noveltreatments and clues to the cause of the disease. Br J Pharmacol 2011;

164(4):1357-91.

19. Ebadi M, Srinivasan SK, Baxi MD. Oxidative stress and antioxidant therapy in

Parkinson’s disease. Prog. Neurobiol 1996; 48: 1–19.

20. Ewing JF & Janero DR. Microplate superoxide dismutase assay employing a

nonenzymatic superoxide generator. Anal Biochem 1995; 10;232(2):243-8.

21. Fahn S. Levodopa in the treatment of Parkinson's disease. J Neural Transm

Suppl 2006; 71:1–15.

22. Faria RR, Abílio VC, Grassl C, Chinen CC, Negrão LTR, Castro JPMV,

Fukushiro DF, Rodrigues MSD, Gomes PHZ, Registro S, Carvalho RC,

D'Almeida V, Silva RH, Ribeiro RA, Frussa-Filho R. Beneficial effects of vitamin

C and vitamin E on reserpine-induced oral dyskinesia in rats: Critical role of

striatal catalase activity, Neuropharmacology 2005; Volume 48(7):993-1001.

23. Fernandes VS, Santos JR, Leão AH, Medeiros AM, Melo TG, Izídio GS, Cabral

A,Ribeiro RA, Abílio VC, Ribeiro AM, Silva RH. Repeated treatment with a

Page 70: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

57

lowdose of reserpine as a progressive model of Parkinson’s disease. Behav

Brain Res 2012; 231:154–63.

24. Fitzpatrick E, Ashkan K, Wallace BA, Benabid AL, Mitrofanis J.

Differentialsurvival patterns among midbrain dopaminergic cells of MPTP-

treated monkeys and 6OHDA-lesioned rats. Anat Embryol (Berl) 2005;

210(2):101-23.

25. Halliwell B, Gutteridge JM. Free Radicals in Biology and Medicine. New York:

Oxford University Press, 2007. 851P.

26. Henry JP, Sagne C, Botton D, Isambert MF, Gasnier B. Molecular

pharmacology of the vesicular monoamine transporter. Adv Pharmacol 1998;

42:236-239.

27. Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S. Time course and

morphology of dopaminergic neuronal death caused by the neurotoxin 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 1995; 4(3):257-

69.

28. Jicha GA, Salamone JD. Vacuous jaw movements and feeding deficits in rats

with ventrolateral striatal dopamine depletion: possible relation to parkinsonian

symptoms. J Neurosci 1991; 11(12):3822-9.

29. Klivenyi P, Vecsei L. Pharmacological models of Parkinson's disease in rodents.

Methods Mol Biol 2011; 793:211-27.

30. Korczyn AD. Dementia in Parkinson’s disease. J Neurol 2001; 248 (suppl3):

III/1- III/4.

31. Li X, Yin J, Cheng CM, Sun JL, Li Z, Wu YL. Paraquat induces selective

dopaminergic nigrostriatal degeneration in aging C57BL/6 mice. Chin Med J

(Engl) 2005; 118(16):1357-61.

32. Mogi M, Harada M, Kojima K, Kiuchi K, Nagatsu I, Nagatsu T. Effects of

repeated systemic administration of 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) on striatal tyrosine hydroxylase activity in vitro and

tyrosine hydroxylase content. Neurosci Lett 1987; 80(2):213-8.

33. Monville C, Torres EM, Dunnett SB. Comparison of incremental and

accelerating protocols of the rotarod test for the assessment of motor deficits in

the 6-OHDA model. J Neurosci Methods 2006; 158 (2): 219-23.

Page 71: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

58

34. Muzykantov VR. Targeting of superoxide dismutase and catalase to vascular

endothelium. J Control Release. 2001 Mar 12;71(1):1-21.

35. Nieoullon A. Dopamine and the regulation of cognition and attention. Progress

in Neurobiology 2002; 67, 53-83.

36. Pereira RP, Fachinetto R, de Souza Prestes A, Wagner C, Sudati JH, Boligon

AA, Athayde ML, Morsch VM, Rocha JB. Valeriana officinalis ameliorates

vacuous chewing movements induced by reserpine in rats. J Neural Transm.

2011; 118(11):1547-57.

37. Pérez HJ, Carrillo SC, García E, Ruiz-Mar G, Pérez-Tamayo R, Chavarría A.

Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson's

disease. Toxicology 2014; 319:38-43.

38. Reckziegel P, Peroza LR, Schaffer LF, Ferrari MC, de Freitas CM, Bürger ME,

Fachinetto R. Gallic acid decreases vacuous chewing movements induced by

reserpine in rats. Pharmacol Biochem Behav. 2013 Mar; 104:132-7.

39. Rozas G, López-Martín E, Guerra MJ, Labandeira-García JL. The overall rod

performance test in the MPTP-treated-mouse model of Parkinsonism. J

Neurosci Methods 1998; 83(2):165-75.

40. Salamone JD, Baskin P. Vacuous jaw movements induced by acute reserpine

and low-dose apomorphine: possible model of parkinsonian tremor. Pharmacol

Biochem Behav 1996; 53(1):179-83.

41. Salamone JD, Ishiwari K, Betz AJ, Farrar AM, Mingote SM, Font L, Hockemeyer

J,Müller CE, Correa M. Dopamine/adenosine interactions related to locomotion

andtremor in animal models: possible relevance to parkinsonism. Parkinsonism

Relat Disord 2008; 14 Suppl 2:S130-4.

42. Sanberg PR, Bunsey MD, Giordano M, Norman AB. The catalepsy test: its ups

and downs. Behav Neurosci 1988; 102(5):748-59.

43. Santos JR, Cunha JAS, Dierschnabel AL, Campêlo CLC, Leão AHFF, Silva AF,

Engelberth RCGJ, Izídio GS, Cavalcante JS, Abílio VC, Ribeiro A M, Silva RH.

A new progressive model of Parkinson´s disease: Different temporal courses of

motor and cognitive deficits. Behav Brain Res 2013; 253, 68–77.

44. Silva RH, Abílio VC, Torres-Leite D, Bergamo M, Chinen CC, Claro FT,

Carvalho R de C, Frussa-Filho R. Concomitant development of oral dyskinesia

Page 72: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

59

and memory deficits in reserpine-treated male and female mice. Behav Brain

Res 2002; 132, 171-177.

45. Skalisy LL, Beijamini V, Joca SL, Vital MABF, da Cunha C, Andreatini R.

Evaluation of the face validity of reserpine administration as an animal modelo

of depression- Parkinson’s disease association. Prog Neuro-Psychopharmacol

Biol Psychiatry 2002; 26, 879-883.

46. Spina MB & Cohen G. Dopamine turnover and glutathione oxidation:

implications for Parkinson disease. Proc Natl Acad Sci U S A. 1989; 86(4):

1398–1400.

47. Teixeira AM, Trevizol F, Colpo G, Garcia SC, Charão M, Pereira RP, Fachinetto

R, Rocha JB, Bürger ME. Influence of chronic exercise on reserpine-induced

oxidative stress in rats: behavioral and antioxidant evaluations. Pharmacol

Biochem Behav. 2008; 88(4):465-72.

48. Teixeira AM, Reckziegel P, Müller L, Pereira RP, Roos DH, Rocha JB, Bürger

ME. Intense exercise potentiates oxidative stress in striatum of reserpine-

treated animals. Pharmacol Biochem Behav. 2009; 92(2):231-5.

49. Thornton E, Vink R. Treatment with a substance P receptor antagonist is

neuroprotective in the intrastriatal 6-hydroxydopamine model of early

Parkinson's disease. PLoS One 2012; 7(4):e34138.

50. Zgaljardic DJ, Foldi NS, Borod JC. Cognitive and behavioral dysfunction in

Parkinson’s disease: neurochemical and clinicopathogical contributions. J

Neural Transm 2004; 111, 1287-1301.

Page 73: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

60

21. Artigo 3

(Submetido à publicação no periódico “Brain Pathology”)

MOLECULAR, NEUROCHEMICAL AND BEHAVIORAL HALLMARKS OF

RESERPINE AS A MODEL FOR PARKINSON’S DISEASE: NEW

PERSPECTIVES TO A LONG-STANDING MODEL

Running head: Reserpine as a model of Parkinson’s disease

Anderson H.F.F. Leão1*, Aldair J. Sarmento-Silva1*, Alessandra M. Ribeiro1,2,

Regina H. Silva1,3#

1Memory Studies Laboratory, Department of Physiology, Universidade Federal

do Rio Grande do Norte, Natal, RN, Brazil.

2Department of Biosciences, Universidade Federal de São Paulo, Santos, SP,

Brazil

3Department of Pharmacology, Universidade Federal de São Paulo, São Paulo,

SP, Brazil

*These authors contributed equally to this work

#Corresponding Author

Departamento de Farmacologia – UNIFESP

Rua Botucatu, 862, Edifício Leal Prado, 1º.andar

CEP 04023062 - São Paulo, SP, Brasil

Email: [email protected]

Page 74: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

61

22. Abstract

The administration of reserpine to rodents was one of the first models employed

to investigate the pathophysiology and screening for potential treatments of

Parkinson’s disease (PD). The reserpine model was critical to the

understanding of the role of monoamine system in the regulation of motor and

affective disorders, as well as the efficacy of current PD treatments, such as L-

DOPA and dopamine agonists. Nevertheless, with the introduction of toxin-

induced and genetic models of PD, reserpine became underused. The main

rationale to this drawback was the supposed absence of reserpine construct

validity with PD. Here, we highlight classical and recent experimental findings

that support the face, pharmacological and construct validity of reserpine PD

model, and reason against the current rationale for its underuse. We also aim to

shed a new perspective upon the model by discussing the main challenges and

potentials for the reserpine model of PD.

Keywords: Parkinson’s disease, reserpine, rodent, animal model, dopamine.

Page 75: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

62

23. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative

disorder after Alzheimer’s disease. Its onset is rarely before the age of 50 years

and a sharp increase of the incidence is seen after the age of 60 years (18). PD

affects approximately 1-2% of the population over the age of 60 (58), with a

higher prevalence in men than in women (18,57). Most importantly, it is a

disorder with progressive onset and escalating deterioration of quality of life

(25). Therefore, PD is recognized as a social and economic burden to countries

with increasing life expectancy, and for this reason, the scientific interest in the

disorder is continuously emphasized (18).

PD diagnose is oriented by its cardinal motor symptoms, which include

bradykinesia, rigidity, resting tremor, and postural instability (100). However,

even though PD is considered a motor disorder, patients present equally

incapacitating non-motor symptoms. Further, those symptoms may appear

previously or concomitantly to motor symptoms (116), and include sleep

disorders (78,123,140), anxiety (141), depression (14,89), neuropathic pain and

nociceptive sensitization (24,66,178), impulsivity disorder (147,185,186),

dementia and executive function impairment (1,6,45,113), olfactory dysfunction

(6,55) and constipation (44,140).

The motor alterations are a consequence of dopaminergic neuronal loss in the

substantia nigra (SN) (84,100), which originates the main dopaminergic

projection to the motor regulating nucleus in the basal ganglia (48,110).

Nonetheless, loss of dopaminergic neurons in the ventral tegmental area (VTA)

– projecting to limbic areas and to pre-frontal cortex – is also reported in PD

(174,179). This loss results in emotional and cognitive deficits (141,152).

Furthermore, other neurotransmission disturbances are described, as revealed

by histopathological markers in serotonergic (93,176), noradrenergic

(25,193,195) and cholinergic (179,193) neurons.

Studies have also characterized the neurochemical alterations in PD at the

cellular and genetic levels. 5-10% of PD cases can be traced to familial

heritage, subsequently allowing the identification of some genes that underlie

Page 76: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

63

rare familial forms of the disease (188). This approach highlighted genes

involved in main cellular pathways implicated in synaptic function (SNCA: α-

sinuclein), ubiquitin-proteasome protein degradation (Parkin and UCHL1),

respiratory chain (PINK1), protein phosphorylation (LRRK2), and oxidative

stress response (DJ-1) (54,150,184,188). Consequently, impairment of these

pathways leads to oxidative stress and defective protein folding, signalization

and degradation (43,96,104,167). Finally, the accumulation of defective protein

aggregates - mainly constituted by α-sinuclein, parkin and ubiquitin, known as

Lewy’s bodies (182) – is followed by cell death. Thus, the pathogenesis of PD

primarily relates to the generation of oxidative stress and accumulation of

defective proteins.

These genetic alterations are in accordance with epidemiological associations

to PD. These associations comprise exposure to environmental toxins that act

on the respiratory chain (37,132,177) – such as pesticides, heavy metals and

carbon monoxide – and neuroinflammation (80,182). Both events result in the

generation of toxic reactive oxygen (ROS) and nitrogen (RNS) species giving

rise to cell damage and eventually cell death. In brief, PD harbors the oxidative

imbalance as a common molecular pathway to cellular stress and

neurodegeneration. Thus, animal models of PD aim to reproduce the

aforementioned cellular and molecular damages (40,56,118), while clinical and

preclinical therapeutic strategies target different candidate steps of these

pathways to slow PD progression (30,83).

23.1 Animal models of PD

Current studies use genetic and neurotoxic approaches to reproduce PD

pathophysiological hallmarks in animal models. In genetic studies, some

strategies focus on the overexpression of normal or truncated autosomal

dominant genes – as SNCA (20,97,126,187) and LRRK2 (107,108) - and

knockout or knockdown of autosomal recessive genes, as Parkin, PINK1 or DJ-

1 (98,99,144,173). Nevertheless, none of these strategies recapitulates key

clinical and neuropathological features of PD, and they only account for 5-10%

of PD cases (188). As a result, the most frequently adopted strategy is to induce

Page 77: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

64

oxidative imbalance and dopamine depletion by the administration of toxins or

drugs that act upon dopaminergic neurons (34,40,56,65,118,125,154,162,192).

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and 6-OHDA (6-

hydroxydopamine) are the most used toxins in animal models of PD due to their

rather selective actions upon dopaminergic neurons (8,17,56,118). Both enter

the dopaminergic neuron by the dopamine transporter (DAT) and inhibit the

complex I in the respiratory chain, causing reduction in ATP, oxidative damage,

protein aggregation, cell death and dopamine depletion (56,86,118,166). MPTP

is a highly lipophilic protoxin that readily crosses the blood-brain barrier when

peripherally administered (148). Once in the brain, MPTP is converted by glial

MAO-B into its intermediate 1-methyl-4-phenyl-2,3,dihydropyridinium (MPDP+),

which is rapidly oxidized into 1-methyl-4-phenylpyridinium (MPP+) and then

reabsorbed by the dopaminergic neuron through the DAT (41). A disadvantage

of this model is that rodents are more resilient to cell damage induced by MPTP

compared to primates. This results in the need for higher dosages and

increased variability in neurodegeneration within treated animals (39,56,155). In

addition, the handling of large doses of MPTP and biological waste products

represents a high risk of contamination to researchers (142).

6-OHDA, on the other hand, do not cross the blood-brain barrier, and is

required to be directly delivered to the brain (17,23,56,155). Contrastingly from

MPTP, 6-OHDA also enters noradrenergic neurons through DAT (26), and

usually this lack of specificity is resolved by the coadministration of the inhibitors

of noradrenaline (NA) and serotonin (5-HT) reuptake, nortriptiline or

desipramine (24,52,171). Although safer regarding contamination risk compared

to MPTP, bilateral administration of 6-OHDA results in extensive neuronal loss

and severe motor impairment incompatible with survival. Thus, animals are

required to be tube-fed due to aphagia and adipsia (51,180). In order to avoid

these issues, most studies perform the unilateral lesion with 6-OHDA, and

assess motor deficit by inducing unilateral rotating behavior with dopaminergic

agonists (156,171). Thus, unilateral administration of 6-OHDA lack face validity

with PD (51).

Page 78: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

65

Alternatively, environmental toxins like rotenone, paraquat and maneb have

been employed to model PD in rodents (8). Of those, rotenone is the most used

due to its lipophilic structure, easiness to cross biological membranes, and

ability to inhibit complex I and generate ROS (15,85,157). However, despite its

close relationship to epidemiological expositions on PD, rotenone’s absence of

selective tissue action results in systemic and peripheral toxicity (68,139,145)

and highly variable dopaminergic lesions (19,39,157,194).

Finally, the administration of reserpine – an inhibitor of the vesicular transporter

of monoamines in the central nervous system (VMAT2) – was one of the

earliest animal models of PD. Reserpine is an alkaloid extracted from Rauwolfia

serpentine, and was first used as a potent antihypertensive drug due to its

capacity to deplete cellular monoamine content (70,115,138). The clinical use of

reserpine was then followed by the observation that patients chronically treated

with reserpine developed lethargy, depression and motor dyskinesia, implicating

the monoamine system in the pathophysiology of affective and motor disorders

(70,94). Readily after, reserpine was used in rodents to mimic parkinsonian

motor and non-motor impairments (16,35,36,47,63,151,160). Although

considered outdated in comparison to the aforementioned models, the

reserpine model recapitulates key features of PD symptomatology,

neurochemistry and pharmacology. For this reason, the model was practical to

elucidate the relevance of dopaminergic neurotransmission to motor control as

well as to screen for candidate drugs for treatment of PD. Under this reference,

this review will highlight a new perspective upon the model and reason against

the current rationale for the undervaluation of the reserpine-induced

parkinsonism model.

23.2. Motor and non-motor behavioral impairment in the reserpine model

The relationship between reserpine and PD was first established by Carlsson et

al. (1957) by the observation that the akinetic state induced by reserpine in

rodents was alleviated by L-DOPA (35,36). At doses varying from 1 to 10

mg/kg, the reserpine induces a wide range of motor impairments reminiscent of

PD, mainly akinesia, hypokinesia, catalepsy, limb rigidity and facial tremor

(16,47,151). These motor features are a consequence of the blockage of

Page 79: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

66

VMAT2 (183), leading to total monoamine depletion - including dopamine,

noradrenaline (NA) and serotonin (5-HT).

Besides the typical motor impairment, reserpine is also able to produce aversive

(64,159) and recognition (154) memory deficits, anxiety-like behavior (22,103),

depressive and anhedonic-like behaviors (9,10,160) and nociceptive

sensitization (9,10,109,133). Moreover, the memory impairment and anxiety-like

behavior were described in a dose range (0.1-0.5 mg/kg) that did not produce

motor impairment (22,64,154,159), dissociating an important confounding factor

in behavioral analysis.

More recently, the repeated treatment with low doses of reserpine (0.1 mg/kg)

has been suggested as a progressive model of PD (65,154). Under this

treatment regimen, animals progressively developed motor impairment in the

open field, catalepsy bar, and oral movement tests after repeated injections of a

low dose (0.1 mg/kg) of reserpine. Deficits in these motor tests recapitulate

main motor symptoms of PD, such as hypokinesia and bradykinesia in the open

field and catalepsy bar test (i.e., slowness and difficulty to initiate movements),

and resting tremor in the oral movement test.

In the aforementioned study (154), the motor impairments were preceded by

cognitive impairment in the novel object recognition task and accompanied by

neuronal alterations compatible with the pathophysiology of PD – i.e. reduction

in tyrosine hydroxylase (TH) immunostaining (154) and increased lipid

peroxidation in the striatum (65). Furthermore, the object recognition index

positively correlated with VTA immunostaining for TH, suggesting that neuronal

pathways disruption other than nigrostriatal pathway may play an important role

in non-motor symptoms of PD. In addition, object recognition deficit occurred

after a 1h (154), but not 24h (65), interval between training and test sessions.

These results are in accordance with executive function and procedural memory

deficits in PD patients (105,147,149,186). In parallel, immobility in the forced

swim test correlated with pain indexes, indicating a comorbid relationship

between reserpine-induced non-motor symptomatology (9). Similarly, PD non-

motor impairments comprise anxiety (141), depression (14,89), and nociceptive

sensitization (27,66,178). Thus, non-motor findings induced by reserpine

Page 80: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

67

resemble non-motor PD symptoms, reinforcing reserpine’s face validity as a PD

model.

23.3. Pharmacological and predictive quality of the reserpine model

The use of reserpine was critical to the first demonstration of the therapeutic

efficacy of L-DOPA (35,163). This effect was shortly after reproduced in

humans (50) and the reserpine model was established for screening of potential

symptomatic treatment efficacy of new drugs for PD. Indeed, besides L-DOPA,

the reserpine model predicted other current symptomatic anti-Parkinson

treatments: apomorphine (76), pramipexole (62,112), ropinirole (71), rotigotine

(181), pergolide (47,90), bromocriptine (90,91) and cabergoline (122). Likewise,

reserpine-induced motor impairment is also reverted by other clinically utilized

agents in association with L-DOPA, for example: muscarinic antagonists, such

as benztropine and trihexyphenidyl (76); MAO-B or COMT inhibitors such as

selegiline (47,161), rasagiline (67) and tolcapone (111); and amantadine

(47,49,76,92,161). Table 1 summarizes different types of motor impairment

induced by reserpine that are reverted by these drugs. In fact, reserpine is still

currently used to assess anti-parkinsonian efficacy of novel agents, such as D3

receptor agonists (73), inhibitors of glutamate release (95), group III

metabotropic glutamate receptor (mGlu) agonists or positive allosteric

modulators (13,29,131), group I muscarinic metabotropic receptor (mAchR)

antagonists or allosteric modulator (189), and mixed adenosine A2A/A1

antagonists (12,158).

Reserpine is also employed in the screening for antioxidant and anti-

inflammatory treatments to prevent motor impairments such as dyskinesia

(5,9,21,60,128,135,136). Current rationale on oral dyskinesia accounts for

oxidative stress on the pathophysiology of the disorder (2,4,125,169,170).

Accordingly, monoamine depletion in reserpine-treated rats is followed by

increase of ROS/NOS and cell damage (164). The metabolism of

catecholamine (CA) intrinsically results in ROS formation, which is increased as

a consequence of free CA in the cytoplasm of reserpine-treated rats (117,143).

Thus, oxidative stress and cell damage sums up to the monoamine depletion to

impair motor performance. For this reason, treatment with antioxidants is able to

Page 81: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

68

revert reserpine-induced oxidative stress and oral dyskinesia (2,136). Finally,

treatment with 40 mg/kg vitamin E concomitant to the repeated treatment with

0.1 mg/kg reserpine protocol (65,154) prevented cognitive and motor

impairment, as well as the TH immunostaining reduction in rats (unpublished

data).

These neurochemical imbalances resemble PD features, as oxidative stress

and dopamine depletion are keystones of the disease pathophysiology (31,72).

Thus, reserpine pharmacological rationale comprises important qualities of PD

pathophysiology and constitutes a good model for screening for candidate

drugs to both symptomatic treatment and possible slowing of disease

progression. This advantage is reinforced by its low toxicity to researchers, low

cost, and reproducibility among laboratories, which points out the reserpine

model of PD as a suitable model for drug screening.

23.4. Molecular and neurochemical features of the reserpine model

Despite the robust face and pharmacological validity of the reserpine model, the

current literature does not recognize the reserpine as a useful model, arguing

the lack of construct validity (56). This drawback is due to the experimental

observations that (1) reserpine do not induce neurodegeneration and protein

aggregation (56,190); (2) motor performance, monoamine content, and TH

staining are partially restored after treatment interruption (133,154); and (3)

reserpine lacks specificity regarding dopaminergic neurotransmission

(9,10,109,129,133).

Nevertheless, the behavioral and neurochemical features of reserpine

administration are highly reproducible with little variance across studies.

Reserpine peripherally administered in the dose range of 1-10 mg/kg is known

to produce a robust (70-95%) depletion of monoamine content in several brain

areas (9,10,53,59,77,82,109,129,133,172; for a summary, see Table 2. This

monoamine depletion starts 30 min after reserpine injection and may endure up

to 14 days, finally returning to normal levels after 21 days of retrieval (82,133).

At first, the absence of specificity was taken as a disadvantage in the model to

accurately reflect PD neurochemistry. However, the realization that PD also

Page 82: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

69

comprises 5-HT and NA neurotransmission (25,93,176,193,195) imbalances

argues in favor of the reserpine model as a satisfactory model to reproduce PD

neurochemistry disruptions.

Table 2. Monoamine content depletion induced by different reserpine treatment

regimens in rodents. STR: striatum; SN: substantia nigra; BLA: basolateral amygdala;

CTX: cortex; HPC: hippocampus; THA: thalamus; PFC: prefrontal cortex. Time

window refers to time last reserpine injection. #microdialysis studies.

DOSE STRUCTURE TIME WINDOW DA NA 5-HT REFERENCES

(50x) 0.01 mg/kg STR 24h 0% ~45% 0% 129

(50x) 0.1 mg/kg STR 24h ~90% ~90% ~65%

(50x) 1.0 mg/kg STR 24h ~95% ~90% ~90%

5.0 mg/kg

SN 2h ~85% N/A N/A 82

24h ~70%

STR 2h >95%

24h >95%

1.0 mg/kg STR 6h ~80% N/A ~50% unpublished

data 24h ~90% ~80%

96h ~75% ~80%

5.0 mg/kg STR 24h ~95% N/A N/A 59

5.0 mg/kg STR 24h ~70% N/A N/A 172

10.0 mg/kg STR 18h ~95% N/A N/A 77

STR# 18h >95%

1.0 mg/kg STR 24h ~55% N/A N/A 53

(3x) 1.0 mg/kg BLA 24h ~75% ~80% ~70% 109

(3x) 1.0 mg/kg CTX 48h ~75% ~60% ~70% 9

(3x) 1.0 mg/kg CTX 48h ~80% ~70% ~80% 10

HPC 48h ~70% ~60% ~85%

3.0 mg/kg THA# 24h ~75% >95% >95% 133

PFC# 24h ~90% >95% ~90%

Page 83: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

70

Table 1. Predictive validity of reserpine PD model effectiveness for symptomatic treatment of different motor disturbances in PD. The table was constructed

and updated according to the table presented by Duty and Jenner (2011). The drug list was compiled from the Parkinson’s UK web site:

parkinsons.org.uk/content/dopamine-agonists. Accessed 06/10/2014.

TREATMENT RIGIDITY HYPOKINESIA CATALEPSY TREMOR ORAL DYSKINESIA REFERENCES L-DOPA ± Carbidopa + + + + - 47,76,91,122,161 DA agonistas

Bromocriptine + + + - - 90,91,122,161 Cabergoline + + + - - 122 Pergoline + + + + - 47,90,112 Pramipexole - + + - - 62,112 Ropinirole - - + - - 71 Apomorphine + + + - - 76,90,91

Glutamate antagonists

Amantadine + + - + - 47,76,161 Anticholinergics - - - - - -

Orphenadrine - - - - - - Procyclidine - - - - - - Trihexyphenidyl + - - - - 76 Benztropine + - - - - 76

COMT inhibitors

Entacapone - - - - - - Tolcapone - - - - - -

MAO-B inhibitors

Rasagiline - + - - - 67 Slegiline + + - - + 47,161

Anti-oxidative and Dietary therapy

Vitamin E - - - - + 2,60

Co-enzime Q10 - - - - - - Miscelous - - - - + 5,21,128,135,136

Page 84: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

71

Moreover, this characteristic is especially important to the aforementioned non-

motor deficits of PD. For instance, NA and 5-HT transmissions are related to

cognitive and emotional function (119,160). Accordingly, reserpine treatment

results in monoamine depletion in areas involved in emotional processing - as

the amygdala (109) - and cognition - as the hippocampus, cortex (9,10) and

pre-frontal cortex (133). Further, repeated reserpine treatment reduces TH

staining in the hippocampus, pre-frontal cortex, dorsal striatum, VTA, SNpc, and

locus coeruleus (154). Another highly reproducible biochemical alteration in the

reserpine model is the induction of oxidative stress. Reserpine in the dose

range of 1-10 mg/kg is able to induce decreases in catalase, superoxide

dismutase, total content of reduced glutathione, and ATP as well as an increase

in glutathione peroxidase activity, oxidized glutathione, lipid peroxidation, nitric

oxide and iron (2–

4,9,10,21,32,33,59,60,65,109,120,128,136,137,146,153,159,164,169,170; for a

summary, see Table 3). Overall, there is an increase in oxidative damage.

Nevertheless, some studies report contradicting results. Those differences

seem to emerge from different dosage, treatment regimen, and brain area

studied. For example, repeated treatment with low doses of reserpine (0.1

mg/kg) produced cumulative effects upon lipid peroxidation in the striatum, but

not hippocampus, of rats (65). As well, catalase activity is generally reduced in

all brain areas - except for the striatum in which some studies found increased

activity (169,170) or no significant differences (4,60). This opposite outcome

may be due to a differential fine-tuning of catalase activity regulation in the

striatum, as catecholaminergic metabolism intrinsically leads to oxidative stress

(117,143). In fact, oxygen peroxide (H2O2) is one of the main products of

catecholamine metabolism by MAO-A (117,143), and naturally one may

speculate that catalase in catecholaminergic neurotransmission is differentially

modulated by increases in H2O2 in order to provide antioxidant protection.

Indeed, this is endorsed by the observation that catecholaminergic neurons are

relatively abundant in populations of catalase-positive microperoxisomes (114).

Thus, it seems that treatment duration and brain area studied defines the extent

of oxidative damage induced by reserpine.

Page 85: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

72

The oxidative stress induced by reserpine is related to increased DA

metabolism as a result of reduction on the number of DA molecules in the

vesicle (134) and increased DA turnover (61,129,164). Accordingly, MAO-A

inhibitor reverts L-DOPA and reserpine induced increase in oxidized glutathione

(164,165). In addition, free DA and metabolites in the cytoplasm results in auto-

oxidation of DA and DOPAC to their corresponding reactive quinones - DA-Q

and DOPAC-Q, respectively – (11,117,143), which contributes do cell apoptosis

and synuclein dimerization (75).

The generation of highly reactive molecules results in early cell damage as

consistently evidenced by lipid peroxidation (Table 3) resulting in pro-

inflammatory signalization by TNF-α and IL1-β (9,10). Subsequently, the

increase in pro-inflammatory cytokines activates microglia initiating a vicious

circle of adhesion, inflammation and liberation of more cytokines. Activated

microglia upon dopaminergic neurons also results in increased nitric oxide (NO)

(9,10,21). Afterwards, NO - in the presence of superoxide (O2−) - produces

peroxynitrite (NO3−) (117,143), which is highly reactive and has been shown to

inactivate TH via S-thiolation on cysteine residues (7,88,101,102). In this

context, repeated treatment with a low dose of reserpine (0.1 mg/kg) resulted in

reduced TH immunostaining in several brain areas – i.e. hippocampus, pre-

frontal cortex, dorsal striatum, SNpc and VTA (154).

Ultimately, these events may terminate in the commitment with apoptotic

pathways. In other words, there is a reduction in anti-apoptotic molecules, as

Bcl-2 (59,109), and an increase in pro-apoptotic molecules, as capastase-3

(9,10,109). Nevertheless, whether such signalization leads to actual apoptosis

and cell death is not yet established. Another important feature in favor of the

construct validity of the reserpine model is the observation that VMAT2 deficient

mice, which express only 5% of functional VMAT2, presents age-associated

neurodegeneration in SNpc, locus coeruleus and dorsal raphe, followed by α-

synuclein accumulation and TH and tyramine transporter immunostaining

reduction (38,168). This VMAT2 deficient mice also presents L-DOPA

responsive motor impairment, two-fold increase in DA concentration in cytosol,

reduction in TH phosphorylation associated with catechol feedback, 95% of DA

depletion and increased DA turnover (46,124,168).

Page 86: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

73

Table 3. Molecular changes related to oxidative stress induced by different reserpine treatment regimens in rodents.

STRUCTURE DOSE (MG/KG) TIME WINDOW CAT SOD GPX GST GSH GSSG GSSG/GSH LPO NO REFERENCES

Total brain

5.0 24 h ↓ ↓ ↑ 59

(3x) 1.0 3 h ↓ ↓ ↓ ↑ 136

(3x) 1.0 24 h ↓ ↓ ↓ ↑ 127

(3x) 1.0 24 h ↓ ↓ ↓ ↑ 128

(3x) 1.0 17 days ↓ ↓ ↓ ↑ 153

Cortex

(2x) 1.0 24 h ns 137

(3x) 1.0 24 h ns 32

(3x) 1.0 48 h ↓ ↓ ↓ ↑ ↑ 10

(3x) 1.0 48 h ↓ ↓ ↑ ↑ 9

(3x) 1.0 96 h ns 146

10 2 h ns 164

Striatum (10x) 0.1 24 h ↑ 3

(10x) 0.1 48 h ↑ 65

(2x) 0.5 24 h ns 60

(2x) 1.0 24 h ns ns 4

(2x) 1.0 24 h ↑ ↑ 169

(2x) 1.0 24 h ↑ 2

(2x) 1.0 24 h ↑ 33

(2x) 1.0 24 h ↑ ↓ 170

(2x) 1.0 24 h ns 137

(3x) 1.0 24 h ↑ 32

(3x) 1.0 96 h ns 146

5.0 90 min ↑ ns ↑ ↑ 21

10 2 h ↑ 164

Hippocampus (10x) 0.1 48 h ns 65

(2x) 1.0 24 h ns 137

(3x) 1.0 48 h ↓ ↓ ↓ ↑ ↑ 10

(3x) 1.0 48 h ↓ ↓ ↑ ↑ 9

5.0 90 min ns ns ↑ ↑ 21

Substantia nigra (2x) 1.0 24 h ns 137

Basolateral amygdala (3x) 1.0 24 h ↓ ↑ 109

CAT: catalase; SOD: superoxide dismutase; GPx: glutathione peroxidase; GST: glutathione-S-transferase; GSH: reduced glutathione; GSSG:

oxidized glutathione; LPO: lipid peroxide; NO: nitric oxide; ns: not significant. Time window refers to time after last reserpine injection.

Page 87: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

74

Moreover, these alterations are accompanied by non-motor impairments, such

as deficit in olfactory discrimination, delayed gastric emptying, altered sleep

latency, anxiety-like behavior and age-dependent depressive behavior (168). In

short, all behavioral and neurochemical alterations in VMAT2 deficient mice

recapitulates the effects of reserpine treatment. Thus, neurodegeneration

seems plausible in long-term VMAT2 functional blockade by reserpine

treatment. For instance, treatment with 1 mg/kg of reserpine every other day for

6 week resulted in persistent neurochemical changes – DA depletion and D1

and D2 receptor up-regulation – up to 60 days after treatment interruption (130),

suggesting long-lasting or permanent neurochemical changes within a chronic

reserpine treatment. Accordingly, repeated treatment with 0.1 mg/kg of

reserpine every other day for 20 days resulted in reduction of TH

immunohistochemistry that was only partially reversed after 30 days of

treatment interruption (154).

As follows, acute or short-term DA depletion by reserpine treatment results in

up-regulation of D1, but not D2 (42,121,172). Nevertheless, long-term treatment

also leads to D2 up-regulation (130,175). These neurochemical modifications

also relate to dopaminergic denervation in untreated PD patients. Functional

imaging techniques report up-regulation of D2 receptor, whereas up-regulation

of D1 is not yet clearly defined (79,87).

In conclusion, reserpine treatment is able to induce (1) monoamine depletion,

(2) oxidative stress, (3) inflammation, (4) pro-apoptotic commitment, (4) tyrosine

hydroxylase immunostaining reduction and (5) dopamine receptors up-

regulation (for summary of neurochemical events after reserpine administration,

see Figure 1). Most of these reserpine-induced neurochemical alterations are

clearly reminiscent of PD pathophysiology and thus holds a satisfactory

resemblance to PD phenomenology.

24. Final considerations

The exposed prospect of reserpine-induced behavioral, pharmacological and

neurochemical findings restates the use of reserpine as a valuable and

promising model for PD study. Thus, the current underuse of reserpine to

Page 88: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

75

understand PD pathophysiology should be reconsidered. As well, the use of

reserpine could be substantive to the relevance of VMAT2 functionality to PD in

humans. Indeed, polymorphisms in promoter regions that increases

transcription of VMAT2 are protective against PD (28,74), and reduction in

VMAT2 and its mRNA in nigrostriatal neurons have been reported in PD

patients (81,120). Further, VMAT2 is present in Lewy’s bodies in the substantia

nigra of PD patients (191), and ventral tegmental area dopaminergic neurons

that are spared in PD harbors higher levels of VMAT2 (120). Finally, increased

cytoplasmatic dopamine influences the conformational state of α-synuclein,

promoting stabilization of its pathogenic form (69,106). Thus, because

functional VMAT2 expression is protective against dopaminergic

neurodegeneration, its long-term blockage might represent an interesting

approach to model PD.

We believe that the scientific effort on reserpine PD model validation should

focus in answering whether neurodegeneration and cell death occurs in the

chronic treatment with reserpine, as well as the exploitation of the model to

investigate progressive neurochemical features of PD. We recently presented a

low dose reserpine-induced progressive model of PD that could be useful to

investigate such inquiry (65,154). Therefore, in view of the presented

experimental evidences, the reserpine-induced PD model in rodents reaches

face, pharmacological and phenomenological validity criteria, and closely

resembles major molecular pathways to PD progression.

Page 89: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

76

Figure 1. Neurochemical and molecular events after reserpine treatment. (1)

Reserpine precludes dopamine (DA) storage. (2) Increased DA is metabolized in the

cytoplasm (3) generating reactive oxygen species (ROS) and (4) highly reactive

quinones (DA-Q and DOPAC-Q) (5) resulting in oxidative stress and (6) lipid

peroxidation.(7) Accumulation of ROS and reactive quinones leads to cell damage and

pro-inflammatory signalization. (8) Activation of microglia byTNF-α and IL-1β (9)

amplify pro-inflammatory signalization resulting in (10) nitric oxide (NO)increase and

peroxynitrite (NO3-) formation with free superoxide (O2

-). (11) NO3- inhibits TH activity

and (12) reinforces cell damage committing cell fate in pro-apoptotic signalization.At

the same time, (13) monoamine depletion in synaptic cleft results in (14) up-regulation

of D1 and D2 receptorson the post-synaptic and pre-synaptic membrane.ALDH:

aldehyde dehydrogenases; MAO: monoamine oxidase; AADC: aromatic L-amino acid

decarboxylase; TH: tyrosine hydroxylase.

Page 90: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

77

25. References

1. Aarsland D, Andersen K, Larsen JP, Lolk A (2003) Prevalence and

characteristics of dementia in Parkinson disease. Arch Neurol 60(3):387-92.

2. Abílio V, Araujo CCS, Bergamo M, Calvente PRV, D’Almeida V, Ribeiro R de A,

Frussa-Filho R (2003) Vitamin E attenuates reserpine-induced oral dyskinesia

and striatal oxidized glutathione/reduced glutathione ratio (GSSG/GSH)

enhancement in rats. Prog Neuro-Psychopharmacology Biol Psychiatry

27(1):109-14.

3. Abílio V, Vera J, Ferreira L, Duarte C, Carvalho R, Grassl C, Martins

CR, Torres-Leite D, Bignotto M, Tufik S, Ribeiro RA, Frussa-Filho R (2002)

Effects of melatonin on orofacial movements in rats. Psychopharmacology

(Berl)161:340-7.

4. Abílio VC, Silva RH, Carvalho RC, Grassl C, Calzavara MB, Registro S,

D’Almeida V, Ribeiro R de A, Frussa-Filho R (2004) Important role of striatal

catalase in aging- and reserpine-induced oral dyskinesia. Neuropharmacology

47(2):263-72.

5. Al-Bloushi S, Safer A-M, Afzal M, Mousa SA. (2009) Green tea modulates

reserpine toxicity in animal models. J Toxicol Sci 34(1):77-87.

6. Anang JBM, Gagnon J-F, Bertrand J-A, Romenets SR, Latreille V, Panisset M,

Montplaisir J, Postuma RB (2014). Predictors of dementia in Parkinson disease:

A prospective cohort study. Neurology 83(14):1253-60.

7. Ara J, Przedborski S, Naini AB, Jackson-Lewis V, Trifiletti RR, Horwitz J,

Ischiropoulos H (1998) Inactivation of tyrosine hydroxylase by nitration following

exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP). Proc Natl Acad Sci USA 95(13):7659-63

8. Arif IA, Khan HA (2010) Environmental toxins and Parkinson’s disease: Putative

roles of impaired electron transport chain and oxidative stress. Toxicol Ind

Health 26(2):121-8.

9. Arora V, Chopra K (2013) Possible involvement of oxido-nitrosative stress

induced neuro-inflammatory cascade and monoaminergic pathway:

underpinning the correlation between nociceptive and depressive behaviour in a

rodent model. J Affect Disord 151(3):1041-52.

Page 91: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

78

10. Arora V, Kuhad A, Tiwari V, Chopra K (2011) Curcumin ameliorates reserpine-

induced pain-depression dyad: behavioural, biochemical, neurochemical and

molecular evidences. Psychoneuroendocrinology 36(10):1570-81.

11. Asanuma M, Miyazaki I, Ogawa N (2003). Dopamine- or L-DOPA-induced

neurotoxicity: The role of dopamine quinone formation and tyrosinase in a

model of Parkinson’s disease. Neurotox Res 5(3):165-76.

12. Atack JR, Shook BC, Rassnick S, Jackson PF, Rhodes K, Drinkenburg WH,

Ahnaou A, Riele P, Langlois X, Hrupka B, de Haes P, Hendrickx H, Aerts N,

Hens K, Wellens A, Vermeire J, Megens AAHP (2014) JNJ-40255293, A novel

adenosine A2A/A1 antagonist with efficacy in preclinical models of Parkinson’s

disease. ACS Chem Neuroscience. 5(10):1005-19.

13. Austin PJ, Betts MJ, Broadstock M, O’Neill MJ, Mitchell SN, Duty S (2010)

Symptomatic and neuroprotective effects following activation of nigral group III

metabotropic glutamate receptors in rodent models of Parkinson’s disease. Br J

Pharmacol 160(7):1741-53.

14. Barone P (2011) Treatment of depressive symptoms in Parkinson’s disease.

Eur J Neurol 18(1):11-5.

15. Bashkatova V, Alam M, Vanin A, Schmidt WJ (2004) Chronic administration of

rotenone increases levels of nitric oxide and lipid peroxidation products in rat

brain. Exp Neurol 186(2):235-41.

16. Baskin P, Salamone J (1993) Vacuous jaw movements in rats induced by acute

reserpine administration: interactions with different doses of apomorphine.

Pharmacol Biochem Behav 46(4):793-7.

17. Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci

2:325-32.

18. Benito-León J, Porta-Etessam J, Bermejo F (2006) Epidemiology of Parkinson

disease. Lancet Neurol 5:525-35.

19. Betarbet R, Sherer TB, Mackenzie G, Garcia-osuna M, Panov A V, Greenamyre

JT (2000) Chronic systemic pesticide exposure reproduces features of

Parkinson’s disease. Nat Neurosci 3(12):1301-6.

20. Bianco C Lo, Ridet J-L, Schneider BL, Déglon N, Aebischer P (2002) Alpha-

synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based

model of Parkinson’s disease. Proc Natl Acad Sci USA 99(16):10813-8.

Page 92: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

79

21. Bilska A, Dubiel M, Sokołowska-Jezewicz M, Lorenc-Kocib E, Włodek L (2007)

Alpha-lipoic acid differently affects the reserpine-induced oxidative stress in the

striatum and prefrontal cortex of rat brain. Neurosci 146(4):1758-71.

22. Bisong SA, Brown R, Osim EE (2010) Comparative effects of Rauwolfia

vomitoria and chlorpromazine on locomotor behaviour and anxiety in mice. J

Ethnopharmacol 132(1):334-9.

23. Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new

animal models of Parkinson’s disease. J Biomed Biotechnol 2012:1-10.

24. Bonito-Oliva A, Masini D, Fisone G (2014) A mouse model of non-motor

symptoms in Parkinson’s disease: focus on pharmacological interventions

targeting affective dysfunctions. Front Behav Neurosci 8:290.

25. Braak H, Del K, Rüb U, de Vos RAI, Jansen ENH, Braak E (2003) Staging of

brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging

24:197-211.

26. Breese GR, Traylor TD (1971) Depletion of brain noradrenaline and dopamine

by 6-hydroxydopamine. Br J Pharmacol 42(1):88-99.

27. Brefel-Courbon C, Ory-Magne F, Thalamas C, Payoux P, Rascol O (2013)

Nociceptive brain activation in patients with neuropathic pain related to

Parkinson’s disease. Parkinsonism Relat Disord 19(5):548-52.

28. Brighina L, Riva C, Bertola F, Saracchi E, Fermi S, Goldwurm S, Ferrarese, C

(2013) Analysis of vesicular monoamine transporter 2 polymorphisms in

Parkinson’s disease. Neurobiol Aging 34(6):1712.e9-13.

29. Broadstock M, Austin PJ, Betts MJ, Duty S (2012) Antiparkinsonian potential of

targeting group III metabotropic glutamate receptor subtypes in the rodent

substantia nigra pars reticulata. Br J Pharmacol 165(4b):1034-45.

30. Brundin P, Barker RA, Conn PJ, Dawson TM, Kieburtz K, Lees AJ,

Schwarzschild MA, Tanner CM, Isaacs T, Duffen J, Matthews H, Wyse, RKH

(2013) Linked clinical trials--the development of new clinical learning studies in

Parkinson’s disease using screening of multiple prospective new treatments. J

Parkinsons Dis 3(3):231-9.

31. Brundin P, Li J-Y, Holton JL, Lindvall O, Revesz T (2008) Research in motion:

the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci

9(10):741-5.

Page 93: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

80

32. Burger M, Fachinetto R, Calegari L, Paixão MW, Braga AL, Rocha JBT. (2004)

Effects of age on reserpine-induced orofacial dyskinesia and possible protection

of diphenyl diselenide. Brain Res Bull 64(4):339-45.

33. Burger ME, Alves A, Callegari L, Athayde FR, Nogueira CW, Zeni G, Rocha

JBT (2003) Ebselen attenuates reserpine-induced orofacial dyskinesia and

oxidative stress in rat striatum. Prog Neuropsychopharmacol Biol Psychiatry

27(1):135-40.

34. Cannon JR, Tapias VM, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009)

A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis

34(2):279-90.

35. Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-dihydroxyphenylalanine and

5-hydroxytryptophan as reserpine antagonists. Nature 180(4596):1200.

36. Carlsson M, Carlsson A (1989) Marked locomotor stimulation in monoamine-

depleted mice following treatment with atropine in combination with clonidine. J

Neural Transm Park Dis Dement Sect 1(4):317-22.

37. Caudle WM, Guillot TS, Lazo CR, Miller GW (2012) Industrial toxicants and

Parkinson’s disease. Neurotoxicology 33(2):178-88.

38. Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL,

Colebrooke RE, di Monte, DA, Emson PC, Miller GW (2007) Reduced vesicular

storage of dopamine causes progressive nigrostriatal neurodegeneration. J

Neurosci 27(30):8138-48.

39. Cenci MA, Whishaw IQ, Schallert T (2002) Animal models of neurological

deficits: how relevant is the rat? Nat Rev Neurosci 3(7):574-9.

40. Chesselet M-F, Richter F (2011) Modelling of Parkinson’s disease in mice.

Lancet Neurol 10(12):1108-18.

41. Chiba K, Trevor A, Castagnoli N (1984). Metabolism of the neurotoxic tertiary

amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun

120(2):574-8.

42. Chipkin RE, McQuade RD, Iorio LC (1987) D1 and D2 dopamine binding site

up-regulation and apomorphine-induced stereotypy. Pharmacol Biochem Behav

28(4):477-82.

43. Chuang RS, Gitler AD (2013) Parallel PARKing: Parkinson’s Genes Function in

Common Pathway. Neuron 77(3):377-9.

Page 94: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

81

44. Clairembault T, Leclair-Visonneau L, Neunlist M, Derkinderen P (2014) Enteric

glial cells: New players in Parkinson’s disease? Mov Disord.

45. Coelho M, Marti MJ, Sampaio C, Ferreira JJ, Valldeoriola F, Rosa MM, Tolosa

E (2014) Dementia and severity of parkinsonism determines the handicap of

patients in late-stage Parkinson’s disease: the Barcelona-Lisbon cohort. Eur J

Neurol 15.

46. Colebrooke RE, Humby T, Lynch PJ, McGowan DP, Xia J, Emson PC (2006)

Age-related decline in striatal dopamine content and motor performance occurs

in the absence of nigral cell loss in a genetic mouse model of Parkinson’s

disease. Eur J Neurosci 24(9):2622-30.

47. Colpaert FC (1987) Pharmacological characteristics of tremor, rigidity and

hypokinesia induced by reserpine in rat. Neuropharmacology 26(9):1431-40.

48. Da Cunha C, Wietzikoski EC, Dombrowski P, Bortolanza M, Santos LM,

Boschen SL, Miyoshi E (2009) Learning processing in the basal ganglia: a

mosaic of broken mirrors. Behav Brain Res 199(1):157-70.

49. Danysz W, Gossel M, Zajaczkowski W (1994) Are NMDA antagonistic

properties relevant for antiparkinsonian-like activity in rats? Case of amantadine

and memantine. J Neural Transm 7:155-66.

50. Degkwitz R, Frowein R, Kulenkampff C, Mohs U (1960) On the effects of L-

dopa in man and their modification by reserpine, chlorpromazine, iproniazid and

vitamin B6. Klin Wochenschr 38:120-3.

51. Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in

rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol

175(2):303-17.

52. Didonet JJ, Cavalcante JC, Souza LDS, Costa MSMO, André E, Soares-

Rachetti VDP, Guerrini R, Calo G, Gavioli EC (2014) Neuropeptide S

counteracts 6-OHDA-induced motor deficits in mice. Behav Brain Res 266:29-

36.

53. Dluzen DE, Bhatt S, McDermott JL (2008) Differences in reserpine-induced

striatal dopamine output and content between female and male mice:

implications for sex differences in vesicular monoamine transporter 2 function.

Neuroscience 154(4):1488-96.

54. Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction

in Parkinson’s disease. Curr Opin Neurobiol 17(3):331-7.

Page 95: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

82

55. Driver-Dunckley E, Adler CH, Hentz JG, Dugger BN, Shill HA, Caviness JN,

Sabbagh MN, Beach TG (2014) Olfactory dysfunction in incidental Lewy body

disease and Parkinson’s disease. Parkinsonism Relat Disord 20:1260-1262.

56. Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of

novel treatments and clues to the cause of the disease. Br J Pharmacol

164:1357-91.

57. Eeden SKVD, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA,

Nelson LM (2003) Incidence of Parkinson’s disease: Variation by age, gender,

and race/ethnicity. Am J Epidemiol 157(11):1015-22.

58. Elbaz A, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE,

Schaid DJ, Rocca WA (2002) Risk tables for parkinsonism and Parkinson’s

disease. J Clin Epidemiol 55(1):25-31.

59. El-Ghazaly MA, Sadik NAH, Rashed ER, Abd-El-Fattah AA (2013)

Neuroprotective effect of EGb761(R) and low-dose whole-body γ-irradiationin a

rat model of Parkinson’s disease. Toxicol Ind Health 21:1-17.

60. Faria RR, Abílio VC, Grassl C, Chinen CC, Negrão LTR, de Castro JPMV,

Fukushiro DF, Rodrigues MSD, Gomes PHZ, Registro S, de Carvalho RDC,

D'Almeida V, Silva RH, Ribeiro RA, Frussa-Filho R (2005) Beneficial effects of

vitamin C and vitamin E on reserpine-induced oral dyskinesia in rats: critical role

of striatal catalase activity. Neuropharmacology 48(7):993-1001.

61. Fekete MI, Szentendrei T, Herman JP, Kanyicska B (1980) Effects of reserpine

and antidepressants on dopamine and DOPAC (3,4-dihydroxyphenylacetic

acid) concentrations in the striatum, olfactory tubercle and median eminence of

rats. Eur J Pharmacol 64(4):231-8.

62. Ferger B, Buck K, Shimasaki M, Koros E, Voehringer P, Buerger E (2010)

Continuous dopaminergic stimulation by pramipexole is effective to treat early

morning akinesia in animal models of Parkinson’s disease: A pharmacokinetic-

pharmacodynamic study using in vivo microdialysis in rats. Synapse 64(7):533-

41.

63. Fernagut PO, Diguet E, Labattu B, Tison F (2002) A simple method to measure

stride length as an index of nigrostriatal dysfunction in mice. J Neurosci

Methods 113(2):123-30.

64. Fernandes VS, Ribeiro AM, Melo TG, Godinho M, Barbosa FF, Medeiros DS,

Munguba H, Silva RH (2008) Memory impairment induced by low doses of

Page 96: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

83

reserpine in rats: possible relationship with emotional processing deficits in

Parkinson disease. Prog Neuropsychopharmacol Biol Psychiatry 32(6):1479-83.

65. Fernandes VS, Santos JR, Leão AHFF, Medeiros AM, Melo TG, Izídio GS,

Cabral A, Ribeiro RA, Abílio VC, Ribeiro AM, Silva RH (2012) Repeated

treatment with a low dose of reserpine as a progressive model of Parkinson’s

disease. Behav Brain Res 231(1):154-63.

66. Fil A, Cano-de-la-Cuerda R, Muñoz-Hellín E, Vela L, Ramiro-González M,

Fernández-de-Las-Peñas C (2013) Pain in Parkinson disease: a review of the

literature. Parkinsonism Relat Disord 19(3):285-94.

67. Finberg JPM, Youdim MBH (2002) Pharmacological properties of the anti-

Parkinson drug rasagiline; modification of endogenous brain amines, reserpine

reversal, serotonergic and dopaminergic behaviours. Neuropharmacology

43(7):1110-8.

68. Fleming SM, Zhu C, Fernagut PO, Mehta A, DiCarlo CD, Seaman RL,

Chesselet M (2004) Behavioral and immunohistochemical effects of chronic

intravenous and subcutaneous infusions of varying doses of rotenone. Exp

Neurol 187(2):418-29.

69. Follmer C, Roma L, Einsiedler CM, Lara A, Moncores M, Weissmu G, Lashuel

HA, Lansbury P, Neto VM, Silva JL, Foguel D (2007). Dopamine affects the

stability, hydration, and packing of protofibrils and fibrils of the wild type and

variants of α-synuclein. Biochemistry 46:472-82.

70. Freis ED (1954) Mental depression in hypertensive patients treated for long

periods with large doses of reserpine. N Engl J Med 251(25):1006-8.

71. Fukuzaki K, Kamenosono T, Nagata R (2000) Effects of ropinirole on various

parkinsonian models in mice, rats, and cynomolgus monkeys. Pharmacol

Biochem Behav 65(3):503-8.

72. Gao HM, Hong JS (2011) Gene-environment interactions: key to unraveling the

mystery of Parkinson’s disease. Prog Neurobiol 94(1):1-19.

73. Ghosh B, Antonio T, Reith M, Dutta A (2010) (4-(2-((5-Hydroxy-1, 2, 3, 4-

tetrahydronaphthalen-2-yl)(propyl) amino) ethyl) piperazin-1-yl) quinolin-8-ol

and its analogues as highly potent dopamine D2/D3 agonists. J Med Chem

53(5):2114-25.

Page 97: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

84

74. Glatt CE, Wahner AD, White DJ, Ruiz-Linares A, Ritz B (2006) Gain-of-function

haplotypes in the vesicular monoamine transporter promoter are protective for

Parkinson disease in women. Hum Mol Genet 15(2):299-305.

75. Goldstein DS, Sullivan P, Cooney A, Jinsmaa Y, Sullivan R, Gross DJ, Holmes

C, Kopin IJ, Sharabi Y (2012) Vesicular uptake blockade generates the toxic

dopamine metabolite 3,4-dihydroxyphenylacetaldehyde in PC12 cells:

relevance to the pathogenesis of Parkinson’s disease. J Neurochem

123(6):932-43.

76. Goldstein J, Barnett A, Malick J (1975) The evaluation of anti-parkinson drugs

on reserpine-induced rigidity in rats. Eur J Pharmacol 33:183-8.

77. Gołembiowska K, Dziubina A (2012) The effect of adenosine A(2A) receptor

antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats

with altered function of VMAT2. Neurotox Res 22(2):150-7.

78. Gómez-Esteban JC, Tijero B, Somme J, Ciordia R, Berganzo K, Rouco I,

Bustos JL, Valle MA, Lezcano E, Zarranz JJ (2011) Impact of psychiatric

symptoms and sleep disorders on the quality of life of patients with Parkinson’s

disease. J Neurol 258(3):494-9.

79. Guttman M (1992) Dopamine receptors in Parkinson’s disease. Neurol Clin

10(2):377-86.

80. Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson’s

disease: Is there a causal link? Experimental Neurology 193:279-90.

81. Harrington KA, Augood SJ, Kingsbury AE, Foster OJF, Emson PC (1996)

Dopamine transporter (DAT) and synaptic vesicle amine transporter (VMAT2)

gene expression in the substantia nigra of control and Parkinson’s disease.

Molecular Brain Research 36:157-62.

82. Heeringa MJ, Abercrombie ED (1995) Biochemistry of somatodendritic

dopamine release in substantia nigra: an in vivo comparison with striatal

dopamine release. J Neurochem 65(1):192-200.

83. Henchcliffe C, Severt WL (2011) Disease modification in Parkinson’s disease.

Drugs Aging 28(8):605-15.

84. Henderson JM, Stanic D, Tomas D, Patch J, Horne MK, Bourke D, Finkelstein

DI (2005) Postural changes after lesions of the substantia nigra pars reticulata

in hemiparkinsonian monkeys. Behav Brain Res 160(2):267-76.

Page 98: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

85

85. Höglinger GU, Féger J, Prigent A, Michel PP, Parain K, Champy P, Ruberg M,

Oertel WH, Hirsch EC (2003) Chronic systemic complex I inhibition induces a

hypokinetic multisystem degeneration in rats. J Neurochem 84(3):491-502.

86. Hsieh Y, Mounsey RB, Teismann P (2011) MPP+-induced toxicity in the

presence of dopamine is mediated by COX-2 through oxidative stress. Naunyn-

Schmiedeberg's Arch Pharmacol 384:157-67.

87. Hurley MJ, Jenner P (2006) What has been learnt from study of dopamine

receptors in Parkinson’s disease? Pharmacol Ther 111(3):715-28.

88. Ischiropoulos H (2003) Biological selectivity and functional aspects of protein

tyrosine nitration. Biochem Biophys Res Commun 305(3):776-83.

89. Ishihara L, Brayne C (2006) A systematic review of depression and mental

illness preceding Parkinson’s disease. Acta Neurol Scand 113(4):211-20.

90. Johnels B (1982) Locomotor hypokinesia in the reserpine-treated rat: drug

effects from the corpus striatum and nucleus accumbens. Pharmacol Biochem

Behav 17(2):283-9.

91. Johnson A, Loew D, Vigouret J (1976) Stimulant properties of bromocriptine on

central dopamine receptors in comparison to apomorphine, (+)-amphetamine

and L-dopa. Br J Pharmacol 56:59-68.

92. Jurna I, Grossmann W, Nell T (1973) Depression by amantadine of tremor

induced by reserpine and oxotremorine in the rat. Naunyn-Schmiedeberg’s Arch

Pharmacol 152:141-52.

93. Kalaitzakis ME, Gentleman SM, Pearce RKB (2013) Disturbed sleep in

Parkinson’s disease: anatomical and pathological correlates. Neuropathol Appl

Neurobiol 39(6):644-53.

94. Kane JM (1982) Tardive Dyskinesia. Arch Gen Psychiatry American Medical

Association 39(4):473.

95. Kaur S, Starr M (1996) Motor effects of lamotrigine in naive and dopamine-

depleted mice. Eur J Pharmacol 304(1-3):1-6.

96. Kim SW, Ko HS, Dawson VL, Dawson TM (2005) Recent advances in our

understanding of Parkinson’s disease. Drug Discov Today Dis Mech 2(4):427-

33.

97. Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Bjo A (2003)

Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated

Page 99: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

86

overexpression of human alpha-synuclein : A new primate model of Parkinson’s

disease. Proc Natl Acad Sci USA 100(5):2884-9.

98. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S,

Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause

autosomal recessive juvenile parkinsonism. Nature 392(6676):605-8.

99. Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A, Martella G, Bonsi P,

Zhang C, Pothos EM, Shen J (2007) Impaired dopamine release and synaptic

plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA

104(27):11441-6.

100. Klockgether T (2004) Parkinson’s disease: clinical aspects. Cell Tissue Res

318(1):115-20.

101. Kuhn DM, Aretha CW, Geddes TJ (1999) Peroxynitrite inactivation of tyrosine

hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J Neurosci

19(23):10289-94.

102. Kuhn DM, Sakowski SA, Sadidi M, Geddes TJ (2004) Nitrotyrosine as a marker

for peroxynitrite-induced neurotoxicity: the beginning or the end of the end of

dopamine neurons? J Neurochem 89(3):529-36.

103. Labuda CJ, Fuchs PN (2002) Catecholamine depletion by reserpine blocks the

anxiolytic actions of ethanol in the rat. Alcohol 26:55-9.

104. Lee FJS, Liu F (2008) Genetic factors involved in the pathogenesis of

Parkinson’s disease. Brain Res Rev 58(2):354-64.

105. Lees AJ, Smith E (1983) Cognitive deficits in the early stages of Parkinson’s

disease. Brain 106(2):257-70.

106. Li HT, Lin DH, Luo XY, Zhang F, Ji LN, Du HN, Song GQ, Hu J, Zhou JW

(2005) Inhibition of alpha-synuclein fibrillization by dopamine analogs via

reaction with the amino groups of alpha-synuclein. Implication for dopaminergic

neurodegeneration. FEBS J 272(14):3661-72.

107. Li X, Patel JC, Wang J, Avshalumov M V, Nicholson C, Buxbaum JD, Elder GA,

Rice ME, Yue Z (2010) Enhanced striatal dopamine transmission and motor

performance with LRRK2 overexpression in mice is eliminated by familial

Parkinson’s disease mutation G2019S. J Neurosci 30(5):1788-97.

108. Lin X, Parisiadou L, Gu X-L, Wang L, Shim H, Sun L, Xie C, Long C-X, Yang W-

J, Ding J, Chen ZZ, Gallant PE, Tao-Cheng J-H, Rudow G, Troncoso JC, Liu Z,

Li Z, Cai H (2009) Leucine-rich repeat kinase 2 regulates the progression of

Page 100: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

87

neuropathology induced by Parkinson’s-disease-related mutant alpha-

synuclein. Neuron 64(6):807-27.

109. Liu S, Zhao R, Li X, Guo H, Tian Z (2014) Attenuation of reserpine-induced

pain/depression dyad by gentiopicroside through downregulation of GluN2B

receptors in the amygdala of mice. Neuromol Med 16:350-9.

110. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine,

vesicles and alpha-synuclein. Nat Rev Neurosci 3(12):932-42.

111. Maj J, Rog Z, Skuza G, Sowifiska H, Superata J (1990) Behavioural and

neurochemical effects of Ro 40-7592, a new COMT inhibitor with a potential

therapeutic activity in Parkinson’s disease. J Neural Transm 2:101-12.

112. Maj J, Rogóz Z, Skuza G, Kołodziejczyk K (1997) The behavioural effects of

pramipexole, a novel dopamine receptor agonist. Eur J Pharmacol 324(1):31-7.

113. Mata IF, Leverenz JB, Weintraub D, Trojanowski JQ, Hurtig HI, Van Deerlin VM,

Ritz B, Rausch R, Rhodes SL, Factor SA, Wood-Siverio C, Quinn JF, Chung

KA, Peterson AL, Espay AJ, Revilla FJ, Devoto J, Hu S-C, Cholerton BA, Wan

JY, Montine TJ, Edwards KL, Zabetian CP (2014) APOE, MAPT, and SNCA

Genes and Cognitive Performance in Parkinson Disease. JAMA Neurol

71(11):1405-12.

114. McKenna O, Arnold G, Holtzman E (1976) Microperoxisome distribution in the

central nervous system of the rat. Brain Res 117:181-94.

115. McQueen EG, Doyle AE, Smirk FH (1954) Mechanism of hypotensive action of

reserpine, an alkaloid of Rauwolfia serpentina. Nature 174(4439):1015.

116. Mehndiratta M, Garg RK, Pandey S (2011) Nonmotor symptom complex of

Parkinson’s disease--an under-recognized entity. J Assoc Physicians India

59:302-8.

117. Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell

Commun Signal 11:34.

118. Meredith GE, Sonsalla PK, Chesselet MF (2008) Animal models of Parkinson’s

disease progression. Acta Neuropathol 115(4):385-98.

119. Millan MJ, Agid Y, Brüne M, Bullmore ET, Carter CS, Clayton NS, Connor R,

Davis S, Deakin B, DeRubeis RJ, Dubois B, Geyer MA, Goodwin GM, Gorwood

P, Jay TM, Joëls M, Mansuy IM, Meyer-Lindenberg A, Murphy D, Rolls E,

Saletu B, Spedding M, Sweeney J, Whittington M, Young LJ (2012) Cognitive

Page 101: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

88

dysfunction in psychiatric disorders: characteristics, causes and the quest for

improved therapy. Nat Rev Drug Discov 11(2):141-68.

120. Miller GW, Erickson JD, Perez JT, Penland SN, Mash DC, Rye DB, Levey AI

(1999) Immunochemical analysis of vesicular monoamine transporter (VMAT2)

protein in Parkinson’s disease. Exp Neurol 148:138-48.

121. Missale C, Nisoli E, Liberini P, Rizzonelli P, Memo M, Buonamici M, Rossi A,

Spano P (1989) Repeated reserpine administration up-regulates the

transduction mechanisms of D1 receptors without changing the density of

[3H]SCH 23390 binding. Brain Res 483(1):117-22.

122. Miyagi M, Arai N, Taya F, Itoh F, Komatsu Y, Kojima M, Isaji M (1996) Effect of

cabergoline, a long-acting dopamine D2 agonist, on reserpine-treated rodents.

Biol Pharm Bull 11:1499-502.

123. Monderer R, Thorpy M (2009). Sleep disorders and daytime sleepiness in

Parkinson’s disease. Curr Neurol Neurosci Rep 9(2):173-80.

124. Mooslehner KA, Chan PM, Xu W, Liu L, Smadja C, Humby T, Allen ND,

Lawrence SW, Piers CE (2001) Mice with very low expression of the vesicular

monoamine transporter 2 gene survive into adulthood: potential mouse model

for parkinsonism. Molecular and cellular biology 21(16):5321-31.

125. Morin N, Jourdain VA, Di Paolo T (2013) Modeling dyskinesia in animal models

of Parkinson disease. Exp Neurol 256:105-16.

126. Mulcahy P, O’Doherty A, Paucard A, O’Brien T, Kirik D, Dowd E (2013) The

behavioural and neuropathological impact of intranigral AAV-α-synuclein is

exacerbated by systemic infusion of the Parkinson’s disease-associated

pesticide, rotenone, in rats. Behav Brain Res 243:6-15.

127. Nade VS, Shendye N V, Kawale LA, Patil NR, Khatri ML (2013) Protective

effect of nebivolol on reserpine-induced neurobehavioral and biochemical

alterations in rats. Neurochem Int 63(4):316-21.

128. Naidu PS, Singh A, Kulkarni SK (2006) Effect of Withania somnifera root extract

on reserpine-induced orofacial dyskinesia and cognitive dysfunction. Phytother

Res 20(2):140-6.

129. Neisewander JL, Castañeda E, Davis DA (1994) Dose-dependent differences in

the development of reserpine-induced oral dyskinesia in rats: support for a

model of tardive dyskinesia. Psychopharmacology (Berl) 116(1):79-84.

Page 102: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

89

130. Neisewander JL, Lucki I, McGonigle P (1991) Neurochemical changes

associated with the persistence of spontaneous oral dyskinesia in rats following

chronic reserpine treatment. Brain Res 558(1):27-35.

131. Niswender C, Johnson K, Weaver C, Jones C, Xiang Z, Luo Q, Rodriguez AL,

Mario JE, Paulis T (2008) Discovery, characterization, and antiparkinsonian

effect of novel positive allosteric modulators of metabotropic glutamate receptor

4. Mol Pharmacol 74(5):1345-58.

132. Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees

AJ, Schrag A (2012) Meta-analysis of early nonmotor features and risk factors

for Parkinson disease. Ann Neurol 1-9.

133. Oe T, Tsukamoto M, Nagakura Y (2010) Reserpine causes biphasic nociceptive

sensitivity alteration in conjunction with brain biogenic amine tones in rats.

Neuroscience 169(4):1860-71.

134. Omiatek DM, Bressler AJ, Cans A-S, Andrews AM, Heien ML, Ewing AG.

(2013) The real catecholamine content of secretory vesicles in the CNS

revealed by electrochemical cytometry. Sci Rep 3:1447.

135. Patil R, Dhawale K, Gound H, Gadakh R (2012) Protective effect of leaves of

Murraya koenigii on reserpine-induced orofacial dyskinesia. Iran J Pharm Res

11(2):635-41.

136. Patil R, Kasture S (2012) Protective effect of Rubia cordifolia on reserpine-

induced orofacial dyskinesia. Nat Prod Res 26(22):2159-61.

137. Pereira R, Fachinetto R, Prestes AS, Wagner C, Sudati JH, Boligon

AA, Athayde ML, Morsch VM, Rocha JB (2011) Valeriana officinalis ameliorates

vacuous chewing movements induced by reserpine in rats. J Neural Transm

118:1547-57.

138. Peter D, Jimenez J, Liu Y, Kim J, Edwards RH (1994) The chromaffin granule

and synaptic vesicle amine transporters differ in substrate recognition and

sensitivity to inhibitors. J Biol Chem 269(10):7231-7.

139. Phinney AL, Andringa G, Bol JGJM, Wolters EC, van Muiswinkel FL, van Dam

A-MW, Drukarch B (2006) Enhanced sensitivity of dopaminergic neurons to

rotenone-induced toxicity with aging. Parkinsonism Relat Disord 12(4):228-38.

140. Plouvier AOA, Hameleers RJMG, van den Heuvel EAJ, Bor HH, Olde Hartman

TC, Bloem BR, van Weel C, Lagro-Janssen ALM (2014) Prodromal symptoms

Page 103: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

90

and early detection of Parkinson’s disease in general practice: a nested case-

control study. Fam Pract 31(4):373-8.

141. Prediger RDS, Matheus FC, Schwarzbold ML, Lima MMS, Vital MABF (2012)

Anxiety in Parkinson’s disease: a critical review of experimental and clinical

studies. Neuropharmacology 62(1):115-24.

142. Przedborski S, Jackson-lewis V, Naini AB, Petzinger G, Miller R, Akram M

(2001) The parkinsonian toxin (MPTP): a technical review of its utility and

safety. Journal of neurochemistry 76:1265-74.

143. Qi Z, Miller GW, Voit EO (2008) Computational systems analysis of dopamine

metabolism. PLoS One 3(6):e2444.

144. Ramsey CP, Tsika E, Ischiropoulos H, Giasson BI (2010) DJ-1 deficient mice

demonstrate similar vulnerability to pathogenic Ala53Thr human alpha-syn

toxicity. Hum Mol Genet 19(8):1425-37.

145. Ravenstijn PGM, Merlini M, Hameetman M, Murray TK, Ward MA, Lewis H, Ball

G, Mottart C, Goyet CV, Lemarchand T, van Belle K, O'Neill MJ, Danhof M, de

Lange ECM (2008) The exploration of rotenone as a toxin for inducing

Parkinson’s disease in rats, for application in BBB transport and PK-PD

experiments. J Pharmacol Toxicol Methods 57(2):114-30.

146. Reckziegel P, Peroza LR, Schaffer LF, Ferrari MC, de Freitas CM, Bürger ME,

Fachinetto R (2013) Gallic acid decreases vacuous chewing movements

induced by reserpine in rats. Pharmacol Biochem Behav 104:132-7.

147. Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman

H, Agid Y, DeLong MR, Obeso JA (2010) Goal-directed and habitual control in

the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci

11(11):760-72.

148. Riachi NJ, Lamanna C, Harik I (1989) Entry of 1 -Methyl-4-Phenyl-1,2,3,6-

Tetrahydropyridine into rat brain. J Pharmacol Exp Ther 249(3):744-8.

149. Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E,

Obeso JA (2009) Initial clinical manifestations of Parkinson’s disease: features

and pathophysiological mechanisms. Lancet Neurol 8(12):1128-39.

150. Sai Y, Zou Z, Peng K, Dong Z (2012) The Parkinson’s disease-related genes

act in mitochondrial homeostasis. Neurosci Biobehav Rev 36(9):2034-43.

Page 104: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

91

151. Salamone J, Baskin P (1996) Vacuous jaw movements induced by acute

reserpine and low-dose apomorphine: possible model of parkinsonian tremor.

Pharmacol Biochem Behav 53(1):179-83.

152. Salgado-Pineda P, Delaveau P, Blin O, Nieoullon A (2005) Dopaminergic

contribution to the regulation of emotional perception. Clin Neuropharmacol

28(5):228-37.

153. Sanghavi CR, Barhate SA, Mahajan MS, Mohan M, Kasture SB (2011) Korean

ginseng extract attenuates reserpine-induced orofacial dyskinesia and improves

cognitive dysfunction in rats. Nat Prod Res 25(7):704-15.

154. Santos JR, Cunha JAS, Dierschnabel AL, Campêlo CLC, Leão AHFF, Silva AF,

Engelberth RCGJ, Izídio GS, Cavalcante JS, Abílio VC, Ribeiro AM, Silva RH

(2013) Cognitive, motor and tyrosine hydroxylase temporal impairment in a

model of parkinsonism induced by reserpine. Behav Brain Res 253:68-77.

155. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease:

6-OHDA and MPTP. Cell Tissue Res 318(1):215-24.

156. Schwarting RKW, Huston JP (1996) The unilateral 6-hydroxydopamine lesion

model in behavioral brain research: analysis of functional deficits, recovery and

treatments. Progress in Neurobiology 50:275-331.

157. Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone

exposure causes highly selective dopaminergic degeneration and alpha-

synuclein aggregation. Exp Neurol 179(1):9-16.

158. Shook BC, Rassnick S, Osborne MC, Davis S, Westover L, Boulet J, Hall D,

Rupert KC, Heintzelman GR, Hansen K, Chakravarty D, Bullington JL, Russell

R, Branum S, Wells KM, Damon S, Youells S, Li X, Beauchamp DA, Palmer D,

Reyes M, Demarest K, Tang Y, Rhodes K, Jackson PF (2010) In vivo

characterization of a dual adenosine A2A/A1 receptor antagonist in animal

models of Parkinson’s disease. J Med Chem 53(22):8104-15.

159. Silva RH, Abílio VC, Torres-Leite D, Bergamo M, Chinen CC, Claro FT,

Carvalho RC, Frussa-Filho R (2002) Concomitant development of oral

dyskinesia and memory deficits in reserpine-treated male and female mice.

Behav Brain Res 132(2):171-7.

160. Skalisz LL, Beijamini V, Joca SL, Vital MABF, Da Cunha C, Andreatini R (2002)

Evaluation of the face validity of reserpine administration as an animal model of

Page 105: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

92

depression – Parkinson’s disease association. Prog Neuropsychopharmacol

Biol Psychiatry 26:879-83.

161. Skuza G, Rogoz Z, Quack G, Danysz W (1994) Memantine, amantadine, and L-

deprenyl potentiate the action of L-dopa in monoamine-depleted rats. J Neural

Transm 98:57-67.

162. Sonsalla PK, Zeevalk GD, German DC (2008) Chronic intraventricular

administration of 1-methyl-4-phenylpyridinium as a progressive model of

Parkinson’s disease. Parkinsonism Relat Disord 14(Suppl 2):S116-8.

163. Sourkes TL (1971) Actions of Levodopa and Dopamine in the Central Nervous

System. JAMA J Am Med Assoc 218(13):1909.

164. Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation:

implications for Parkinson disease. Proc Natl Acad Sci USA 86(4):1398-400.

165. Spina N, Cohen GS, York B, York N, July NY (1988) Exposure of school

synaptosomes of oxidized glutathione1 to L-Dopa increases levels. J Pharmacol

Exp Ther 247(2):502-7.

166. Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of

oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res

749(1):44-52.

167. Takahashi H, Wakabayashi K (2001) The cellular pathology of Parkinson’s

disease. Neuropathology 21:315-22.

168. Taylor TN, Caudle WM, Shepherd KR, Noorian A, Jackson CR, Iuvone PM,

Weinshenker D, Greene JG, Miller GW (2009) Nonmotor symptoms of

Parkinson’s disease revealed in an animal model with reduced monoamine

storage capacity. J Neurosci 29(25):8103-13.

169. Teixeira AM, Reckziegel P, Müller L, Pereira RP, Roos DH, Rocha JBT, Bürger

ME (2009) Intense exercise potentiates oxidative stress in striatum of reserpine-

treated animals. Pharmacol Biochem Behav 92(2):231-5.

170. Teixeira AM, Trevizol F, Colpo G, Garcia SC, Charão M, Pereira RP, Fachinetto

R, Rocha JBT, Bürger ME (2008) Influence of chronic exercise on reserpine-

induced oxidative stress in rats: behavioral and antioxidant evaluations.

Pharmacol Biochem Behav 88(4):465-72.

171. Thiele SL, Warre R, Nash JE (2012) Development of a unilaterally-lesioned 6-

OHDA mouse model of Parkinson’s disease. J Vis Exp (60):1-10.

Page 106: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

93

172. Thomas KL, Rose S, Jenner P, Marsden CD (1992) Acute reserpine treatment

induces down regulation of D1 dopamine receptor associated adenylyl cyclase

activity in rat striatum. Biochem Pharmacol 44(1):83-91.

173. Tohru K, Youren T, Clement A, Gautier, Jie S (2010) Absence of nigral

degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem

111(3):696-702.

174. Torack RM, Morris JC (1992) Tyrosine hydroxylase-like (TH) immunoreactivity

in Parkinson’s disease and Alzheimer's disease. J Neural Transm Park Dis

Dement Sect 4(2):165-71.

175. Traub M, Reches a, Wagner HR, Fahn S (1986) Reserpine-induced up-

regulation of dopamine D2 receptors in the rat striatum is enhanced by

denervation but not by chronic receptor blockade. Neurosci Lett 70(2):245-9.

176. Tredici K, Braak H (2012) Spinal cord lesions in sporadic Parkinson’s disease.

Acta Neuropathol 124(5):643-64.

177. Tsuboi Y (2012). Environmental-Genetic Interactions in the Pathogenesis of

Parkinson’s Disease. Experimental neurobiology 21(3):123-8.

178. Tykocki T, Kornakiewicz A, Mandat T, Nauman P (2013) Pain perception in

patients with Parkinson’s disease. J Clin Neurosci 20(5):663-6.

179. Uhl GR, Hedreen JC, Price DL (1985) Parkinson’s disease: loss of neurons

from the ventral tegmental area contralateral to therapeutic surgical lesions.

Neurology 35(8):1215-8.

180. Ungerstedt U (1971) Adipsia and Aphagia after 6-Hydroxydopamine induced

degeneration of the nigro-striatal dopamine system. Acta Physiol Scand

82(S367):95-122.

181. van der Weide J, de Vries J, Tepper PG, Horn AS (1986) Pharmacological

profiles of three new, potent and selective dopamine receptor agonists: N-0434,

N-0437 and N-0734. Eur J Pharmacol 125:273-82.

182. Venderova K, Park DS (2012) Programmed cell death in Parkinson’s disease.

Cold Spring Harb Perspect Med 2:a009365.

183. Vergo S, Johansen JL, Leist M, Lotharius J (2007) Vesicular monoamine

transporter 2 regulates the sensitivity of rat dopaminergic neurons to disturbed

cytosolic dopamine levels. Brain Res 1185:18-32.

Page 107: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

94

184. Vives-Bauza C, de Vries RL a, Tocilescu MA, Przedborski S (2009) Is there a

pathogenic role for mitochondria in Parkinson’s disease? Parkinsonism Relat

Disord 15(Suppl 3):S241-4.

185. Voon V, Dalley JW (2011) Parkinson disease: Impulsive choice-Parkinson

disease and dopaminergic therapy. Nat Rev Neurol 7(10):541-2.

186. Voon V, Mehta AR, Hallett M (2011) Impulse control disorders in Parkinson’s

disease: recent advances. Curr Opin Neurol 24(4):324-30.

187. Wakamatsu M, Ishii A, Iwata S, Sakagami J, Ukai Y, Ono M, Kanbe D,

Muramatsu S, Kobayashi K, Iwatsubo T, Yoshimoto M (2008) Selective loss of

nigral dopamine neurons induced by overexpression of truncated human alpha-

synuclein in mice. Neurobiol Aging 29(4):574-85.

188. Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular

causes of Parkinson’s disease. Trends Mol Med 12(11):521-8.

189. Xiang Z, Thompson AD, Jones CK, Lindsley CW, Conn PJ (2012) Roles of the

M1 muscarinic acetylcholine receptor subtype in the regulation of basal ganglia

function and implications for the treatment of Parkinson’s disease. J Pharmacol

Exp Ther 340(3):595-603.

190. Yadav S, Dixit A, Agrawal S, Singh A, Srivastava G, Singh AK, Srivastava G,

Singh AK, Srivastava PK, Prakash O, Singh MP (2012) Rodent models and

contemporary molecular techniques: Notable feats yet incomplete explanations

of Parkinson’s disease pathogenesis. Mol Neurobiol 46(2):495-512.

191. Yamamoto S, Fukae J, Mori H, Mizuno Y, Hattori N (2006) Positive

immunoreactivity for vesicular monoamine transporter 2 in Lewy bodies and

Lewy neurites in substantia nigra. Neurosci Lett 396(3):187-91.

192. Yazdani U, German DC, Liang C-L, Manzino L, Sonsalla PK, Zeevalk GD

(2006) Rat model of Parkinson’s disease: chronic central delivery of 1-methyl-4-

phenylpyridinium (MPP+). Exp Neurol 200(1):172-83.

193. Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in

the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and

Parkinson diseases. Arch Neurol 60(3):337-41.

194. Zhu C, Vourc’h P, Fernagut P-O, Fleming SM, Lacan S, Dicarlo CD, Seaman

RL, Chesselet MF (2004) Variable effects of chronic subcutaneous

administration of rotenone on striatal histology. J Comp Neurol 78(4):418-26.

Page 108: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

95

195. Zweig RM, Cardillo JE, Cohen M, Giere S, Hedreen JC (1993) The locus

ceruleus and dementia in Parkinson’s disease. Neurology 43(5):986-91.

Page 109: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

96

26. CONSIDERAÇÕES FINAIS

Este trabalho aborda uma perspectiva de tratamento da DP, através do

uso de uma molécula antioxidante, o alpha-tocoferol. Neste estudo, esta

substância minimizou os danos motores, cognitivos e neuronais

dopaminérgicos induzidos pela administração repetida de reserpina, um

modelo animal farmacológico e progressivo da DP. Especificamente, o

tratamento concomitante com esse antioxidante preveniu os déficits

promovidos pela reserpina na tarefa de reconhecimento de objetos (artigo 1),

que foi realizado com um intervalo de 1 h entre treino e teste, compatível com

os déficits de memória de curto prazo e funções executivas apresentados pelos

pacientes com DP. Além disso, o fármaco também foi eficaz em prevenir as

alterações induzidas pela reserpina nos testes motores da catalepsia (artigos 1

e 2), rotarod (artigo 2) e movimentos orais (artigo 2), sugerindo uma

abrangência da ação em vários tipos de sintomas motores da doença. Por fim,

mostramos que a imunomarcação específica para neurônios dopaminérgicos

(por meio da enzima TH) que se encontra reduzida após o tratamento com

reserpina é prevenida pela administração com o alpha-tocoferol (artigo 2).

Desta forma, os resultados sugerem uma ação neuroprotetora do alpha-

tocopherol, prevenindo as alterações comportamentais e neuronais induzidas

no modelo utilizado.

Além de reforçar a possibilidade de um tratamento concomitante com um

antioxidante promover um retardo na progressão dos sintomas parkinsonianos

(corroborando algumas evidências clínicas), nosso estudo propõe a

administração repetida de uma dose baixa de reserpina como um protocolo

adequado para o estudo de possíveis intervenções neuroprotetoras na DP.

Além disso, este estudo constitui-se em evidência da participação do sistema

oxidativo nos danos progressivos observados neste modelo animal, o que

contribui para sua validação como modelo desta doença. Esse aspecto de

nosso estudo foi abordado no artigo 3, onde revisamos a literatura pertinente

ao uso da reserpina como indutora de parkinsonismo, compilando evidências

que reforçam sua validação como bom modelo para o estudo da DP.

Page 110: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

97

27. REFERÊNCIAS

1. Abílio, V. C. et al. Effects of melatonin on orofacial movements in rats.

Psychopharmacology, v. 161, n. 4, p. 340-7, jun. 2002.

2. Aguiar Jr., Aderbal S., Araújo, Andréa L., da-Cunha, Thaise R., Speck, A. E.,

Ignácio, Z. M., De-Mello, N. & Prediger, R. D. S. 2009. Physical exercise

improves motor and short-term social memory deficits in reserpinized rats. Brain

Research Bulletin, 79, 452–457.

3. Ahlskog, J.E., Muenter, M.D., 2001. Frequency of levodopa-related dyskinesias

and motor fluctuations as estimated from the cumulative literature. Mov. Disord.

16, 448–458.

4. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia

disorders. Trends Neurosci 12:366–376.

5. Alves, C.S., Andreatini, R., da Cunha, C., Tufik, S., Vital, M.A., 2000.

Phosphatidylserzine reverses reserpine-induced amnesia. Eur J Pharmacol.

404(1-2), 161-167.

6. Barbosa, M.T., Caramelli, P., Maia, D.P., Cuningham, M.C.Q., Guerra, H.L.,

Lima-Costa, M.F., Cardoso, F., 2006. Parkinsonims anda parkinson´s disease

in the elderly: a community-based survey in Brazil (The Bambuí Study).

Moviment Disorders. 21(6):800-808.

7. Barnham J.K., Masters A.B., Bush A. Neurodegenerative disease and oxidative

stress. Nat Rev Drug Discov, 3, 205-214, 2004.

8. Barreiros, A. L. B. S.; David, J. M.; David, J. P.; Quim. Nova 2006, 29,113.

9. Bianchi, M.L.P.; Antunes, L.M.G. Radicais livres e os principais antioxidantes

da dieta. Rev. Nutr. Campinas, v. 12, p. 123-130, 1999.

10. Bravo, S. A., Rangel-Barajas C., Garduño B. F., Pathophysiology of L-Dopa

Induced Dyskinesia-Changes in D1/D3 Receptors and Their Signaling Pathway.

Book edited by Abdul Qayyum.Published: March 26, 2014.

11. Brown, R.G., Landau, S., Hindle, J.V., Playfer, J., Samuel, M., Wilson, K.C.,

Depression and anxiety related subtypes in Parkinson's disease. J Neurol

Neurosurg Psychiatry. 2011 Jul;82(7):803-9.

12. Calabrese V. , Mancuso C., Calvani M., Rizzarelli E., Butterfield D. A., A. Stella.

Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity.

Nat Rev Neurosci, 8, 766-775, 2007.

Page 111: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

98

13. Calne B. D. Parkinson’s disease is not one disease. Parkinsonism Relat Disord,

7, 3-7, 2001.

14. Centonze, D., Gubellini, P., Picconi, B., Calabresi, P., Giacomini, P., Bernardi,

G., 1999. Unilateral dopamine denervation blocks corticostriatal LTP. J

Neurophysiol, 82(6):3575-79.

15. Chaudhuri, K.R.; Odin, P.; Antonini, A. Martinez-Martin, P. Parkinson’s Disease:

The non-motor issues. Parkinsonism Pelat Disord, v. 17, n. 10, p. 711-723,

2011.

16. Chesselet M-F, Richter F. Modelling of Parkinson’s disease in mice. Lancet

Neurol [Internet]. Elsevier Ltd; 2011 Dec [cited 2014 Sep 1];10(12):1108–18.

17. Clarenbach P. Parkinson's disease and sleep. J Neurol. 2000 Sep;247 Suppl

4:IV/20-3.

18. Colpaert, F C. Pharmacological characteristics of tremor, rigidity and

hypokinesia induced by reserpine in rat. Neuropharmacology, 1987; 26, No. 9,

pp. 1431-1440.

19. Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM. Dopaminergic

modulation of high-level cognitition in Parkinson‘s disease: the role of the

prefrontal cortex revealed by PET. Brain 2002; 125: 584-594.

20. Corti, O., Lesage, S., Brice, A., What genetics tells us about the causes and

mechanisms of Parkinson’s disease. Physiol Rev. 91(4):1161-218, 2011.

21. Da Cunha, C., Angellucci, M.E.M., Canteras, N.S., Wonnacott, S., Takahashi,

R.N., 2002. The lesion of the rat substantia nigra pars compacta dopaminergic

neurons as a model for Parkinson’s disease memory disabilities. Cell Mol

Neurobiol. 22, 227-37.

22. Dauer, W., Przedborski, S., 2003. Parkinson’s Disease: Mechanisms and

Models. Neuron. 39, 889-909.

23. De Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol

2006; 5(6):525-35.

24. Deumens, R; Blokland, A; Prickarts, J (2002). Modeling Parkinson’s disease in

rats: an evaluation of 6-OHDA lesion of the nigrostriatal pathway. Experimental

Neurology 175, 303-317.

Page 112: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

99

25. Dymecki, J., Lechowicz, W., Bertrand, E., Szpak, G.M., 1996. Changes in

dopaminergic neurons of the mesocorticolimbic system in Parkinson's disease.

Folia Neuropathol. 34(2):102-6.

26. Elbaz A., Tranchant C., Epidemiologic studies of environmental exposures in

Parkinson's disease. J Neurol Sci. 2007 Nov 15;262(1-2):37-44. Epub 2007 Jul

27.

27. Fahn, S., 2003. Description of Parkinson's disease as a clinical syndrome, Ann.

N. Y. Acad. Sci. 991, pp. 1–14.

28. Farooqui, T; Farooqui, AA. Lipid-mediated oxidative stress inflammation in the

pathogenesis of Parkinson’s disease. Parkinson’s Disease.

29. Fénelon, G. 1997. Parkinson disease. Medical treatment. Presse Med, 26,

1357-61.

30. Fernandes, V. S. et al. Memory impairment induced by low doses of reserpine

in rats: possible relationship with emotional processing deficits in Parkinson

disease. Progress in neuro-psychopharmacology & biological psychiatry, v. 32,

n. 6, p. 1479-83, 1 ago. 2008.

31. Fernandes, V. S. et al. Repeated treatment with a low dose of reserpine as a

progressive model of Parkinson ’ s disease. Behavioural Brain Research, v.

231, p. 154-163, 2012.

32. Filipe, P. et al. Flavonoids and urate antioxidant interplay in plasma oxidative

stresse. Mol. Cell. Biochem., v. 221, p. 79-87, 2001.

33. Gerlach M., Riederer P. Animal models of Parkinson’s disease: an empirical

comparison with the phenomenology of the disease in man. J Neural Transm,

103, 987-1041, 1996.

34. Grissa, O; Ategbo, J.; Yessoufou, A; Tabka, Z; Miled, A; Jerbi, M; Dramane, K;

Moutairou, K; Prost, J; Hichami, A. Antioxidant status and circulating lipids are

altered in human gestational and diabetes, 2007.

35. Guttman, M., 1992. Dopamine receptors in Parkinson´s disease. Neurol. Clin.

10(2): 377-86.

36. Hald A., Lotharius J. Oxidative stress and inflamation in Parkinson’s disease: Is

there a casual link? Experim Neurol, 184, 561-564, 2005.

37. Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicine. New York:

Oxford University Press, 1999. 851P.

Page 113: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

100

38. Higginson, D.S. King, D. Levine, V.L. Wheelock, N.O. Khamphay, K.A. Sigvardt

The relationship between executive function and verbal memory in Parkinson’s

disease Brain and Cognition, 52 (2003), pp. 343–352

39. Jankovic, J. Parkinson’s disease: Clinical Features and Diagnosis. J. Neurol

Neurosurg Psychiatry, v. 79, p. 368-376, 2008.

40. Johnston, R E; Schallert, T; Becker, J B B. Akinesia and postural abnormality

after unilateral dopamine depletion. Behavioural Brain Research, 1999; 104,

189-196.

41. Klockgether, Thomas. Parkinson’s disease: clinical aspects. Cell Tissue Res,

2004; 318: 115–120.

42. Koo, H-J., Lee, H-J., Im, H., 2008. Sequence determinants regulating fibrillation

of human _-synuclein. Biochem Biophys Res Commun. 368, 772-78.

43. Korczyn, A D. Dementia in Parkinson’s disease. J. Neurol, 2001; 248 (suppl3):

III/1- III/4.

44. Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s disease. Lancenet, v. 373, p.

2055-2066, 2009.

45. Lima M.M.S, Braga Reksidler A, Marques Zanata S, Bueno Machado H, Tufik

S, Vital M.A: Different parkinsonism models produce a time-dependent

induction of COX-2 in the substantia nigra of rats. Brain Res. 1101, 117-125;

2006.

46. Machado, Â.B.M., 2005. Neuroanatomia funcional. 2. ed. Rio de Janeiro:

Atheneu.

47. Massano, M. Doença de Parkinson – Atualização Clínica. Acta Med Port, v. 24

(S4), p. 827-834, 2011.

48. Mayeux R. Epidemiology of neurodegeneration. Annu. Rev. Neurosci., 26: 81–

104, (2003).

49. Meredith, G. E.; Totterdell, S.; Potashkin, J. A.; Surmeier D. J. Modeling PD

pathogenesis in mice: Advantages of a chronic MPTP protocol. Parkinsonism

and Related Disorders, 2008 (A); 14,112-115.

50. Mizuno Y. Genetics of Parkinson’s disease. Biomed Pharmacother, 53, 109-

116, 1999.

51. Nicholson, G.; Pereira, A.C.; Hall, G.M. Parkinson’s Disease and Anaesthesia.

Br J Anaesth, v. 89, n. 06, p. 904-16, 2002.

Page 114: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

101

52. Nieoullon, A. Dopamine and the regulation of cognition and attention. Progress

in Neurobiology, 2002; 67, 53-83.

53. Nussbaum RL., Ellis CE., Alzheimer's disease and Parkinson's disease. N Engl

J Med. 2003 Apr 3;348(14):1356-64.

54. Olanow C. and Tatton W. (1999) Etiology and pathogenesis of Parkinson

disease. Annu. Rev. Neurosci. 22, 123–144.

55. Pearce, R.K.; Jackson, M.; Smith, L.; Jennifer, P.; Marsden, C.D. Chronic

Levodopa administration induces dyskinesias in the 1-methyl-4phenyl-1,2,3,6-

tetrhydropyridine-treated common marmoset (Callithrix Jacchus). Mov Disord, v.

10, p. 731-740, 1995.

56. Pillon, B., Deweer, B., Vidailhet, M., Bonnet, A.M., Hahn-Barma, V. & Dobois, B.

1997. Is impaired memory for spatial location in Parkinson‘s disease domain

specific or dependent on strategic processes. Neuropsychologia, 36:1, 1-9.

57. Pillon, B., Ertle, S., Deweer, B., Bonnet, A. M., Vidailhet, M. & Dubois, B. 1997a.

Memory for spatial location in parkinsonian patients. Neurochologia, 35:3, 221-

228.

58. Ponzoni, S., Garcia-Cairasco, N., 1995. Neurobiologia do Parkinsonismo:

substratos neurais e neuroquímicos dos gânglios basais. Arq Neuropsiquiatria.

53(3-B):706-710.

59. Przedborski, S. Pathogenesis of nigral cell death in Parkinson’s disease.

Parkinsonism Relat Disord, 11, 3-7, 2005.

60. Rang, H.P., Dale, M.M., Ritter, J.M. & Moore, P.K. 2004. Farmacologia. Rio de

Janeiro: Elsevier, 5 ed., 903p.

61. Reeve A., Simcox E., Turnbull D., Ageing and Parkinson's disease: why is

advancing age the biggest risk factor? Ageing Res Rev. 2014 Mar;14:19-30.

doi: 10.1016/j.arr.2014.01.004. Epub 2014 Feb 3.

62. Santos JR, Cunha JA, Dierschnabel AL, Campêlo CL, Leão AH, Silva AF,

Engelberth RC, Izídio GS, Cavalcante JS, Abílio VC, Ribeiro AM, Silva RH.

Cognitive, motor and tyrosine hydroxylase temporal impairment in a model of

parkinsonism induced by reserpine. Behav Brain Res. 2013 Sep 15;253:68-77

63. Schapira A.H.V., Bezard E., Brotchie J., et al. Novel pharmacological targets for

the treatment of Parkinson’s disease. Nat Rev Drug Discov, 5, 854-854, 2006.

Page 115: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

102

64. Schneider, C.D.; Oliveira, A.R. Radicais livres de oxigenio e exercicio:

mecanismos de formacao e adaptacao ao treinamento fisico. Rev Bras Med

Esporte. v. 10, p. 308-313, 2004.

65. Shimohama S., Sawada H., Kitamura Y., Taniguchi T. Disease model:

Parkinson’s disease. Trends Mol Med, 9, 360-365, 2003.

66. Shults, C.W. 2003. Treatments of Parkinson Disease. Arch Neurol, 60:

1680:1684.

67. Siegel, G.J., 2006. Basic Neurochemistry. Molecular, Cellular and Medical

Aspects. 7 ed. Londres: ed. Elsevier.

68. Silva, R H; Abílio, V C; Torres-Leite, D; Bergamo, M; Chinen, C C; Claro, F T;

Cravalho, R de C; Frussa-Filho, R. Concomitant development of oral dyskinesia

and memory deficits in reserpine-treated male and female mice. Behavioural

Brain Research, 2002; 132, 171-177.

69. Singh S., Dikshit M. Apoptotic neural death in Parkinson’s disease:

Involvemente of nitric oxide. Brain Res Rev, 54, 233-250, 2007.

70. Skalisy, L L; Beijamini, V; Joca, S L; Vital, M A B F; da Cunha, C; 50.

Andreatini, R. Evaluation of the face validity of reserpine administration as an

animal modelo of depression- Parkinson’s disease association. Progress in

Neuro-Psychopharmacology & Biological Psychiatry, 2002; 26, 879-883.

71. Slawek, J.; Derejko, M.; Lass, P. Factors affecting the quality of life of patients

with idiopathic Parkinson’s Disease – a cross-sectional study in an out patient

clinic attendrees. Parkinsonism Relat Sidord, v. 11, n.7, p. 465-568, 2005.

72. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and

indirect pathways of the basal ganglia. Neuroscience 86:353–387.

73. Stayte S, Vissel B. Advances in non-dopaminergic treatments

for Parkinson's disease. Frontiers in Neurocience; 2014 May 22.

74. Teive, HAG (1998). O papel de Charcot na Doença de Parkinson. Arq. Neuro-

Psiquiatr. Vol.56 n.1 São Paulo.

75. Therond, P. et al. Biomarkers of oxidative stress: an analytical approach.

Clinical Nutrition and Metabolic Care. v. 3, p. 373-384, 2000.

76. Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, et

al. 2003. Incidência da doença de Parkinson: Variação por idade, gênero e raça

/ etnia Am. J. Epidemiol.157:1015-22.

Page 116: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

103

77. Verheij, M.M.M. & Cools, A.R. 2007.Differential contribution of storage pools to

the extracellular amount of accumbal dopamine in high and low responders to

novelty: effects of reserpine. Journal of Neurochemistry, 100, 810-821.

78. Vernier, P., Moret, F., Callier, S., Snapyan, M., Wersinger, C., Sidhu, A., 2004.

The degeneration of dopamine neurons in Parkinson's disease: insights from

embryology and evolution of the mesostriatocortical system. Ann N Y Acad Sci.

1035: 231-49.

79. Wood-Kaczmar A., Gandhi S., Wood NW., Understanding the molecular causes

of Parkinson's disease. Trends Mol Med. 2006, Nov;12(11):521-8.

Epub 2006 Oct 5.

80. Wu., T.; Hallet., M. The influence of normal human ageing on automatic

movements. J Physiol, v. 552, n. 2, p. 605-615, 2005.

81. Zgaljardic DJ, Foldi NS, Borod JC. Cognitive and behavioral dysfunction in

Parkinson's disease: neurochemical and clinicopathogical contributions. J.

Neural Transm 2004; 111: 1287–301.

82. De Araújo DP, Lobato R de F, Cavalcanti JR, Sampaio LR, Araújo PV et al.

(2011) The contributions of antioxidant activity of lipoic acid in reducing

neurogenerative progression of Parkinson's disease: a review. Int J Neurosci

121: 51-7. http://www.ncbi.nlm.nih.gov/pubmed/21126109

83. Magyar K, Pálfi M, Tábi T, Kalász H, Szende B et al. (2004) Pharmacological

aspects of (-)-deprenyl. Curr Med Chem 11: 2017-31.

http://www.ncbi.nlm.nih.gov/pubmed/15279565

84. Mayo JC, Sainz RM, Tan DX, Antolín I, Rodríguez C et al. (2005) Melatonin and

Parkinson's disease. Endocrine 27: 169-78.

http://www.ncbi.nlm.nih.gov/pubmed/16217130

85. Weber CA, Ernst ME (2006) Antioxidants, supplements, and Parkinson's

disease. Ann Pharmacother 40: 935-8.

http://www.ncbi.nlm.nih.gov/pubmed/16622156

86. Weinreb O, Amit T, Bar-Am O, Youdim MB (2010). Rasagiline: a novel anti-

parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog

Neurobiol 92: 330-44. http://www.ncbi.nlm.nih.gov/pubmed/20600573

87. Hsieh MH, Gu SL, Ho SC, Pawlak CR, Lin CL et al. (2012) Effects of MK-801

on recognition and neurodegeneration in an MPTP-induced Parkinson's rat

Page 117: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

104

model. Behav Brain Res 229: 41-7.

http://www.ncbi.nlm.nih.gov/pubmed/22227506

88. Marin C, Aguilar E (2011) In vivo 6-OHDA-induced neurodegeneration and

nigral autophagic markers expression. Neurochem Int 58: 521-6.

http://www.ncbi.nlm.nih.gov/pubmed/21237229

89. Salamone JD, Baskin P (1996) Vacuous jaw movements induced by acute reserpine and low-dose apomorphine: possible model of parkinsonian tremor. Pharmacol Biochem Behav 53: 179-83. http://www.ncbi.nlm.nih.gov/pubmed/8848448

90. Miklya I, Knoll B, Knoll J (2003) A pharmacological analysis elucidating why, in

contrast to (-)-deprenyl (selegiline), alpha-tocopherol was ineffective in the

DATATOP study. Life Sci 72(23): 2641-2648.

http://www.ncbi.nlm.nih.gov/pubmed/12672509

91. 33. Butterfield DA, Castegna A, Drake J, Scapagnini G, Calabrese V (2002)

Vitamin E and neurodegenerative disorders associated with oxidative stress.

Nutr Neurosci 5(4): 229-239. http://www.ncbi.nlm.nih.gov/pubmed/12168685

92. 34. Roghani M, Behzadi G (2001) Neuroprotective effect of vitamin E on the

early model of Parkinson's disease in rat: behavioral and histochemical

evidence. Brain Res 892(1): 211-217.

http://www.ncbi.nlm.nih.gov/pubmed/11172767

93. 35. Azzi A (2007) Molecular mechanism of alpha-tocopherol action. Free Radic

Biol Med 43(1): 16-21. http://www.ncbi.nlm.nih.gov/pubmed/17561089

94. 36. Azzi A, Gysin R, Kempná P, Munteanu A, Negis Y, Villacorta L, Visarius T,

Zingg JM (2004) Vitamin E mediates cell signaling and regulation of gene

expression. Ann N Y Acad Sci 1031:86-95.

http://www.ncbi.nlm.nih.gov/pubmed/15753136

95. 37. Ferri P, Cecchini T, Ambrogini P, Betti M, Cuppini R, Del Grande P, Ciaroni

S (2006) alpha-Tocopherol affects neuronal plasticity in adult rat dentate gyrus:

the possible role of PKCdelta. J Neurobiol 66(8): 793-810.

http://www.ncbi.nlm.nih.gov/pubmed/16673395

Page 118: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

105

28. Anexos

Carta de aceite artigo 1

Carta de submissão artigo 2

Page 119: ALDAIR JOSÉ SARMENTO SILVA ALFA-TOCOFEROL PREVINE OS ...€¦ · NEURONAIS EM UM MODELO DE PARKINSON PROGRESSIVO EM RATOS Tese apresentada à Universidade Federal do Rio Grande do

106

Carta de submissão artigo 3