universidade nove de julho programa de pÓs ......monoartrite induzida com zymosan. em ambos os...

105
UNIVERSIDADE NOVE DE JULHO PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIAS DA REABILITAÇÃO MARCELO DE PAULA A. SILVA Efeito do treinamento físico combinado com laser de baixa potência em monoartrite experimental São Paulo 2015

Upload: others

Post on 01-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    UNIVERSIDADE NOVE DE JULHO

    PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIAS DA REABILITAÇÃO

    MARCELO DE PAULA A. SILVA

    Efeito do treinamento físico combinado com laser de baixa potência em monoartrite

    experimental

    São Paulo

    2015

  • 2

    MARCELO DE PAULA A. SILVA

    Efeito do treinamento físico combinado com laser de baixa potência em monoartrite

    experimental

    Orientação:

    Profa. Dra. Stella Regina Zamuner, PhD.

    Coorientação:

    Profa. Dra. Kátia De Angelis, PhD.

    São Paulo

    2015

    TESE apresentada a Universidade Nove de Julho –

    UNINOVE como requisito para obtenção do título de

    Doutorado em Ciências da Reabilitação.

  • 3

    Silva, Marcelo de Paula A.

    Efeito do treinamento físico combinado com laser de baixa potência em

    monoartrite experimental. / Marcelo de Paula A. Silva. 2015.

    105 f.

    Tese (doutorado) – Universidade Nove de Julho - UNINOVE, São

    Paulo, 2015.

    Orientador (a): Profa. Dra. Stella Regina Zamuner.

    1. Monoartrite. 2. Laser de baixa potência e treinamento físico. I. Zamuner, Stella Regina. II. Titulo

    CDU 615.8

  • 4

  • 5

    A sabedoria é a coisa principal; adquire pois a

    sabedoria, emprega tudo o que possuis na

    aquisição de entendimento. Provérbios 4(todo):7

    https://www.bibliaonline.com.br/acf/pv/4/7+#v7

  • 6

    DEDICATORIA

    Á Jesus Cristo. Á meu Pai Gilberto Alves da Silva; minha Mãe Julia Barbosa Queiroz da Silva;

    minhas irmãs Jeanne Paola, Nicole Kerolin, Carolie Keterin e meu irmão Gil Polarah. Meus

    sobrinhos Yam Di Luca, Luan e minha sobrinha Maria Elloyse.

  • 7

    AGRADECIMENTO

    A minha orientadora Profa. Dra. STELLA REGINA ZAMUNER que admiro a

    cada dia mais por sua disponibilidade em me ensinar, trocar saberes, sonhos e projetos. Eterna

    gratidão por ter me escolhido!

    A minha coorientadora Profa. Dra. KATIA DE ANGELIS por sua excelência na

    velocidade e acumulo de conhecimentos. Especial agradecimento pela confiança,

    ensinamentos e auxílio acadêmico.

    A minha coorientadora Profa. Dra. IRIS CALLADO SANCHES pelo gratificante

    aprendizado, expertises, dicas e apoio enriquecendo incomensuravelmente minha trajetória.

    Aos que compuseram as bancas de qualificação e defesa norteando minha caminhada

    com suas arguições, incentivando-me a reflexões contínuas: Prof. Dr. José Antonio, Prof. Dr.

    Rodolfo de Paula, Prof. Dr. Paulo de Tarso, Profa. Dra. Ivani Credidio Trombetta, Profa. Dra.

    Maria Claudia Irigoyen, Profa. Dra. Maricilia Silva Costa, Prof. Dr. Danilo Sales Bocalini e

    Profa. Dra. Cristina Maria Fernandes.

    Ao Reitor Prof. Eduardo Storópoli da Universidade Nove de Julho e respectivos

    colaboradores empenhados na qualidade do crescimento acadêmico á manutenção da

    infraestrutura da instituição.

    Aos Professores Doutores do programa de pós graduação em Ciências da Reabilitação,

    que em suas aulas professaram conhecimentos que me auxiliam em meu caminhar profissional:

    Profa. Dra. Cláudia Santos Oliveira, Profa. Dra. Daniela Aparecida Biasotto Gonzalez, Prof. Dr.

    Dirceu Costa, Profa. Dra. Fernanda de Cordoba Lanza, Prof. Dr. João Carlos Ferrari Corrêa,

  • 8

    Profa. Dra. Kristianne Porta Santos Fernandes, Profa. Dra. Luciana Maria Malosá Sampaio, Prof.

    Dr. Luis Vicente Franco de Oliveira, Profa. Dra. Raquel Agnelli Mesquita Ferrari, Profa. Dra.

    Regiane Albertini de Carvalho, Profa. Dra. Simone Dal Corso, Prof. Dr. Andrey Jorge Serra e

    Prof. Dr. Humberto Dellê. Assim como, a todos que oportunamente escutei e dialoguei.

    Aos parceiros de pesquisa e troca de experiências: Profa. Dra. Christiane Malfitano,

    Profa. Dra. Janaina Brito, Profa. Dra. Martha Manchini, Profa. Ms. Nathalia Bernardes, Profa.

    Ms. Daniele Dias, Prof. Ms Filipe Conti, Prof. Ms. Guilherme Lemos, Profa. Ms. Renata Kely

    da Palma, Profa. Ms. Morgana, Prof. Ms. Fernando Alves, Profa. Ms. Sarah Freitas e Profa.

    Camila. Laboratório de Fisiologia Translacional – UNINOVE.

    Aos parceiros de bancada e congressos: Profa. Dra. Nikele Andrade, Profa. Ms. Eliadna

    Silva, Profa. Ms. Camila Silva, Prof. Ms. Agnelo Alves, Profa. Ms. Luciana Silva, Prof. Ms.

    Adriano Santos e aos que me auxiliaram no Laboratório de Pesquisa – UNINOVE.

    Aos companheiros de iniciação cientifica: Erico Gemignani, Daniel Munhoz, Larissa

    Hirata, Stefano Fonseca e Welbert Oliveira, agradeço a vocês...

    Aos parceiros de encontros, que em gestos singulares me auxiliaram: Prof. Marcio José

    Figueira Chaves (valeu por tudo), Ligia Barbosa, Kamila Santos Cerrados, Camila Camarão,

    Juliana Ribeiro, Luciana Dandara, Samara Vezzaro, Angela Santos, Rodrigo Barros, Karem

    Viegas, Simone Moraes, Carla Duarte... Vossas ajudas me foram muito importante.

    A CAPES - Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior e ao O

    Programa de Suporte à Pós-Graduação de Instituições de Ensino Particulares/ PROSUP, pelo

    suporte financeiro e estímulo a buscar o conhecimento.

    Á DEUS! Por Ele, para Ele tudo o que sou e serei. Sempre!

    Efeito do treinamento físico combinado com laser de baixa potência em monoartrite

    experimental

  • 9

    A monoartrite (MA) é causada por inflamação monoarticular e representa considerável

    problema de saúde pública em todo o mundo. Para avaliação desta patologia utilizou-se dois

    protocolos (P1 e P2). Em P1 foi avaliado o efeito da terapia a laser de baixa potência (LBP) no

    influxo de células inflamatórias, a liberação de mediadores inflamatórios, as metaloproteinases

    (MMPs) e o processo de reparação intra-articular. Em P2 ocorreu associação do treinamento

    físico (TF) e o LBP para avaliarmos alterações sistêmicas utilizando a variabilidade da

    frequência cardíaca (VFC) e as alterações articulares locais em modelo experimental de

    monoartrite induzida com zymosan. Em ambos os protocolos utilizou-se Ratos Wistar machos

    (220-280 g) que receberam injeção intra-articular de zymosan (1 mg / 50 mL de uma solução

    salina estéril) no joelho direito. Em P1 os ratos foram irradiados imediatamente, 1 h, e 2 h após

    a administração de zymosan com LBP (660 nm, 10 mW, 2,5 J / cm2, 10 s). No grupo de controlo

    positivo, os animais foram injetados com a dexametasona (fármacos anti-inflamatórios) 1 h

    antes da administração de zymosan. Em P2 os ratos foram adaptados à esteira (10 min/d, 5 d e

    0,3 km/h), 48 h após ocorreu a administração de zymosan seguindo da continuidade do TF

    moderado e LBP (660 nm, 5 mW, 2,5 J/cm2, 20s, 0.04 cm2, 0.1 w/cm2) duas vezes por semana,

    sempre antes do TF, durante 4 semanas.Os resultados demonstraram que em P1 o tratamento

    com o LBP inibiu significativamente o influxo de leucócitos, a libertação de IL-1 e IL-6 e

    também a atividade de metaloproteinase 2 e 9. Em P2 ocorreu a mensuração da pressão arterial

    (PA) e variabilidade da frequência cardíaca (VFC). Ratos treinados apresentaram menor peso

    corporal, aumento da velocidade máxima de corrida e menor frequência cardíaca em

    comparação com os grupos sedentários. Além disso, ratos submetidos a TF mostraram um

    aumento de Intervalo de Pulso (IP) e diminuição na Banda de Baixa Frequência (BF) e

    Variância da Pressão Arterial Sistólica (VAR PAS) em relação ao grupo sedentário com MA.

    Os ratos submetidos a TF associado ao LBP também mostraram uma diminuição na (BF) e na

    Razão da Banda de Alta Frequência / Baixa Frequência (AF / BF), um aumento de VAR PAS,

    Variância RR (VAR-RR) e AF em relação ao grupo sedentário com MA. Além destes ocorreu

    melhora na capacidade funcional e uma diminuição de influxo leucocitário na cavidade

    articular. A análise histológica mostrou uma histoarquitetura preservada da membrana sinovial

    e uma redução do deposito de colágeno nos grupos com TF e associação TF e LBP em

    comparação ao grupo sedentário com MA. TF e LBP causaram uma redução na liberação de

    IL-1β no líquido sinovial e membrana sinovial. Além disso, a IL-10 foi aumentada no grupo

    com associação de TF e LBP. A terapia com LBP foi eficaz na redução do processo inflamatório

    e inibe a ativação de proteases (gelatinase), sugerindo menor degradação do tecido de colágeno

    no modelo experimental. Além disso, na MA ocorre um desequilíbrio do sistema simpático, o

    que sugere um envolvimento autonômico precoce. Um programa de TF moderado associado ao

    LBP pode exercer efeitos benéficos no balanço autonômico cardiovascular e melhora da

    capacidade funcional. Quanto aos efeitos deletérios nos joelhos dos ratos. Associação de TF e

    LBP foi eficaz na proteção da articulação em modelo experimental de monoartrite, levando a

    uma melhora na regulação de citocinas inflamatórias e melhor organização histoarquitetura

    intra articular.

    Palavras chaves: Monoartrite, laser de baixa Potência e Treinamento Físico.

    Effect of physical training combined with low level laser therapy in an experimental

    monoarthritis

  • 10

    Monoarthritis (MA) is caused by single-joint inflammation and represents a considerable public

    health problem worldwide. To evaluate this pathology two protocols were used (P1 and P2). In

    P1, the effects of low level laser therapy (LLLT) in the influx of inflammatory cells, the release

    of inflammatory mediators, metalloproteinases (MMPs) and the process of intra-articular

    repair, were evaluated. In P2 the combination of exercise training (ET) and the LLLT were used

    to evaluate systemic changes using the heart rate variability (HRV) and local joint changes in

    experimental model of monoarthritis induced by zymosan. In both protocols male Wistar rats

    (220-280 g) was used. Rats received intra-articular injection of zymosan (1 mg / 50 mL of

    sterile saline) into the right knee. P1 rats were irradiated immediately, 1 hour and 2 hr after

    zymosan administration with LLLT (660 nm, 10 mW, 2,5 J / cm2, 10 s). In the positive control

    group, rats were injected with Dexamethasone (antiinflammatory agents) 1 hr before

    zymosan.administration. P2 rats were adapted to the treadmill (10 min / d 0.3 5 km / h) after 48

    h the zymosan was administrated and the moderate ET and LLLT (660 nm, 5 mW, 2,5 J/cm2,

    20s, 0.04 cm2, 0.1 w/cm2) was applied. The LLLT was applied twice a week, always before TF,

    during 4 weeks. Our results demonstrated that in P1 LLLT treatment significantly inhibited the

    influx of leukocytes, release of IL-1 and IL-6 and also metalloproteinase activity 2 to 9. In P2

    the measurement of arterial pressure (AP) and heart rate variability (HRV) was measured.

    Trained rats had lower body weight, increased maximum speed racing and lower heart rate

    compared to the sedentary groups. Furthermore, ET rats showed an increase in pulse interval

    (PI) and decrease in the low frequency band (LF) and the systolic arterial pressure variance

    (VAR SAP) compared to sedentary group MA. ET associated with LLLT also showed a

    decrease in (LF) and Reason of Band High Frequency / Low Frequency (HF/LF), increase VAR

    SAP, variance RR (VAR-RR) e HF. compared to the sedentary group with MA. In addition,

    there was an improvement in functional capacity and a decrease of leukocyte influx in the joint

    cavity. Histological analysis showed a histoarchitecture preserved the synovial membrane and

    a reduction in collagen deposit in the groups with ET and ET associated and LLLT compared

    to the sedentary group with MA. ET and LLLT caused a reduction in the release of IL-1β in

    synovial fluid and synovial membrane. Furthermore, IL-10 was increased in the group

    association of ET and LLLT. LLLT was effective in reducing inflammation and inhibits

    activation of proteases (gelatinase), suggesting less degradation of collagen tissue in an

    experimental model. In MA occurs an imbalance of the sympathetic system, suggesting an early

    autonomic involvement. A moderate ET program associated with LLLT may have beneficial

    effects on the cardiovascular autonomic balance and improved functional capacity. With regard

    to deleterious effects in the rat knee, ET and LLLT association was effective in protecting the

    joint in an experimental model of monoarthritis, leading to an improvement in the regulation of

    inflammatory cytokines and better intra articular histoarchitecture organization.

    Keywords: monoarthritis, low level laser and Exercise Training.

    S U M Á R I O

  • 11

    Lista de Tabelas ............................................................................................................ xii

    Lista de Quadros ......................................................................................................... xii

    Lista de Figuras

    ...............................................................................................................

    xiii

    Lista de Abreviaturas

    ......................................................................................................

    xiv

    1. Contextualização

    .........................................................................................................

    16

    1.1. Monoartrite

    ...............................................................................................................

    17

    1.2. Zymosan e Inflamação ........................................................................................ 18

    1.3. Treinamento Físico ............................................................................................. 19

    1.4. Variabilidade da Frequência Cardíaca .................................................................... 20

    1.5. Laser de Baixa Potência

    ...........................................................................................

    22

    2. Objetivos ............................................................................................................. 26

    3. Resultados .......................................................................................................... 28

    4. Artigo 1 (Publicado) ........................................................................................... 28

    5. Artigo 2 .............................................................................................................. 48

    6. Artigo 3 .............................................................................................................. 63

    7. Considerações finais .......................................................................................... 95

    REFERÊNCIAS

    ANEXOS (Ata de Aprovação, Comitê de Ética, Currículo resumido, Artigo 1)

  • 12

    LISTA DE TABELAS

    Artigo 2

    Table 1. Body weight and Maximal Exercise Test (MET) ……………………………. 64

    Table 2. Hemodynamic Assessments

    ................................................................................

    65

    Table 3. Autonomic variables at after 35 days of induction arthritis

    ……………………

    66

    Artigo 3

    Table 1. Maximal Exercise Test (MET)

    ………………………………………………….

    87

    LISTA DE QUADROS

    Quadro 1. Índices estatísticos, no domínio do tempo da VFC. ..........................................

    20

    Quadro 2. Fórmulas matemáticas para cálculos de parâmetros do LBP. ..........................

    22

  • 13

    LISTA DE FIGURAS

    Artigo 1

    Figure 1 - LLLT effect on leukocyte influx into the joint cavity induced by zymosan

    ….

    44

    Figure 2 - Effect of LLLT on the release of IL-1β and IL-6 into the joint cavity

    ………..

    45

    Figure 3 - Histological demonstration of the collagen fibers of the synovium

    …………..

    46

    Figure 4 - Effect of LLLT on MMP-2 and 9 activities on joint lavage

    …………………..

    47

    Artigo 2

    Figure 1 - Time course line showing the treatment protocol the experimental

    procedures

    63

    Artigo 3

    Figure 1 - Time course line showing the 4 weeks of the experimental procedures …….

    88

    Figure 2 - Effect of ET and LLLT on leukocyte influx into the joint cavity in

    monoarthritis rats ……………………………………………………………………….

    89

    Figure 3 - Histological demonstration of the synovium ………………………………..

    90

    Figure 4 - Histological demonstration of the fiber collagen ……………………………

    91

    Figure 5 - Collagen formation in longitudinal histological sections of rat knee ……... 92

    xii

  • 14

    Figure 6 - Effect of ET and LLLT on the release of IL-1β in joint cavity of

    monoarthritis rats

    ………………………………………………………………………...

    93

    Figure 7 - Effect of ET and LLLT on the release of IL-10 in joint cavity of

    monoaarthritis rats

    ………………………………………………………………………..

    94

    LISTA DE ABREVIATURAS

    A Area

    ACR American College of Rheumathology

    ACSM American College of Sports Medicine

    AF Banda de Alta frequência

    ANOVA Análise de variância

    AR Artrite Reumatóide

    ATP Adenosine trifosfato

    BF Banda de Baixa frequência

    Bpm Batidas por minute

    Ca Cálcio

    CD Compact disco

    CDC Centers for Disease Controland Prevention

    Cm Centímetros

    COBEA Colégio Brasileiro de Experimentação

    Animal

    COX-2 Ciclo – oxigenase – 2

    DCV Doença Cárdio Vascular

    De Densidade de energia

    Dp Densidade de potência

    EGFr Fator de Crescimento de Epiderme

    EPAC Exercise and Physical Activity Conference

    Hz Hertz

    i.p. Intraperitoneal

    InGaAlP Indio – Galio – Alumínio - Fósforo

    IL Interleucina

    INF- δ Interferon gama

    J Joule

    xiii

  • 15

    K Potássio

    Kg Kilo grama

    Laser Light Amplification by Stimulated Emission

    of Radiation

    LBP Laser de baixa potência

    M Média

    MEC Matriz Extracelular

    MFC Media da Frequência Cardíaca

    Mg Miligrama

    MmHg Milímetro de Mercúrio

    MMP Metaloproteinases

    Mn Morfonucleadas

    Mw Mili watts

    Na Sódio

    NF KB Fator Nuclear de Cadeia Leve Kappa

    potenciador de células ativadas B

    Nm Nanômetro

    NO Oxído Nítrico

    NSAIDs Drogas Anti-inflamatórias não Esteroides

    PAD Pressão Arterial Diastólica

    PAS Pressão Arterial Sistólica

    PBS Tampão Fosfato Salina

    PGE 2 Prostaglandina E

    Pmn Polimorfonucleadas

    R Erro padrão estimado

    ROS Espécies Reativas de Oxigênio

    RR Rate Rate

    S Salina

    SNA Sitema Nervoso Autônomo

    T Tempo

    TEM Teste de Esforço Máximo

    TGF- β Fator de Crescimento Beta

    TLRs Toll-like Receptores

    TNF- α Fator de Necrose Tumoral Alfa

    USA United State America

    VFC Variabilidade da Frequência Cardíaca

    VO2 Volume de Oxigênio

    VPAS Variância da Pressão Arterial

    W Watts

    C Controle

    MA Monoartrite

    MAT Monoartrite + treinamento físico

    MATL Monoartrite + treinamento físico + laser de

    baixa potência

    ZY Zymosan

    Λ

    Lambda

    xiv

  • 16

    1. CONTEXTUALIZAÇÃO

    A monoartrite é uma patologia com caráter inflamatório que acomete uma única

    articulação. Está associada a fatores genéticos, obesidade, estresse biomecânico e trauma. Seu

    diagnóstico se divide em inflamatório e não inflamatório. Afeta milhões de pessoas ao redor do

    mundo [1, 2], situação que requer desenvolvimento de estudos e ações terapêuticas eficazes.

    A monoartrite experimental se torna uma fonte de pesquisas, que contribui para a

    avaliação e intervenção. Estudos mimetizam a inflamação articular utilizando o zymosan (ZY),

    um polissacarídeo obtido da parede celular de levedura [3, 4], o qual induz influxo leucocitário

    com presença de células morfomononucleadas (Mn) e polimorfonucleadas (PMN), citoquinas,

    interleucinas e ação de metaloproteinases [5], situação similar em pacientes.

    Na ação terapêutica ao tratamento da inflamação articular, o laser em baixa potência

    (LBP), sugere ações anti-inflamatórias e condroprotetoras [6], além de não ser invasivo.

    Sistemáticas pesquisas com LBP mostram atenuação à dor crônica em articulação

    comprometida [7] através de analgesia, aumento da microcirculação [8], regeneração de

    xv

  • 17

    colágeno, proliferação de fibroblastos [9], de células osteoprogenitoras, osteoblastos e

    regeneração óssea [10].

    Outra terapia não invasiva é o treinamento físico com evidências em contribuir ao

    remodelamento do tecido cartilaginoso, desde que não seja de alta intensidade, pois isto é fator

    importante para a prevenção e ou promoção da artrite [11, 12]. O papel do treinamento físico e

    sua intensidade nos constituintes da articulação são complexos e influenciam de diferentes

    formas as vias de sinalização na expressão gênica dos constituintes intra articular [13].

    Diminuir a terapêutica farmacológica e cirurgias [14, 15], aumentar as possibilidades de

    terapias não invasivas é indicação do Colégio Americano de Reumatologia, que recomenda

    exercícios de alongamentos, resistidos e aeróbicos [16]. Há estudos experimentais

    demonstrando que o LBP contribui para o tratamento não invasivo de doenças reumatólogicas

    [17].

    1.1. MONOARTRITE

    Na MA doença debilitante 50% dos casos são auto limitante. A MA mostra alteração do

    perfil inflamatório envolvendo uma única articulação. Pode ser classificada em aguda, sub-

    aguda e crônica, dependendo do tempo e da evolução dos processos fisiológicos [18]. A

    avaliação clínica atenta-se aos sintomas de dor, edema, redução de movimento (principalmente

    pela manhã), fragilidade e inflamação articular. É considerada uma das principais doenças de

    incapacidade funcional na população idosa [19].

    As doenças reumáticas são caracterizadas por inflamações localizadas e sistêmicas de

    etiologia ainda com muitas lacunas devendo ter abordagem multidisciplinar [20].

    As ações multifatoriais da inflamação local na articulação e interações com os tecidos

    adjacentes ao progredirem causam efeitos deletérios aos tecidos [21].

  • 18

    A expectativa e qualidade de vida da população, que sofre de inflamação articular são

    dependentes de fatores genéticos e acesso a terapias multiprofissionais, sendo três vezes mais

    frequentes na mulher do que no homem. 30 a 50 % das mortes em pacientes com doenças

    reumáticas crônicas de longo prazo são decorrentes de complicações cardiovasculares ou

    doença cardiovascular (DCV) [22].

    Neste sentido em 1945 FLETCHER e LEWIS-FANNIG, encontraram hipertensão em

    45% de pacientes com inflamação articular, auxiliando a correlacionar desordens músculo

    esqueléticas, reumatologia e DCV [23].

    1.2. ZYMOSAN E INFLAMAÇÃO

    β-glucanos são polissacarídeos presentes em fungo a exemplo o Saccharomyces

    cerevisiae. Sendo o Zymosan, que é principalmente composto de β-glucanos, um preparado

    insolúvel encontrado nas paredes celulares daquele fungo. Interiorizado ao organismo os β-

    glucanos liga-se a Dectina-1 e aos toll-like receptores (TLRs), componentes da função imune

    inata orgânica, estes intermedeiam ativação de espécies reativas de oxigênio (ROS), do NF-kB

    e posterior secreção de citocinas inflamatórias [24].

    O Zymosan é utilizado em modelos inflamatórios exercendo ação sobre células

    endoteliais, osteoclastos, linfócitos, neutrófilos e macrófagos. Caracterizando influxo de células

    [25].

    A inflamação induzida por Zymosan desencadeia uma série de eventos tais como

    ativação de citocinas, quimiocinas, angiogênese, sinovite, e degradação da cartilagem [3].

    Citocinas pró inflamatórias como o Fator de Necrose Tumoral alfa (TNF- α), o

    Interferon gama (INF- δ) e as Interleucinas (IL) IL1, IL2, IL3, IL6, IL8, IL12 e 1L18, bem

    como as citocinas antiinflamatórias como Fator de crescimento beta (TGF- β) e as Interleucinas

  • 19

    (IL) IL4 e IL10 (ou antagonistas das citocinas) agem por controlar o processo [26, 27]. Outra

    conseqüência do processo inflamatório é na matriz extracelular (MEC), que esta em constante

    remodelamento e com a presença de inflamação ocorre alterações na produção e

    remodelamento das fibras de colágeno [28, 29].

    1.3. TREINAMENTO FISICO

    A monoartrite, inflamação articular é desencadeada por diversos fatores sendo alguns

    podendo receber influências diretas do treinamento físico, como intensidade alta e fatores

    endógenos e exógenos [30].

    Não obstante o sedentarismo contribui para efeitos deletérios músculo esquelético como

    a hipotrofia, assim também como a imobilização articular leva a distrofia [31] que acarretam a

    degradação articular.

    Evidências com diferentes abordagens consideram o treinamento físico personalizado

    aos que sofrem de processos inflamatórios articulares, coadjuvante na modulação da dor [32]

    outras abordam o estilo de vida somado a treinamento físico moderado e recreação, como

    prevenção a artroplastia de joelho [33].

    As recomendações ao tratamento de pacientes acometidos de inflamação articular

    incluem terapias multimodais, indicando combinação de ações terapêuticas aliadas à educação

    dos pacientes, treinamento físico, dieta e estilo de vida saudável [34]. Neste sentido, o Centers

    for Disease Controland Prevention (CDC- USA) e o American College of Sports Medicine

    (ACSM), tem associado à diminuição da dor, habilidade funcional e ao tratamento de

    inflamação articular a prática regular de treinamento físico com intensidade moderada de

    esforço percebido e ou monitorada em unidades metabólica [35]. Em 2002 Exercise and

  • 20

    Physical Activity Conference (EPAC) recomendou ás pessoas acometidas de inflamação

    articular o treinamento físico moderado de 3 vezes por semana, somando 30 minutos ao dia.

    Quanto ao tipo de treinamento físico recomenda-se o alongamento, resistido e o

    aeróbico, fortalecido por consenso de evidências científicas apontadas pelo American College

    of Rheumathology (ACR) [36], recomendações estas que promovem, também, alterações

    cardiovasculares que contribuem a qualidade de vida, contudo há indagações a respeito de

    considerar o impacto articular causado durante o treinamento físico aeróbico mesmo moderado.

    Na MA diagnósticos diferenciais incluem progressão dos efeitos deletérios a poliartrite.

    Nas doenças reumatologicas o perfil inflamatórios em longo prazo tendem a comprometer o

    sistema cardiovasular, logo desordens musculoesqueléticas e genéticas decursam ao surgimento

    de doenças cárdicas incluindo pericardite [37, 38, 39].

    1.4. VARIABILIDADE DA FREQUÊNCIA CARDÍACA

    Ferramentas de observação da Variabilidade da Frequência Cardíaca (VFC) apontam a

    capacidade dos sistemas cardiovascular e sistema nervoso autônomo (SNA) em responder a

    estímulos fisiológicos múltiplos e ambientais como o estresse mental, alterações

    hemodinâmicas e metabólicas, sono, ortotastismo, respiração e treinamento físico, bem como

    em compensar desordens induzidas por patologias [40, 41].

    Em linhas gerais a VFC descreve as oscilações das batidas do coração (intervalos R-R)

    no decorrer do tempo, podendo aferir as influencias do SNA sobre o nódulo sinusal,

    Cronologicamente em 1965 a VFC teve uma maior atenção a partir das observações de

    HON e LEE durante o sofrimento fetal, algum tempo depois, no ano de 1977, WOLF et al.

    mostraram que uma menor VFC aumenta o risco de morte após o infarto agudo do miocárdio

    (IAM) e em 1987, KLEIGER et al. confirmaram que a VFC é um importante e independente

  • 21

    preditor de mortalidade após IAM. Logo, alta VFC significa adaptabilidade, caracterizando

    mecanismos SNA eficientes. Uma crescente atenção a VFC na historia, que atualmente persiste.

    De posse destas informações, pode-se avaliar qualitativamente a VFC e inferir uma serie

    de diagnósticos. Grupos de estudiosos [40] copilaram diversos dados unificando-os e com isto

    desenvolveu-se programas computacionais e recomendações técnicas em saúde, que auxiliam

    a uma avaliação quantitativa com acurácia específica e abrangente, as quais culminaram com

    estratégias de mensuração da VFC, contribuindo a pratica clínica de diagnósticos em saúde,

    bem como na pesquisa científica.

    Método Domínio do Tempo calcula a dispersão das oscilações da média da frequência

    cardíaca por um período prolongado, (Quad. 1). Método Domínio da Frequência avalia a

    densidade espectral das oscilações cardíacas através da observação de bandas de frequência,

    sendo as mais utilizadas as Banda de Alta Frequência (AF / 0,2 a 0,4 Hz) e a Banda de Baixa

    Frequência (BF / 0,02 a 0,07 Hz).

    Quadro 1. Índices estatísticos, no domínio do tempo da VFC.

    Sigla Descrição

    SDNN*

    Desvio padrão de todos os intervalos de pulsos normais gravados em um

    intervalo de tempo, expresso em ms;

    SDANN

    Representa o desvio padrão das médias dos intervalos de pulsos normais, a

    cada 5 minutos, em um intervalo de tempo, expresso em ms;

    SDNNi

    É a média do desvio padrão dos intervalos de pulsos normais a cada 5

    minutos, expresso em ms;

    RMSSD

    É a raiz quadrada da média do quadrado das diferenças entre intervalos de

    pulsos normais adjacentes, em um intervalo de tempo, expresso em ms;

    pNN50

    Representa a porcentagem dos intervalos de pulsos adjacentes com

    diferença de duração maior que 50 ms.

  • 22

    * (NN) Intervalo Normal – Normal, ou ciclos cardíacos de cada registro do complexo QRS o

    qual representa a despolarização ventricular, resultante da despolarização do nó sinusal.

    Existem também os métodos não lineares que estão presente em todos os seres vivos. Métodos

    de avaliação da VFC, que se destacam, dentre vários, são a teoria do caos e o mapa de retorno

    tridimensional, porém a necessidade de validações [42].

    1.5. LASER DE BAIXA POTÊNCIA

    O LASER, Light Amplification by Stimulated Emission of Radiation ou amplificação

    da luz por emissão estimulada de radiação originalmente descrito em 1960, por THEODORE

    MAIMAN, sobe a forma de um laser de rubi que era utilizado, inicialmente, em alta potencia

    por conta da intensidade. Sua aplicação na saúde se fazia e faz como ativação de agentes

    fotodinâmicos, em cirurgias (bisturi a laser) e terapias ablativas.

    Em 1967 MESTERS et al reportou os efeitos do laser de baixa potência atérmico (LBP)

    em experimentos com camundongos [43, 44] a este tipo de laser nos deteremos.

    O laser em sua gênese é gerado, após excitação do átomo que produz radiação

    eletromagnética. O feixe de luz do LBP é coerente (ondas do feixe em fase), monocromática

    (comprimento de onda uniforme) e colimada (ondas do feixe paralelas); praticamente não existe

    dispersão ou espalhamento deste feixe de luz, diferente de uma luz proveniente de uma

    lâmpada.

    De 1960 a 2013, cinco décadas se passaram e cada vez mais o laser ganha espaço na

    área da saúde com ações em cicatrização de tecidos, condições inflamatórias, modulação de

    processos regenerativos, anfigênese e proliferação de células tronco [43].

    Na medicina moderna e suas múltiplas especialidades destaca-se a utilização do laser na

    dermatologia, oftalmologia, cardiologia e neurologia. Assim, como também na odontologia,

    fisioterapia, estética e demais áreas correlatas da saúde ou não, a exemplo a impressão gráfica,

  • 23

    leitura de CD e máquinas laser de gravação em insumos (canetas, plásticos especiais, acrílicos,

    etc).

    A fotomedicina ganha status através da utilização criativa da “bioestimulação a laser” e

    ou “terapia laser de baixa potencia”, em tratamento de patologias. Situação com o referendo de

    avaliações, intervenções e reflexões, que se somam em produções intelectuais [45].

    Nestas, aspectos importantes são apontados como à indicação minuciosa de local de

    aplicação e parâmetros utilizados [7, 46], procedimentos necessários a melhor reprodutibilidade

    de métodos e resultados. A este contexto as formulas necessárias ao cálculo (Quad. 2).

    Quadro 2. Formulas matemáticas para alguns parâmetros do LBP.

    Aos aspectos acima mencionados, inclui pontos chaves de intervenção com o LBP,

    sendo eles:

    • O material em estado gasoso utilizado no Laser de emissão continua;

    • Comprimento de onda, sendo seu símbolo o λ (lambda) e unidade de mensuração o nm

    (nanômetro);

    De (J/cm2) = P . t / A

    De = densidade de energia (dose ou fluência) em (J/cm2)

    J = joule

    P = potencia (W)

    t = tempo (seg)

    A = area (cm2) tamanho do ponto ou largura do feixe

    Dp = P / A Dp = densidade de potencia em (W/cm2)

    P = potencia (W)

    A = area (cm2) tamanho do ponto ou largura do feixe. (Quando a ponteira do

    laser toca a área irradiada)

    E = P / t E = Energia (J)

    P = potencia (W)

    t = tempo (seg)

    A = π . r2

    A = área (cm)

    π = pi

    r = raio

  • 24

    • O contato versus o não contato do equipamento na área de aplicação;

    • Periodicidade no tratamento;

    • O tipo de lesão e ou desordem musculoesquelética, bem como orgânica.

    Aliado a este contexto estudos tem demonstrado uma ação positiva na cicatrização de

    feridas em ambiente clínico, porém não há uma compreensão total dos mecanismos de ação, no

    que se refere a dosimetria, efeitos microbiológicos e “janela terapêutica” [47].

    Contudo cabe a necessidade de padronização dos parâmetros dosimétricos da

    fototerapia, a exemplo, fluência de energia, energia total, irradiação, pois na literatura muitas

    vezes estas nomenclaturas se misturam. Outras variáveis são o comprimento de onda, tamanho

    do feixe, tempo e duração da aplicação, ponto (s) da aplicação e suas organizações. Em

    específico no tratamento em reumatologia há décadas, o LBP é considerado moderadamente

    favorável aos efeitos clínicos em doenças reumáticas. Sendo aplicação em baixa potencia (1 a

    500 mW), comprimento de onda espectro vermelho ou próximo ao infravermelho (600 – 1.000

    nm) e irradiação entre 0.001 e 5 W/cm2, contribui a regeneração tecidual, redução de

    inflamação e alivio a dor, através dos mecanismos fotoquímicos, já seus efeitos térmicos são

    irrelevantes [48]. Os efeitos do LBP decorrem primeiramente de mecanismos fotoquímicos,

    sendo que os fótons da radiação eletromagnética são absorvidos por moléculas fotoacptoras ou

    cromóforas. Secundariamente ocorre indução por fotofisiologia em processos celulares e

    terciariamente ocorre uma cascata de sinalização e respostas biológica.

    A mitocôndria é descrita na literatura com uma célula cromófora e tendo em sua cadeia

    respiratória propriedade de afinidade a luz monocromática sendo assim considerado um nível

    biológico primário da ação do LBP [49].

    O LBP é promissor ao tratamento em reumatologia, a literatura aponta moderada

    eficácia durante o tratamento clinico na analgesia e mobilidade articular [48] situação esta

  • 25

    reforçada por estudo histológico mostrando que na inflamação o LBP mostra ação positiva na

    modulação da resposta inflamatória tanto inicial, quanto tardia [18].

    Ainda, estudos desvelam uma ação do LBP na inflamação articular experimental em

    inibir a formação do edema, analgesia e incapacidade articular [50] sugerindo uma ação anti-

    inflamatória e clinicamente relevante.

    O LBP apresenta diminuição na modulação de mediadores inflamatórios como o TNF-

    α, ciclo-oxigenase (COX-2) e prostaglandina E (PGE2) e redução de edema [51] estes presentes

    no processo inflamatório articular local e participante dos efeitos decorrente da inflação.

    O modelo experimental com Zymosan induz a inflamação articular através do

    acionamento do sistema imune inato é bastante utilizado em pesquisa correlacionando fármacos

    e LBP, sendo desvelada eficácia ao tratamento, porém com a necessidade constante de

    comparar as alterações dosimétricas e os efeitos biomoleculares [52, 51]. Pesquisas suscitam

    uma constante preocupação com as recomendações ao tratamento com LBP aos que sofrem

    com doenças reumáticas [53]. Outra situação ainda não esta consolidada na literatura são os

    parâmetros, frequência do tratamento, fluência de energia e energia entregue no tratamento com

    LBP.

    2. OBJETIVOS

  • 26

    2.1. OBJETIVO GERAL

    O objetivo geral deste estudo visa compreender e comparar os efeitos do laser de baixa

    potência combinado com treinamento físico em artrite experimental.

    OBJETIVO ESPECÍFICO

    ARTIGO 1:

    Avaliar o efeito da terapia a laser de baixa potência na artrite aguda induzida por

    zimosan de joelho de rato, no que se refere:

    Influxo de células inflamatórias;

    Liberação de mediadores pró-inflamatórios;

    Ação das metaloproteinases (MMPs);

    Processo de reparo da cartilagem na cavidade articular.

    ARTIGO 2:

    Estudar o efeito do laser de baixa potência combinado com treinamento físico, na ação

    sistêmica, após a indução da artrite de joelho, no que se refere:

    A capacidade funcional;

    Alteração de peso;

    A Variabilidade da Frequência Cardíaca;

    Efeitos Hemodinâmicos;

    Efeitos Autonômicos.

    ARTIGO 3

    Estudar o efeito do laser de baixa potência combinado com treinamento físico, na ação

    local, após indução da artrite de joelho, no que se refere:

    A degradação da cavidade articular;

    Ao recrutamento Leucocitário;

    Á liberação de Citocinas IL-1b e IL-10.

  • 27

    Avaliação histológica da articulação do joelho.

    RESULTADOS

  • 28

    ARTIGO 1

    Protective Effect of Low Level Laser therapy (LLLT) on Acute Zymosan-Induced

    Arthritis

    Fernando Pereira Carlos1, Marcelo de Paula Alves da Silva1, Eliadna de Lemos Vasconcelos

    Silva Melo1, Maricilia Silva Costa2, Stella Regina Zamuner*1

    1 Universidade Nove de Julho, Rua Vergueiro, 234, São Paulo, SP, Brazil.

    2 Institute of Research and Development, University of Vale do Paraíba, São José dos Campos,

    SP, Brazil

    Running title: LLLT IN ZYMOSAN-INDUCED ARTHRITIS

    Corresponding author: Stella Regina Zamuner, PhD

    Adress: Rua Vergueiro, 234, Bairro Liberdade, CEP 01504-000

    Phone: 55-11 33859222

    E-mail: [email protected] or [email protected]

    ABSTRACT

    mailto:[email protected]

  • 29

    The aim of this study was to evaluate the effect of low level laser therapy on acute zymosan-

    induced arthritis, with respect to the laser action on inflammatory cells influx, release of pro-

    inflammatory mediators, metalloproteinases (MMPs) activity into the joint cavity and the

    cartilage repair process. Arthritis was induced in male Wistar rats (250–280 g) by intra-articular

    injection of zymosan (1mg/50 mL of a sterile saline solution) into one rear knee joint. Animals

    were irradiated immediately, 1 h, and 2 h after zymosan administration with a semiconductor

    laser InGaAIP (660 nm, 10 mW, 2.5 J /cm2, 10 s). In the positive control group, animals were

    injected with the anti-inflammatory drug dexamethasone 1 h prior to the zymosan

    administration. Treatment with laser significantly inhibited leukocytes influx, the release of IL-

    1 and IL-6 and also the activity of metalloproteinase-2 and 9, into the joint cavity. In conclusion,

    laser therapy was effective in reducing inflammation to sites of injury and inhibit activation of

    proteases (gelatinase) suggesting less degradation of collagen tissue in experimental model of

    acute arthritis.

    Keywords: inflammation, arthritis, LLLT, cytokines, MMP

  • 30

    INTRODUCTION

    Arthritis is a musculoskeletal disorder that affects great part of the population [1] it affects

    people of all ages, but the problem of degenerative diseases of bones and joints is very likely

    to increase considerably as the population ages [2]. Clinical symptoms are characterized by

    pain, reduced range of movement, tenderness, and inflammation.

    The pathological processes involved in arthritis induce to a complete joint destruction [3].

    One of the main factors that lead to joint destruction is the infiltration of inflammatory cells.

    Polymorphonuclear leukocytes (neutrophils) infiltration into inflamed tissues is a hallmark of

    acute inflammation. These cells are predominant in the synovial exudates of a variety of

    inflammatory arthropathies including rheumatoid arthritis [4]. Additionally, neutrophil influx

    is always associated to the severity of the clinical picture in joint diseases (5). The mobilization

    of these cells is mainly mediated by cytokines (IL-1β, IL-6), tumor necrosis factor-alpha (TNF-

    ), interferon- (INF-), platelet-derived growth factor (PDGF), transforming growth factor-

    (TGF-) and nitric oxide (NO) [6-8]. Furthermore, elevated levels of pro-inflammatory

    cytokines have direct implications for increased secretion of proteolytic enzymes (e.g.

    matrixmetalloproteinases-MMPs) from stromal cells of the synovium and from chondrocytes

    which, in turn, play a major role in eliciting cartilage damage [9].

    Drug and non-drug treatments are used to relieve pain and/or swelling in patients with

    arthritis. Non-steroidal anti-inflammatory agents (NSAIDs) and selective cyclooxygenase

    (COX-2) inhibitors are commonly used as analgesic and anti-inflammatory agents in a number

    of pathologies [10]. Although, the use of NSAIDs is limited due to the high incidence of

    cardiovascular and gastrointestinal problems, it is widely used for inflammatory diseases such

    as knee arthritis [11]. Likewise, TNF inhibitor therapy is often used to treat arthritis, but this

    treatment is related with side effects on the systemic immune system [3]. These considerations

    have prompted the search for alternative non-drug treatments for arthritis.

  • 31

    Low-level laser therapy (LLLT) has been used clinically and experimentally to treat a

    wide variety of pathology conditions including musculoskeletal pathologies associated with

    joint disease [12]. Even though LLLT has been used to treat several clinical conditions and has

    also been studied in many animal models and in cell culture systems, its mechanisms are still

    incompletely understood.

    We recently demonstrated that LLLT, in two wavelengths (685 nm and 830 nm) was

    effective in reducing edema formation, vascular permeability, and hyperalgesia in zymosan-

    induced arthritis [11]. Therefore, the purpose of this study was to evaluate the mechanisms of

    the effects of laser therapy in acute arthritis, induced by zymosan in the rat knee, with special

    focus on inflammatory cells influx, the release of pro-inflammatory mediators and

    metalloproteinase activity into the joint cavity.

    MATERIAL AND METHODS

    Laboratory animals

    The experimental protocol was approved by our local ethics committee (protocol

    number 0025/2011) that follows the guidelines of the Brazilian College of Animal

    Experimentation. A total of 40 male Wistar rat were used for the study. Rats weighting 250-

    280 g were housed in cages with free access to standard laboratory diet and drinking water.

    Animals were kept in a 12:12-hour light-dark cycle at a temperature-controlled room (26ºC).

    All experiments were designed to minimize animal suffering and to use the minimum number

    of them associated with valid statistical evaluation.

    Zymosan-induced acute inflammation in knee joint

    Rats received an intra-articular (i.a.) injection of 1 mg zymosan (Sigma Chemical

    Company, St Louis, MO, USA ), dissolved in 50 L of a sterile saline solution, into one rear

  • 32

    knee (stifle) joint. The procedure was done under anesthesia, using a mix of ketamine 80 mg/kg

    (Hospira, Inc.; Lake Forest, IL, USA), xylazine 20 mg/kg (Lloyd, Inc.; Shenandoah, IA, USA)

    intramuscularly.

    Light sources, doses and treatment.

    A low level laser InGaIP (aluminum gallium indium phosphide; MMOptics, Ltda, São

    Carlos, SP. Brazil), operating continuous way in 660 nm wavelengths was used through the

    whole experiment to irradiate the animals. The laser parameters were: 10 mW of power, 10 s

    irradiation time and irradiated area of 0.04 cm2; which corresponds to a laser dose of 2.5 J/cm2.

    The optical power of the laser was calibrated using a Newport Multifunction Optical Meter

    (model 1835C). That laser dose, low enough to avoid any thermal effect, was chosen on the

    basis of previous studies from our laboratory that had shown a beneficial effect of the low level

    laser on the inflammatory process [11].

    The rats were randomly divided into four groups with five animals per group. Saline

    group: rats received an i.a. injection of saline; Zymosan group: rats received an i.a. injection of

    zymosan (1mg/kg); Laser group: rats received an i.a. injection of zymosan and a laser treatment

    in 660 nm; Dexamethasone group: rats received an i.a. injection of zymosan and was treated

    with dexamethasone (0,4 mg/kg; i.p.) as an anti-inflammatory positive control (Sigma

    Chemical Company), one hour before the zymosan injection. Animals of the laser group were

    irradiated at times: 0, 1 and 2 h after induction of inflammation [11]. At the end of each protocol,

    the animals in the respective groups were sacrificed in CO2 atmosphere.

    Evaluation of leukocyte influx

    The leukocytes recruited into the joint cavity were measured after induction of the

    inflammatory reaction, as described above. After 6 hours of zymosan, saline or dexamethasone

  • 33

    injection, animals were sacrificed. Dissection was performed from the knees with the removal

    of tibial-patello femoral ligament to expose the outer surface of the synovial membrane. Joint

    lavage was collected from the cavity of the knee joint after two injections totaling 400 µL of

    phosphate-buffered saline, pH 7,2 (PBS), containing 5 UI/mL heparin. Aliquots of the washes

    were used to determine total cell counts in a Neubauer chamber after dilution in Turk solution

    (0.2% crystal violet dye in 30% acetic acid). Differential leukocyte counts were performed on

    stained Instant Prov.

    Quantification of IL-1 and IL-6 concentrations

    Sinovium washes were collected 6 h after i.p. injection of zymosan (1 mg/kg) or sterile saline,

    as described above. After centrifugation, the supernatants were used for determination of IL-1

    and IL-6 levels by a specific EIA. Briefly, 96-well plates were coated with 50 mL of the first

    capture monoclonal antibody anti-IL-1 (2 mg/mL) or anti-IL-6 (2.5 mg/mL) and incubated for

    18 h in the case of IL-1 or 2 h for IL-6 at 37°C. Following this period, 200 mL of blocking

    buffer, containing 5% bovine serum albumin (BSA) in PBS/Tween 20, were added to the wells

    and the plates were incubated for 2 h at 37 °C for IL-1 and overnight at 4 °C for IL-6. After

    washing, 50 mL of either samples or standards were dispensed into each well and the plates

    incubated for 2 h at 37 °C. Wells were washed, and bound IL-1 or IL-6 was detected by the

    addition of the biotinylated monoclonal antibodies anti-IL-1 (5 mg/mL, 50 ml/well) or anti-IL-

    6 (5 mg/mL, 50 mL/well), respectively. After incubation and washing, 50 mL of streptavidin–

    peroxidase, in the case of IL-1, or avidin–phosphatase, in the case of IL-6, were added, followed

    by incubation and addition of the substrate (50 mL/mL of s-phenylenediamine in the case of

    IL-1 or 200 mL/mL r-nitrophenylphosphate in the case of IL-6). Absorbances at 450 nm were

    recorded and concentrations of IL-1 and IL-6 were estimated from standard curves prepared

    with recombinant IL-1 or IL-6.

  • 34

    Zymography

    For the enzymatic assay, aliquots with 3 μl of supernatant from sinovium washes were

    subjected to electrophoresis under non-reducing (100V a 4oC) polyacrylamide SDS gels (8%)

    prepared with 1 mg/mL gelatin. After electrophoresis, gels were washed twice for 15 min each

    with 2.5% Triton X-100 to eliminate SDS. Gels were then incubated overnight at 37ºC in

    substrate buffer (50 mM Tris-HCl, pH 8.5, 5 mM CaCl2, and 0.02% NaN3). Gels were then

    stained for 30 min with 0.05% Coomassie blue R-250 in acetic acid:methanol:water (1:4:5) and

    distained in the same solution. All gels were prepared and run at the same time. The bands were

    quantified by densitometry analyzed by public domain software Image J.

    Histological procedures

    At 6 hours after the induction of arthritis, the synovia was collected and submitted to

    the classic histological method for embedment in paraffin: dehydration in increasing

    concentrations of alcohol; clearing with xylol in order to allow the penetration of paraffin;

    impregnation in paraffin baths and insertion in molds; cross-sectional cuts to a thickness of five

    micrometers; and mounting. The material was stained with hematoxylin and eosin for the

    determination of inflammatory cells in the injury site in each treatment and Picrosirius red stain

    for the verification of collagen fibers.

    To quantify the collagen fibers, the slices were observed in a polarized light microscope

    Olympus coupled to an Olympus brand video camera. The images were digitized and

    standardized and then analyzed through the Imag J software.

    Statistical Analysis

    Results are expressed as mean SEM. Differences among groups were analyzed by one-

    way analysis of variance (ANOVA) followed by Tukey test. Values of probability lower than

  • 35

    5% ( p

  • 36

    zymosan (Zy) injection showing intense alteration in collagen fibers where we observe the

    presence of areas with non-aligned fibers (arrow) and areas without collagen (star). LLLT

    shows a better organization of the collagen fibers with similar appearance compared to

    dexamethasone treatment. The percentage of collagen fibers in different groups was 76±6%,

    31±10%, 68 ±16% and 71±11% in control, zymosan, LLLT and dexamethasone group,

    respectively, demonstrating that the amount of collagen fibers in LLLT group is significantly

    higher than the zymosan group (Fig. 3B).

    Effect of LLLT on matrix metalloproteinase activity

    LLLT effect on MMP-2 and MMP-9 activity was examined in the supernatant of

    synovial lavage collected 6 and 12 hours after zymosan injection. The laser treatment

    significantly decreased the release of MMP-9, both within 6 and 12 h after zymosan injection.

    The supernatant collected at 12 h showed more intense band than those of supernatant collected

    6 h after induction of inflammation (Fig. 4A and B). There was no statistical difference between

    the laser and dexamethasone treatment used in this study. Figure 4C and 4D shows that the laser

    treatment applied after the injection of zymosan significantly reduced MMP-2 activity,

    similarly to dexamethasone, at 6 and 12 h after treatment.

    DISCUSSION

    Arthritic inflammation is a serious health problem that affects a large number of people

    worldwide. LLLT was introduced as an alternative noninvasive treatment for arthritis about 20

    years ago, but its effectiveness remains controversial. Moreover, the mechanisms involved in

    the anti-inflammatory effect of LLLT are not yet established. Therefore, the knowledge of the

    underlying mechanisms involved in the anti-inflammatory effect of laser treatment could lead

    to the improvement of effective of a noninvasive therapy. In this study, we investigated the use

    of LLLT on zymosan-induced arthritis, focusing on the acute phase.

  • 37

    The effects of LLLT were evaluated in cell migration into the rat knee joint. It is

    noteworthy that most studies evaluate the cell influx in the synovia, whereas we did in joint

    lavage. Moreover, the cells in the synovia of arthritis induced by zymosan are predominantly

    lymphomononuclear while polymorphonuclear is the predominant cells in joint lavage [13]. To

    verify that the laser was able to reduce the leukocytes influx into the joint cavity, this effect was

    evaluate at 6 h after zymosan injection, period in which the peak of neutrophils influx into the

    joint cavity occurred [13]. Our results clearly demonstrated that the laser radiation decreases

    the migration of neutrophis in the sixth hour of inflammation, when applied immediately, 1st

    and 2nd h after the induction of inflammatory arthritis, in the rat knee. Similar results were

    described in the literature [14]. In another experimental model, it was observed a reduction of

    leukocyte influx in the initial phase of carrageenan-induced pleurisy in rats after three

    applications of LLLT 660 nm [15]. Similar data were found by Amano et al. [16] who treated

    14 patients with knee arthritis and used the laser treatment. Also, we observed a better

    organization of collagen structure in the laser-treated group. Thereby demonstrating the effect

    of biostimulation with LLLT on membrane repair process.

    The influx of inflammatory cells is an important factor that determines the course of

    arthritis. Moreover, it is observed that the production of inflammatory cytokines such as IL-1β

    and IL-6 are responsible for the disease progression and chronicity of the process. The literature

    states that these cytokines can modulate the expression of metalloproteinase which is involved

    in regulating the balance between cell and matrix, and when there is an unbalanced expression

    of these enzymes the destruction of articular cartilage occurs. IL-1 is a dominant cytokine in

    stimulating MMP expression by chondrocytes in experimental arthritis [17]. Also, several

    authors [18, 19], reported that IL-6, involved in the pathophysiology of arthritis also enhances

    production of osteoclasts. In the experimental model used in this study, the expression of IL-6

    and IL-1 β had decreased after laser treatment, showing the same extent of reduction of

  • 38

    dexamethasone treatment. The reduction of this cytokine may suggest decreased activity of

    MMP and/or osteoclasts production that causes cartilage and bone destruction. The same results

    were found by Pallota et al., [14] showing a decreased in IL-1 and IL-6 after treatment with

    LLLT.

    A number of studies have demonstrated that MMPs are important mediators in

    inflammatory and connective tissue diseases such as arthritis [20-22]. Of considerable

    importance in arthritis are the gelatinase subfamily of MMPs, consisting of MMP-2 (gelatinase

    A) and MMP-9 (gelatinase B). MMPs degrade various extracellular matrix proteins by

    breaking them into their specific peptide bonds and are expressed in various cell types and

    tissues, including vascular smooth muscle cells, endothelial cells, fibroblasts and inflammatory

    cells [23]. Also, MMPs and cytokines (IL-1, IL-6 and TNF-α) are responsible for the

    inflammatory signals that occur in the breakdown of cartilage [24]. In the present study LLLT

    significantly decrease the activity of MMP 2 and 9 after zymosan injection, suggesting less

    degradation of collagen tissue.

    Conclusion

    Collectively, the observations outlined above support the statement that the anti-

    inflammatory effects of the LLLT tested in this study provide protective effects, countering

    effectively the degradation of the joint cartilage network.

    Acknowledgement - Financial support: Brazilian Council of Research—CNPq (Process No.

    475083/2011-3).

  • 39

    REFERENCES:

    1. Kidd BL (2002) Osteoarthritis and joint pain. Pain 123, (1-2):6

    2. Castano AP, Dai T, Yaroslavsky I, Cohen R, Apruzzese WA, Smotrich MH,. Hamblin MR

    (2007) Low level laser therapy for zymosan induced arthritis in rats: Importance of illumination

    time. Lasers Surg. Med., 39:543-550

    3. Yoshida S, Arakawa F, Higuchi F, Ishibashi Y, Goto M, Sugita Y, Nomura Y, Niino D,

    Shimizu K, Aoki R, Hashikawa K, Kimura Y, Yasuda K, Tashiro K, Kuhara S, Nagata K,

    Ohshima K. (2012) Gene expression analysis of rheumatoid arthritis synovial lining regions by

    cDNA microarray combined with laser microdissection: up-regulation of inflammation-

    associated STAT1, IRF1, CXCL9, CXCL10, and CCL5. Scand J Rheumatol. 41(3):170-179

    4. Bezerra MM, Brain DS, GIRÃO CCV, GREENACRE S, KEEBLE J, ROCHA ACF (2007)

    Neutrophils-derived peroxynitrite contributes to acute hyperalgesia and cell influx in zymosan

    arthritis. Arch Pharmacol. 374:265-273

    5. Harris Jr E (1991) Pathogenesis of rheumatoid arthritis: its relevance to therapy in the'90s.

    Trans Am Clin Climatol Assoc. 102:260-268

    6. Ed H (1990) Rheumatoid arthritis: pathophysiology and implications for therapy. N Engl J

    Med. 322:1277-1289

    7. Farrell AJ, Blake DR, Palmer R, Moncada S. (1992) Increased concentrations of nitrite in

    synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases.

    Ann rheum dis. 51:1219-1222

    8. Cannon GW, Openshaw SJ, Hibbs Jr JB, Hoidal JR, Huecksteadt TP, Griffiths MM (1996)

    Nitric oxide production during adjuvant induced and collagen induced arthritis. Arthritis

    Rheum. 39:1677-1684

  • 40

    9. Nielsen RH, Christiansen C, Stolina M, Karsdal MA (2008) Oestrogen exhibits type II

    collagen protective effects and attenuates collagen-induced arthritis in rats. Clin and Exp Imun,

    152:21–27

    10. Tascioglu F, Armagan O, Tabak Y, Corapci I, Oner C (2004) Low power laser treatment in

    patients with knee osteoarthritis. Swiss Med WKLY. 134:254-258

    11. Morais NCR, Barbosa AM, Vale ML, Villaverde AB, de Lima CJ, Cogo JC, Zamuner SR

    (2010) Anti-inflammatory effect of low-level laser and light-emitting diode in zymosan-

    induced arthritis. Photom Laser Surg. 28:227-232

    12. Montes-Melina R, Mondroñero-Agreda MA, Romojaro-Rofroguéz AB, Gallego-Mendes

    V, Prados-Cabiedas C, Marques-Lucas C, Péres-Ferreiro M, Martinez-Ruiz F (2009) Efficacy

    of interferencial Low-Level laser therapy using two independent souces in the treatment of knee

    pain. Photom Laser Surg. 27:467-471

    13. Rocha FAC, Rocha JCS, Peixoto MEB, Jancar S, Cunha FQ, Ribeiro RA (2003) Efeito de

    inibidores da sintase de óxido nítrico na dor inflamatória e influxo celular da artrite induzida

    por zymosan em ratos; Effect of nitric oxide synthse in articular inflammatory pain and cellular

    influx of zymosan-induced arthritis in rats. Rev bras reumatol. 43:206-217

    14. Pallotta RC, Bjordal JM, Frigo L, Leal Junior ECP, Teixeira S, Marcos RL, Ramos L,

    Messias FM, Lopes-Martins RAB (2012) Infrared (810-nm) low-level laser therapy on rat

    experimental knee inflammation. Lasers Med. Sci. 27, 71-78

    15. Boschi ES, Leite CE, Saciura VC, Caberlon E, Lunardelli A, Bitencourt S, Melo DA,

    Oliveira JR (2008) Anti-Inflammatory effects of low-level laser therapy (660 nm) in the early

    phase in carrageenan-induced pleurisy in rat. Lasers Surg Med. 40(7):500-508

    16. Amano A, Miyagi K, Azuma T, Ishihara Y, Katsube S, Aoyama I, Saito I (1994)

    Histological studies on the rheumatoid synovial membrane irradiated with a low energy laser.

    Lasers Surg. Med. 15:290-294

  • 41

    17. van Lent PLEM, Hofkens W, Blom AB, Grevers L, Sloetjes A, Takahashi N, van Tits LJ,

    Vogl T, Roth J, de Winther MP, van den Berg WB (2009) Scavenger Receptor Class A Type

    I/II Determines Matrix Metalloproteinase–Mediated Cartilage Destruction and Chondrocyte

    Death in Antigen-Induced Arthritis. Arthritis Rheum. 60:2954–2965

    18. Sato K 2008 Th17 cells and rheumatoid arthritis--from the standpoint of osteoclast

    differentiation. Allergol Int. 57:109-114

    19. Schett G, Stach C, Zwerina J, Voll R, Manger B (2008) How antirheumatic drugs protect

    joints from damage in rheumatoid arthritis. Arthritis Rheum. 58:2936-2948

    20. Cunnane G, FitzGerald O, Hummel KM, Youssef PP, Gay RE, Gay S, Bresnihan B (2001)

    Synovial tissue protease gene expression and joint erosions in early rheumatoid arthritis.

    Arthritis Rheum. 44:1744–1753

    21. Konttinen YT, Ainola M, Valleala H, Ma J, Ida H, Mandelin J, Kinne RW, Santavirta S,

    Sorsa T, Lópes-Ortin C, Takagi M (1999) Analysis of 16 different matrix metalloproteinases

    (MMP-1 to MMP-20) in the synovial membrane: different profiles in trauma and rheumatoid

    arthritis. Ann Rheum Dis. 58:691–697

    22. Xue M, March L, Sambrook PN, Jackson CJ (2007) Differential Regulation of Matrix

    Metalloproteinase 2 and Matrix Metalloproteinase 9 by Activated Protein C: Relevance to

    Inflammation in Rheumatoid Arthritis. Arthritis Rheum. 56:2864–2874

    23. Raffetto JD, Ross RL, Khalil RA (2007) Matrix metalloproteinase 2-induced venous

    dilation via hyperpolarization and activation of K+ channels: relevance to varicose vein

    formation. J Vasc Surg. 45:373-380

    24. Müller‐Ladner U, Kriegsmann J, Tschopp J, Gay RE, Gay S (1995) Demonstration of

    granzyme A and perforin messenger RNA in the synovium of patients with rheumatoid arthritis.

    Arthritis Rheum. 38:477-484

  • 42

    Figure 1 - LLLT effect on leukocyte influx into the joint cavity induced by zymosan. Rats

    were injected with zymosan (1 mg/kg) and treated with laser. Another group was pretreated

    with dexamethasone (0,4 mg/kg). Rats were killed after six hour and inflammatory exudates

    were withdrawn the joint cavity. Total leukocytes (A), polymorphonuclear (PMN) (B) and

    mononuclear (MN) (C). LLLT was applied immediately, 1ª e 2ª hour after zymosan injection.

    Results are presented as mean SEM (n=5). #p< 0,05 compared to saline and *p< 0,05

    compared to zymosan group (ANOVA).

    Figure 2 - Effect of LLLT on the release of IL-1β and IL-6 into the joint cavity. The animals

    were injected with zymosan i.a. (1 mg/kg) or saline (control). The concentrations of IL-1β (A)

    and IL-6 (B) were measured by ELISA in joint lavage fluid collected 6 h after injection of

    zymosan. LLLT was applied immediately, 1ª e 2ª hour after zymosan injection. Results are

    presented as mean SEM (n=5). #p< 0,05 compared to saline and *p< 0,05 compared to

    zymosan group (ANOVA).

    Figure 3 - Histological demonstration of the collagen fibers of the synovium.

    Representative histological sections (picrossirius red under polarized light, 40x objective) of

    the synovium. In (A) synovium of animals injected with saline presenting normal appearance

    of collagen fiber, synovium of animals injected with zymosan showing disorganization of the

    collagen fibers, synovium treated with laser and synovium treated with dexamethasone showing

    a better organization of collagen fibers. In (B) quantification of collagen fibers in the synoviun.

    Results are presented as mean SEM (n=5). #p< 0,05 compared to saline and *p< 0,05

    compared to zymosan group (ANOVA). Objective 40x.

    Figure 4 - Effect of LLLT on MMP-2 and 9 activities on joint lavage. Joint lavage was

    collected 6 and 12 h after induction of inflammation and laser treatment as described in material

    and methods. (A and C) Representative electrophoresis from three independent experiment. (B

  • 43

    and D) Densitometric analysis of joint samples intensity. # p

  • 44

    FIGURE 1

    Total

    0

    1000

    2000

    3000

    ASaline

    Zy

    Zy + LLLT

    Zy + Dexa

    * *

    #

    Cel

    ls x

    10

    3/m

    L

    PMN

    0

    1000

    2000

    3000

    B

    **

    #

    Cel

    ls x

    10

    3/m

    L

    MN

    0

    1000

    2000

    3000

    C

    6 h

    * *

    #

    Cel

    ls x

    10

    3/m

    L

  • 45

    FIGURE 2

    0

    1

    2

    3

    4

    Saline Zy Zy +

    LLLT

    Zy +

    Dexa

    * *

    #

    A

    ng

    IL

    -1

    /0

    .1 m

    L

    0.0

    0.5

    1.0

    1.5

    Saline Zy Zy +

    LLLT

    Zy +

    Dexa

    *

    *

    #

    B

    ng

    /IL

    -6/

    0.1

    mL

  • 46

    FIGURE 3

    A

    B

    0

    25

    50

    75

    100

    #

    * *

    Saline Zy Zy +

    LLLT

    Zy +

    Dexa

    Co

    lla

    gen

    fib

    ers

    (%

    )

    B

  • 47

    FIGURE 4

    0

    1000

    2000

    3000

    4000Zy

    Zy +LLLT

    Zy + Dexa

    6 12

    Time (h)

    Saline

    #

    #

    *

    #

    *

    #

    #

    * #*

    B MMP-9

    Gela

    tin

    oly

    tic a

    cti

    vit

    y

    (arb

    itra

    ry u

    nit

    s)

    0

    500

    1000

    1500

    2000

    Zy

    Saline

    Zy + LLLT

    Zy + Dexa

    D

    6 12

    Time (h)

    #

    #

    *#

    *

    #

    *#

    *

    MMP-2

    Den

    sito

    metr

    ic a

    na

    lysi

    s

    (Arb

    itra

    ry U

    nit

    s)

  • 48

    ARTIGO 2

    Exercise training associated with low level laser therapy decreases Sympathetic

    overactivity in experimental model of acute monarthritis in rat

    Marcelo de Paula Silva MS 2, Iris Callado Sanches PhD 1, Felipe Fernandes Conti MS 1, Katia

    De Angelis PhD 1, Stella Regina Zamuner PhD 2.

    1 Laboratory of Translational Physiology – Universidade Nove de Julho

    2 Laboratory of Cell Biology – Universdade Nove de Julho

    Author address: Stella R. Zamuner, PhD

    Post Graduation Program Sciences Rehabilitation UNIVERSIDADE NOVE DE JULHO –

    UNINOVE/SP

    Rua Vergueiro, 234, Bairro Liberdade, Cep:01504-000, São Paulo, Brasil.

    Email: [email protected]

    mailto:[email protected]

  • 49

    ABSTRACT

    Background & objectives: It has been shown that the inflammatory process causes

    autonomic changes in arthritis. The aim of this study was to evaluate the association of nom-

    pharmacological therapies of exercise training (ET) and low-level laser therapy (LLLT) on the

    inflammatory process and its influence on autonomic and cardiovascular regulation in the

    experimental model of monoarthritis in rats.

    Methods and Results: Thirty male Wistar rats were divided into: control (C);

    monoarthritis (MA); MA + exercise training (MAT) and MAT + low level laser (MATL).

    Monoarthritis was induced by intra-articular injection of zymosan (1 mg dissolved in 50 μl of

    a sterile saline solution) into one rear knee joint. Moderate-intensity ET was performed on a

    treadmill for 4 weeks and LLLT at 660 nm in a dose of 2.5 J/cm2 was applied twice a week.

    Arterial pressure (AP) and heart rate variability (HRV) were measured. Trained rats presented

    lower body weight, an increase in the maximum speed of running and lower heart rate compared

    to the other groups. Furthermore, rats underwent to ET showed an increase of PI and a decrease

    in LF and VAR SAP compared to MA group. Rats subjected to ET associated a LLLT also

    showed a decrease in the LF and HF/LF and an increase of VAR SAP, VAR-RR and HF

    compared to MA group.

    Conclusion: Acute monoarthritis caused an imbalance of the sympathetic system, which

    suggests an early autonomous involvement. A moderate exercise program associated with

    LLLT can significantly exert beneficial effects on arthritic rats. These benefits were related to

    the cardiovascular autonomic balance and improvement of functional capacity.

    Keywords: monoarthritis, exercise training, low-level laser therapy, autonomic function.

  • 50

    INTRODUCTION

    Cardiovascular dysfunction (CD) has been documented in rheumatoid arthritis (RA) as

    an important predictor of mortality and survival [1], indeed, the mortality and morbidity of RA

    patients is attributed more to its cardiovascular complications rather than the disease itself [2,

    3, 4, 5]. In addition, literature shows that the cardiovascular risk in RA is related to the systemic

    inflammatory burden as well as an increased prevalence of traditional risk factors [7, 8].

    Currently therapeutic strategies for the treatment of arthritis include pharmacologic and

    non-pharmacologic management and ultimately surgery [9]. The anti-inflammatory drugs

    (corticosteroids and non-steroidal) are the most widely pharmacological treatment used in

    arthritis. Although these anti-inflammatory drugs are commonly used to treat inflammation

    associates with arthritis, it is often ineffective and may cause high incidence of adverse and

    unwanted dangerous side effects in the gastrointestinal tract, which limit their use [10]. Non-

    pharmacological treatments involve physiotherapy, aerobic and strength training exercises,

    weight loss, wearing braces and orthoses and so on. Indeed, exercise training (ET) has been

    recommended for managing of arthritis as a non-pharmacological therapy that has led to

    improvements in function and arthritis symptoms [11, 12, 13, 14]. In this regard, studies have

    shown that the regular practice of physical exercise attenuates the inflammatory response, joint

    pain and swelling, thereby contributing to restoration of range of motion, muscle strength and

    improves cardiovascular conditions [15, 16]. It is recommended that adults with arthritis do

    moderate physical activity associated with muscle strengthening activities [17].

    Another non-pharmacological treatment is low-level laser therapy (LLLT) that is

    growing as an alternative to many medical conditions that require relief from pain and

    inflammation [18]. Photobioestimulation with LLLT have been proposed to treat arthritis based

    on the literature that shows a reduction of inflammatory cell in fluid of synovial washing and a

  • 51

    decrease in inflammatory citokines such as IL-1 and IL-6 and TNF-a [19, 9], angiogenesis

    stimulation and reduction in the formation of fibrosis [20]. Also, we have shown that LLLT can

    reduce hyperalgesia in a model of zymosan-induced arthritis [21].

    Although arthritis predominantly affects the synovial joints it also leads to extra-

    articular manifestations. In this regard, impressively increasing number of investigators have

    reported on potential determinants of increased cardiovascular (CV) diseases in patients with

    rheumatoid arthritis (RA) [1]. A recent review confirmed that the CV risk in RA is increased to

    a similar magnitude to that seen in type 2 diabetes [7]. Also, it has been demonstrate that

    elevations in circulating pro-inflammatory cytokines increases sympathetic activity [22, 23],

    reduce cardiovagal baroreflex sensitivity [24] and reduce heart rate variability (HRV)-derived

    indices of cardiac parasympathetic activity. Then, using a model of acute articular

    inflammation, the monoarthritis (MA) induced by zymosan injection in the knee joint, we

    investigated the effect of the inflammatory process and its influence on autonomic and

    cardiovascular regulation in an acute arthritis. In order to evaluate autonomic and

    cardiovascular alterations, we used direct measurements of blood pressure measurements for

    30 min to the HRV for hemodynamic and autonomic functions analysised. We also tested the

    hypothesis that exercise training combined with low level laser therapy causes changes in

    hemodynamic and autonomic function.

    MATERIAL AND METHODS

  • 52

    ANIMALS

    The experiments were performed using thirty male Wistar rats (220–250 g) that were

    kept in plastic cages with water and food ad libitum and maintained under a controlled

    temperature on a 12-h light/dark cycle. The animals were randomized into four groups: control

    sedentary (C, n=6); zymosan-induced monoarthritis (MA, n=8); MA + exercise training (MAT,

    n=8) and MAT + low level laser therapy (MATL, n=8). All animal care was in accordance with

    the guidelines of the Brazilian College for Animal Experimentation (COBEA) and was

    approved by the ethics committee of the University, Protocol AN0017/2012.

    ZYMOSAN-INDUCED MONOARTHRITIS

    Rats received an intra-articular (ia.) injection of 1 mg zymosan [21] (Sigma Chemical

    Company, St Louis, MO, USA), dissolved in 50 L of a sterile saline solution, into one rear

    knee (stifle) joint. The procedure was done under general anesthesia, using a mix of ketamine

    80 mg/kg (Hospira, Inc.; Lake Forest, IL, USA) / xylazine 20 mg/kg (Lloyd, Inc.; Shenandoah,

    IA, USA) intramuscularly. Control animals received injections of sterile saline.

    EXERCISE TRAINING AND MAXIMAL EXERCISE TEST (MET)

    Exercise training (ET) was performed on a motor treadmill at moderate intensity (~40

    to 65% maximal exercise test) for 1 h a day, 5 days a week, for 4 weeks, with a gradual increase

    in speed from 0.3 to 0.8 km/h. All animals were adapted to the procedure (10 min/day, 0.3

    km/h) for 1 week before beginning the exercise training protocol. Exercise training groups were

  • 53

    subjected to a maximal exercise test, as described in detail in a previous publication [25, 26].

    The tests were performed three times: 1) at the beginning of the experiment, 2) in the

    intermediate protocol, and 3) in the final of the ET protocol. The purpose was to determine

    maximal physical capacity and exercise training intensity. All groups inducing monoarthritis

    (Zymosan) or saline in day 8. All groups was submitted to an initial MET in day 12. Only the

    MAT and MATL group was submitted to an exercise training protocol before inducing

    monoarthritis and MET protocol, while the C and MA groups did not exercise during period,

    but MET realization for intermediate and final period. Subsequently, the MATL received

    LLLT twice per week (#). Groups C, MA and MAT received therapy more with the power off

    (Fig. 1).

    LIGHT SOURCES, DOSES, AND TREATMENT

    A low-level laser InGaIP (aluminum gallium indium phosphate; MM Optics Ltda; São

    Carlos, São Paulo, Brazil), operating continuous ways in 660-nm wavelengths was used through

    the whole experiment to irradiate the animals. The laser parameters were as follows: power

    output 5 mW, energy density of 2.5 J/cm2, irradiation time 20 s, and beam area of 0.04 cm2;

    which corresponds to a power density 0,1W/cm2. The optical power of the laser was calibrated

    using a Newport Multifunction Optical Meter (model 1835-C). The laser dose, low enough to

    avoid any thermal effect, was chosen on the basis of previous studies from our laboratory that

    had shown a beneficial effect of the low-level laser on the inflammatory process [19, 21].

    HEMODYNAMIC ASSESSMENTS

  • 54

    Thirty three days after zymosan-induced moarthritis, one catheter filled with 0.06 mL

    of saline was implanted into the carotide artery of each anesthetized rat (80 mg/kg ketamine

    and 12 mg/kg xylazine, i.p.). Twenty-four hours later, the arterial cannula was connected to a

    strain gauge transducer (Blood Pressure XDCR; Kent Scientific, Torrington, CT, USA), and

    the arterial pressure (AP) signals were recorded over a 30-minute period in conscious rats using

    a microcomputer equipped with an analog-to-digital converter board (WinDaq, 2 kHz,

    DATAQ, Springfield, H, USA). The recorded data were analyzed on a beat-by-beat basis to

    quantify any changes in the mean AP (MAP) and heart rate (HR). The HRV of the autonomics

    parameters in the time domain and frequency was assessed by computing the of short-term

    recordings series [27].

    STATISTICAL ANALYSIS

    Statistical analysis was performed using ANOVA and Tukey test. The data was showed

    in mean ± error standard. In all calculations we fixed the critical level of less than 0.05.

    RESULTS

    Body weight evaluations

    There was no differences in body weight among groups at the beginning of the protocol

    (~244 ± 6 g). At the end of the training period, MAT (344 ± 10 g) and MATL (345 ± 7 g) had

    a lower body weight compared to C (362 ± 13 g) or MA (368 ± 15 g) animals (Tab. 1).

    Maximal Exercice Test

    Maximal exercise performance was evaluated by the response to the maximal exercise

    test (MET). At the beginning of the experiment, the MET was similar among all groups (C,

    0.75 ± 0.15; MA, 0.75 ± 0.15; MAT, 0.63 ± 0.09; MATL 0.71 ± 0.14; km\h). However, the

  • 55

    rats underwent to execice training showed an increase in the MET of running when compared

    with C and MA groups after four weeks of exercicing training (MAT, 1.2 ± 0.09; and MATL,

    1.3 ± 0.14; km\h) (Tab. 1).

    Hemodynamic evaluations

    Hemodynamic parameters can be observed in Table 2. No changes were observed in

    systolic AP, diastolic AP or MAP among groups. However, rats underwent to exercice training

    showed a significant lower resting HR compared to MA group (Tab. 2).

    Cardiac Autonomic Modulation

    The results of autonomic function evaluation are summarized in Table 3. Pulse interval

    (IP) was reduced in MA group when compared with C group. In addition, absolute LF band,

    VAR-SAP and LF-SAP were significant increased in MA group compared to C group.

    Furthermore, these alterations were reflected in the LF/HF ratio, an autonomic balance index

    that demonstrates an increase in the simpatic modulation. However, the RMSSD and HF

    component were not changed by MA. Finally, the sensitivity of the baroreflex, which was

    evaluated by alpha ratio, was also similar among groups. The animals subjected to ET showed

    an increase of PI and a decrease in LF and VAR SAP compared to MA. The rats underwent to

    an ET and a LLLT also showed a decrease in the LF and HF/LF and an increase of VAR SAP,

    VAR-RR and HF compared to MA (Tab. 3).

    DISCUSSION

    This study was performed to investigate the effect of cardiovascular dysfunction (CD)

    in rats with acute knee monoarthritis and the use of non-pharmacological approaches to reduce

    the effects of arthritis. For this purpose, we evaluated the autonomic nervous system after four

  • 56

    weeks of induction of monoarthritis in rats (MA group). Our results demonstrated that while

    MA rats showed unchanged blood pressure and heart rate, they indeed presented decreased PI

    and LF/HF and a increased LF, VAR-SAP and LF-SAP compared to control rats indicating an

    increase of sympathetic modulation as a result of inflammatory profile installed on knee.

    Previous results from clinical studies suggest that decreased vagus nerve activity occurs in

    subjects with acute inflammatory conditions [28, 29]. Few reports have assessed CD in patients

    with early RA although they have shown that the autonomic nervous system dysfunction occurs

    early in RA patients [30]. An important find is that, in our experimental model, the rats are

    health, only the knee inflammation is occurring, inferring that inflammation process alone is

    sufficient to elicit cardiovascular dysfunction.

    ET has been identified as one of the most important behavioral strategies for

    cardiovascular disease prevention, and just a slight increase in physical activity could benefit

    sedentary individuals (like RA sufferers) [31]. In the present study, rats were submitted to a

    four-week moderate intensity treadmill exercise as a treatment protocol. The result showed that

    ET rats (MAT or MATL) had a lower body weight and an increase in the maximum speed of

    running compared to sedentary groups (control or MA). Previous reports demonstrated that ET

    could decrease the pain and improve function in the patients with RA and also slow the process

    of the disease [32]. Furthermore, [33] showed that a training protocol for 4 weeks could

    surprisingly almost treat arthritis symptoms of rats’ knee joint in 3 histological measures of

    joint cartilage. Other studies also showed a beneficial effect in moderate exercise training on

    arthritic joints of rats [34, 35]. So, it is possible that in our experimental model the ET reduces

    pain and the degeneration of joint cartilage, which improves the capacity of the rats to running.

    This study also demonstrates that ET has a positive effect on autonomic function of MA

    rats, as measured by short-term heart rate and arterial pressure variability. Comparing the MAT

    group to MA group, the MAT group showed better heart rate variability that was observed by

  • 57

    the decrease of LF and VAR-SAP, which is similar to results from former studies [3, 36].

    Moreover, exercise training performed in the MAT group was able to normalize LF and VAR-

    SAP.

    Previous reports have shown that LLLT has beneficial effects in treating arthritis in

    humans [37] as well as in animal model [19, 25, 38]. In this sense, a meta-analysis, based on

    22 randomized controlled trials (668 people were in the laser therapy group and 565 people

    were in the placebo laser group) showed the effectiveness of laser therapy by analyzing previous

    clinical trials reported that LLLT might be a good alternative to NSAIDs drugs and the

    association of LLLT with ET had a better effect than LLLT alone. [39]. In this study we showed

    that the association of ET and LLLT increased the benefit of ET alone in the autonomic system.

    ET performed in the MATL group was able to increase HF and VAR-RR and decreased LF/HF

    compared to MAT group. In addition, MATL group maintained HF and VAR-SAP in the same

    parameters as the MAT group. The fact that MATL group increased LF/HF demonstrated that

    the association of ET and laser has a better effect in sympathovagal nerve modulation. This is

    the first study to demonstrate that LLLT in trained monoarthritis rats increases LF/HF. In our

    experimental model, ET combined with LLLT appears to have an advantageous effect on

    autonomic function in monoarthritis rats as measured by short-term heart rate variability.

    Especially, vagal modulation seems to be improved, and this can lead to a better cardiac health.

    Regarding the findings of the present study, it can be concluded that acute joint

    inflammation causes an imbalance of the sympathetic system, suggesting an early autonomic

    involvement, which in the course of chronic rheumatic disease may affect cardiovascular

    system. In addition, a moderate exercise program associated with LLLT can significantly exert

    beneficial effects on monoarthritic rats. These benefits were related to the cardiovascular

    autonomic balance and improved functional capacity.

  • 58

    Acknowledgement - Financial support: Brazilian Council of Research—CNPq/PROSUP.

    REFERENCES

    1 - SOLOMON A, et all.. Cardiovascular Disease Risk amongst African Black Patients with

    Rheumatoid Arthritis:The Need for Population Specific Stratification. BioMed Research

    International, 2014.

    2 - PRIOR P, SYMMONS DP, SCOTT DL, BROWN R, HAWKINS CF. Cause of death in

    rheumatoid arthritis. Br J Rheumatol. 1984.

    3 - YADAV, R.K., GUPTA, R. and DEEPAK, K.K. A pilot study on short term heart rate

    variability e its correlation with disease activity in Idian patients with rheumatoid arthritis.

    Indian J. Med, 136, 2012.

  • 59

    4 - STRAUB, R., BAERWALD, C., WAHLE, M. and JANIG, W.Autonomic Dysfunction in

    Rheumatic Diseases. Rheum Dis Clin N Am, 31, 2005.

    5 - SEFEROVIC, P.M., RISTIC, A.D., MAKSIMOVIC, B., SI